Loading Events

Field Robotics Center Seminar

June

29
Wed
Grace Xingxin Gao Assistant Professor Aerospace Engineering Department University of Illinois at Urbana-Champaign
Wednesday, June 29
10:00 am to 11:00 am
Navigating Unmanned Aerials Vehicles at Low Altitude: Accuracy, Reliability and Security

Event Location: NSH 1507
Bio: Grace Xingxin Gao is an assistant professor in the Aerospace Engineering Department at University of Illinois at Urbana-Champaign. She obtained her Ph.D. degree in Electrical Engineering from the GPS Laboratory at Stanford University in 2008. Before joining Illinois at Urbana-Champaign as an assistant professor in 2012, Prof. Gao was a research associate at Stanford University.

Prof. Gao has won a number of awards, including RTCA William E. Jackson Award and Institute of Navigation Early Achievement Award. She was named one of 50 GNSS Leaders to Watch by the GPS World Magazine. She has won Best Paper/Presentation of the Session Awards 10 times at ION GNSS+ conferences. For her teaching, Prof. Gao has been on the List of Teachers Ranked as Excellent by Their Students at University of Illinois multiple times. She won the College of Engineering Everitt Award for Teaching Excellence at University of Illinois at Urbana-Champaign in 2015. She was chosen as American Institute of Aeronautics and Astronautics (AIAA) Illinois Chapter’s Teacher of the Year in 2016.

Abstract: The ever-growing applications of Unmanned Aerial Vehicles (UAVs) require UAVs to navigate at low altitude below 2000 feet. Traditionally, a UAV is equipped with a single GPS receiver. When flying at low altitude, a single GPS receiver may receive signals from less than four GPS satellites in the partially visible sky, not sufficient to conduct trilateration. In such a situation, GPS coordinates become unavailable and the partial GPS information is discarded. A GPS receiver may also suffer from multipath errors, causing the navigation solution to be inaccurate and unreliable.

In this talk, we present our recent work on UAV navigation using not one, but multiple GPS receivers, either on the same UAV or across different UAVs fused with other navigational sensors, such as IMUs and vision. We integrate and take use of the partial GPS information from peer GPS receivers and are able to dramatically improve GPS availability. We apply advanced filtering algorithms to multiple GPS measurements on the same UAV to mitigate multipath errors. Furthermore, multiple UAVs equipped with on-board communication capabilities can cooperate by forming a UAV network to further improve navigation accuracy, reliability and security.