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Abstract

Multi-agent reinforcement learning presents unique hurdles such as the non-
stationary problem beyond single-agent reinforcement learning that makes
learning effective decentralized cooperative policies using an agent’s local
state extremely challenging. Effective communication to share information
and coordinate is vital for agents to work together and solve cooperative
tasks, as the ubiquitous evidence of communication in nature would
highlight. Hence, communication within a framework between agents
can potentially alleviate the problems of non-stationarity and partial
observability while being highly scalable. This work examines graph neural
networks (GNNs), whose message-passing mechanisms synergize well with
differentiable communication learning (CL) methods. We investigate the
inherent limitations of attention-based GNNs regarding their expressive
power and propose a new GNN, Graph Attention Isomorphism Network
(GAIN). We evaluated GAIN on the Open Graph Benchmark and showed
that it outperforms state-of-the-art GNNs on various graph, link, and
node property tasks across a GNN design space using GraphGym. We
incorporate GAIN into a simple architecture called Graph Communication
Network (GCNet) and evaluate it on tasks in the StarCraft Multi-Agent
Challenge. We show that it outperforms GCNet using state-of-the-art
GNNs and other baseline CL methods.
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Chapter 1

Introduction

Reinforcement learning (RL) has seen immense success in areas such as robotics [47]

and games [57, 79]. However, many real-world problems such as autonomous driv-

ing [77], transportation systems [2], and warehouse logistics [96] present themselves

as multi-agent settings to which multi-agent reinforcement learning (MARL) offers

solutions. However, there are challenges in MARL beyond single agent RL such

as the non-stationary problem [66] arising from learning in a dynamic environment

with changing policies from other learning agents that makes learning effective de-

centralized cooperative policies using an agent’s local state extremely challenging.

Effective communication to share information and coordinate is vital for agents to

work together and solve cooperative tasks, as the ubiquitous evidence of commu-

nication in nature would highlight. For example, bees perform a waggle dance to

communicate the location of food sources to other members of the hive [9] and

dolphins use echolocation to communicate and navigate underwater, helping them

find food and avoid obstacles [16].

This work examines graph neural networks (GNNs), which are a powerful class

of neural networks designed to perform inference on graph-structured data. GNNs

are designed to take advantage of the relationships and interactions between nodes,

representing entities, and edges, representing connections or relationships, to learn

meaningful representations. This capability makes them particularly suitable for a

wide range of applications, including social network recommendation systems [17] and

molecular chemistry [90]. In addition, its message-passing mechanism is particularly
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1. Introduction

suitable for communication learning (CL) because it allows nodes, representing agents,

to iteratively exchange and aggregate information from their neighbors, hence syner-

gizing well with differentiable CL methods. However, one of the known limitations of

popular GNNs lies in their limited expressive power [59, 98] that is bounded by the 1-

dimensional Weisfeiler-Leman algorithm (1-WL) [92] in distinguishing non-isomorphic

graphs. Given that most GNN-based CL methods fall under the paradigm of graph

decision networks (GDNs) [63], it can be shown that a GDN’s capability to learn

a sufficiently expressive communication framework between agents to learn policies

to solve a task is tied to its GNN’s expressive power based on the WL hierarchy.

Hence, we investigate the inherent limitations of attention-based GNNs in terms

of their expressive power and propose a new GNN, Graph Attention Isomorphism

Network (GAIN), that is provably as expressive as 1-WL. We evaluated GAIN on the

Open Graph Benchmark (OGB) [35] and showed that it outperforms state-of-the-art

GNNs on various graph, link, and node property tasks across a GNN design space

using GraphGym [100]. We incorporate GAIN into a simple GDN-based architecture

called the Graph Communication Network (GCNet) and evaluate it on tasks in the

StarCraft Multi-Agent Challenge (SMAC) [72]. We show that it outperforms GCNet

using state-of-the-art GNNs and other baseline CL methods.
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Chapter 2

Background

This chapter provides the necessary preliminaries and related work.

2.1 Preliminaries

The following sections provide the necessary technical background.

2.1.1 Notations

Let [n] = {1, . . . , n} ∈ N for n ≥ 1. Let {} and {{}} denote a set and a multiset,

respectively. Formally, a multiset is a tuple X = ⟨S, µ⟩, where S is the underlying set

that represents the distinct elements in X and µ : S → N+ gives the multiplicity of

the elements. A graph (undirected) G is a tuple ⟨V,E⟩ with a finite set of nodes V (G)

and a set of edges E(G) ⊆ {{u, v} ⊆ V (G) | u ̸= v}, where the edge {u, v} can be

denoted by (u, v) or (v, u). A labeled graph is a tuple ⟨V,E, l⟩ with the label function

l : V (G)∪E(G) →
∑

, where
∑

is a subset of natural numbers and l(w) is the label of

w ∈ V (G)∪E(G). An attributed graph is a tuple ⟨V,E, a⟩ with an attribute function

a : V (G) ∪E(G) → Rd, where d > 0. Hence, a(w) is an attribute or continuous label

of a node or edge w ∈ V (G)∪E(G). Let G denote the set of all labeled or attributed

graphs. The neighborhood of v ∈ V (G) is N(v) = {u ∈ V (G) | (v, u) ∈ E(G)}
and Ñ(v) = N(v) ∪ {v}. For a set S ⊆ V (G), S induces a subgraph (S,ES) where

ES = {(u, v) ∈ E(G) | (u, v) ∈ S × S}. Two graphs G and H are isomorphic,
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2. Background

denoted by G ≃ H, if there exists an edge-preserving bijection (graph isomorphism)

φ : V (G) → V (H) where ∀(u, v) ∈ E(G), (u, v) ∈ E(G) ⇔ (φ(u), φ(v)) ∈ E(H). In

addition, for labeled graphs, a graph isomorphism requires that ∀v ∈ V (G), l(v) =

l(φ(v)) and likewise for edge labels. The graph isomorphism problem is concerned

with deciding whether two graphs are isomorphic or not.

2.1.2 Multi-Agent Reinforcement Learning

MARL involves multiple agents learning to make decisions through interactions within

a shared environment to achieve individual or collective goals.

Partially Observable Stochastic Games

The multi-agent problem can be defined in general as a Partially Observable Stochastic

Game (POSG) [30, 99, 111]. The tuple ⟨I,S, ρ0, {Ai}i∈I , P, {Oi}i∈I , O, {Ri}i∈I , γ⟩
describes a POSG, where I is a finite set of agents indexed by [n], S is the set of

states shared by all agents, ρ0 ∈ ∆(S) is the initial state distribution, Ai is the set of

actions available to agent i, Oi is the set of observations of agent i, and γ ∈ [0, 1] is

the discount rate. Let A = ×i∈IAi and O = ×i∈IOi denote the joint action space

and the joint observation space, respectively. P : S ×A → ∆(S) is the transition

probability from state s ∈ S to state s′ ∈ S in the next time step given the joint

action a = ⟨ai⟩i∈I , where a ∈ A. O : S ×A → ∆(O) is the probability of observing

joint observation o = ⟨oi⟩i∈I , where o ∈ O, when transitioning to the state s′ ∈ S
given the joint action a. Ri : S × A × S → R is the reward function for agent i

with r = ⟨ri⟩i∈I as the joint reward. In cooperative settings where this work focuses,

all agents share a common goal, i.e. r1 = r2 = · · · = rn, which reduces POSG to a

Decentralized Partially Observable Markov Decision Process (Dec-POMDP) [65].

Policy Gradients

Unlike value-based methods that focus on estimating the optimal Q-value function

from which the policy is derived implicitly, policy gradient (PG) methods optimize

the policy directly over the policy space. Specifically, each agent learns its own policy

πθi : S → ∆(Ai) by updating the policy parameters θi, where θ = ⟨θi⟩i∈I is the joint

policy parameters, πθ = ⟨πθi⟩i∈I is the joint policy, and ρπθ is the state distribution

4



2. Background

under πθ. With the expected discounted return as the agent’s objective function,

Ji(θ) = Es0∼ρ0,s∼P,a∼πθ
[
∑∞

t=0 γ
tRi (st,a, st+1) |s0], the policy gradients, extended

to the multi-agent context, are expressed by the policy gradient theorem [83] in

Equation 2.1 as follows:

∇θiJi(θ) = Es∼ρπθ (·),a∼πθ(·|s) [∇θi log πθi(ai|s)Q
πθ
i (s|a)] (2.1)

In single agent RL, examples of PG methods include REINFORCE algorithms [93] that

use Monte Carlo methods to estimate the value function and actor-critic methods [48,

70], where the actor and critic represent the model used to approximate the policy

and the value function, respectively. Important variants of actor-critic methods

include PG with optimal baselines [91, 108], deep deterministic policy gradients

(DDPG) methods [49], soft actor-critic methods [28] and trust-region methods [74, 76].

