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Abstract

Robotic manipulation in unstructured environments requires adaptability and
the ability to handle a wide variety of objects and tasks. This thesis presents
novel approaches for learning robotic manipulation skills using reinforcement
learning (RL) with spatially-grounded action spaces, addressing the challenges
of high-dimensional, continuous action spaces and alleviating the need for ex-
tensive training data.

Our first contribution, HACMan (Hybrid Actor-Critic Maps for Manipula-
tion), introduces a hybrid actor-critic model that maps discrete and continuous
actions to 3D object point clouds, enabling complex non-prehensile interactions
based on the spatial features of the object. Our second contribution, HAC-
Man++ (Spatially-Grounded Motion Primitives for Manipulation), extends the
framework to more generalized manipulation. It includes a diverse set of pa-
rameterized motion primitives, allowing the robot to perform a wide range of
tasks by chaining these primitives together.

Through extensive experiments in simulation and on real robot platforms, we
demonstrate the effectiveness of our proposed approaches in learning complex,
long-horizon manipulation tasks with strong generalization to novel objects and
environments. The thesis contributes to the state-of-the-art of robotic manipu-
lation by providing novel RL approaches that leverage spatially-grounded action
spaces and motion primitives, opening up new possibilities for more intelligent
and capable robotic systems.
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Chapter 1

Introduction

Robotic manipulation, which involves interacting with and manipulating objects
in the environment, is a crucial skill for robots to perform a wide range of tasks
in various settings, from industrial assembly lines to household environments.
Manipulation tasks often require a combination of prehensile (grasping) and
non-prehensile (pushing, flipping, toppling, sliding) interactions [5, 23]. Learn-
ing complex manipulation skills with fine-grained control to handle object pose
and shape variations remains a significant challenge due to the high-dimensional,
continuous action spaces involved.

Recent advancements in Deep Reinforcement Learning (RL) have shown
promise in learning manipulation skills directly from visual observations [9, 18,
31, 57]. However, most existing approaches learn low-level, raw actions, such
as gripper or joint movements [28, 58, 53, 56, 57]. These action spaces pose
significant challenges for learning complex, long-horizon tasks due to the dif-
ficulties in exploration, credit assignment, and training stability [9, 31]. As a
result, the learned policies often struggle to generalize to novel object instances
or categories.

To address these challenges, it is crucial to select the right level of abstraction
for the action space when applying RL to manipulation tasks. The action space
should provide sufficient expressiveness to solve the task while also enabling
sample-efficient learning and generalization. In this thesis, we propose novel
approaches to define action spaces that are spatially grounded on the observed
point cloud of the environment, allowing the policy to reason about the spatial
properties of the objects and the scene.

Our first contribution, presented in “HACMan: Learning Hybrid Actor-
Critic Maps for 6D Non-Prehensile Manipulation,“ focuses on non-prehensile
manipulation tasks. We introduce a hybrid actor-critic model that maps discrete
and continuous actions to the 3D object point cloud, enabling the robot to
perform complex non-prehensile interactions based on the spatial features of
the object. This approach demonstrates strong performance and generalization
to unseen objects in tasks such as 6D object pose alignment.

Building upon the success of spatially grounded action spaces, our second pa-
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per, “HACMan++: Spatially-Grounded Motion Primitives for Manipulation,“
extends the framework to include a diverse set of parameterized motion prim-
itives. By defining an action space that includes the type of primitive (e.g.,
grasp, push, place), the location in the environment where the action is applied,
and the parameters of the motion, we enable the robot to perform a wide range
of tasks by chaining together these primitives. This approach significantly im-
proves generalization across different objects and the ability to apply to diverse
tasks, outperforming existing methods in complex manipulation scenarios.

The main contributions of this thesis are: 1) proposing novel spatially-
grounded action spaces for learning both prehensile and non-prehensile ma-
nipulation skills with RL, and 2) demonstrating their effectiveness in solving
diverse manipulation tasks with strong generalization. This work takes a step
towards equipping robots with the ability to autonomously learn and adapt
manipulation strategies for various environments and tasks.



Chapter 2

HACMan: Learning Hybrid
Actor-Critic Maps for 6D
Non-Prehensile
Manipulation

Manipulating objects without grasping them is an essential component of human
dexterity, referred to as non-prehensile manipulation. Non-prehensile manipu-
lation may enable more complex interactions with the objects, but also presents
challenges in reasoning about gripper-object interactions. In this work, we intro-
duce Hybrid Actor-Critic Maps for Manipulation (HACMan), a reinforcement
learning approach for 6D non-prehensile manipulation of objects using point
cloud observations. HACMan proposes a temporally-abstracted and spatially-
grounded object-centric action representation that consists of selecting a contact
location from the object point cloud and a set of motion parameters describing
how the robot will move after making contact. We modify an existing off-policy
RL algorithm to learn in this hybrid discrete-continuous action representation.
We evaluate HACMan on a 6D object pose alignment task in both simulation
and in the real world. On the hardest version of our task, with randomized initial
poses, randomized 6D goals, and diverse object categories, our policy demon-
strates strong generalization to unseen object categories without a performance
drop, achieving an 89% success rate on unseen objects in simulation and 50%
success rate with zero-shot transfer in the real world. Compared to alternative
action representations, HACMan achieves a success rate more than three times
higher than the best baseline. With zero-shot sim2real transfer, our policy can
successfully manipulate unseen objects in the real world for challenging non-
planar goals, using dynamic and contact-rich non-prehensile skills. Videos can
be found on the project website: https://hacman-2023.github.io.
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2.1 Introduction

The ability to manipulate objects in ways beyond grasping is a critical aspect
of human dexterity. Non-prehensile manipulation, such as pushing, flipping,
toppling, and sliding objects, is essential for a wide variety of tasks where objects
are difficult to grasp or where workspaces are cluttered or confined. However,
non-prehensile manipulation remains challenging for robots; previous work has
only shown results with limited object generalization [5, 15] or limited motion
complexity, such as planar pushing or manipulating articulated objects with
limited degrees of freedom [25, 51, 52]. We propose a method that generalizes
across object geometries while showing versatile interactions for complex non-
prehensile manipulation tasks.

We present Hybrid Actor-Critic Maps for Manipulation (HACMan), a re-
inforcement learning (RL) approach for non-prehensile manipulation from point
cloud observations. The first technical contribution of HACMan is to propose an
object-centric action representation that is temporally-abstracted and
spatially-grounded. The agent selects a contact location and a set of motion
parameters determining the trajectory it should take after making contact. The
contact location is selected from the observed object point cloud which pro-
vides spatial grounding. At the same time, the robot decisions become more
temporally-abstracted because we focus on only learning the contact-rich por-
tions of the action.

The second technical contribution of HACMan is to incorporate the pro-
posed action representation in an actor-critic RL framework. Since the contact
location is defined over a discrete action space (selecting a contact point among
the points in the object point cloud) and the motion parameters (defining the
trajectory after contact) are defined over a continuous action space, our action
representation is in a hybrid discrete-continuous action space. In HACMan, the
actor network outputs per-point continuous motion parameters and the critic
network predicts per-point Q-values over the object point cloud. Different from
common continuous action space RL algorithms [8, 20], the per-point Q-values
are used both to update the actor and also to compute the probability for se-
lecting the contact location. We modify the update rule of an existing off-policy
RL algorithm to incorporate such a hybrid action space.

We apply HACMan to a 6D object pose alignment task with randomized
initial object poses, randomized 6D goal poses, and diverse object geometries
(Fig. 2.1). In simulation, our policy generalizes to unseen objects without a
performance drop, obtaining an 89% success rate on unseen objects. In addition,
HACMan achieves a training success rate more than three times higher than the
best baseline with an alternative action representation. We also perform real
robot experiments with zero-shot sim2real transfer, in which the learned policy
performs dynamic object interactions over unseen objects of diverse shapes with
non-planar goals. Our contributions include:

• We propose a novel object-centric action representation based on 3D spa-
tial action maps to learn complex non-prehensile interactions. We also



Target Object Pose

Figure 2.1: We propose HACMan (Hybrid Actor-Critic Maps for Manipulation),
which allows non-prehensile manipulation of unseen objects into arbitrary stable poses.
With HACMan, the robot learns to push, tilt, and flip the object to reach the target
pose, which is shown in the first column and in the top row with transparency. The
policy allows for dynamic object motions with complex contact events in both sim-
ulation (top) and in the real world (bottom). The performance of the policy is best
understood from the videos on the website: https://hacman-2023.github.io.

modify an existing off-policy RL algorithm to incorporate such a hybrid
discrete-continuous action space.

• The proposed action representation demonstrates substantive improve-
ments of performance over the baselines and shows strong generalization
to unseen objects.

• The learned policy showcases complex contact-rich and dynamic manipu-
lation skills, including pushing, tilting, and flipping, shown both in simu-
lation and with a real robot.

2.2 Related Work

Non-prehensile manipulation. Non-prehensile manipulation is defined as
manipulating objects without grasping them [23]. Many non-prehensile ma-
nipulation tasks involve complex contact events among the robot, the object,
and the environment, which lead to significant challenges in state-estimation,
planning and control [5, 15, 26, 52]. Recent work has applied learning-based
methods in non-prehensile manipulation, but they are limited in terms of either
skill complexity [48, 25, 51, 19] or object generalization [56, 19]. In contrast, our
work shows 6D object manipulation involving more complex object interactions
while also generalizing to a large variety of unseen object geometries.

Visual Reinforcement Learning with Point Clouds. Recent research
has explored various ways of incorporating point clouds into RL [35, 21]. To
overcome the optimization difficulties, previous work has tried pre-training the
feature extractor with an auxiliary loss [16], initializing the RL policy with be-

https://hacman-2023.github.io


havior cloning [47], or using student-teacher training [3, 4] (see detailed discus-
sion in Appendix A.6). Our method does not require these additional training
procedures due to the benefits of the proposed action representation. In the
experiments, we show that the baselines following the most relevant previous
work [35, 3, 4] struggles when the task becomes more complex.

Spatial action maps. Similar to our method, recent work has explored
spatial action maps that are densely coupled with visual input instead of com-
pressing it into a global embedding, based on images [55, 51, 7], point clouds [36,
25, 44], or voxels [39]. Unlike previous works with spatial action maps that con-
sider one-shot decision making (similar to a bandit problem) [25, 51, 48] or rely
on expert demonstrations with ground truth actions [55, 36, 39], our method rea-
sons over multi-step sequences with no expert demonstrations. For example, Xu
et al. [51] only chooses a single contact location followed by an action sequence,
rather than a sequence of contact interactions. Unlike previous work in spatial
action maps that uses DQN with discrete actions [54, 17, 48, 7], our hybrid
discrete-continuous action space allows the robot to perform actions without
discretization. Furthermore, we demonstrate the benefit of spatial action rep-
resentations when applied to a 6D non-prehensile manipulation task, which is
more challenging than the pick-and-place and articulated object manipulation
tasks in previous work.

RL with hybrid discrete-continuous action spaces. Most RL al-
gorithms focus on either a discrete action space [24] or a continuous action
space [20, 8, 12]. However, certain applications are defined over a hybrid action
space where the agent selects a discrete action and a continuous parameter for
the action [30, 13, 50]. Unlike previous work, our hybrid action space uses a
spatial action representation in which the discrete actions are defined over a
map of visual inputs. The closest to our work is Feldman et al. [7] in terms of
applying RL to spatial action maps, but they only consider a finite horizon of
2. We include formal definitions of the policies over the hybrid action space and
modify the loss functions and exploration accordingly.

2.3 Preliminaries
A Markov Decision Process (MDP) models a sequential stochastic process. An
MDP can be represented as a tuple (S,A, P, r), where S is the state space; A
is the action space; P (st+1|st, at) is the transition probability function, which
models the probability of reaching state st+1 from state st by taking action at;
r(st, at, st+1) is the immediate reward at time t. The objective is to maximize
the return Rt, defined as the cumulative discounted reward Rt =

∑∞
i=0 γ

irt+i.
Given a policy π, the Q-function is defined as Qπ(s, a) = Eπ[Rt|st = s, at = a].

HACMan is built on top of Q-learning-based off-policy algorithms with a
continuous action space [8, 12, 13]. In these algorithms, we define a deterministic
policy πθ parameterized by θ and a Q-function Qϕ parameterized by ϕ. Note
that since the policy is deterministic, we use epsilon-greedy during exploration.
Given a dataset D with transitions (st, at, st+1), the Q-function loss is defined



according to the Bellman residual:

L(ϕ) = Est,at,st+1∼D[(Qϕ(st, at)− yt)
2], (2.1)

where yt is defined as:

yt = rt + γQϕ(st+1, πθ(st+1)). (2.2)

The policy loss for πθ is defined to maximize the Q-function:

J(θ) = −Est∼D[Qπθ (st, at)|at=πθ(st)]. (2.3)

2.4 Problem Statement and Assumptions

We focus on the task of 6D object pose alignment with non-prehensile manip-
ulation. The objective of the robot is to perform a sequence of non-prehensile
actions (i.e. pushing, flipping) to move an object on the table into a target goal
pose. We assume that the goals are stable object poses on the table. The robot
policy observes the point cloud of the scene from depth cameras, denoted as X .
We assume that the point cloud observation is segmented between the back-
ground and the object to be manipulated. Thus, the full point cloud X consists
of the object point cloud X obj and the background point cloud X b. The feature
for each point is a 4-dimensional vector, including a 1-dimensional segmentation
mask and a 3-dimensional goal flow vector (will be defined in Section 2.5.3).

