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Abstract

Despite the advancements in deep learning driven by increased computational
power and large datasets, significant challenges remain. These include difficulty
in handling novel entities, limited mechanisms for human experts to update
knowledge, and lack of interpretability, all of which are crucial for human-centric
applications like assistive robotics. To address these issues, we propose leverag-
ing structured information sources, such as knowledge graphs, to enhance the
robustness and reliability of deep learning models by utilizing additional domain
knowledge. By integrating these knowledge sources through neurosymbolic archi-
tectures, which combine neural networks and symbolic reasoning, we can improve
model interpretability, generalization, and flexibility. This approach enables AI
systems to understand complex scenes and human actions better, ultimately
leading to more reliable and transparent performance in real-world scenarios.
Our work highlights the potential of augmenting neural networks with additional
domain knowledge. Particularly, we demonstrate the benefit of this approach
in the task of learning novel objects in a sample-efficient manner and action
anticipation from short-video contexts in a human-robot collaborative setting.
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Chapter 1

Introduction

Despite the increased utility of deep learning models driven by advancements in hardware

computation capacity and the availability of large datasets, these models still face several

significant challenges that limit their effectiveness in various contexts. Key issues include a

lack of interpretability, which makes it difficult to understand and trust model predictions; and

a limited ability to effectively handle novel entities or classes or mechanisms for human experts

to modify and update the system’s knowledge. These limitations are particularly problematic

in applications involving human interaction where reliability and trust are essential.

To mitigate these shortcomings, this work proposes leveraging structured information

sources, such as knowledge graphs, to enhance the robustness and reliability of deep learning

models. Knowledge graphs provide a rich source of structured domain knowledge that

can ground model predictions in more reliable and interpretable information. Since KGs

are inherently interpretable by humans and easy to edit, their augmentation with neural

architectures can provide enhanced explainability and adaptability. By integrating these

knowledge sources, we can improve the model’s ability to generalize to new entities and

classes and facilitate easier updates and modifications by human experts.

More specifically, this work advocates for the use of neurosymbolic architectures that

combine the strengths of neural networks, such as their ability to handle high-dimensional

data and generalize to unseen data—with the interpretability and flexibility provided by

symbolic approaches. By leveraging these combined strengths, neurosymbolic architectures

can enhance both the performance and reliability of deep learning models. This approach

aims to bridge the gap between the advancement of recent deep learning approaches and the

reasoning capabilities of structured neurosymbolic approaches, ultimately leading to enhanced

performance and explainability of AI systems in complex, human-centric environments.

In the realm of robotics, where the integration of AI is becoming increasingly prevalent,
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1. Introduction

there exists a pressing need for advanced architectures capable of handling complex real-world

scenarios. While prior approaches that utilize feature engineering have proven useful in

domains of limited scope, data-driven neural network-based methods offer a superior solution

for problems requiring an understanding of underlying concepts in the visual domain. Despite

their efficacy in these complex areas, significant challenges remain. These deep learning

models often struggle to recognize novel objects on which they were not trained, and they

lack interpretability — an essential component for human-centric systems. This deficiency in

comprehending various objects, their affordances, and attributes can be addressed by utilizing

structured domain knowledge priors in the form of a knowledge graph. Such a knowledge

source provides grounding for the efficient extraction of various entities in the scene, referred

to in this work as concepts.

Inspired by the human ability to draw upon symbolic knowledge to interpret and interact

with the environment, we propose a neurosymbolic architecture that combines deep learning

with symbolic reasoning. By augmenting state-of-the-art recognition models with a symbolic

knowledge graph, our approach enables these models to effectively understand novel concepts

in a few-shot continual learning setting. Traditional neural network-based approaches excel

only at recognizing concepts they have been explicitly trained on. However, by supplementing

these models with a knowledge graph, we can extend their scope to include previously unseen

concepts by leveraging the understanding of related concepts and inter-concept relationships.

This integration allows the model to consider not only visual concepts, such as objects and

scenes but also abstract concepts, such as affordances and attributes, thereby enhancing its

overall understanding of the scene. Through an extensive set of experiments, we demonstrate

the effectiveness of our approach, outperforming existing methods in tasks such as few-shot

classification and extraction of novel non-visual concepts on benchmark datasets.

Extending this idea to the context of videos (– long-horizon interactions), we also demon-

strate the utility of our approach in assistive robotics, focusing on tasks like collaborative

cooking where accurate action anticipation is crucial for effective human-robot interaction.

By imbuing the system with domain knowledge about scene objects and their respective

affordances, we enable it to anticipate human intentions from short observation contexts —

an area where previous work on action anticipation has fallen short.

Moreover, our work showcases the efficacy of our approach by integrating it with a

transformer-based action anticipation architecture. This integration enhances the model’s

ability to analyze human interactions with scene objects by dynamically adjusting attention

mechanisms based on the encoded knowledge of object affordances. Through empirical

evaluations, we show that our approach not only outperforms current action anticipation

baselines on standard benchmarks but also proves effective in the context of a real-world

2



1. Introduction

dummy kitchen setup.

In essence, our work underscores the necessity of neurosymbolic architectures augmented

with structured domain knowledge priors in robotics, particularly in tasks requiring a nuanced

understanding of the environment and seamless interaction with humans. The approach

aims to enhance the visual scene understanding capabilities of deep learning models via the

augmentation of reliable knowledge sources to perform few-shot continual learning of concepts

and action anticipation from short video contexts for effective human-robot collaboration.

Our approach paves the way for more versatile and interpretable AI systems in real-world

applications by bridging the gap between deep learning and symbolic reasoning.
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Chapter 2

Sample-Efficient Learning of Novel

Visual Concepts

2.1 Introduction

The ability to recognize objects from visual inputs [109] is crucial for the success of agents

that interact in real or simulated environments [13, 84, 88]. Beyond applications in agent

development, object recognition is also vital for image captioning [86], scene understand-

ing [104], vision-language understanding [92], and many other domains. Recent contributions

to foundational vision models [28, 43] and wider availability of computational resources has

enabled many of these applications. One benefit of such models is their ability to drastically

reduce the amount of training data needed when utilizing them as priors to train new visual

tasks, e.g. in the domain of object recognition. However, while very capable, these pre-trained

models often fail to perform well in few-shot learning settings that require them to recognize

novel objects from a small set of sample images [102]. Beyond object recognition, assigning

abstract concepts and affordances is an even more challenging task as concepts such as

wearable are only indirectly related to a visual representation for several tasks including visual

question answering [26], visual question generation [72, 91], and other scene understanding

tasks [74]. Inspired by how humans learn to utilize few-shot learning by connecting novel

concepts to their prior domain knowledge and experience, neuro-symbolic architectures [42]

can address some of these shortcomings by imbuing neural networks with symbolic knowledge

graphs (KG) [4]. Utilizing the interconnected domain knowledge of the graph, novel concepts

can be added in a few-shot manner by augmenting the graph with the new nodes and thus,

also limiting the need to re-train large parts of the neural architecture. Depending on the

representation of novel nodes, such approaches are largely invariant to the topology of the
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2. Sample-Efficient Learning of Novel Visual Concepts

graph, only requiring the final neural outputs to be expanded and trained while intermediate

components may be able to only require little fine-tuning. The availability of interconnected

domain knowledge also allows easy integration of non-visual abstract concepts and affordances

as relationships can be formed between such concepts and existing entities.

In the spirit of [67], our approach utilizes a neural network approach in conjunction with

an optimized KG constructed from the Visual Genome Multi-Label (VGML) [67] dataset.

In this work, we improve and extend this setup to few-shot multi-label classification (FS-

MLC) by proposing a pipeline that adds new information to existing domain knowledge via

RelaTe : a multimodal relationship prediction transformer that, given a small set of images

and a latent representation of the linguistic concept, automatically connects novel objects,

abstract concepts, and affordances to existing domain knowledge. In particular, RelaTe will

evaluate the information propagated through the KG that is relevant to these images in

the context of a latent concept representation from GloVe [76] and determine which nodes

are applicable to be connected to the novel target concepts. Subsequently, we propose to

extend the capacity of the final multi-label classifier by adding an output neuron associated

with the new concept. The related weights of this extra neuron as well as the graph neural

network are then trained and fine-tuned, respectively, to learn how to incorporate the new

information. Thus, our approach utilizes a dynamically changing neuro-symbolic architecture

that efficiently incorporates additional concepts in a sample-efficient manner.

This chapter is adapted from our work [17] published in the 2nd Conference on Lifelong

Learning Agents (CoLLAs), 2023.

2.2 Related Works

Few-shot multi-label classification (FS-MLC) remains a challenging problem despite some

recent advances [11, 23, 106]. On its own, few-shot classification is difficult due to various

factors like catastrophic forgetting [39] and limited data sets; however, these problems are

amplified in the multi-label case when novel target classes occur in conjunction with already

existing concepts, making their identification and training even more challenging. One avenue

of addressing this issue is the utilization of domain knowledge, which can reduce the complexity

of this problem by reducing the reliance on labeled data [21, 101] and instead, drawing from

the encoded knowledge. Such domain knowledge can be acquired in multiple ways, either

by explicitly formulating and utilizing a data structure or by utilizing a foundational neural

network that is “large enough” to encode the general knowledge. Examples of such large

models are GPT [71], particularly MiniGPT-4 [111], CLIP [78], and Flamingo [9]. However,

in this work, we focus on imbuing neural networks with symbolic knowledge in the form of a

6



2. Sample-Efficient Learning of Novel Visual Concepts

Knowledge Graph as such data structure is amenable to human interpretation [41] and quick

augmentation in order to address the FS-MLC problem. Nevertheless, we will compare our

approach to publicly available large-language models (LLMs).

Few-Shot Multi-Label Classification Utilizing concepts has shown to be an efficient

approach to learning interpretable policies [107]. One approach to learning the FS-MLC

task is to define novel objects as the sum of their parts, allowing such approaches to learn

how to recombine known, simpler concepts that represent the target class [46, 54]. However,

the addition of novel fundamental concepts remains an active field of research. Several

approaches have addressed the problem of adding new concepts from a small number of

samples by utilizing additional modalities [65, 68], structured primitives [77], generative

modeling [15, 80], and meta-learning methods [19]. However, these approaches are usually

limited to simulated ([70, 77]) or less demanding datasets ([19, 64, 68, 80]) that do not reflect

the richness and intricacy of real-world concepts that we encounter in our daily lives. One

of the first papers addressing the problem of FS-MLC in great detail is Alfassy et al. [11],

which tackled the problem of limited data by representing sample images and their labels in

a latent space and defining various set operations over these representations to synthesize

additional samples through the combination of latent image features. Similarly, the work

presented in Yan et al. [106] proposed a multimodal approach that utilized word embeddings

to align verbal and visual representations in a latent feature space, allowing the creation of

a mechanism that obtains visual prototypes for unseen labels by sampling an image from

the latent space pinpointed by a language description of the novel entity. In our work, we

propose a framework for extracting abstract concepts from complex real-world images and

demonstrate enhanced performance over current few-shot learners by utilizing the connection

between linguistic and visual concept representations.

Neuro-Symbolic Few-Shot Learning In addition to the techniques discussed above,

incorporating domain-specific knowledge shows great potential as it can assist in recognizing

and adding new concepts in a more sample-efficient manner, especially in scenarios with

limited data. A commonly used approach to utilize symbolic KGs in deep learning is graph

neural networks [55, 97, 105], providing a multitude of benefits from interpretability [90] to

the utilization of interconnected information. The hierarchy and structure present in KGs

have resulted in their use as priors for neuro-symbolic vision systems [47] for a number of

applications ranging from transfer learning [8] to vision-language pre-training [10]. Chen et al.

