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Abstract

Deformable object manipulation represents a significant challenge in
robotics due to its complex dynamics, lack of low-dimensional state rep-
resentations, and severe self-occlusions. This challenge is particularly
critical in assistive tasks, where safe and effective manipulation of various
deformable materials can significantly improve the quality of life for indi-
viduals with disabilities and address the growing needs of an aging society.
This thesis studies both specific applications in robot-assisted dressing
and a generic framework for reinforcement learning-based manipulation
of deformable objects.

In the first part, we present a robot-assisted dressing system capable
of handling diverse garments and human body shapes and arm poses
using reinforcement learning. By employing partial point cloud observa-
tions, policy distillation, and guided domain randomization, this work
demonstrates effective policy learning that generalizes across various real-
world assistive dressing scenarios. To enhance the safety and comfort
of the dressing system, we further propose a novel multi-modal learning
framework with vision and force sensing. We combine a vision-based
reinforcement learning policy trained in simulation with a force dynamics
model trained with real robot data to infer actions that facilitate the
dressing process without applying excessive force on the person.

In the second part, we propose a novel framework that automatically
generates reward functions for agents to learn new tasks by leveraging
feedback from vision language foundation models. Since our method
only requires a text description of the task goal and the agent’s visual
observations, bypassing the need for low-dimensional state representations
of objects, it is particularly useful for deformable object manipulation
tasks.
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Chapter 1

Introduction

Learning successful policies for deformable object manipulation tasks is difficult

because they challenge common assumptions in robotic manipulation, such as access

to low-dimensional state representations, known dynamics, and minimal occlusion.

Despite these challenges, deformable object manipulation is crucial in assistive robotics,

where tasks like assistive feeding and dressing can significantly enhance the quality

of life for individuals and meet the demands of an aging population. This thesis

first takes robot-assisted dressing as a compelling case study due to its potential

to improve the lives of the elderly and disabled, as well as alleviate the burden on

caregivers. Then, we present a generic framework for reward and policy learning for

deformable object manipulation tasks.

The task of robot-assisted dressing involves handling the variability of human

body shapes, poses, and garment types, requiring a system that can generalize across

diverse scenarios. This necessitates the development of algorithms and systems

capable of robustly handling these variations. Additionally, ensuring the safety and

comfort of the individual during the dressing process is critical, as improper handling

can cause discomfort or injury.

To address these challenges, we develop a comprehensive robot-assisted dressing

system with a focus on two primary objectives: generalization and safety (Chapter 2).

To enable generalization, our approach utilizes partial point cloud observations

and policy distillation, along with guided domain randomization for sim-to-real

transfer. These techniques enable the system to learn effective dressing policies that

1



1. Introduction

can generalize across a wide range of real-world scenarios. The safety challenge is

addressed through a multi-modal learning framework that combines vision and force

sensing. By integrating a vision-based reinforcement learning (RL) policy trained in

simulation with a force dynamics model learned from real-world data, our system

can perform dressing actions that minimize applied force, thereby enhancing safety

and comfort for the person being dressed.

However, learning successful policies for the specific task of robot-assisted dress-

ing requires extensive human engineering and iterative tuning. Designing reward

functions for tasks with high-dimensional environments and observations, such as

cloth manipulation, can be very challenging. To alleviate this burden, we introduce

a novel framework for automatic reward generation (Chapter 3). This framework

leverages feedback from vision language foundation models (VLMs) to automati-

cally generate reward functions based on a text description of the task goal and

visual observations. Our method significantly reduces the need for low-dimensional

state representations and extensive manual reward tuning, making it particularly

advantageous for deformable object manipulation tasks.

1.1 Thesis Organization

This thesis is organized as follows:

• In Chapter 2, we introduce a robot-assisted dressing system, which comprises

two projects. In the first project, named ”One Policy to Dress Them All,” we

aim to tackle the generalization challenge in robot-assisted dressing. Many prior

works attempt to solve this task, but they make certain assumptions such as

a fixed garment and a fixed arm pose that limit their ability to generalize [17,

34, 35, 48, 50, 64, 129, 130]. In this project, we develop a system that is able

to dress different garments on people with diverse body shapes and poses. We

show that with proper design of the policy architecture, RL can be used to learn

effective dressing policies with partial point cloud observations. We further

leverage policy distillation to combine multiple policies trained on different

ranges of human arm poses into a single policy that works over a wide range

of different arm poses. Our system is able to dress 86% of the length of the

participants’ arms on average, validated by 510 dressing trials in a human study

2



1. Introduction

with 17 participants with different arm poses and dressed garments.

To further address the safety challenge in the second project, we propose FCVP

(Force-Constrained Visual Policy), a novel technique that leverages both vision

and force modalities for assistive dressing. Our approach first trains a vision-

based dressing policy using RL in simulation with varying body sizes, poses,

and types of garments for the purpose of generalization. We then learn a

force dynamics model for action planning to ensure safety. Prior works either

study force sensing for robot-assisted dressing in simulation only [27, 106], or

use system identification to tune simulation parameters to approximate real

robot force sensing [123]. Our work differs from these by learning a force

dynamics model directly from real-world data to combat the limitations of

simulating accurate force data when deformable garments interact with the

human body. Our proposed method combines the vision-based policy, trained in

simulation, with the force dynamics model, learned in the real world, by solving

a constrained optimization problem to infer actions that facilitate the dressing

process without applying excessive force on the person. When evaluated in

a real-world human study with 10 participants across 240 dressing trials, our

method outperforms baselines in both force violations and dressing performance.

• In Chapter 3, we introduce RL-VLM-F (Reinforcement Learning from Vision

Language Foundation Model Feedback), a method that automatically generates

reward functions for agents to learn new tasks, using only a text description of the

task goal and the agent’s visual observations, by leveraging feedback from vision

language foundation models (VLMs). The key to our approach is to query VLMs

to give preferences over pairs of the agent’s image observations based on the text

description of the task goal, and then learn a reward function from the preference

labels, rather than directly prompting these models to output a raw reward score

as done in prior work, which can be noisy and inconsistent [70, 76, 92, 99]. We

demonstrate that RL-VLM-F successfully produces effective rewards and policies

across various domains — including classic control, as well as manipulation

of rigid, articulated, and deformable objects — without the need for human

supervision, outperforming prior methods that use large pretrained models for

reward generation under the same assumptions.
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Chapter 2

Robot Learning for Assistive

Dressing

2.1 One Policy to Dress Them All

2.1.1 Introduction

Robot-assisted dressing could benefit the lives of many people. Dressing is a core

activity of daily living.

A 2016 study by the National Center for Health Statistics [41] shows that 92%

of all residents in nursing facilities and at-home care patients require assistance

with dressing. Such needs will likely keep growing due to aging populations. A

robot-assisted dressing system could not only improve life quality for older adults

and individuals with disabilities by helping them maintain independence and privacy,

but also help mitigate the growing shortage of nursing staff, and provide some much

needed respite for caregivers.

Despite its potential societal impact, robot-assisted dressing remains a challenging

task for robotics for the following reasons. As in many deformable object manipulation

tasks, there is no compact state representation of cloth, and the dynamics of garments

are non-linear and complex [131]. Compared to table-top cloth manipulation tasks

such as folding and smoothing that can be solved via pick-and-place actions, the

dressing task demands more dexterous manipulation actions in 3D space.
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Furthermore, people with disabilities and older adults usually have a limited range

of motion and thus the dressing robot needs to generalize to a diverse range of arm

poses. Finally, there are many different types of garments with varying geometries

and material properties, e.g., short-sleeve hospital gowns and long-sleeve jackets. It

is non-trivial for a robot to be able to assist in dressing all these garments, since

dressing a slender long-sleeve elastic jacket might require very different end-effector

trajectories compared with dressing a wide, short-sleeve non-elastic hospital gown.

All these factors render robot-assisted dressing a very challenging problem.

There have been many prior works that investigate robot-assisted dressing, yet

they make certain assumptions that limit their ability to generalize. Most prior

works [28, 29, 34, 35, 47, 50, 130] assume that the robot is dressing a known fixed

garment and thus does not generalize to dressing diverse garments. Other prior works

simplify the assistive dressing problem by assuming that the person holds a single

pose [28, 89], or can move their arm into a pose that has high probability of dressing

success [35, 47, 50]. We aim to improve upon these prior works to build a dressing

system that can generalize to diverse garments and human poses.

In this work, we learn a single policy that is able to dress diverse garments on

different people holding diverse poses from partial point cloud observations using a

single depth camera. We use point clouds as input to our policy in order to represent

and generalize to different garments and human arm poses. We show that with proper

design of the policy and Q-function architectures,

reinforcement learning (RL) can be used to learn effective policies with partial

point cloud observations that work well for dressing diverse garments. We further

leverage policy distillation to combine multiple policies trained on different ranges of

human arm poses into a single one that works over a wide variety of different poses.

Finally, for robust sim2real transfer, we employ “guided domain randomization”,

which trains a policy with randomized observations by imitating policies trained

without any randomization. The final domain-randomized policy can be reliably

transferred to a real robot manipulator and dress real people. We conducted a human

study with 17 participants, and performed 510 total dressing trials with different arm

poses and garments. On average, our system is able to dress 86% of the length of the

participants’ arms, and achieves a statistically significant difference in responses as

compared to alternative baselines in a 7-point Likert item.
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start

end

Figure 2.1: We develop a robot-assisted dressing system based on a single learned
policy that is able to dress different people with diverse poses and garments. Each
column shows snapshots from a trajectory of our policy. We learn the dressing policy
using reinforcement learning with point cloud observations to generalize to diverse
garments. We use policy distillation to combine multiple policies that each work for
a small range of arm poses into a single policy that works for a large variety of arm
poses.

We also provide a comprehensive analysis of our dressing system’s performance in

the human study to understand its strength and weakness.

In summary, we make the following contributions:

• We develop a robot-assisted dressing system based on a learned policy with

partial point cloud observations that generalizes to different people, arm poses,

and garments.

• We show the effectiveness of policy distillation to increase the effective working

range of the policy.

• We perform comprehensive real-world evaluations of our system on a manikin,

as well as with 510 dressing trials in a human study with 17 participants of

varying arm poses and dressed garments.
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2.1.2 Related Work

Robot Assisted Dressing

There have been many prior works in robot-assisted dressing [128] which can be

categorized as follows. Some works make the assumption that the person being

dressed is collaborative in performing the dressing task [22, 50], while others do

not [28, 35]. We also do not assume a collaborative human in this work. Instead, we

simplify the problem by assuming that the human is holding a fixed pose throughout

the dressing procedure.

A large body of works focus on user modeling and building a personalized dressing

plan for each human participant [17, 34, 35, 48, 50, 64, 129, 130]. In contrast to these

prior works, we do not focus on user modeling and aim to learn a single policy that

is able to generalize to diverse poses and body sizes of different human participants.

We leave the integration of user modeling for future work.

Another line of work studies haptic perception and simulation during robot-

assisted dressing [27, 49, 106, 123]. In contrast, we demonstrate how a robot can

perform dressing assistance using only partial point clouds from a single off-the-shelf

depth camera. Some prior works focus on learning where along a garment to grasp

in preparation for dressing [89, 127]. In this work we make the assumption that the

garment has already been grasped by the robot, but our method can be combined

with these prior work to remove this assumption.

Reinforcement learning has been used in some prior works for dressing back-

packs [47] or hospital gowns [22]. However, they assume a fixed garment and thus the

policy has limited generalization towards different garments. Our policy can generalize

to dressing diverse garments as we use point cloud as the garment representation.

Robotic Deformable Object Manipulation

Deformable object manipulation has long been a core task for robotics. It is challenging

due to the complicated dynamics of deformables, high-dimensional state representation,

and perception complexities such as self-occlusion. Many prior deformable object

manipulation tasks such as cloth smoothing [38, 67, 115, 119], cloth folding [4, 59, 110],

bedding manipulation [86, 95], dough rolling [66], rope reconfiguration [65, 96], and
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bag manipulation [5, 19, 96] focus on the 2D table-top setting. Many of these prior

cloth manipulation tasks can be solved by simple pick-and-place actions or the use

of other pre-defined motion primitives [38, 44, 67, 95, 96, 110, 115, 119]. Our work

looks at the challenging problem of dressing assistance, which involves manipulating a

deformable garment suspended in 3D space with complex closed-loop actions during

physical human-robot interaction.

Policy Learning for Manipulation From Point Clouds

There has been much recent work that aims to learn robotic manipulation policies

from point cloud observations. Some of these works propose new algorithms for

imitation learning from point clouds for grasping and manipulating tools or articulated

objects [26, 82, 97, 116]. Some recent works explore applying RL with point cloud

observations for grasping or dexterous hand manipulation with rigid objects [45, 68,

90, 105]. Our work differs from these as we apply RL from point cloud observations

for deformable cloth manipulation.

2.1.3 Task Definitions and Assumptions

As shown in Fig. 2.13, the task we study in this paper is single-arm dressing, where

the goal is to fully dress the sleeve of a garment onto a person’s arm, and the task is

considered to be complete when the sleeve of the garment covers the person’s shoulder.

The person can hold different arm poses before the dressing starts. The arm pose is

defined by three joint angles ϕ = [ϕ1, ϕ2, ϕ3] ∈ R3, where ϕ1 is the lifting and lowering

angle of the shoulder, ϕ2 is the inwards-outwards bending angle of the elbow towards

the body, and ϕ3 is the lifting and lowering angle of the elbow (Fig. 2.5 illustrates

these joint angles). A depth camera is used to record depth images of the scene, and

partial point clouds P can be computed from the depth image. The ultimate goal of

the paper is to learn a policy π to dress diverse garments g ∈ G for people holding

a diverse range of arm poses ϕ ∈ Φ. At each time step, the policy takes as input

the point cloud P and outputs an action a = π(P ) as the delta transformation for

the robot end-effector. The garment set G we consider includes hospital gowns and

common everyday garments such as vests and cardigans with different sleeve lengths,

geometries, and materials. The set of arm poses Φ is specified by the min and max
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Figure 2.2: An overview of our proposed robot-assisted dressing system. (Left) In
simulation, we divide the diverse arm pose range into multiple sub-ranges to ease
policy learning. (Middle) We propose a new policy architecture and a corresponding Q
function architecture for reinforcement learning from partial point cloud observations
to learn effective dressing policies on each of the divided pose sub-ranges. (Right)
We then leverage policy distillation to combine policies working on different pose
sub-ranges into a single policy that works for a diverse range of poses. We also perform
guided domain randomization for sim2real transfer, and we deploy the distilled policy
to a real-world human study dressing real people.

values for each joint angle: Φ = {[ϕ1, ϕ2, ϕ3] | ϕi ∈ [ϕmini , ϕmaxi ], i = 1, 2, 3}. Fig. 2.5
shows the garments and arm poses in Φ that we test in the real-world human study.

We make two assumptions for the dressing task. First, we assume that the

robot has already grasped a part of the garment around the opening of the garment

shoulder in preparation for dressing, since grasping is not the focus of our work.

Besides, there has been some prior work that learn where along a garment to grasp

for dressing [89, 127], and our system can be combined with these prior work to

remove this assumption. This assumption has been used in prior work as well [28, 50].

Second, we assume that the person holds the pose static during the dressing process.

This assumption helps address the visual occlusion of the arm caused by the cloth

during the dressing process; with this assumption we can obtain the static arm point

cloud before the dressing starts. This assumption has also been validated in other

studies with participants with impairments [50]. We leave for future work adapting

to human motion during the dressing process.
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2.1.4 Method

System Overview

As illustrated in Fig. 2.2, our robot-assisted dressing system consists of the following

components. We first use reinforcement learning (RL) to learn the dressing policy

π in a physics-based simulation by formulating the robot assisted dressing problem

as a Partially Observable Markov Decision Process (POMDP). We design a special

policy network architecture for efficient training of effective RL policies from partial

point cloud observations. As it is hard to train a single policy that generalizes to a

diverse range of arm poses Φ, we divide the arm pose range into multiple sub-ranges

{Φsub}Ni=1 and train a policy πi on each of them. We then use policy distillation to

combine these different policies into a single policy π∗ that works for the wide range

of arm poses Φ. For robust sim2real transfer, we further train the policy π∗ with

domain randomization in the policy observation, with a behaviour cloning loss to

imitate policies that are trained without any randomization, a procedure which we

name as “guided domain randomization”.

Finally, we deploy the domain-randomized policy to a real robot that successfully

dresses different participants with diverse poses and garments in a human study.

Learning to Dress with Reinforcement Learning

We use reinforcement learning in simulation to train policies for the dressing task.

We formulate the robot-assisted dressing task as a POMDP ⟨S,A,O,R, T, U⟩, where
S is the state space, A is the action space, O is the observation space, R is the

reward function, T is the transition dynamics, and U is the measurement function

that generates the observation from the state. We now detail the design of the core

components of the POMDP as follows.

Observation Space O: Due to the lack of a compact state representation for

cloth, the garment naturally requires a high-dimensional representation such as an

image, mesh, or point cloud. To facilitate sim2real transfer, we use the partial point

cloud P of the dressing scene computed from a depth camera as the policy observation.

We perform cropping on the point cloud to only keep points that belong to the

right arm of the human, denoted as P h, and those that belong to the garment, denoted

11
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Figure 2.3: Illustration of the main reward for the dressing task. (Left) The garment
is not dressed onto the person’s arm. (Right) The garment is dressed onto the person’s
arm.

as P g. In simulation we can easily perform such cropping using the ground-truth

simulator information; see Section 2.2.6 for details on how we perform such cropping

in the real world. We further add a single point at the position of the robot end-

effector to the point cloud to represent the robot gripper, denoted as P r. The policy

observation is then the concatenation of the arm, garment, and robot gripper points:

o = [P h;P g;P r]. See the middle part of Fig. 2.2 for an example of the segmented

point cloud.

