A Fast Stochastic Contact Model for Planar Pushing and Grasping: Theory and Experimental Validation

Jiaji Zhou, J. Andrew Bagnell and Matthew T. Mason
The Robotics Institute, Carnegie Mellon University
{jiajiz, dbagnell, matt.mason}@cs.cmu.edu

Abstract—Based on the convex force-motion polynomial model for quasi-static sliding, we derive the kinematic contact model to determine the contact modes and instantaneous object motion on a supporting surface given a position controlled manipulator. The inherently stochastic object-to-surface friction distribution is modeled by sampling physically consistent parameters from appropriate distributions, with only one parameter to control the amount of noise. Thanks to the high fidelity and smoothness of convex polynomial models, the mechanics of patch contact is captured while being computationally efficient without mode selection at support points. The motion equations for both single and multiple frictional contacts are given. Simulation based on the model is validated with robotic pushing and grasping experiments.

I. INTRODUCTION

Uncertainty from robot perception and motion inaccuracy is ubiquitous. Planning and control without explicit reasoning about uncertainty can lead to undesirable results. For example, grasp planning [17][5] is often prone to uncertainty: the object moves while the fingers close and ends up in a final relative pose that differs from planned. Consider the process of closing a parallel jaw gripper shown in Fig. 1 the object will slide when the first finger engages contact and pushes the object before the other one touches the object. If the object does not end up slipping out, it can be jammed at an undesired position or grasped at an unexpected position. A high fidelity and easily identifiable model with minimum adjustable parameters capturing all these possible outcomes would enable synthesis of robust manipulation strategy.

Although we can reduce uncertainty by carefully controlling the robot’s environment, as in most factory automation scenarios, such approach is both expensive and inflexible. Effective robotic manipulation requires an understanding of the underlying physical processes. Mason [15] explored using pushing as a sensorless mechanical funnel to reduce uncertainty. Whitney [23] analyzed the mechanics of wedging and jamming during peg-in-hole insertion and designed the Remote Center Compliance device that significantly increases the success of the operation under motion uncertainty. With a well defined generalized damper model, Lozano-Perez et al. [9] and Erdmann [4] developed strategies to chain a sequence of operations, each with a certain funnel, to guarantee operation success despite uncertainty. These successes stem from robustness analysis using simple physics models.

![Fig. 1: Simulation results using the proposed contact model illustrating the process of a parallel jaw gripper squeezing along the y axis when the object is placed at different initial poses. The initial, final and intermediate gripper configurations and object poses are in black, red and grey respectively. Blue plus signs trace out the center of mass trajectory of the object.](image-url)

A large class of manipulation problems involve finite planar sliding motion. In this paper, we propose a quasi-static kinematic contact model for such a class. We model the inherent stochasticity in frictional sliding by sampling the physics parameters from proper distributions. We validate the model by comparing simulation with large scale experimental data on robotic pushing and grasping tasks. The model serves as a good basis for both open loop planning and feedback control.

The proposed contact model is a direct extension of [27], which presents a dual mapping between an applied wrench and a resultant object twist. In this paper, we map a given position controlled input (which is common in most standard industrial manipulators) to the resultant twist including the no-motion case for jamming and grasping. The applied wrench is solved as an intermediate output without needing to control it. The rest of the paper is organized as follows:

- Section II describes the previous work.
- Section III reviews the convex polynomial representation of the limit surface [27] and the mechanics of pushing.
- Section IV-A develops the contact model of unilateral frictional contact for both slipping and sticking. Section IV-B develops the model for multiple frictional contacts.
planar sliding force-motion models using homogeneous even-degree sos-convex polynomials, which can be identified by solving a semi-definite programming. The set of applied friction wrenches is the 1-sublevel set of a convex polynomial whose gradient directions correspond to incurred sliding body twist. In this paper, we extend the convex polynomial model to associate a commanded rigid position-controlled end effector motion to the instantaneous resultant object motion. We show that single contact with convex quadratic limit surface model has a unique analytical linear solution which extends \([12]\). The case for a high order convex polynomial model is reduced to solving a sequence of such subproblems. For multiple contacts (e.g., pushing with multiple points or grasping) we need to add linear complementarity constraints \([22]\) at the pusher points, and the entire problem is a standard linear complementarity problem (LCP).