2.5 Method

2.5.1 Action Representation

We propose an object-centric action space that consists of two parts: a contact
location aloc on an object and motion parameters am which define how the
robot moves to interact with the object after contact. As shown in Fig. 2.2,
to execute an action, the end-effector will first move to a location in free space
near location aloc, after which it will interact with the object using the motion
parameters am. After the interaction, the end-effector will move away from the
object, a new observation is obtained, and the next action can be taken.

Specifically, given the object point cloud X obj = {xi | i = 1 . . . N}, where
xi ∈ R3 are the point locations, the contact location aloc is chosen from among
the points in X obj . Thus, aloc is defined over a discrete action space of dimen-
sion N . We assume a collision-free motion planner to move the gripper to the
contact location aloc (see Appendix A.1.6 for details). In contrast, the motion
parameters am, which define how the gripper interacts with the object after
contact, are defined in a continuous action space. Furthermore, we define am

as the end-effector delta position movement from the contact position, hence
am ∈ R3. Our experiments show that translation-only movements are suffi-
cient to enable complex 6D object manipulation in our task. We also include
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Figure 2.2: Illustration of our action space.

additional experiments on extending motion parameters to enable rotations in
Appendix A.3.4.

The proposed action representation has two benefits compared to previ-
ous work. First, it is temporally-abstracted. We “abstract” a sequence
of lower-level gripper movements of approaching the contact and executing
the motion parameters into one action decision step in the RL problem def-
inition. Compared to the common action space of end-effector delta move-
ments [28, 53, 56, 33], the agent with our action space can avoid wasting time
learning how to move in free space and instead focus on learning contact-rich
interactions. Second, it is spatially-grounded since the agent selects a contact
location from the observed object point cloud.

2.5.2 Hybrid RL Algorithm

The proposed action space is a hybrid discrete-continuous action space: the
contact location aloc is discrete while the motion parameters am are continuous.
We propose a way to adapt existing off-policy algorithms designed for continu-
ous action spaces [8, 12] to this hybrid action space. First, consider the simpler
case of an action space that only has the continuous motion parameters am. In
this case, we can directly apply existing off-policy algorithms as described in
Section 2.3. Given the observation s (which is the point cloud X in our task),
we can train an actor to output the motion parameters πθ(s) = am. Similarly,
the critic Qϕ(s, a

m) outputs the Q-value given the observation s and the mo-
tion parameters am; the Q-value can be used to update the actor according to
Eqn. 2.3.

To additionally predict the contact location aloc, we also need the policy to
select a point among the discrete set of points in the object point cloud X obj .
Our insight is that we can embed such a discrete component of the action space
into the critic by training the critic to output a per-point Q-value Qi for each
point xi over the entire point cloud. The Q-value at each point on the object
represents the estimated return after selecting this point as the contact location.
These Q-values can thus be used not only to update the actor, but also to select
the contact location as the point with the highest Q-value. Additionally, we train
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Figure 2.3: An overview of the proposed method. The point cloud observation includes the
location of the points and point features. The goal is represented as per-point flow of the object points.
The actor takes the observation as input and outputs an Actor Map of per-point motion parameters.
The Actor Map is concatenated with the per-point critic features to generate the Critic Map of per-
point Q-values. Finally, we choose the best contact location according to the highest value in the Critic
Map and find the corresponding motion parameters in the Actor Map.

the actor to also output per-point motion parameters ami for each point xi. If
point xi is selected as the contact location aloc, then the motion parameters at
this point ami will be used as the gripper motion after contact.

The overall architecture is shown in Fig. 2.3. The actor πθ receives as input
the point cloud observation and outputs per-point motion parameters πθ(X ) =
{ami = πθ,i(X ) | i = 1 . . . N}. We call this per-point output an “Actor Map”.
The critic also receives as input the point cloud observation. It first calculates
per-point features f(X ) = {fi | i = 1 . . . N}. The critic then concatenates
each per-point feature fi (Section 2.4) with the corresponding per-point motion
parameter ami and inputs the concatenated vector to an MLP. The output of
the MLP is a per-point Q-value: Qi = Qϕ(fi, a

m
i ), which scores the action of

moving the gripper to location xi and executing motion parameters ami . We
call this per-point output a “Critic Map”. In this way, the critic is able to
reason jointly about the contact location (via the feature fi) as well as the
motion parameters ami . In our implementation, both the actor and the critic
use segmentation-style PointNet++ architecture [34] (Appendix A.2).

At inference time, we can select the point xi within the object points X obj

with the highest Q-value Qi as the contact location and use the corresponding
motion parameters ami . For exploration during training, we define a policy πloc

which selects the contact location based on a softmax of the Q-values over all
of the object points. The probability of a point xi being selected as the contact
location is thus given as:

πloc(xi | s) = πloc(xi | X ) =
exp(Qi/β)∑

k=1,...,N exp(Qk/β)
. (2.4)



β is the temperature of the softmax which controls the exploration of the contact
location. Note that the background points X b are included in the observation
s = X = {X b,X obj}, but are excluded when choosing the contact location.
We modify the update rules of the off-policy algorithm for this hybrid policy.
Given s = X , we first define the per-point loss for updating the actor πθ,i(s) at
location xi according to Eqn. 2.3:

Ji(θ) = −Qϕ(fi, a
m
i ) = −Qϕ(fi, πθ,i(s)). (2.5)

fi is the feature corresponding to point xi. The total objective of the actor is
then computed as an expectation over contact locations:

J(θ) = Exi∼πloc [Ji(θ)] =
∑
i

πloc(xi | s) · Ji(θ). (2.6)

πloc(xi | s) is the probability of sampling contact location xi, defined in Eq. 3.4.
The difference between Eqn. 2.6 and the regular actor loss in Eqn. 2.3 is that we
use the probability of the discrete action to weight the loss for the continuous
action. To take into account πloc during the critic update, the Q-target yt from
Eqn. 2.2 is modified to be:

y = rt + γExi∼πloc [Qϕ(fi(st+1), πθ,i(st+1))]. (2.7)

2.5.3 Representing the Goal as Per-Point Goal Flow

As described in Section 2.4, the objective of our task is to move an object to a
given goal pose. Instead of concatenating the goal point cloud to the observed
point cloud [3, 4], we represent the goal as per-point “goal flow”: Suppose that
point xi in the initial point cloud corresponds to point x′

i in the goal point cloud;
then the goal flow is given by ∆xi = x′

i − xi. The goal flow ∆xi is a 3D vector
which is included as the feature of the point cloud observation (concatenated
with a segmentation label, resulting in a 4-dimensional feature vector). This
flow representation of goal is also used to calculate the reward and success rate
for the pose alignment task (Appendix A.1.3). In the real robot experiments,
we estimate the goal flow using point cloud registration (Appendix A.4). Our
ablation experiments suggest that utilizing the flow representation of the goal
drastically enhances performance compared to directly concatenating the goal
point cloud (Appendix A.3.1).

2.6 Experiment Setup

We evaluate our method on the 6D object pose alignment task as described in
Section 2.4. The objective is to perform a sequence of non-prehensile actions (i.e.
pushing, flipping) to move the object to a given goal pose. In this section, we
describe the task setup in simulation, used for training and simulation evaluation
(see Section 2.8 for real robot experiments).
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Figure 2.4: Baselines and Ablations. Our approach outperforms the baselines and the ablations,
with a larger margin for more challenging tasks on the right. Success rates for simple tasks - pushing
a single object to an in-plane goal - are high for all methods, but only HACMan achieves high success
rates for 6D alignment of diverse objects.

Task Setup. The simulation environment is built on top of Robosuite [58] with
MuJoCo [46]. We include 44 objects with diverse geometries from Liu et al. [22].
Details and visualizations of the object models are included in Appendix A.1.1.
The object dataset is split into three mutually exclusive sets: training set (32
objects), unseen instances (7 objects) and unseen categories (5 objects). The 7
unseen instances consist of objects from categories included in the training set,
whereas the 5 objects in “unseen categories” consist of novel object categories.
An episode is considered a success if the average distance between the corre-
sponding points of the object and the goal is less than 3 cm. More details on
our simulation environment setup can be found in Appendix A.1.
Task Variants. To analyze the limitations of different methods, we design the
object pose alignment task with varying levels of difficulty. We consider three
types of object datasets: An All Objects dataset that includes the full object
dataset, a Cylindrical Objects dataset consisting of only cylindrical objects,
and a Single Object dataset consists of just a single cube. We also try different
task configurations: In the Planar goals experiments, the object starts from
a fixed initial pose at the center of the bin, and the goal pose is a randomized
planar translation of the starting pose. In the 6D goals experiments, both
the object initial pose and goal pose are randomized SE(3) stable poses, not
limited to planar transformations. This task requires SE(3) object movement
to achieve the goal which imposes challenges in spatial reasoning. These different
task variations are used to show at what level of difficulty each of the baseline
methods stop being able to complete the task.

2.7 Simulation Results

In this section, we demonstrate the effectiveness of HACMan compared to the
baselines and ablations. Fig. 2.4 summarizes the performance of each method
after being trained with the same number of environment interactions. The
training curves, tables, and additional results can be found in Appendix A.3.
Implementation details of all methods are included in Appendix A.2.



Spatially
Grounded?

Temporally
Abstracted?

Select Contact Location [Ours] ✓ ✓
Regress Contact Location × ✓
No Contact Location [3, 4, 56, 35, 53, 28] × ×

Table 2.1: Features of the proposed action representation compared to the baselines.

Effect of action representations. We compare our method with two alter-
native action representations, summarized in Table 2.1. In Regress Contact
Location, the policy directly regresses to a contact location and motion param-
eters, instead of choosing a contact point from the point cloud as in HACMan.
The No Contact Location baseline directly regresses to a delta end-effector
movement at each timestep. For every action, the robot continues from its
position from the previous action, instead of first moving the gripper to a se-
lected contact location. This is the most common action space in manipula-
tion [3, 4, 56, 35, 53, 28]. As input for these two baselines, we use either point
cloud observations or ground-truth state, establishing four baselines in total.
The baseline that regresses motion parameters from point cloud observations is
a common action representation used in prior work in RL from point clouds such
as Qin et al. [35]. The baseline that regresses motion parameters from ground-
truth state is the most common approach in prior work, such as in Zhou and
Held [56] as well as the teacher policies in Chen et al. [3, 4] (see Appendix A.6
for more discussion).

As shown in Fig. 2.4, these baseline action representations struggle with the
more complex task variants. For the most challenging task variant “All Objects
+ 6D goals,” our method achieves a success rate 61% better than the best base-
line (see Table A.3 for numbers). As mentioned in Section 2.5, the proposed
action representation benefits from being spatially-grounded and temporally-
abstracted. The comparison against the baselines demonstrates the importance
of each of these two features (Table 2.1). The “Regress Contact Location” base-
line still benefits from being temporally-abstracted because the gripper starts
from a location chosen by the policy at each timestep; however, this action rep-
resentation is not spatially-grounded because it regresses to a contact location
which might not be on the object surface, unlike our approach which selects
the contact location among the points in the point cloud observation. Thus,
the “Regress Contact Location” baseline suffers from training difficulties with
more diverse objects (last two variants in Fig. 2.4). The “No Contact Location”
baseline is neither spatially-grounded nor temporally-abstracted; it follows the
usual approach from prior work [3, 4, 56, 35, 53, 28] of regressing an end-effector
delta motion at each timestep. While this is the most common action space in
prior work, it has close to zero performance with 6D goals.
Effect of Multi-step Reasoning. To test the necessity of multi-step reason-
ing for the pose alignment task, we experiment with a “Greedy” version of
HACMan by setting the discount factor γ in the RL algorithm to γ = 0. This



Figure 2.5: Qualitative results for the object pose alignment task. HACMan
shows complex non-prehensile behaviors that move the object to the goal pose (shown
as the transparent object).

(a) Planar – thin object (d) Knock over (e) Flip up(b) Planar – thick object (c) Planar – Multimodal solution

Figure 2.6: Goal-conditioned Critic Maps. Blue: goal point cloud. Color map:
observed object point cloud. Lighter colors indicate higher Critic Map scores. Red
arrows: motion parameters at a selected location. The policy uses different contact
locations based on object geometries and goals.

forces the algorithm to optimize for greedy actions for each step. Using RL for
multi-step reasoning is one of the important differences between our method
and previous work such as Where2Act [25] and UMPNet [51] which optimize
for one-step contact locations. Fig. 2.4 indicates that greedy actions might work
for planar goals, but suffer from poor performance for 6D goals that requires
multi-step non-greedy interactions. For example, the last row in Fig. 2.5 shows
an example of our method pushing the object away from the goal position to
prepare for flipping it to the correct orientation, demonstrating non-greedy be-
havior. In contrast, we find that the greedy ablation often results in local optima
of only trying to match the object position but not its orientation.
Generalization to unseen objects. The evaluation of our method over un-
seen objects with 6D goals is summarized in Table 2.2. Our method generalizes
well to unseen object instances and unseen categories without a performance

Object Set Split Success Rate # of Objects

Train 0.833 ± .018 32
Train (Common Categories) 0.887 ± .024 13
Unseen Instance (Common Categories) 0.891 ± .033 7
Unseen Category 0.827 ± .047 5

Table 2.2: Generalization to unseen objects.



drop. When we increase the maximum episode length from 10 steps to 30 steps,
our method achieves 95.1% success on unseen categories (Appendix A.3.7). Ta-
ble 2.2 shows that, comparing the same set of object categories (“common cat-
egories”), the success rates of the training instances are similar to the unseen
instances. The differences in geometry comparing the training objects and the
unseen objects are visualized in Appendix A.1.1.
Goal-conditioned Object Affordance and Multimodality. We visualize
the Critic Map, which computes the score of each contact location of the object
(Fig. 2.6). The Critic Maps capture goal-conditioned object affordances which
describe how the object can be moved to achieve the goal. Fig. 2.6(a) and (b)
are two scenarios of performing translation object motions for different object
heights: For a thin object, the Critic Map highlights the region of the top of
the object (dragging) or from the back side of the object (pushing). For a
thick object, it prefers to push from the bottom to avoid the object falling over.
In Fig. 2.6(c), the hammer needs to be rotated by 180 degrees. The Critic
Map predicts a multimodal solution of pushing from either end of the object.
Fig. 2.6(d) and (e) show out-of-plane motions of the object of knocking over
and flipping up the objects.
Additional Results. We include additional experiment results in Appendix A.3,
including additional ablations, extending the motion parameters, cluttered scenes,
longer training steps, longer episode lengths, and success rate breakdown for
each object category.