Action Space A: The action a ∈ SE(3) is the delta transformation of the robot

end-effector. We represent the delta transformation as a 6D vector, where the first

3 components are the delta translation, and the second 3 components describe the

delta rotation using axis-angle. We set the roll rotation to be 0 in the action as it is

not necessary for the dressing task.

Reward Function R: Fig. 2.3 illustrates the main reward rm we use for the

dressing task, which measures the progress of the task. The dressing task can be

divided to two phases.

Before the garment is dressed onto the person’s forearm, the reward rm is the

12
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negative distance from the garment shoulder opening center pgcenter to the finger of

the person phfinger: rm = −||pgcenter − phfinger||2. After the garment is dressed onto

the person’s forearm, we compute the reward rm based on the distance the garment

has been dressed onto the person’s arm. To compute the dressed distance, we first

approximate the opening of the garment shoulder as a hexagon (shown in blue in

Fig. 2.3). Then, we represent the person’s forearm as a line that connects the elbow

point phelbow and the finger point phfinger, and we represent the upper arm as another

line that connects the shoulder point phshoulder and the elbow point phelbow. Next, the

intersection point pint between the garment shoulder opening hexagon and the two

arm lines are computed. If the intersection point pint is on the forearm, rm equals

the dressed distance, which is the distance between the intersection point and the

person’s finger point: rm = ||pint − phfinger||2. If the intersection point pint is on the

upper arm, the dressed distance is the length of the forearm plus the distance between

the intersection point and the elbow point, and rm is a weighted combination of these

two: rm = ||phelbow − phfinger||2 + w · ||pint − phelbow||2. We set w = 5 to encourage the

policy to turn at the elbow and dress the upper arm.

In addition to the main reward term that measures the task progression, we also

have three additional reward terms. The first is a force penalty rf that prevents the

robot from applying too much force through the garment to the person. The second

is a contact penalty rc that prevents the robot end-effector from moving too close

to the person. The last reward term is a deviation penalty rd that discourages the

garment center from moving too far away from the arm. The full reward is given by:

r = rm + rf + rc + rd. More details of how these terms are computed can be found in

the Appendix A.1.1.

Note that the reward function is only available in simulation, as it requires access

to the ground-truth garment and human mesh information, which is non-trivial to

estimate in the real world.

Policy and Q function Architecture: Most prior works [68, 90, 105] that train

RL policies with point cloud observation use a classification-type PointNet-like [87, 88]

network architecture for the policy, which encodes the whole partial point cloud to

a single action vector. There have been some recent works showing that instead of

compressing the whole point cloud into a single action vector, inferring the action

from a dense output leads to better performance [18, 26, 38, 97, 113, 114, 125, 126].
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We follow the dense action representation idea and propose a new policy architecture

named Dense Transformation for reinforcement learning from point clouds.

As shown in Fig. 2.2, the input to the policy is a segmented point cloud P = {pi}Mi=1

of size M , which contains the garment points P g, human right arm points P h, and a

single point at the robot end-effector position representing the robot gripper P r. The

features for each point pi include its 3D position, and a 3-dimensional one-hot vector

indicating the class of the point, i.e., whether the point belongs to the garment, the

human arm, or the robot gripper. Instead of using a classification-type neural network

architecture (e.g., a classification-type PointNet++) that compresses the whole point

cloud into a single action vector, the Dense Transformation policy uses a segmentation-

type neural network architecture (e.g., a segmentation-type PointNet++) that outputs

a dense per-point action vector {ai}Mi=1 (see Fig. 2.2). Among these M action vectors,

we only execute the action vector a∗ corresponding to the gripper point P r, i.e,

we select the action a∗ = aj, where j is the index of the gripper point. We could

alternatively use a classification-type PointNet++ that encodes the whole point cloud

to a single action, but we find that using a segmentation-type network leads to slightly

better performance (though the difference is relatively small).

For the Q function, given the current point cloud P and the action sampled from

the Dense Transformation policy a∗ ∼ π(P ), we concatenate a∗ as an additional

feature to every point pi in the input point cloud, so the feature of each point includes

its 3D position, the one-hot vector of the class type, and the action a∗. We then use

a classification-type neural network architecture (i.e., classification-type PointNet++)

to output a scalar Q value. This Q function architecture has also been used in prior

work [105], although with a different policy architecture. We compare to other ways

of representing the Q function in experiments and show that this one works the best.

We use SAC [39] as the underlying RL algorithm, and we use PointNet++ [88] for

the policy and Q function network.

Generalization to Diverse Human Poses via Policy Distillation

Learning a dressing policy that works on a diverse range of arm poses can be viewed

as a multi-task learning problem, where each small range of poses can be considered

as an individual task. The same holds true for learning a policy that works for diverse

14



2. Robot Learning for Assistive Dressing

garments – each garment can be treated as an individual task. In our experiments, we

find it is possible to learn a single universal policy for a diverse set of garments, and

the performance is similar to that of learning an individual policy for each garment.

However, we find it challenging to learn a single policy that works well for a diverse

range of arm poses, possibly due to imbalanced learning speed for different tasks

(e.g., some poses are easier to learn compared with others), conflicting gradients from

different tasks (the desired trajectory for one arm pose might contradict to another),

and other potential issues. Inspired by [93, 94], we use policy distillation to address

this issue.

Policy Distillation. Given a set of policies that were each trained for a single

task, policy distillation [93] can be used to combine the set of policies into a single

policy that works for all of the tasks. It has been shown that this often outperforms

directly training a single policy for all of the tasks. In our case, we train individual

policies each for dressing a human arm pose sub-range; we then distill these policies

into a single policy that works for the full diverse range of arm poses Φ.

To employ policy distillation, we first need to decompose the diverse arm pose range

Φ into smaller ranges {Φsubi }Ni=1 where RL can be directly used to learn effective policies

on these smaller pose ranges. As aforementioned, the arm pose range Φ is specified

by min and max values for each of the three joint angles Φ = {[ϕ1, ϕ2, ϕ3] | ϕi ∈
[ϕmini , ϕmaxi ], i = 1, 2, 3}. We perform the decomposition by dividing each joint

angle range [ϕmini , ϕmaxi ] into a number of smaller intervals. For example, we can

uniformly divide the range [ϕmini , ϕmaxi ] to Φji = [ϕmini +(j−1)δ, ϕmini +jδ], j = 1, ..., L

, where δ = (ϕmaxi − ϕmini )/L. This will then result in L3 sub-ranges {Φsub =

Φj
1 × Φk

2 × Φl
3}Lj=1,k=1,l=1.

After we decompose the diverse arm pose range Φ into N smaller ranges, we train

N “teacher” policies {πti}Ni=1, one for each pose sub-range, using RL as described in

Section 2.1.4. We then distill these N teacher policies {πti}Ni=1 into a single “student”

policy πs by training the student policy with a combination of the RL loss and a

policy distillation loss, shown in Eq. 2.1.

Specifically, let θs denote the parameters of the student policy πs, let θ
i
t denote

the parameters of the ith teacher policy πti , and let N (µθ(o), σθ(o)) = πθ(o) denote

the Gaussian distribution of the action output by policy πθ on observation o. Given

a batch of samples collected by the student policy πs, {on, an, rn, o′n}Bn=1, we use the
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following loss to train πs:

L(θs) =LSAC(θs) + β

N∑
i=1

Ldistill(θs, θ
i
t), (2.1)

where LSAC(θs) is the standard SAC training loss, Ldistill is the policy distillation

loss (described below), and β weighs the two terms. The policy distillation loss

computes the distance between the student action distribution and the teacher

action distribution, and thus the student learns to imitate the teacher’s behaviors by

minimizing such a loss. Specifically, we compute the Earth Mover’s distance between

the action distribution of the student and the teacher policy:

Ldistill(θs, θ
i
t) =

B∑
n=1

(
µθs (on)− µθit

(on)
)2

+
(√

σθs (on)−
√
σθit

(on)
)2

(2.2)

The loss in Eq. 2.1 has also been used in prior work [94]; however, they used the KL

divergence instead of Earth Mover’s distance for the distillation loss. Our experiments

indicate that earth-mover distance leads to significantly improved performance. We

set β = 0.01 in our experiments.

Guided Domain Randomization Learning for Sim2real Transfer

We find that there is a huge difference between the simulated garment point cloud

and the real-world garment point cloud, due to large variations in simulation vs.

real garment geometries, and also since the simulator does not perfectly model the

dynamics of garment deformations in the real world. To make the observation more

aligned between simulation and the real world, and to make the policy robust to the

observation difference, we add randomizations to the policy observation (described

at the end of this section). Let o denote the original non-randomized point cloud

observation, and let õ denote the randomized observation. Naively training the policy

with randomized observation õ will usually fail or lead to degraded performance,

since the randomizations make policy learning more difficult. To mitigate this issue,

we propose “guided domain randomization”, where we first train teacher policies

πti without any domain randomization; we then distill the teachers into a student

policy πs trained with domain randomization on the observation. Let θs denote the
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parameters of the observation randomized policy πs. To train the student policy πs,

we run the student to collect a batch of data that stores both the randomized and

non-randomized observation {õn, on, an, rn, õ′n, o′n}Bn=1, and train it as follow:

L(θs) = L̃SAC(θs) + β

N∑
i=1

L̃distill(θs, θ
i
t),

L̃distill(θs, θ
i
t) =

B∑
n=1

(
µθs (õn)− µθit

(on)
)2

+
(√

σθs (õn)−
√
σθit

(on)
)2
,

where L̃SAC(θs) is the SAC loss with running the policy πs on the randomized ob-

servations, and L̃distill(θs, θ
i
t) is the loss of imitating the teacher policy πti trained

without domain randomization. Importantly, note that the student receives the

randomized observation õn whereas the teacher receives the non-randomized observa-

tion on. For the observation randomization, we perform random cropping, dropping,

erosion, and dilation on the cloth point cloud, and we add random noise to the robot

gripper position. More details on the observation randomization can be found in

Appendix A.1.2.

2.1.5 Simulation Experiments

Experimental Setup

We train our policies using Softgym [65] based on the NVIDIA Flex simulator. We

use SMPL-X [84] to generate human meshes of different body sizes and arm poses. To

generate random poses, the shoulder joint ϕ1 is uniformly sampled from [−20, 30], the
inwards-outwards elbow joint ϕ2 is uniformly sampled from [−20, 20], and the upwards-

downwards elbow joint ϕ3 is uniformly sampled from [−20, 30]. We decompose the

arm pose range Φ into N = 27 regions for policy distillation, by dividing each joint

angle range into 3 intervals.

We randomly pick 5 garments for training from the Cloth3D dataset [9]: a hospital

gown and 4 cardigans. The selected garments have different geometries such as varying

sleeve lengths and widths. We randomly generate 50 human poses for each of the

27 pose sub-ranges, resulting in a total of 27 · 50 · 5 = 6750 different configurations.

Among the 50 poses for each sub-range, we use 45 poses for training and 5 poses for

evaluation. At each training episode of SAC, we randomly sample one garment out
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of the five for training. The simulated dressing environment with the person holding

different poses and with different garments is shown in Fig. 2.2. More details of the

simulation experimental setup can be found in Appendix A.1.3.

Baselines and Ablations

We compare the following RL algorithms for learning the dressing policy from partial

point cloud observations: Dense Transformation policy (ours) is our proposed

method, which is described in Section 2.1.4. Dense Transformation policy +

latent Q function: This baseline uses the same policy as our method. For the Q

function, instead of concatenating the action to the input point cloud as an additional

feature, this baseline first uses a PointNet++ to encode the point cloud observation

into a latent vector, and then concatenates the action with the latent vector. An

MLP then takes as input the concatenated latent vector and outputs a scalar Q value.

Direct Vector uses a classification PointNet++ policy to encode the input point

cloud to a single action vector. It uses a similar Q function network architecture as

our method, where the action is concatenated to every point in the point cloud as

an additional feature. TD-MPC [40], a state-of-the-art model based RL algorithm.

Deep Haptic MPC [28], which learns a force prediction model based on end-effector

measurements, and combines it with MPC to plan forward actions that minimizes the

predicted force during dressing. The actions in MPC are sampled based on a “moving

forward” heuristic. Note that this method does not use any visual information of the

arm or the garment.

We also compare different ways of enabling the policy to generalize to diverse poses.

Policy Distillation is our proposed method, as described in Section 2.1.4. Policy

Distillation (KL) replaces the Earth Mover’s distance in Equation (2.2) with KL

divergence. PCGrad [121] is a multi-task learning algorithm that balances gradients

from different tasks; in our case, a “task” is defined as training on a different pose

sub-range. No Distillation trains a single policy on the entire pose range, without

any distillation. Heuristic Motion Planning finds a collision-free robot end-effector

path along the human arm based on some heuristically designed constraints. More

implementation details of these baselines can be found in Appendix A.2.2.

In simulation, we use the upper arm dressed ratio as the evaluation metric. The
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Dense
Transform
(Ours)

Dense
Transform
Latent Q

Direct
Vector

TD-MPC
Deep Haptic

MPC

1 0.68± 0.05 0.55± 0.05 0.63± 0.07 0.04± 0.04 0.31± 0.08
2 0.55± 0.06 0.42± 0.08 0.52± 0.09 0.00± 0.00 0.11± 0.02
3 0.75± 0.04 0.68± 0.07 0.73± 0.02 0.03± 0.05 0.37± 0.02

Table 2.1: Upper arm dressed ratio of different policies on 3 pose sub-ranges. Results
are averaged across 3 seeds.

ratio is computed between the dressed upper arm distance and the actual upper

arm length:
||pint−phelbow||2

||phshoulder−p
h
elbow||2

; see Section 2.1.4 and Fig. 2.3 for how these points are

defined. This ratio is upper bounded by 1.

Effectiveness of Policy Architecture

We first compare the performance of different RL algorithms. We randomly select 3

different sub pose-ranges, and for each method, we train a separate policy on these 3

pose sub-ranges to compare their performances. We train each method for 1e6 steps,

evaluate at each 10K steps, and report the maximum performance. The results are

shown in Table 2.1 and averaged across 3 seeds. As shown, our proposed method

Dense Transformation policy achieves the best performances on all 3 pose sub-regions,

although Direct Vector has similar performance. Using a “Latent Q” architecture

leads to much worse performance. We find that TD-MPC [40] does not work at all for

this dressing task, possibly since the algorithm is originally designed and tested on

image and state observations instead of point clouds, and also since it might be hard

to learn a good latent dynamics model for deformable garments. Deep Haptic MPC

also does not work well. The original paper tested only one arm pose and garment,

with no visual information of the garment or human pose, potentially explaining

its low performance in our setting with diverse arm poses and garments. Based on

this result, we use Dense Transformation as our base RL algorithm for the following

experiments.

Effectiveness of Policy Distillation on Generalization

We now compare the performance of different methods for learning a single policy

on all 27 pose sub-ranges. We train all methods long enough until they converge (as

different methods require different numbers of environment steps to converge), and
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Policy
Distillation

(Ours)

Policy
Distillation

(KL)
PCGrad

No
Distillation

Heuristic
Motion
Planning

0.68± 0.012 0.45± 0.010 0.37± 0.063 0.34± 0.10 0.32

Table 2.2: Upper arm dressed ratio of different ways to enable the policy to generalize
to diverse poses. Results are averaged across 3 seeds. The Heuristic Motion Planning
baseline does not have a standard deviation because there is no learning or randomness
in this method.

Real-Sense 
Camera

Sawyer
Robot

Dressing 
Garment

3D-printed
Grasping Tool

Human
Participant

Figure 2.4: Real-world human study setup.

report the maximum achieved performance. Results are averaged across 3 seeds. As

shown in Table 2.2, policy distillation with the Earth Mover’s distance outperforms

all other baselines. The baseline “No Distillation” and “PCGrad [121]” both perform

poorly, showing the difficulty of directly learning a single policy across diverse pose

ranges without distillation. The performance of the “Heuristic Motion Planning”

baseline is also low. We find it performs well when there is no sharp bending at

the shoulder and the elbow, and worse when the bends are sharp, aligning with

findings in prior work [50]. Interestingly, we find that using Earth Mover’s distance

noticeably outperforms KL divergence, even though KL divergence seems to be the

most common choice for policy distillation in the literature [83, 93, 94].
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Figure 2.5: Arm poses and garments used for the human study.

2.1.6 Real-World Experiments and Human Study

We perform guided domain randomization (Section 2.1.4) to obtain a distilled policy

that is robust for sim2real transfer, and deploy it in the real world, both for dressing a

manikin and in a real-world human study. Our real-world experiments aim to answer

the following questions: (1) Does our distilled policy outperform the baseline in the

real world? (2) Does our policy generalize to different people with diverse poses and

different garments?

Setup

Fig. 2.4 shows the real-world setup that we use for the human study, and Fig. 2.6

shows the manikin setup. Fig. 2.5 shows the arm poses and dressing garments we

test. The poses we test in the real world span the pose ranges we train in simulation.

We test 5 garments: a sleeveless, non-elastic vest; a short-sleeve, non-elastic hospital

gown; a short-sleeve, elastic pink cardigan; a medium-length sleeve, narrow opening,

elastic green cardigan; and a long-sleeve, non-elastic purple cardigan. Note that the

real-world garments are not calibrated to the training garments in simulation; for

example, the policy is never trained on a sleeveless vest in simulation. We use a
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Figure 2.6: Final state comparison of the Distilled Policy (Ours, top) and No
Distillation baseline (bottom) on the manikin.

Total
Distilled

Policy (Ours)
10/10 10/10 10/10 10/10 10/10 50/50

No
Distillation

0/10 0/10 0/10 0/10 0/10 0/50

Table 2.3: Dressing success rate of the Distilled and No Distillation policies on 5
garments on the manikin.