[23] introduced a static knowledge-guided graph routing framework consisting of two graph

propagation frameworks to transfer both visual and semantic features, enabling information
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transfer between correlated features to train a better classifier with limited samples. Marino

et al. [67] and Fang et al. [30] utilized this structured knowledge to identify the underlying

concepts present in the image. With a comprehensive graph, the structured knowledge

embedded in it can even be used to extract critical information about previously unseen

classes in either a few- [22, 75] or zero-shot [45, 48, 56, 99, 100, 103] manner. However, a

limitation of these approaches is the use of a static KG. The work presented in Wang et al. [98]

and Kim et al. [50] partially addressed this problem by dynamically changing edge weights

and re-computing latent node representations respectively, but the graph’s structure and

encoded knowledge fundamentally remain the same. In this work, we propose a mechanism

to update both aspects of the neuro-symbolic architecture by dynamically extending the

KG with novel nodes, computing representations that are conditioned on the target images,

and updating the neural components of our classification approach both structurally and in

regards to its trained weights. This also allows our approach to incorporate novel objects that

go beyond the visual domain, including abstract concepts and affordances while alleviating

the assumption, as in prior work [12, 24, 40, 89, 113] that an exhaustive KG has to exist.

2.3 Few-Shot Object Recognition with

Neuro-Symbolic Architectures

In this work, we propose a twofold approach. Firstly, we employ a neuro-symbolic object

recognition approach called Graph Search Neural Networks (GSNN), as originally introduced

by Marino et al. [67]. To enhance the performance of this pipeline, we propose multiple modi-

fications, namely adding image conditioning and incorporating node types (see Section 2.3.1).

Secondly, we introduce a novel approach called RelaTe , which automatically extends the

KG to integrate new concepts while, simultaneously, extending the neural components of the

system to incorporate them (see Section 2.3.2). In the following sections, we provide detailed

explanations of each component.

2.3.1 Neuro-Symbolic Object Recognition

At its core, our work considers the problem of detecting a set C of concepts in a given image I,

while affording the ability for a human Subject Matter Expert (SME) to extend the system’s

capability by detecting additional, novel concepts in a sample efficient manner from a small

set of images. In this section, we first describe our inference pipeline, inspired by Marino

et al. [67] before discussing novel concept addition in Section 2.3.2. Figure 3.4 describes the

three main steps of the inference pipeline: First, we extract a set of candidate objects FI that
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Figure 2.1: Example inference explaining our general inference pipeline, inspired by Marino
et al. [67]. Given a novel image, we utilize ViT and Faster R-CNN to extract an image
embedding (blue) and a set of initial object proposals (red). The initial proposals initialize
our knowledge graph (red nodes) while the Modified Graph-Search identifies additional nodes
(orange) conditioned on the overall image embedding (blue). Finally, our classifier evaluates
the active nodes and produces a list of detected objects (green) in addition to the already
detected nodes from the graph.

initialize our KG G and extract a global image embedding eI (see Section 2.3.1); Second, we

utilize the GSNN to propagate information through the graph while extending the prior work

to also condition on the global image embedding eI , alleviating the need for edge types, and

utilizing semantic node types; Third, the final classifier evaluates all active nodes of graph

G (where PI is the sub-graph of G containing the active nodes for a particular image I) in

order to provide a holistic view of the input image and predict the final set of concepts CI .

Extracting Candidate Objects

In the first step, we employ a pre-trained object detection pipeline, namely Faster R-CNN [79]

to extract the initial set FI of candidate objects from image I. Faster R-CNN is pre-trained

on the COCO [60] dataset to predict the 80 concepts of COCO, but omit the 16 classes

designated for our FS-MLC experiments as defined in Alfassy et al. [11] for a total of 64

trained concepts CCOCO. For this approach, we did not conduct any further fine-tuning on

other datasets, nor did we change the outputs of Faster R-CNN. The initial set of objects

F ⊂ CCOCO is then utilized to activate the initial set of nodes NF in graph G. In contrast to

the prior work that uses VGG [85], we use a pre-trained ViT [28] model to calculate an overall

image embedding eI ∈ Rv with feature size v that is utilized to provide a global context for

our modified graph-search approach as well as the final classifier. ViT is pre-trained on the

ImageNet-21k [27] dataset and then fine-tuned on the ImageNet-10k dataset without any

further modifications.
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Figure 2.2: Overview of the Modified Graph Search Neural Network (GSNN). In contrast to
prior work, we condition the propagation network on the global image embedding eI and
introduce a node type dn while dropping edge types.

Modified Graph Search Neural Network

In this section, we provide a detailed explanation of the different components of the GSNN

inspired by Marino et al. [67], as well as the proposed modification of conditioning its

components on the input image, removing edge types, and introducing node types. Figure 2.2

shows the modified GSNN over graph G which contains three core components: a) the

propagation network which computes an embedding for each node given its neighbors in

the context of the current image I, b) the importance network which decides which nodes

are relevant and should be kept for potential future expansion given the current image I,

and c) the context network which generates final node embeddings. The context network is

dependent on both the current image and the associations derived from the KG via multiple

rounds of applying the propagation and importance network. The goal of the GSNN is to,

in an iterative manner, propagate and prepare the information encoded in the KG that is

relevant to image I by alternating the propagation and importance network over T steps.

After T rounds, the context network provides the representation needed for the final concept

classifier. The selection of T is a crucial hyper-parameter of our method and Section A.6

evaluates this choice in detail. Each of these components and the final classifier are described

in the following sections along with our proposed modifications.

Propagation Network: Given the initial set of nodes NF, the propagation network is

designed to produce an output O ∈ RN×F , where N is the number of nodes and F the feature

size for the latent node embedding, encoding the information of each node’s neighborhood.

Each row of O represents a feature vector h for the respective node which is initialized

with all zeros outside of the first element, which contains the node ID, xv. We utilize the

graph structure, encoded in an adjacency matrix A ∈ RN×N to retrieve the hidden states

h of active nodes based on their neighborhood in the graph. In contrast to prior work, we

also provide the propagation network with the global image encoding eI in order to ensure

10



2. Sample-Efficient Learning of Novel Visual Concepts

that information is propagated according to the image context (Ablations are provided in

Section A.7)

Initially, we calculate a vector an representing the neighbourhood of each active node at

iteration t given that Ani
is the relative adjacency matrix for node ni:

at
ni

= AT
ni

[
ht−1

1 ,ht−1
2 , . . . ,ht−1

N

]T
+ b (2.1)

Given this neighbourhood vector at
ni

for each node, we calculate zt
ni

and rt
ni

= σ
(
Wat

ni
+ Wht−1

ni

)
,

where all W are different and trainable weights of the neural network.

Subsequently, we calculate the update ut
ni

for each node’s hidden state as follows, where

each W is a separately trainable weight matrix:

ut
ni

= tanh
(
Wat

ni
+ W

(
rt
n1

⊙ ht−1
n1

)
+ eI

)
(2.2)

In contrast to the work presented in Marino et al. [67], we calculate this update conditioned

on the global image context eI , allowing the modified GSNN to incorporate image-specific

information. Section 2.4.2 evaluates this benefit in further detail. The final hidden state ht
ni

for each node in PI is subsequently calculated as a weighted sum of the previous hidden state

ht−1
ni

and the previously computed update vector ut
ni

:

ht
ni

=
(
1 − zt

ni

)
⊙ ht−1

ni
+ zt

ni
⊙ ut

ni
(2.3)

Together with the importance network detailed in the next section, the propagation throughout

the graph is done over T iterations, thus, allowing the utilization of the interconnected

knowledge provided in the knowledge graph G. Learning to utilize the symbolic knowledge

of the graph efficiently is of utmost importance for our few-shot learning goal described in

Section 2.3.2.

Importance Network. The importance network alternates with the propagation network

over T cycles and decides whether or not an adjacent node to a currently active node should

be made active. This is an important step as purely expanding nodes at every step has the

potential to become computationally impractical if G is large. The importance vtn of each

node at timestep t is calculated as follows:

vtn = fI(h
t
n,xv, bn,dn) (2.4)

where, in contrast to the original GSNN, we propose the addition of dn which represents a

one-hot vector describing the node type (“object”, “affordance”, or “attribute”) instead of
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using an edge type and fI(. . . ) is a multi-layer perceptron (MLP). Nodes above a certain

threshold γ are maintained for the next propagation cycle. Additionally, we also learn a node

bias term bn for each node in the knowledge graph that intuitively captures a global meaning

of the respective node. Note that this bias does not depend on a particular image I.

Context Network. After T iterations, the final node embeddings are created via the

context network [14]. Similar to the importance network, it is formulated as:

Ofinal = fC(ht
n,xv, bn,dn) (2.5)

However, instead of predicting a scalar value indicating a node’s importance, it generates the

final state representation of the expanded nodes in G, where fC(. . . ) is another MLP.

Final Concept Classifier

The third and final step is the classification of the active concepts CI ⊂ C in the input image

I where C is a set of all possible concepts. These concepts are computed from the state

representations Ofinal of all the expanded nodes in the active graph P along with the global

image embedding eI and the originally detected classes FI from Faster R-CNN. Utilizing

a single fully connected layer, a probability distribution over all the concepts is predicted

c = fC(Ofinal, eI ,FI). In order to make the result amenable to interpretation by a human

user, we also provide the graph of active nodes P, thus providing insights into why certain

classifications may have been made.

2.3.2 Novel Concept Learning in a Dynamic Neuro-Symbolic

Architecture

In addition to improving the neuro-symbolic architecture of GSNN our remaining two main

contributions are as follows: a) a multi-modal Relation Prediction Transformer – RelaTe ,

that aids a human SME when adding novel concepts to the symbolic knowledge graph

(Section 2.3.2) and b) introducing a framework to also dynamically updating neural parts of

the inference pipeline described in Section 2.3.1.

Extending the Knowledge Graph with Relation Prediction Transformer

Figure 2.3 introduces our proposed approach – RelaTe . Given a small set of SME-provided

images ISME showing a novel concept as well as the partial graphs P for each image, RelaTe pre-

dicts how this novel concept can be incorporated into the existing knowledge graph. Thereby,

12



2. Sample-Efficient Learning of Novel Visual Concepts

black

outside

shoes

Importance

Novel Scene: "stadium"

New Edges

Multiple Images
Active KG over all Images

shirt

All expansions during propagation
Added RelaTe Edges

Initial Nodes
Novel Node

Full Image Embedding

Modified GSNN

Looks like a
"stadium" to me

playing

RelaTe

A
dd

in
g
Sy

m
bo

lic
K
no

w
le
dg

e

Ex
te
nd

in
g
N
eu
ra
lA

rc
hi
te
ct
ur
e

active nodes

Multimodal Concept Embeddings

Node Bias Context

Trained

Fine-Tuning

Training New
Neuron Weights

Novel Concept

Edge Likelihood
stadium

stadium

baseball bat

person

sports ball

green
Propagation

Faster R-CNN
ViT

Figure 2.3: Given a novel concept of a stadium by a human expert along with one or more
images for it, RelaTe estimates the optimal connectivity between the novel concept and
existing nodes in the KG (i.e. person, baseball bat, sports ball, green). Subsequent inferences
on similar images will yield the novel concept and allow for generalization through the domain
knowledge encoded in the KG.

RelaTe provides an efficient and intuitive way of quickly adding new symbolic knowledge to

the graph.

Multi-modal Cross-Attention Framework. While we use the image processing

pipeline of Dosovitskiy et al. [28], we introduce a multi-modal approach to relating linguistic

concept representations to images that contain a novel concept. In particular, we utilize

GloVe [76] word embeddings in order to retrieve a context-invariant representation wc =

fGloV e(c) ∈ RFw for any given concept c ∈ C. These representations are particularly useful

when generalizing to novel concepts due to the potential similarity of new concept embeddings

to a semantically similar word that may be known to the KG already. In order to combine

the linguistic and visual representations, we utilize a cross-attention framework in which the

image is represented as a sequence of patches IP [28, 35]. We then combine both modalities

as follows:

ece = fMC (IP ,wn) (2.6)

where, wc is the word embedding of any given concept c, and fMC is explained in detail in

Section A.1.