2.8 Real robot experiments

In the real robot experiments, we aim to evaluate the ability of the trained policy
to generalize to novel objects and execute dynamic motions in the real world.
We evaluate the policy with a diverse set of objects with different shapes, surface
frictions, and densities (Fig. 2.7). We use random initial poses and random 6D
goals (referred to in the previous section as “All Objects + 6D Goals”). For
example, the red mug (Fig. 2.7(g)) has goal poses of being upright on the table
or lying on the side. An episode is considered a success if the average distance
of corresponding points between the object and the goal is smaller than 3 cm;
we also mark an episode as a failure if there is a failure in the point cloud
registration between the observation and the goal. Implementation details of
the real robot experiments can be found in Appendix A.4.

Fig. 2.7 (right) summarizes the quantitative results of the real robot experi-
ments. We run the evaluations without manual reset, which may create uneven
numbers of planar versus out-of-plane goals. It achieves 70% success rate on
planar goals and 40% success rate on non-planar goals. Non-planar goals are
more difficult than the planar goals because they require dynamic motions to
interact with the object. A small error in the action may result in large changes
in the object movement. Videos of the real robot experiments can be found on
the website: https://hacman-2023.github.io. The real robot experiments
demonstrate that the policy is able to generalize to novel objects in the real

https://hacman-2023.github.io


(a) Blue cup (b) Milk carton                (c) Box (d) Red bottle (e) Hook

(f) Black mug (g) Red mug (h) Wood block (i) Toy bridge (j) Toy block 

Object Name
Planar
Goals

Non-planar
Goals

Total

(a) Blue cup 4/7 4/13 8/20
(b) Milk bottle 6/7 10/13 16/20
(c) Box 2/5 10/15 12/20
(d) Red bottle 4/7 0/13 4/20
(e) Hook 5/8 5/12 10/20
(f) Black mug 4/7 0/13 4/20
(g) Red mug 5/7 3/13 8/20
(h) Wood block 6/7 6/13 12/20
(i) Toy bridge 9/10 5/10 14/20
(j) Toy block 2/2 10/18 12/20

Total 47/67 53/133 100/200
Percentage 70% 40% 50%

Figure 2.7: Real robot experiments. HACMan achieves a 50% overall success
rate over unseen objects with different geometries and physical properties, with 6D
goal poses.

world, despite the sim2real gap of the simulator physics and inaccuracies of
point cloud registration for estimating the goal transformation. More discus-
sion can be found in Appendix A.4.

2.9 Limitations

Since the contact location in our action space is defined over the point cloud
observation, our method requires relatively accurate depth readings and camera
calibration. Further, the contact location is currently limited to the observed
part of the object. In addition, for this goal-conditioned task, we represent the
goal as per-point flow (Section 2.5.3) which relies on point cloud registration
algorithms. Inaccuracies in the registration algorithm sometimes lead to failure
cases in real robot experiments. More discussion of the failure cases can be
found in Appendix A.4.3. In addition, finetuning the policy on the real robot
can potentially improve the success rate further.

2.10 Conclusion

In this work, we propose to learn Hybrid Actor-Critic Maps with reinforcement
learning for non-prehensile manipulation. The learned policy shows complex
object interactions and strong generalization across unseen object categories.
Our method achieves a significantly higher success rate than alternative action
representations, with a larger performance gap for more difficult task variants.
In addition, it would be interesting to explore alternative 3D representations
other than point clouds such as implicit representation [10, 41]. We hope the
proposed method and the experimental results can pave the way for future work
on more skillful robot manipulation over diverse objects.



Chapter 3

HACMan++:
Spatially-grounded Motion
Primitives for Manipulation

Although end-to-end robot learning has shown some success for robot manipula-
tion, the learned policies are often not sufficiently robust to variations in object
pose or geometry. To improve the policy generalization, we introduce spatially-
grounded parameterized motion primitives in our method HACMan++. Specif-
ically, we propose an action representation consisting of three components: what
primitive type (such as grasp or push) to execute, where the primitive will be
grounded (e.g. where the gripper will make contact with the world), and how the
primitive motion is executed, such as parameters specifying the push direction
or grasp orientation. These three components define a novel discrete-continuous
action space for reinforcement learning. Our framework enables robot agents to
learn to chain diverse motion primitives together and select appropriate prim-
itive parameters to complete long-horizon manipulation tasks. By grounding
the primitives on a spatial location in the environment, our method is able
to effectively generalize across object shape and pose variations. Our approach
significantly outperforms existing methods, particularly in complex scenarios de-
manding both high-level sequential reasoning and object generalization. With
zero-shot sim-to-real transfer, our policy succeeds in challenging real-world ma-
nipulation tasks, with generalization to unseen objects. Videos can be found on
the project website: https://sgmp-rss2024.github.io.
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Figure 3.1: Our method consists of a library of parameterized, spatially-grounded motion primitives
(left), consisting of a primitive type, primitive location (where the primitive will be grounded), and
primitive parameters. These three components form the action space for a policy that we train with
reinforcement learning. Our method learns to select a sequence of primitives (and their corresponding
locations and parameters) to perform a long-horizon manipulation task. In the task shown here, the
object is placed in one bin in an initial pose, and it must be moved into a second bin in a target pose.
At the top, we visualize the spatial grounding for the selected primitive; for each point we visualize
the learned Q-value of selecting that point in the form of heatmaps as the grounding location for each
primitive.

3.1 Introduction

Despite recent progress in training manipulation policies with reinforcement
learning (RL), it remains challenging to scale RL training to longer-horizon
problems with broader task variations [9, 18, 57, 31]. A significant limitation is
that most robot manipulation policies reason over the space of granular robot-
centric actions, such as gripper or joint movements [28, 53, 58, 56]. These action
spaces are highly inefficient for longer-horizon tasks due to exploration, credit
assignment, and training stability challenges in deep reinforcement learning [9,
31].

Instead of learning policies over low-level timesteps, the robot should reason
about long-horizon manipulation problems with general, reusable primitives.
For example, to make coffee, the robot may segment the task into picking up
a mug and then placing it under the coffee machine. This process involves
decomposing the task into a “grasping” stage followed by a “placing” stage.
With a similar idea, prior work has proposed applying a hierarchical structure
in robot decisions, such as options or skill primitives [6, 29, 50]. These methods
decouple the high-level decisions of “what” to do from the low-level decisions
of “how” to execute robot motions. However, our experiments demonstrate
that this prior work in using skill primitives shows limited generalization across
different object geometries and poses.



We desire a model that can both reason over temporal abstractions (i.e.
reasoning about a sequence of parameterized skill primitives) as well as achieve
object pose and shape generalization. In this work, we propose to learn ma-
nipulation policies with RL using a set of spatially grounded motion primitives.
The motion primitives consist only of basic manipulation motions such as grasp-
ing, placing, or pushing. Each primitive is parameterized by a location selected
from the observed point cloud, which the primitive is defined relative to, and a
vector of additional parameters defining the details of the gripper motion. For
example, “grasping” is parameterized by a location on the object point cloud to
grasp and a gripper orientation; “placing” selects a location on the background
point cloud and a gripper orientation; “pushing” selects a contact location and a
push direction. We also include two “move” primitives to allow for more generic
robot motions.

To train a reinforcement learning policy with this action space, we leverage
hybrid actor-critic maps [57, 7]. Given a 3D object point cloud, our method
trains a critic to output per-point, per-primitive scores, which form a primitive-
conditioned “Critic Map.” Our method selects the best primitive and the cor-
responding location with the highest score in the primitive-conditioned critic
map. Compared to previous work on 3D hybrid actor-critic maps [57] which
is limited to one non-prehensile poking skill, we include a comprehensive set of
heterogenous primitives to enable the robot to perform a wider variety of tasks.
Another related line of work [7] is demonstrated on only a single task and 4
objects, whereas we demonstrate our approach on 4 different tasks and a wide
variety of object geometries.

The contributions of our paper include:

1. A set of diverse and generic spatially-grounded motion primitives
that can solve a range of complex tasks that could not be solved by prior
work.

• Compared to prior work that uses diverse motion primitives [6, 50],
our primitives are spatially-grounded and outperform prior work.

• Compared to prior work that uses specially-designed spatially-grounded
primitives for a single task [7, 57], our primitive set is more generic
and applies to a wide range of tasks.

2. An RL training framework that incorporates the primitive selection and
spatial-grounding selection using the critic.

Our experimental contributions include:

1. We demonstrate that our method learns complex skills that generalizes
over unseen objects, achieving an 89.5% success rate on training objects
and an 84.9% success rate on unseen object categories on our Double Bin
task.

2. We show that our method significantly outperforms prior work that in-
cludes diverse primitives that are not spatially-grounded on diverse simu-
lation tasks.



3. We also perform real robot experiments for a DoubleBin object pose align-
ment task, which achieves 73% success rate.

In addition to our main experiments, we also show preliminary results of
extending the concept of spatially grounded motion primitives to dexterous
hand manipulation tasks in Appendix B.2.6, demonstrating the potential for
this approach to generalize to other robot morphologies.

3.2 Related Work

Hierarchical Reinforcement Learning. Prior work has integrated a hier-
archical structure into reinforcement learning to reduce the challenge of long-
horizon reasoning for RL algorithms [45]. In hierarchical reinforcement learning,
a high-level policy will communicate with one or more low-level policies to fin-
ish the task. However, it can be difficult to jointly optimize both the high and
low-level policies [11]. Alternatively, prior work has proposed to first learn a set
of low-level skills from an offline dataset [32, 2, 38, 37, 42]. Instead, we follow
prior work in the robotics domain and define the low-level policies as commonly
used primitives such as grasping, placing, and pushing [6, 29]. We compare our
method to other methods that use “skill libraries,” including some hierarchical
RL methods, explained below.

Skill Libraries. Prior work [59] has specifically designed a set of primitives
including approach, contact, fit, align, and insertion, as a skill library. However,
this set of primitives is not generalizable to other tasks. Furthermore, it assumes
a pre-specified order of primitives to be executed to finish a given task. Another
line of work defines the action space of the RL policy based on a more general
set of pre-defined parametrized primitives such as RAPS [6], MAPLE [29], and
Parameterized DQN [50]. The RL policy learns to automatically chain different
primitives together to achieve a task without assuming a fixed order of primi-
tives. This also means that the agent can re-execute primitives when a failure
occurs. Our method inherits the benefits of those work in RL policy with pa-
rameterized primitives and also differs from them in that we spatially ground
the primitives to improve spatial reasoning. We compare our method to these
prior methods in the experiments and demonstrated significantly improved per-
formance.

Spatial Action Maps. Spatial action maps connect a dense action rep-
resentation with visual inputs using segmentation-style models [55, 36, 39, 25,
51, 48]. Our method proposes a novel combination of motion primitives with
spatial action maps to incorporate both temporal abstraction and spatial rea-
soning. Most prior work on spatial action maps has limitations on requiring
expert demonstrations for imitation learning [55, 36, 39] or is limited to one-
step decisions without sequential reasoning [25, 51, 48]. Our work is the most
related to [57, 7]; however, Zhou et al. [57] is limited to one non-prehensile skill
(pushing) while we use a set of heterogeneous skills that can be combined to
achieve more complex tasks. Feldman et al. [7] uses 2 skills, grasp and shift, and
their horizon is limited to 2 (shift and then grasp), whereas our method allows



the algorithm to chain the skills together in different sequences as appropriate
for different tasks. Further, Feldman et al. [7] demonstrates their method on
a single task with 4 object types, whereas we demonstrate our method on 4
different tasks and a wide variety of object shapes. More detailed discussions
between our method and [57, 7] are included in the Appendix B.5.

3.3 Background

A stochastic sequential decision problem can be formalized as a Markov Decision
Process (MDP), characterized by (S,A, P, r, γ). Here, S denotes the states, A
represents the actions, P (st+1|st, at) is the likelihood of transitioning from state
st to state st+1 given action at, and r(st, at, st+1) is the reward obtained at time
t. The goal within this framework is to optimize the return Rt, which is the sum
of discounted future rewards, expressed as Rt =

∑∞
i=0 γ

irt+i. Under a policy π,
the expected return for taking action a in state s is described by the Q-function
Qπ(s, a) = Eπ[Rt|st = s, at = a].

