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Abstract

This research introduces CBGT-Net, a neural network model inspired
by the cortico-basal ganglia-thalamic (CBGT) circuits in mammalian
brains, which are crucial for critical thinking and decision-making. Unlike
traditional neural network models that generate an output for each input
or after a fixed sequence of inputs, CBGT-Net learns to produce an output
once sufficient evidence for action is accumulated from a stream of observed
data. For each observation, CBGT-Net generates a vector representing the
amount of evidence for each potential decision, accumulates this evidence
over time, and makes a decision when the accumulated evidence surpasses
a predefined or dynamically learned threshold.

We evaluate the proposed model on various image classification tasks,
where models must predict image categories based on a stream of partially
informative visual inputs. Our results demonstrate that CBGT-Net offers
improved accuracy and robustness compared to models trained to classify
from a single image, as well as models utilizing an LSTM layer or a
ViT-style transformer to classify from a fixed sequence of image inputs.
Additionally, we introduce a novel dataset for classification based on
sequential image data of urban city buildings. This dataset provides multi-
view images of 3D building assets on fire, categorized into five stages of
fire severity.
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Chapter 1

Introduction

In the realm of neuroscience and machine learning, the pursuit of sophisticated

neural architectures capable of navigating dynamic decision-making in ever-changing

environments has been a focal point of research. Drawing inspiration from the intricate

cortico-basal ganglia-thalamic (CBGT) circuits observed in mammalian brains, this

thesis is focused on exploring and implementing a groundbreaking neural network

model known as CBGT-Net. Building upon the foundational principles of decision

thresholds and encoder learning elucidated in prior studies [1], this thesis extends the

horizon to encompass the complexities of data streams, with a specific emphasis on

image data classification.

The CBGT-Net model not only demonstrates remarkable adaptability to diverse

encoding layers but also introduces a novel supervised training approach that places

a premium on transparent deliberation in decision-making processes. By explicitly

focusing on regulating the speed and precision of decision-making, this research

endeavors to contribute significantly to the advancement of autonomous systems

capable of adeptly handling a myriad of decision tasks across various domains.

Through a meticulous examination of the CBGT-Net model’s performance in

learning from low-information data streams, this thesis aims to shed light on the

model’s efficacy in discerning patterns and making informed decisions in scenarios

where data availability may be limited or noisy. By delving into the nuances of decision

thresholds and encoder learning within the CBGT-Net framework, this research seeks

to pave the way for more robust and efficient decision-making mechanisms in neural
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1. Introduction

networks, ultimately propelling the field towards enhanced autonomy and adaptability

in intelligent systems.

In real-world scenarios, agents often operate under conditions of incomplete

information, limited sensing capabilities, and inherently stochastic environments,

resulting in observations that are incomplete and unreliable. Additionally, it is often

preferable to delay making a decision rather than risk a poor one. In such cases, it is

crucial to aggregate information before taking action. However, most conventional

neural network algorithms tend to make predictions or take actions at every time

step, even when the agent lacks confidence in its choice. This lack of caution can

lead to critical mistakes, regardless of the agent’s prior experience and acclimation to

the environment. Inspired by theories of dynamic resolution of uncertainty during

decision-making in biological brains, we propose a neuro-inspired module. This

module gathers evidence for each possible decision, encodes uncertainty as a dynamic

competition between actions, and acts only when it is sufficiently confident in the

chosen action. The agent makes no decision by default; the burden of proof lies on

the accumulation process to gather enough evidence in favor of a single decision to

cross a threshold before action is taken.

Significant strides in deep learning have led to remarkable advancements across

various domains such as image classification, natural language comprehension, and

decision-making [17]. The success of such methods arises from multi-layered ar-

chitectures capable of learning feature mappings at increasing levels of abstraction

from large datasets. Despite the success of deep learning, models are trained in

an end-to-end manner and generally produce an output for every provided input.

Generated output may be incorrect—often with a high level of confidence—with

minimal perturbation to the input [20], and traditional neural network models are

not designed to consider when a single input is insufficient for inference purposes.

For instance, traditional image classification models generate a category for a single

image without the ability to consider additional viewpoints, while policies learned for

control are designed to generate an action regardless of how complete or noisy the

observation is.

In contrast, models of decision-making in primate brains have been developed

where decisions are made based on the integration of noisy information over time [18].

In these models, evidence for a response is accumulated until a requisite amount

2



1. Introduction

is reached, explaining response accuracy and timing. Specifically, the cortico-basal

ganglia-thalamic (CBGT) circuits in the brain have been shown to play a role in

action selection [13, 19], including describing means of evidence accumulation for and

response criteria of competing actions [16]. In essence, this circuitry deliberates over

potential actions based on a stream of noisy or incomplete information from multiple

cortical areas.

Inspired by the evidence accumulation aspect of primate decision-making, our

research aims to develop and evaluate a neuromimetic model of the CBGT circuit in

mammalian brains. We believe such a model would provide several desired features

in autonomous decision-making—in addition to potentially improved model accuracy,

the deliberation process of the model is transparent, allowing for better interpretability

during human-autonomy collaborations. Building on our prior proof-of-concept work

in this area [1], we present a CBGT-inspired neural network architecture1 and evaluate

its ability to learn to integrate noisy information, as well as determine the effect

of varying evidence criterion, in complex domains (i.e., vision-based tasks). We

demonstrate that the proposed model is able to perform classification tasks using a

stream of incomplete information more accurately than models trained to classify

based on a single observation, and also generally outperforms LSTM-based sequential

models in terms of accuracy and data efficiency. Additionally, our model’s performance

is robust to decreasing information in observations, compared to the LSTM models.

Finally, our model is designed to make decisions based on acquiring a sufficient

amount of evidence, as opposed to a fixed amount of time, which is easily adjusted

during deployment using a simple decision threshold level.

This paper is organized as follows: Section 2 describes relevant work related

to our approach; Section 2.1 provides a brief description of the CBGT circuit in

mammalian brains; Section 3 describes the architecture and training approach for our

model; Section 4.1.1 and 4.2 describes our evaluation and results. Section 5 provides

discussion and future work.

1Code available at https://github.com/ShreyaSharma99/CBGT-Net
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Chapter 2

Related Work

In the field of neuroscience, computational models of basal ganglia circuitry have

been used to explore aspects of decision making in dynamic environments and its

role in reinforcement learning. For instance, competition between neural pathways

in the basal ganglia has been proposed as a model of action uncertainty [4] and

for describing exploration-exploitation tradeoffs in volatile environments [2]. While

previous research has showcased the basal ganglia’s involvement in different facets

of decision-making, the existing models predominantly investigate the biological

dimensions of decision-making, such as response time. In contrast, our focus lies in

developing models tailored for machine learning tasks with inspiration drawn from

neuroscience.