III. Notations and Background

We first introduce the following notations:

- \(O\): the object center of mass used as the origin of the body frame. We assume vector quantities are with respect to body frame unless specially noted.
- \(R\): the region between the object and the supporting surface.
- \(f_i(r)\): the friction force distribution function that maps a point \(r\) in the contact area \(R\) to its friction force the object applies on the supporting surface. For isotropic point Coulomb friction law, when the velocity at \(r\) is nonzero, \(f_i(r)\) is in the same direction of the velocity. Its magnitude equals the pressure force multiplied by the coefficient of friction between the object and the supporting surface. When the object is static, \(f_i(r)\) is indeterminate and dependent on the externally applied force by the manipulator.
- \(V = [V_x; V_y; \omega]\): the body twist (generalized velocity).
- \(F = [F_x; F_y; \tau]\): the body wrench by the manipulator that quasi-statically balances the friction wrench from the surface.
- \(p_i\): each contact point between the manipulator end effector and object in the body frame.
- \(v_{pi}\): applied velocities by the manipulator end effector at each contact point in the body frame.
- \(n_i\): the inward normal at contact point \(p_i\) on the object.
- \(\mu_i\): coefficient of friction between the object and the manipulator end effector.

A. Force-Motion Model

In this section we review the basics of force-motion models for planar sliding and the mechanics of pushing. We refer the readers to \([6, 15, 27]\) for more details. Given a body twist \(V\), the components of the friction wrench \(F\) are given by integrations over \(R\):

\[
[F_x; F_y] = \int_R f_i(r) dr, \quad \tau = \int_R r \times f_i(r) dr. \tag{1}
\]

We can compute \(F\) for each \(V\) and form the set of all possible friction wrenches. Goyal et al. \([6]\) defined the set boundary as
limit surface. It is shown that the friction wrench set is convex and points on the limit surface correspond to friction wrenches when the object slides. Additionally, the normal for a point (wrench) on the limit surface is parallel to the corresponding twist. Zhou et al. [27] showed that level sets of homogeneous even degree convex polynomials can approximate the limit surface geometry sufficiently well. Denote by $H(F)$ the convex polynomial function, the twist V for a given friction wrench F is parallel to the gradient $\nabla H(F)$:

$$V = k\nabla H(F) \quad k > 0.$$ \hfill (2)

Additionally the inverse mapping can be efficiently computed. Given the twist V, optimizing a least-squares objective with the Gauss-Newton algorithm gives the unique solution that corresponds to the wrench F.

With a position-controlled manipulator, we are given contact points p with inward normals n_p, pushing velocities v_p and coefficient of friction μ between the pusher and the object. The task is to resolve the incurred body twist V and consistent contact modes (sticking, slipping, breaking contact) to maintain wrench balance.

IV. CONTACT MODELLING

A. Single point pusher

Let the COM be the point of origin of the local body frame a level set representation of limit surface $H(F)$. We introduce the concept of motion cone first proposed in [15]. Let $J_p = \begin{bmatrix} 1 & 0 & -p_x \\ 0 & 1 & p_y \end{bmatrix}$, and denote by $F_l = J_p^T f_l$ and $F_r = J_p^T f_r$ the left and right edges of the applied wrench cone with corresponding resultant twist directions $V_l = \nabla H(F_l)$ and $V_r = \nabla H(F_r)$ respectively. The left edge of the motion cone is $v_l = J_p V_l$ and the right edge of the motion cone is $v_r = J_p V_r$.

If the contact point pushing velocity v_p is inside the motion cone, i.e., $v_p \in K(v_l, v_r)$, the contact sticks. When v_p is outside the motion cone, sliding occurs. If v_p is to the left of v_l, then the pusher slides left with respect to the object. Otherwise if v_p is to the right of v_r, then the pusher slides right as shown in Fig. 2a.