HACMan++ leverages Q-learning-based algorithms for continuous action
spaces [20, 8]. These methods are characterized by a policy πθ with parameters
θ, and a Q-functionQϕ with parameters ϕ. Training involves collecting a dataset
D of state transitions (st, at, st+1), with the Q-function’s loss formulated as:

L(ϕ) = E(st,at,st+1)∼D[(Qϕ(st, at)− yt)
2], (3.1)

with yt being the target value, determined by:

yt = rt + γQϕ(st+1, πθ(st+1)). (3.2)

The optimization of the policy πθ is described by the loss function:

J(θ) = −Est∼D[Qϕ(st, πθ(st))]. (3.3)

3.4 Method

Assumptions. We assume that the robot agent records a point cloud obser-
vation of a scene X , which may be obtained from one or more calibrated depth
cameras. We further assume that this point cloud is segmented into object X obj

and background X b components. See Appendix B.1 for details.
To address the challenges of long-horizon manipulation tasks, our method

uses a set of parameterized motion primitives, and learns how to both 1) chain
these primitives together to achieve a task and 2) select appropriate parameters
for the execution of each primitive. Section 3.4.1 defines the structure of the
proposed action representation. Section 3.4.2 lists the specific choices of param-
eterized motion primitives. Section 3.4.3 describes how we train the policy with
the proposed action space with the RL algorithm.
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Figure 3.2: Our method processes a point cloud to estimate a set of per-point primitive parameters
am
i for each point xi in the point cloud and for each primitive in our primitive set. We then compute

a set of “Critic Maps” (one per primitive) which estimate the Q-value Qi,k of using each primitive k,
grounded at each point xi, and parameterized by the estimated primitive parameters am

i . We either
sample from the Critic Map (during training) or choose the point and primitive with the highest score
(during evaluation) for robot execution.

3.4.1 Action Representation

Our action representation comprises three key elements: the primitive type
aprim, the primitive location aloc, and the primitive parameters am. These
components collectively define the “What”, “Where”, and “How” of each se-
quential skill execution.

Primitive Type aprim determines the type of primitive the robot will exe-
cute, such as poking, grasping, or placing (see the full list in Section 3.4.2).
The robot policy aims to learn to perform different tasks by chaining the prim-
itives in appropriate order based on the observations. Each type of primitive
is uniquely parameterized to allow for variations in execution, adapting to the
specific demands of the task. Once the parameters are specified, these primitives
are executed with a low-level controller.

Primitive Location aloc is a selected point of interaction in the scene, chosen
from the observed point cloud X . The selected point grounds each primitive in
the observed world: the robot action will be applied at a location relative to the
selected point, as defined by the primitive parameters am.

Primitive Parameters am detail how the robot will execute the chosen prim-
itive at the selected location aloc. It includes aspects like gripper orientation
while approaching the object, an offset with respect to the chosen primitive lo-
cation, and post-contact movement. Details are primitive-type-dependent and
are described below.



3.4.2 Parameterized Motion Primitives

We use five distinct and generic motion primitives, that collectively satisfy the
needs of a wide range of manipulation tasks, following the primitive designs from
previous work [6, 29]. Each primitive has its own specific parameters described
below. More details of the motion parameters for each primitive can be found
in the Appendix B.1.

Poke: This primitive applies a non-prehensile poking motion to the target
object [57, 54, 7, 1]. The robot moves the fingertip of the gripper to the se-
lected primitive location aloc on the object as the initial contact point (see
Appendix B.1 for details). The motion parameters am consists of two parts: 1)
the 2D gripper orientation while approaching the initial contact point, and 2)
parameters that describe the poking motion after the gripper reaches the initial
contact point on the object, defined as a 3D vector of gripper translation.

Grasp: This primitive grasps the target object and then lifts it up [27, 43, 7].
The primitive location aloc under the grasp primitive type defines a grasping
point on the object. The motion parameters am detail the 2D gripper orientation
while approaching the grasping point. Upon reaching the grasping point, the
gripper closes to grasp the object. It then lifts up by a pre-specified distance
(see Appendix B.1).

Move to: This primitive moves the gripper to a location that is defined relative
to a point aloc selected from the background point cloud X b. The primitive pa-
rameters am contain two parts: 1) the 2D gripper orientation when approaching
the location, and 2) a 3D vector defining an offset from the selected location
aloc; the target point for the gripper to move to is given by the selected loca-
tion aloc plus this offset. The selected location aloc grounds this motion on the
point cloud, whereas the added offset gives the robot more flexibility in where
to move. To speed up exploration, we restrict the primitive location aloc to be
selected from the background points and we only execute this primitive when
the gripper is already grasping an object.

Open Gripper: This primitive opens the gripper. The selected location aloc

has no influence on the action, and this primitive does not require any motion
parameters.

Move delta: To account for any nuanced movements that are difficult to
achieve with the above primitives, we include the “Move delta” primitive to
move the gripper by a 3D delta movement and 2D orientation. Motion param-
eters for this primitive specify a delta translation and rotation of the gripper.
We restrict this primitive to only be selected when the robot is already grasping
an object.

3.4.3 Hybrid RL Algorithm

HACMan++ integrates a multi-primitive approach with existing Q-learning-
based RL algorithms [8, 12, 20]. Our action space includes both discrete and



continuous components: the primitive type aprim is selected from K primitives;
for each primitive type, the primitive location aloc is selected from N points
from the observed point cloud; whereas the motion parameters am are a vector
of continuous values.

The overall architecture of our approach is shown in Figure 3.2. The agent
receives as input a point cloud observation of size N. We first use a segmentation-
style point cloud network to output per-point actor features fa

i for each point
xi. These features are shared across the K different primitives. We then input
each of these features into a per-primitive MLP to output motion parameters
ami,k for each point xi and each primitive k. We refer to these outputs as an
“Actor Map.”

Our method also extracts per-point critic features fi for each point xi through
a segmentation-style point cloud critic feature extractor. These features are
shared across the K different primitives. The per-point motion parameters ami,k
are then concatenated with per-point critic features fi and input into a multi-
layer perceptron (MLP) to calculate per-point Q values Qi,k for each point xi

and each primitive k; this Q-value represents the effectiveness of executing the
kth primitive with the motion parameters ami,k at the primitive location xi. The
above procedure generates a “Critic Map” with a total of KN Q-values across
all points and all primitives (see Figure 3.2).

The optimal action is chosen by selecting the highest Q-value Qmax
i,k from

the critic map, which corresponds to primitive type k, primitive location xi,
and motion parameters ami,k. During training, the policy selects primitive types
and locations by sampling from a softmax distribution over Q-values to balance
exploration and exploitation, formalized as:

πdiscrete(k, xi | s) =
exp(Qi,k/β)∑K

k=1

∑N
i=1 exp(Qi,k/β)

(3.4)

where β is a temperature parameter modulating the softmax function, guiding
the agent’s exploratory behavior.

The Q-function is updated according to the bellman equation (Equation 3.1)
following TD3 [8]. To update the primitive parameters ami,k, we similarly follow

the TD3 algorithm [8]: If we define the actor πθ
i,k(s) as the function parameter-

ized by θ that maps from the observation s to the action parameters ami,k for a
given point xi and primitive k, then the loss function for this actor is given by:

J(θ) = −Qϕ(fi, a
m
i,k) = −Qϕ(fi, π

θ
i,k(s)), (3.5)

where Qϕ is the critic network and fi is the critic feature of the point xi.
To assist the network in understanding the relationship between the obser-

vation and the goal, we compute the correspondence between the points in the
observation and the points in the goal (see Appendix B.1 for details). For every
point in the observation, we append to the input a 3-dimensional vector indi-
cating the delta to its corresponding goal location, which we refer to as “goal
flow” (see Figure‘3.2).



Real-worldDouble BinManiSkill2
Peg Insertion

ManiSkill2
Stack Cube

ManiSkill2
Lift Cube

Robosuite
Door Opening

Robosuite
Pick-and-Place
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Figure 3.4: Performance of our method compared to baselines RAPS [6] and P-
DQN [50] on six different tasks. For all the ManiSkill tasks and Robosuite tasks, we
report the success rate averaged over 20 trials. For DoubleBin tasks, we report the
average success rate over 32 objects, each tested with 70 trials. These baselines use
the same skill primitives as our approach but they are not spatially grounded, e.g.
they do not ground the primitives on a point selected by the policy from the observed
point cloud.

3.5 Experimental Setup

We evaluate our method on three ManiSkill tasks (Sec. 3.5.1), two Robosuite
tasks (Sec. 3.5.2), as well as a DoubleBin task (Sec. 3.5.3) as illustrated in
Figure 3.3. This section outlines the setup, objective, and reward function for
each task.

3.5.1 ManiSkill Tasks

We evaluate our method with three tasks from ManiSkill [28] (Figure 3.3, Left).
For these tasks, we train the hybrid actor-critic map with the default reward
functions defined in the ManiSkill benchmark [28].

Lift Cube: The agent is tasked with picking up a cube and lifting it to a speci-
fied height threshold. The initial cube position and orientation are randomized.

Stack Cube: This task involves stacking a red cube on top of a green cube,
requiring precision in alignment. The initial position and orientation of both
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cubes are randomized.

Peg Insertion: This task involves inserting a peg horizontally into a hole in
a box. As the original ManiSkill paper [28] reports a 0 success rate on this
task, we slightly simplify this task by removing the variations in both the hole’s
location and the peg’s initial pose as well as marginally increasing the clearance
of the hole. We compare to baseline approaches with these same environment
modifications.

3.5.2 Robosuite Task

We also evaluate our method with two tasks from Robosuite [58](Figure 3.3,
Left). For these tasks, we train with the default dense reward functions in the
Robosuite benchmark [58].

Pick-and-Place: The task is initialized with one object at a random position
in a large single bin and the goal is to place the object into a specified small
container on the side. There are four containers in total and four objects,
including cube, box, can and milk carton.

Door Opening: A door with a handle is placed in front of a single robot arm
in this task. The agent needs to learn to rotate the door handle and open the
door.

3.5.3 DoubleBin Task

To further demonstrate the benefits of spatial grounding, we design the Dou-
bleBin task (Figure 3.3, Right). It is built on top of Robosuite [58] with the
Mujoco simulator [46]. Compared to the ManiSkill tasks, it requires longer



Spatially Grounded Primitive Selection

Ours ✓ Argmax of Critic Scores
P-DQN [50] × Argmax of Critic Scores
RAPS [6] × Argmax of Actor Probabilities

Table 3.1: Differences Between Our Method and Baselines.

horizon reasoning and has more object shape variations. Each episode starts
with two bins with one object in a randomly selected bin. The objective of the
robot agent is to perform a sequence of motions to manipulate the object to a
pre-specified 6D goal pose in the opposite bin. This resembles a common sce-
nario in warehouse automation and assembly lines. The reward function is the
average norm of the point cloud correspondence vectors between the object’s
current state and goal state state (see Appendix B.2).

At each episode, we sample one object from a set of 32 objects with diverse
geometries for training. The agent needs to dynamically adapt its manipulation
strategies to suit the unique geometry of each object. We evaluate our method
on 7 unseen object instances (from training object categories) and 5 objects
from unseen object categories.

3.6 Simulation Results

In our simulation experiments, we aim to answer the following questions:

• Do spatially grounded primitives enable better performance in high pre-
cision tasks than previous methods?

• Does our method reasonably select appropriate primitives at each step
from a set of primitives and strategically compose them together to solve
long-horizon tasks?

• Does the learned policy generalize to unseen objects?

The comparison between our method and baselines over 4 tasks is reported in
Figure 3.4. The details of the training and evaluation procedures can be found
in the Appendix B.2.

Effect of Spatial Grounding. To demonstrate the benefits of spatial ground-
ing, we compare our method to two baselines, P-DQN and RAPS [6, 50]. Both
of the baselines use parameterized primitives as the action space of their RL
policies, but the primitives are not spatially-grounded. For primitives that in-
volve location parameters, both of the baselines directly regress the location
parameters, instead of selecting a location from the observed point cloud as in
our method. P-DQN selects primitives based on the critic scores of each primi-
tive type (rather than the critic scores of each primitive type and location in our
method), while RAPS directly outputs both action probabilities and the primi-
tive parameters from the actor. Table 3.1 highlights the differences between our



Object Set Split Success Rate (10 steps) Success Rate (20 steps) Success Rate (30 steps) # of Objects

Train 0.676 ± .010 0.845 ± .010 0.892 ± .010 32
Train (Common Categories) 0.746 ± .020 0.903 ± .016 0.937 ± .011 13
Unseen Instance (Common Categories) 0.737 ± .020 0.903 ± .023 0.952 ± .023 7
Unseen Category 0.601 ± .003 0.784 ± .027 0.849 ± .003 5

Table 3.2: Generalization to Unseen Objects. HACMan++ shows strong generalization to
previously-unseen instances of classes in the training data, and even generalizes well to unseen object
categories.

method and these baselines. A more detailed description of the implementation
of the baselines can be found in Appendix B.1.