Extensions of actor-critic methods to MARL include multi-agent deep deterministic

policy gradients (MADDPG) [51] and multi-agent proximal policy optimization

(MAPPO) [102], where MAPPO is the underlying MARL algorithm being used in

this work. Equations 2.2 and 2.3 show the losses of the actor L(θ) and the critic

L(ϕ), parameterized by θ and ϕ, for MAPPO respectively, where B and n are the

batch size and the number of agents, respectively:

L(θ) =
1

Bn

B∑
k=1

n∑
i=1

(
min

(
r
(k)
θi
A

(k)
i , clip

(
r
(k)
θi
, 1− ϵ, 1 + ϵ

)
A

(k)
i

)
+

σS
(
πθi

(
s
(k)
i

))) (2.2)

L(ϕ) =
1

Bn

B∑
k=1

n∑
i=1

max

((
Vϕi

(
s
(k)
i

)
− R̂

(k)
i

)2

,

(
clip

(
Vϕi

(
s
(k)
i

)
, Vϕold

i

(
s
(k)
i

)
− ε, Vϕold

i

(
s
(k)
i

)
+ ε

)
− R̂

(k)
i

)2
) (2.3)

For L(θ), r
(k)
θi

=
πθi

(
a
(k)
i |s(k)i

)
π
θold
i

(
a
(k)
i |s(k)i

) and ϵ is a hyperparameter to control the extent to which

the updated policy can deviate from the old policy to prevent excessively large policy

updates that can make learning inefficient and unstable. A
(k)
i is computed using

generalized advantange estimation (GAE) [75], S is the policy entropy function and

5



2. Background

σ is the coefficient hyperparameter for the policy entropy. Similarly for L(ϕ), ε is a

hyperparameter that controls the extent of the temporal difference (TD) error between

the value function Vϕi

(
s
(k)
i

)
and the discounted reward-to-go R̂

(k)
i . In addition, if the

actor and critic networks involve recurrent neural networks (RNN), the loss functions

sum over time and are trained via backpropagation through time (BPTT).

2.1.3 Weisfeiler–Leman Algorithm

The 1-WL algorithm [92] proposed by Weisfeiler and Leman addresses the graph

isomorphism problem through a simple but powerful iterative node labeling heuristic

that can successfully test the isomorphism for a broad class of graphs [6].

1-dimensional Weisfeiler-Leman Algorithm

Given a labeled graph G = ⟨V,E, l⟩, 1-WL computes a node coloring C1
i : V (G) → N

that is dependent on the coloring of the neighbors for each iteration i > 0 as shown

in Equation 2.4:

C1
i (v) = RELABEL

(
C1

i−1(v), {{C1
i−1(u) | u ∈ N(v)}}

)
(2.4)

RELABEL is an injective hash function that maps to a unique natural number that

has not been used in previous iterations and when i = 0, C1
i = l or a constant label

if none is provided. To test if two graphs are isomorphic using 1-WL, we execute

the above algorithm shown in Equation 2.4 in parallel for both graphs. For a given

iteration i, should the two graphs have a different number of nodes colored as c ∈ N,
1-WL concludes that the two graphs are not isomorphic. Otherwise, the algorithm

terminates when ∀u, v, C1
i (u) = C1

i (v) ⇔ C1
i+1(u) = C1

i+1(v) for a given iteration i,

and we can define the stable coloring ∀v ∈ V (G), C1
i (v) = C1

∞(v). The stable coloring

is reached after at most max(|V (G)|, |V (H)|) iterations [26].

k-dimensional Weisfeiler-Leman Algorithm

However, 1-WL cannot distinguish all non-isomorphic graphs [11], leading to the

development of a more powerful generalization of 1-WL known as the k-dimensional

Weisfeiler-Leman algorithm [5, 37]. In the literature, two versions of the algorithm are

6



2. Background

known, which have minor differences in their aggregation methods [25, 27, 54, 59, 61]:

1) the folklore k-dimensional Weisfeiler-Leman algorithm (k-FWL) and 2) the oblivious

k-dimensional Weisfeiler-Leman algorithm (k-OWL). By labeling subgraphs instead

of individual nodes similar to 1-WL given some definition of neighborhood between

subgraphs, both variants exceed 1-WL in terms of expressive power. For k ≥ 1,

there are non-isomorphic graphs distinguished by (k + 1)-WL that k-WL cannot [11].

Formally, with v as a tuple in V (G)k, G[v] is the subgraph induced by v, where G is

a graph, k ≥ 2 and the nodes in v are labeled with integers from [k] corresponding

to their indices. Like 1-WL, k-FWL computes a coloring Ck
i : V (G)k → N in each

iteration i ≥ 0, where two tuples v,w ∈ V (G)k get the same color if the map vi 7→ wi

induces an isomorphism between G[v] and G[w]. For i > 0, Ck
i+1 is defined as follows

in Equation 2.5:

Ck
i+1(v) = RELABEL

((
Ck

i (v),Mi(v)
))

(2.5)

Mi(v) = {{
(
Ck

i (ϕ1(v, w)) , . . . , C
k
i (ϕk(v, w))

)
| w ∈ V (G)}} (2.6)

ϕj(v, w) = (v1, . . . , vj−1, w, vj+1, . . . , vk) (2.7)

ϕj(v, w) in Equation 2.7 replaces vj in v with w, where two tuples are adjacent or

j-neighbors if they differ by vj and the multiset Mi(v) in Equation 2.6 groups the

colors of the k-tuples across the replaced nodes. In prose, two tuples v and w with

the same color at iteration i− 1 get a different color in iteration i if there exists a

j ∈ [k] such that the number of j-neighbors for v and w are different. Like the 1-WL,

the algorithm terminates when ∀v,w, Ck
i (v) = Ck

i (w) ⇔ Ck
i+1(v) = Ck

i+1(w) for a

given iteration i, and we can define the stable partition ∀v ∈ V (G), Ck
i (v) = Ck

∞(v).

k-OWL differs from k-FWL in Equation 2.6, where Mi(v) is replaced by M∗
i (v) as

shown in Equation 2.8:

M∗
i (v) =

(
{{Ck

i (ϕ1(v, w)) | w ∈ V (G)}}, . . . , {{Ck
i (ϕk(v, w)) | w ∈ V (G)}}

)
(2.8)

Due to the stated difference in color aggregation between k-FWL and k-OWL, k-OWL

has a lower expressive power compared to k-FWL. To be precise, it is found that

1-OWL and 2-OWL have the same expressive power and (k + 1)-OWL has the same

expressive power as k-FWL [27].

7



2. Background

2.1.4 Graph Neural Networks

In general, GNNs update the vectorial representation of each node in a graph by

aggregating information from its neighboring nodes to be merged with its current

representation. Formally, the problem is initialized as a labeled graph G = ⟨V,E, l⟩
with initial node feature vectors of f (0) : V (G) → Rd that are consistent with l, i.e.

∀u, v, l(u) = l(v) → f (0)(u) = f (0)(v). An example of f (0) would be the one-hot

encoding function of l. The general architecture of a GNN is shown in Equation 2.9:

f (t)(v) = fW 1
merge

(
f (t−1)(v), fW 2

aggr

(
{{f (t−1)(w) | w ∈ N(v)}}

))
(2.9)

fW 2
aggr aggregates the multiset of neighborhood feature vectors, fW 1

merge merges the

node’s feature vector currently with the neighborhood features aggregated from fW 2
aggr.

Both fW 1
merge and f

W 2
aggr are arbitrary differentiable functions (e.g., summation, vector

concatenation) parameterized by W 1 and W 2, respectively, which can be learned

end-to-end for classification or regression tasks. For local/node-level tasks such as

node classification, the node feature vector at the final layer T , f (T )(v), can be used

for prediction. For global/graph-level tasks such as graph classification, a readout

function fW 3
readout parameterized by W 3 is required to aggregate node feature vectors

from all nodes at the final layer T to obtain the entire graph’s feature vector fG for

prediction as shown in Equation 2.10 as follows:

fG = fW 3
readout

(
{f (T )(v) | v ∈ V (G)}

)
(2.10)

Both Xu et al. [98] and Morris et al. [59] showed that the expressive powers of GNNs

are upper-bounded by 1-WL in terms of distinguishing non-isomorphic graphs, i.e.

any fW 1
merge and f

W 2
aggr is unable to learn node features to distinguish non-isomorphic

graphs if 1-WL cannot distinguish them. Formally, letting W (t) denote the set of

weights up to layer t, the above is expressed in Theorem 1 as follows:

Theorem 1 (Morris et al., 2019; Xu et al., 2019). For all t ≥ 0, weights W (t), choices

of f (0), and nodes u, v ∈ V (G), where G = ⟨V,E, l⟩ is a labeled graph:

C1
t (u) = C1

t (v) ⇒ f (t)(u) = f (t)(v)

8



2. Background

Morris et al. also showed that there exists a sequence of weights W (t) where GNNs

have the same expressive power as 1-WL in distinguishing non-isomorphic graphs

through injective fW 1
merge and f

W 2
aggr functions, formally stated in Theorem 2 as follows:

Theorem 2 (Morris et al., 2019). For all t ≥ 0 and nodes u, v ∈ V (G), where

G = ⟨V,E, l⟩ is a labeled graph, there exists a sequence of weights W (t) and a GNN

architecture such that:

C1
t (u) = C1

t (v) ⇔ f (t)(u) = f (t)(v)

Xu et al. corroborated with Morris et al. by developing the Graph Isomorphism

Network (GIN) and showing that it has the same expressive power as 1-WL in

distinguishing non-isomorphic graphs.

2.1.5 Graph Decision Networks

Most GNN-based CL methods fall into the paradigm of GDNs described as follows.