Post-Attention Fusion. Given the embeddings ece for each node in each PI across

all images in ISME and the novel concept ecn , we create pairs between the novel concept

embedding ecn and the existing nodes’ embeddings ece . We calculate the likelihood of an

edge being present between a source and target nodes by concatenating the embeddings of

each node pair as follows:

pcs,ct = frel([ecs , ect ]) (2.7)

Here, frel(. . . ) is an MLP predicting a scalar likelihood that an edge is present between the
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pair of nodes in the direction from source to target. ecs and ect are populated by every

combination of the novel concept node and existing graph nodes for novel objects; however, for

abstract concepts and affordances, we only calculate incoming connections (see Section 2.4.1

for details). Finally, at most k nodes that are above a specified threshold pcn,co > γ are added

to the KG. We empirically choose a suitable k depending on the concept type while γ is a

global hyper-parameter.

Updating the Neural Architecture

Adding the novel concept to the KG alone does not directly yield improved classification

performance as the new node does not have a trained node bias bn yet, nor does the propagation

network know how to generate node embeddings hn for the novel concept. Additionally, the

final classifier needs to be extended to enable the prediction of the novel class. In this section,

we detail the process of training the node bias, fine-tuning the propagation module, and

extending the classifier in further detail (also see Figure 2.3, describing how we extend the

neural architecture).

Fine-tuning the Node Bias and Graph Propagation. To fine-tune the propagation

network and train the node bias bn of the novel concept, we utilize a small dataset DSME

generated from the images ISME given by the human SME that demonstrate the novel concept.

DSME is subsequently expanded by applying transformations to all images in ISME. Further,

we define a small curated dataset DC with the intention of preventing catastrophic forgetting

that contains ∼ 2% of the original VGML training data. The dataset DC is selected through

Maximally Diverse Expansion Sampling (MDES) which selects a representative set of inputs

from the original VGML dataset that activates a diverse set of nodes in the graph G (see

Section A.9 for details). Prior to training the propagation network and node bias, the novel

node’s bias bn is initialized as the average of its adjacent nodes’ bias, and the corresponding

novel node is forcefully activated in each training sample in DSME ∪ DC that contains an

image from DSME. Forcing the activation of the novel node includes it in the downstream

classification task and thus enables the fine-tuning of the propagation network and node bias.

Extending the Classification Module After training the propagation network and

node bias for a limited number of epochs, the classification module with the novel neuron

for concept cn is unfrozen and added to the fine-tuning process. Furthermore, we reduce the

learning rate of the propagation module and freeze the node bias bn in this step of fine-tuning.

As the classifier is depending on a valid node bias and the propagation network produces

meaningful node embeddings for cn, we delay the training of the classifier; however, we allow

for continuous training of the propagation network to better capture the image-conditioned

representation learning of the novel node. When training the classifier, its training objective
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is reduced to a binary classification problem that predicts whether or not the novel concept is

active in DSME ∪ DC while only calculating gradients for the added neuron so as to not alter

the prediction capabilities of the existing concepts. This approach drastically reduces the

number of parameters that need to be optimized, allowing the dataset to be comparatively

small.

2.4 Evaluation

We evaluate the effectiveness of our proposed approach for novel concept recognition in two sep-

arate settings. First, we compare it against current state-of-the-art FS-MLC baselines on the

COCO [60] dataset, and second, we perform a qualitative analysis of adding abstract concepts,

affordances, and scene summaries to the underlying neuro-symbolic architecture. Particularly,

we demonstrate that our method, when trained on Visual Genome, outperforms FS-MLC

baselines on COCO and even improves performance further when trained on the COCO train-

ing data. Further, we conduct an extensive ablation study analyzing the impact of the various

components of the neuro-symbolic architecture as well as our proposed RelaTe approach.

Finally, we further investigate the implications of different node addition strategies, while addi-

tional experiments regarding the number of iteration step T , curated dataset DC , the addition

of node types, and further qualitative analysis including deeper analysis in regards to failure

cases and large language models are available in the Appendix. The source code can be found

at: https://github.com/sarthak268/sample-efficient-visual-concept-learning.

2.4.1 Data and Metrics

As our method depends on the existence of an initial knowledge graph, we initialize the

graph G from the Visual Genome Multi-Label (VGML) [67] dataset. While based on Visual

Genome [52], VGML improves VG by drastically simplifying the graph, only using the 200

most common objects and 100 most common attributes, plus an additional 16 nodes to

completely cover all COCO classes. We subsequently modify the graph for our FS-MLC

task by removing 16 nodes that are defined as test nodes in Alfassy et al. [11], resulting

in a total of 300 nodes while also removing all images related to these 16 FS-MLC target

nodes from the training dataset of VGML. Furthermore, we impose the requirement that all

nodes representing affordances and attributes must be leaf nodes in the graph to simplify

graph structure further. Additionally, we remove edge labels and introduce a one-hot vector

indicating whether a node is an object, attribute, or affordance, and discovered that the

edge types did not impact the performance of the approach. We evaluate these changes in
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comparison to the original knowledge graph from Marino et al. [67] in Section A.8.

The coverage of all COCO classes is allowing us to compare novel object recognition

performance between multiple COCO baselines and our approach. Particularly, the 16 FS-

MLC test classes include bicycle, boat, stop sign, bird, backpack, frisbee, snowboard, surfboard,

cup, fork, spoon, broccoli, chair, keyboard, microwave, and vase. In our additional evaluation

of novel abstract concepts, affordance, and scenes, we utilize the full knowledge graph with

all 316 nodes. We utilize our modified VGML dataset to train the GSNN, classification head

of ViT, and final concept classifier in an end-to-end fashion. Further, RelaTe is trained on

the entire Visual Genome dataset after removing the 16 test classes from it. The training for

RelaTe includes concepts that are not present in VGML.

Evaluation Metric. In order to compare the efficacy of our approach in the FC-MLC

task, we utilize mean average precision (mAP), macro average precision (Macro AP), and

the top-K score. mAP is computed by taking the mean of the AP scores computed for each

label, where AP is the area under the precision-recall curve plotted for each label. Similarly,

Macro AP is computed by averaging the AP scores for each label across all instances and

then averaging the results across all classes. To compute the top-K score, we compute the

percentage of K most confident predictions of our model that are correctly predicted, i.e.

precision of K most confident predictions.

2.4.2 Novel Concept Recognition

In this section, we detail our comparison of utilizing RelaTe with our updated neuro-symbolic

architecture to add novel concepts. Particularly, we compare against multiple state-of-the-art

baselines on FS-MLC tasks over the COCO dataset while training our model on VGML and

later fine-tuning on COCO. Further, we demonstrate the utility of adding scene summaries,

e.g. kitchen from kitchen appliances, abstract concepts, and affordances in a comprehensive

ablation study on the VGML dataset.

COCO Novel Multi-Object Recognition

We evaluate the efficacy of adding novel visual objects in a sample-efficient manner using our

approach by comparing it against current state-of-the-art baselines in FC-MLC applications.

As defined in Alfassy et al. [11], we use a set ISME of five images per novel class and train

all 16 novel classes one by one. Table 2.1 shows the results comparing our method to three

state-of-the-art baselines as well as four additional ablations. For each method, “Source”

indicates the training dataset for the respective model while DSME and DC indicate which

dataset was used for the few-shot learning. If both datasets are used, they are randomly
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interleaved. Lines 1 to 3 in Table 2.1 demonstrate the performance of our three baselines.

Using a naive approach to adding novel concepts to Marino et al. [67], line 4 trains only the

final classifier (by adding a novel neuron) on the same training dataset as used in lines 4 to 7

without adding novel information to the knowledge graph altogether. In addition to training

the classifier, adding the novel node to the knowledge graph, but not training the propagation

network and node bias is shown in line 5, indicating that our modified GSNN is mostly

invariant of the knowledge graph despite the lack of fine-tuning, underlining the strength

of having domain knowledge (compare line 4 and 5), yielding a 17% performance increase.

However, further improvements can be made when fine-tuning the propagation network and

node bias. Compared to Yan et al. [106] in line 3, which achieves 68.12% (the best baseline),

utilizing the neuro-symbolic architecture and our proposed RelaTe architecture in line 6,

we achieve a Macro AP score of 70.26, despite training on VGML, which is statistically

significant with a standard deviation of σ = 0.45 at p-value 1.252e−3 trained over four seeds.

Further, we also fine-tuned our method from line 6 on the training set of COCO and reported

the results of 70.30% with σ = 0.19, with a p-value of 9.1e−5 over four seeds in line 7 of

Table 2.1. In each case, we parameterize RelaTe with an unlimited k value to add as many

relations as possible. Given that our results in line 6 are resulting from a model trained on

an entirely different dataset, i.e. VGML, yet performs very similarly to being trained on

COCO allows the conclusion that our approach has the ability to transfer knowledge between

datasets through the utilization of a knowledge graph.

Recognizing Affordances, Attributes, and Scenes

Method Source DSME DC Macro AP

1 [11] COCO ✓ — 58.10

2 [23] COCO ✓ — 63.50

3 [106] COCO ✓ — 68.12

4 Fine-tuning (classifier) VGML ✓ ✓ 52.22

5 Fine-tuning + RelaTe VGML ✓ ✓ 69.26

6 Ours VGML ✓ ✓ 70.26

7 Ours COCO ✓ ✓ 70.30

Table 2.1: Experimental results on COCO
dataset for five-shot multi-label classification
of previously unseen concepts.

Unlike other approaches to few-shot novel con-

cept detection that rely on novel objects being

visible in the input image, our approach can

go beyond such limitations through the uti-

lization of interconnected information in the

knowledge graph. In addition to adding visual

concepts as shown in Section 2.4.2, we demon-

strate how non-visible concepts like abstract

concepts, attributes, and scene summaries can

be added. While the borders between what is

visual and what is not are sometimes blurry,

particularly in the case of scenes, utilizing the knowledge graph highlights the ability to

draw conclusions from a set of partial observations. E.g., given that refrigerator, oven, and

microwave were detected, we can conclude that the input image likely shows the kitchen
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concept, which can subsequently be added to the knowledge graph as a novel concept. In the

following two sections, we discuss the addition of abstract concepts and scene summaries.

Adding Non-Visual Concepts. We conduct further experiments to assess the ability

of RelaTe to incorporate non-visual concepts into the knowledge graph by relating it to

relevant existing domain knowledge. In contrast to novel object recognition, we parameterize

RelaTe with a threshold k = 3 in order to enforce a sparser connection of affordances and

attributes to existing nodes.
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Figure 2.4: Analysis of the performance when adding novel affordances and attributes to the
knowledge graph. We evaluate the performance on five-shot (dark colors) and fifteen-shot
(bright colors) learning.

Figure 2.4 shows our experiments on adding novel affordances (Figure 2.4a) and attributes

(Figure 2.4b). In each case, we selected a set ISME with five and fifteen sample images contain-

ing three separate concepts that should be assigned to the novel concept. Subsequently, we

evaluate the performance of the resulting model on 50 test images from within the same concept

classes as well as 50 test images that do not show any of the trained targets. Our results show

that added non-visual concepts have an average Macro AP of 66.7% given five sample images

and 75.1% given fifteen images. Recall that for novel object detection as shown in Table 2.1,

the Macro AP score is 70.26%. We hypothesize that the slightly lower performance on abstract
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concepts roots in the difficulty of not having a clear visual representation for such concepts.

However, when increasing the training samples to fifteen, we outperform the object detection re-

ported in Table 2.1, which, in the context of deep learning, is still a relatively small sample size.

Scene Concept

Model stadium kitchen zoo school bedroom Avg.

8 CLIP (0-shot) 16 100 100 56 72 68.8

9 Flamingo (0-shot) 20 4 40 24 28 23.2

10 Mini-GPT (0-shot) 24 96 64 24 96 60.8

11 Flamingo (5-shot) 68 36 40 72 80 59.2

12 Ours (5-shot) 90 84 84 72 92 84.4

Table 2.2: Novel scene prediction in comparison to
free-form text generation models.