In the area of deep neural networks, confidence-aware learning aims to not only

accurately perform some inference task (e.g., image classification), but to also assign

a confidence score to each inference. In [15], a correctness ranking loss is utilized to

ordinally rank training examples and produce a confidence score for classification

tasks. In [14], training loss is augmented with a distance loss to encourage clustering

of training examples in an embedding space; post-training, the distance of a novel

data point to the nearest neighbor of the training data in the embedding space is

leveraged as a confidence score. While such confidence scores are analogous to our

usage of evidence, these approaches aim to generate confidence scores of a single

prediction, while in our approach, the evidence encoder learns to produce a value

akin to confidence when learning with a stream of data.

5



2. Related Work

Figure 2.1: Cortico-Basal Ganglia Thalamus (CBGT) Circuits in Mammalian Brains

Our prior exploration into developing a CBGT-inspired network [1] demonstrates

a proof-of-concept network capable of learning decision thresholds and very simple

encoders; in this paper, we extend this effort to learn encoders for more complex data

streams (e.g., images), demonstrate that our approach is agnostic to encoding layers,

and utilize a more effective supervised training approach.

2.1 Cortico-Basal Ganglia Thalamic Circuit

The network architecture presented in this paper is inspired by CBGT circuits in

mammalian brains, and the role they play in decision making and evidence accumula-

tion [13, 16, 19], as shown in figure 2.1. Corticostriatal connections provide pathways

for projection from the functional areas of the cortex—including the sensorimotor,

associative, and limbic areas—to the striatum. For each potential action (i.e., motor

neuron activation), two pathways exist in the basal ganglia that facilitate or suppress

the action in the thalamus: Direct (“Go”) pathways inhibit the globus pallidus

internus (GPi), which in turn causes disinhibition of the thalamus and facilitation

of the action corresponding to the circuit; Indirect (“NoGo”) pathways inhibit the

globus pallidus externus (GPe), which in turn disinhibits the GPi and suppresses the

circuit’s action.

6
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Figure 2.2: Simplified CBGT circuitry illustrates the interaction between brain sub-
architectures: Cortex, Basal Ganglia, and Thalamus. The graph on the right shows
that for the brain to decide to perform an action, the activation difference between
the ’GO’ and ’NoGo’ pathways must surpass a threshold determined by dopamine
levels in the Thalamus

In the context of the described structure, the information used for decision-making

is generated in the cortex, which in turn increases or decreases the total activation

of the “Go” and “NoGo” pathways for each action. Action selection for a given

action is based on the relative activation of the “Go” and “NoGo” pathways—actions

with a higher differential between the “Go” and “NoGo” pathways are more likely to

be performed, see figure 2.2. In essence, the basal ganglia facilitate actions with a

probability proportional to the activation difference between the “Go” and “NoGo”

pathways. An action is performed once the activation difference for the action exceeds

some criteria. Tonic dopamine levels in the brain increase the excitability of the “Go”

pathways and decrease the excitability of the “NoGo” pathways, which influences the

overall criteria for action selection, as well as reaction time.

7
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Figure 2.3: Feature Matching between two observations - left and right taken at
separate times of the same building from different angles

2.2 Feature Matching in Loop-closure

Loop closure in Simultaneous Localization and Mapping (SLAM) is a crucial process

wherein a robot identifies that it has returned to a previously visited location. This

recognition allows the SLAM system to update and correct the map and the robot’s

trajectory by aligning the current sensor observations with earlier ones. As the robot

navigates, small errors in its position estimates accumulate over time, leading to drift.

By detecting loop closure, the SLAM system can correct these accumulated errors,

ensuring the map remains accurate and consistent.

In practical terms, loop closure detection involves comparing current sensor data

with stored data from past observations to find matches. Techniques like feature

matching, scan matching, and visual recognition are commonly used for this purpose

Feature matching is a pivotal technique used in loop closure within SLAM to

recognize previously visited locations. This method involves detecting, describing,

and comparing distinctive features from sensor data (e.g., images or LIDAR scans)

collected at different times to identify overlaps between current and past observations

as shown in figure 2.3. Feature matching involves detecting and describing features in

sensor data using algorithms like SIFT (Scale-Invariant Feature Transform), SURF

(Speeded-Up Robust Features), or ORB (Oriented FAST and Rotated BRIEF),

comparing these features to find correspondences, and using these correspondences to

recognize previously visited locations.

8
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2.3 Low Information Streaming Data

Low information streaming data refers to data streams that contain a relatively small

amount of useful or relevant information relative to their volume. This type of data

can pose challenges for processing, storage, and analysis because much of it might

be redundant, noisy, or irrelevant to the tasks at hand. Noise and redundancy are

the key problems in such a data. Much of the data can be repetitive or include

noise, which does not contribute meaningful information. For instance, a temperature

sensor in a stable environment might report the same or similar readings repeatedly,

contributing little new information over time.

In practical applications, dealing with low information streaming data efficiently

can lead to significant improvements in system performance and resource utilization.

For example, in the context of Internet of Things (IoT) devices, effectively managing

low information streaming data can extend battery life, reduce bandwidth usage, and

improve the overall efficiency of data handling processes.

Another interesting example of low-information streaming data can be streams of

partial images of a large environment arriving piece by piece. These images might be

repetitive and overlapping, but we need to extract comprehensive information about

the entire environment from these partially observed patches.

2.4 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are specialized neural networks designed to handle

sequential data by maintaining a ’memory’ of previous inputs through a hidden state

that is updated at each time step. This architecture allows RNNs to process sequences

of data such as time series, text, or image sequences, making them well-suited for

tasks where context and order are crucial. A key feature of RNNs is their weight

sharing across all time steps, which helps generalize patterns and reduces the number

of parameters needed.

There are different types of RNNs, each designed to address specific challenges.

Vanilla RNNs, the simplest form, often face issues like vanishing and exploding

gradients, making them difficult to train on long sequences. Long Short-Term Memory

(LSTM) networks and Gated Recurrent Units (GRUs) are advanced variants that

9
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include mechanisms to better manage long-range dependencies. LSTMs use memory

cells and gates to control information flow, while GRUs simplify this structure with

two gates, making them more computationally efficient yet effective.

RNNs are widely applied in natural language processing (NLP) tasks such as

language modeling, machine translation, and speech recognition, where understanding

context over sequences is essential. They are also used for time series forecasting, like

predicting stock prices or weather conditions, and in image and video processing tasks,

such as captioning and event detection. Despite challenges like vanishing gradients,

advancements like LSTMs, GRUs, and attention mechanisms have significantly

improved RNNs’ capability to handle complex, long-sequence data effectively.