At each time step, let an attributed graph G = ⟨V,E, a⟩ represent the communication

graph, where the nodes in V (G) represent the agents I, and the edges in E(G)

represent the (undirected) communication link between two agent nodes. Each agent

node has the agent’s observations as its attribute, that is, a(vi) = oi, where vi ∈ V (G).

The communication graph is then passed through layers of GNNs that represent

multiple rounds of communication. The final layer of the GNN is an actor network

shared between all agents that produces the policy for each agent given the learned

feature vector of the node representing the agent, i.e. fW 1
merge in Equation 2.9 ignores

fW 2
aggr. Given this framework, Morris et al. [63] states that any GDN reduces to a

GNN node labeling problem, where the correct label for a given node is the optimal

action from the shared actor network that maximizes the agent’s return. As a result,

GDNs are limited to 1-WL in their expressive power, as GNNs.

2.2 Related Work

The following sections introduce relevant work.

9



2. Background

2.2.1 Communication Learning

Early seminal work in CL includes RIAL and DIAL by Foerster et al. [20] and

CommNet by Sukhbaatar et al. [82]. RIAL treats communication as a discrete action

sent to all agents and is end-to-end trainable within each agent. On the other hand,

DIAL has continuous communication directly connected to all other agents that

is only discretized during execution time, allowing backpropagation through the

communication channels across agents, laying the groundwork for differentiable CL

methods. Similarly, CommNet utilizes a differentiable global communication channel

that communicates the average hidden states of all agents to all. Diff Discrete [23]

uses an encoder-channel-decoder architecture to backpropagate gradients through

a discrete communication channel with unknown noise for two agents. BiCNet [69]

and FCMNet [89] use recurrent neural networks (RNNs) to connect all agents in

various sequences with communication from various directions. Variable-length

coding [22] builds upon Diff Discrete by encouraging shorter message length using

a regularization-inspired message-length penalty term. TarMAC [14] uses multiple

rounds of communication between all agents and the soft-attention mechanism to weigh

messages. Similarly, IMAC [88] learns a scheduler to reweight all agent messages while

explicitly modeling bandwidth limitation as an optimization constraint to encourage

agents to convey low entropy but useful messages. InfoLewis [41] uses variational

compositional communication to adequately embed coordination information and

provide a contrastive objective to ground communication in intent-specific features.

The methods discussed above utilize a communication policy that assumes a

complete communication graph where messages are broadcasted to all agents, giving

rise to an inherent drawback with regard to communication bandwidth. Hence,

some methods consider a predefined partial graph to reduce overall communication.

MAIC [103] allows agents to learn estimated models of their teammates to generate

customized messages that can be dynamically pruned based on their weights given

a specified threshold for effective and sparse communications. DGN [40] restricts

communication within a specified number (3) of closest neighbors, using a GNN based

on attention for communication between neighbors with temporal regularization of

the attention weights for consistent cooperation. Similarly, Agent-Entity Graph [3]

restricts communication to a specified distance, using a shared agent-entity graph

10



2. Background

with both agents and environmental entities with a GNN based on attention for

communication. MAGNet [52] also uses a generated agent-entity relevance graph and

a GNN for communication.

Other methods allow agents to individually determine whether to communicate

with other agents. IC3Net [80] uses a binary gating mechanism to allow agents to

decide if they are to communicate their internal state to all agents deterministically.

Enforcer [43] builds on IC3Net for discrete and sparse communication focusing on

learning human interpretable communication. ATOC [39] uses an attention model to

determine the probability that an agent initiates communication with a dynamically

formed local communication group. Gated-ACML [53] learns a probabilistic gating

mechanism to block communications between each agent and a central message coordi-

nator. ETCNet [34] uses an event-triggered module with a gating policy to determine

whether communication occurs, where the gating policy is optimized with limited

bandwidth as a constraint to minimize unnecessary communication. IMGS-MAC [42]

uses information maximization autoencoder and individualized communication regu-

larization to learn a gating function given over-constrained communication budgets.

LSC [78] allows each group of agents, defined using a specified proximity, to learn

the weights to elect a leader, from which a GNN-based mechanism is used for the

communication of messages: 1) from agents to their leaders, 2) between leaders, and

3) from leaders to their group of agents.

Lastly, some methods learn a global communication policy that decides the

communication links between all agents. SchedNet [45] deploys a global scheduler

that restricts the number of agents capable of broadcasting their message according

to their importance. GA-Comm [50] uses a two-stage attention network, where hard

attention is used to remove unrelated edges and soft attention is used to learn the

importance weight of the edges, to derive a communication graph from an initial

complete graph representing all agents, from which a GNN is used for communication.

Similarly, MAGIC [64] learns a global scheduler to encode when to communicate and

to whom to communicate in a directed communication graph, where a GNN based

on attention, Graph Attention Network (GAT) [85], is used for communication.

11
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2.2.2 Expressive Graph Neural Networks

GNN architectures that are widely used in popular GNN libraries such as PyTorch

Geometric [19] and DGL [87] include the Graph Convolutional Network (GCN) [46],

GraphSAGE [29], GAT [85], GATv2 [10] and GIN [98]. Xu et al. [98] showed that

GCN and GraphSAGE are not as expressive as 1-WL due to their aggregation

function fW2
aggr. The mean aggregator in GCN captures the multiset’s distribution

of elements but not the exact multiset, hence being able to perform well in tasks

where the statistical information of the graph is vital. Similarly, the max-pooling

aggregator in GraphSAGE captures neither the exact structure nor its distribution,

but is able to identify representive elements that allows it to perform well for specific

tasks. Zhang and Xie [106] showed that attention-based GNNs under a specific

attention aggregation framework are also not as expressive as 1-WL, losing cardinality

information similar to the mean aggregator.

Numerous works have investigated improving the expressive power of GNNs.

One of the approaches would be to design higher-order GNNs based on the k-

dimensional Weisfeiler-Leman algorithm, giving rise to k-GNN [58] and Invariant

Graph Networks (k-IGNs) [55, 56] from k-OWL and k-FGNN [54] from k-FWL. These

architectures have been shown to be as expressive as their corresponding higher-order

tests [4, 24] mentioned in Section 2.1.3, where the expressiveness strictly increases as

k increases [12] and when k approaches infinity, they can universally approximate

any continuous graph function [44]. However, by requiring one to consider k tuples of

nodes, these architectures can become highly intractable computationally and memory

wise and hence are generally not practical for real-world applications, including for

CL in this work.

To develop more practical GNN architectures, a further line of work examines

local GNNs, which takes advantage of the local/sparse nature of graphs that can

serve as a powerful inductive bias not used by higher-order GNNs given that their

aggregation mechanisms are fundamentally global and graph adjacency information

is only encoded in initial node attributes. The local k-GNN [60], shown to be

strictly more expressive than k-GNN, integrates the adjacency of the graph directly

into the layers of the network and aggregates information from neighbors rather

than globally. Building on local k-GNN, (k, s)-SpeqNet [62] improves computational

12



2. Background

efficiency by considering a subset of k-tuples whose vertices can be grouped into no

more than s connected components. Similarly, k-SetGNN considers k-sets instead of

k-tuples. Other architectures can be interpreted as local variants of k-IGN [21] and

k-FGNN [18, 104, 110].

Another line of research to enhance the expressive power of GNNs considers

subgraph GNNs that represent graphs as multisets of subgraphs and feeding them

to GNNs. The usage of subgraphs breaks the symmetries induced by the local

aggregation function in GNNs, allowing it to extract more structural information

from a given graph. Cotta et al. [13] and Papp et al. [68] proposed using node-deleted

subgraphs while Papp and Wattenhofer [67] recommended node marking as opposed

to node deletion for better expressive power. The Nested GNN [105] represents a

graph using rooted subgraphs by extracting a local K-hop subgraph around each

node. Similarly, Identity-Aware GNN [101] extracts a K-hop ego network of each

node and assigns a unique coloring to the central node of the ego network.

Rather than feeding each subgraph independently into a GNN, subgraph GNNs

have been extended to allow interactions between subgraphs through cross-subgraph

aggregation layers [7, 107], which are shown to strictly improve the expressivity [104].

Frasca et al. [21] proposes a novel symmetry analysis that links previous work in

invariant and equivariant models for graphs [55] to show that subgraphs GNNs are

bounded by a variant of 2-IGN (local 2-IGN), which is then bounded by 2-FWL/3-

OWL. Zhang et al. [104] later proved that Local 2-IGN is as expressive as Local

2-GNN and strictly less expressive than 2-FGNN. Qian et al. [71] introduced the

higher order subgraph GNNs, subgraph k-GNN, by marking k nodes per subgraph

for a graph with n vertices, giving rise to nk unique subgraphs. The authors showed

that subgraph k-GNN is strictly bounded by (k + 1)-FWL and is incomparable to

k-FWL for k > 1. Zhou et al. [109] further generalizes subgraph k-GNN to k, l-GNN,

where k-GNNs run independently on all l-labeled graphs, where they showed that

k, l-GNN is bounded by (k + 1)-GNN for l > 2 and l is the subgraph size.