Novel Scene Recognition: In ad-

dition to adding novel objects and

abstract concepts, RelaTe can also

assist in the addition of compound

concepts. For example, the existence

of a oven, microwave and refrigerator

implies a scene that can be defined as

a kitchen that is the sum of the under-

lying parts. Encoding such knowledge

poses a slightly different problem as compound concepts require reasoning over multiple

adjacent concepts. This ability can be imbued by our KG, but can also be found in large

foundational neural networks, particularly LLMs. Table 2.2 demonstrates the ability of

three LLM baselines, MiniGPT-4 [111], CLIP [78], and Flamingo [9], to draw higher-level

conclusions about the general scene shown in an image to our method, attempting the same

task. We evaluate each scene on 25 test images of previously unseen samples and report the

existence of the compound concept within the estimated concepts. For the LLMs, particularly

the free-form response models, we queried the models to see if the image shows any of the

five target scenes. With an average accuracy of 84.4%, this experiment underlines the utility

of having interconnected knowledge that augments our few-shot detection pipeline, allowing

the GSNN to successfully draw high-level conclusions from a set of basic concepts. While

LLMs demonstrate partial success in identifying the high-level scenes, explicitly modeling

the symbolic knowledge provides significant improvements despite the LLM’s large general

knowledge encoded within their trained model architecture. In additional experiments for

the kitchen example, we showed that the likelihood of classifying the kitchen scene from a

refrigerator or microwave alone is 24% and 28% respectively while the likelihood to identify

it from an image containing both base concepts is 88%, showing that our model accurately

learned that a kitchen is the sum of its parts.

Ablations

In this section, we ablate the different components of our FS-MLC pipeline on the VGML

dataset, recognizing the novel objects defined in Alfassy et al. [11]. Table 2.3 summarizes
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Components Fine-tuned KG Configuration All Classes Novel Classes
ViT FRCNN KG GSNN CLF RelaTe MDES T-1 T-5 mAP T-1 T-5 mAP

1 ✓ - - - - - - 84.2 63.4 31.8 85.7 65.5 34.6
2 ✓ ✓ - - ✓ - - 84.7 64.2 33.0 86.1 67.2 37.3
3 ✓ ✓ ✓ - ✓ - - 87.4 68.8 36.5 91.8 72.8 68.0
4 ✓ ✓ ✓ - ✓ ✓ - 89.8 69.8 38.5 91.6 72.8 68.2
5 ✓ ✓ ✓ ✓ ✓ ✓ - 90.4 72.4 41.7 92.2 73.6 69.3
6 ✓ ✓ ✓ - ✓ ✓ ✓ 90.0 70.1 39.5 91.8 73.0 68.8
7 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 90.3 72.9 42.0 92.4 73.9 69.5

Table 2.3: Experimental results on Visual Genome dataset, ablating the components of our
method

these results where lines 1 and 2 show the performance on the test set across all classes

and our 16 novel few-shot classes given their Top-1 (T-1) and Top-5 (T-5) performance

when using pure neural end-to-end architectures. In each case, novel classes are trained

with five demonstration images and evaluated on the test set of VGML. Line 3 adds a KG

with the GSNN approach proposed in Marino et al. [67] and fine-tunes the final classifier

(CLF-column) on the novel classes with an ∼ 3% improvement in Top-K score. From this,

we conclude that novel classes may also need to be added to the knowledge graph. Line 4

uses our proposed RelaTe approach to add the novel classes to the graph; however, it does

not tune the GSNN with respect to the propagation network and node bias (GSNN-column).
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Figure 2.5: Strategy for adding the 16
novel concepts: one-by-one vs. all

Adding nodes to the graph yields another 3 − 5%

improvement over line 3. Line 5 fine-tunes the

propagation network and node bias with our

methodology described in Section 2.3.2, improv-

ing performance by another ∼ 2%. Finally, lines 6

and 7 show the impact of our curated fine-tuning

dataset DC as compared to an equally sized ran-

dom dataset over the original VGML dataset.

This demonstrates the importance of MDES to

prevent catastrophic forgetting. In summary, Ta-

ble 2.3 highlights our approach’s ability to effec-

tively expand its understanding of novel concepts with limited samples by effectively utilizing

the knowledge graph. Further experiments on the original KG are available in Section A.3

while a qualitative comparison of the ground-truth graph connections in comparison to the

ones RelaTe adds is available in Section A.4.
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2. Sample-Efficient Learning of Novel Visual Concepts

Evaluating Node Addition Procedure

While RelaTe allows the addition of novel concepts individually, or as a group, we hypothesize

that the node addition strategy has an impact on the overall performance of the model.

Figure 2.5 shows the performance on the VGML dataset when adding the 16 nodes one-by-one

(blue) or all at once (orange), omitting intermediate nodes 6-9 and 11-15 for simplicity. The

trends show that adding one concept at a time and fine-tuning the classifier as well as the

GSNN for each of them before adding the next concept yields a higher-performing model.

This not only facilitates the extraction and comprehension of new concepts but also prevents

the model from getting overwhelmed with multiple concepts simultaneously, thus, minimizing

the risk of forgetting previously acquired knowledge.

Interpretability of Results

Our approach provides interpretability through the explicit propagation of the initially

detected concepts FI through the graph G, providing insights as to why certain final concepts

have been classified. However, while these propagations are not a direct output of the

model, they provide an auxiliary insight into the internal workings of the FS-MLC pipeline.

Figure 3.4 shows how these propagations can be useful in interpreting the concept classifier’s

result.
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Chapter 3

Neuro-Symbolic Short-Context Action

Anticipation

3.1 Introduction

Action anticipation is a crucial step in the development of intelligent agents [29] for the

task of human-robot collaboration (HRC). For example, accurately anticipating a human’s

future action allows a robot to assist them in their task proactively without needing to be

instructed at every step, reducing the cognitive load on human operators, thus, allowing

them to focus more on their work [73]. Prior work in action anticipation has mainly

focused on short-term or next-action anticipation [32, 33, 34, 37, 69, 81, 82, 83]; however,

to enable proactive agent behavior, multiple future actions must be predicted for long

horizons as the immediate next action may not always be the most appropriate assistive

action. For example, taking over a task that the human is already doing or about to start

may interfere with the user’s immediate actions, necessitating the prediction of multiple

future actions. Selecting one of multiple future actions depends on various factors, including

if such a task can be executed in parallel by the robot and if its likelihood of occurring

is sufficiently high given the current observation. In an assistive task, predicting action

sequences requires a quick understanding of the user’s current behavior, necessitating making

decisions given short observation contexts of task-relevant behavior. However, making

accurate predictions of future actions given only a short horizon of relevant observations

is challenging due to its inherent lack of context. To this end, we propose NeSCA, Neuro-

Symbolic Short-Context Action Anticipation, which imbues a neural action anticipation

pipeline with additional symbolic domain knowledge in the form of a Knowledge Graph (KG).
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Skill Library & Action Selection

I3D Features

Observed
Short Context 

Execute Assistive
Action on Agent

Predicted Future Action SequenceObserved Short Video Context

Transformer Encoder Transformer Decoder

Concept Graph Search

Rectification

Estimate Confidence

Figure 3.1: NeSCA: Given a short video seg-
ment (blue), our system anticipates future
actions and their respective confidences
(color gradients) utilizing our proposed
neuro-symbolic attention approach to re-
focus attention between visual features.
Finally, if sufficiently confident about the
prediction, a robot executes assistive ac-
tions (green).

NeSCA utilizes domain knowledge to connect scene

objects to their relevant affordances [36, 112]

through a structured prior. For example, with

the knowledge that a tomato has the affordance

being cuttable and knowing about the presence

of a knife that can be used for cutting, NeSCA

can boost the attention between these concepts

to increase the likelihood of the human’s intent

of cutting tomatoes in the future while simulta-

neously attenuating the attention between other

unrelated features (see Fig. 3.4). Imbuing a neural

network that can effectively comprehend complex

inputs like videos with symbolic knowledge can

greatly enhance the performance of downstream

tasks [17], i.e., subsequent action anticipation and

user assistance. Empirically, we find that utiliz-

ing the knowledge graph that connects objects

to their affordances reduces the required task-

relevant observation by ≈ 50% when predicting

future actions as compared to current state-of-

the-art baselines.

To process high-dimensional inputs like videos, transformers [94] have proven to be efficient

at comprehending sequential data and lend themselves well to action anticipation from videos

[38], but remain largely black-box end-to-end approaches. On the other hand, structured

domain knowledge remains interpretable and has previously been investigated in the image

domain [66], demonstrating improved performance for image classification [17]. In this work,

we seek to integrate neural video comprehension with external symbolic domain knowledge

pertaining to the objects in the scene, linking them to their respective affordances. Given a

previously unseen video sequence, we extract the relevant scene objects via a neural object

detector and employ graph search through our KG to assign relevant affordances to them.

To achieve the integration of the video understanding and extracted domain knowledge, we

propose to imbue the attention mechanism of the transformer with an addition rectification

matrix that influences how queries and keys interact with each other. Intuitively speaking,

the learned knowledge-conditioned rectification matrix boosts or attenuates the attention

between various video features, thus, aiding the prediction of future actions. A particular

benefit of this approach is that our proposed method significantly improves performance when
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only short-horizon contexts are given – a key aspect for effective human-robot collaboration

that prior works in action anticipation [2, 3, 31, 38, 49, 83] only addressed to a limited

extent. Before utilizing our action anticipation approach for human-robot collaboration, we

demonstrate its efficacy on two common long-term action-anticipation benchmarks, namely

the 50Salads [87] and Breakfast [53] datasets, and show superior performance as compared

to current state-of-the-art methods.

Having demonstrated the efficacy of NeSCA, we showcase a joint salad creation task

in a real-world tabletop scenario that leverages the sequence of predicted future human

actions. Given a set of predicted actions, the system selects an appropriate action for the

robot to execute while the user keeps working on their current task given a set of selection

criteria (see Figure 3.4). Among others, these criteria mainly include checking whether the

anticipated action’s pre-conditions are already satisfied and if the action is predicted with

sufficient confidence. When such an action is identified, the robot executes the action to

support the user. With our approach, we achieve a 50.1% accuracy in selecting and executing

an appropriate assistive action while also reducing the required length of context to half

compared to the current state-of-the-art to achieve a similar success rate.

In summary, our contributions are as follows:

• We propose a novel approach utilizing knowledge graphs to augment the attention

mechanism for transformer-based action anticipation, which we refer to as NeSCA.

• Through extensive experiments, we demonstrate that our proposed method outperforms

current state-of-the-art methods for action anticipation on two challenging benchmarks,

50Salads and Breakfast.

• We show how our proposed method can be utilized for effective HRC that anticipates

tasks and subsequently supports human users in the creation of a salad in a real-world

tabletop manipulation setting.

This chapter is adapted from our work [16] published in the ICCV 2023 Workshop on AI

for Creative Video Editing and Understanding.

3.2 Related Work

Action anticipation is a field of research that is currently gaining a lot of attention due to

its usefulness in areas such as autonomous driving and human-robot interaction [110]. In

this study, we introduce a new approach that makes use of structured domain knowledge to

predict long-term action sequences based solely on short video contexts.

Knowledge Graphs for Computer Vision. The emergence of the utilization of struc-
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Figure 3.2: NeSCA utilizes a transformer architecture for action anticipation (top); however,
in parallel, Concept Graph Search (bottom) is utilized to obtain the set of active concepts,
including related affordances, in the scene. These concepts are further used to refocus the
attention in the transformer toward the relevant visual features.

tured domain knowledge, in the form of knowledge graphs, in vision models is gaining traction

as it grounds their predictions by establishing a comprehensive understanding of entities

and their interconnected relationships, thereby, enhancing overall model interpretability and

performance. [66] introduced a knowledge graph as a structured prior for image classification

and proposed the Graph Search Neural Network, demonstrating its performance improvement

by integrating knowledge graphs into the vision classification pipeline. Further, [17] extended

it to include the augmentation of novel concepts, encompassing visual objects and compound

concepts such as affordances, attributes, and scenes. In this work, we extend the idea by

refining the propagation framework from [17] to identify relevant object affordances along

with the tools that can be used to afford it in the desired manner. To the best of our

knowledge, our approach is the first one to utilize the information about the affordances of

the objects in the scene to perform action anticipation. Our methodology represents a novel

approach to leveraging information regarding the affordances of objects within a scene for

action anticipation.