The following constraints hold assuming sticking contact:

$$v_{px} = V_x - \omega p_y$$ \hfill (3)

$$v_{py} = V_y + \omega p_x$$ \hfill (4)

$$V = k \cdot \nabla H(F), \quad k > 0$$ \hfill (5)

$$\tau = -p_x F_x + p_y F_y$$ \hfill (6)

In the case of ellipsoidal (convex quadratic) representation, i.e., $H(F) = F^T A F$ where A is a positive definite matrix, the problem is a full rank linear system with a unique solution. Lynch et al. [12] gives an analytical solution when A is diagonal. We show that a unique analytical solution exists for any positive definite symmetric matrix A. Let $t = [-p_y, p_x, -1]^T$, $D = [J_p A^{-1} t]^T$ and $V_p = [v_p]^T$, equations (3)-(6) can then be combined as one linear equation:

$$V = D^{-1} V_p$$ \hfill (7)

Theorem 1: Pushing with single sticking contact and the convex quadratic representation of limit surface (abbreviated as $P1$) has a unique solution from a linear system.

Proof: It is obvious that we only need to prove D is invertible. 1) The row vectors of J_p are linearly independent and span a plane. 2) $J_p t = 0$ implies t is orthogonal to the spanned plane. 3) If D is not full rank, then $A^{-1} t$ must lie in the spanned plane and is therefore orthogonal to t. This contradicts with the fact that $(t, A^{-1} t) > 0$ for positive definite matrix A^{-1} and nonzero vector t.

Corollary 1: Pushing with single sticking contact and the general convex polynomial limit surface representation is reducible to solving a sequence of sub-problems $P1$.

For general convex polynomial representation $H(F)$, the following optimization is equivalent to equation (3)-(6):

$$\text{minimize} \quad \|J_p \nabla H(F) - v_p\|$$ \hfill (8)

subject to \hspace{1cm} $t^T F = 0$ \hfill (9)
When $H(F)$ is of convex quadratic (ellipsoidal) form, the analytical minimizer is $F = A^{-1}D^{-1}V_p$. In the case of high order convex homogeneous polynomials, we can resort to an iterative solution where we use the Hessian matrix as a local ellipsoidal approximation, i.e., set $A_i = \nabla^2 H(F_i)$ and compute $F_{i+1} = A_i^{-1}D^{-1}V_p$ until convergence.

When v_p is outside of the motion cone, assuming right sliding occurs without loss of generality, the wrench applied by the finger equals F_i. The resultant object twist V follows the same direction as V_r with proper magnitude such that the contact is maintained:

$$V = sV_r$$

$$s = \frac{n_p^Tv_p}{n_p^Tv_f}$$

(10) (11)

B. Multi-contacts

Mode enumeration is tedious for multiple contacts. The linear complementarity formulation for frictional contacts (22) provides a convenient representation. Denote by m the total number of contacts, the quasi-static force-motion equation is given by:

$$V = k\nabla H(F),$$

(12)

where the total applied wrench is the sum of normal and frictional wrenches over all applied contacts:

$$F = \sum_{i=1}^m J_i^T(f_n, n_p + D_p f_i).$$

(13)

f_n is the normal force magnitude along the normal n_i, and f_i is the vector of tangential friction force magnitudes along the column vector basis of $D_p = [t_p, -t_p]$. The velocity at contact point p_0 on the object is given by $J_p V$. The first order complementarity constraints on the normal force magnitude and the relative velocity are given by:

$$0 \leq f_n \perp (n_p^T(J_p V - v_p)) \geq 0.$$

(14)