The results are shown in Fig. 3.4. Although these baselines perform well
on the easiest task (Lift Cube), they struggle with the other tasks which re-
quire more precise spatial reasoning (Stack Cube and Peg Insertion) and/or
generalization to object shape variations (DoubleBin). For Robosuite tasks,
Pick-and-Place 1) does not require precise placing since the goal can be at any
position inside the container 2) and does not require generalization to object
shapes because there are limited geometries (4 objects compared to 32 objects
in the Double Bin task). The Door Opening task, on the contrary, requires
more geometric reasoning so our method outperforms the baselines by a large
threshold. In general, ours is the only method that maintains reasonable per-
formance across the six different tasks. Note that the manipulation tasks in our
experiments require higher precision than the tasks reported in RAPS [6]. These
results demonstrate the benefits of spatial grounding for precise manipulation
tasks.

Effect of Primitive Chaining The proposed method is able to chain primi-
tives together in appropriate orders to solve different tasks, without requiring
a pre-specified sequence of primitive types [40]. For example, in the DoubleBin
task, our method learns to chain both the prehensile and non-prehensile prim-
itives together with different orders under different situations. If the initial
pose of the object is impossible for top-down grasping, our policy will first poke
the object to a graspable pose as shown in the first step in Figure 3.5. After
grasping, it also learns to use a move primitive (e.g. Move to or Move delta)
to relocate the object to the other bin (e.g. step 3 in Figure 3.5 and select
Open Gripper to release it. In some cases, the policy may perform a few Poke
primitives again to move the object into the correct pose if necessary (e.g., step
5-6 in Figure 3.5). This process of moving the objects across bins and into
the correct poses is not possible without chaining the primitives strategically.
Similarly, our method also demonstrates such strategic reasoning in ManiSkill
Tasks, e.g., chaining grasp with multiple move primitives to complete the Peg
Insertion Task.

Generalization to Unseen Objects. To demonstrate the generalization ca-
pabilities of the proposed method, we evaluate our model on the DoubleBin task
with unseen objects, whose results are summarized in Table 3.2 and Figure 3.6.
We report the performance averaged over 70 × n trials, where n refers to the
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number of objects in the evaluation set. The overall success rate for achieving
the target 6D goal transformation on the training objects is 89.2% when the
policy is evaluated with an episode length of 30. We evaluate the generalization
capabilities of the model in three settings. First, we evaluate our method on
unseen object instances. These evaluation objects are within the training ob-
ject categories, but the exact object models are unseen. The unseen instances
are randomly selected from the most common categories of objects from the
full object dataset (for which there are many object instances), including plant
container, salt shaker, pencil case, pill bottle, bottle, canister, and can. The
performance of the model on these common object categories is at 93.7% for
seen object instances. An evaluation on unseen instances from these same cat-
egories has nearly the same performance (95.2%), demonstrating our model’s
ability to adapt to different object geometries within these categories. We also
evaluate our method on objects in unseen categories that were not included in
training (e.g., lunch bag) and achieve a success rate of 84.9%, demonstrating
the ability of our model to generalize to novel shapes. A visualization of the
training and unseen testing objects can be found in the Appendix B.2.

Furthermore, we conducted additional experiments with varying maximum
episode length for evaluation; the results in Figure 3.6 show that the success
rate increases with a longer episode length. An episode length of 10 is used for
training, so this figure also demonstrates the ability of our model to continue to
improve performance beyond the training episode length.
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Figure 3.7: Two examples of real-world rollout of our policy. Our method learns to
chain a sequence of actions to lift the object, move it across to the other bin, release
the object, and then poke it to match the target pose more precisely. The first row
shows the rollout of the car (toy) with a SE(3) goal. The second row shows rollout of
the cup with a translation goal.

3.7 Real-World Experiments

We perform evaluations on the real world DoubleBin task with the policy trained
in simulation as discussed in the previous sections. At the beginning of each
episode, we place the object at a random pose in a randomly chosen bin. We
also specify a goal SE(3) transformation, which can be either in the same bin
as the initial object pose or in the opposite side bin. Among all the objects we
are testing, Rubik’s Cube, Bowl, Cup, Tennis are evaluated with the translation
goals because of their rotation-symmetric shape. At each step, we perform point
cloud registration to compute the correspondence from the current observation
to the goal (see details in Appendix B.4).

Similar to our simulation environment, an episode is deemed a success when
the mean distance between each observation point on the object and its corre-
sponding goal point is less than 3 cm. We set a maximum episode length of 15
time steps (each time step corresponds to one primitive action).

In our experiments, we select six objects with different materials and geome-
tries, as shown in Figure 3.8. Figure 3.3 shows the real-world experiment setup.
Figure 3.7 demonstrates an example real-world trajectory rollout. Table 3.3
shows the quantitative evaluation results. Our method is able to achieve an
overall 73% success rate.

3.8 Conclusion

In this work we present spatially grounded motion primitives for robot manip-
ulation tasks, leveraging hybrid actor-critic maps with reinforcement learning.



Figure 3.8: Real-world Objects. From left to right, the six objects are: Car (Toy),
Cardboard, Tennis, Cup, Rubik’s Cube and Bowl.

Object Same Side Goal Opposite Side Goal Subtotal

Rubik’s Cube 14/20 12/20 26/40
Bowl 19/20 16/20 35/40
Cup 11/20 14/20 25/40
Tennis 19/20 19/20 38/40
Cardboard 11/20 15/20 26/40
Car (Toy) 12/20 14/20 26/40

Subtotal 86/120 90/120 176/240
Percentage 72% 75% 73%

Table 3.3: Real-World Experiment Results

Our agent learns to chain different spatially-grounded primitives with appro-
priately selected primitive parameters to complete a task. Our method adapts
to diverse manipulation tasks and generalizes to diverse objects, succeeding in
tasks that require both high-level sequential reasoning and low-level motion
precision - where previous methods have fallen short. The effectiveness of our
approach suggests the importance of primitives that are spatially grounded on
points in the environment.

Limitations. Our approach to breaking down a manipulation task into
motion primitives has shown adaptability across a range of scenarios; nonethe-
less, there are complexities in designing general primitives to accommodate
every task. Although we have added some preliminary experiments explor-
ing other gripper morphology (i.e. the dexterous Shadow hand task in Ap-
pendix B.2.6), more exploration is needed to determine the best way to apply
spatially-grounded primitives to different gripper designs.



Chapter 4

Conclusion

In this thesis, we have presented novel approaches for learning robotic manipu-
lation skills using reinforcement learning with spatially-grounded action spaces.
Our work addresses the challenges of learning complex, long-horizon manipu-
lation tasks with high-dimensional, continuous action spaces and the need for
generalization to novel objects and environments.

In our first paper, ”HACMan: Learning Hybrid Actor-Critic Maps for 6D
Non-Prehensile Manipulation,” we introduced a hybrid actor-critic model that
maps discrete and continuous actions to the 3D object point cloud. This ap-
proach enables the robot to perform complex non-prehensile interactions based
on the spatial features of the object, demonstrating strong performance and gen-
eralization to unseen objects in tasks such as 6D object pose alignment. The
success of this work highlights the importance of spatial reasoning in manip-
ulation tasks and the effectiveness of grounding actions in the observed point
cloud.

Building upon the concept of spatially-grounded action spaces, our second
paper, ”Spatially-Grounded Motion Primitives for Manipulation,” extends the
framework to include a diverse set of parameterized motion primitives. By
defining an action space that includes the type of primitive, the location in the
environment where the action is applied, and the parameters of the motion, we
enable the robot to perform a wide range of tasks by chaining together these
primitives. This approach significantly improves generalization across different
objects and tasks, outperforming existing methods in complex manipulation
scenarios. The results demonstrate the power of combining spatial reasoning
with temporally-extended actions in the form of motion primitives.

The contributions of this thesis have several implications for the field of
robotic manipulation. First, our work emphasizes the importance of selecting
the right level of abstraction for the action space when applying reinforcement
learning to manipulation tasks. By grounding actions in the spatial properties
of the environment and using parameterized motion primitives, we can learn
policies that are more sample-efficient, generalize better to novel objects, and
solve complex, long-horizon tasks. Second, our experiments demonstrate the
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effectiveness of learning manipulation skills directly from visual observations,
such as point clouds, without the need for explicit state estimation or modeling
of the environment dynamics. This suggests that deep reinforcement learning
can be a powerful tool for learning adaptive, versatile manipulation policies that
can cope with the challenges of unstructured environments.

There are several exciting directions for future research building upon the
contributions of this thesis. One direction is to further extend the set of motion
primitives and explore more advanced ways of composing them to solve even
more complex tasks. Another direction is to investigate methods for learning
the motion primitives themselves from data, rather than using hand-designed
primitives. This could lead to the discovery of novel, task-specific primitives
that are optimized for particular environments or objects. Finally, an important
direction is to develop methods for sim-to-real transfer and adaptation, allowing
policies learned in simulation to be effectively deployed on real robots.

In conclusion, this thesis has presented novel approaches for learning robotic
manipulation skills using reinforcement learning with spatially-grounded ac-
tion spaces. Our work demonstrates the effectiveness of spatial reasoning and
temporally-extended actions in the form of motion primitives for learning com-
plex, long-horizon manipulation tasks with strong generalization to novel ob-
jects. We believe that the contributions of this thesis bring us closer to the goal
of enabling robots to autonomously learn and adapt manipulation strategies for
diverse environments and tasks, and we look forward to future research building
upon these ideas.
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Appendix A

Experiment Details for
HACMan

A.1 Simulation Environment

A.1.1 Object dataset preprocessing

We use the object models from Liu et al. [22]. Before importing the object
models to MuJoco, we perform convex decomposition using V-HACD (https://
github.com/kmammou/v-hacd) and generate watertight meshes using Manifold
(https://github.com/hjwdzh/Manifold). The objects are first scaled to 10
cm according to the maximum lengths along x, y, and z axis. The object sizes
are randomized with an additional scale within [0.8, 1.2] for the “All Objects”
task variants.

We filter out a part of the objects in the original dataset due to simulation
artifacts such as wall penetration and unstable contact behaviors. For example,
some of the long and thin objects can be pushed into the walls and bounce back
like springs. Some of the objects cannot remain stable on the table. The filtering
procedure proceeds as follows: 1) we drop an object with an arbitrary quaternion
and translation for 100 times; 2) we calculate the percentage of rollouts where
the objects are still unstable after 80 simulation steps; 3) we filter out objects
with larger than 10% instability rate. We also filter out flat objects because
they are hard to flip. Flat objects are defined as objects for which the ratio
between the second smallest dimension to the smallest dimension is larger than
1.5. After filtering, we are left with 44 objects. We split the 44 objects into
three datasets: train (32 objects), unseen instances (7 objects), and unseen
categories (5 objects). The object models of the three datasets are visualized in
Fig. A.1, Fig. A.2 and Fig. A.3 respectively. The Cylindrical Objects used in
the experiments is a subset of the All Objects dataset. Cylindrical Objects
consist of 9 train objects, 3 unseen instance objects, and 4 unseen category
objects.
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Figure A.1: Training objects. 32 objects used in training.

Figure A.2: Evaluation objects (un-
seen instance). 7 objects used in unseen
instance evaluations. These instances are
from the same categories as the training
objects.

Figure A.3: Evaluation objects (un-
seen category). 5 objects used in un-
seen category evaluations. They come
from 4 randomly chosen categories.



A.1.2 Collecting goal poses

To collect stable goal poses, we sample an SE(3) object pose in the air above the
center of bin, drop the object in the bin, and then wait until it becomes stable
to record the pose. We collect 100 goal poses for each object. At the beginning
of each episode, a goal is sampled from the list of stable poses. Furthermore,
we randomize the location of the sampled stable goal pose within the bin.

A.1.3 Representing the goal as per-point goal flow

As mentioned in Section 2.5.3, we represent the goal as the “goal flow” of each
object point from the current point cloud to the corresponding point in the
transformed goal point cloud. In other words, suppose that point xi in the
initial point cloud corresponds to point x′

i in the goal point cloud; then the
goal flow is given by ∆xi = x′

i − xi. The goal flow ∆xi is a 3D vector which
is concatenated to the other features of the input point cloud to represent the
goal. In the ablations in Appendix A.3.1, we show that such a representation of
the goal significantly improves training, compared to other goal representations
such as concatenating the goal point cloud with the observed point cloud.

In order to compute the flow to the goal, we need to estimate correspondences
between the observation and the goal. In simulation, we calculate the goal flow
based on the ground truth correspondences, based on the known object pose
and goal pose. In the real robot experiments, we estimate the correspondences
using point cloud registration methods (see Appendix A.4 for details).

Further, for training the RL algorithm, we need some measure of the distance
between the initial pose and the goal pose as the reward. Rather than computing
a weighted average of the translation and rotation distance (which requires a
weighting hyperparameter), we instead define the reward at each timestep rt
as the negative of the average goal flow: rt = − 1

N

∑N
i=1 ||∆xi||, in which || · ||

denotes the L2 distance and ∆xi is the “goal flow” as defined above. This
computation is similar to the “matching score” [14] or “PLoss” [49] used in
previous work, except here we use it as a reward function.

A.1.4 Success rate definition

An episode is marked as a success when the average distance of the corre-
sponding points between the object and the goal is smaller than 3 cm. More
specifically, this is calculated by the average norm of the per-point goal flow vec-
tors as described in Appendix A.1.3. The episode terminates when it reaches
a success. If the episode does not reach a success within 10 steps, it is marked
as a failure. We include an additional experiment on longer episode length in
Appendix A.3.7.



Figure A.4: Camera Locations in Simulation.

A.1.5 Observation

The observation space includes a point cloud of the entire scene X . It contains
background points X b and object points X obj . Note that we move the gripper
to a reset pose after every action before taking the next observation. Thus, the
gripper is not observed in the point cloud. To get the point cloud, we set three
cameras around the bin (Fig. A.4). The depth readings from the cameras are
converted to a set of point locations in the robot base frame and combined.