Action Anticipation. The task of action anticipation from videos [44] revolves around

predicting future actions based on a specific segment of the video. With recent advancements

in foundational vision models and the availability of large-scale human-centric datasets [25],

this domain has gained significant attention. Many recent approaches have been developed

to predict a single future action within a short time frame, typically spanning a few seconds

[15, 32, 33, 34, 37, 69, 81, 82, 83]. However, a notable emerging trend is long-term action

anticipation, which emphasizes predicting a sequence of future actions occurring in the distant
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future from a lengthy video [2, 3, 31, 38, 49, 83]. While much attention has been paid to

predicting long-term actions with ample video context, limited research has addressed using

short video contexts to predict long-term future action sequences. Our work addresses this

particularly challenging task: Action anticipation for long-horizon predictions given only a

short observation context.

Human-Robot Collaboration. Several approaches have performed human-robot

collaboration by anticipating what actions might be useful in the current setup [96], by

either utilizing gaze information from the user [5] or performing action prediction [7, 51].

Approaches utilizing action anticipation for human-robot collaboration circumvent the need

for explicit task specification, accommodating situations where human intent is ambiguous

or multiplicitous, while also streamlining everyday tasks by eliminating the time-consuming

process of articulating actions. While these works can infer current actions, they fall short in

capturing the temporal aspect of visual inputs to make predictions not only about ongoing

actions but also anticipate future actions. Other methods have been proposed utilizing a

human-in-the-loop approach to improve the learned policy in an online manner [61, 93];

however, enabling these interactions can be expensive, and therefore, offline finetuning

approaches have been identified as an effective solution to deploy robots in real-world

scenarios [59, 95]. This work integrates the advantages of predicting future actions and offline

fine-tuning with a finite curated dataset in a novel environment to enhance the prediction of

useful actions considering the subject’s actions.

3.3 Knowledge-Guided Action Anticipation

This section introduces our proposed method, NeSCA, as well as its application to Human-

Robot Collaboration (HRC). At its core, NeSCA, consists of two core components: (1) a

neuro-symbolic graph-search approach that extracts relevant scene concepts (i.e., objects and

their affordances, see Sec. 3.3.1); and (2) a modified attention mechanism informed by our

extracted concepts, allowing us to anticipate future actions from short observation context

(see Sec. 3.3.2 and 3.3.3). With this set of predicted actions, we demonstrate the utility of

NeSCA in an HRC task, utilizing our fast action anticipation from short observed contexts,

which allows us to effectively assist a user (see Sec. 3.3.4).

Problem Statement. NeSCA (see Fig. 3.2) addresses the problem of predicting a sequence

of future actions a from a short video observation F that can subsequently be used to provide

effective assistance to a human user. In our setting, we observe α-percent of a video and

predict actions in the next β-percent of the video, with respect to the average total video

length obtained from the training set. Given an observed video sequence F, we learn a
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Recognizing Dressing Creation Grasping Additional Ingredient Pouring Vinegar into Dressing Returning the Vinegar Bottle Recognizing Dressing Completion

Figure 3.3: Example of our assistive HRC system: Shortly after the user starts to prepare
the dressing, the robot identifies the intention and correctly assists the user in creating the
dressing by adding further ingredients.

function a = fθ(F) that predicts a sequence of actions a happening after the end of F. The

video sequence F ∈ RH×W×C×N is represented as a four-dimensional matrix describing the

height H, width W , and channels C of each video frame Fn, and the number of observed

frames N . The action sequence a = [(a0, d0, c0), ..., (aM , dM , cM)] contains a list of M tuples

describing the action sequence a, its duration d, and confidence c.

To actuate the robot, we propose a policy ar = π(fθ(F),S) utilizing the predicted set of

future actions. Given a skill library S and a list of future actions fθ(F), π identifies a suitable

action ar for a robot to execute in our HRC task.

Training Procedure. We train our model from a dataset D where each sample si =

[Fi,ai] contains the video Fi and action-sequence ai, where i is the index of the video,

along with a single agent performing a task. After training, we provide the trained action

anticipation model fθ(. . . ) with a new, previously unseen video sequence, showing α percent

(with respect to time) of the full video, tasking the policy with predicting the most likely

action for each frame in the following β percent of the remaining video.

3.3.1 Extracting Domain Knowledge

We provide a hand-crafted KG as the source of domain knowledge, establishing connections

between various concepts. In the following, we refer to objects and affordances as concepts.

Each node in our KG is initialized by utilizing Grounded-DINO [62]. To utilize this knowledge

during inference, given a short sequence of video frames, we extend our prior work [17] to

the domain of videos. Intuitively, this approach utilizes a neural object detector to extract a

set of initial concepts and subsequently utilizes them as a starting point for a graph search

through the knowledge graph K. We create the graph K consisting of two types of nodes:

object nodes (e.g., salt, knife, bowl) and affordance nodes (e.g., graspable, pourable, cuttable).

For example, a tomato has a connection to cuttable, which, in turn, connects to knife.

In the first step, we extract a set of relevant concepts from the video frames F, using

open-vocabulary object detection as proposed in [62]. These initial concepts CO are then

utilized as a starting point for our iterative Concept Graph Search (CGS), forming the

28



3. Neuro-Symbolic Short-Context Action Anticipation

initial set of active concepts in our KG. CGS has two main components: a) the Propagation

Network, which generates frame-conditioned representations (based on F) for all candidate

concepts directly connected to the active ones using Graph Attention Network v2 [18], and

b) the Importance Network, responsible for computing a scalar importance value for each

candidate node, given F. At the end of each importance estimation, concepts above a

predefined importance threshold are incorporated into the set of active concepts. This process

is repeated for T iterations, alternating the Propagation and Importance Networks. Together

the role of these networks is to perform message passing via nodes corresponding to concepts

prevalent in the video. After expanding all relevant concepts CF through T iterations, we

generate a latent representation cKG that encapsulates the information about the relevant

objects in the scene along with their associated affordances. Intuitively, CGS allows us to

extract the relevant concepts concerning the observed video and utilize them as additional

domain knowledge during the action anticipation (see Sec. 3.3.2).

3.3.2 Action Anticipation with Domain Knowledge

This section introduces our main contribution, detailing how domain knowledge cKG can be

utilized for action anticipation. In particular, our architecture is motivated by [38]; however,

we alter the attention mechanism of the encoder and decoder to allow for the integration of

additional domain knowledge, thus, improving the contextual reasoning capabilities of the

action-anticipation pipeline.

However, before we detail the novel attention mechanism in Section 3.3.3, we briefly

outline the standard transformer-based part of our pipeline, consisting of an encoder fe(. . . )

and decoder fd(. . . ) (see Fig 3.2). The encoder eenc = fe(F) utilizes I3D [20] features xI3D
n of

the observed video F and produces a set of embeddings eenc ∈ Rn×D for each video frame

n and encoding dimension D. The encoder processes visual features extracted from the

observed segment of a video F by employing multi-head self-attention. The resulting output

is then provided to a classifier, aO = fobs(eenc), determining the actions corresponding to the

observed part of the video segment.

The decoder employs the embeddings of the observed sequence eenc generated by fe(. . . )

along with learnable tokens referred to as actions queries, initialized with zero vectors.

Similarly to the encoder, the decoder edec = fd(eenc, χ) produces a set of embeddings

edec ∈ Rp×D where p is the upper bound of the future actions that can be predicted and

χ ∈ Rp×D are the p action queries. Subsequently, we utilize two separate, fully connected

networks for predicting the future actions apred and their durations dpred respectively.

dpred = fdur(q
Ld
n ) and apred = fact(q

Ld
n ) (3.1)
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Frame-wise (↑ larger is better) / Action Sequence (↓ smaller is better) Next Action (↑)
Model 5-10 5-20 5-30 5-50 10-10 10-20 10-30 10-50 5 10

50Salads
KG Baseline [17] 6.92 / 4.88 6.21 / 6.20 6.01 / 7.44 5.58 / 7.92 7.13 / 4.50 6.48 / 5.98 6.07 / 7.37 5.78 / 7.88 8.0 9.0
Video-Llama [108] - / 6.44 - / 7.20 - / 7.90 - / 9.12 - / 6.12 - / 6.80 - / 7.86 - / 9.02 6.0 7.0

GPT4-V [1] - / 3.52 - / 5.94 - / 7.04 - / 7.12 - / 3.86 - / 4.67 - / 5.16 - / 7.05 12.0 32.0
CNN [31] 7.42 / 3.22 6.97 / 5.07 6.67 / 5.86 6.40 / 6.11 8.50 / 3.33 7.80 / 4.87 7.45 / 5.20 6.92 / 6.60 10.0 28.0
RNN [31] 7.98 / 3.00 6.90 / 5.46 6.48 / 6.30 6.42 / 6.16 8.78 / 2.94 7.92 / 4.83 7.57 / 5.20 7.26 / 6.52 12.0 30.0
FUTR [38] 8.90 / 2.98 7.46 / 4.52 7.29 / 5.40 8.63 / 6.80 15.17 / 2.74 11.34 / 4.04 11.31 / 4.98 11.36 / 6.04 12.0 36.0

NeSCA (T = 0) 7.95 / 3.08 7.86 / 4.42 6.15 / 5.20 7.10 / 6.58 24.0 / 2.60 16.90 / 3.72 11.17 / 4.98 11.30 / 6.80 10.0 34.0
NeSCA (T = 1) 17.86 / 2.84 16.25 / 4.22 10.84 / 5.14 9.38 / 6.70 23.15 / 2.54 17.28 / 3.78 16.62 / 4.76 13.61 / 5.74 14.0 42.0
NeSCA (T = 2) 13.67 / 2.90 9.60 / 4.40 8.62 / 5.32 8.51 / 6.60 22.86 / 2.56 16.86 / 3.71 14.70 / 4.52 12.66 / 5.75 12.0 38.0

Breakfast
KG Baseline [17] 5.44 / 8.22 4.95 / 9.10 4.22 / 9.66 3.98 / 10.02 6.02 / 7.90 5.15 / 8.77 4.86 / 9.21 4.51 / 9.78 7.22 12.31
Video-Llama [108] - / 11.20 - / 12.24 - / 13.62 - / 13.82 - / 11.08 - / 12.04 - / 12.98 - / 13.22 5.39 9.80

GPT4-V [1] - / 4.56 - / 6.04 - / 6.93 - / 7.26 - / 5.12 - / 6.08 - / 7.26 - / 7.62 19.27 22.45
CNN [31] 5.76 / 6.98 5.52 / 7.22 5.45 / 7.98 4.80 / 8.43 7.84 / 6.48 6.62 / 6.95 6.02 / 7.44 5.17 / 8.13 11.45 18.90
RNN [31] 6.16 / 6.76 5.60 / 7.05 5.53 / 7.69 4.96 / 8.09 7.67 / 6.67 6.73 / 6.90 6.15 / 7.44 5.22 / 8.12 12.02 19.96
FUTR [38] 9.54 / 1.63 7.24 / 2.07 6.42 / 2.40 5.58 / 3.02 14.70 / 1.41 12.55 / 1.76 12.10 / 2.06 11.71 / 2.62 23.97 30.05

NeSCA (T = 0) 9.69 / 1.65 7.20 / 2.04 6.55 / 2.40 5.62 / 3.06 15.30 / 1.43 13.23 / 1.82 12.24 / 2.22 11.65 / 2.68 20.55 25.47
NeSCA (T = 1) 9.91 / 1.60 7.95 / 2.02 6.86 / 2.34 5.88 / 2.98 15.53 / 1.41 13.52 / 1.76 13.07 / 2.09 11.94 / 2.63 25.25 26.45
NeSCA (T = 2) 9.75 / 1.62 7.60 / 2.05 6.70 / 2.38 5.76 / 3.00 15.52 / 1.36 13.46 / 1.72 12.68 / 2.15 11.84 / 2.60 23.32 30.35

Table 3.1: NeSCA performance compared to the current state-of-the-art in long-term action
anticipation for different horizons of α−β (top row). The numbers in boldface and underlined
indicate the highest and the second-highest accuracy, respectively.