10



Chapter 3

Approach

3.1 Network Architecture

In this section, we describe a neural network model, referred to as CBGT-Net, whose

functionality aims to be analogous to the functionality of CBGT circuits in mammalian

brains, as described in Section 2.1. Unlike traditional feed-forward networks, this

model is designed to perform inference tasks based on a stream of observations, as

opposed to a single input. In contrast to recurrent architectures, which maintain

arbitrary latent embeddings as an internal state, the model maintains the total

evidence accumulated over time in support of each possible decision. We note that

the inference task described here differs from inference tasks performed by recurrent

neural networks on sequential data: recurrent models generate a decision at a fixed

point in time, or at the end of a sequence of known length; the inference task here

requires the model to make a decision at an arbitrary point in time, in the presence

of a (hypothetically) unending stream of data.

The model accepts as input a stream of observations at discrete time steps, denoted

ot, from an environment (see Section 4.1.1). At each time step, the model produces

a pair of outputs: an output vector, yt, corresponding to the inference task, and

a binary decision variable, dt, indicating if the model has accumulated sufficient

evidence to make a decision. The output of the model should only be considered

meaningful at the first time step that the decision variable indicates that the evidence

criteria is satisfied, denoted as td. Thus, while the model generates a pair of outputs

11



3. Approach

at each time step, only the decision at the first changepoint is considered meaningful.

For this paper, we explore the task of classifying observation streams, thus the

output vector is interpreted as the probability distribution over possible categories.

Figure 3.1 shows the basic structure of the model and the interaction of its core

components—Evidence Encoder, Evidence Accumulator, and Decision Threshold

Module—each of which is detailed below.

3.1.1 Evidence Encoder

Evidence Network learns a mapping from observations to evidence for or against each

possible decision emulating the “Direct & Indirect pathways” of the CBGT Circuitry.

The Evidence Encoder, Eθ is a parameterized model responsible for mapping

observations at each time step t, called ot, to an evidence vector, et,

et = Eθ(ot) (3.1)

where θ represents the parameters of the evidence encoder. The evidence encoder

may be an arbitrary neural network model suitable for the modality of the observation

data (e.g., convolutional neural network for images); we constrain its design to generate

an output whose dimensionality and semantic interpretation are consistent with the

available decisions. For example, for classification tasks, each decision category can

have a single corresponding element in the evidence vector et.

3.1.2 Evidence Accumulator

The Evidence Accumulator consists of a vector corresponding to the total evidence

accumulated since the beginning of the input stream, at,

at = at−1 + λet (3.2)

with a0 assumed to be 0. The λ here is a weight parameter that can be determined

heuristically or learned in different scenarios based on the context. This is discussed

in detail in the section 4.1.3.

In addition, the accumulated evidence is mapped to the output vector using a

suitable mapping function. For classification tasks, this simply involves calculating

12
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the softmax over the accumulated values

y
(i)
t =

exp(a
(i)
t )∑K

j=1 exp(a
(j)
t )

(3.3)

where (i) corresponds to the i th element of a vector, and K is the number of

decision categories.

The Accumulation Vector explicitly indicates the network’s support for each

decision; making deliberation transparent and mimicking the “Go – NoGo Activation

Difference” of the CBGT Circuitry.

3.1.3 Decision Threshold

The Decision Threshold module is a component that is used to determine if the

required evidence criterion has been satisfied and generates the decision variable,

dt. The Threshold Network inhibits decision until accumulated evidence exceeds

the situation-dependent threshold mimicking the “Tonic Dopamine Levels” of the

Thalamus in CBGT Circuitry. We explored two types of thresholding mechanisms -

Fixed Decision Threshold

This module is defined by a fixed threshold parameter, τ . For each time step, the

decision variable is true if and only if at least one element in the evidence accumulator

exceeds this threshold,

dt =

true if ∃iwhere a(i)
t ≥ τ

false otherwise
(3.4)

If the threshold is not exceeded, the model ingests additional data, allowing for

additional evidence before making a choice.

At the initial instance when dt becomes true, signifying the first time the threshold

is crossed, the model makes a prediction by selecting the category associated with

the highest value in the Evidence Accumulator’s output vector yt.

13
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Dynamic Decision Threshold

Learning a Threshold Parameter. We start with the initial value of the dynamic

threshold parameter Dv set to 0. The threshold loss is defined as:

Tv = σ(Av −Dv) (3.5)

where σ denotes the sigmoid function. Av is the accumulation vector, Dv is the

trainable threshold parameter.

The decision gate which determines whether a decision will be made at this time

step ’t’ is determined by:

Decision gate = if any(Tv > 0.5) (3.6)

Reward Formulation The reward formulation at any time t is given by:

returnst = rewardst + γ · returnst+1 (3.7)

where rewardst is defined as reward at any time instance t

rewardst =



30 if correct guess

−30 if incorrect guess

−30 if timeout

0 if no guess

Threshold Loss Term. The threshold loss term is finally defined as:

−
∑

(log(Tv) · returns0) (3.8)

where Tv is the threshold vector defined in equation 3.5 and returns0 is cumulative

reward from 0 to time ′t′.
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Rationale for Learning a Threshold

The rationale behind learning a threshold is based on the fact that different observa-

tion inputs may require different optimal threshold values. For instance, in image

classification tasks, varying the patch size of observations can result in different conver-

gence values for the threshold parameter. Smaller patches capture lesser details and

could also introduce more noise thus, needing a higher threshold to make a confident

prediction whereas larger patches might provide more contextual information and less

noise thus potentially needing lower decision threshold. Thus, the optimal threshold

value that maximizes accuracy can vary depending on these input characteristics.

Trying different fixed threshold values result in varying optimal values for different

scenarios. By “optimal,” we mean achieving maximum accuracy in the minimum

number of time steps or observations. This suggests that rather than trying an infinite

number of potential threshold values, it is more viable to learn the decision threshold

value dynamically. Thus, automatically learning the threshold eliminates the need

for manual tuning, saving time and effort. And a dynamically learned threshold can

generalize better across different scenarios, datasets, and conditions, providing robust

performance.

However, it is important to note that learning a dynamic threshold introduces

additional complexity to the training process. Compared to a fixed threshold scenario,

training with a dynamic threshold typically requires more epochs to converge. This

is because the model needs to simultaneously learn:

• The encoder parameters that map observations to evidence for different choices.

• The optimal threshold value that should be applied for decision-making.