Sawyer robot to execute the dressing task and an Intel RealSense D435i camera to

capture the depth images.

We use the following quantitative metrics to measure the performance of a dressing

trial. Dressing Success: We put a marker on the participant’s shoulder, at the

position that is 80% of the length up the upper arm. If the marker is covered by the

garment at the end of the dressing trial, we consider this dressing trial is a success;

otherwise it is not. Upper Arm Dressed Ratio: We compute the ratio between

the “dressed upper arm distance” and the length of the participant’s upper arm.

The “dressed upper arm distance” is measured as the distance from the elbow to

the intersection point of the garment and the participant’s upper arm (see Fig. 2.3).

Whole Arm Dressed Ratio: We compute the ratio between the “dressed whole

arm distance” (the upper arm dressed distance + the forearm dressed distance) and

the length of the participant’s whole arm (upper arm length + forearm length).
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Avg. Avg.

Figure 2.7: The whole arm (left) and upper arm (right) dressed ratio of the Distilled
Policy and the No Distillation baseline on 5 garments on the manikin, averaged across
10 trials for each garment.

Comparison on a Manikin

In order to perform a strictly controlled comparison of the Distilled Policy and the

No Distillation baseline, we first conduct experiments on a manikin shown in Fig. 2.6.

The manikin has a fixed pose similar to pose 1 in Fig. 2.5. We conduct 10 dressing

trials per garment (across 5 garments), resulting in 50 trials for each method. The

numerical results are shown in Table 2.3 and Fig. 2.7. As shown, the Distilled Policy

performs vastly better than the No Distillation baseline on all metrics, which resembles

performance in simulation. The Distilled Policy successfully covered the marker on

the shoulder every trial for all the garments. Fig. 2.6 shows the final state achieved

by the Distilled Policy and the No Distillation baseline. For most of the trials, the

No Distillation policy can only dress the forearm, and it has trouble correctly turning

at the elbow to dress the upper arm.

Human Study Procedure

We recruit 17 participants in the human study, including 6 females and 11 males.

The age of the participants ranges from 19 to 29. For each participant, we conduct 6

trials for each of the 5 garments, totaling 30 trials. Among the 6 trials per garment,

we perform 5 trials using our distilled policy, corresponding to the 5 human poses
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Whole Arm
Dressed Ratio

Upper Arm
Dressed Ratio

Success
Rate

Distilled
Policy (Ours)

0.86± 0.19 0.74± 0.35 0.66± 0.47

No
Distillation

0.63± 0.15 0.26± 0.27 0.01± 0.11

Table 2.4: Comparison of the Distilled Policy and the No Distillation baseline in a
real-world human study. Results are averaged over 17 participants, on the 85 trials
for which both methods are evaluated on the same poses and garments.

shown in Fig. 2.5. To compare against the baseline, we perform the remaining trial

using the No Distillation baseline on a pose randomly chosen from the 5 poses. We

test the No Distillation baseline with only one pose for each garment as we find that

most participants experience arm soreness after 30 trials; thus it is impractical to

test all poses with the baseline policy. Furthermore, since the No Distillation baseline

shows poor performance on a static manikin as shown in Table 2.3, it is less likely

that it would work on real humans with diverse arm shapes and poses. We randomize

the test order of the garments, the poses, and the policy for each participant. During

the study, the participant is not aware of which policy we are testing.

The procedure of each trial is as follows: We first show the participant the pose they

should imitate, and they lift their right arm to maintain the pose. We then capture a

point cloud of the participant’s right arm. We move the Sawyer’s end-effector, which

is already holding the garment, to be positioned near the participant’s hand. We then

capture a point cloud of only the garment using color thresholding. The color-based

segmentation of the garment could be replaced by training a garment segmentation

network, such as fine-tuning an existing segmentation network with a small amount of

data in our setting [52]. The point clouds of the human arm (recorded statically before

the trial), the garment (color thresholded at each timestep), and the end-effector

position (obtained using forward kinematics of the robot) are concatenated as input

to the policy. The participant holds their arm steady throughout the trial. The

trial terminates if any of the following conditions holds true: (1) if a maximum time

step of 75 is reached, (2) if the participant’s shoulder is covered by the garment,

(3) if the policy is not making any progress in 15 consecutive time steps, and (4) if

the participant wishes to have trial stopped. After the trial terminates, we measure

dressing distances to compute our evaluation metrics. Finally, at the end of each
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(*)
p < 0.05

Figure 2.8: Likert item responses of the Distilled Policy and the No Distillation
baseline, on the 85 dressing trials for which both methods are evaluated on the
same poses and garments, shown as a full distribution (top) or box plot (bottom).
We perform the Wilcoxon signed rank test on the Likert item response and find a
statistically significant difference (p < 0.05) between our distilled policy and the
baseline.

trial, we provide the participant with a single 7-point Likert item statement “The

robot successfully dressed the garment onto my arm”, which ranges from 1=‘Strongly

Disagree’ to 7=‘Strongly Agree’. More details on the human study procedure can be

found in Appendix A.3.1.

Human Study Results and Analysis

We first compare the performance of the Distilled Policy against the No Distillation

baseline in Table 2.5. The comparison is made on the 85 dressing trials for which

both methods are evaluated on the same poses and garments. As shown, the Distilled

Policy outperforms the No Distillation baseline by a large margin under all metrics.

Fig. 2.8 shows the Likert item response distributions of our distilled policy versus

the baseline. Overall, participants agreed at higher rates that the distilled policy

successfully dressed the garment, as compared to the baseline. On average, our

25



2. Robot Learning for Assistive Dressing

Whole Arm
Dressed Ratio

Upper Arm
Dressed Ratio

Success
Rate

Distilled
Policy (Ours)

0.86± 0.19 0.74± 0.35 0.66± 0.47

No
Distillation

0.63± 0.15 0.26± 0.27 0.01± 0.11

Table 2.5: Comparison of the Distilled Policy and the No Distillation baseline in a
real-world human study. Results are averaged over 17 participants, on the 85 trials
for which both methods are evaluated on the same poses and garments.

Whole Arm
Dressed Ratio

Upper Arm
Dressed Ratio

Success
Rate

0.86± 0.17 0.71± 0.34 0.57± 0.49

Table 2.6: Performance of our distilled policy, averaged over 17 participants and all
425 dressing trials (not just the 85 trial subset in Table 2.5).

distilled policy achieves a median response of 6.0, meaning that the participants

“Agree” that the robot successfully dressed the garment onto their arm, while the

No Distillation baseline achieves a median response of 3.0, meaning the participants

“Somewhat disagree.” Let d be the difference between the Distilled Policy’s Likert

item response and the No Distillation baseline’s Likert item response. We perform

the Wilcoxon signed rank test to test if the distribution of d is stochastically greater

than a distribution symmetric about zero. We obtain a p-value of p = 0.03125; hence

we find a statistically significant difference (p < 0.05) between our distilled policy

and the baseline, and the median of the difference is positive.

We now analyze our policy’s performance over all 425 dressing trials from the 17

participants. Table 2.6 shows the Distilled Policy’s performance under all metrics. On

average, our policy is able to dress 86% of the participant’s whole arm, and 71% of the

participant’s upper arm, achieving a final dressing state similar to the 5th sub-image

in Fig. 2.10. Fig. 2.13 shows snapshots of the dressing trajectories of our policy. In

terms of Likert item responses, as shown in Fig. 2.9, our distilled policy achieves a

median response of 5.0 (“Somewhat Agree” that the robot successfully dressed the

garment onto the arm). Note that the metrics and Likert item responses are different

from those in Table 2.5 and Fig. 2.8 because here the numbers are averaged across

all dressing trials, as opposed to the 85 trial subset used for the baseline comparison.

Fig. 2.11 shows the performance of our method across different garments. It
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Figure 2.9: (Top) Full distribution and (Bottom) box plot of the Likert item responses
of the Distilled Policy on all 425 dressing trials (not just the 85 trial subset shown in
Fig. 2.8).

Whole: 0
Upper: 0

Whole: 0.1
Upper: 0

Whole: 0.3
Upper: 0

Whole: 0.6
Upper: 0.1

Whole: 0.85
Upper: 0.7

Whole: 1
Upper: 1

Figure 2.10: An illustration of the dressed ratios during a trial.

is interesting to see a consistent ordering of the garments under all metrics. Such

ordering aligns with human intuitions based on the garment geometry & materials

(see Fig. 2.5): the vest is sleeveless and thus the easiest to perceive and dress (even

though the sleeveless vest has never been trained in simulation). The green and purple

cardigans, however, have longer sleeves and are harder in terms of both perception

and dressing. Meanwhile, although the pink cardigan and the gown have similar sleeve

length, the material of the pink cardigan is much more elastic than the hospital gown.

This provides some allowance in the end-effector trajectories during the dressing

process, leading to better performance. This also holds true for the purple versus

green cardigan – although the opening of the purple cardigan is larger, it is less elastic,

which results in the garment getting caught on the participants’ arm more frequently,

leading to a failure.
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Figure 2.11: Performance of our distilled policy on different garments. The dashed
red line shows the average over all garments.

Finally, we analyze the performance of our distilled policy on different poses in

Fig. A.4. We notice that some poses are harder than others. For example, the fifth

pose with sharp bends at the shoulder and elbow has the lowest performance. On the

other hand, the first pose, which does not have a sharp bend at either shoulder nor

elbow, achieves the highest performance. Such a difference is likely due to the fact

that sharp bends require more complex end-effector trajectories, and the garment is

also more likely to get caught at sharp bends. We also note that although the first

pose in the human study is similar to the pose of the manikin in Fig. 2.6, the success

rate on this pose in the human study is lower than the one achieved on the manikin

shown in Table 2.3. We speculate that such a difference could be due to the diversity

of the arm shape and sizes in the human study, as some participants’ arm sizes and

shapes might be out of our training distribution, resulting in lower performance.

Another reason could be that compared to the manikin, real people unconsciously

move their arms during the dressing trial, which violates our assumption that the

human holds a static arm pose.
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Figure 2.12: Whole arm dressed ratio of our distilled policy on different poses. The
dashed red line represents the average over all poses.

Failure Cases Analysis

Visual examples of failure cases can be found in our project webpage and also in

Appendix A.3.3. The first failure case is that the policy gets stuck and cannot output

actions that make further progress for the task, e.g., the policy oscillates between

moving up and down and does not move forward. This might be due to that the

arm pose of the participant is out of the training distribution, or other aspects of the

observation cause a sim2real gap. Another failure case is the cloth getting caught

on the arm. This usually happens when the participant unintentionally moves their

arm too much in the dressing process, the policy actions move the gripper too high

above the participant’s arm, or the policy actions turn too early at the elbow. Due

to limited fidelity of the simulator, the garment in simulation is more elastic and

can still be dressed even if the robot is pulling high above the arm. However, the

garments we test in the real world are less elastic than the simulated ones and they

experience greater friction and get caught more easily. We believe that fine-tuning

the policy in the real world can help address both failure cases. Since it is difficult to

visually detect if a garment is undergoing high friction or has gotten caught on the

body, we believe incorporating force-torque sensing can help alleviate these issues.

We leave both as future work.
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2.1.7 Out-of-distribution Evaluation and Generalization of

the System

We conducted a preliminary out of distribution evaluation of our system by relaxing

the static arm assumption, i.e., the participants can move their arm during the

dressing process. With experiments in both simulation and real world, we observe

our system to be robust to small arm movements. We first evaluate how our system

performs if the participants change their shoulder or elbow joint angles after we

capture the initial arm point cloud. The simulation experiments are conducted on 1

pose sub-region, and the results show that our system is robust to 8.6 degrees of change

in shoulder and elbow joint angles (averaged across 3 types of joint angle changes

and 5 garments) while maintaining 75% of the original performance. Please refer

to Appendix A.4 for detailed experimental results. We also conducted 4 real-world

dressing trials with one participant changing their joint angles, including lowering

down the shoulder joint for 5 degrees, lowering down the elbow joint for 5 degrees,

bending the elbow joint inwards for 5 degrees, and bending the elbow joint inwards

for 10 degrees. Our system succeeds in the first 3 trials, and fails for the last trial

since the elbow joint angle change is too large. We also evaluate our system with one

participant performing constant arm motions during the dressing process in the real

world. The participant is asked to perform 4 different kinds of arm motions during

dressing, including constantly moving their forearm horizontally, constantly moving

their forearm in a spherical motion, constantly moving their forearm up and down,

and constantly moving their shoulder up and down. The maximum displacement of

the arm during the motion was ±10 centimeters. Our system succeeds in all 4 kinds

of arm motions. Please see our website for videos of these real-world evaluations.

We also evaluate the generalization of the system towards dual-arm dressing.

With the same single-arm dressing assumptions (static arm pose and robot already

grasping the garment), our system generalizes to dual-arm dressing. The primary

change is to control two robotic arms, one for each sleeve of the garment, which our

Dense Transformation policy can handle well by extracting actions corresponding

to both of the robot gripper points. We verified this in simulation with preliminary

experiments where we successfully train policies to perform dual arm dressing of

a hospital gown and a cardigan on a fixed pose (see visualizations on our project
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website). We note that dressing over a person’s head, such as with a t-shirt, is more

complex, due to the need for more dexterous trajectories and awareness of safety

considerations. We leave such an extension to future work.

2.1.8 Conclusion

In this work, we develop a robot-assisted dressing system that is able to dress diverse

garments on people with diverse poses from partial point cloud observations, based

on a learned policy. We show that with careful design of the policy architecture,

reinforcement learning (RL) can be used to learn effective policies with partial point

cloud observations that work well for dressing diverse garments. We further leverage

policy distillation to combine multiple policies trained on different ranges of human

arm poses into a single policy that works over a wide variety of different poses. We

propose guided domain randomization for effective and robust sim2real transfer. We

perform comprehensive real-world evaluations of our system on a manikin, and in a

human study with 17 participants of varying body size, poses, and dressed garments.

On average, our system is able to dress 86% of the length of the participants’ whole

arm, and 71% of the length of the participants’ upper arm across 425 dressing trials.

We hope this work will serve as a foundation for future research to develop more

robust and effective dressing systems.
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2.2 Force-Constrained Visual Policy

2.2.1 Introduction

Dressing is a crucial activity for individuals with disabilities or limited mobility to

receive assistance with. Recent studies [41] estimate that 92% of all residents in nursing

facilities and at-home care patients require assistance with dressing. Robot-assisted

dressing has emerged as a potential solution to these challenges [35, 50, 107, 128],

which could be used to enhance the quality of life of people with physical disabilities.

In this work, we demonstrate a new learning-based method for combining vision and

force sensing modalities towards a safe and comfortable assistive dressing system.

Robot-assisted dressing comes with several challenges. First, robotic manipulation

of deformable garments is challenging due to the lack of a compact state space

representation, complex cloth dynamics, and self-occlusions of clothing. Moreover,

during robot-assisted dressing, the robot works in proximity to the human and has

direct physical contact with the human body. Undesired motions performed by the

robot that strain the garment or cause accidental collisions with a person could apply

large forces to the human body and pose discomfort and potential safety risks.

Prior work in cloth manipulation and robot-assisted dressing has demonstrated the

use of vision [34, 107] and force [28] modalities separately to make control decisions.

Yet, there is a clear advantage to leveraging both modalities simultaneously [130].

Visual sensing is useful to observe the garment and human arm to infer a reasonable

dressing path, and force sensing is needed to ensure safety and comfort during the

dressing process. In this context, simulation can be used to collect large amounts

of data to train a control policy that can generalize across diverse people, body

poses, and garments. Prior work [107] has demonstrated the ability to transfer point

cloud-based assistive dressing policies from simulation to the real world; however, most

simulators do not provide sufficiently accurate robot force sensing when manipulating

deformable garments around human bodies, which limits the transfer of force-based

models from simulation to the real world. This reality gap necessitates learning from

force measurements directly in the real world. The question that we explore in this

paper is how to combine a visual policy for assistive dressing trained in simulation

with force sensing data that is only available in the real world.

32



2. Robot Learning for Assistive Dressing

Figure 2.13: Our method learns a force dynamics model in the real world to constrain
the vision-based policy trained in simulation (right), preventing high force from being
applied to the person (left).

In this paper, we propose a new method for the task of assistive dressing, named

Force-Constrained Visual Policy (FCVP), shown in Figure 2.13. Our method elegantly

handles the case in which only the visual modality (using point clouds) can be

simulated sufficiently accurate to be transferred to the real world, but the force

modality cannot. Our key idea is to use a vision-based policy trained in simulation

to propose actions, and then to use a force-based dynamics model trained in the real

world to filter out unsafe actions. We comprehensively evaluate our method with a

real-world human study with 10 participants and 240 trials, demonstrating its strong

effectiveness.

In summary, we make the following contributions:

• We propose a new method for multi-modal learning when one sensor can-

not be well-modeled in simulation. Our method, Force-Constrained Visual

Policy (FCVP), combines a vision-based policy trained in simulation with a

force-based dynamics model trained in the real world.

• We evaluate our method rigorously in simulation and also perform a real-world

human study with 10 participants and 240 dressing trials to quantify the real-

world practicality and efficacy of the proposed method and system. These

experiments demonstrate that our method leads to a safe and comfortable

assistive dressing system with higher dressing performance by ensuring low

forces are exerted to the human.
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2.2.2 Related Work

Multi-Modal Learning for Robotic Manipulation

Recently, there has been an increasing number of works studying multi-modal learning,

which combines modalities such as vision and force [130], vision and touch [16,

58, 100, 101, 109, 111], and vision and audio [25, 62, 120], with applications in

grasping [16, 109], object manipulation [8, 62, 101, 111], assistive tasks [100, 129,

130], and many more. Most prior works on multimodal learning focus on how to

design a more effective policy network architecture that takes all modalities as input.

