Real-Time Photorealistic Virtualized Reality Interface for Remote Mobile Robot Control - Robotics Institute Carnegie Mellon University

Real-Time Photorealistic Virtualized Reality Interface for Remote Mobile Robot Control

Alonzo Kelly, Erin Capstick, Daniel Huber, Herman Herman, Pete Rander, and Randy Warner
Conference Paper, Proceedings of 14th International Symposium on Robotics Research (ISRR '09), pp. 211 - 226, August, 2009

Abstract

The task of teleoperating a robot over a wireless video link is known to be very difficult. Teleoperation becomes even more difficult when the robot is surrounded by dense obstacles, or speed requirements are high, or video quality is poor, or wireless links are subject to latency. Due to high quality lidar data, and improvements in computing and video compression, virtualized reality has the capacity to dramatically improve teleoperation performance - even in high speed situations that were formerly impossible. In this paper, we demonstrate the conversion of dense geometry and appearance data, generated on-the-move by a mobile robot, into a photorealistic rendering database that gives the user a synthetic exterior line-of-sight view of the robot including the context of its surrounding terrain. This technique converts remote teleoperation into line-of-sight remote control. The underlying metrically consistent environment model also introduces the capacity to remove latency and enhance video compression. Display quality is sufficiently high that the user experience is similar to driving a video game where the surfaces used are textured with live video.

BibTeX

@conference{Kelly-2009-120763,
author = {Alonzo Kelly and Erin Capstick and Daniel Huber and Herman Herman and Pete Rander and Randy Warner},
title = {Real-Time Photorealistic Virtualized Reality Interface for Remote Mobile Robot Control},
booktitle = {Proceedings of 14th International Symposium on Robotics Research (ISRR '09)},
year = {2009},
month = {August},
pages = {211 - 226},
}