Due to these challenges, this thesis does not present any successful results for

CBGT-Net trained with a learnable threshold parameter. We suggest this area for

exploration in future research. We believe that with careful tuning of losses, the

evidence encoder and threshold parameters can be trained simultaneously.
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Figure 3.1: Main components of the CBGT-Net architecture.
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Chapter 4

Experiments

4.1 Experimental Setup

4.1.1 Environments

To evaluate the described approach, we developed a set of environments to generate

streams of information for use as input to the model, where individual streams are

conditioned on a target category. Environments were constructed around publicly

available datasets used for image classification.

We denote a single stream of information generated by the environment as an

episode. At the beginning of a given episode, the environment selects an image

at random from the dataset and its corresponding target category. At each time

step, the environment extracts a square patch of pixels from the environment at a

random location in the image. The extracted patch is zero-padded to produce an

image with the same dimensionality as the original dataset, and in such a manner

that the patch is centered on the image. This approach ensures that the qualitative

amount of information present in a single observation in the episode can be controlled

(through the size of the patch), and positional information regarding the observation

is removed (through centering of the patch). The task of the model is to infer the

target category of the selected image based on the stream of observations.

We constructed environments based on two image datasets:
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Figure 4.1: Example episode from CIFAR-10 environment: a sequence of three patches
from an image in the “dog” category.

MNIST Environment

The MNIST dataset [10, 11] consists of images of handwritten digits, with ten target

categories corresponding to each digit (i.e., 0 – 9). Each image is greyscale and 28x28

pixels in size and contains a single handwritten digit. The dataset contains a total of

60,000 training images and 10,000 test images. Using this dataset, we constructed

environments which generated patches of size 5x5, 8x8, 10x10, 12x12, 16x16, 20x20.

CIFAR-10 Environment

The CIFAR-10 dataset [9] consists of 50,000 color images in training data and 10,000

color images for testing in 10 categories. Each image is 32x32 pixels in size. The ten

image categories that the images belong to are airplane, automobile, bird, cat, deer,

dog, frog, horse, ship, and truck. The environments which were constructed using this

dataset generated patches of size 5x5, 8x8, 10x10, 12x12, 16x16, 20x20.

MiniWorld Environment

MiniWorld [5] is a minimalistic 3D environment simulator designed for reinforcement

learning and robotics research. Miniworld is being maintained by the Farama Foun-

dation [5]. It can simulate environments containing various objects such as buildings,

roads, and rooms. The simulator is entirely written in Python and is easily modifiable

and extendable.

Using the MiniWorld codebase, we generated a search and rescue environment.

This environment features a cityscape with road networks and buildings, some of
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Figure 4.2: MNIST Dataset

Figure 4.3: CIFAR10 Dataset
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Figure 4.4: City Kit (Commercial) 3D Building Asset by Kenney

which are at different levels of fire. An autonomous rover navigates these diverse

maps along random paths to collect a dataset of buildings on fire.

• Building Assets - We modified the MiniWorld Environment to generate a

search rescue simulation with various types of building assets imported from

Kenney 3D City Kit [8] for buildings. The dataset has 35 different kinds of

buildings in 3D mesh format with customizable colors and textures of the

buildings.

• Procedural Generation - Procedural generation is a technique in computer

graphics, game development, and content creation that uses algorithms to

automatically generate data and content. This method leverages mathematical

formulas, randomization, and predefined rules to create complex structures,

landscapes, textures, and even entire game levels without the need for manual

design.

We utilized procedural generation techniques to create randomized search and

rescue scenarios. This includes randomizing the color, texture, orientation, and

position of buildings, as well as the path an agent takes to traverse the scene.
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Additionally, the texture of the buildings can be modified.

• Dataset Generation and Frames Scrapping - After randomly generating

different scenarios, we extract a dataset consisting of a training set and a test

set. The training set includes 750 buildings, each with 29 views from different

directions. Similarly, the test set contains 250 buildings, each with 29 views.

We have defined five levels of fire: [no fire, stage 1, stage 2, stage 3, stage

4] based on the intensity, temperature and time as shown in figure 4.6. The

dataset is balanced across all classes, with the training set having 152 buildings

per label and the test set having 50 buildings per label. The stages of fire and

their descriptions are detailed in Table 4.1.

Label Window Color Flame Smoke Wall Texture
No Fire Any False False Normal
Stage 1 Fire Light orange False True Normal
Stage 2 Fire Orange True True Grayish
Stage 3 Fire Dark Orange True True Blackish
Stage 4 Fire Black False True Dark Black

Table 4.1: Fire Stages and Their Characteristics

4.1.2 Evidence Encoders

For evaluation, we utilized existing network architectures as evidence encoders in

the CBGT-Net. For experiments involving the MNIST Environment, we utilized

Lenet-5 [10] as the evidence encoding network. Lenet-5 (figure 4.12) is a convolutional

neural network consisting of seven total layers—two convolutional layers interleaved

with two subsampling layers, followed by two fully connected layers and a softmax

classification layer. Lenet-5 is an appropriate and effective choice for the MNIST digit

dataset due to its relatively simple architecture designed by Yann LeCun et al. for

digit recognition tasks, particularly handwritten digits, making it highly relevant to

the MNIST dataset. It serves as a good baseline model. Its performance on MNIST

can be used as a benchmark to compare with more complex models, providing a

reference point for improvements.

For experiments involving the CIFAR-10 and MiniWorld Environment, we utilized

a ResNet style (figure 4.13), residual architecture [6]. The model consists of an initial
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Figure 4.5: Different Paths of the Autonomous Agent around the Building marked as
Star. The blue dots represent the camera location in the x-z plane from where the
image of the building is captured as the agent moves around.
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Figure 4.6: 4 Stages of Fire

convolutional layer and batch norm layer, followed by six “blocks” of two convolutional

layers, followed by a fully connected layer, an average pooling layer, and a softmax

classification layer. Each block in the model is designed to maintain the size of the

generated feature map and includes a shortcut connection from the input of the block

to the output so that each block learns to compute a residual, rather than general,

mapping from input to output. Additionally, the network downsamples the size of the

feature map after every pair of blocks. ResNet-18 utilizes residual blocks with shortcut

connections. The residual connections help mitigate the vanishing gradient problem,

making it easier to train deeper networks and improving convergence. ResNet18

is known for its high performance on various image classification tasks, including

CIFAR-10. It consistently achieves high accuracy, making it a reliable choice for this

dataset.