Most of them directly train in the real world [16, 25, 58, 62, 100], via imitation

learning [25, 62, 100], supervised learning [16], or self-supervised learning followed

by reinforcement learning [58], which all require a large amount of human-collected

datasets or robot trials. In contrast, our approach trains the vision-based policy in

simulation. Some approaches train a multimodal policy in simulation and perform

sim2real transfer, such as vision with contact points [109], and vision with rigid-body

force sensing [8]. These approaches assume that all of the modalities can be accurately

simulated; in contrast, our method trains a force-based dynamics model directly in

the real world, without assuming that the force modality can be accurately simulated

for modeling cloth-human force interactions.

In contrast to these prior works which employ a single policy network that handles

both modalities, our proposed approach combines a vision-based policy trained

in simulation and a force dynamics model trained in the real-world via solving a

constrained optimization problem.

Safe Reinforcement Learning

The objective of developing a safe robot-assisted dressing system can be formulated

as a safe reinforcement learning problem [36, 69], where the reward is to dress the

person, and the safety constraint is that the amount of force applied to the person

should be below a threshold. However, there could be some issues of directly applying

safe RL algorithms to our problem setting: if we train the safe RL policy in simulation

using both vision and force, then it will be difficult to transfer to the real world since

the simulator does not provide accurate enough force simulation with deformable
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cloth. Our method avoids this issue by training a vision-based policy in simulation

and a force-based dynamics model in the real world.

2.2.3 Problem Statement and Assumptions

As shown in Figure 2.13, we study the task of single-arm dressing assistance, where

the goal is to dress the sleeve of a garment onto a person’s arm. Single-arm assistive

dressing is a fundamental skill of full upper-body dressing assistance for individuals

with motor impairments. We want to achieve safe dressing assistance by ensuring

that low forces are exerted to the human during the dressing process.

Formally, let ft ∈ R be the amount of force the garment exerts onto the human

body at time step t (which we approximate through force sensing at the robot’s

end-effector). We want to develop a safe robot-assisted dressing system that can

pull the garment to cover the human arm and shoulder, while maintaining the force

applied to the human to be below a threshold τ , i.e., ft < τ , ∀t ∈ [1, T ], where T

is the horizon of the task. We assume the person holds their arm static during the

dressing process, and that the robot has already grasped the opening of the garment

shoulder in preparation for dressing. While not the focus of this paper, prior works

have proposed methods for grasping garments [127, 128] and adapting to human

motion during dressing assistance [30], which could be integrated into our work.

2.2.4 Background - Vision-based Policy Learning in

Simulation

Our method leverages a vision-based policy πv trained in simulation from prior

work [107]. We describe the core training procedure here, and refer to [107] for more

details. The dressing task is formulated as a Partially Observable Markovian Decision

Process (POMDP) and is solved via reinforcement learning. The core components of

the POMDP are defined as follows:

Observation Space O: The policy observation is the segmented point cloud of the

scene, which consists of the garment point cloud P g and the human arm point cloud

P h. As we assume the human to be static, we can obtain the static arm point cloud

P h before the garment occludes the arm and use it during the whole dressing process;
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thus our input includes the full arm even when the garment occludes it. A single

point P r at the location of the robot’s end-effector is added to the observation. The

full observation o is the concatenation of these three point clouds: o = [P g;P h;P r]

(see Figure 2.14 for a visualization). The feature for each point in o is a one-hot

encoding indicating which object the point belongs to, i.e., the garment, the human

arm, or the end-effector.

Action Space A: the action a ∈ A is defined as the delta transformation for the

robot end-effector. It is a 6D vector, where the first 3 elements denote the delta

translation, and the second 3 denote the delta rotation represented as axis angle.

Reward r: The reward r consists of a term that measures the task progress, which is

the dressed distance of the garment along the human arm, with additional auxiliary

reward terms to prevent the gripper from moving too close to the person. The full

detailed reward function is the same as in Wang et al. [107], and can be found on our

project website.

SAC [39] is used as the underlying RL algorithm for training the vision-based

policy, and a segmentation-type PointNet++ [88] as the policy architecture (see [107]

for details). As in prior work [107], the vision-based policy is trained in simulation

on many variations of body shapes, arm poses, and garments, and can be transferred

to a real world manipulator. However, the actions inferred by the vision-based policy

may exert high forces onto people when deployed in the real world. Our method

handles this by further learning a force dynamics model in the real world.

2.2.5 Method

Method Overview: As shown in Figure 2.14, our system is comprised of two parts.

First, we leverage a vision-based policy from prior work which is trained in simulation

using reinforcement learning (as described in section 2.2.4). By using simulation,

we are able to easily collect a large amount of data and train a single policy that

can generalize to many variations of human arm poses, body shapes, and garments.

The vast amount of data needed makes it prohibitive to train the vision-based policy

directly in the real world. To ensure safe assistive dressing, we learn a force dynamics

model which predicts the future forces applied to the human. The force dynamics

model is trained in the real world, due to the fact that many simulators do not
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Vision-based Policy (trained in simulation)

Force Dynamics Model (trained in real world)

Force History

Point Cloud

Point Cloud

Vision-based 
Policy

Force 
Dynamics 
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Sampled 
actions

Predicted 
next force

Filter actions 
based on 

predicted force

Some actions will result in 
high force on the person

Final action
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Figure 2.14: Our system combines a vision-based policy and a force dynamics model to
achieve safe robot-assisted dressing. As most simulators provide sufficiently accurate
simulation of point clouds yet not the force modality for sim2real transfer, the vision-
based policy is trained with a large amount of data in simulation, and the force
dynamics model is trained with a small amount of data in the real world. At test
time, the vision-based policy proposes action samples that progress the dressing task.
The force dynamics model predicts the future forces of these sampled actions, and
the predictions are used to filter actions that are unsafe, i.e., those applying too much
force to the human. The final chosen action is safe with low force and achieves the
task.
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provide sufficiently accurate force simulation for deformables manipulated around the

human body. At test time, the final robot action is inferred by solving a constrained

optimization problem that combines the vision-based policy and the force dynamics

model.

Force dynamics model learning in the real world

As previously mentioned, force simulation of deformable garments is not sufficiently

accurate to transfer from simulation to the real world. Even after system identification,

it is challenging to accurately estimate all the local forces caused by cloth deformation

and stretch when interacting with a human or other objects in the environment.

Therefore, we aim to directly learn the force-based model in the real world.

Specifically, we learn a force dynamics model dψ(ot, Ft, at), which takes as input

the current point cloud observation ot as described in section 2.2.4, the past N steps

of forces Ft = [f̃t, ..., f̃t−N+1] (where f̃ ∈ R3 is a three-dimensional force vector), and

the robot action at. The force dynamics model predicts the future amount of force

f̂t+1 ∈ R the human will experience due to robot action at. To predict the future

force, the force dynamics model uses a PointNet++ [87] encoder to encode the point

cloud observation ot into a latent vector. This latent vector is then concatenated

with the force history Ft and the action at. Another MLP then receives as input the

concatenated vector and outputs the predicted force f̂t+1 in the next timestep.

We collect training data for the force dynamics model in the real world using

the vision-based policy πv. To train the force dynamics model on a wider range of

action distributions, at each time step, the action at is sampled as following: with

probability p, at is uniformly sampled from [−1, 1]|A| (where |A| is the dimension of

the action space), and with probability 1 − p, it is sampled from at ∼ πv(ot). The

force dynamics model (including the PointNet++ encoder and the MLP) is trained

using the MSE loss to predict the future force: L(ψ) = ||dψ(ot, Ft, at)− ft+1||22, where
ψ denotes the parameters for the force dynamics model.
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Force-Constrained Vision Policy

At test time, we combine the trained vision policy πv and the force dynamics model

dψ to infer the action by solving the following constrained optimization problem:

argmax
a

πv(a|o) subject to dψ(o, F, a) ≤ τ (2.3)

where τ is a user-chosen force threshold. There are several optimization algorithms

for solving such a constrained optimization problem, such as Lagrangian method,

active-set method, interior-point method, random shooting method, and more. As

the functions involved in our constrained optimization problem are represented using

neural networks, we use the random shooting method to solve the optimization

problem due to its simplicity and low computational cost. The random shooting

method works as follows: we sample a set of actions, filter out any actions whose

predicted forces are above the threshold τ , and among the actions whose predictions

are below the threshold, we execute the action with the highest probability under

the vision-based policy πv. We use the same action sampling distribution as during

training (i.e. a mix of actions from the vision policy πv and actions from a uniform

distribution). If there is no action whose predicted force is below the threshold, we

execute the action with the lowest predicted force.

2.2.6 Experiments

We conduct both simulation and real-world experiments to evaluate our method. We

first perform sim2sim transfer experiments to compare FCVP with other multimodal

learning methods (Section 2.2.6). We also perform real-world human studies (Carnegie

Mellon University IRB Approval under 2022.00000156) to evaluate the effectiveness

of the robot-assisted dressing system (Section 2.2.6).

Sim2sim Transfer Experiments

Setup: In order to test our method in a controlled setting, we create two simulation

environments with different simulation parameters (the detailed parameters can be

found on our project website); we treat one of them as simulation (sim A), and the

other as an approximation to the real world (sim B). The force readings between these
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Arm
Dressed Ratio ↑

Average Force
Violation ↓

# Training trajectories
in sim B ↓

FCVP (Ours) 0.74± 0.29 2.65 225
Vision Only 0.77± 0.33 45.45 0
Force Only 0.51± 0.28 36.10 225

Multimodal Policy 0.58± 0.42 7.51 7987
Force Residual Policy 0.77± 0.25 24.60 8190
Multimodal Safe RL 0.52± 0.40 4.83 8278

Figure 2.15: (Top) Among all compared methods, FCVP achieves the best trade-off
between the arm dressed ratio and the force violation amount. (Bottom) The detailed
quantitative results for each method, as well as the number of training trajectories
required for convergence in sim B.

two environments are different due to the differences in the simulation parameters,

approximating the sim2real gap. We use NVIDIA FleX [72] wrapped in SoftGym [65]

as the simulator.

We use SMPL-X [84] to generate human meshes with distinct body shapes, sizes,

and arm poses. Specifically, we generate 4 different arm pose regions; the arm poses

within each region are similar to each other with small variations, and the arm poses

are very different across regions (see figures of the arm pose regions on our project

website). For each region, we generate 45 human meshes of distinct body shapes and

sizes. All methods are evaluated on each arm pose region, and then the results are

averaged across the arm pose regions.

We use the same garments as in Wang et al. [107]: a common hospital gown and

4 cardigans from the Cloth3D dataset [9]. In simulation, we set the force threshold τ
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to be 40 units (note due to simulation inaccuracies, this unit does not correspond to

Newtons in the real world.)

We compare the following methods:

FCVP (Ours): For our method FCVP, we learn a vision-based policy in sim A.

The force dynamics model is learned in sim B. We collect one trajectory per human

mesh and garment, resulting in a total of 225 trajectories in each arm pose region

for training the force dynamics model in sim B. We use the past 5 steps of force

measurements as input to the force dynamics model.

Vision Only directly transfers the vision-based policy trained in sim A to sim B,

without any fine-tuning nor using the force information.

Force Only uses only the force dynamics model trained in sim B, without using

the vision-based policy pretrained in sim A. The actions are planned by minimizing

the predicted force, and are heuristically sampled within a forward task progression

cone, similar to the method used in [28].

Multimodal Policy: We first pretrain a policy that takes as input the vision

and the force modality in sim A using RL, and then we fine-tune it with vision and

force in sim B. This is the most standard approach for multimodal learning.

Force Residual Policy: We first pretrain a policy that only uses the vision

modality in sim A, and then we train a residual policy on top of this pretrained

vision-based policy using both vision and force in sim B. The residual policy is trained

to output a delta action, which is added to the action from the pretrained vision-based

policy.

Multimodal Safe RL: This is similar to Multimodal Policy, but instead of using

RL to pretrain or fine-tune the policy, we use safe-RL. We use SAC-Lagrangian [69] as

the training algorithm. Specifically, we first pretrain a policy that takes as input the

vision and the force modality in sim A using SAC-Lagrangian, and then we fine-tune

it with vision and force in sim B with SAC-Lagrangian.

For training the multimodal policy and the force residual policy, to encourage the

policy to exert low force to the human, we add an additional penalty term to the

reward when the force is above the threshold. For the multimodal safe RL baseline,

the force is treated as the cost for SAC-Lagrangian.

All methods are evaluated in sim B, to demonstrate the ability of each method to

transfer to new dynamics. We provide additional details of these baselines on our
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project website. We train all multimodal baselines till convergence, which usually

require a magnitude more data than FCVP.

Evaluation Metrics: The first evaluation metric is the Arm Dressed Ratio, which

is the ratio between the dressed arm distance and the real arm length. A ratio of

1 means that the arm is fully dressed; 0 means that the arm is not dressed at all.

This metric is used to measure the dressing performance and has been used in related

work [107]. The second metric is the Average Force Violation, which is computed as
1
T

∑T
t=1max(0, ft − τ), in which ft is the measured force at time step t and τ is the

maximal force threshold.

Results: Figure 2.15 presents the performances of all methods. As shown on the left

subplot, FCVP achieves the best trade-off between the dressed ratio and the force

violation amount: it achieves the lowest force violation, and the third highest arm

dressed ratio. All other baselines either have large force violations (Force Residual

Policy, Vision Only, Force Only), or perform poorly on the dressing task, as indicated

by a low Arm Dressed Ratio (Multimodal policy, Multimodal Safe RL, Force only).

As shown in the right table of Figure 2.15, most other multimodal learning baselines

require much more training data in sim B, which serves as a proxy of the real world.

This is because they require policy fine-tuning via RL in sim B. In contrast, FCVP

learns a dynamics model in sim B, which is a supervised learning problem, thus being

much more sample-efficient to learn. Overall, these results show that both vision and

force information are needed to achieve high dressing performance while being safe;

further, our approach of incorporating vision and force in FCVP not only achieves

better performance, but also requires much less training data in the “real world” (sim

B) than other multimodal learning methods. Box plots of the force distributions for

all methods are provided on our project website for further visualization.

Ablation study. We first investigate how the number of past force measurements,

denoted as N , affects the performance of FCVP. We test N = 3, 5, 7 and find that a

larger N leads to a decrease in force violations but also a reduced dressed ratio. We

use N = 5, which achieves a good trade off between these two objectives. We also

study the impact of including past actions as part of the input for the force dynamics

model. We test including 0, 1, 3, 5 steps of past actions, and find the performance

varies minimally across these different lengths. The best performance is achieved

when the model does not include past actions as part of its input. Please refer to our
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project website for further details on these ablation studies.

Real-World Human Study

Experimental Setup: Figure 2.16 shows the setup for our real-world human study.

We use the Sawyer robot for executing the dressing task, and measured the force at

the Sawyer robot’s end-effector (wrist) using Sawyer’s built-in force sensing. The

robot movement (action) is the delta translation and rotation of the end-effector, and

is executed using the Sawyer’s built-in IK solver and an impedance controller. We

use a single Intel RealSense D435i camera to capture the point cloud observations of

the scene. We compare our method with the following two baselines:

Vision Only [107] chooses the action with the highest probability under the

vision-based policy.

Vision with Random Actions samples the action from the vision-based policy

with probability p, and uniformly randomly from [−1, 1]|A| with probability 1 − p,
where |A| is the dimension of the action space (6 in our case).

We compare to the “Vision with Random Actions” baseline as it is also used for

collecting data for training the force dynamics model, as mentioned in section 2.2.5.

We set p = 0.1 and the force threshold τ to be 5.4 Newtons in our experiments, which

is an empirical value based on the force distributions of successful and safe dressing

trials, and we think this value would be comfortable for the participants during the

dressing process. We do not compare to the Force Only baseline because it performs

poorly in terms of the dressed ratios even in simulation (see table in Figure 2.15).

We also do not compare to other multimodal learning baselines, as they all require

extensive amounts of training data to converge (as shown in the sim2sim transfer

experiments in Figure 2.15), which is prohibitive to collect in the real world.

In addition to the evaluation metrics described in section 2.2.6, we present partici-

pants with 7-point Likert items that range from 1=‘Strongly Disagree’ to 7=‘Strongly

Agree’ with the following statements: 1. “The robot successfully dressed the garment

onto my arm”; 2. “The force the robot applied to me during dressing was appropriate”;

and 3. “The dressing process was comfortable for me.”

Human Study Procedure: We recruit 10 participants, comprising 4 males, 4

females, 1 non-binary individual, and 1 participant who chooses not to disclose their
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Figure 2.16: Left: Human study setup. Right: Poses and Garments that we test in
the human study.

gender identity. The age of the participants spans from 19 to 36. We test each

participants with two garments: a short-sleeve hospital gown and a long-sleeve purple

cardigan. These two garments differ in geometry (see Fig 2.16 for sleeve lengths

and widths), elasticity and roughness (the purple cardigan is more elastic), and

mass (the hospital gown is heavier). We test each participant with two different

arm poses, randomly chosen from three poses. The poses and garments we use are

shown in Figure 2.16. We evaluate each of the three methods for two trials on each

pose-garment combination, resulting in a total of 24 trials per participant. We also

randomize the ordering of the test poses, garments, and methods. Participants are

asked to hold their arm steady throughout each trial. We run each trial for a fixed

number of time steps, unless the participant asks to stop or the measured force is

above a safety threshold (15 Newtons). We train a single force dynamics model and

test it on all these 10 participants.

Force dynamics model training: Before evaluating FCVP in the human study, we

need to capture real-world force data and train a force dynamics model. We capture

force data from a separate 11-participant study, using a similar procedure as noted

above. The 11 participants consist of 6 males and 5 females with ages ranging from 22

to 50. For each participant, we first run the Vision with Random Actions baseline for

8 trials, 2 trials for each combination of 2 arm poses and 2 garments. Using the force

data collected in these 8 trials, we train a force dynamics model on this participant.