Finally, we retrieve confidence cpred for each predicted action. We quantify the certainty of

the model’s prediction using negative entropy of the predicted distribution of actions, i.e.,

cpred = σ(apred) log(σ(apred)), where σ(.) represents the softmax function.

3.3.3 Knowledge-Guided Attention Mechanism

So far, we have discussed how relevant domain knowledge is retrieved from a symbolic KG,

as well as the general action anticipation pipeline. In this section, we describe our main

contribution: Altering the multi-head attention layers of the encoder fe(. . . ) and fd(. . . ) to

improve contextual prediction by leveraging our extracted domain knowledge cKG. Intuitively,

the extracted domain knowledge establishes a connection between the objects in the scene

and their respective affordances, improving the predicted actions’ relevance by boosting or

attenuating the attention between different features. To this end, we introduce a rectification

matrix R inside the multi-head attention equation. We obtain a separate knowledge-guided

rectification matrix for our encoder and decoder, namely Re and Rd, with which we modify

the attention mechanism:

KG-Attne/d(Q,K,V) = softmax
(QRe/dK

T

√
dk

)
V (3.2)

Boosting or suppressing features using the rectification matrix allows our model to prioritize

the features associated with objects having relevant affordances, giving them higher importance

than those not present in the scene. The rectification matrix is presented as a diagonal

matrix for which we retrieve the diagonal by predicting it from cKG. Particularly, we a

utilize Re/d = fR
e/d(cKG) to predict each diagonal, where fR

e/d(...) is implemented as an LSTM.
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Note that fR
e (. . . ) and fR

d (. . . ) are separate networks that do not share parameters amongst

themselves.

3.3.4 Human-Robot Collaboration using Anticipated Actions
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Figure 3.4: Our Dummy Kitchen setup
and available objects for creating salads
in an HRC task involve cutting/peeling
vegetables, preparing dressing, and mix-
ing/serving the salad.

Having access to a sequence of likely future ac-

tions as well as their durations and confidences,

we define a policy ar = π(fθ(F),S) that chooses

an appropriate assistive robot action ar from a

set of possible skills S (see Fig 3.3). Selecting the

appropriate action ar ∈ S is a challenging task as,

upon selection of an action, the robot is commit-

ted to performing it. This commitment requires

time and utilizes objects in the environment that

could have been used otherwise by the human

partner.

Thus, we define four selection criteria to

choose an appropriate action or not to choose

an action at all and continue to observe the

user. First, the cumulative duration of actions

ds =
∑i=r−1

i=0 (di) for any action candidate ar, where 0 ≤ r ≤ |a| must be larger than the

average length dr of action candidate ar (obtained from the training dataset). This constraint

ensures that the human collaborator would not have done or needed to do the chosen task

before the robot can complete it. Secondly, we ensure that all objects needed for a chosen

action ar, as defined in our skill library S, are observed in our set of active concepts cKG and

that all objects have the appropriate affordances. For example, if we consider the action of

cutting a tomato, the robot requires a knife, cutting board, and tomato, but also that the

tomato has the affordance of being cuttable (i.e., is not already in a diced state, which would

not afford the ability to be cut it further), and hence, these concepts should be part of the

list of active concepts. Thirdly, we verify whether the prerequisites for the specific task have

already been fulfilled; for instance, the action of placing tomato in bowl necessitates that the

cut tomato action precedes it. Lastly, we consider the confidences cpred for the candidate

action ar. Specifically, we only consider actions for which the estimated confidence is above a

pre-defined threshold to ensure that the robot only executes the most likely actions.

With these four constraints, we define policy π(. . . ) that, given the predicted action

sequence for horizon β over an observed time-horizon α, selects a single action ar that
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should be executed by the robot. However, note that if no such action that satisfies all four

constraints can be found, policy π will return a no-op action. In such cases, the policy will

continue attempting to identify an appropriate action as further video frames are available.

Similarly, when the robot is currently committed to executing a previously selected action ar,

the robot will ignore action choices made by policy π until the prior action is completed.

3.4 Experiments

In this section, we evaluate NeSCA on two common benchmarks for action anticipation –

50Salads and Breakfast – and demonstrate how action anticipation can be used for human-

robot collaboration in a real-world task. Our benchmarks (see Sec. 3.4.1) extensively evaluate

the ability to utilize short video contexts while predicting long-horizon future actions. In

our real-world setup (see Sec. 3.4.2), we utilize the ability to correctly anticipate actions to

facilitate the collaborative creation of a salad.

Datasets We evaluate the effectiveness of NeSCA using two publicly available benchmark

datasets for action anticipation for in-home environments, particularly kitchen scenarios,

as well as one real-world robotics dataset: 1) The 50Salads dataset [87] with its five splits,

densely annotated with 17 fine-grained action labels and three high-level activities; 2) The

Breakfast dataset [53] with four splits, categorizing each frame into one of 10 breakfast-related

activities using a comprehensive set of 48 fine-grained action labels; and 3) a dataset of 20

videos collected from our dummy kitchen setup (see Fig ??). Among these dummy kitchen

videos, we designate half of them for fine-tuning the model, while the remaining half are

reserved for assessing the performance of the fine-tuned model.

Metrics To evaluate the efficacy of our approach, we calculate the Mean over Classes (MoC)

accuracy [31]. This metric is computed by comparing the predicted actions to the ground-

truth actions for all future frames within the horizon window defined by β, making it the

most comprehensive metric as it captures action sequence and action durations. To quantify

the ability of our model to identify the sequence of the next actions without considering their

durations, we employ a metric that computes the minimum number of addition, deletion, or

substitution operations required to exactly match the predicted to the ground truth action

sequence. While neglecting action durations, this metric captures the semantic understanding

of the task composition. Derived from this metric, we also employ immediate single next-

action prediction as a metric. Finally, in our real-world setup, we utilize the accuracy of

completing an action, i.e., anticipating the right action and executing it, as our primary
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Figure 3.5: Attention to visual features relevant to our task, as attended to by FUTR (Left)
and NeSCA (Right). With our re-focusing approach, attention is heightened for areas having
objects relevant to tasks after the current cutting lettuce.

evaluation metric.

3.4.1 Action Anticipation Benchmark

Action Anticipation Performance We evaluate NeSCA by comparing the performance on

all metrics averaged across all splits against long-term action anticipation baselines [31, 38],

depicted in Table 3.1. [31] uses action labels extracted from the action segmentation model,

while our work and the most recent state-of-the-art [38] use visual features from the observed

video segments. In addition, we conduct a comparative analysis with two additional baseline

methods. The first is a KG-only approach proposed by [17], which aims to extract all

objects along with their associated affordances in each pth frame of the video. This method

incorporates a decay mechanism with a rate of γ to account for the diminishing importance

of active nodes over time. Finally, we also utilize a set of multimodal fusion models, namely

Video-Llama [108] and GPT4-V [1], where we begin by providing a comprehensive explanation

of the entire scenario and subsequently prompt it to produce predictions for future actions

from a predefined list of possibilities. As can be seen in Table 3.1, NeSCA outperforms the

current state-of-the-art in long-term action anticipation using short context in all the metrics

on the 50Salads dataset and on nine out of the ten metrics we used on the Breakfast dataset.

On the MoC metric, NeSCA outperforms the baseline by up to 9% on 50Salads and 1% on

Breakfast.

As our method relies on a fixed number of iterations T during CGS, we also evaluated

varying numbers with 0 ≤ T ≤ 2. The most favorable outcome was observed when T was

set to 1. In the case of T = 0, no graph propagation was performed, and the model relied

solely on objects detected by our object detector. As a result, its performance resembled

that of [38], which lacks information about associated object affordances. On the other hand,

when T = 2, the list of concepts considered by the model expanded beyond the context

relevant to the video which resulted in the model receiving information that was redundant

or unnecessary, thereby, confusing the model. Empirically, we chose a propagation of T = 1
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Figure 3.6: Success rate of NeSCA in our kitchen setup with varying context lengths. The
observed percentage is reported with respect to the average length of finetuning videos.
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Figure 3.7: Sample result of NeSCA on the real-world kitchen setup, observing 5% and
predicting another 30% into the future, along with the predictions made by FUTR [38] and
the ground truth action labels.

for all our experiments.

Qualitative Evaluation We showcase an example to compare NeSCA against [38] by

evaluating the time-series segmentation of the predicted future actions. Figure 3.7 depicts an

example from our kitchen setup where the model observes two actions in the α = 5% (≈ 6

seconds) observed segment of the video and then predicts what actions take place in the next

β = 30% (≈ 36 seconds) of the video. While our model accurately identifies the sequence of

all four ground-truth future actions and their approximate durations, the baseline approach

failed to identify two out of the four actions correctly. We attribute our approach’s improved

performance to our model’s ability to focus on the objects currently in use and objects that

could be used later by extracting their associated affordances.

The re-focusing of our model is demonstrated in Figure 3.5, highlighting the areas our

approach (right) and [38] (left) focuses on. Our model directs attention to both the bowl

and the plate, even in scenarios where the subject is not directly interacting with them.

This capability enables our model to accurately anticipate future actions, such as put cheese

into bowl and subsequently serve salad onto plate. In contrast, the baseline approach

indiscriminately focuses on many objects in the scene, neglecting to discern the relevant

objects based on their affordances and their potential utility in the context of ongoing and

completed actions.
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Approach Finetuning Confidence Success MoC
α = 5% α = 10% α = 5% α = 10%

Autoregressive 13.0 17.4 6.2 7.4
Autoregressive ✓ 27.3 36.4 8.9 12.2

FUTR 16.6 20.8 6.7 9.2
NeSCA 19.2 23.1 6.9 9.9
NeSCA ✓ 33.7 41.8 12.4 18.1

NeSCA (Full) 35.2 43.6 14.4 20.2
NeSCA ✓ ✓ 42.8 50.1 - -

Table 3.2: Performance of the action anticipation pipeline, NeSCA, for human-robot collab-
oration on our kitchen setup. Success values represent the real-time joint performance of
anticipating the sequence of actions and performing the actions in the kitchen setup, while
the MoC values represent the accuracy of framewise prediction of actions over the collected
trajectories from the kitchen setup. The average length of sequences (according to which the
percentages are calculated here) is 120 seconds.

3.4.2 Real-World Human-Robot Collaboration

After showing the effectiveness of our NeSCA approach on two common baselines, we utilize it

in an HRC scenario of preparing a salad in a joint task between a robot and a human user. To

bridge the domain gap that arises due to the shift in physical attributes (for example, lighting

conditions, the color of prevalent objects, etc.) of the real-world kitchen setup and the trained

dataset, we finetune our trained model to a dataset comprising of both the original videos

and 10 videos collected on our kitchen setup.

Transfer Learning on Kitchen Environment We assess the effectiveness of our fine-

tuned model on our kitchen environment depicted in Table 3.2, which utilizes the same action

space as the 50Salads dataset. During inference, we provide access to a pre-defined skill

library S = {S0, S1, S2...Sm} where each high-level skill Si corresponds to a specific sequence

of low-level control inputs, conditioned on the placement of the objects. We use a top-down

RGB camera (see Figure ??) to track our objects using Scale-Invariant Feature Transform

(SIFT) [63] and color feature detection. Given the skill library and video stream, our action

anticipation module operates in real time to deduce future actions and their associated

confidences. When the four action criteria mentioned in Section 3.3.4 are met, the respective

instruction is sent to the robot for execution.