We experimented with different activation functions—softmax, sigmoid, and

tanh—for the final linear layer, which maps hidden features from the encoder architec-

tures to the output evidence vector, representing the number of classes. However, the

softmax activation consistently demonstrated the best performance. Consequently,

we opted to employ softmax activation on top of the evidence output. This decision

is logical because it reflects a scaled confidence level for each class based on the

evidence provided by a new observation. In this context, if an observation offers
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Figure 4.7: Sample City View

Figure 4.8: Buildings on Fire

Figure 4.9: MiniWorld: Sample City Views with Buildings on Fire
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Figure 4.10: MiniWorld Dataset Example 1
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Figure 4.11: MiniWorld Dataset Example 2

Figure 4.12: LeNet5 Architecture
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Figure 4.13: ResNet18 Architecture

no information regarding a specific class, it will not contribute to its accumulation,

ensuring a sensible interpretation of the output.

4.1.3 Context-aware Accumulator

The Accumulator Module in the CBGT-Net architecture is responsible for the evidence

accumulation process, where the evidence collected so far is combined with newly

available evidence at any time t. This process is called context-aware evidence

accumulation because the new evidence is accumulated based on the previously seen

evidence.

In the MNIST and CIFAR10 environments, the sampled patches are considered

equally important for classification and are thus weighted equally. Given how the

patches are generated—by selecting a pixel value (x, y) in the image and extracting a

patch of size (patch sz, patch) with (x, y) as the top left corner—it is less likely to

encounter highly overlapping patches. However, if the CBGT-Net is presented with

the same observation patch multiple times, it will accumulate the evidence in the

same manner each time, without recognizing that it has seen these patches before.

This means that seeing the same input multiple times could cause the model to cross

the threshold without encountering any new information, which is a logical limitation

of the equally weighted, context-unaware accumulator.

While this method of accumulation might be effective for simpler environments

like MNIST and CIFAR10, it poses challenges in the MiniWorld environment. Here,

images of buildings are captured by a rover traversing a path around the building.
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It is likely that several consecutively captured images will have identical features.

When accumulating evidence, these images will count the evidence from the same

views multiple times, potentially causing a false threshold crossing. To address this

issue, we propose multiple methods of context-aware accumulation.

• Simple Accumulator- This is the standard accumulation process, where each

new evidence vector is added to the accumulation vector with a weight of 1.

This method disregards any context information or potential overlap during

accumulation. The experiments in the MNIST and CIFAR10 environments

were conducted using this simple accumulator approach.

• Camera-pose based Weighting - This context-aware accumulation approach

is deployed in the MiniWorld environment. In this setup, each view of a building

includes the camera’s position information. Therefore, when a new observation

is made, it consists of both an image and the camera’s pose information relative

to the center of the building. The evidence encoder encodes the building image

into an evidence vector, but unlike simple accumulation, this vector is not

directly added to the accumulator vector. Instead, a heuristic is used to weigh

the new evidence based on all previously seen observations.

In this heuristic, we discretize the 2D space around the building’s center into

25 non-overlapping sections called p as 5x5 vector. The details of these sections

can be seen in the accompanying image 4.14. The space is divided into 5 sectors

of 72 degrees each, and each sector is further divided into 5 segments based

on the distance from the center. We track where the image observations have

been captured so far. When a new image is received, if it is captured from a

camera pose that has already been seen in the previously observed images, it is

weighted as 0. However, if it is captured from a new segment, we weigh it as

shown below.

Let P t be the pose accumulator at time t, represented as a 5x5 matrix initialized

with all zeros, which stores a 1 at (i, j) if an image has been seen from camera

pose location pi,j. Thus, if at time t, the camera’s position lies in pi,j, where i

is the sector and j is the segment within the sector that has not been covered

so far, then
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Figure 4.14: Discretisation of 2D Space around the Building

wt =

0 if P t
i,j = 1

1− 1
5

∑4
k=0 P

t
i,k otherwise

• SIFT Features-based Accumulation - In this method, we compute the

number of matching keypoints from SIFT features in pairs of images and then

discount the weight for a new image based on the number of matching keypoints

with the images observed so far. If mi,j if the matching key points between

images seen at time t = i and t = j then we define the weight for an image seen

at time t as follows -

wt = 1− max
0≤i≤t−1

(
mi,t

mt,t

)
SIFT (Scale-Invariant Feature Transform) [12] is a widely-used feature extraction

method in computer vision and image processing. It identifies and describes

local features in images, making it highly effective for tasks such as object

recognition, image stitching, and 3D reconstruction.
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4.1.4 Baselines

For each experiment, we compare our approach with multiple baselines. As with the

CBGT-Net, all baseline models are trained to minimize the cross-entropy loss given

in Equation 4.1.

Single Patch Evidence Encoder

For each experiment, we train the evidence encoder used in the CBGT-Net to predict

the target category of an image from a single patch. This baseline serves as a

benchmark for evaluating the encoder’s capability to independently classify individual

data patches. Furthermore, it helps us assess how effectively the model’s accuracy

improves when evidence is accumulated from multiple observed patches.

LSTM Model

For each experiment, we train a model in which the output of the evidence encoder is

connected to a Long Short Term Memory (LSTM) layer [7]. The LSTM layer has

ten memory cells and is provided with a sequence of evidence encoder outputs from

observations from the environment. Models were trained on sequences of varying

length, in order to compare model performance with the CBGT-Net’s decision times

at each decision threshold.The model outputs the predicted category at the final time

step.

Vision Transformer Model

The Vision Transformer (ViT) is a powerful and versatile model for image classification

that leverages the strengths of the Transformer architecture. By treating images as

sequences of patches, it effectively uses self-attention mechanisms to capture both

local and global dependencies, achieving state-of-the-art performance on various

benchmarks.

For more technical details, refer to the original ViT paper: ”An Image is Worth

16x16 Words: Transformers for Image Recognition at Scale” by Alexey Dosovitskiy

et al [3].
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Figure 4.15: Vision Transformer Architecture [3]

ViT as shown in figure 4.15 has demonstrated superior performance on image

classification benchmarks like ImageNet, often surpassing traditional convolutional

neural networks (CNNs) when pre-trained on large datasets. Both ViT and CBGT-Net

process images in patches, but ViT’s configuration requires specifying image and patch

sizes during training, enforcing a fixed number of patches. This makes it challenging

to handle online input streams of variable lengths, similar to the limitations faced by

LSTM-based models, which also require fixed-length input sequences during training.

Pre-trained ViT Model details. For the baseline comparison of CBGT-Net on

the MiniWorld dataset, we are utilizing Google’s ‘vit base patch16 224 in21k’, a

pre-trained Vision Transformer (ViT) model from the Hugging Face’s timm (short for

”PyTorch Image Models”) library. This model has been pre-trained on the ImageNet-

21k dataset, which consists of 14 million images across 21,843 classes, at a resolution

of 224x224. In the ViT model, images are processed as sequences of fixed-size patches

(16x16 pixels) that are linearly embedded. This pre-training allows the model to

learn a robust internal representation of images, which can be leveraged for various

downstream tasks. For our experiments, we fine-tune the classification head of the

ViT model on the MiniWorld dataset to classify the image sequence as patches of a

larger image, thereby utilizing the pre-trained features for effective classification.