We then run our method (FCVP) with the trained force dynamics model, as well as

the Vision Only baseline (order randomized) for 8 trials on the same arm poses and
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Arm
Dressed Ratio ↑

Average
Force Violation (N) ↓

FCVP (Ours) 0.81± 0.21 0.089
Vision Only [107] 0.71± 0.17 0.39

Vision w/ Random Action 0.71± 0.18 0.34

Table 2.7: Quantitative results of the human study. FCVP not only achieves higher
arm dressed ratio, but also has significantly lower force violations.

(**) p <= 0.01 (**) p <= 0.01 (**) p <= 0.01

Figure 2.17: Left and middle: Density plot and box plot of the force distributions
on all participants in the human study. The dashed black line represents the force
threshold. Our method greatly reduces the force violation compared to the baselines.
Right: Likert item responses from all 10 participants. FCVP achieves statistically
significant differences from both baselines with higher reported scores for all 3 Likert
items.

garments. This results in 24 dressing trajectories for each of the 11 participants. By

using 3 different methods, we are able to enlarge the distribution of the captured force

data, which is beneficial for training a single generalized force dynamics model. These

3 methods used for data collection are optimized for either completing the dressing

task (Vision Only baseline and Vision with Random Action baseline), or reducing the

force (FCVP), thus they are all safer compared to random trajectories, reducing the

safety risk posed to the participants during data collection. We ask participants to

hold their arm steady throughout each trial when collecting the force data to ensure

the accuracy of the collected data. We use the force data captured during the 264

dressing trials on these 11 participants to train a single generalized force dynamics

model, and evaluate it in another human study with 10 new participants (gender and

age distributions as described above). Note that the 10 new participants we test in

the evaluation of FCVP with the generalized force dynamics model are all different

from the 11 participants used for collecting the force data. More details of the study

procedure for both human studies can be found in our project website.
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Human Study Results: Videos of the dressing trials are available on our project

website. Table 2.7 compares the results of all methods, averaged over all 10 partici-

pants. As shown, our Force-Constrained Visual Policy has significantly lower force

violation compared to both baselines. Furthermore, it achieves higher arm dressed

ratios. Due to sim2real transfer gaps, the vision-based policy often deviates to a

state where the garment gets caught on the person. This state usually does not

occur in simulation, as the simulated garments are often more elastic with lower

frictional coefficients than those in the real world, due to limited simulation fidelity.

By constraining the amount of force applied to the person, the force dynamics model

guides the vision-based policy to avoid such scenarios, and as a result, the final

dressing performance is higher (see Figure 2.13 for an example). This same factor

might affect other multimodal learning baseline methods as well, potentially leading

to a similar discrepancy between their sim2sim and sim2real performance. Still, the

performance of the other baseline methods would likely be lower than that of our

method (FCVP) in the real world, since their performance in simulation is quite

poor (see Fig 2.15). Further, due to the large amount of training data (thousands

of dressing trajectories) needed for fine-tuning other multimodal learning methods

(see the last column of the table in Fig 2.15), it is often impractical to train and test

these methods in the sim2real setting. In contrast, our method is able to efficiently

learn a dynamics model from just 264 real world trajectories. Thus, our method is

both higher performing and more practical than the other approaches. We note that

the performance of the Vision Only baseline is lower than reported by [107]. This is

due to us testing on only a subset of the garments and poses (the most difficult ones)

among those tested in [107].

Figure 2.17 shows the density (left) and box (middle) plots of the force distributions

of all participants. As shown, most of the forces exerted by FCVP are below the

force threshold, while the other two baselines violate the threshold more frequently,

demonstrating the strong effectiveness of our method for reducing the force violation.

Figure 2.17 (right) also reports the Likert Item responses of all participants. On

average, FCVP achieves a median score of 6 for all three Likert items, meaning that

the participants “Agree” that the robot successfully dressed the garment onto their

arm, “Agree” the force the robot applied to them during dressing is appropriate, and

“Agree” that the dressing process was comfortable for them. The medians of FCVP
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are higher than or the same as both baselines for all 3 Likert items.

We conduct a Wilcoxon signed rank test to test if the distribution of the paired

difference in scores between two methods is different from a distribution symmetric

about zero. For all three Likert items and both baselines, we obtain a p-value smaller

than 0.01 (p < 0.01), i.e., we find a statistically significant difference between FCVP

and the two baselines, and the median of the difference is greater than zero.

We note that our human study is performed on a younger age distribution than

the group that will likely need assistive dressing. However, as our experiments have

shown, the dynamics model is able to generalize to new participants within the same

age distribution; thus we believe that if it is trained with an older age distribution, it

should perform well on that older age distribution as well. We hope to verify this in

future studies.

Generalization of the force dynamics model. As the input to the force dynamics

model is the partial point cloud of the scene, which captures the shape and size of the

human arm, the force dynamics model should be able to generalize to the shape and

size of the arm within the training distribution. In our human study, the size and

shape of the arms of the 10 evaluation participants are different to those of the 11

training participants. The average prediction error (L1 norm) of the force dynamics

model is 0.00631N on the 11 training participants, and 0.0478N on the 10 evaluation

participants. Despite this train-eval gap, the evaluation prediction error is still small

(< 0.1N), and the force dynamics model still proves to be useful in reducing force

violations, as shown in Table 2.7. These results indicate that the force dynamics

model can generalize reasonably well to the shape and size of the human arms. We

believe the gap can be narrowed in future work by regularization, or collecting more

data.

We also analyze the generalization of the force dynamics model to different physical

properties of the garments, such as roughness and elasticity, in simulation. We create

50 garments with the same geometry but different elasticity, by randomly sampling

the spring coefficients of the garments within a range of [0.3, 1.5]. We then train

a force dynamics model on 40 garments and test on the remaining 10. The force

dynamics model generalizes well to the garments with unseen elasticity: the average

force violation increased slightly from 2.21 to 4.13 simulation units from training

garments to unseen garments (a vision-based policy trained on the 10 unseen garments
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has a force violation of 38.8 simulation units).

More details of these experiments can be found on our project website.

System analysis. There can be cases where there is no action whose predicted

force is below the safety threshold. We present the ratio of the number of timesteps

where this situation occurs to the total number of timesteps. Findings from our

human study indicate that this ratio is low, at 4.028%, showing that such cases are

uncommon and generally don’t impact dressing performance. The ratio could be

further lowered by sampling more actions when solving the constrained optimization

problem. The average inference time taken to solve the optimization problem in the

real-world experiments is 0.065 seconds per timestep. Each dressing trial usually lasts

between 40 and 60 seconds.

Limitations

One limitation is that our method assumes the person holds a static pose and that the

robot has already grasped the garment. Prior works have introduced new sensors and

control strategies specifically targeting at relaxing these assumptions [30, 34, 130],

which could be applied in conjunction with our work. Additionally, in our experiments,

we note that FCVP still has some forces that exceed the threshold. There are two

reasons for this: First, there may be minor errors in the learned force dynamics model’s

prediction. An action can be predicted to be below the threshold, but actually applies

more force when executed. This issue can be mitigated by collecting more data

for training the force dynamics model to make it more accurate, or by adding a

buffer to the force threshold to account for prediction inaccuracies. Second, because

our method uses random shooting to solve the constrained optimization problem,

the solutions may not satisfy the constraint if all sampled actions are infeasible.

This would result in some forces above the threshold. This issue can be alleviated

by sampling more actions until a feasible action is found, or by using alternative

optimization algorithms to solve the constrained optimization problem. At last, we

request all participants to wear short-sleeve T-shirts during dressing. The properties

of the cloth they wear, such as friction and elasticity, could affect the forces applied

to the users during the dressing process and affect the ground-truth force labels used

to train the force dynamics model. We have not tested if the force dynamics model
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generalizes to other clothing the users wear, such as pulling a jacket over a long-sleeve

shirt, which we leave as interesting future work.

2.2.7 Conclusion

In this paper, we propose a new method to leverage both vision and force modalities

for robot-assisted dressing, based on which we build a system that combines these

modalities to ensure task progress and low applied forces for safety. We learn a

vision-based policy via reinforcement learning in simulation across diverse people,

poses, and garments. We train a force dynamics model directly in the real world to

achieve safety and overcome inaccuracies in simulated force sensing with deformable

garments. Our system combines the vision-based policy and the force model via a

constrained optimization problem to find actions that progress the dressing process

without applying excessive force to the person. We evaluate our system in simulation

and in a real-world human study with 10 participants and 240 trials, demonstrating

that it greatly outperforms prior baselines.
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Chapter 3

Automatic Reward Generation for

Robotic Manipulation

3.1 Reinforcement Learning from Vision

Language Foundation Model Feedback

3.1.1 Introduction

One of the key challenges of applying reinforcement learning (RL) is designing an

appropriate reward function that will lead to the desired behavior. This procedure,

known as reward engineering, demands considerable human effort and trial-and-error

iterations, but is often required for good results [37, 55, 81, 98]. In this work, we aim

to develop a fully automated system that can generate a reward function and use it

to teach agents to perform a task with RL by using only a language description of

the task, eliminating the extensive human effort required to craft reward functions

manually.

Prior work has studied replacing human supervision by prompting large language

models (LLMs) to write code-based reward functions [71, 108, 118]. However, these

methods usually assume access to the environment code, rely on the low-level ground-

truth state information for reward generation, and face challenges with scaling up

to high-dimensional environments and observations, such as manipulating complex
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deformable objects. Others [21, 53] extract an intrinsic reward and combine it with the

task reward using preference labels generated by an LLM comparing text descriptions

of two agent states. However, text descriptions of the states can be non-trivial for

certain tasks, such as manipulating deformable objects, as the exact states are hard

to describe accurately using language. Further, these works rely on the ground-truth

low-level state information to generate the text descriptions of the states, which may

not be easily accessible.

Another related line of work obtains rewards from visual observations by using

contrastively trained vision language models, such as CLIP [91], to align image or

video observations with task descriptions in a learned latent space [2, 24, 70, 73, 92, 99].

However, the reward signals produced in these works are often of high variance and

noisy [73, 99]. As a result, prior work often has to fine-tune these CLIP-style models

for their specific tasks at hand [70, 73].

To this end, we present RL-VLM-F, a method that automatically generates reward

functions for agents to learn new task. RL-VLM-F (Figure 3.1) requires only a single

text description of the task goal and the agent’s visual observations, leveraging vision

language foundation models (VLMs) that are trained on diverse, general text and

image corpora (e.g., GPT-4V [80], Gemini [103]). The key to our approach is to query

these models to give preferences over pairs of the agent’s image observations based

on the text description of the task goal and then learn a reward function from the

preference labels, rather than directly prompting these models to output a raw reward

score, which can be noisy and inconsistent [92, 99]. This allows us to draw from

the rich literature on reinforcement learning from human preferences [20, 56, 112],

without requiring actual humans, to train reward functions automatically for new

tasks. Furthermore, by using a VLM to compare image observations instead of text

descriptions of the states, RL-VLM-F does not need access to the low-level ground-

truth states for reward generation and can be applied to complex tasks involving

deformable objects where accurate text description of the states are non-trivial. We

test our method on 7 tasks involving classic control, rigid, articulated, and deformable

object manipulation. We show that our approach can produce reward functions that

lead to policies that solve diverse tasks, and our approach substantially outperforms

prior methods and alternative ways to use VLMs to generate rewards. We also perform

extensive analysis and ablation studies to provide insights into RL-VLM-F’s learning
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procedure and performance gains. In summary, we make the following contributions:

• We propose RL-VLM-F, a method that automatically generates reward functions

for agents to learn new tasks, using only a text description of the task goal and

the agent’s visual observations, eliminating the extensive human effort involved

in manually crafting reward functions.

• We show that RL-VLM-F can be used to generate reward functions and learn

policies that can solve a series of rigid, articulated, and deformable object

manipulation tasks, and it greatly outperforms prior methods.

• We perform extensive analysis and ablation studies to provide insights into

RL-VLM-F’s learning procedure and performance gains.

3.1.2 Related Work

Inverse Reinforcement Learning

Similar to our work, inverse reinforcement learning (IRL) aims to learn a reward

function that can be used to train a policy to solve tasks. IRL methods usually learn

a reward function from expert demonstrations [1, 33, 43, 77, 78, 132]. In contrast,

while RL-VLM-F also learns a reward function to train a policy, it only requires a text

description of the task goal and does not require collecting expert demonstrations.

Learning from Human Feedback

Another line of work directly learns a reward function from human feedback, in the

form of pairwise trajectory preference or ranking comparisons, to train a reward

function [11, 12, 13, 20, 46, 56, 60, 75, 112]. In most cases, human preferences and

rankings of robot trajectories are easier to collect than demonstrations of robot

trajectories. However, because each comparison conveys little information on its own,

many preference queries are needed before the reward function is well-trained enough

to train an agent to perform the task. RL-VLM-F instead queries a VLM to perform

the comparison to train a reward function, removing the need for extensive human

labor in giving preference labels.
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Large Pre-trained Models as Reward Functions

Kwon et al. [54] first demonstrated that large pre-trained models—large language

models (LLM) specifically—can generate rewards for RL agents in text-based tasks.

Other works followed by demonstrating that LLMs can write structured code for

training robots [124] or directly write Python code for training many kinds of

agents [71, 108, 118]. However, many tasks are challenging to write reward functions

for. For example, cloth folding requires tracking the locations of many individual

cloth keypoints, which can change from one folding task to another. In these in-

stances, visual reasoning is better suited for understanding how to reward the agent.

RL-VLM-F queries a VLM to compare agent observation images so that it can use

visual observations to reason about how well the agent is progressing in a task. In

addition, prior methods usually assume access to the environment source code when

writing the reward functions, whereas our method does not require such assumptions.

Another line of prior works rewards agents from image observations by aligning

agent trajectory images with task language descriptions or demonstrations with

contrastively trained visual language models [23, 31, 70, 76, 79, 92, 99]. However,

experiments from these papers directly demonstrate that contrastive alignment is

noisy and its accuracy relies heavily on the input task specification and how well-

aligned the agent observations are to the pre-training data [70, 76, 92, 99]. Further,

CLIP-style models have thus far been limited to outputting noisy raw scores. We

demonstrate that using preferences results in superior performance to outputting raw

scores, shown in our experiments in Section 3.1.6. Finally, our work shares a similar

idea to RLAIF [7], which proposed to mix preference labels generated by an LLM

and a human in the context of fine-tuning LLMs, and Motif [53], which proposed

to generate intrinsic rewards using preference feedback from an LLM in the game

of NetHack based on ground-truth text descriptions of the game state. In contrast,

we use a VLM to generate the preference labels without any human labeling and

learn the reward function from visual image observations without the need to access

ground-truth states, focus on the domain of robotics control and manipulation, and

directly generate task rewards instead of intrinsic rewards.
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3.1.3 Background

We consider the standard Markov Decision Process and reinforcement learning

setup [102]. At every timestep t, the agent receives a state st from the environ-

ment and chooses an action at based on a policy π(at | st). The environment gives

a reward rt after the agents executes action at and transitions to st+1. The goal of

the agent is to maximize the return, which is defined as discounted sum of rewards

R =
∑∞

k=0 γ
kr(sk, ak) with discount factor γ.

Preference-based reinforcement learning. Our work builds upon preference-

based RL, in which an agent learns a reward function from preference labels over its

behaviors [20, 46, 56, 57]. Formally, a segment σ is a sequence of states {s1, ..., sH},
H ≥ 1. In this paper we consider the case where the segment is represented using

a single image, i.e., H = 1. Given a pair of segments (σ0, σ1), an annotator gives

a feedback label y indicating which segment is preferred: y ∈ {−1, 0, 1}, where 0

indicates the first segment σ1 is preferred, 1 indicates the second segment is preferred,

and −1 indicates they are incomparable or equally preferable. Given a parameterized

reward function rψ over the states, we follow the standard Bradley-Terry model [14]

to compute the preference probability of a pair of segments:

Pψ[σ
1 ≻ σ0] =

exp
(∑H

t=1 rψ(s
1
t )
)

∑
i∈{0,1} exp

(∑H
t=1 rψ(s

i
t)
) , (1)

where σi ≻ σj denotes segment i is preferred to segment j. Given a dataset of

preferences D = {(σ0
i , σ

1
i , yi)}, preference-based RL algorithms optimize the reward

function rψ by minimizing the following loss:

LReward =− E(σ0,σ1,y)∼D

[
I{y = (σ0 ≻ σ1)} logPψ[σ0 ≻ σ1]

+ I{y = (σ1 ≻ σ0)} logPψ[σ1 ≻ σ0]

]
.

(2)

In preference-based RL algorithms, a policy πθ and reward function rψ are updated

alternatively: the reward function is updated with a dataset of preferences as described

above, and the policy is updated with respect to this learned reward function using

standard reinforcement learning algorithms. Specifically, we use PEBBLE [56], a

preference-based RL method with unsupervised pre-training and off-policy learning,

as the underlying preference-based RL algorithm.

55



3. Automatic Reward Generation for Robotic Manipulation

Reward 

Learning

Rollout Trajectories

…

Sampled Observation Pair

Task description

(
“Fold the cloth 

diagonally”

),

Preference Label

Reinforcement Learning

Environment Policy

Sam
pling

Vision 
Language 

Model

Reward 
Model

Figure 3.1: RL-VLM-F automatically generates reward functions for policy learning
on new tasks, using only a text description of the task goal and the agent’s visual
observations. The key to RL-VLM-F is to query VLMs to give preferences over pairs
of the agent’s image observations based on the text description of the task goal, and
then learn a reward function from the preference labels.