Nevertheless, the gained expressive power from the above methods still comes with

significant computational costs that are especially expensive and hence undesirable

in the context of CL under the GDN framework. Morris et al. [63] proposes two

existing GNN augmentations to GDNs for universal expressivity for equivariant

graph functions and symmetry breaking for coordination problems with minimal
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computational costs. One of the GNN enhancements is random node initialization

(RNI), where Sato et al. [73] showed that concatenating random features (sampled

from a standard uniform distribution) to initial node features can improve GIN

performance in common combinatorial optimization problems. Abboud et al. [1]

showed that RNI results in, with high probability, universal expressivity for invariant

graph functions, which Morris et al. extend to equivariant graph functions such as

GDNs. In the context of GDNs, RNI can be viewed as concatenating noise to the

observations of the agents. Another GNN enhancement are unique node identifiers,

where Dasoulas et al. [15] defined the colored local iterative procedure (CLIP) to

differentiate identical node attributes using colors. Dasoulas et al. showed that

assigning unique IDs to nodes (the observations of agents) is equivalent to 1-CLIP,

which can approximate any invariant graph function. Like RNI, Morris et al. extend

the stated universality result to equivariant graph functions. However, the stated

GNN enhancements do not provide much improved performance as shown from the

empirical results shown in [63], possibly due to the large training steps required for

convergence given the augmentations in practice.
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Chapter 3

Method

Given the limitations of the various variants of higher-order GNNs and universal GNN

augmentations elaborated in Section 2.2.2, this work focuses on deriving maximally

expressive (1-WL) GNNs for CL under the GDN framework, where communication

costs remain reasonable and justified given the success of various GNN-based CL

methods mentioned in Section 2.2.1. Although it is possible to build an architecture

based on GIN [98], which is proven to be as expressive as 1-WL, this work investigates

attention-based GNNs that are proven to be not as expressive as 1-WL [106], but

are widely used in a significant number of CL methods such as GA-Comm [50] and

MAGIC [64] with good empirical results. In our work, we expand on the Cardinality

Preserved Attention (CPA) model proposed by Zhang and Xie [106] and propose a

new GNN, the Graph Attention Isomorphism Network (GAIN), which can be proven

to be as expressive as 1-WL. We incorporate GAIN into a simple GDN architecture

called Graph Communication Network (GCNet).

3.1 Attention-Based Graph Neural Networks

The following sections describe the attention mechanism used in attention-based

GNNs in general, highlight their inherent limitations in their expressive power, and

propose solutions such that they can be as expressive as 1-WL.
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3.1.1 Attention Score

In the t-th layer of the attention-based GNN, the attention score between node i and

its neighbor j (including itself) can be calculated as follows in Equation 3.1 using a

scoring function Att : Rd×Rd → R, where f (t−1)(i), f (t−1)(j) ∈ Rd are feature vectors

of the nodes in the (t− 1)-th layer. The attention scores are then normalized using

softmax as shown in Equation 3.2:

e
(t−1)
ij = Att

(
f (t−1)(i), f (t−1)(j)

)
(3.1)

α
(t−1)
ij = softmax

(
e
(t−1)
ij

)
=

exp
(
e
(t−1)
ij

)
∑

k∈Ñ(i) exp
(
e
(t−1)
ik

) (3.2)

Given a query vector, which is the feature vector of node i, the attention mechanism,

based on the scoring function Att, computes a distribution on a set of key vectors,

which are the feature vectors of neighbors of node i. Brody et al. [10] provide the

definitions for static and dynamic scoring as shown in Definition 1 and 2 respectively

as follows:

Definition 1 (Static scoring). A (possibly infinite) family of scoring functions

F ⊆ (Rd × Rd → R) computes static scoring for a given set of query vectors Q =

{q1, . . . , qm} ⊂ Rd and key vectors K = {k1, . . . ,kn} ⊂ Rd, if for every f ∈ F , there

exists a key kjf , where jf ∈ [n], such that for every query qi and key kj, where i ∈ [m]

and j ∈ [n], the following holds:

f
(
qi,kjf

)
≥ f (qi,kj)

Definition 2 (Dynamic scoring). A (possibly infinite) family of scoring functions

F ⊆ (Rd × Rd → R) computes dynamic scoring for a given set of query vectors

Q = {q1, . . . , qm} ⊂ Rd and key vectors K = {k1, . . . ,kn} ⊂ Rd, if for any mapping

φ : [m] → [n] there exists f ∈ F such that for any query qi and any key kj, where

i ∈ [m] and j ∈ [n] \ φ(i), the following holds:

f
(
qi,kφ(i)

)
> f (qi,kj)

A family of attention functions computes static or dynamic attention for K and
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3. Method

Q, if its scoring function computes static or dynamic scoring, respectively, possibly

followed by monotonic normalization such as softmax. It can be seen that static

attention is highly limited, given that every function f ∈ F has a key kjf that

makes f maximal independent of query qi. On the other hand, dynamic attention is

expressive as it can select every key kφ(i) for a given query qi by making f
(
qi,kφ(i)

)
maximal within {f (qi,kj) | j ∈ [n]}. Equation 3.3 shows the scoring function Att

used by GAT [85], where a ∈ R2d′ and W ∈ Rd′×d are learned.

GAT : e
(t−1)
ij = LeakyReLu

(
a⊤ ·

[
W f (t−1)(i) ||W f (t−1)(j)

])
(3.3)

However, Brody et al. shows (in Theorem 1) that GAT computes only static attention

for any set of node feature vectors K = Q = {f (t)(i)}i∈[|V (G)|] and developed GATv2

as shown in Equation 3.4 to address the limitations of GAT, where a ∈ Rd′ and

W ∈ Rd′×2d are learned.

GATv2 : e
(t−1)
ij = a⊤LeakyReLu

(
W ·

[
f (t−1)(i) || f (t−1)(j)

])
(3.4)

Brody et al. shows (in Theorem 2) that GATv2 computes dynamic attention for any

set of node feature vectors K = Q = {f (t)(i)}i∈[|V (G)|].

3.1.2 Attention Aggregator

Having calculated the attention score elaborated in Section 3.1.1, both GAT and

GATv2 compute the weighted average using the normalized attention scores of the

transformed feature vectors of the neighbor nodes of node i to obtain its new feature

vector as shown in Equation 3.5, where W are the learned weights from calculating

the unormalized attention scores and σ is a nonlinear function.

GAT / GATv2 : f (t)(i) = σ

 ∑
j∈Ñ(i)

α
(t−1)
ij W f (t−1)(j)

 (3.5)

Theorem 3 (proof in Appendix A.1) generalizes Theorem 1 in [106] to show the

cases where the attention mechanism is not injective. It accounts for the case where

a matrix is used to transform the original node feature vectors in the attention
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aggregation mechanism (e.g., GAT, GATv2) instead of the framework used in [106]

used by Theorem 1 that only considers the original node feature vectors as shown

Equation 3.6:

Zhang and Xie, 2020 : f (t)(i) = σ

 ∑
j∈Ñ(i)

α
(t−1)
ij f (t−1)(j)

 (3.6)

Theorem 3. Assume that the input feature space X is countable. For a multiset

X ⊂ X of bounded size and node feature c, let h(c,X) =
∑

x∈X αcxW pf(x), where

f : X → Rd, αcx is the attention score between f(c) and f(x) calculated using the

attention function, Att, and softmax in Equations 3.1 and 3.2, respectively, and

W p ∈ Rd′×d is a full rank matrix, i.e. rank (W p) = min(d′, d). Given the stated, the

following holds:

∀f, Att : h(c1, X1) = h(c2, X2) ⇔ c1 = c2, X1 = ⟨S, µ⟩, X2 = ⟨S, k · µ⟩, k ∈ N+

In summary, Theorem 3 demonstrates that h will produce the same embedding

for different multisets if and only if they share the same central node feature and

identical distributions of node features, where the attention aggregation mechanism

is shown in Equation 3.7 as follows:

f (t)(i) = σ

 ∑
j∈Ñ(i)

α
(t−1)
ij W pf

(t−1)(j)

 (3.7)

Note that Theorem 3 and Equation 3.7 assumes that W p has full rank. In other

words, when: 1) d′ > d : rank (W p) = d, W p has full column rank and is injective,

2) d′ < d : rank (W p) = d′, W p has full row rank and is surjective, and 3) d′ =

d : rank (W p) = d, W p has full rank and is invertible. As the constraints stated

for W p are not enforced for the learned weights W from the calculation of the

unormalized attention scores for GAT/GATv2, their attention aggregation mechanism

in Equation 3.5 does not fall within the framework of Theorem 3 in general. Hence,

their limitations cannot be specifically expressed to be improved upon. Furthermore,

letting W p = Id, where Id ∈ Rd×d is the identity matrix, we recover Theorem 1 and
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Equation 3.6 from [106] from Theorem 3 and Equation 3.7 respectively.

3.1.3 Cardinality Preserved Attention Model

Theorem 4 states the conditions for maximal expressive power for the attention-based

GNNs described in Sections 3.1.1 and 3.1.2 in differentiating different elements, namely

local and global structures. Each local structure belonging to a node v ∈ V (G) is the

t-height subtree rooted at the node represented by feature vector f (t)(v) after t layers

of GNN. The global structure is the aggregated representation of the local structures

of all nodes in the graph. Theorem 4 can be proven identically to Lemma 1 in [106],

which is based on Lemma 2 and Theorem 3 in [98].

Theorem 4. Assume that the input feature space X is countable. Let AGNN : G → Rg

be a GNN whose architecture is based on the attention aggregation mechanism in

Equation 3.7. For global-level tasks, a readout function from Equation 2.10 is used.