Patchification for ViT Baseline. This ViT baseline uses a sequence of 9 sequential

views, starting from a randomly chosen initial view, and stacks them into a 3x3 grid.

By padding and reshaping the original 60x80x3 images, we create a 224x224x3 input
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image. We then fine-tune the pre-trained ViT model to classify these input sequences

of 9 images combined into one.

ViT Baseline Training Details. The ViT model is fine-tuned for 200 epochs with

a batch size of 256, utilizing Cross Entropy Loss. Only the final linear layer (MLP

Head), which maps the hidden state to the output feature space, is fine-tuned. We

employ the Adam optimizer alongside the StepLR learning rate scheduler.

4.1.5 Training Details

During training, at the beginning of each episode, the environment (MNIST or

CIFAR10) chooses an image and its corresponding label (the ground truth for predic-

tion) from the training data at random. Now for every step within the episode, the

environment randomly samples a patch of size (patch size, patch size, 3) from the

image and pad it with 0 padding to generate an image of size same as the original

images in the dataset and output it as ot i.e. observation at time t which is then fed

to the CBGT Net.

In the MiniWorld environment, each episode begins with the environment rendering

a random building in one of five possible stages of fire. The autonomous rover starts

capturing images of the building from a random side and then moves around it,

taking pictures from various angles and distances. Consequently, at every step

within the episode, these images—captured from different camera positions on the

rover—constitute ot, the observation at time t, which is then fed into the CBGT Net.

For training purposes, we utilize the cross-entropy between the output vector of

the CBGT-Net and the target category at the decision time, td, as the objective

function to minimize,

LCE = −log(y
(T )
td

) (4.1)

where T is the index of the target category to be classified.

The model was trained using stochastic gradient descent with a learning rate of

1e-3 and batch size of 2048 for MNIST and 256 for CIFAR10 as it was difficult to

fit a large batch size for an architecture as big as ResNet18 (with approximately

11M parameters) compared to LeNet5. For the Miniworld Environment a batch size

of only 64 was used since the images input was 60x80x3 which is larger than the
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small patch images (from 5x5x3 to a maximum of 20x20x3) in MNIST and CIFAR10

scenarios.

The Adam optimizer was employed to minimize the cross-entropy loss. The

maximum number of steps permitted within an episode was determined according to

the selected threshold value, Td. Specifically, it was configured to be 10 times the

threshold value (Td) plus 1. This setting ensures that the number of steps allowed

exceeds the count required for a random model to surpass the threshold and make a

decision. The rationale behind this choice lies in the fact that with each step, the

evidence being accumulated follows a softmax output, leading to a monotonically

increasing accumulator vector. Consequently, there exists mathematical assurance of

crossing a threshold before reaching 10 ∗ Td + 1 steps within an episode.

4.1.6 Evaluation Measures

To evaluate our models, we calculate the accuracy, average decision time, and the

number of training episodes required. Accuracy measures the percentage of correct

predictions the model makes when tested with a batch of episodes. Average decision

time, on the other hand, quantifies the average number of steps taken before the

model reaches a decision. In simpler terms, average decision time measures how much

input data the model needs to see before making a confident prediction i.e. before it

crosses the predefined threshold.

For each model and environment, we calculated the number of training examples

required for the model to converge. During training, validation accuracy was calcu-

lated after every two training epochs (i.e., after training with 1,024 episodes). We

performed exponential smoothing on the validation accuracy, with a smoothing factor

of α = 0.995. The normalized root mean standard deviation (NRMSD, i.e., standard

deviation normalized to the mean) of the validation accuracy was calculated at each

step using a window over the previous 100 steps. Training is considered converged

when the NRMSD is below an empirically determined threshold of 0.0015.
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4.2 Results

In this section we will delve into a comprehensive analysis of the performance and

efficacy of the CBGT-Net model in handling complex decision-making tasks, particu-

larly focusing on image classification from data streams. By evaluating the model’s

accuracy, decision times, and training efficiency across various experimental setups,

this section aims to provide insights into the model’s robustness and adaptability in

real-world scenarios. Through a detailed examination of the model’s performance

metrics and comparison with existing LSTM-based sequential models, and trans-

former based baseline this section elucidates the CBGT-Net’s superiority in terms of

accuracy, data efficiency, and resilience to diminishing information in observations.

Furthermore, the section highlights the model’s ability to make decisions based on

accumulating evidence, as opposed to fixed time intervals, showcasing its flexibility

and adaptability in dynamic decision-making environments.

Figures 4.16 and 4.17 compare the performance of the CBGT-Net and baseline

models for MNIST and CIFAR-10 Environments, respectively. Each figure compares

the inference accuracy of the models based on the amount of information in each

observation (i.e., patch size), and the number of observations made. For the CBGT-

Net results, markers indicate the average decision time for decision thresholds in the

range of 1 to 5; results for LSTM models were extracted from models trained with

a sequence length comparable to the CBGT-Net decision times. Additionally, the

accuracy of evidence encoders trained to categorize a single patch is provided for each

case.

Figure 4.18 compares the performance of the CBGT-Net and baseline models

for the MiniWorld Environment. Figure 4.18 compares the inference accuracy of

the models based on the number of observations made. It is anticipated that as the

decision time, representing the number of time steps and consequently the observations

the model processed before reaching a decision, increases, there will be a corresponding

rise in accuracy. This is clearly observed by the monotonic increasing nature of most

of the plots. For the CBGT-Net results, markers indicate the average decision time

for decision thresholds in the range of 1 to 5; results for LSTM and ViT models were

extracted from models trained with a sequence length comparable to the CBGT-Net

decision times i.e nearest whole number above corresponding CBGT-Net average

34



4. Experiments

decision times. Additionally, the accuracy of evidence encoders trained to categorize

a single image of the building is provided for each case denoted by a red horizontal

line. This baseline would be independent of decision time as we do not feed in a

sequence but a single image to predict the stage of fire here similar to the single patch

baseline in MNIST and CIFAR10 environments.

Figure 4.16: Inference accuracy of the CBGT-Net and baselines as a function of
decision time for the MNIST Environment. Markers on the CBGT-Net results indicate
the average decision time for models with a given threshold value. LSTM models were
trained with sequence lengths corresponding to the nearest value above corresponding
CBGT-Net decision times.