The object points are then downsampled with a voxel size of 0.005 m × 0.005
m × 0.005 m and the background points are downsampled with a voxel size of
0.02 m × 0.02 m × 0.02 m. We empirically find that using a slightly denser
object point cloud may increase the performance. More specifically, using a
0.005 m × 0.005 m × 0.005 m voxel downsample is slightly better than 0.01
m × 0.01 m × 0.01 m. We suspect that the policy can perform more precise
manipulation of the object with a denser point cloud.

After downsampling, we estimate the normals of the object points using
Open3D (http://www.open3d.org/docs/0.7.0/python_api/open3d.geometry.
estimate_normals.html). The estimated normals will be used during action
execution (discussed in the next section).

As mentioned in Section 2.5.3 and Appendix A.1.3, the feature of each point
contains the goal flow and the segmentation mask (foreground vs background).
The goal flow of the object point is calculated according to Section A.1.3. The
goal flow of the background point is set to zero. We obtain the segmentation
labels of the object points and the background points from Robosuite[58] during
simulation. Details of obtaining segmentation labels in real robot experiments
are discussed in Appendix A.4.

http://www.open3d.org/docs/0.7.0/python_api/open3d.geometry.estimate_normals.html
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A.1.6 Action

As mentioned in Section 2.5, the proposed method uses an action space with a
contact location selected from the object points and a set of motion parameters.
We discuss the implementation details of executing such an action in the sim-
ulation environment in this section. Note that we use a floating gripper as the
robot in simulation since we only focus on gripper interactions with the objects.

Once the policy selects a point on the object point cloud, we obtain the
corresponding location and estimated normal of the point as described in the
previous section. The robot first moves to a “pre-contact” location which is
2 cm away from the contact location along the surface normal. In simulation,
this is implemented by directly setting the gripper to the desired pose. In real
experiments, we adopt a workaround solution discussed in Appendix A.4. If
the gripper encounters a collision at the desired pose, we mark this action as
failure and skip the remaining action execution procedure. After reaching the
pre-contact location, the gripper will approach to the desired contact location
using a low-level controller.

After that, the robot will execute the motion parameters which is the end-
effector delta position command that was output by the policy. For the delta
actions, we use an action scale of 2 cm. The delta action is executed with an
action repeat of 3. We use Operation Space Controller with relatively low gains
to allow compliant contact-rich motions with the object. Note that we only
consider translation commands (3 dimensions) without rotation in the main ex-
periments because it leads to sufficiently complex object motion for our task.
Appendix A.3.4 discusses the effect of including rotation in the gripper move-
ments.

The gripper may not exactly reach the desired location in both sim and
real, due to the compliant low-level controller and the gripper geometry. We
consider this imperfect execution as a part of the environment dynamics. We
do not enforce assumptions such as keeping the contact while executing the
motion parameter or avoiding other contact points. Avoiding such assumptions
on contacts is a strength of the proposed method compared to some of the
classical methods [5, 15].

A.2 Algorithm and Training Details

A.2.1 HACMan (Ours)

HACMan is implemented as a modification on top of TD3 [8] based on the imple-
mentation from Stable-Baselines3 (https://github.com/DLR-RM/stable-baselines3).
We use PointNet++ segmentation-style backbones for both the actor and the
critic using the implementation from PyG (https://pytorch-geometric.readthedocs.
io). Weights are not shared between the actor and the critic. Hyperparame-
ters are included in Table A.1. The actor and the critic use the same network
size and the same learning rate. To improve the stability of policy training, we
clamp the target Q-values according to an estimated upper and lower bound

https://github.com/DLR-RM/stable-baselines3
https://pytorch-geometric.readthedocs.io
https://pytorch-geometric.readthedocs.io


of the return for the task. The location policy temperature β is described in
Eqn. 3.4.

Hyperparameters Values
Initial timesteps 10000
Batch size 64
Discount factor (γ) 0.99
Critic update freq per env step 2
Actor update freq per env step 0.5
Target update freq per env step 0.5
Learning rate 0.0001
MLP size [128, 128, 128]
Critic clamping [-20, 0]
Location policy temperature (β) 0.1

Table A.1: Hyperparameters.

A.2.2 Baselines

The baselines share the same code framework as HACMan. We discuss their
differences with HACMan in this section.

Regress Contact Location. Unlike HACMan, this baseline does not use the
object surface for contact point selection. Instead, it directly predicts a location
(3 dimensions) and a motion parameter (3 dimensions, represented as a delta
end-effector movement). For each action execution, the end-effector moves to
the selected location, moves according to the motion parameters, and then resets
to the default pose. To improve the performance of this baseline, we project the
contact location output to be within the bounding box of the object. Thus, in
this baseline, for a location output of the policy, a value of 0 corresponds to the
center of the object along a specific dimension, while 1 and −1 represent the
maximum and minimum boundaries of the bounding box along that dimension,
respectively. Since the location output is no longer a point selected from the
object surface, we can no longer use the surface normal vector to determine the
approach direction as in HACMan. Instead, this baseline always approaches
the location from the top at a height equal to the maximum side length of the
object bounding box.

No Contact Location. This baseline does not use the idea of a contact point.
Instead, the policy only predicts a motion parameter (3 dimensions, represented
as a delta end-effector movement). For each action execution, the end-effector
moves according to the motion parameter starting from where it ends after the
previous action, without resetting to the default pose. To reduce the exploration
difficulties, we make two additional changes: 1) we always start the end-effector
right above the object (at a height equal to the maximum side length of the
object bounding box) at the beginning of an episode, and 2) we add an extra
term to the reward function that penalizes the end-effector for being too far
from the object,



Jdist =

{
−λdist(dmin − 0.05), dmin > 0.05 m
0, otherwise

(A.1)

where dmin is the minimum distance from the end-effector to the object point
cloud vertices, and λdist is the weight for this reward term.

Point Cloud. Unlike HACMan, these point cloud baselines use PointNet++
classification-style backbones from PyG (https://pytorch-geometric.readthedoc.
io). For each point cloud, it extracts a single global feature vector instead of
per-point feature.

State. In the state-based baselines, the input consists of the pose of the cur-
rent object, the goal, and optionally the end-effector if the baseline is using
“No Contact Location”. Each pose is a vector (dim=7) that consists of a posi-
tion (dim=3) and a quaternion (dim=4). The model concatenates all the pose
vectors into a single vector as the input to an MLP.

We report the best results of the baselines in the paper by searching over dif-
ferent hyperparameters for each baseline, including learning rate, actor update
frequency, initial timesteps, and EE distance weight λdist. The best hyperpa-
rameters for each baseline that are different from HACMan are summarized
in Table A.2; any hyperparameter not listed in Table A.2 is the same as our
method (Table A.1).

Baselines Hyperparameters Values

Regress Contact Location (Point Cloud) Actor update freq per env step 0.25
No Contact Location (Point Cloud) Actor update freq per env step 0.25

EE Distance Weight λdist 1
No Contact Location (State) EE Distance Weight λdist 5

Table A.2: Baseline-specific Hyperparameters.

A.3 Supplementary Experiment Results

A.3.1 Additional ablations

We perform additional ablation studies to analyze each component of the pro-
posed method with all the variants of the object pose alignment task. The
results of the ablations are summarized in Fig. A.5.
Effect of Contact Location: To test the hypothesis that contact location
matters for non-prehensile manipulation, we design a “Random Location”
ablation: the policy randomly selects a contact location on the object instead of
learning to predict a contact location. From Fig. A.5, we observe a performance
drop for not predicting the contact location even for the simplest task variant.
Effect of Goal Representations: As described in Section 2.5.3 and Ap-
pendix A.1.3, in our method, we represent the goal by first computing the

https://pytorch-geometric.readthedoc.io
https://pytorch-geometric.readthedoc.io
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Figure A.5: Additional ablations. All of the components of our method are
essential to achieve the best performance when the task becomes more difficult.

correspondence between the observation and goal point clouds and concatenat-
ing a per-point “goal flow” to the observation. We include two alternative goal
representations to justify the use of goal flow in our pipeline: “No Flow (Goal
PC”) concatenates the goal point cloud with the observed point cloud [3, 4].
We use an additional segmentation label in the point features to distinguish the
goal points from the observed points. From Fig. A.5, this ablation only works
well on planar goals for this task. In “No Flow (Goal Transformation)”, we
represent the goal as the transformation between the current observation pose
and the goal pose. We represent this transformation as a 7D vector that in-
cludes a translation vector and a quaternion. We concatenate the 7D goal pose
to the observation at all of the object points. Note that, similar to our method,
this baseline also requires computing correspondences between the observation
and the goal. This approach performs well but slightly worse than our method
in the last two task variants.
Effect of Actor Map: Instead of using an Actor Map which has per-point
outputs, this ablation uses an actor that outputs a single vector of motion
parameters while keeping the Critic Map. This is different from the baselines in
the previous section that remove both the Actor and Critic Maps. In the “No
Actor Map” experiments, we observe a relatively minor performance drop
compared to the full method. Nonetheless, using the per-point action output
from an Actor Map instead of a single output may allow the agent to reason
more effectively about different actions for different contact locations, such as
the multimodal solution shown in Fig. 2.6 (middle).

A.3.2 Training curves and tables

In this section, we include the full training results for all the methods with
additional task variants. Fig. A.6 and Fig. A.7 include the training curves for
the baselines and the ablations. Table A.3 and Table A.4 are recorded at 200k
environment interaction steps from the training curves for all the methods. The
numbers in the tables are used to generate the bar plots in Fig. 2.4 and Fig. A.5.

Note we also interpolate between the tasks ”Planar Goals” and ”6D Goals”
and include an additional task configuration with a fixed initial object pose
and a randomized 6D goal, “6D Goals (Fixed Init)”. This task configuration



is combined with the Single Object dataset and the Cylindrical Object dataset.
Thus, we include 7 variants in total (5 variants in the main paper).

As discussed in Section 2.7, the baselines and ablations have poor perfor-
mance when the task becomes more challenging. Our method achieves the best
converged performance across all task variants while being more sample efficient.
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Figure A.6: Baselines. It shows success rates on the train dataset over environment
steps. The shaded area represents the standard deviation across three training seeds.
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Figure A.7: Ablations. It shows success rates on the train dataset over environment
steps. The shaded area represents the standard deviation across three training seeds.



Methods

No Contact Location Regress Contact LocationObject Dataset Task Configuration
State Point Cloud State Point Cloud

Ours

Single Object
Planar Goal 0.812 ± .012 0.973 ± .016 1.000 ± .000 0.996 ± .005 1.000 ± .000
6D Goal (Fixed Init) 0.003 ± .000 0.020 ± .002 0.060 ± .014 0.971 ± .005 0.982 ± .004
6D Goal 0.000 ± .000 0.009 ± .001 0.573 ± .015 0.991 ± .004 0.997 ± .003

Planar Goal 0.361 ± .019 0.107 ± .007 0.990 ± .002 0.924 ± .027 0.961 ± .003
6D Goal (Fixed Init) 0.001 ± .001 0.021 ± .002 0.264 ± .017 0.324 ± .014 0.885 ± .004Cylindrical Objects
6D Goal 0.006 ± .002 0.035 ± .002 0.258 ± .010 0.187 ± .012 0.879 ± .014

All Objects 6D Goal 0.012 ± .004 0.016 ± .009 0.094 ± .018 0.243 ± .028 0.854 ± .028

Table A.3: Baselines. We compare our method with baselines with different action representations and
observations. Our approach outperforms the baselines, with a larger margin for more challenging tasks. The
success rate is reported with the mean and standard deviation across three seeds.

Object Dataset Task Configuration

Methods

Random
Greedy

No Flow No Flow No
Ours

Location (Goal PC) (Goal Pose) Action Map

Single Object
Planar Goal 0.323 ± .011 1.000 ± .000 0.989 ± .002 1.000 ± .000 1.000 ± .000 1.000 ± .000
6D Goal (Fixed Init) 0.075 ± .005 0.754 ± .023 0.198 ± .025 1.000 ± .000 0.991 ± .002 0.982 ± .004
6D Goal 0.037 ± .003 0.633 ± .014 0.181 ± .018 0.994 ± .004 0.989 ± .002 0.997 ± .003

Cylindrical Objects
Planar Goal 0.158 ± .006 0.767 ± .017 0.949 ± .003 0.927 ± .012 0.925 ± .012 0.961 ± .003
6D Goal (Fixed Init) 0.097 ± .006 0.346 ± .012 0.189 ± .009 0.746 ± .015 0.805 ± .016 0.885 ± .004
6D Goal 0.093 ± .004 0.262 ± .011 0.216 ± .008 0.631 ± .016 0.775 ± .018 0.879 ± .014

All Objects 6D Goal 0.147 ± .021 0.293 ± .026 0.153 ± .017 0.808 ± .028 0.835 ± .017 0.854 ± .028

Table A.4: Ablations. We show that all of the components are essential to achieve the best performance
when the task becomes more difficult. Each success rate is reported with the mean and standard deviation
across three seeds.