3.1.4 Assumptions

We make the following assumptions on the VLMs to be used in this paper: 1) We

assume that the VLMs have been trained on diverse text and image corpora, enabling

them to generalize well and reason across various environments and tasks. 2) The

VLMs should be capable of processing multiple images simultaneously and performing

comparative analyses on pairs of images as this is crucial for generating preference

labels. 3) RL-VLM-F is designed to operate on tasks for which the quality or success

of a state can be discerned from a single image or a sequence of images. We consider

large pretrained vision-language foundation models, such as Gemini [103] and GPT-4

Vision [80], to satisfy these assumptions.

3.1.5 Method

Figure 3.1 provides an overview of RL-VLM-F. Unlike previous preference-based RL

algorithms that require a human annotator to give the preference labels, RL-VLM-F

leverages a VLM to do so based solely on a text description of the task’s goal, thus
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Analysis Template
Consider the following two 
images: 

Image 1: 
[Image 1] 

Image 2: 
[Image 2] 

1. What is shown in Image 1? 
2. What is shown in Image 2? 
3. The goal is to [task 
description]. Is there any 
difference between Image 1 
and Image 2 in terms of 
achieving the goal? 

Task description

Image 1 Image 2

Observation Pair Labeling Template

VLM 
response

Based on the text below to the 
questions : 

[Repeat the 3 questions in the 
Analysis Template] 

[VLM response] 

Is the goal better achieved in 
Image 1 or Image 2? 
Reply a single line of 0 if the 
goal is better achieved in Image 
1, or 1 if it is better achieved 
in Image 2. 
Reply -1 if the text is unsure 
or there is no difference. 

Vision 
Language 

Model

“1”

Preference 
Label

Vision 
Language 
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( ),

“Fold the cloth 
diagonally”

Figure 3.2: We use a two-stage VLM-querying process for generating preference
labels to train the reward function. In the analysis stage, we query the VLM to
generate free-form responses describing and comparing how well each of the two image
observations achieves the task goal. Then, in the labeling stage, we prompt the VLM
with the VLM-generated text responses from the first stage to extract a preference
label between the two image observations. The template shown here is the actual
entire template we use for all experiments.

automating preference-based RL and mitigating the time-intensive human supervision

required in writing reward functions or providing preference labels. RL-VLM-F works

as follows: first, the policy πθ and the reward function rψ are randomly initialized.

Given a task goal description, our method then iterates through the following cycle:

(1) The policy πθ is updated using RL with the reward function rψ, interacts with

the environment, and stores image observations into a buffer; (2) A batch of image

pairs is randomly sampled from the stored buffer and sent to a VLM. The VLM is

queried to produce preference labels for these image pairs in terms of which one better

performs the task based on the text description of the task goal; (3) The reward

model is updated with the loss in Equation (2) using the preference labels produced

by the VLM. The full detailed procedure of RL-VLM-F can be found in Algorithm 1.

Prompting VLMs to generate preference labels for reward learning

To train the reward model rψ, we first need to generate preference labels from the

VLM. To do this, we sample two images from the “image observation buffer” I,
which stores image observations of the policy during learning, and then query the

VLM for which of the two images better performs the task according to the text

goal description (Algorithm 1 lines 17-18). The querying process is illustrated in

Figure 3.2. It consists of two stages: an analysis stage and then a labeling stage.

In the analysis stage, we query the VLM to generate free-form responses describing
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Algorithm 1 RL-VLM-F

input Text description of task goal l
1: Initialize policy πθ and reward rψ
2: Initialize the preference buffer D ← ∅, RL replay buffer B ← ∅, image observation buffer I ← ∅,

policy gradient update steps Nπ, reward gradient update steps Nr, VLM query frequency K,
number of preference queries per time M

3: for each iteration iter do
4: // Policy learning and data collection
5: for t = 1 to T do
6: Collect state st+1, image It+1 by taking at ∼ πθ(at|st)
7: Add transition B ← B ∪ {(st, at, st+1, rψ(st))}
8: Add image observation I ← I ∪ {It+1}
9: end for

10: for n = 1 to Nπ do
11: Sample random batch {(st, at, st+1, rψ(st))j}Bj=1 ∼ B
12: Optimize policy πθ using the sampled batch with any off-policy RL algorithm
13: end for
14: // Preference by VLM and Reward learning
15: if iter % K == 0 then
16: for m = 1 to M do
17: Randomly sample two images (σ0, σ1) from buffer I
18: Query VLM with (σ0, σ1) and task goal l for label y
19: Store preference D ← D ∪ {(σ0, σ1, y)}
20: end for
21: for n = 1 to Nr do
22: Sample minibatch {(σ0, σ1, y)j}Dj=1 ∼ D
23: Optimize rψ in Equation (2) with respect to ψ
24: end for
25: Relabel entire replay buffer B using updated rψ
26: end if
27: end for

and comparing how well each of the two images achieves the task goal. Then, in the

labeling stage, we prompt the VLM with the VLM-generated text responses from

the first stage to extract a preference label between the two images.1 Specifically, the

labeling stage prompt repeats the questions in the analysis prompt, fills in the VLM’s

response from the analysis stage, and then asks the VLM to generate a preference

label y ∈ {−1, 0, 1}. We specify in the prompt that 0 or 1 indicates that the first

or second image is better, respectively, and -1 indicates no discernible differences.

We do not use the image pairs to train the reward model if the VLM returns -1

as the preference label. Finally, as shown at line 19 of Algorithm 1, we store the

1We can also use an LLM in this stage as it only requires text inputs, but for simplicity, we use
the same model as for the first stage of the querying process (a VLM).
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preference labels produced by the VLM into the preference label buffer D during the

training process. Standard preference-based reward learning can then be performed

(as detailed in Section 3.1.3) to train the reward function with Equation 2 using the

preference buffer D. Reward learning corresponds to lines 21-24 in Algorithm 1.

To minimize prompt engineering effort, we use a unified template across all

environments (the exact entire template is shown in Figure 3.2). Therefore, to train

a policy for a new environment with RL-VLM-F, one only needs to provide the

task goal description; the labels and subsequently the reward function will then be

automatically trained with the above process.

Implementation Details

For policy training, we use SAC [39] as the underlying RL algorithm. As in PEBBLE

[56], we relabel all the transitions stored in the SAC replay buffer once the reward

function rψ is updated (line 25 in Algorithm 1). We set the policy gradient update

step Nπ to be 1. The values of all other parameters in Alg. 1 can be found in

Appendix B.2.

3.1.6 Experiments

Setup

We evaluate RL-VLM-F on a set of tasks, spanning from straightforward classic control

tasks to complex manipulation tasks involving rigid, articulated, and deformable

objects. The tasks are as follows.

• One task from OpenAI Gym [15]:

CartPole where the goal is to balance a pole on a moving cart.

• Three rigid and articulated object manipulation tasks from MetaWorld [122]

with a simulated Sawyer robot:

Open Drawer, where the robot needs to pull out a drawer;

Soccer, where the robot needs to push a soccer ball into a goal; and

Sweep Into, where the robot needs to sweep a green cube into a hole on

the table.

59



3. Automatic Reward Generation for Robotic Manipulation

Cart Pole Open Drawer SoccerSweep Into Fold Cloth Straighten Rope Pass Water

 a)  Classic Control  b)  Rigid & Articulated Object Manipulation  c)  Deformable Object Manipulation 

Figure 3.3: We evaluate RL-VLM-F on 7 tasks including classic control, rigid and
articulated object manipulation, as well as deformable object manipulation. For Pass
Water, the red dot represents the target location.

• Three deformable object manipulation tasks from SoftGym [65]:

Fold Cloth, where the goal is to diagonally fold a cloth from the top left

corner to the bottom right corner;

Straighten Rope, where the goal is to straighten a rope from a random

configuration; and

Pass Water, where the goal is to pass a glass of water to a target location

without water being spilled out.

See Figure 3.3 for visualizations of these tasks. Further details about the tasks can

be found in Appendix B.1.

We compare to the following baselines that make similar assumptions to us when

generating the reward function, i.e., those requiring only a text description and image

observations from the agents (without access to environment code). Below is a brief

description of each baseline:

• VLM Score. Instead of querying the VLM to give preference labels over two

images, this baseline directly asks the VLM to give a raw score between 0 to 1

for a given image based on the task goal description. We inform the VLM in

the prompt that the score should be 1 if the task goal is perfectly achieved in

the image. A reward model is then learned to regress to the scores given by the

VLM.

• CLIP Score [92]. Given an image, the reward is computed as the cosine

similarity score between the embedding of the image and the text description of

the task goal using the CLIP model [91]. Such a reward computation method

has also been explored in several other prior works [2, 24, 73].
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• BLIP-2 Score. Similar to the CLIP Score baseline but uses BLIP-2 [63]

instead of CLIP to compute the cosine similarity score.

• RoboCLIP [99]. This baseline uses a pre-trained video-language model,

S3D [117], to compute the reward as the similarity score between the em-

bedding of the video of the policy trajectories and a demonstration video. Since

we do not assume to have access to demonstrations of the task in our method,

we use the text version of RoboCLIP for a fair comparison. RoboCLIP-Text

uses the pre-trained video-language model to generate rewards as the similarity

score between the video embedding of the trajectory and the text embedding of

the task description.

• GT Preference. We use the original ground-truth reward function (provided

by the authors of each benchmark) to give the preference label. This should in

theory serve as an oracle and upper bound on the learning performance.

Further details on the baselines, including all the text prompts we use, can be found

in Appendices B.3 and B.4.

For MetaWorld tasks, we use the author-defined task success rate of the policy

as the evaluation metric [122]. For all other tasks, we report the episode return of

the learned policy. For all methods, the policy is learned with state observations,

and we use the same policy learning hyper-parameters for all methods, i.e., the only

difference between all compared methods is the reward function. For methods where

a reward function needs to be learned (RL-VLM-F and VLM Score), the reward

function is learned using image observations. For RL-VLM-F and the VLM Score

baseline, we use Gemini-Pro [103] as the VLM for all tasks except Fold Cloth. We

find Gemini-Pro to perform poorly on Fold Cloth, so we instead use GPT-4V [80] as

the VLM for this task for these two methods (see Appendix B.5.2 for a comparison

of Gemini-Pro and GPT-4V on this specific task). We did not run GPT-4V on all

tasks due to its quota limitations. For all methods except RoboCLIP, we follow the

prior work [6, 10] to remove the robot from the image for the MetaWorld tasks, as

these tasks are all object-centric and removing the robot allows the VLM to focus

on the target object when analyzing the images. Since these tasks are simulated,

we conveniently use the simulator to make the robot transparent when rendering

the images. For real-world applications, techniques such as inpainting can be used
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Figure 3.4: Learning curves of all compared methods on 7 tasks. RL-VLM-F out-
performs all baselines in all tasks, and matches or surpasses the performance of GT
preference on 6 of the 7 tasks. Results are averaged over 5 seeds, and shaded regions
represent standard error. RoboCLIP is only evaluated on the MetaWorld tasks, as
this is the set of tasks where the original method is evaluated.

to remove the robot from image observations. We keep the robot within the image

for RoboCLIP following the original paper’s setup. We test RoboCLIP only on the

MetaWorld tasks, as this is the set of tasks where the original method is evaluated.

Does RL-VLM-F learn effective rewards and policies?

We first examine if RL-VLM-F leads to useful rewards and policies that can solve

the tasks. The learning curves of all compared methods on all tasks are shown in

Figure 3.4. As shown, RL-VLM-F outperforms all other baselines in all tasks. We

find that prior approaches using CLIP or BLIP-2 score can only solve the easiest task

– CartPole, and struggle for more complex environments, such as the rigid object

manipulation tasks in MetaWorld and the deformable object manipulation tasks in

SoftGym. The text version of RoboCLIP performs poorly on all three MetaWorld

tasks, aligning with the original paper’s results, as RoboCLIP works the best with

video demonstrations available. RL-VLM-F also outperforms VLM Score in all tasks,

which indicates that prompting VLMs to output a preference label for reward learning

results in better task performance in contrast to treating the VLM as a reward

function that outputs raw reward scores. We also observe that RL-VLM-F is able to

match the performance of using GT preference in all tasks except Cloth Fold, which

suggests we can use a single text description with RL-VLM-F to mitigate human
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Figure 3.5: Comparison of the achieved final state of different methods on SoftGym
deformable object manipuation tasks: Fold Cloth (Top), Straighten Rope (Middle),
and Pass Water (Bottom). RL-VLM-F achieves better final states compared to all
the baselines.

efforts in writing complex reward functions for these tasks.

Interestingly, for the task of Sweep Into, the performance of RL-VLM-F actually

surpasses that of using GT preference. We suspect the reason could be as follows: the

ground-truth reward function written by the authors for this task includes terms that

are not directly correlated to task success. This includes a reward term for grasping

the cube, which is not critical for pushing the cube into the hole.

In contrary, RL-VLM-F simply uses a text description of the task goal as “minimize

the distance between the cube and the hole”, thus the learned reward is less prone to

bias in human-written reward functions and may better reflect the true task goal,

leading to better performance.

We show the final states achieved by the policies learned with different methods

on the three SoftGym deformable object manipulation tasks in Figure 3.5. As shown,

for all three tasks, RL-VLM-F achieves a final state that is quantifiably better than

the baselines. For Fold Cloth, RL-VLM-F is closest to a diagonal fold. For Straighten

Rope, RL-VLM-F is able to fully straighten the rope and match the performance of

GT preference, where all other baselines failed to fully straighten it. For Pass Water,
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Figure 3.6: We provide analysis of the accuracy of the VLM preference labels,
compared to ground-truth preference labels defined according to the environment’s
reward function. The x-axis represents different levels of differences between the
image pairs, discretized into 10 bins, where the difference is measured as the difference
between the ground-truth task progress associated with the image pairs. The y-axis
shows the percentage where the VLM preference labels are correct, incorrect, or when
it does not have a preference over the image pairs.

RL-VLM-F is able to transport the water to the target location without any water

being spilled, and the baselines either do not move the glass, or move it in a way that

spills large amounts of water.

What is the accuracy of VLM preference labeling?

Given that RL-VLM-F can learn effective rewards and policies that solve the tasks,

we perform further analysis on the accuracy of the preference labels generated by a

VLM. To compute accuracy, the VLM outputs {−1, 0, 1} (no preference, first image

preferred, second image preferred) which we compare to a ground truth preference

label defined according to the environment’s reward function. Note that we discard

the image pairs with a label -1 (no preference) when training the reward model.

Our intuition is that, like humans, it would be hard for the VLM to give correct

preference labels when comparing two similar images, and easier to produce correct

preference labels when the two images are noticeably dissimilar in terms of achieving

the goal. Figure 3.6 presents the accuracy of the VLM at various levels of differences

between the two images. The “difference” between two images is measured as the

difference between the ground-truth task progress associated with the images. We
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Figure 3.7: We compare how well the learned reward by RL-VLM-F and VLM
Score align with the ground-truth task progress on 3 MetaWorld tasks along an
expert trajectory. As shown, RL-VLM-F generates rewards that align better with the
ground-truth task progress. The learned rewards are averaged over 3 trained reward
models with different seeds, and the shaded region represents the standard error.

discretize the differences into 10 bins along the x axis in Figure 3.6, where a larger

number indicates a greater difference between two images in terms of task progress.

On the y axis, the green, orange, and blue bars represent the percentage where the

VLM preference label is correct, incorrect, or when there is no preference. For all

tasks, we observe a general trend of increasing accuracy, decreasing uncertainty, and

decreasing error as the differences between the images increase, which aligns with

intuition. This trend is most clear and consistent for the CartPole, Open Drawer

and Soccer tasks. Overall, for all tasks, we find that the VLM is able to generate

more correct preference labels than incorrect ones, and as shown in Figure 3.4, the

accuracy of VLM-generated preference labels is sufficient for learning a good reward

function and policy.

How does the learned reward align with the task progress?

Figure 3.7 plots the learned rewards (averaged over 3 trained reward models with

different random seeds) as well as the true task progress on three MetaWorld environ-

ments along an expert trajectory that fully solves the task. Note the ground-truth

task progress is not the same as the author-provided reward function: the author

provided reward is a shaped version of the task progress. For Open Drawer, the task

progress is measured as the distance the drawer has been pulled out; For Soccer,

it is measured as the negative distance between the soccer ball and the goal; For

Sweep Into, it is measured as the negative distance between the cube and the hole.

We normalize both the ground-truth task progress and the learned reward into the

range of [0, 1] for a better comparison between them. An ideal learned reward should
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Figure 3.8: We compare RL-VLM-F with the proposed two-stage prompting strategy,
and an ablated version of using a single-stage prompting strategy. The performance
of the single-stage prompting is lower on 3 of the 4 tasks.

increase as the time step increases along the expert trajectory, as like the ground-truth

task progress. As shown, the reward learned by RL-VLM-F aligns better with the

ground-truth task progress compared with the VLM Score baseline. We do observe

that the learned reward tends to be noisy and includes many local minima. Despite

this, the learned reward still achieves the highest value when the task progresses the

most. As shown in Figure 3.4, the learned reward is sufficient for learning successful

policies. For Open drawer, we notice that the reward produced by VLM Score remains

zero. This is likely because, during training, most of the scores given by the VLM

are 0, and the model learns to predict 0 at all time steps to minimize the regression

loss. We find the CLIP and BLIP-2 scores on these environments are generally noisy;

the corresponding plots can be found in Appendix B.5.3.