In general, for MNIST and CIFAR10 environments, the CBGT-Net outperforms

both the LSTM and single patch baselines across decision times, with the exception

that the LSTM models outperform the CBGT-Net models on the CIFAR-10 Environ-
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Figure 4.17: Inference accuracy of the CBGT-Net and baselines as a function of
decision time for the CIFAR-10 Environment. Markers on the CBGT-Net results
indicate the average decision time for models with a given threshold value. LSTM
models were trained with sequence lengths corresponding to the nearest value above
corresponding CBGT-Net decision times.

ments with 16x16 and 20x20 patch sizes. For the MNIST Environments, the LSTM

models have roughly the same accuracy as the single patch models, demonstrating

that this model was unable to learn to leverage the multiple observations to improve

performance for this environment. The CBGT-Net, on the other hand, not only

demonstrates an improvement in performance as sequence length increases, indicating

that the model benefits from additional evidences to a certain extent, but also shows

significant robustness when each observation’s patch size decreases.

For the CIFAR-10 Environments, the LSTM models demonstrate the ability
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Figure 4.18: Inference accuracy of the CBGT-Net and baselines as a function of
decision time for the MiniWorld Environment. Markers on the CBGT-Net results
indicate the average decision time for models with a given threshold value (indicated in
the label). LSTM and ViT models were trained with sequence lengths corresponding
to the nearest value above corresponding CBGT-Net decision times.

to outperform the single patch baseline, demonstrating its ability to improve its

performance with multiple observations (with the notable exception of the 5x5 patch

size environment). For these environments, the CBGT-Net shows improvement over

the single patch models similar to the MNIST environments; the performance margin

between the CBGT-Net and LSTM models for environments using smaller patch sizes

also demonstrates the CBGT-Net’s improved robustness to reduced information in

each observation when compared to both the LSTM and single patch baselines.

Figure 4.21 shows the average decision time for the CBGT-Net for different

decision thresholds and patch sizes for the MNIST Environments and CIFAR-10

Environments. As can be seen, the required decision time increases as either the

decision threshold increases or the patch size decreases. For larger patch sizes in the

MNIST Environments (i.e., 16x16 and 20x20), the decision time is roughly equivalent

to the decision threshold—this relationship indicates that the generated evidence
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vector is, on average, producing a maximum value (i.e., 1) for the target category,

and that a single patch at these sizes is likely sufficient for categorization purposes.

Figure 4.19: MNIST Environments

Figure 4.20: CIFAR10 Environments

Figure 4.21: Average Decision Time taken by CBGT Net trained at different threshold
values (τ) on MNIST (Fig. a) and CIFAR10 (Fig. b) Environments for different
patch size observations

For the MiniWorld Environment, as shown in Figure 4.18, we compare the

performance of five notable models: the Single Image Encoder, LSTM, ViT, and

two variations of CBGT-Net—CBGT-Net-Pose (which uses camera pose information

for context-aware accumulation) and CBGT-Net-SIFT (which uses SIFT features in

images for context-aware accumulation). It is evident that all four models outperform
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the Single Image classifier, reinforcing that individual images lack sufficient information

for accurate class identification of a building’s fire stage.

Moreover, CBGT-Net models surpass the ViT baseline across all thresholds. This

can be attributed to the misalignment of pre-trained ViT models [3] for the specific

task. ViT models are originally trained for single-image classification by dividing

the image into patches. However, we modified the input to provide a sequence of

nine images as patches forming a single image processed through the transformer

architecture. This modification made it difficult to leverage the pre-trained ViT

effectively for the new task, even after fine-tuning.

Figure 4.18 also illustrates that CBGT-Net models outperform the LSTM model at

lower thresholds, which are scenarios requiring decisions based on less information. The

LSTM model only surpasses CBGT-Net at a decision time of around 16, highlighting

CBGT-Net’s robustness in situations with insufficient information. While LSTM

performs better for longer input sequences due to its architecture’s suitability for

extended contexts, CBGT-Net is more reliable for making decisions with partial and

incomplete information, as demonstrated in lower threshold scenarios.

Another interesting result is presented in Figure 4.22, which illustrates the behavior

of decision time as the fixed threshold value increases. As expected, higher thresholds

require CBGT-Net models to accumulate more evidence in favor of any class category

to cross the threshold and make a decision. Consequently, the decision time, i.e., the

average time taken before a decision is made, increases.

We also evaluated the performance of different models in the MiniWorld Envi-

ronment across various paths, as shown in Figure 4.5. These paths are significant

because they encompass different angles around the building. For example, Path 1

covers the building from all angles, providing a 360-degree view through the sequence

of images collected along this path. In contrast, other paths cover only partial angles

of the building, such as 99, 37, or 186 degrees.

Paths that cover only a partial segment of the building tend to provide the

models with just the partial information being repeated. Consequently, even if

observations are collected repeatedly by moving back and forth along these paths, the

total information collected will still remain insufficient for correct decision-making.

Therefore, it is intriguing to compare how the better-performing baselines—LSTM

and CBGT-Net models—perform with data collected from these different paths.

39



4. Experiments

Figure 4.22: Average Decision Time taken by two versions of CBGT Net - one using
camera pose and other using Sift features for context-aware accumulation, trained at
different threshold values (τ) on MiniWorld Environment

Additionally, it will be interesting to compare the practical performance of the

two context-aware accumulation methods within the CBGT-Net models: one based

on camera pose information (CBGT-Net-Pose) and the other based on SIFT features

(CBGT-Net-SIFT).

Figure 4.23 illustrates the performance of CBGT-Net-Pose, CBGT-Net-SIFT, and

the LSTM model for datasets collected along paths covering approximately 37, 99, 186,

and 360-degree angles around the building. It is reasonable to expect that viewing

the building from all directions would provide the most information for determining

the fire stage. However, viewing only 37 degrees of the building’s 360-degree view

can be very uninformative for decision-making.

As shown in Figure 4.23, CBGT-Net models consistently outperform the LSTM

baseline when observations are collected from a narrow view of the building’s side.

For higher thresholds (threshold > 3), CBGT-Net models often refrain from making a

prediction because the accumulated evidence from these limited views never surpasses

the threshold, also shown in plot 4.24. This behavior is desirable in high-threshold

scenarios where precision is prioritized over decision speed. The LSTM model

performs poorly with paths covering only 37 degrees and even 99 degrees for long
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sequence inputs. In contrast, CBGT-Net models demonstrate significant robustness

and resilience to low-information data sequences. With a lower threshold, CBGT-Net

models achieve decent performance across all path variations. For higher thresholds,

they either refrain from predicting (as in case 1) or make high-accuracy predictions,

as shown in graphs 2, 3, and 4 in 4.23.