A.3.3 Additional baseline: Global feature with query con-
tact location

We consider an additional baseline in this section where both the actor and the
critic use a global point cloud feature and a query contact location as input.
The query contact location is represented as a 3D coordinate (x, y, z). More
specifically, the actor takes as input a global feature and a contact location and
outputs a continuous vector of motion parameters. The critic takes as input a
global feature and a contact location and outputs a Q-value. Since both the
actor and the critic require a contact location as input, we still need a way of
selecting the query contact location. We follow a similar way as our method to
use the observed points on the object as candidate queries and select the contact
location based on the highest Q-value. In this way, the action space remains a
discrete-continuous action space as our method, but it uses a global point cloud
feature rather than a segmentation-style per-point feature.

As shown in Fig. A.8, this alternative baseline performs worse than our
method. We hypothesize that a segmentation-style point cloud network can



reason about the local point features more effectively than a global feature
extractor due to skip connections.
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Figure A.8: Comparison between our method and the additional baseline
with query contact locations. The left figure shows the success rate of the simplest
task variant - a single object with planar goals. The right figure shows the most
challenging task variant - all objects with 6D goals. The shaded area represents the
standard deviation across three training seeds. Our method performs better than the
baseline in both cases.

A.3.4 Extending Motion Parameters

The motion parameters in the main results are defined as a 3D vector that
describes the translation motion of the gripper. In this section, we extend the
motion parameters in different ways:
6D Contact. The motion parameters also predict the orientation of the gripper
when the gripper approaches the contact location. The orientation is in the form
of ZYX Euler angles. To account for the physical constraints of our task setup,
we restrict the y and x angles to the range of [−0.5π, 0.5π], and the z angle to
the range of [−π, π].
6D Motion. We introduce the ability for the gripper to change orientation
while executing the motions after making contact. Similar to the translation
motion parameters, the rotation motion parameters (ZYX Euler angles) repre-
sent the delta rotation at each action repeat step.
Per-point Contact Location Offset. We conduct an experiment where the
agent learns a per-point contact location offset combined with 3D motion. The
agent’s continuous action space is defined as (contact offset, 3D motion param-
eters). For each action on a given point at location x, the agent uses (x+xoffset)
as the contact location. Notably, the xoffset value is mapped to scale with the
bounding box since it ranges between [−1, 1].

Table A.5 compares the performance of HACMan with the modified action
spaces. The success rates are reported along with their corresponding standard
deviations. We find that including 6D motion in the motion parameters results
in a slightly higher success rate. However, 6D contact or contact offset does
not seem to provide significant benefits. We also try to include 6D motion in
the Regress Contact Location baseline. As shown in Table A.5, 6D motion



Method Success Rate

HACMan Default 0.833 ± .018
+ with 6D Motion 0.866 ± .090
+ with 6D Contact 0.819 ± .077
+ with Contact Offset 0.800 ± .011

Regress Contact Location Default 0.243 ± .028
+ with 6D Motion 0.356 ± .133

Table A.5: Success rates with different motion parameters. All methods are
evaluated on all train objects with 6D goals.

# of Scene Objects Success Rate

0 (Default) 0.833
1 0.773
5 0.580

Table A.6: Success rates under different cluttered scenes. All methods are
evaluated with 6D goals.

improves the performance of the baseline, but the success rate is still much
worse than our method.

A.3.5 Experiments in cluttered environments

We can directly apply HACMan to a setting of manipulating objects in cluttered
scenes. We conduct preliminary experiments in which we introduce varying
numbers of scene objects into the bin. The scene objects serve as obstacles that
add challenges to the task. We train HACMan under two conditions: with one
scene object and with five scene objects, and we compare the results with
the performance achieved in the absence of any scene objects (default setting).
From Table A.6, as expected, the task becomes more challenging when there are
more obstacles in the bin. As illustrated in Fig A.9, the policy tends to push
the object directly toward the goal by pushing the scene object aside.

A.3.6 Effect of longer training time

Although we report the success rate at 200k training steps for all the results
due to computational limitations, our method continues to improve performance
with longer training (Figure A.10). The graph illustrates the success rate
achieved by our method as the number of training steps increases. Notably,
after 500k training steps, our method achieves a success rate of 91.1 ± 7.3%,
significantly improving from the 83.3% success rate reported in the main text
(at 200k training steps).



Figure A.9: Qualitative results for object pose alignment tasks in cluttered
environments. HACMan shows complex non-prehensile behaviors that move objects
to goal poses (shown as the transparent objects). The scene objects are colored in
brown to distinguish from the target object to be manipulated to the goal pose.
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Figure A.10: Success rate with extended training. The success rate of our
method reaches 91.1 ± 7.3% after 500k training steps, compared to 83.3% after 200k
training steps.

A.3.7 Effect of longer episode lengths

We conducted an additional experiment to explore the relationship between
success rates and maximum episode length. In the main paper, our episodes
were limited to a maximum of 10 steps, and any episode exceeding this limit
was deemed a failure. During this additional evaluation, we relaxed the episode
length restrictions and allowed the agent to operate with a maximum episode
length of 30. As shown in Fig A.11, HACMan achieves more than 95% success
rates across all datasets (Train 96.6%, Train (Common) 99.4%, Unseen Instance
(Common) 99.7%, Unseen Category 95.1%) when the maximum episode length
is extended to 30. This suggests that providing the agent with a longer time
horizon enables it to achieve higher success rates without the need for retraining.
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Figure A.11: Success rates at various maximum episode lengths. This line
plot shows the success rates of HACMan evaluated on the four datasets. It is worth
noting that the success rates for Unseen Instance (Common) and Train (Common) are
marginally higher compared to Train and Unseen Category, similar to the pattern in
Table 2.2.

A.3.8 Per-category result breakdown

Fig. A.12 shows the breakdown of the results for each object category. Although
our method demonstrates consistent performance across the majority of objects,
there are certain objects with geometries that pose intrinsic challenges for our
approach. For example, our method is limited to poking a bowl from the top
due to occlusions, making it difficult to flip an upward-facing bowl downwards.

A.3.9 Final Distance to Goal

To further analyze the performance of our method, Fig. A.13 visualizes the
distribution of distances to goal of our method at the end of the episodes for
the “All Objects 6D Goals” task variant. These distances are computed as the
norms of the flow distances between the objects and their respective goals.



0.0 0.2 0.4 0.6 0.8 1.0
Success Rate

Ob
je

ct
 C

at
eg

or
y

pill bottle (UI)

pill bottle

rubiks

lego

salt (UI)

canister (UI)

tape (UC)

teapot

lens (UC)

lunch bag (UC)

bottle

pencil case (UI)

pencil case

cup

flashlight

can (UI)

canister

can

salt

bottle (UI)

mug

plant

plant (UI)

camera

hand bell

pitcher

marker (UC)

headphone

bowl

Success Rate per Object Category

Train
Unseen Instance (UI)
Unseen Category (UC)

Figure A.12: Results breakdown. Object categories in the unseen instance set
(orange) can be compared to the same object categories in the train set (blue) to see
the level of instance generalization.



Figure A.14: Real robot setup.
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Figure A.13: Distribution of distances to the goal at the end of the episode
for our method in the “All Objects 6D Goals” experiment. The vertical
dashed line represents the success threshold at a distance of 0.03m. The distribution
has a median of 2.57cm, a mean of 3.66cm, and a standard deviation of 4.27cm.



A.4 Real Robot Experiments

A.4.1 Real robot setup

The robot setup is shown in Fig. A.14. We use three cameras on the real robot
to get a combined point cloud. We follow a similar procedure as Appendix A.1
to process the point cloud and to execute the action except the following details:
We segment the object points from the full point cloud based on the location
and the dimension of the bin instead of using the ground truth segmentation
labels from Robosuite. To move the gripper to the pre-contact location, we first
move the robot to a location above the pre-contact location and then move down
to the pre-contact location, instead of “teleporting” the gripper in simulation.

To obtain goals for the real world evaluation, we record 10 goal point clouds
for each object by manually setting the objects into different stable poses. Dur-
ing each timestep, we use point cloud registration algorithm to estimate the goal
transformation to calculate the goal flow. Specifically, we use the global registra-
tion implementation from Open3D (http://www.open3d.org/docs/release/
tutorial/pipelines/global_registration.html) and then use Iterative Clos-
est Point (ICP) for local refinement. Note that we only match the shapes of the
object instead of matching both the colors and the shapes due to the limitation
of the registration algorithms.

Note that the evaluation process can be done automatically without any
manual resets. The reward and the episode termination condition (Appendix A.1.4)
are both calculated automatically.

For the real robot experiments, we use the policy trained with “6D goals”
and the “All Objects” dataset. We perform zero-shot sim2real transfer without
finetuning or additional domain randomization. We have tried to add noise to
the contact location execution and add noise to the point cloud observation.
However, these modifications did not result in better real robot performance.

A.4.2 Analysis

We include additional analysis on the real robot results in this section. The pro-
posed method assumes an estimated goal transformation as input. To estimate
the transformation from the object to the goal, we use point cloud registration,
as described above. However, the estimation of the transformation might not be
perfect in the real world. To better understand the performance of our system,
we define two types of evaluation criteria: The “flow success” is automatically
calculated based on the estimated point cloud registration according to the eval-
uation metric in Appendix A.1.4. Hence, “flow success” will sometimes mark
an episode as a success or failure incorrectly due to errors in the point cloud
registration. For the “actual success” evaluation metric, we manually mark as
failures the cases among the flow success episodes where the goal estimation
is significantly wrong. Thus, “flow success” indicates the performance of the
trained policy (assuming perfect point cloud registration at termination) while
the “actual success” indicates the performance of the full system (accounting

http://www.open3d.org/docs/release/tutorial/pipelines/global_registration.html
http://www.open3d.org/docs/release/tutorial/pipelines/global_registration.html


for errors in the point cloud registration). Fig. 2.7 in the main text reports the
actual success. We include both success metrics in Table A.7 below. The policy
achieves a 61% success rate based on the flow success, indicating that some of
our errors are due to failures in point cloud registration.

Planar Goals Non-planar Goals Total
Object Name

Flow Actual Flow Actual Flow Actual

(a) Blue cup 4/7 4/7 7/13 4/13 5/20 4/20
(b) Milk carton 6/7 6/7 10/13 10/13 16/20 16/20
(c) Box 2/5 2/5 10/15 10/15 12/20 12/20
(d) Red bottle 7/7 4/7 6/13 0/13 13/20 4/20
(e) Hook 5/8 5/8 5/12 5/12 10/20 10/20
(f) Black mug 4/7 4/7 2/13 0/13 6/20 4/10
(g) Red mug 5/7 5/7 7/13 3/13 12/20 8/20
(h) Wood block 6/7 6/7 8/13 6/13 14/20 12/20
(i) Toy bridge 9/10 9/10 7/10 5/10 16/20 14/20
(j) Toy block 2/2 2/2 10/18 10/18 12/20 12/20

Total 50/67 47/67 72/133 53/133 122/200 100/200
Percentage 75% 70% 54% 40% 61% 50%

Table A.7: Additional analysis on the real robot experiments. An episode
is considered a “flow success” if the average norm of the estimated flow is less than 3
cm. An episode is considered as an “actual success” if the object is aligned with the
goal pose without point cloud registration failure.

A.4.3 Failure cases

We discuss the failure cases of the real robot experiments in this section and
include the videos on our website: https://hacman-2023.github.io/. The most
noticeable failure cases are due to the errors of point cloud registration. The
challenges of the registration methods come from noisy depth readings and
partial point clouds. The error of the point cloud registration methods will
lead to unexpected actions during the episode. In addition, it may end the
episode early because the episode termination depends on the goal estimation.
This motivates us to separate out the success criteria in Table A.7 based on the
failures of the registration method.

On the action side, both the contact location and the motion parameters
might have execution errors. Since the contact location is selected from the
observed point cloud, when the camera calibration is not accurate enough, the
robot might not be able to reach the desired contact location of the object. In
addition, since we use a compliant low-level controller to execute the motion
parameters, the robot might not be able to execute the desired motion the same
way as in the simulation.

In addition, the object dynamics might be different from the simulation due
to the surface friction and the density of the object. The performance of our
method could be further improved with domain randomization over the physical
parameters.



A.5 More discussion on non-prehensile manip-
ulation

Non-prehensile manipulation is an important aspect of the robot’s capabilities,
particularly in scenarios where grasping encounters limitations, as demonstrated
in Fig. A.15. This section discusses the importance of non-prehensile actions in
two key contexts:

Figure A.15: Examples showcasing limitations of prehensile manipulation.
The frames where prehensile manipulation is challenging are highlighted. The first
row shows a cube placed at the corner of the bin, where any grasp is obstructed by
the bin wall. Both the second and third rows depict instances where objects are too
large to be grasped at specific poses.

Environment Occlusion. The first row of Figure A.15 shows an example
where the potential grasp poses of the object are occluded by the wall. Non-
prehensile moves, like nudging objects to a better position, offer a practical
solution in such a scenario.

Oversized Objects. The last two rows of Figure A.15 include scenarios
where certain dimensions of the object are larger than the width of the gripper.