Ablation on the prompt strategy

We used a two-stage prompting strategy for RL-VLM-F, where the VLM is first asked

to analyze the pair of images in the analysis stage, and then output the preference

label in the labeling stage. Here we compare it with a single-stage prompting strategy

where we query the VLM to directly output a preference label over the two image

observations in a single stage. The detailed single-stage prompt can be found in

Appendix B.4.4. Figure 3.8 presents the comparison on 4 tasks: Open Drawer, Soccer,

Sweep Into and Straighten Rope. As shown, the success rate of using the VLM with

the single-stage prompt is lower than using the two-stage prompt on 3 out of the 4

tasks.
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3.1.7 Conclusion and Future Work

In this work, we present RL-VLM-F, a method that automatically generates reward

functions via querying VLMs with preferences given a task descriptions and image

observations for a wide range of tasks. We demonstrate our proposed method’s

effectiveness on rigid, articulated, and deformable object manipulation tasks.

Future work could extend RL-VLM-F to an active learning context, exploring

both easy and informative VLM queries for more efficient reward learning. The

adaptable nature of our method allows for the integration of more advanced VLMs

when they become available, potentially addressing more complex tasks. It would

also be interesting to test RL-VLM-F on tasks with longer horizon. One could

first decompose the tasks into subtasks with shorter horizon, either via manual

decomposition or foundation models [3]. Then, RL-VLM-F can be used to solve each

subtask. Additionally, our approach offers a practical pathway to applying RL in

real-world settings, where obtaining reward functions is often difficult.
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Chapter 4

Discussion and Future Work

In this thesis, we explore robotic manipulation of deformable objects. In the first

part, we develop a robotic system for the task of assistive dressing. We employ

reinforcement learning (RL) from partial point clouds, policy distillation, and guided

domain randomization to enable the policy to generalize to a wide variety of body

shapes, garment types, and arm poses in the real world. We further enhance the safety

and comfort of our system by leveraging force sensing. We combine a vision-based RL

policy trained in simulation with a force dynamics model trained with real robot data

to infer actions that are both safe and effective. In the second part, we propose a

novel framework that automatically generates reward functions by leveraging feedback

from vision language models (VLMs) and demonstrate our method’s effectiveness on

deformable object manipulation.

Manipulating deformable objects has important applications in various domestic

and assistive tasks. For example, in healthcare, robots can assist with dressing

and undressing patients and changing bed sheets. In the home, they can help

with tasks such as meal preparation and folding laundry. In addition, robots can

aid in agricultural tasks such as harvesting delicate fruits and vegetables, handling

plants, and sorting produce. These applications compel us to tackle manipulation

problems with fewer assumptions, leading to the development of more general and

robust manipulation systems. In our work on assistive dressing, we develop a vision-

based dressing policy and a force-based dynamics model directly from raw sensory

input, avoiding the need for low-dimensional state representations. Reinforcement
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learning from point cloud observations offers a versatile solution for deformable

object manipulation. Additionally, in RL-VLM-F, we generate the reward function

directly from high-dimensional RGB image observations, rather than relying on

environment code and low-dimensional state representations as in prior work. This

approach enables RL-VLM-F to effectively address deformable manipulation tasks.

Furthermore, we adopt a multimodal approach in this thesis. In Chapter 2, we

demonstrate that combining force and vision sensing enhances the task of assistive

dressing. Visual information provides global perception, while force information helps

with local control. In Chapter 3, we utilize the common sense reasoning abilities of

vision language models (VLMs) by querying them with text descriptions and image

observations, enabling effective reward generation.

Below, I list a few directions that are closely related to the contributions of this

thesis:

• Closed-Loop Visuo-Tactile Policy Learning: In this thesis, we explore

reinforcement learning and planning with vision and force modalities for de-

formable object manipulation. Another modality that offers fine-grained local

information, which might not be present in visual image data due to occlusions,

is tactile sensing. Therefore, an interesting future direction is multi-modal

perception using vision and touch. A promising paradigm is to develop a

hierarchical framework that uses vision input for a high-level policy and tactile

input for a low-level reactive policy.

• Bridging the Sim2Real Gap for Deformable Object Manipulation:

Two commonly used methods for Sim2Real are system identification [61] and

domain randomization over vision or dynamics [85, 104]. System identification

can be challenging due to the near-infinite degrees of freedom of deformable

objects, while domain randomization can hinder policy learning and requires

careful hand-tuning of the randomization range. Alternatively, we can take a

task-driven domain adaptation or target-domain policy adaptation approach.

For task-driven domain adaptation, we can learn an adaptation policy via

meta-learning style methods in simulation to adjust the simulation parameters

based on the current policy’s performance. For target-domain policy adaptation,

one approach is to adaptively update the policy in target-domain according
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based on uncertainty estimation.
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Appendix A

One Policy to Dress Them All

A.1 System Implementation Details

A.1.1 Full Reward Function

As mentioned in the main paper Section IV.B, in addition to the main reward rm

that measures the progression of the dressing task, we have three additional reward

terms, detailed as follows:

• The second reward term is a force penalty rf that prevents the robot from

applying too much force through the garment to the person. Too much force will

not only hurt the person in the real world but also lead to unrealistic simulation

as the cloth will penetrate through the arm. Specifically, let f be the total

applied force from the garment to the human, and fmax be the max threshold,

this reward is computed as rf = −0.001 ·max(f − fmax, 0). We set fmax to be

1000 units as measured by the simulator, which is an empirical threshold value

when the cloth starts penetrating. We note that due to simulation modeling

inaccuracies, this force number given by the simulator does not correspond to

1000 Newtons of force in the real world.

• The third reward term is a contact penalty rc that prevents the robot end-effector

from moving too close to the person. Let de be the shortest distance between the

end-effector and the arm, this reward is computed as rc = −0.01 · 1(de < dmin),
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x
y

z

Figure A.1: Coordinate system in the real world.

where 1(de < dmin) = 1 if de < dmin and 0 otherwise. dmin is set to be 1 cm in

our experiments. This reward term, as well as the previous one, are used to

keep the dressing process safe and comfortable for the person.

• The last reward term is a deviation penalty rd that discourages the garment

center from moving too far away from the arm. Let dg be the shortest distance

from the garment center pgcenter to the arm, this reward is given by rd = 0.02 if

dg < 3 cm, rd = −0.05 if dg > 7.5 cm, and rd = 0 otherwise.

The full reward function we use is: r = rm + rf + rc + rd.

A.1.2 Observation Domain Randomization

We pre-process the point cloud by filtering it with a voxel grid filter: we overlay a 3d

voxel grid over the partial point cloud and then take the centroid of the points inside

each voxel to obtain a voxelized point cloud. This preprocessing step is done both in

simulation training and in the real world, which makes our method agnostic to the

density of the observed point cloud and thus more robust during sim2real transfer.

We use a voxel size of 6.25 cm.

As mentioned in main paper Section IV.D, we perform randomization on the
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garment point cloud observation for robust sim2real transfer. The randomizations we

perform in simulation are as follows. Note that all these randomizations are just for

the observations; the underlying simulator state or physics (e.g., the garment mesh)

is not randomized.

• Random cropping of garment point cloud. To make the garment point cloud

observation more aligned between the simulation and the real world, we perform

cropping to remove the bottom part of the garment. After the bottom part

are cropped, the remaining part (which mostly contains the sleeve part of the

garment) is much more similar between simulation and the real world, reducing

the sim2real gap. Formally, given the garment point cloud P g and the human

finger point phfinger, we remove garment points that are δ1 cm lower than the

human finger point, i.e., the following points are kept:

{pi ∈ P g | pi[z] > phfinger[z]− δ1}, (A.1)

where p[z] is the z coordinate of the point, and z is the gravity axis (Figure A.1

shows the coordinate system we use in the real world). δ1 is uniformly randomly

sampled from [10, 25] cm in our experiments.

In the real world, we obtain the garment point cloud P g via color thresholding.

Color thresholding will usually return some additional noise points that are not

part of the garment, especially when environment conditions such as lighting

changes. To account for such error in the real world, we add more cropping to

remove the noise points returned by color thresholding. Specifically, all garment

points that are δ2 cm above the robot gripper point P r, or δ3 cm forward the

gripper point (the forward direction is along the x axis shown in Figure A.1)

are removed. Formally, only points satisfying the following conditions are kept:

{pi ∈ P g | pi[z] < P r[z] + δ2, pi[x] < P r[x] + δ3}, (A.2)

where x is the coordinate axis aligning with the forward moving direction of

the robot (See Figure A.1). In our experiments, we uniformly randomly sample

δ2 from [1, 5] cm, and δ3 from [1, 5] cm. In summary, we perform the cropping
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to only keep the following garment points:

{pi ∈ P g | pi[z] > phfinger[z]− δ1, pi[z] < P r[z] + δ2, pi[x] < P r[x] + δ3} (A.3)

• Random dropping of garment points. In the real world, the part of garment

points that are grasped by the tool is occluded by the tool (See Fig. 4 in

the main paper for an illustration of the 3D-printed grasping tool we use in

the real world). To account for this issue, we remove garment points that are

near the gripper point in simulation as well. Specifically, any garment points

that are δ4 cm within the gripper point P r are removed from the observation.

Mathematically, points satisfying the following condition are removed:

{pi ∈ P g | ||pi − P r||2 < δ4} (A.4)

In each training episode of SAC, we perform this operation of removing points

near the gripper with a probability of 0.5. We set δ4 = 9.375 cm in our

experiment.

• Random erosion of the garment. To account for the geometric differences

between the garment in simulation and in the real world, we add random

erosion on the garment depth image. The erosion is done on the depth image

of the garment before de-projecting it to a point cloud. The kernel size for the

erosion is randomly sampled from [0, 3, 5, 7, 9, 11, 13, 15, 17, 19], where 0 means

no erosion will be used.

• Random dilation of the garment. To account for the geometric differences

between the garment in simulation and in the real world, we add random

dilation on the garment depth image. The dilation is done on the depth image

of the garment before de-projecting it to a point cloud. The kernel size for the

dilation is randomly sampled from [0, 3, 5, 7, 9, 11, 13, 15, 17, 19], where 0 means

no erosion will be used. If the sampled erosion and dilation kernel sizes are

both non-zero, we do either erosion or dilation with equal probability, and do

not perform them at the same time.

• Random noise added to gripper position. In the real world, we use a side-view

camera and perform camera-to-robot calibration, so we can transform garment
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and arm point clouds into the robot frame. On the other hand, the robot gripper

position is obtained via forward kinematics and is already in the robot frame,

thus does not need the calibration and is perfectly accurate in the robot frame.

Due to camera calibration errors, there will be minor errors when transforming

the garment and arm point clouds into the robot frame. To account for such

error, we add random noise to the gripper position in simulation. As we use

PointNet++ as our policy architecture and it is translation-invariant (i.e.,

translating the whole input point cloud does not change the output), adding a

random noise to the gripper position is equivalent to adding a random noise to

all the garment and arm point clouds, thus mimicking the real-world calibration

error. Note that the noise is only added to the gripper point in the policy

observation, but not the actual gripper in simulation. At the beginning of each

SAC training episode, we uniformly sample a noise from [−3.125, 3.125] cm,

and the noise is added to the gripper position throughout this episode.

When deploying the policy in the real world, we perform the cropping of the garment

point cloud and fix δ1 = 15 cm, δ2 = 2 cm, and δ3 = 1 cm. We do not perform

random dropping, erosion, or dilation of the garment points in the real world, and we

do not add noise to the gripper position in the real world.

A.1.3 Simulation Training Details

We use PointNet++ [88] as both the policy and the Q function network architecture.

We use implementation of PointNet++ in Pytorch Geometric [32]. For the dense

transformation policy, we use the segmentation-type PointNet++. We use 2 set

abstraction layers followed by a global max pooling layer, 3 feature propagation layers,

and followed by a Multi-layer Perceptron (MLP). The set abstraction radius are 0.05

and 0.1, and the sampling ratios are 1 and 1. The numbers of nearest neighbors for

feature propagation layers are 1, 3, and 3. The final MLP is of size [128, 128]. For

the Q function, we use the classification-type PointNet++. We use 2 set abstraction

layers, followed by a global max pooling layer, and a MLP. The set abstraction radius

are 0.05, 0.1, and the sampling ratios are 1, 1. The final MLP is of size [128, 128].

We use SAC [39] as the RL training algorithm. The learning rates for the actor,

critic, and the entropy temperature alpha are all 1e− 4. The delayed actor update
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Garment 1 Garmen 2 Garment 3

Garment 4 Garment 5

Figure A.2: Garments we used in simulation training. The first one is a hospital
gown, followed by 4 cardigans. The garments are in ascending order in terms of sleeve
length.

frequency is 4, i.e., we update the actor once every time the critic is updated 4

times. We use a replay buffer size of 400000, and a batch size of 64. The soft update

parameter τ for the critic target network is set to be 0.01. Each episode in simulation

has 150 time steps. We use the Adam [51] optimizer to train both the policy and the

Q network.

A.2 Simulation Experiments

A.2.1 Experimental Setup

Human Mesh Generation

We use SMPL-X [84] model to generate human meshes of different body sizes and

shapes. The body shape of the mesh is controlled by a 10D latent vector β. We

uniformly sampled β from [−2, 5]. The height of the mesh is uniformly sampled

from [1.5, 1.9]. The gender is uniformly sampled from [Male, Female]. Some example

generated meshes are shown in Figure A.3.
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Figure A.3: Some example human meshes we generate for simulation training. From
top left to bottom right: a mesh from arm pose sub-range 1 to a mesh from arm pose
sub-range 27.
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Simulation Garments

We use a hospital gown and 4 cardigans chosen from the Cloth3D [9] dataset. These

garments have different geometries and are shown in Figure A.2. We scale the garment

mesh so they are of proper size for dressing.

Arm Pose Range Decomposition

For the shoulder joint ϕ1, we decompose the full interval [−20, 30] to 3 intervals

[−20,−8], [−8, 18], [18, 30]. For the inwards-outwards elbow joint angle ϕ2, we de-

compose the full interval [−20, 20] to 3 intervals [−20,−8], [−8, 8], [8, 20]. For the

upwards-downwards joint angle ϕ3, we decompose the full interval [−20, 30] to 3

intervals [−20,−3], [−3, 14], [14, 30]. The cross product of all of these intervals results

in 27 pose sub-ranges. Figure A.3 shows an example mesh from each of the pose

sub-ranges.

Simulator Parameters

We use SoftGym [65] based on the NVIDIA FleX simulator. FleX simulates cloth

as a collection of particles connected by springs. We set the stiffness of the stretch,

bend, and shear spring connections to 0.3, 0.3, 0.3, respectively. The particle radius

is 0.625 cm. The particle, dynamic, and static fricition coefficient are set to be 0.3,

0.3, and 0.3, respectively.

A.2.2 Baseline Implementation

Direct Vector

For the policy, we use a classification-type PointNet++. We use 2 set abstraction

layers, followed by a global max pooling layer, and a MLP. The set abstraction

radius are [0.05, 0.1], and the sampling ratios are [1, 1]. The final MLP is of size

[256, 256, 256, 128, 128, 128, 128, 128, 128]. Since the Direct Vector policy does not

have the feature propogation layers, the final MLP is set to be larger so the total

number of parameters for the Dense Transformation and the Direct Vector policy is

similar. We train Direct Vector policy using the same SAC parameters as training

the Dense Transformation Policy.
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TD-MPC

We use the official implementation from the authors1. For the MPPI planning, we use

8 iterations with 512 samples per iteration. The number of elites is 64, and planning

horizon is 5. We use a classification-type PointNet++ (the same as the one used

for Direct Vector policy) to encode the partial point cloud into a latent vector. The

dimension of the latent vector is 100. Other hyper-parameters are set to the default

values as in TD-MPC.

PCGrad

We use a re-implementation of PCGrad [121] in PyTorch 2. The dressing task can be

viewed as multi-task learning where each arm pose sub-range is treated as a separate

task. As we have 27 arm pose sub-ranges, we keep 27 replay buffers, one for each

sub-range. We also follow [121] to learn an individual entropy temperature α in SAC

for each task. We wrap the Adam [51] optimizer with PCGrad. In each training step,

we randomly sample 16 replay buffers. For each of the sampled replay buffer, we

randomly sample 4 transition tuples, {on, an, rn, o′n}4n=1, to form a stratified batch of

size 64, and use PCGrad to perform the gradient update.

Deep Haptic MPC

We re-implemented Deep Haptic MPC [28] for our environment. We train an one-step

force prediction model F (x1:t, at+1) given the robot end-effector state history x1:t

and action at+1 following the original paper. The end-effector state measurements

xt = (ρ, v, f) ∈ R13 at time t include the 6D position ρ, 6D velocity v, and force f

applied at the robot’s end-effector. We do not use any visual information to train the

force prediction model. During test time, we define a cost function that encourages

lower force applied to the human arm and higher dressing performance. Since the

original paper assumes a single fixed arm pose, sampling actions whose velocity

lies within a hemisphere facing the +x global coordinate axis will encourage task

progression. Different from [28], we have a diverse set of arm poses. Therefore, we use

the position of the human hand, elbow, and shoulder to guide the action sampling.

1https://github.com/nicklashansen/tdmpc
2https://github.com/WeiChengTseng/Pytorch-PCGrad
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At each time step, if the garment is on the forearm, we sample N = 128 candidate

actions whose dot product with the direction from the human’s finger to the elbow is

positive; if the garment is on the upper arm, we sample N = 128 candidate actions

whose dot product with the direction from the human’s elbow to the shoulder is

positive. We always sample candidate actions that point to the direction of task

progression. The input to the cost function includes a history of robot end-effector’s

measurements x1:t and the next candidate action sample at+1. The cost function

penalizes actions that lead to large forces and actions whose magnitude is large. It

also encourages actions that move forward along the human arm. Formally, the cost

function is represented by three weighted terms as follows:

J(x1:t, at+1) = w1 |F (x1:t, at+1|1|

− w2 d̄ · atranslationt+1

+ w3 ||at+1||22

, where d is the vector from human’s finger to elbow when the garment is still on

forearm and from human’s elbow to shoulder when the garment is on the upper

arm. We run this baseline on three selected pose regions. For each region, we collect

training trajectories on the first 45 poses and 5 garments to train the force prediction

model and we report the evaluation results on the last 5 poses in Table I in the paper.