Furthermore, among the CBGT-Net models, the one utilizing SIFT feature-based

context-aware accumulation slightly outperforms the camera-pose-based method. This

discrepancy can be attributed to how CBGT-Net-Pose treats observations when the

camera location changes significantly. CBGT-Net-Pose considers such observations

as entirely new, weighting them as substantial evidence. However, it’s plausible that

the relevant information—the section of the building visible in this view—remains

the same as captured from the previous location. This aspect is addressed in the

alternative context-aware accumulation method that employs SIFT features. It

measures the similarity between two observations captured at different times. If the

features match significantly, it downplays the evidence; conversely, if they are notably

different, it accentuates the evidence. This approach offers a more reliable method

for context-aware evidence accumulation, serving as a better check to avoid counting

repeating information multiple times during accumulation, which could potentially

mislead the model’s prediction.

Figure 4.29, illustrates the performance of various CBGT-Net models trained at

different threshold values, plotted against the angle covered by the path. The greater

the coverage, the more information gained, resulting in better model accuracy. It

is noteworthy that for a threshold of 1, the model performance plateaus after 99

degrees, as the low threshold allows decisions to be made within 2-3 observations.

Therefore, the amount of information provided—whether from around the building or

just one side—does not significantly impact performance. However, as the threshold

value increases, the performance variation with the amount of information collected

becomes more pronounced.

It is also intriguing to observe how CBGT-Net models with context-aware accu-

mulation refrain from making decisions when presented with partial and incomplete

information, such as paths covering only 37 degrees out of the 360 degrees around

the building. Refer to Figure 4.24, where Paths A, B, C, and D subtend angles of

37°, 99°, 16°, and 360° around the building.
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Figure 4.23: Path-wise inference accuracy of the CBGT-Net (Pose and SIFT) and
LSTM baseline as a function of decision time for the MiniWorld Environment

For Path A, CBGT-Net with Pose and SIFT variants never make a decision

because they discard duplicate information and fail to accumulate enough evidence

to cross the threshold, especially when the threshold is set as high as 5 in this plot.

Conversely, the single CBGT-Net with additive accumulation is misled by repetitive

information and predicts an outcome in every scenario. As the path angles increase,

such as in Path B and Path C, context-aware CBGT-Net models begin to make

decisions in some scenarios. This highlights how context-aware accumulation prevents

the CBGT-Net model from prematurely deciding in situations where it should refrain

due to incomplete information.

Figure 4.25 compares the accuracy of CBGT-Net models across different paths.

The left plot shows results for models trained with a fixed threshold of 1, while the

right plot shows results for models trained with a fixed threshold of 5. These plots

clearly demonstrate that incorporating historical observation information into the

accumulation process enhances the model’s prediction accuracy. The CBGT-Net
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with simple additive accumulation performs worse than those with Pose and SIFT

information. Among these, CBGT-Net-SIFT outperforms CBGT-Net-Pose, as SIFT

feature matching is a more effective metric for identifying information overlap between

images compared to using camera pose location to determine the extent of overlap

between observations.

Figure 4.24: Comparing various versions of CBGT-Net across different paths in terms
of the percentage of cases where a decision was made

Figure 4.25: Comparing the accuracy of different versions of CBGT-Net on data
streams collected along 4 different paths
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Figure 4.26: Number of training episodes required for convergence of CBGT-Net
and LSTM models for each environment. For each group, the decision threshold and
corresponding LSTM episode lengths increase from left to right.

For MNIST, CIFAR10, and MiniWorld environments, the LSTM baseline adds 950

additional trainable parameters to the model. Despite this, the CBGT-Net exhibits

improved performance and robustness.

Figure 4.26 shows the number of episodes needed for convergence for training the

CBGT-Net and LSTM models for each environment. In all cases, the CBGT-Net

required fewer training episodes than the LSTM model. On average, the CBGT-

Net required 75.4% fewer training episodes than the LSTM model for the MNIST

environments, and 89.4% fewer episodes for the CIFAR-10 environments. In conclusion,

the CBGT-Net consistently outperforms the LSTM model in terms of training

efficiency across environments.
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Figure 4.27: CBGT-Net-Pose model accuracy for different paths

Figure 4.28: CBGT-Net-SIFT model accuracy for different paths

Figure 4.29: CBGT-Net model performance shown across various paths at different
fixed threshold values
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Chapter 5

Discussion

This paper introduces a neural network architecture based on cortico-basal ganglia-

thalamic circuits found in mammalian brains and demonstrates its effectiveness in

learning inference tasks from streams of low-information data. We demonstrated that

the model can learn to categorize images based on a stream of small patches extracted

from the image or a sequence of images of a large object in the scene, as well as

specify when it should decide based on the amount of supporting evidence observed, as

opposed to a fixed number of observations. The model generally outperforms similar

models that use LSTMs for recurrent connections and transformer architectures like

ViT and is especially robust to decreasing information presented in each observation.

In addition to improvements in performance and robustness to low-information

observations, the evidence accumulation component provides for transparent deliber-

ation, which we believe offers potential benefits in human-autonomy collaborations.

Specifically, each element in the evidence accumulator corresponds to the model’s

current preference towards a desired decision, and the margin between accumulator

values and decision threshold indicates how imminent a decision may be, as well as

the presence of potential alternative decisions that have high levels of accumulated

evidence.

There are several promising directions for the future development of the proposed

model, with potential extensions to individual components opening up multiple

avenues for exploration.

For example, the accumulator component could be enhanced by incorporating
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non-linear dynamics, such as attention-style context-aware weighting of evidence.

This approach, particularly if inspired by biologically motivated dynamics, could

introduce a sophisticated mechanism for prioritizing relevant evidence. Moreover, the

incorporation of a memory buffer could facilitate the accumulation of evidence over

longer time horizons. This could involve selectively aggregating evidence from a vast

pool of data collected during an ongoing sequence.

In the current model formulation, we stipulated that the dimensionality of the

evidence encoder must align with the number of decision categories. However, future

research could investigate alternative representations of evidence and adapt the

accumulator accordingly. This flexibility could lead to more robust and adaptable

decision-making processes.

The transparency provided by the evidence accumulation aspect of the model

offers insights into its deliberation process. This transparency presents an opportunity

to delve into human understanding, interaction, and potential intervention with the

model. Exploring these aspects could shed light on how humans perceive and interact

with complex decision-making systems.

Finally, there is potential for applying the model as part of a policy for sequential

decision-making tasks. This approach would empower agents to learn to perform

actions based on accumulated evidence, rather than reacting solely to individual

observations. Such an application could have far-reaching implications for various

domains, including autonomous systems and decision support systems.
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