With sufficient GNN layers, AGNN is maximally expressive, i.e. can differentiate all

distinct local structures or be as powerful as 1-WL in differentiating global structures

if the following conditions hold true:

• Local level: The weighted summation and σ in Equation 3.7 is injective.

• Global level: The readout function of Equation 2.10 is injective, along with

conditions from the local level.

From Theorem 4, it can be inferred that AGNN is not maximally expressive, since

Theorem 3 shows that the weighted summation in Equation 3.7 is not injective.

It is simple to show that there exist subtrees or graphs that 1-WL determines to

be non-isomorphic that AGNN cannot differentiate due to its inability to extract

cardinality information from multisets with identical distribution (Corollary 1 and

2 from [106]). Building on the Additive and Scaled models in the CPA model in

[106], we propose similar augmentations to Equation 3.7 so that it can be injective

by retaining cardinality information as shown in Equations 3.8 and 3.9, respectively,
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as follows:

Additive : f (t)(i) = σ

 ∑
j∈Ñ(i)

α
(t−1)
ij W pf

(t−1)(j) +
∑

j∈Ñ(i)

W qf
(t−1)(j)

 (3.8)

Scaled : f (t)(i) = σ

ψ(t−1)
(∣∣∣Ñ(i)

∣∣∣)⊙
∑

j∈Ñ(i)

α
(t−1)
ij W pf

(t−1)(j)

 (3.9)

where ⊙ is the Hadamard product. For the Additive model, W p,W q ∈ Rd′×d are full

rank matrices where d′ ≥ d, i.e. W p and W q are injective or invertible. For the Scaled

model, W p ∈ Rd′×d has full rank and ψ : N → Rd′ is an injective function. Note

that the models stated are applicable for any given Att in Equation 3.1. Corollary 1

(proof in Appendix A.2) shows that the Additive and Scaled models can be injective

with the correct weights or functions, respectively.

Corollary 1. Assume that the input feature space X is countable. There exist

f : X → Rd, W q for Equation 3.8 (Additive model) and ψ for Equation 3.9 (Scaled

model) such that the Additive and Scaled models can differentiate the multisets that

Equation 3.7 cannot, as stated in Theorem 3.

3.1.4 Graph Attention Isomorphism Network

To reduce the complexity of the Scaled model, we can fix ψ to the mapping used in the

proof of Corollary 1 shown in Appendix A.2, where ψ maps |Ñ(i)| to a d′-dimensional

vector xi where each element is |Ñ(i)|. As such, we can simplify the Scaled model to

the following variant as shown in Equation 3.10 similar to the f-Scaled variant in the

CPA model in [106]:

f (t)(i) = σ

∣∣∣Ñ(i)
∣∣∣ · ∑

j∈Ñ(i)

α
(t−1)
ij W pf

(t−1)(j)

 (3.10)

With the attention aggregation mechanisms stated in Equations 3.8 and 3.10, there is

now a myraid of possible variants of GAIN architectures that is provably as expressive

as 1-WL, depending on the choices of W p, W q and Att. For the Scaled model, given

that W p ∈ Rd′×d can be any full rank matrix with no constraints on d′, which can
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be trivially generated by filling the main diagonal of zero matrix with any non-zero

constant. Hence, it can be used to reduce the dimensonality of node feature vectors if

necessary, which is not possible for the Additive model as W p,W q ∈ Rd′×d have to

be full rank matrices where d′ ≥ d. However, by letting W p = Id and W q = diag(ϵ),

where diag(ϵ) ∈ Rd×d is a square diagonal matrix with diagonal values of ϵ, we obtain

a variant as shown in Equation 3.11 similar to the f-Additive variant in the CPA

model in [106]:

f (t)(i) = σ

 ∑
j∈Ñ(i)

(
α
(t−1)
ij + ϵ

)
f (t−1)(j)

 (3.11)

Equation 3.11 is extremely simple to implement and ϵ can be a learnable parameter

or a fixed constant as long as its non-zero. This GAIN variant can be seen as

the attention variant of GIN that is 1-WL expresssive. Lastly, GAIN uses the Att

function of GATv2 given that it computes dynamic attention and like GIN, GAIN

uses multi-layer perceptrons (MLPs) to learn σ as an injective non-linearity given the

universal approximation theorem [32, 33].

3.2 Graph Communication Network

GCNet basically has the same architecture as GDN described in Section 2.1.5, except

for a small difference in terms of input to the shared actor network. In GDN, the

shared actor network takes in the node feature vector of the final layer to produce

a policy from which an action is extracted. On the other hand, GCNet takes the

concatenated node feature vector from all layers, fcat(i) = ||Tt=0 f
(t)(i), as input

to the shared actor network. This architecture takes inspiration from the graph

readout function used in GIN based on Jumping Knowledge Networks [97], where

our motivation is to capture the local structure information from all layers instead of

just the final layer, as the features in the early layers may generalize better / provide

a better representation for the shared actor network.
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Chapter 4

Results

The following sections detail the results of this work in which we evaluated GAIN on

various graph, link, and node property tasks in OGB [35]. Details of the tasks and

datasets in OGB used in this work can be found in Appendix B.1. In addition, we

integrate GAIN into GCNet (GCNet-GAIN) and evaluate it on tasks in SMAC [72].

For simplicity, we use the GAIN variant based on Equation 3.8 where W p = W q = Id

for all experiments and refer to it as GAIN.

4.1 Graph Tasks

The current literature often focuses on proposing and evaluating GNN models of

specific architectural designs, which are specific instances of a GNN design space

consisting of a cross product of various design dimensions, such as the number of

layers or the type of the aggregation function. Hence, such a pipeline offers a narrow

window for evaluating the performance of GNNs in general. Therefore, this work

uses GraphGym [100] to evaluate GNNs in a general design space across a diverse

set of graph, link, and node property tasks in OGB to provide a more balanced and

fair evaluation of GNN architectures in general. In particular, GraphGym considers

variations in intra-layer design, inter-layer design, and training configurations. Intra-

layer design involves design dimensions within a GNN layer, such as the use of

batch normalization [38], dropout [81], type of activation function, and aggregation

function
(
fW 1
merge

)
, where the options for aggregation functions are summation (add),
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element-wise mean (mean), or element-wise max (max). Inter-layer design involves

how GNN layers are organized within a neural network model. GraphGym considers

directly stacking multiple GNN layers, residual connections (skip-sum) [31] and dense

connections that concatenate feature vectors from all previous layers (skip-cat) [36].

In addition, it also considers adding MLPs before and after GNN layers. Training

configurations involve standard design dimensions such as batch size, learning rate,

optimizer type, and training epochs. In this work, we perform a grid search over

several key design dimensions highlighted in Appendix B.2 and report the best

evaluated test performance for each GNN architecture found during the grid search

across 3 seeds. The best performing model configurations are shown in Appendix B.3.

We consider GCN [46], GAT [85], GATv2 [10] and GIN [98] as baselines for GAIN.

4.1.1 Graph Property Prediction

Table 4.1 shows the results for the graph tasks, where ROC-AUC is the area under

the receiver operating characteristic curve. It can be seen that GAIN performance is

comparable to the best model for ogbg molhiv and is the best model by a significant

margin for ogbg ppa.

Layer
Type

ogbg molhiv ogbg ppa

ROC-AUC p-value Accuracy p-value

GCN 73.38 (1.05) 0.172 18.90 (0.61) 0.002
GAT 73.31 (2.38) 0.433 10.44 (1.66) 0.003

GATv2 73.01 (1.99) 0.475 10.44 (1.66) 0.003
GIN 72.36 (1.25) 0.740 18.32 (0.29) 0.001

GAIN 72.04 (0.21) - 34.94 (1.23) -

Table 4.1: Results for graph tasks. The standard deviations are in parentheses. The
p-values are generated by the 2-tail paired t-test. The results that are statistically
significant from GAIN at the significance level p = 0.1 are in bold.

4.1.2 Link Property Prediction

Table 4.2 shows the results for the link tasks. The Hits@K metric is calculated by

randomly sampling a specific number of negative edges (e.g. 100, 000 for ogbl ddi)
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and counting the ratio of positive edges that are ranked in the K-th place or higher. It

can be seen that GAIN performance is comparable to the best models for ogbl collab

and ogbl ddi. However, we note that the models’ performance for ogbl ddi have

especially large variances, possibly arising due to the small K = 20 used and model

overfitting.

Layer
Type

ogbl collab ogbl ddi

Hits@50 p-value Hits@20 p-value

GCN 16.13 (0.38) 0.001 3.19 (5.28) 0.293
GAT 15.11 (1.14) 0.000 31.94 (55.33) 0.982

GATv2 14.50 (0.32) 0.001 30.71 (53.18) 0.999
GIN 49.40 (1.54) 0.359 11.09 (18.99) 0.244

GAIN 47.66 (1.66) - 30.66 (38.77) -

Table 4.2: Results for link tasks. The standard deviations are in parentheses. The
p-values are generated by the 2-tail paired t-test. The results that are statistically
significant from GAIN at the significance level p = 0.1 are in bold.

4.1.3 Node Property Prediction

Table 4.3 shows the results for the node tasks. It can be seen that GAIN performance

is comparable to the best models for ogbn mag and ogbn products, while having

relatively good performance in terms of absolute difference for ogbn arxiv.