This baseline lacks the ability to generalize to diverse poses since it does not take

in as input the visual observation of the arm and the garment. We find it perform

worse than our proposed method on all three selected pose regions.

Heuristic Motion Planning

As mentioned in the main paper, the motion planning baseline finds a collision-free

robot end-effector path along the human arm. The following constraints are used

for planning the path. First, the normal of the grasping tool (mounted on the robot

end-effector) should align with the normal of the arm plane, which is the plane defined

by the person’s finger, elbow, and shoulder points. Second, the forward direction of

the end-effector should align with the direction of the forearm (the line connecting

finger and elbow points) or the direction of the upper arm (the line connecting the
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elbow and shoulder points). Third, the path should go through three way points,

which are defined as points above a certain distance from the finger, elbow, and

shoulder points. Forth, the path needs to have no collision with the human arm.

This baseline’s average upper arm dressed ratio is 0.32 on all 27 arm pose regions,

compared to 0.68 with our method (Table II in the paper). We find such a method

to perform well when there is no sharp bending around the shoulder and the elbow,

and worse when the bends are sharp, aligning with findings in prior work [50].

A.3 Real-world Experiments

A.3.1 Human Study Procedure

Human arm capture. To capture only the human arm point cloud, we manually

select 3 pixels on the depth image that correspond to the shoulder, elbow, and hand

point of the participant (this step can be replaced by using a human pose estimator

in future work). We then transform these three pixels to three points in the robot

frame. We form two lines: the first connects the hand point and the elbow point

(forming a line along the forearm), and the second connect the elbow point and the

shoulder point (forming a line along the upper arm). Then, we crop the point cloud

by only keeping points whose distances to either of these two lines are smaller than a

threshold ∆. We set ∆ = 7.5 cm in our experiment.

Dressing time cost. Each dressing trial lasts between 1 to 2 minutes. It takes

roughly 1 minute (as mentioned above) to perform the arm cropping and moving

the Sawyer to be near the participant’s hand. The actual dressing time is roughly

between 40 seconds and 80 seconds. It usually takes 1 hour to 1.5 hours to finish the

30 dressing trials for each participant (including all other time cost such as rest time

for the participant).

Scripts for participant. Before the study begins, we read and show the following

script to the participant for him/her to get familiar with the study procedure:

We are conducting a study to evaluate a robot-dressing system. The robot will

dress the garment on your right arm. We will now walk you through the steps we are

taking. You will first read and sign the consent form, and fill a demographic form.

We will then measure some statistics of your arm, including the forearm length, upper
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Figure A.4: Upper arm dressed ratio, success rate, and Likert item responses for
different poses in the human study. The results are averaged over all 425 dressing
trials from 17 participants in the human study.

arm length, and the arm circumference before the study starts. We will put a marker

on your shoulder for the experiment. We will then start the study. There will be 30

dressing trials, 6 trials for 5 garments. Each trial will be on a different arm pose,

and a different garment. You will be asked to hold your arm static during the trial.

We will show the arm pose you need to hold on a computer screen, and we will also

demonstrate the pose by ourselves to you if it’s not clear. After we tell you to start,

you need to hold the pose static for 1 - 2 minutes while we operate the robot to perform

the dressing. Very occasionally the robot gripper might have contact with you during

the dressing process. If you feel uncomfortable during the trial, you can tell us to

stop the trial any time. Occasionally there will be operation failures on us for a trial.

We will repeat those trials when such failures happen. After each trial, please keep

holding the arm while we measure some statistics of the dressing performance. Then

you can rest the arm and you will be asked to fill a questionnaire. The questionnaire

is a Likert item stating that “The robot successfully dressed the garment onto my

arm”. 1 is strongly disagree and 7 is strongly agree. You can rest whenever you feel

tired, just let us know. After 6 trials for each garment, we will change the garment

and you can also rest.

A.3.2 More Real-world Experimental Results

We present the upper arm dressed ratio, success rate, and Likert item responses for

each of the poses we tested in the human study in Figure A.4. Again, we notice that

some poses (the 5th one) is harder than others.
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Figure A.5: Failure cases of our system in the human study. Left: the policy gets
stuck and stops output actions that make any further progress of the task. Right: the
garment gets caught on the participant because the policy actions pull the gripper to
high above the participant’s arm.
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Figure A.6: Upper arm dressed ratio versus changes in arm joint angles.
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A.3.3 Failure Cases

Figure A.5 shows two failure cases from our policy. The first failure case is that

the policy gets stuck and cannot output actions that make further progress for the

task, e.g., the policy oscillates between moving up and down and does not move

forward. This might be due to the gap in sim2real transfer or out-of-distribution arm

poses/sizes/shapes in the real world. The second failure case occurs when the garment

gets caught on the participant. Since it is visually difficult to detect if the garment

has gotten stuck, incorporating force-torque sensing could be helpful in addressing

this failure case.

A.4 Out of Distribution Evaluation

As mentioned in the main paper, we perform evaluation of our system when the static

arm assumption is relaxed. In simulation, we evaluate how our system performs if

the participants change their shoulder or elbow joint angles after we capture the

initial arm point cloud, on 1 pose sub-region and 5 garments. We test 3 types of

joint angle changes: lowering down the shoulder joint, lowering down the elbow joint,

and bending inwards the elbow joint. Figure A.6 demonstrates how the upper arm

dressed ratio varies as the change of joint angle varies. Overall, we find our system

to be robust to 8.6 degrees of change in shoulder and elbow joint angles (averaged

across 3 types of joint angle changes and 5 garments) while maintaining 75% of the

original performance.
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Appendix B

RL-VLM-F

B.1 Details on Tasks and Environments

We run our method and baselines on CartPole from openAI Gym [15], three rigid and

articulated object manipulation tasks from MetaWorld [122], and three deformable

object manipulation tasks from SoftGym [65]. For the three MetaWorld tasks, we

modified the gripper initial state such that it starts close to the target object to

manipulate. Figure 3 in the paper shows the initial state for these 3 tasks. We also

adjusted the camera view such that the target object is clearly visible at around the

center of the image, to provide good images for VLM to give preferences. We describe

the observation space and action space for those tasks as follows:

B.1.1 Observation Space

For policy learning with SAC, we use state-based observations; for reward learning,

we use high dimensional RGB image observations, rendered by the simulator. We

now detail the state-based observation space for each task.

MetaWorld Tasks. For MetaWorld tasks, we follow the setting in the original

paper [122]. The state observation always has 39 dimensions. It consists of the

position and gripper status of the robot’s end-effector, the position and orientation of

objects in the scene, and the position of the goal.

CartPole. The state observation has 4 dimensions, including the position and
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velocity of the cart, as well as the angle and angular velocity of the pole.

Cloth Fold. The state observation is the position of a subset of the particles in

the cloth mesh. The cloth is of size 40 x 40, and we uniformly subsample it to be of

size 8 x 8. The state is then the position of the picker, and the positions of all those

subsampled particles.

Straighten Rope. The state observation is the positions of all particles on the

rope and has 36 dimensions.

Pass Water. The state observation includes the size (width, length, height)

of the container, the target container position, height of the water in the container,

amount of water inside and outside of the container. The state observation has 7

dimensions.

B.1.2 Action Space

For all environments, we normalize the action space to be within [−1, 1]. Below we

describe the action space for each environment.

MetaWorld Tasks. For MetaWorld tasks, the action space always has four

dimensions. It includes the change in 3D position of the robot’s end-effector followed

by a normalized torque that the gripper fingers should apply.

CartPole. The original action space is a discrete value in 0, 1, indicating the

direction of the fixed force the cart is pushed with. We modified it to be continuous

within range [0, 1] such that SAC can be used as the learning algorithm. The

continuous action represents the force applied to the pole.

Cloth Fold. For this task, we use a pick-and-place action primitive. We assume

that the corner of the cloth is grasped when the task is initialized. The action is the

2D target place location.

Straighten Rope. For this task, we use two pickers, one at each end of the rope,

to control the rope. Therefore, the action space is the 3D delta positions for each

picker and has 6 dimensions in total. We assume the two end points of the rope is

already grasped at the beginning of the task.

Pass Water. The motion of the glass container is constrained to be in one

dimension. Therefore, the action also has a dimension of 1 and is the delta position

of the container along the dimension.
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B.2 Hyper-parameters and Network

Architectures

B.2.1 Image-based Reward Learning

For the image-based reward model, we use a 4-layer Convolutional Neural Network for

MetaWorld tasks and CartPole and a standard ResNet-18 [42] for the three deformable

object manipulation tasks. Following PEBBLE [56], we also use an ensemble of three

reward models and use tanh as the activation function for outputting reward. For

RL-VLM-F, we train the model by optimizing the cross-entropy loss, defined in

Equation 2. For VLM Score, we train the mode by optimizing the MSE loss between

the predicted score and ground-truth score output by the VLM. For both methods,

we use ADAM [51] as the optimizer with an initial learning rate of 0.0003.

B.2.2 Policy Learning

Following PEBBLE [56], we use SAC as the off-policy learning algorithm. We follow

the network architectures for the actor and critic and all the hyper-parameter settings

in the original paper for policy learning.

B.2.3 Training details

Our implementation is based on PEBBLE [56]. Below we describe the feedback collec-

tion schedule for each task. For all tasks, we use a segment size of 1. We summarize

the number of queries per feedback session (M in Algorithm 1), the frequency at

which we collect feedback in terms of environment steps (K in Algorithm 1), and the

maximum budget of queries (N) for each task in Table B.1. For Cloth Fold, we have

to use a small number of maximum budget of queries due to the quota limitation of

GPT-4V.
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M K N
Open Drawer 40 4000 20000

Soccer 40 4000 20000
Sweep Into 40 4000 20000
CartPole 50 5000 10000
Cloth Fold 50 1000 500

Straighten Rope 100 5000 12000
Pass Water 100 5000 12000

Table B.1: Hyper-parameters for feedback learning schedule.

B.3 Baselines

B.3.1 VLM score

For this baseline, we use the same amount of queries (K) at the same frequency (M)

as in our method to ask VLM to directly output a score between 0 to 1. The reward

model’s architecture is the same as our method, except that the model is trained

with regression loss to regress to VLM’s output score instead of classification loss as

done in our method.

B.3.2 RoboCLIP

In RoboCLIP, the backbone video-language model is S3D [117], trained on clips of

human activities paired with textual descriptions from the HowTo100M dataset [74].

Given the assumption that the model generalizes to unseen robotic environments, we

applied this baseline solely to the three MetaWorld tasks that contain a robot in the

scene. We obtain the implementation directly from the authors. To maintain uniform

assumptions across methods, we compare against the RoboCLIP variant that only

uses a text description instead of a video demonstration to compute the similarity

score with the agent’s episode rollout for reward computation. According to the

original paper, this text-only variant of RoboCLIP underperforms the video-based

method, corroborating the lower performance observed in our tasks.
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Prompt Template for RL-VLM-F (ours)

Analysis Template

Consider the following two images:
Image 1:

[Image 1]
Image 2:

[Image 2]

1. What is shown in Image 1?
2. What is shown in Image 2?

3. The goal is to [task description]. Is there any difference between Image 1 and
Image 2 in terms of achieving the goal?

Labeling Template

Based on the text below to the questions:
[Repeat the 3 questions in the Analysis Template]

[VLM response]
Is the goal better achieved in Image 1 or Image 2? Reply a single line of 0 if the

goal is better achieved in Image 1, or 1 if it is better achieved in Image 2.
Reply -1 if the text is unsure or there is no difference.

Figure B.1: Prompt Template for RL-VLM-F.

B.4 Prompts

B.4.1 RL-VLM-F and VLM Score

For both RL-VLM-F and VLM Score, we use a unified query template combined with

specific task goal descriptions. The templates for RL-VLM-F and VLM Score are

shown in Figure B.1 and Figure B.2:

The only task-specific part in both prompts is the task goal description. We use

the same set of descriptions for both methods. We summarize the textual description

for each task in Table B.2.
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Prompt Template for VLM Score

Analysis Template Consider the following image:
[Image]

1. What is shown in the image?
2. The goal is [task description]. On a scale of 0 to 1, the score is 1 if the goal is

achieved. What score would you give the image in terms of achieving the goal?
Labeling Template

Based on the text below to the questions:
[Repeat the 3 questions in the Analysis Template]

[VLM response]
Please reply a single line of the score the text has given. Reply -1 if the text is

unsure.

Figure B.2: Prompt Template for VLM Score.

B.4.2 CLIP Score and BLIP-2 Score

The task descriptions for both CLIP Score and BLIP-2 Score baselines are summarized

in Table B.3. The semantic meaning is almost identical to those used by RL-VLM-F

and VLM Score, except that the description is structured differently. For CartPole,

we used the exact same prompt as in [92], since they reported successful learning of

this task using that prompt.

B.4.3 RoboCLIP

For the task descriptions for the RoboCLIP baseline, we followed the format used in

the original paper [99]. We summarize the text descriptions in Table B.4.

B.4.4 RL-VLM-F single stage prompt

In Section 3.1.6 we compared to an ablated version of RL-VLM-F where a single-stage

prompting strategy is used. The single-stage prompt used is shown in Figure B.3.

For a fair comparison, it is kept to be the same as the two-stage prompt with only
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Single Stage Prompt Template for RL-VLM-F

Consider the following two images:
Image 1:

[Image 1]
Image 2:

[Image 2]

1. What is shown in Image 1?
2. What is shown in Image 2?

3. The goal is [task description]. Is there any difference between Image 1 and
Image 2 in terms of achieving the goal?

Is the goal better achieved in Image 1 or Image 2? Reply a single line of 0 if the
goal is better achieved in Image 1, or 1 if it is better achieved in Image 2.

Reply -1 if the text is unsure or there is no difference.

Figure B.3: The single stage prompt Template for RL-VLM-F.

minor differences.

B.5 Additional Experiment Results

B.5.1 GT Task Reward (Oracle) and GT Sparse Reward

(Oracle)

To better contextualize the results from different reward models, we test two more

baselines, i.e., GT Task Reward (Oracle) and GT Sparse Reward (Oracle). For

GT Task Reward (Oracle), we use the original ground-truth human-written reward

function with SAC as the RL algorithm to train the policy. For GT Sparse Reward

(Oracle), we use sparse reward with SAC. The reward is 1 when the goal is achieved

and 0 otherwise. The results of GT Task Reward (Oracle) and GT Sparse Reward

(Oracle), along with our method and all baselines, are shown in Figure B.4. For most
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Task Name Goal Description

Open Drawer to open the drawer
Soccer to move the soccer ball into the goal
Sweep Into to minimize the distance between the green cube and the hole
CartPole to balance the brown pole on the black cart to be upright
Cloth Fold to fold the cloth diagonally from top left corner to bottom

right corner
Straighten Rope to straighten the blue rope
Pass Water to move the container, which holds water, to be as close to

the red circle as possible without causing too many water
droplets to spill

Table B.2: Goal description used in RL-VLM-F and VLM Score baseline.

Task Name Goal Description

Open Drawer The drawer is opened.
Soccer The soccer ball is in the goal.
Sweep Into The green cube is in the hole.
CartPole Pole vertically upright on top of the cart.
Cloth Fold The cloth is folded diagonally from top left corner to bottom

right corner.
Straighten Rope The blue rope is straightened.
Pass Water The container, which holds water, is as close to the red circle

as possible without causing too many water droplets to spill.

Table B.3: Goal description used in CLIP Score and BLIP-2 Score.

Task Name Goal Description

Open Drawer Robot opening green drawer
Soccer Robot pushing the soccer ball into the goal
Sweep Into Robot sweeping the green cube into the hole on the table

Table B.4: Goal description used in RoboCLIP.

tasks, RL-VLM-F ’s final performance can match that of using ground-truth reward,

highlighting the effectiveness of our method.
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Figure B.4: Learning curves of GT Task Reward (Oracle) and GT Sparse Reward
(Oracle), along with RL-VLM-F and all baselines.

B.5.2 Ablation Study: Influence of Using Different VLMs

For RL-VLM-F and the VLM score baseline, we use Gemini-Pro [103] as the VLM for

all tasks except Fold Cloth. We find Gemini-Pro to perform poorly on Fold Cloth, so

we instead use GPT-4V [80] as the VLM for this task for both methods. Figure B.5

compares the learning performance of Gemini-Pro versus GPT-4V on the task of Fold

Cloth. We do observe GPT-4V to achieve much better performance on this task than

Gemini-Pro. The poorer performance of Gemini-Pro on this task could be possibly

due to the more complex visual reasoning required for deformable cloth.

B.5.3 More Visualization of the Learned Reward

Here we show the learned reward from RL-VLM-F and the VLM Score baseline, as

well as the CLIP and BLIP-2 score along an expert trajectory on three MetaWorld

tasks. We compare the learned reward from RL-VLM-F and the VLM Score /

CLIP and BLIP-2 score to the ground-truth task progress. The results are shown

in Figure B.6. For all three tasks, the reward learned by RL-VLM-F aligns the best

with the ground-truth task progress.
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Figure B.5: On the Fold Cloth task, we find the performance of GPT-4V to be better
than Gemini-Pro, possibly due to the complex visual appearance of the cloth.

Figure B.6: Comparison of learned reward functions from RL-VLM-F and VLM
Score, as well as CLIP and BLIP-2 score to the ground-truth task progress along
a trajectory rollout on three MetaWorld tasks. From left column to right: reward
learned by RL-VLM-F, reward learned by VLM Score, CLIP Score, BLIP-2 Score.
From top row to bottom: Open Drawer, Soccer, and Sweep Into. The reward learned
by RL-VLM-F aligns the best across all compared methods.
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