Simulating DIC Microscope Images: From Physical Principles to Computational Model - Robotics Institute Carnegie Mellon University

Simulating DIC Microscope Images: From Physical Principles to Computational Model

Farhana Kagalwala and Takeo Kanade
Workshop Paper, Workshop on Photometric Modelling in Computer Vision and Graphics (PMCVG '99), pp. 48 - 55, June, 1999

Abstract

Differential Interference Contrast (DIC) microscopy is a powerful visualization tool to study live biological cells. Its use in quantitative analysis, however, is limited by the nonlinear relation between image and object. Combining concepts from graphics and physics, we model these nonlinearities using a generalized ray tracer. We verify our model by comparing real image data of manufactured specimens to simulated images of virtual objects. We plan to use this model to iteratively reconstruct the three-dimensional properties of unknown specimens.

BibTeX

@workshop{Kagalwala-1999-14926,
author = {Farhana Kagalwala and Takeo Kanade},
title = {Simulating DIC Microscope Images: From Physical Principles to Computational Model},
booktitle = {Proceedings of Workshop on Photometric Modelling in Computer Vision and Graphics (PMCVG '99)},
year = {1999},
month = {June},
editor = {Sang W. Lee},
pages = {48 - 55},
publisher = {IEEE},
keywords = {computational sensors, graphics, light-propagation model,},
}