Layer
Type

ogbn arxiv ogbn mag ogbn products

Accuracy p-value Accuracy p-value Accuracy p-value

GCN 62.21 (0.12) 0.017 27.17 (0.09) 0.253 56.33 (0.22) 0.111
GAT 62.34 (0.07) 0.976 27.09 (0.08) 0.828 55.96 (0.04) 0.212

GATv2 62.22 (0.16) 0.493 27.02 (0.06) 0.814 55.67 (0.43) 0.799
GIN 62.87 (0.09) 0.026 27.16 (0.18) 0.445 55.90 (0.36) 0.695

GAIN 62.35 (0.11) - 27.06 (0.14) - 55.77 (0.17) -

Table 4.3: Results for node tasks. The standard deviations are in parentheses. The
p-values are generated by the 2-tail paired t-test. The results that are statistically
significant from GAIN at the significance level p = 0.1 are in bold.
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4.2 StarCraft Multi-Agent Challenge

SMAC Maps CommNet GA-Comm MAGIC GCNet-GAIN

10m vs 11m 20.00 (1.71) 40.63 (31.79) 69.38 (27.98) 100.00 (0.00)
1c3s5z 98.13 (4.19) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)
25m 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)

27m vs 30m 100.00 (0.00) 100.00 (0.00) 95.63 (8.15) 91.25 (6.77)
2c vs 64zg 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)
2m vs 1z 79.38 (44.39) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)

2s3z 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)
2s vs 1sc 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)

3m 98.75 (1.71) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)
3s5z 100.00 (0.00) 100.00 (0.00) 97.50 (3.42) 93.13 (5.59)

3s5z vs 3s6z 17.50 (25.83) 21.88 (14.99) 12.50 (12.31) 11.25 (12.81)
3s vs 3z 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)
3s vs 4z 100.00 (0.00) 62.50 (51.35) 100.00 (0.00) 80.63 (43.32)
3s vs 5z 100.00 (0.00) 20.00 (44.72) 96.88 (4.42) 92.50 (13.37)
5m vs 6m 92.50 (4.74) 73.75 (12.02) 86.88 (15.84) 92.50 (3.56)
6h vs 8z 4.38 (1.71) 3.75 (1.40) 1.88 (2.80) 64.38 (40.30)

8m 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)
8m vs 9m 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)

bane vs bane 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)
corridor 36.88 (50.60) 80.00 (44.72) 58.13 (53.11) 75.00 (42.04)
MMM 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)
MMM2 21.88 (30.46) 35.63 (49.09) 95.63 (2.80) 58.75 (21.01)

so many baneling 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)

Table 4.4: Results for SMAC comparing GCNet-GAIN with CL baselines. The
standard deviations are in parentheses. The best results are in bold.

We evaluated GCNet-GAIN on a range of SMAC maps listed in [102] with MAPPO

as the underlying MARL algorithm. Similarly to the graph tasks, we consider GCN,

GAT, GATv2 and GIN as baselines to be integrated into GCNet. In addition, we

also consider CommNet[82], GA-Comm [50] and MAGIC [64] as CL baselines, given

that their CL architectures are extremely similar to GNNs. In particular, GA-Comm

and MAGIC build upon GAT at its essence. The hyperparameters used for the

experiments, which are generally adapted from [102] with minor changes, are detailed
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SMAC Maps
GCNet

GCN GAT GATv2 GIN GAIN

10m vs 11m 98.13 (4.19) 100.00 (0.00) 99.38 (1.40) 98.75 (2.80) 100.00 (0.00)
1c3s5z 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)
25m 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)

27m vs 30m 88.13 (11.35) 88.13 (4.08) 88.75 (6.48) 88.75 (8.15) 91.25 (6.77)
2c vs 64zg 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)
2m vs 1z 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)

2s3z 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)
2s vs 1sc 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)

3m 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)
3s5z 92.50 (6.48) 96.88 (6.99) 89.38 (10.03) 93.13 (5.59) 93.13 (5.59)

3s5z vs 3s6z 4.38 (6.85) 3.13 (3.13) 6.25 (7.65) 3.75 (5.59) 11.25 (12.81)
3s vs 3z 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)
3s vs 4z 80.00 (44.72) 80.00 (44.72) 80.00 (44.72) 80.00 (44.72) 80.63 (43.32)
3s vs 5z 21.88 (43.69) 21.88 (40.32) 40.63 (48.91) 40.63 (54.22) 92.50 (13.37)
5m vs 6m 92.50 (4.19) 91.88 (4.19) 92.50 (3.56) 94.39 (2.60) 92.50 (3.56)
6h vs 8z 66.88 (36.88) 64.38 (40.30) 64.38 (41.73) 60.63 (45.75) 64.38 (40.30)

8m 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)
8m vs 9m 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)

bane vs bane 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)
corridor 75.00 (42.04) 73.75 (41.49) 74.38 (41.72) 74.38 (41.72) 75.00 (42.04)
MMM 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)
MMM2 62.50 (25.00) 48.13 (30.51) 59.38 (21.20) 51.25 (20.80) 58.75 (21.01)

so many baneling 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)

Table 4.5: Results for SMAC comparing GCNet-GAIN with GCNet with other GNN
baselines. The standard deviations are in parentheses. The best results are in bold.

in Appendix B.4. For each random seed, we compute the win rate for 32 evaluation

games after each training iteration and take the best evaluation win rates as the

performance for each seed. Tables 4.4 and 4.5 compare GCNet-GAIN with CL and

other GCNet GNN baselines, respectively, where the results show the best evaluated

win rate from each seed averaged across 5 seeds. It can be observed that GCNet-GAIN

has comparable, if not significantly better performance against CL and other GCNet

GNN baselines in general, validating the value of expressive attention-based GNN

architectures in CL. For example, GCNet-GAIN has strong performance on maps such

as 10m vs 11m, 3s vs 5z, 5m vs 6m and 6h vs 8z that are ranked as Hard or Super

Hard tasks in [102] where the agents in those maps are outnumbers by their opponents.

The complete results table with all the baselines can be found in Appendix B.5.
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Chapter 5

Conclusions

In conclusion, this work explores attention-based GNNs for CL. In particular, we

highlight their inherent limitations in terms of expressive power in a generalized

framework and propose a class of maximally expressive (as 1-WL) attention-based

GNNs. We implement a simple variant with that class of GNN architecture, which

we term GAIN, and showcase its strong empirical performance against other state-of-

the-art GNNs on various graph, link, and node property prediction tasks in OGB. We

integrate GAIN into a simple CL architecture called GCNet and demonstrate that

it outperforms GCNet using state-of-the-art GNNs and other baseline CL methods.

We hope that the proposed architecture can serve as the basis for future work in

expressive CL. We note that the contributions of many existing CL works can be

built on top of GCNet-GAIN, such as the learning of a scheduler to determine who to

communicate with via methods like hard attention weights in GA-Comm and MAGIC.

This is so because the scheduler merely affects the graph structure in terms of edge

connectivity. Hence, the expressivity guarantees of GCNet-GAIN remain. Future

work would involve delving into further expressive GNN models for CL beyond 1-WL

through methods such as subgraph GNNs.
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Appendix A

Proofs

The following sections details the proofs used in this work.

A.1 Proof for Theorem 3

Proof. Assume that the input feature space X is countable. Given a multisetX ⊂ X of

bounded size and node feature c, let h(c,X) =
∑

x∈X αcxW pf(x), where f : X → Rd,

αcx is the attention score between f(c) and f(x) calculated using the attention

function, Att and softmax in Equations 3.1 and 3.2, respectively, and W p ∈ Rd′×d

is a full rank matrix, i.e. rank (W p) = min(d′, d). We proof both directions of the

implication to prove Theorem 3.

(1) ∀f , Att, let c1 = c2 = c, X1 = ⟨S, µ⟩, X2 = ⟨S, k ·µ⟩, where k ∈ N+. Consider

the following which expands from Equations 3.1 and 3.2:

h(c1, X1) =
∑
s∈S

µ(s)αcs1W pf(s) =

∑
s∈S µ(s)exp (ecs)W pf(s)∑

x∈X1
exp (ecx)

h(c2, X2) =
∑
s∈S

k · µ(s)αcs2W pf(s) =
k ·

∑
s∈S µ(s)exp (ecs)W pf(s)∑

x∈X2
exp (ecx)

where αcsi is the attention score between f(c) and f(s) from Xi, ecs and ecx are the

unnormalized attention scores between f(c) and f(s)/f(x) from Xi, respectively, and

i ∈ {1, 2}. Note that the following is true given that X2 has k copies of the elements
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in X1:

k ·
∑
x∈X1

exp (ecx) =
∑
x∈X2

exp (ecx)

As such, we can show the following:

h(c1, X1) =

∑
s∈S µ(s)exp (ecs)W pf(s)∑

x∈X1
exp (ecx)

=
k ·

∑
s∈S µ(s)exp (ecs)W pf(s)

k ·
∑

x∈X1
exp (ecx)

=
k ·

∑
s∈S µ(s)exp (ecs)W pf(s)∑

x∈X2
exp (ecx)

= h(c2, X2)

(2) ∀f , Att, let h(c1, X1) = h(c2, X2), which can be stated as follows:

h(c1, X1) =
∑
x∈X1

αcx1W pf(x) =
∑
s∈S1

µ1(s)αcs1W pf(s)

h(c2, X2) =
∑
x∈X2

αcx2W pf(x) =
∑
s∈S2

µ2(s)αcs2W pf(s)

where αcxi and αcsi are the attention score between f(ci) and f(x)/f(s) from Xi,

respectively, Xi = ⟨Si, µi⟩ and i ∈ {1, 2}. The above can be rewritten as follows,

where 0d′ ∈ Rd′ is the zero vector:∑
s∈S1∩S2

(µ1(s)αcs1 − µ2(s)αcs2)W pf(s)+∑
s∈S1\S2

µ1(s)αcs1W pf(s)−
∑

s∈S2\S1

µ2(s)αcs2W pf(s) = 0d′ (A.1)

We first want to prove that S1 = S2 = S by contradiction. Assume that S1 ̸= S2.