The complementarity constraints for Coulomb friction are given by:

$$0 \leq f_i \perp (D_p^T(J_p V - v_p) + e\lambda_i) \geq 0,$$

$$0 \leq \lambda_i \perp (\mu_i f_n - e^T f_i) \geq 0,$$

(15) (16)

where μ_i is the coefficient of friction at p_i and $e = [1; 1]$. In the case of ellipsoid (convex quadratic) representation, i.e., $H(F) = F^T A F$ where A is a positive definite matrix, equations (12) to (16) can be written in matrix form:

$$\begin{bmatrix}
\alpha \\
\beta \\
\gamma
\end{bmatrix} = \begin{bmatrix}
0 & \frac{A^{-1}}{k} & -N^T & -L^T & 0 & 0 \\
N & 0 & 0 & 0 & & 0 \\
L & 0 & 0 & E & & E \\
0 & \mu & -E^T & 0 & \lambda & 0
\end{bmatrix}
\begin{bmatrix}
V \\
f_i \\
f_i \\
\lambda
\end{bmatrix} +
\begin{bmatrix}
0 \\
a \\
b \\
b
\end{bmatrix},$$

(17)

where the binary matrix $E \in R^{2m \times m}$ equals

$$\begin{bmatrix}
e & \cdots & e \\
\cdots & \cdots & \cdots \\
e & \cdots & e
\end{bmatrix},$$

$\mu = [\mu_1, \ldots, \mu_m]^T$, the stacking matrix $N \in R^{m \times 3}$ equals $[n_{p1}^T, \ldots, n_{pm}^T]$, the stacking matrix $L \in R^{2m \times 3}$ equals $[D_{p1}^T, \ldots, D_{pm}^T]$, the stacking vector $s_a \in R^m$ equals $[e, \ldots, e]$, and vector $s_b \in R^2m$ equals $[e, \ldots, e]$. Note that the positive scalar k will not affect the solution value of V since f_i and f_i will scale accordingly. Hence, we can drop the scalar k and further substitute $V = A(N^T f_i + L^T f_i)$ into equation (17) and reach the standard linear complementarity form as follows:

$$\begin{bmatrix}
\alpha \\
\beta \\
\gamma
\end{bmatrix} = \begin{bmatrix}
N^T & NAL^T & 0 & f_i \\
LAN^T & LAL^T & E & f_i \\
\mu & -E^T & 0 & f_i
\end{bmatrix} +
\begin{bmatrix}
a \\
b \\
b
\end{bmatrix},$$

(18)

Similarly, for the case of high order convex homogeneous polynomials, we can iterate between taking the linear Hessian approximation and solving the LCP problem in equation (18) until convergence.

Lemma 1: The object is quasi-statically jammed or grasped if the LCP problem (equation (18)) yields no solution. Fig. provides a graphical proof. When equation (18) yields no solution, either there is no feasible kinematic motion of the object without penetration or all the friction loads associated with the feasible instantaneous twists cannot balance against any element from the set of possible applied wrenches. In this case, the object is quasi-statically jammed or grasped between the fingers. Neither the object nor the end effector can move.

V. STOCHASTICITY

Uncertainty is inherent in frictional interaction. Two major sources contribute to the uncertainty in planar motion: 1) indeterminancy of the supporting friction distribution $f_i(r)$ due to changing pressure distribution and coefficients of friction between the object and support surface; 2) the coefficient of friction μ_i between the object and the robot end effector. We sample μ_i uniformly from a given range. To model the effect of changing support friction distribution, for a even degree d strictly convex polynomial (except at the point of origin) $H(F, a) = \sum_{i=1}^m a_i F_i^d$ with m monomial terms (27), we sample the polynomial coefficient parameters a_i in from a distribution that satisfies:

1) Samples from the distribution should result in a even degree homogeneous convex polynomial to represent the limit surface.

2) The mean can be set as a prior estimate and the amount of variance controlled by one parameter.