The skills in the library are broadly categorized into three “grasp types”: a top-down

grasp, suitable for pick-and-place actions with items like vegetables; a sideways grasp, ideal

for picking up and pouring objects such as olive oil or vinegar bottles; and an aligned grasp,

designed for handling oriented tools like knives and spatulas. The aligned grasp feature is
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engineered to bring and hand over tools to a human collaborator. In this process, the robot

brings the instructed tool near the potential area of use for easy accessibility.

For real-world experiments, we define success as the robot correctly identifying future

actions and executing the respective target action. The observed % of video, denoted

by α, is computed by comparing the duration of human action observed by our model

with the average duration of a video in our finetuning dataset. This evaluation involves

comparing its performance against several baselines, namely: (1) a non-finetuned model, (2) an

autoregressive classifier that predicts the next action by considering extracted video features

in addition to prior action predictions, and finally, (3) a model with the same architecture

but trained from scratch on 25 videos collected in our dummy kitchen environment. While

training from scratch on our dummy kitchen environment only uses 25 videos as compared

to the original 50Salads dataset, we find that providing further videos does not improve

the performance of the model any further. In addition to our approach, we also compare

against the best performing state-of-the-art method in long-term action anticipation, FUTR

[38]. In Table 3.2, we have observed a significant performance improvement when fine-

tuning the model using a few videos from our kitchen setup. Moreover, NeSCA consistently

outperforms autoregressive baselines, underscoring the significance of leveraging not only the

visual-temporal features of the video but also exploiting information about objects in the

scene and their associated affordances. In comparison to a model trained on the complete

dataset (see NeSCA (Full) in Table 3.2), our fine-tuned approach demonstrates a superior

success rate and comparable frame-wise action prediction accuracy. Note that we have not

presented the MoC values for our model with confidence estimation, since this is specifically

incorporated into the model for real-time evaluation and is not applied in the assessment

using our collected set of videos.

Further, we also evaluate the dependence of NeSCA and FUTR on the percentage of

video observed on our kitchen setup (see Figure 3.6). As is expected, the performance of

both approaches increases as the percentage of video increases, but the difference is much

more pronounced when the context window is shorter. Further, the dashed line represents

an approach that, instead of employing a sliding video window focusing on a specific fixed

context, utilizes the entire video up to that point. By observing only 10% of the video, NeSCA

outperforms the non-sliding window approach. This underscores the ability of NeSCA to draw

meaningful inferences with a very short context window and highlights the impact of using

uncertainty-based thresholding to improve the success rate in real-world scenarios.

Finally, we also evaluate the efficacy of our approach to encode the set of active concepts

in the rectification matrix. For this, we take an example where our model accurately predicts

the appropriate sequence of future actions given the fulfillment of preconditions. Subsequently,
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we deliberately remove one of the crucial connections or edges within the active knowledge

graph and observe the resulting change in the proposed action. In the example, our model

correctly anticipates the action of cutting a tomato. However, upon removing the connection

between the tomato node and the node representing the affordance cut, we observe a shift in

the model’s prediction from cutting the tomato to mixing ingredients in a bowl, reflecting the

effective encapsulation of relevant concepts using the rectification matrix.
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Chapter 4

Conclusion

In summary, our work emphasizes the significant potential of neurosymbolic architectures

in overcoming the current limitations of deep learning models. By integrating a structured

form of domain knowledge, via the integration of knowledge graphs, with neural networks,

we demonstrated the ability to enhance model interpretability, generalization, and flexibility.

This approach not only improves the robustness and reliability of AI systems but also

enables them to handle novel entities and concepts more effectively. Through extensive

experimentation, we have shown that our method outperforms existing models in tasks

such as few-shot classification and action anticipation, highlighting its practical utility and

effectiveness in real-world scenarios.

The integration of neurosymbolic methods into AI systems represents a promising avenue

for bridging the gap between data-driven learning and structured reasoning. By leveraging

the strengths of both neural networks and symbolic reasoning, we can create more versatile

and interpretable AI systems capable of nuanced environmental understanding and seamless

human interaction. Our findings underscore the necessity of incorporating structured domain

knowledge into AI architectures, paving the way for more reliable and transparent perfor-

mance in complex, human-centric environments. Ultimately, this work contributes to the

advancement of AI, making it more adaptable and trustworthy for applications that require

a deep understanding of the environment and effective collaboration with humans.
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Chapter 5

Discussion, Limitations, and Future

Work

To address our neurosymbolic concept identification model’s limitation in handling numerous

instances of the same concept within a scene, we propose augmenting the knowledge graph

with a scene graph. This extension will enable our graph search algorithm to operate on both

graphs, allowing us to consider different instances of the same concept within a scene. For

example, a scene containing a refrigerator, an oven, and a stove is likely a kitchen. However,

if these concepts appear in large numbers, it is more likely to be an IKEA store.

While our method of exaction of novel concepts is capable of learning to recognize various

objects, abstract concepts, and affordances in a sample-efficient manner, it is dependent

on the comprehensiveness of the underlying knowledge graph Additionally, the reachability

of the desired target class from the initially detected concept FI depends on the number

of propagation steps T . Further, the accuracy of the model depends on the initial object

detections of Faster R-CNN (see Appendix A.10 for a brief analysis). Another factor adding

to this is that RelaTe requires any potentially related knowledge with respect to a novel

concept to be expanded by ISME due to the prohibitive computational complexity of checking

against every node in G. In future work, we plan to address these issues by choosing the

number of propagation steps dynamically, allowing for further expansions, while also exploring

the options of allowing SMEs to review proposed connections that RelaTe introduces.

Coming to our neurosymbolic approach to action anticipation for human-robot collabo-

ration, while our experiments demonstrate the value of action anticipation in human-robot

collaboration, it is crucial to acknowledge that real-world human behavior is highly un-

predictable. This necessitates the ability of action anticipation approaches to quickly and

accurately predict actions from only short observations of task-relevant behavior. However,
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exploring more complex methods that incorporate additional factors such as gaze, behav-

ior patterns, or personalized action anticipation tailored to individual differences could be

promising avenues for future research. Additionally, we demonstrated that augmenting action

anticipation with symbolic knowledge greatly benefits the model’s performance; however,

our approach relies on the availability of a hand-crafted knowledge graph that encompasses

relevant scene objects and their respective affordances. To address this issue, we plan on

generating relevant knowledge graphs in a data-driven manner.

Additionally, we aim to enhance the human-robot interaction system with advanced

zero-shot grasping capabilities [57, 58]. This will enable the model to grasp objects with

complex geometries [6] and perform actions anticipated from human actions, without requiring

prior training on those specific objects.

42



Appendix A

Supplementary: Sample-Efficient

Learning of Novel Visual Concepts

A.1 Cross-Modal Attention Mechanism in RelaTe

In this section, we elaborate further on the cross-modal attention mechanism to fuse the

linguistic concept representation wc ∈ RFw with the image representation IP ∈ RP×F 2
PC .

Fundamentally, this is a standard cross-attention approach in which the word embedding is

considered as query and image patch embedding as key and value. However, for completeness,

we outline the process as follows. Particularly, we define

ec = fMC (IP ,wn) (A.1)

The transformer encoder architecture is built as L sequential layers each composed of a

multi-head cross-attention and multi-layer perceptron block where each block is preceded by

layer normalization and followed by a residual connection.

The initial input to the encoder is a sequence Z0 of length P where each element zp ∈ RFl

of size Fl is the computed as follows for each patch in IP [i,:]:

z0
i = IP [i,:]E[i,:] + P[i+1,:] (A.2)

where E ∈ R(F 2
pC)×Fl is a learnable projection matrix and P ∈ R(P+1)×Fl is a learnable

positional embedding for each patch in IP . Further, we insert a CLS token at the beginning

of the list Z0
1 = P[0,:]. Provided that the word embedding wc for the concept c, for each layer
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Approach AffordancesAttributes

CLIP (0-shot) 28.4 35.0
Flamingo (0-shot) 0 0
MiniGPT (0-shot) 18.4 24.4
Flamingo (5-shot) 30.8 47.8
Ours (5-shot) 61.2 69.8

Table A.1: Novel non-visual concept prediction in comparison to free-form text generation
models.

l ∈ [1, . . . , L], the embedding zi is given by the following equations:

zl′

i = fCA

(
layernorm(zl−1

i ),wc

)
+ zl−1

i (A.3)

zl
i = MLP

(
layernorm(zl′

i )
)

+ zl′

i (A.4)

In the above equation, the cross-attention is computed by querying the concept embedding

wc against the patchwise encoding of the previous layer, initialized by the patches from image

IP . The cross-attention module, fCA(. . . ), is a multi-head approach encompassing h heads.

Following the standard transformer architecture, we compute fCA(. . . ) as follows:

fCA(k,v, q) = softmax
( qkT

√
DA

)
v (A.5)

The key k, query q, and value v for the individual cross-attention heads are given by:[
k v

]
= layernorm(zl−1

i )Wkv, q = wcWq (A.6)

where Wkv and Wq are trainable weights and DA = Fl

β
, where β is a hyper-parameter. The

final embedding for concept ecn is obtained by extracting the representation corresponding

to the 1st element in sequence Z after all L layers.

ec = fMC (IP ,wc) = layernorm(ZL
0 ) (A.7)

A.2 Evaluation of Novel Non-Visual Concept

Extraction

Our model was assessed for its ability to predict non-visual concepts such as affordances and

attributes, in comparison to the free-form language generation baselines, namely MiniGPT-

4 [111], Flamingo [9], and CLIP [78], explained in Section 2.4.2. The methodology we utilize
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to obtain the predictions for each baseline is mentioned below:

• CLIP (0-shot) [78]: We evaluated a standard CLIP model by tasking it with a multi-

label classification task over our concepts. The language prompt for CLIP is the list

of all 316 nodes plus the novel concept node and we considered the detection to be

successful if the targeted concept was part of the N most confident classes, where N is

the number of the respective image’s ground-truth classes plus one. As CLIP does not

provide an easy few-shot learning opportunity, we only evaluated the zero-shot case.

• Open-Flaming (0-shot) [9]: We utilize Open-Flamingo in lieu of the official Flamingo,

as official models are not publicly available. However, in the zero-shot case, we provided

our test images and prompted Flamingo with the following query: “Does the image

show an item that can contain, display, feed, sit, or transport?” for the affordances and

”Does the image show an item that is edible, electric, flora, sports, or wearable?” for

the attributes. We then evaluated the generated text manually to determine whether or

not Flamingo detected the concept correctly. For example, we counted a response like

“Yes, the image shows hot dogs with cheese on them, which are edible.” as successful

identification of the concept edible.

• Open-Flamingo (5-shot) [9]: In the five-shot use-case, we provided further context to

Flamingo by providing all 25 sample images (five for each class) with their respective

label to Flamingo and then prompting for a single label for each of the novel test

images.

• MiniGPT (0-shot) [111]: Finally, we also employed MiniGPT-4 in order to also utilize

a multi-modal GPT baseline. Here, we provided the image as context and asked the

same question as in Open-Flamingo while evaluating the generated response manually.

The results for the same are presented in Table A.1. Our approach outperforms the best

baseline by an average score of 26.2% on the prediction of non-visual concepts. The superior

performance of our model can be attributed to its capacity to deduce non-visual concepts by

connecting them with visual concepts derived from the visual inputs.