Given that the above is true ∀f , it must also be true for the following defined functions

f1 and f2, where x ∈ Rd \{0d} is any arbitrary vector other than the zero vector,
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0d ∈ Rd.

f1(s) = f2(s), ∀s ∈ S1 ∩ S2

f1(s) = f2(s)− x, ∀s ∈ S1\S2

f1(s) = f2(s) + x, ∀s ∈ S2\S1

Substituting f with f1:∑
s∈S1∩S2

(µ1(s)αcs1 − µ2(s)αcs2)W pf1(s)+∑
s∈S1\S2

µ1(s)αcs1W pf1(s)−
∑

s∈S2\S1

µ2(s)αcs2W pf1(s) = 0d′

Substituting f1 with f2:∑
s∈S1∩S2

(µ1(s)αcs1 − µ2(s)αcs2)W pf2(s)+∑
s∈S1\S2

µ1(s)αcs1W p (f2(s)− x)−

∑
s∈S2\S1

µ2(s)αcs2W p (f2(s) + x) = 0d′

Rewriting: ∑
s∈S1∩S2

(µ1(s)αcs1 − µ2(s)αcs2)W pf2(s)+∑
s∈S1\S2

µ1(s)αcs1W pf2(s)−
∑

s∈S2\S1

µ2(s)αcs2W pf2(s)

=
∑

s∈S1\S2

µ1(s)αcs1W px+
∑

s∈S2\S1

µ2(s)αcs2W px

LHS of the equation above is equal to 0d′ from Equation A.1. Rewriting and
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rearranging terms:∑
s∈S1\S2

µ1(s)αcs1W px+
∑

s∈S2\S1

µ2(s)αcs2W px = 0d′ ∑
s∈S1\S2

µ1(s)αcs1 +
∑

s∈S2\S1

µ2(s)αcs2

W px = 0d′

Given that ∀s ∈ Si where i ∈ {1, 2}, the multiplicity function µi(s) ≥ 1 by definition,

αcsi > 0 by the properties of softmax,
(∑

s∈S1\S2
µ1(s)αcs1 +

∑
s∈S2\S1

µ2(s)αcs2

)
> 0.

As x is not the zero vector, 0d, the null space of W p is non-trivial, implying that

W p is not full rank. This contradicts the initial given fact that W p is a full rank

matrix. Hence, the assumption that S1 ̸= S2 must be false. Therefore, S1 = S2 = S

is true. As a result, Equation A.1 can be rewritten as follows:∑
s∈S

(µ1(s)αcs1 − µ2(s)αcs2)W pf(s) = 0d′

For the above equation to hold true ∀f , Att, the following would have to be true

∀s ∈ S:

µ1(s)αcs1 − µ2(s)αcs2 = 0

µ1(s)

µ2(s)
=

exp(ecs2)
∑

x∈X1
exp(ecx1)

exp(ecs1)
∑

x∈X2
exp(ecx2)

(A.2)

where ecsi and ecxi are the unnormalized attention scores between f(ci) and f(s)/f(x)

from Xi, respectively, and i ∈ {1, 2}. We want to prove that c1 = c2 = c using

contradiction. If |S| = 1, c1 = c2 is trivially true. For |S| > 1, assume that c1 ̸= c2.

As Equation A.2 is true ∀ Att, consider an Att given that c1 ≠ c2 which results in

unnormalized attention scores as follows:

ecs1 = 1, ∀s ∈ S

ecs2 =

1, for s = s0

2, ∀s ̸= s0 ∈ S
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Hence, when s = s0, the RHS of Equation A.2 can be expressed as follows:

e · |X1|e
e · ((|X2| − µ2(s0)) e2 + µ2(s0)e)

=
|X1|

(|X2| − µ2(s0)) e+ µ2(s0)

It can be observed that the RHS of Equation A.2 is irrational while the LHS is

rational given the definition of the multiplicity function, implying that Equation A.2

is not true, leading to a contradiction. Hence, the assumption that c1 ̸= c2 is false.

Therefore, c1 = c2 = c is true, allowing Equation A.2 to be further simplified as

follows ∀s′ ∈ S:

µ1(s
′)

µ2(s′)
=

∑
x∈X1

exp(ecx)∑
x∈X2

exp(ecx)
=

∑
s∈S µ1(s)exp(ecs)∑
s∈S µ2(s)exp(ecs)

= k

where ecs1 = ecs2 = ecs, ecx1 = ecx2 = ecx and k ∈ N+. Hence, by denoting µ1 = µ, we

show that c1 = c2 = c, X1 = ⟨S, µ⟩, X2 = ⟨S, k · µ⟩, where k ∈ N+.

A.2 Proof for Corollary 1

Proof. Assume that the input feature space X is countable. Consider X1 = ⟨S, µ⟩,
X2 = ⟨S, k · µ⟩ ⊂ X , where k ∈ N+ and c ∈ S. Given the stated, from Theorem 3,

H =
∑

x∈X1
αcx1W pf(x) =

∑
x∈X2

αcx2W pf(x), where αcxi is the attention score

between f(ci) and f(x) from Xi, Wp is a full rank matrix and i ∈ {1, 2}. Using the

Additive and Scaled models, the attention aggregation mechanism can be rewritten

as follows:

Additive : hadd(c,Xi) = H +
∑
x∈Xi

W qf(x)

Scaled : hscaled(c,Xi) = ψ (|Xi|)⊙H

(Additive) From Lemma 5 in [98], given that X is countable, there exists a

mapping Z : X → N from x ∈ X to natural numbers. As X ⊂ X has a bounded

size, there exists a number N ∈ N such that ∀X, |X| < N . Then an example of f is

d-dimensional vector where each element is N−Z(x) and
∑

x∈Xi
f(x) is an injective

function of multisets. Given that W p,W q ∈ Rd′×d are full rank matrices where
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d′ ≥ d, i.e. W p and W q are injective or invertible,
∑

x∈Xi
W qf(x) is injective

as well. Hence, when X1 ̸= X2,
∑

x∈X1
W qf(x) ̸=

∑
x∈X2

W qf(x). Therefore,

hadd(c,X1) ̸= hadd(c,X2).

(Scaled) Let ψ map |Xi| to a d′-dimensional vector xi where each element is |Xi|.
Given that f(x) is not the zero vector 0d by definition, W p is a full rank matrix

with a trivial nullspace and attention score αcxi > 0 by definition, we can infer that

H is not a zero vector 0d′ . Hence, when X1 ̸= X2, hscaled(c,X1) − hscaled(c,X2) =

(x1 − x2)⊙H ̸= 0d′ .
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Experiment Details

The following sections highlight the details of the experiments conducted in this work.

B.1 Datasets

The following sections summarize the OGB datasets used in this work. For further

information, refer to the paper by Hu et al. [35] and https://ogb.stanford.edu/.

B.1.1 Graph Property Prediction

ogbg molhiv: The ogbg molhiv dataset consists of 41, 127 molecular graphs

adopted from MoleculeNet [95], with 25.5 nodes per graph and 27.5 edges per graph.

Each graph (molecule) consists of atoms (nodes) and chemical bonds (edges), where

each node has features such as atom type and chirality, and each edge (bond) has

features such as bond type and aromaticity. The task is a binary classification

problem to predict whether a molecule is HIV inhibitory or not with ROC-AUC as

the evalation metric.

ogbg ppa: The ogbg ppa dataset consists of 158, 100 undirected protein associ-

ation graphs extracted from protein-protein association networks of 1,581 different

species [84] that cover 37 broad taxonomic groups (e.g., mammals, bacterial families,

archaeans), with 243.4 nodes per graph and 2, 266.1 edges per graph. In each graph,
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nodes represent proteins and edges represent biologically significant protein-protein

associations such as gene co-occurrence, gene fusion events, and co-expression. The

task is a multi-class classification problem to predict what taxonomic group the graph

originates from with accuracy as the evalation metric.

B.1.2 Link Property Prediction

ogbl collab: The ogbl collab dataset comprises of an undirected graph with

235, 868 nodes and 1, 285, 465 edges representing a subset of the collaboration network

between authors indexed by Microsoft Academic Graph (MAG) [86]. In the graph,

nodes represent authors, and edges indicate collaborations between authors, such as

co-authorship of academic papers. The task is a link prediction problem, where the

goal is to determine whether a link (collaboration) will exist between two given nodes

(authors) in the future based on the existing graph structure and properties. The

evaluation metric used is Hits@K, where K = 50.

ogbl ddi: The ogbl ddi dataset comprises of a homogeneous, unweighted, undi-

rected graph with 4, 267 nodes and 1, 334, 889 edges representing the drug-drug

interaction (DDI) network [94]. In the graph, nodes correspond to drugs, and edges

represent known drug-drug interactions. The task is a link prediction problem, in

which the goal is to determine whether a link (DDI) exists between two given nodes

(drugs). The evaluation metric used is Hits@K, where K = 20.