The Wishart distribution $S \sim W(S, n_{df})$ (24) with mean $n_{df}S_{est}$ and variance $\text{Var}(S_{ii}) = n_{df}S_{ii}^2 + S_{ii}\text{var}(S)$ is defined over symmetric positive semidefinite random matrices as a generalization of the chi-squared distribution to multi-dimensions.
For ellipsoidal (convex quadratic) $H(F;A) = A^TFA$, we can directly sample A from $\frac{1}{n_{df}}W(A_{est},n)$ with mean A_{est} and variance $\text{Var}(A_{ij}) = \frac{1}{n_{df}}W(A_{est} + A_{est}^2A_{est}^T)$, where A_{est} is some estimated value from data or fitted for a particular pressure distribution. Sampling from general convex polynomials is hard. Fortunately, we find that sampling from the sos-convex [18] [13] polynomials subset is not. The key is the coefficient vector a of a sos-convex polynomial $H(F;a)$ has a unique one-to-one mapping to a positive definite matrix Q so that we can first sample \hat{Q} from $\frac{1}{n_{df}}W(Q_{est},n_{df})$ and then map back to \hat{a}. Given a sos-convex polynomial representation of $H(F;a)$, the Hessian matrix $\nabla^2H(F;a)$ at F is positive definite, i.e., for any non-zero vector $z \in \mathbb{R}^3$, there exists a positive-definite matrix Q such that

$$z^T \nabla^2 H(F;a) z = y(F,z)^TQy(F,z) > 0. \quad (19)$$

In the case of fourth order polynomial we have $y(F,z) = [z_1F_1, z_1F_1^2, z_1F_1F_2, z_1F_1F_3, z_2F_2, z_2F_2F_3, z_3F_3, z_3F_3F_4, z_3F_4, z_3F_4F_5, z_3F_5]^T$. Q and a are related through a set of linear equalities: equation (19) can be written as a set of K sparse linear constraints on \hat{Q} and a.

$$\text{Tr}(C_kQ) = b_k^T a, \quad k \in \{1 \ldots K\} \quad (20)$$

where C_k and b_k are the constant sparse element indicator matrix and vector that only depend on the polynomial degree d. Hence we can map each sampled \hat{Q} back to \hat{a}. The degree of freedom parameter n_{df} determines the sampling variance. The smaller n_{df} is, the noisier the system will be.

VI. EXPERIMENTAL EVALUATION

A. Evaluation of Deterministic Pushing Model

We evaluate our deterministic model on the large scale MIT pushing dataset [26] and a smaller dataset [27] that has discrete pressure distributions. For the MIT pushing dataset, we use 10mm/s velocity data logs for 10 object[1] on 3 hard surfaces including delrin, abs and plywood. The force torque signal is first filtered with a low pass filter and 5 wrench-twist pairs evenly spaced in time are extracted from each push action json log file. 10 random train-test splits (20 percent of the logs for training, 10 percent for validation and the rest for testing) are conducted for each object-surface scenario. On average, around 600 wrench-twist pairs are used for identification.

Given two poses $q_1 = [x_1, y_1, \theta_1]$ and $q_2 = [x_2, y_2, \theta_2]$, we define the deviation metric $d(q_1, q_2)$ which combines both the displacement and angular offset as $d(q_1, q_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + \rho \cdot \min(|\theta_1 - \theta_2|, 2\pi - |\theta_1 - \theta_2|)}$, where ρ is the characteristic length of the object (e.g., radius of gyration or radius of minimum circumscribed circle). A one dimensional coarse grid search over the coefficient of friction μ_c between the pusher and object is chosen to minimize average deviation of the predicted final pose and ground truth final pose on training data. Table I shows the average metric with a 95% percent confidence interval. Interestingly, we find that using more training data does not improve the performance much. This is likely due to the inherent stochasticity (variance) and changing surface conditions as reported in [26].

The objects in the MIT pushing dataset are closer to uniform pressure. We also evaluate on a smaller dataset [27] that has discrete pressure distributions, and in particular three points support whose pressure can be derived exactly as ground truth. We use 400 wrench twists sampled from the ideal limit surface for training. The coefficient of friction between the object and pusher is determined by a grid search over 40 percent of the logs to determine. We use the remaining 60 percent to evaluate simulation accuracy. Note that in both evaluations, the accuracy of deterministic models are upper bounded by the system variance.