A.3 Quantitative Evaluation of RelaTe

In addition to the ablations of Table 2.3, we provide a quantitative evaluation regarding

the ability of RelaTe to restoring the ground-truth KG of the VGML dataset for the 16

novel classes. Recall that we intentionally removed the test classes from the KG used in our

few-shot experiments. Ideally, RelaTe would restore or create an even better KG through the

proposed edge-addition framework. Table A.2 presents a quantitative comparison between
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Fine-tuned KG Configuration All Classes Novel Classes
GSNN CLF RelaTe O-KG T-1 T-5 mAP T-1 T-5 mAP

1 - ✓ - ✓ 90.6 70.2 38.8 91.4 72.2 67.6
2 ✓ ✓ - ✓ 90.2 72.8 41.6 91.2 73.7 69.0
3 - ✓ ✓ - 89.8 69.8 38.5 91.6 72.8 68.2
4 ✓ ✓ ✓ - 90.4 72.4 41.7 92.2 73.6 69.3

Table A.2: Experimental results on Visual Genome dataset.

our proposed edge addition methodology, RelaTe , and using the original knowledge graph

without removing nodes corresponding to the 16 novel classes. Rows 1 and 2 demonstrate

the use of the original KG (O-KG) while rows 3 and 4 denote the models that use the KG

populated by our RelaTe framework. All four of these models are trained without the use of

MDES on a random selection of images from the original dataset. The results demonstrate

that our approach effectively incorporates novel concepts into the KG. In fact, our method

outperforms the model that utilized the original KG for some metrics. This is because

our approach not only restores the previously removed edges but also introduces additional

connections that are observed in the SME-provided images, thus, improving performance.

A.4 Qualitative Evaluation of RelaTe

In this section, we provide examples of connections recommended by our RelaTe framework.

For each novel concept, we pick 4 images and pass them through our edge addition framework

to demonstrate the edges that populate into the graph G. In Figure A.1, each example starts

with the concept that was removed from the knowledge graph (red) and its initial connections

(purple). The suggested connections by our RelaTe framework are shown in the green box,

which was generated when the system was given a set of 4 images. These results demonstrate

the effectiveness of our relation prediction approach in adding back relevant connections

that are prominent in the provided images. Moreover, our model suggests some additional

relations that may not have been present in the original graph but are relevant and can

provide significant information about the scene content.

A.5 Countering the Classifier Bottleneck

We demonstrate the crucial role of fine-tuning the propagation network and the node bias

when adding novel concepts to the graph. In Figure A.2, we plot the mAP performance on

the entire VGML dataset as a function of the number of novel classes added to the system
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Figure A.1: Qualitative Evaluation of Edges added by the relate approach. In each example,
we include the concept being added, the edges that were present in the knowledge graph
originally, and the nodes that were suggested by relate for a set of images.
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Steps of
Expansion, T

Expansion
%

mAP

2 39.5 39.1
3 93.4 42.0
4 100.0 41.3

Table A.3: Percentage of samples that required T steps of expansion and the corresponding
mAP performance of our model with that T .

for the model where we fine-tune either only the classification or both classification and the

propagation module including the node biases. During training with five images per concept,

we utilize the one-by-one node addition strategy which showed improved performance (see

Figure 2.5). Initially, for just a few nodes, not training the GSNN does not have a huge

influence; however, the plot shows that the model in which we only fine-tune the classifier

experiences a substantial performance drop which is proportional to the number of concepts

added compared to the model in which both the modules are fine-tuned.

A.6 Ablation on Number of Propagation Steps
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Figure A.2: Fine-tuning GSNN + Classifier vs
Classifier Only

We experiment with different values for T

that define the number of iterations between

the propagation and importance network dur-

ing inference of the GSNN module as de-

scribed in Section 2.3.1. We aim to select the

minimum possible value of T that ensures the

complete expansion of most of the samples in

our test dataset within the first T steps. In

Table A.3, we report the performance of our

model on all the classes of the VGML test

dataset along with the percentage of samples

that were expanded to full capacity by varying the number of expansion steps. The results

we obtained in Table A.3 highlight that 3 is the optimal value of T since we start to obtain

diminishing returns following steps greater than 3. Expanding less than two steps doesn’t

allow the model to experience many relevant connections while expanding beyond the third

level makes it challenging for the model to identify concepts that are related to the original

concepts FI .
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A.7 Significance of Image Conditioning on Node

Embeddings

We explicitly enforce conditioning of the image content on the embeddings generated for

each of the nodes during the graph propagation. These embeddings are utilized by both the

importance and the context network and form the backbone of the entire graph expansion

procedure. Unlike Marino et al. [67], which does not enforce this constraint, our model

prioritizes expanding nodes that are relevant to the image content rather than simply

expanding nodes that are only dependent on the initial class detection that would result in

the same propagated nodes even for dissimilar images. We demonstrate the significance of our

(a) (b) (c)

Figure A.3: Samples from the dataset where the initial propagation begins with the concepts
of person and bench.

proposed conditioning by selecting three vastly distinct images from the dataset in Figure A.3.

The original GSNN fails to distinguish between these images in terms of expanded nodes in

the KG, whereas our approach expands a unique set of nodes for each image. The following

are the final classifications with and without image conditioning on the propagation network:

• Image 1:

w/o Conditioning: person, bench, shirt, black, white, gray

w Conditioning: person, bench, shirt, wooden, brown, black, sunglasses

• Image 2:

w/o Conditioning: person, bench, green, sitting, shirt, white

w Conditioning: person, bench, jacket, green, visible, sitting

• Image 3:

w/o Conditioning: person, bench, shirt, sitting, pink, wooden, black

w Conditioning: person, bench, shirt, black, jacket, head, wooden
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While the model without image conditioning expands a generic list of nodes, our approach

identifies image-specific concepts such as sunglasses for the first image and jacket for the

second image, demonstrating the improvements imposed by this additional conditioning.

A.8 Ablation for Node types and Edge types

Edge types Node types mAP

1 ✓ - 42.3

2 - - 42.1

3 - ✓ 44.6

Table A.4: Experimental results with abla-
tions of edge and node types.
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Figure A.4: Edge type distribution of the KG
used by [67].

In Section 2.4.1, we introduced the changes to the KG as described in Marino et al. [67].

Here, we ablate these choices in greater detail. Table A.4 shows the performance of the

algorithm with the original 26 edge types in line 1, no edge types (i.e. just a single unlabeled

edge) in line 2, and our modified KG without edge types, but an additional one-hot indicating

the node-type in line 3. The results show that edge types hinder the performance of the

inference pipeline and indicating the node type improves performance. We hypothesize that

this is due to the strong imbalance of the encoded edge types, as shown in Figure A.4, where

the has attribute, comprising almost two-thirds of all edge types.

A.9 Maximally Diverse Expansion Sampling

To select a small subset of the original dataset that allows us to maximize the diversity of

expanded nodes in our KG, we adopt a binning-based approach. We begin with a single bin

spanning all nodes and traverse the dataset to identify the image that can expand a node in

the largest bin. Upon finding such an image, we use each expanded node in that image as the

dividing line between the new bins. If an image does not expand a node that would divide the

largest bin, the image is not added to our curated dataset DC . We only process the dataset

once until either we have a set of images that expand all the possible nodes or all images have

been either added to DC or have been discarded. Under the assumption that rare classes are

randomly distributed in the dataset, we ensure that at least some images containing that

class are added to DC . As a result, we create a dataset DC containing approximately 2% of

the original VGML dataset.
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A.10 Analysis of Dependence on Object Detectors

To test the resilience of our model against inaccuracies in the object detection module,

we conducted an evaluation by replacing the detected objects with random concepts (that

were not originally present in the respective example), and observing whether our model

expands upon them. We conducted a small-scale experiment on 30 test images, where we

introduced an additional random node that is unrelated to the actual image. We observed

that the propagation and importance networks ignore these wrong nodes in 63% of the

cases by not expanding them any further. Further, in 16.7% of the cases, the final classifier

removes these nodes altogether. In the current work, the importance network can not remove

previously added nodes; however, this capability could be explored in future work. Figure A.5

demonstrates two instances where Faster R-CNN mistakenly detects a non-existent object

class in the image. Furthermore, we provide a few instances in Figure A.6 where we substitute

one of the original object detections in the image with an entirely unrelated object, and our

model refrains from further propagating the modified node, demonstrating its resistance to

such potential issues.

desk

open

keyboard

laptop

mouse

black

wooden

scissors

All expansions during propagationInitial Nodes

(a) Mitigated failure case: While Faster R-CNN detected a scissors, our propagation
and importance network did not incorporate this node any further.

parked

red

road

large

person

visible

black

car

motorcycle

truck

All expansions during propagationInitial Nodes

(b) Mitigated failure case: While Faster R-CNN detected a person, our propagation
and importance network did not incorporate this node any further.

Figure A.5: Robustness to wrong graph initialization by Faster R-CNN detections.

Additionally, we also analyzed a potential failure case in which wrong edges exist in the

graph. The only potential source for such edges is if RelaTe predicts wrong edges during

novel concept addition. When testing the performance of RelaTe by removing a known node
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black

outside

shoesshirt

playing stadium

baseball bat

person

dog

green

Replaced Nodes
All expansions during propagationInitial Nodes

(a) Node Replacement: Here, we removed the sports ball and replaced it with a dog, demon-
strating how our approach does not incorporate the wrong node.

person

hand

white

tennis racket

playing

black

shirt

elephant

All expansions during propagationInitial Nodes
Replaced Nodes

(b) Node Replacement: Here, we replaced the sports ball with an elephant. An
interesting result here is that not only was the wrong node not expanded, but it
was also removed from the final classification.

Figure A.6: Robustness to wrong graph initializations that are manually enforced.
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for which the desired edges are known, we observe that 84% of these edges are restored when

re-adding the target node using our approach. However, while the remaining 16% of edges

are not necessarily wrong, we analyzed the impact of potentially wrong edges by manually

introducing them between the initially detected nodes and an arbitrary, unrelated node. This

was evaluated on 30 images, as for the prior experiments. We observe that in 76.6% of the

cases, the propagation and importance network ignore this wrong connection.

This highlights the robustness of our model to erroneous initialization. Moreover, we

empirically observed that Faster R-CNN rarely introduces wrong nodes, thus further mitigating

this potential error source.

A.11 Failure Analysis

wooden

dining table

keyboard

book

laptop

cellphone

mouse

black

sitting

person

All expansions during propagationInitial Nodes

(a) Failure case: The model identified an erroneously identified and further integrated
a cellphone.

gray

hands

shirtsmall

All expansions during propagationInitial Nodes

sports ball

person

microwave

white

(b) Failure case: The model identified an erroneously identified and further integrated
a sports ball.

Figure A.7: Failure cases of our model in which wrong nodes are integrated into the graph.

As part of our failure analysis, we highlight some examples where our model hallucinates

non-existent concepts in the image. Although such misclassifications are not common, they

offer valuable insights into how our approach functions and where it may be prone to errors.

In the given scenario depicted in Figure A.7a, the model has incorrectly identified the concept

of a cellphone. This error can be attributed to the model’s tendency to associate objects with

certain visual characteristics, which can result in confusion between objects that share common
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properties. For instance, in this case, both the laptop and cellphone have a screen, and

therefore the affordance of being able to display something, leading to the misidentification of

the object as a cellphone. The second example in Figure A.7b demonstrates another instance

where our model has made an incorrect prediction by identifying the object in the image

as a sports ball. This error can be attributed to the model’s tendency to rely on the way

people interact with objects in the scene when identifying them. In this case, the child’s hand

gripping the knob of the microwave may resemble the way one would grip a ball, leading the

model to mistakenly classify it as a sports ball.

Finally, we evaluate potential failure cases in which RelaTe may be tasked to add edges

between contextually unrelated nodes. It is a key feature of RelaTe to automatically determine

the nodes that are relevant for a novel concept while not adding edges to nodes that are

contextually different. To evaluate this, we attempt to add edges between nodes from

the bedroom context and nodes from the stadium context. In this case, we observe that

RelaTe only adds an edge in 20% of the queried connections. However, it is important to

note that some connections are in fact reasonable, as connections between the person node in

the stadium context have a valid connection to bed in the bedroom context.

A.12 Runtime Complexity

We trained our model on a single RTX 6000 GPU for ≈ 100 hours of total training time.

When adding a novel concept, the two-staged tuning of our model takes approximately 45

minutes. Finally, during inference, it takes approximately 30 seconds per image to obtain

predictions using our approach.
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