B.1.3 Node Property Prediction

ogbn arxiv: The ogbn arxiv dataset consist of a directed graph with 169, 343

nodes and 1, 166, 243 edges representing the citation network of all Computer Science

(CS) arXiv papers indexed by MAG [86]. Each node on the graph corresponds to a

paper and each directed edge indicates a citation from one paper to another. The

nodes are equipped with various input features that include word embeddings of the

title and abstracts of the papers. The task is a multi-class classification problem to

predict the subject areas of the papers (nodes) into one of the given categories based

on the graph structure and input features. The evaluation metric used is accuracy.
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ogbn mag: The ogbn mag dataset consist of a heterogeneous graph with 1, 939, 743

nodes and 21, 111, 007 edges representing a large-scale academic graph that is a subset

of MAG [86]. It consists of four types of entities: papers, authors, institutions, and

fields of study. These entities are connected by multiple types of directed edges,

representing various relationships like authorship, citation, authors’ affiliations, and

the relationships between papers and fields of study. The task is a multi-class clas-

sification problem to predict the venue of a given academic paper. The evaluation

metric used is accuracy.

ogbn products: The ogbn products dataset consist of an undirected and un-

weighted graph with 2, 449, 029 nodes and 61, 859, 140 edges representing an Amazon

product co-purchasing network [8]. Each node represents a product in Amazon with

node features derived from product descriptions, and each edge between two nodes

indicates that the two products are frequently co-purchased. The task is a multi-class

classification problem to predict the category of a product out of 47 categories. The

evaluation metric used is accuracy.

B.2 Design Space Grid Search

The following sections describe the range of values that the design dimensions take

for the grid search for all datasets. For all datasets, the design dimensions shown in

Table B.1 are fixed:

Design Dimension Value

Batch Normalization [True]
Activation Function [PReLU]

Dropout [0]
Aggregation Function [add]

Optimizer [Adam]
Learning Rate [0.01]
Max Epoch [200]

Table B.1: Fixed design dimensions for all datasets
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Design Dimension Value

Batch Size [32, 128]
Graph Pooling [add, mean, max]

MLP Layers Pre-Message-Passing [2]
Message-Passing Layers [2, 4]

MLP Layers Post-Message-Passing [2]
Hidden Dimensions [32, 128]

Layer Type [GCN, GAT, GATv2, GIN, GAIN]
Stage Type [stack, skip-sum, skip-concat]

Table B.2: Design space for ogbg molhiv and ogbg ppa. Total of 360 configurations
each.

Design Dimension Value

Batch Size [512]
MLP Layers Pre-Message-Passing [2]

Message-Passing Layers [2]
MLP Layers Post-Message-Passing [2]

Hidden Dimensions [32, 128]
Layer Type [GCN, GAT, GATv2, GIN, GAIN]
Stage Type [stack, skip-sum, skip-concat]

Table B.3: Design space for ogbl collab, ogbn mag and ogbn products. Total of
30 configurations each.

Design Dimension Value

Batch Size [512]
MLP Layers Pre-Message-Passing [2]

Message-Passing Layers [2, 4]
MLP Layers Post-Message-Passing [2]

Hidden Dimensions [32, 128]
Layer Type [GCN, GAT, GATv2, GIN, GAIN]
Stage Type [stack, skip-sum, skip-concat]

Table B.4: Design space for grid search for ogbl ddi. Total of 60 configurations.

Graph pooling of add, mean and max represents global add, mean and max pooling,

respectively, for a graph readout function for graph tasks (Equation 2.10). For GAT,
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Design Dimension Value

Batch Size [128]
MLP Layers Pre-Message-Passing [2]

Message-Passing Layers [2, 4]
MLP Layers Post-Message-Passing [2]

Hidden Dimensions [32, 128]
Layer Type [GCN, GAT, GATv2, GIN, GAIN]
Stage Type [stack, skip-sum, skip-concat]

Table B.5: Design space for grid search for ogbn arxiv. Total of 60 configurations.

GATv2 and GAIN, the number of attention heads used is 1. For GIN and GAIN,

the MLP used for injective nonlinearity (σ) is a 2 layer MLP with ReLU activation

function. In particular, we use GIN-0 for GIN where the learnable parameter ϵ in

GIN is fixed to 0.

B.3 Best Model Design

The following sections state the model designs that gave the best test performance.

B.3.1 Graph Property Prediction

Tables B.6 and B.7 state the model designs that give the best test performance for

ogbg molhiv and ogbg ppa respectively.

Layer
Type

Batch
Size

Graph
Pooling

Message-Passing
Layers

Hidden
Dimensions

Stage
Type

GCN 128 max 2 128 stack
GAT 128 add 2 128 skip-sum

GATv2 128 add 4 32 stack
GIN 32 add 2 32 skip-sum
GAIN 32 add 2 32 stack

Table B.6: Design for models with the best test results for ogbg molhiv
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Layer
Type

Batch
Size

Graph
Pooling

Message-Passing
Layers

Hidden
Dimensions

Stage
Type

GCN 128 add 4 128 stack
GAT 128 max 4 32 skip-concat

GATv2 128 add 4 32 skip-concat
GIN 128 mean 4 128 skip-sum
GAIN 128 add 4 128 skip-sum

Table B.7: Design for models with the best test results for ogbg ppa

B.3.2 Link Property Prediction

Tables B.8 and B.9 state the model designs that give the best test performance for

ogbl collab and ogbl ddi respectively.

Layer
Type

Batch
Size

Message-Passing
Layers

Hidden
Dimensions

Stage
Type

GCN 512 2 128 skip-sum
GAT 512 2 128 skip-sum

GATv2 512 2 32 skip-sum
GIN 512 2 32 skip-sum
GAIN 512 2 128 skip-sum

Table B.8: Design for models with the best test results for ogbl collab

Layer
Type

Batch
Size

Message-Passing
Layers

Hidden
Dimensions

Stage
Type

GCN 512 4 128 skip-concat
GAT 512 4 128 stack

GATv2 512 4 128 skip-sum
GIN 512 4 128 stack
GAIN 512 4 128 skip-concat

Table B.9: Design for models with the best test results for ogbl ddi
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B.3.3 Node Property Prediction

Tables B.10, B.11 and B.12 state the model designs that give the best test performance

for ogbn arxiv, ogbn mag, and ogbn products respectively.

Layer
Type

Batch
Size

Message-Passing
Layers

Hidden
Dimensions

Stage
Type

GCN 128 4 32 stack
GAT 128 4 32 stack

GATv2 128 4 32 skip-sum
GIN 128 4 32 stack
GAIN 128 4 32 stack

Table B.10: Design for models with the best test results for ogbn arxiv

Layer
Type

Batch
Size

Message-Passing
Layers

Hidden
Dimensions

Stage
Type

GCN 512 2 32 skip-concat
GAT 512 2 32 skip-concat

GATv2 512 2 32 skip-sum
GIN 512 2 128 stack
GAIN 512 2 128 stack

Table B.11: Design for models with the best test results for ogbn mag

Layer
Type

Batch
Size

Message-Passing
Layers

Hidden
Dimensions

Stage
Type

GCN 512 2 128 skip-concat
GAT 512 2 128 stack

GATv2 512 2 128 stack
GIN 512 2 128 skip-concat
GAIN 512 2 128 stack

Table B.12: Design for models with the best test results for ogbn products

43



B. Experiment Details

B.4 StarCraft Multi-Agent Challenge

Hyperparameters

In general, we adopt the hyperparameters for MAPPO and SMAC from [102] with

minimal changes. In particular, for all GCNet methods, we use the following MAPPO

hyperparameters: buffer length of 200, mini-batch of 2, and MAPPO epoch of 5.

Across all baselines, we alter the MAPPO clip parameter for some SMAC maps as

stated in Table B.13 as follows:

SMAC Maps CommNet GA-Comm MAGIC
GCNet

GCN GAT GATv2 GIN GAIN

10m vs 11m 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
1c3s5z 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
25m 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

27m vs 30m 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
2c vs 64zg 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
2m vs 1z 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

2s3z 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
2s vs 1sc 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

3m 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
3s5z 0.2 0.05 0.05 0.2 0.2 0.2 0.05 0.05

3s5z vs 3s6z 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
3s vs 3z 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
3s vs 4z 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
3s vs 5z 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
5m vs 6m 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
6h vs 8z 0.2 0.05 0.05 0.05 0.05 0.05 0.05 0.05

8m 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
8m vs 9m 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

bane vs bane 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
corridor 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
MMM 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
MMM2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

so many baneling 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

Table B.13: MAPPO clip parameter used for all methods and SMAC maps. The
majority of the values remain the same from [102].

For GNN hyperparameters, we use the following: hidden dimensions of 128 and 4

layers of GNNs. For GAT, GATv2, and GAIN, the number of attention heads used

is 8. For GIN and GAIN, the MLP used for injective nonlinearity (σ) is a 2 layer
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MLP with ReLU activation function. In particular, we use GIN-0 for GIN where the

learnable parameter ϵ in GIN is fixed to 0.

B.5 Additional Results
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