B. Pushing with stochasticity

The experiment in [26] demonstrates that the same 2000 pushes in a highly controlled setting result in a distribution

3Despite having the same experimental set up and similar geometry and friction property to the other two triangular shapes, the results for object Tr2 is about 1.5 -2 times worse. Due to time constraint, we have not ruled out the possibility that the data for object Tr2 is corrupted.
of final poses. We perform simulations using the same object and pusher geometry and push distance. The 2000 resultant trajectories and histogram plot of pose changes are shown in Fig. 5. We note that although the mean and variance pose changes are similar to the experiments with abs material in [26], the distribution resemble a single Gaussian distribution which differs from the multiple modes distribution in Figure 10 of [26]. We conjecture this is due to a time varying stochastic process where coefficients of friction between surfaces drift due to wear.

We also evaluate the effects of uncertainty reduction with 2 point fingers under the stochastic contact model. The circular object has radius of 5.25cm. The two fingers separated by 10cm perform a straight line push of 26.25cm. The desired goal is to have the object centered with respect to the two fingers. Fig. 6a and 6b compare the resultant trajectories under different amount of system noise. We find that despite larger noise in the resultant trajectories, the convergent region of the stable goal pose differs by less than 5% and the difference is mostly around the uncertainty boundary. A kernel density plot of the convergence region is shown in Fig. 6c for $n_{df} = 10$. We conclude that multiple active constraints induce a large region of attraction.

We conduct robotic experiments to evaluate our contact model for grasping. Fig. 7a shows two rectangular objects with the same geometry but different pressure distributions. Another experiment is conducted for a butterfly shaped object shown in Fig. 7a. We use the Robotiq hand [21] and represent it as a planar parallel-jaw gripper with rectangular fingers as shown in Fig. 7b and Fig. 7c. Convex quadratic limit surface parameterizations $H(F)$ are trained from wrench-twist pairs from a uniform friction distribution along the object bound-

| TABLE I: Average deviation (in mm) that combines both displacement and angular offset) between the simulated final pose and actual final pose with 95 percent confidence interval. The 3rd, 6th and 9th rows are the deviation from the ground truth initial pose and final pose to indicate how much the object is moved due to the push. In most cases, the fourth order convex (poly4) polynomial has better accuracy. The average normalized percentage error for poly4 is 20.05% and for quadratic is 21.39%. However, the accuracy of a fixed deterministic model is bounded by the inherent variance of the system. |
|---|---|---|---|---|---|---|---|---|
| rect1 | rect2 | rect3 | tri1 | tri3 | ellip1 | ellip2 | ellip3 | hex | butter |
| poly4-delrin | 8.28±0.29 | 5.37±0.23 | 6.10±0.21 | 9.71±0.33 | 7.54±0.23 | 7.68±0.51 | 8.90±1.40 | 7.35±0.38 | 6.38±0.28 | 4.83±0.27 |
| quad-delrin | 8.60±0.35 | 5.92±0.14 | 8.20±0.16 | 9.90±0.41 | 8.18±0.15 | 6.85±0.25 | 6.29±0.24 | 8.08±0.51 | 6.42±0.12 | 5.97±0.23 |
| delrin | 35.48 | 40.53 | 35.98 | 36.91 | 36.66 | 32.18 | 38.05 | 33.37 | 33.35 | 34.09 |
| poly4-abs | 5.86±0.11 | 7.48±0.80 | 5.519±0.12 | 7.13±0.26 | 5.17±0.38 | 8.45±1.13 | 9.18±1.26 | 5.92±0.19 | 7.18±0.35 | 3.94±0.11 |
| quad-abs | 6.07±0.16 | 6.74±0.27 | 6.19±0.18 | 8.00±0.37 | 7.17±0.37 | 6.66±0.28 | 7.69±0.27 | 5.78±0.21 | 8.19±0.21 | 5.39±0.15 |
| abs | 34.14 | 39.74 | 33.98 | 35.43 | 32.37 | 32.68 | 33.53 | 32.45 | 33.23 | 33.53 |
| poly4-plywood | 6.86±0.71 | 6.86±0.13 | 5.93±0.33 | 4.61±0.13 | 7.21±0.47 | 4.39±0.16 | 4.99±0.31 | 5.72±0.31 | 8.41±0.24 | 4.72±0.17 |
| quad-plywood | 6.20±0.20 | 7.22±0.18 | 6.88±0.18 | 5.96±0.19 | 9.43±0.56 | 4.42±0.12 | 5.84±0.20 | 6.46±0.26 | 8.85±0.17 | 6.05±0.22 |
| plywood | 31.86 | 33.22 | 32.94 | 32.81 | 33.78 | 27.24 | 28.23 | 33.29 | 32.77 | 34.10 |

| TABLE II: Average deviation (in mm) that combines both displacement and angular offset) between the simulated final pose and actual final pose with 95 percent confidence interval for 3-point support. The wrench-twist pairs used for training the model are generated from the ideal limit surface. |
|---|---|---|---|---|---|---|---|---|
| 3pts1 | 3pts2 | 3pts3 | 3pts4 |
| poly4-hardboard | 3.52±0.21 | 2.75±0.25 | 2.92±0.27 | 2.80±0.23 |
| quad-hardboard | 3.82±0.24 | 3.63±0.27 | 3.35±0.23 | 3.36±0.28 |
| hardboard | 16.63 | 13.86 | 14.83 | 13.15 |
| poly4-plywood | 3.78±0.11 | 2.80±0.15 | 2.84±0.16 | 3.26±0.11 |
| quad-plywood | 4.24±0.15 | 3.56±0.17 | 3.28±0.08 | 4.12±0.13 |
| plywood | 16.56 | 13.81 | 15.27 | 14.20 |
The sampling degree of freedom \(n_{df} \) equals 250 with contact friction coefficient \(\mu \), sampled uniformly from [0.015, 0.02]. The simulated results with the stochastic contact model match well with the rectangles for both pressure distribution. However, the model fails to capture the stability of grasps and the deformation of objects. In the case of a butterfly-shaped object, many unstable grasps and jamming equilibria exist, but as the fingers increase the gripping force the object will “fly” away as the stored elastic energy turns into large accelerations which violates the quasistatic assumptions of our model, as revealed in the scattered post-grasp distribution in Fig. 8c. We also compare the cases where dynamics do not play a major role: Fig. 8d shows the zoomed in plots to compare with simulation results in Fig. 8c. We can see that the model simulation deviates more compared with the case for rectangular geometry. Comparing the histogram plot in Fig. 8d and Fig. 8h we can see that the simulation returns more jamming and grasping final states as illustrated by the spikes in \(\theta \).

VII. CONCLUSIONS AND FUTURE WORK

We extend the convex polynomial force-motion model in [27] which gives the dual mapping between friction wrench and twist to the kinematic level where the applied controls are velocity input (single and multiple) contacts. Additionally, we derive methods that enable sampling from the family of sos-convex polynomials to model the inherent uncertainty in frictional mechanics. The stochastic contact models are validated with large scale robotic pushing and grasping experiments. We also see the limitation of a first order quasistatic model in the butterfly shaped object grasping experiment. Much work remains to be done. On the simulator end: 1) how to increase the accuracy without losing convergence speed for high order polynomial based representation of \(H(F) \) and 2) how to handle penetration properly when the integration step is large. On the application side: 1) how to quickly identify both the mean and variance of the sampling distribution to match with experimental data and 2) how to plan a robust sequence of grasp and push actions for uncertainty reduction using the stochastic contact model.

ACKNOWLEDGMENTS

The authors would like to thank Alberto Rodriguez and Kuan-Ting Yu for discussions and providing details of the MIT pushing dataset. This work was conducted in part through collaborative participation in the Robotics Consortium sponsored by the U.S Army Research Laboratory under the Collaborative Technology Alliance Program, Cooperative Agreement W911NF-10-2-0016 and National Science Foundation IIS-1409003. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Laboratory of the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein.

REFERENCES

[7] Suresh Goyal, Andy Ruina, and Jim Papadopoulos. Pla-