A.6 More discussion on the related work

A.6.1 Compared to Chen et al. [3, 4]

Our work is substantially different from Chen et al. [3, 4] from the follow aspects:
Approach: The approach in Chen et al. [3, 4] follows a student-teacher train-
ing pipeline. The teacher training is equivalent to the “No Contact Location”
baseline with “states” observations in our paper. The policy takes all the rele-
vant robot state and object state information and outputs delta robot actions.
Note that they train a single teacher policy across all shapes without using the
point cloud which results in a state-observation policy that is “robust” to shapes
instead of “adaptive” to shapes (see Discussion section in Chen et al. [4]). As
shown in Table II, this baseline performs significantly worse than our method



in our task because it lacks shape information from the point cloud and the
robot-centric action space is not as efficient as our object-centric action space.
On the other hand, although the student policy in Chen et al. [3, 4] takes point
cloud observation, it is trained using imitation learning from the teacher, so its
performance is upper bounded by the teacher policy which has been shown to
be worse than our proposed method.
Task: We investigate a completely different task and thus the numbers are not
really comparable with the numbers from previous work [3, 4]. First, we use a
simple gripper instead of a dexterous hand. Second, we consider matching the
orientation and position of the goal pose while Chen et al. [3, 4] only considers
orientation.

A.6.2 Compared to Cheng et al. [5], Hou and Mason [15]

Unlike Cheng et al. [5], Hou and Mason [15], our method is not limited to a sim-
plified gripper model and does not require the knowledge of object environment
contact modes which are challenging to estimate during real robot execution.
In addition, Cheng et al. [5], Hou and Mason [15] are restricted by quasi-static
assumptions. Although our method requires static point cloud observations in
between robot actions, the robot interaction with the object is not restricted
to quasi-static motion. As shown in Figure A.16, the flipping motion could be
non-quasi-static. However, we also want to point out that static point cloud
observations may limit the method from more complex dynamic motions.

Figure A.16: An example of non-quasi-static motion. The figure shows an
example of executing the motion parameters to flip a mug upright. After the gripper
pushes against the edge of the mug (first two images), it relies on the inertia of the
mug to finish the motion which is not quasi-static (last two images).



Appendix B

Experiment Details for
HACMan++

B.1 Algorithm and Implementation Details

B.1.1 Observations

The robot agent first perceives a point cloud X ∈ RM×3 for the entire scene
by stacking multiple cameras’ views together, where M is the number of points
in the raw point cloud observations. Our method assumes that we pre-process
the scene by segmenting the object point cloud X obj from the background point
cloud X b; details of the segmentation process are listed in Appendix B.2.1 and
Appendix B.4.1. After segmentation, we downsample X obj and X b with voxel
sizes of 1cm and 2cm respectively. We then randomly sample 400 and 1000
points from X obj and X b respectively.

To make our policy also goal-conditioned, we append the goal information
into the observation as “goal flow” in which we compute the per-point correspon-
dence from the current object point cloud to the goal object point cloud. Specif-
ically, for each point xi in the object point cloud, the goal flow is ∆xi = xg

i −xi,
where xg

i is a corresponding point of xi in the goal point cloud. In the simula-
tion, we use the ground-truth point correspondence given the object pose and
the goal pose. In the real world, we use point cloud registration to align the
observation to the goal (see Appendix B.4.2).

Therefore, the entire observation space (op, og, om) of our robot agent in-
cludes three parts: the point cloud op representing the 3D position (x, y, z) of
the points (3-dimensions per point), the goal flow og indicating the flow from
the current object point cloud to the point cloud of the object in the goal
pose (3-dimensions per point), and the segmentation mask om (1-dimension per
point).
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B.1.2 Primitive Implementation Details

We have five generic motion primitives that can be used strategically and col-
lectively to solve long-horizon manipulation tasks. The details of the actual
execution of those primitives are listed below.

Poke: The Poke primitive is parameterized by a location parameter aloc ∈
X obj and a motion parameter am = (xm, ym, zm, θx, θy) ∈ (−1, 1)5, described
below. The gripper first estimates the surface normal anorm of the object at
aloc and then goes to the pre-contact location alocpre = aloc + anorm × d1, for a
hyperparameter d1 = 0.04 . After reaching the pre-contact location, the gripper
moves to the actual contact location aloc with a rotation θ = arctan( θxθy ) along

the z axis. In the last step, the robot moves a delta position (xm, ym, zm) from
the contact location. After the poking motion, the gripper returns to the reset
pose before it captures the next step observation.

Grasp: The Grasp primitive is parameterized by a location parameter aloc ∈
X obj and a motion parameter am = (θx, θy) ∈ (−1, 1)2. The robot opens the
gripper and goes to a pre-contact location alocpre = xloc + (0, 0, d2) above the

actual location (d2 = 0.1m) with a gripper orientation θ = arctan( θxθy ) around

the z axis. Then the gripper goes down to the actual contact location and
closes the gripper. After grasping, the gripper moves upward in the z axis by
d3 = 0.15m.

Move to: The Move to primitive is parameterized by a location parameter
aloc ∈ X b and a motion parameter am = (xm, ym, zm, θx, θy) ∈ (−1, 1)5. The
policy chooses a background point aloc at which to place the object. Since the
gripper is grasping the object, there is an offset between the gripper position
and the placed point. Therefore, the actual location the gripper moves to is
aloc + d4 · (xm, ym, zm), where (xm, ym, zm) is a learned offset and d4 is the
maximum dimension of the object. During the movement, the gripper also
rotates to the orientation θ = arctan( θxθy ) in the z axis.

Move delta: The Move delta primitive is parameterized by a location pa-
rameter aloc ∈ X b and a motion parameter am = (xm, ym, zm, θx, θy) ∈ (−1, 1)5.
The gripper moves a delta position (xm, ym, zm) with a gripper rotation θ =
arctan( θxθy ) about the z axis.

Open gripper: The Open gripper primitive has no parameters and the
selected location aloc also doesn’t influence the action. It is an atomic robot
action which opens the gripper to the full extent.

B.1.3 Baseline Implementation

This section provides details of the baselines’ key implementation features. Ta-
ble 3.1 summarizes the main differences between our method and the baseline
approaches.

P-DQN [50]. P-DQN uses parameterized primitives, similar to our method,
but it lacks spatial grounding in its primitive location selection. In our imple-
mentation of this baseline, we processes the point cloud input to derive a global



critic feature fk and a global actor feature fa
k for each primitive k using a

classification-style network. P-DQN predicts K vectors of primitive parameters
and K scores, corresponding to the K primitives. In contrast to our method,
for each vector of primitive parameters, P-DQN predicts additionally three di-
mensions as the regressed location, which are mapped to the predicted Area of
Interests (as explained in Section B.1.5). P-DQN then selects the primitive with
the highest score during inference or samples from the softmaxed scores during
exploration.

RAPS [6]. Instead of handling different primitives with separate networks,
RAPS extracts a single global actor feature fa and a single global critic feature
f from the input point cloud using a classification-style network. It predicts an
action which includes the primitive parameters for all K primitives as well as
the log-probabilities of executing each primitive.Similar to P-DQN [50], RAPS
regresses to three dimensions for the primitive location for each primitive, which
are mapped to the Area of Interest (as explained in Sec B.1.5). RAPS selects
the primitive with the highest log-probability in execution and samples from the
predicted log-probability during exploration. Note that while our comparison
uses TD3 [8] for the baseline to maintain similarity with our method, the original
RAPS study experimented with various RL algorithms [6]

B.1.4 Hyper-parameters

Table B.1 lists the training hyper-parameters used in training.

Hyperparameter Ours P-DQN RAPS

Target Update Interval 4 1 1
Actor Update Interval 4 1 1
Learning Rate 1e-4 1e-4 1e-4
Batch Size 64 64 64
Epsilon Greedy 0.1 - -
Action Noise 0 0.1 0.1
Exploration Temperature 0.1 0.1 -
Tau 0.005 0.005 0.005

Table B.1: Training Hyper-parameters.

B.1.5 Regressed Location Mapping

By spatially-grounding the primitive locations on the input point cloud, our
method naturally has an object-centric action space. This allows the more
frequent interactions with the objects during exploration. To make it a fair
comparison between our method and the baselines, we map the regressed prim-
itive locations predicted by the baseline methods to the Area of Interest (AoI)
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Figure B.1: Simulation DoubleBin Setup. The visualization of the simulation
environment and the positions of the cameras.

of each primitive. Specifically, for a raw primitive location prediction aloc =
(xm, ym, zm) ∈ (−1, 1)3, we scale and translate it to the

1. the bounding box of the target object for object-centric primitives such
as Poke, Grasp.

2. the entire workspace for background-centric primitives such as Move
to.

This change significantly improves the baseline performance, although our ex-
periments show that these baselines still perform significantly worse than our
method.

B.2 Simulation Experiment Details

Below we describe additional details of our simulation experiments.

B.2.1 Simulation Tasks

1. Lift Cube (ManiSkill): We use the Lift Cube task from ManiSkil2 [28].
The goal of this task is to lift the cube to a goal height of 0.2m. The
initial cube position is uniformly sampled from [−1, 1]2 with a rotation
uniformly sampled from [0, 2π]. The reward function is composed of a
reaching reward, grasping reward and lifting reward (see the Maniskill2
documentation for details). We substract ManiSkill2’s original reward
function by its max value such that the returned reward is always negative,



Figure B.2: Real-world DoubleBin Setup. The visualization of the real-world
DoubleBin environment and the positions of the cameras.

thus encouraging the agent to achieve the success condition as soon as
possible thereby ending the episode.

2. Stack Cube (ManiSkill): We use the Stack Cube task from Man-
iSkil2 [28]. The goal of the task is to pick up a red cube and place it
onto a green one. When the red cube is placed on the green cube and
not grasped by the robot, the episode is a success (see the ManiSkill2
documentation for details). Similarly, we substract ManiSkill2’s original
reward function by its max value such that the returned reward is always
negative.

3. Peg Insertion (ManiSkill): This task is a modified version of the
Peg Insertion Task in ManiSkill2. The goal is to insert a peg into the
horizontal hole in a box. We slightly simplify the original task by remov-
ing any randomization of the hole’s location and peg’s initial pose. We
also marginally enlarge the hole by adding 1cm clearance. Similarly, we
substract ManiSkill2’s original reward function by its max value such that
the returned reward is always negative.

4. DoubleBin Task : We build the customized DoubleBin task environ-
ment in Robosuite [58]. The environment has two bins on a table and
three cameras, looking over the bins from the left, the right and the front,
as shown in the Figure B.1. The size of the bin is 40cm×24cm×6cm and
the distance between the centers of the bins is 13.5cm. For each camera,
we record the depth image and project all the points back to the tabletop
frame, which has an origin at the middle between the two bins. In Ro-
bosuite, we have access to ground-truth segmentation labels of the object
and we use these labels to compute a segmentation mask for all the points.



We then combine the points from all of the cameras to obtain the point
cloud observation. Each episode, an object is randomly chosen from our
dataset and loaded into the environment. The object is dropped from the
air above one of the bins, after which it reaches a stable initial pose. The
reward function for training our RL policy is rt = − 1

N

∑N
i=1 ||x

g
i − xi||

where || · || is the L2 norm, N is the total number of points on the object
point cloud, xi is a point in the point cloud of the current object pose,
and xg

i is a corresponding point in the point cloud of the goal pose.

The goal poses in the DoubleBin Task are sampled by dropping the objects
from a certain height and waiting until they stabilize.

The task is considered a success only when rt > −0.03, which is equivalent
to 1

N

∑N
i=1 ||x

g
i − xi|| < 0.03m.

B.2.2 Training and Evaluation Details

In this section, we include the training curves of our methods and baselines over
four different task variants. Figure B.3 shows the success rate of the task with
regard to the environment interaction steps. Here every environment interaction
step refers to one primitive step in the environment which may involve several
low-level atomic steps to complete. For every method, we run the experiment
across three training seeds. The variance of the seeds is plotted in the figure
with the shading area.

We first fill the replay buffer with trajectories by performing 1e4 random
actions. Then we start training our policy. During training, we evaluate the
current policy every 5e3 environment interaction steps over 20 episodes and
report the average success rate across those episodes.

B.2.3 Object Dataset Processing and Visualization

The object dataset we are using is from Liu et al. [22]. We use convex decom-
position for the objects and generate watertight mesh following Zhou et al. [57].
We also scale the objects so that the maximum object dimension is 10cm. Dur-
ing training, we randomly sample an object and apply additional proportional
scaling to all the dimensions within a range of [0.8, 1.2] to simulate objects of
different sizes. We also follow the procedure from Zhou et al. [57] to filter out
the objects that have some simulation artifacts or flat and thin objects that
are too difficult to poke. After the filtering, we have 44 objects remaining,
including cube, bottle, cup, mug, etc. Those objects are divided into three sub-
sets including 32 objects in Train, 7 objects in Unseen Instance (Common
Categories) and 5 objects in Unseen Category. Figure B.4 shows the Train
objects and Figure B.5 shows the unseen objects we test during evaluation.
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Figure B.3: The success rate of six different tasks over environment steps. Each
method is averaged over three different seeds and the standard deviation is represented
in the shaded area. Our method (blue) consistently outperforms both of the baselines
in almost all tasks.

B.2.4 Primitive State Estimation

In simulation, we need to determine whether an object is grasped because certain
primitives can only be used when an object is grasped (Move to and Move delta).
In order to accurately estimate the grasped state, we have two conditions. First,
we use the Mujoco contact detection to detect if any inner side of the fingertip
is in contact with the object. If both inner sides of the fingertip are in contact,
we return true for the grasped state. However, only checking the contact brings



Figure B.4: 32 Train objects used in the training

(a) 5 Unseen Category objects (b) 7 Unseen Instances (Common
Category) objects

Figure B.5: 12 Unseen objects used in the evaluation
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Figure B.6: Results breakdown for different object categories with the different
maximum episode lengths annotated in the legend as (10) or (30). The Unseen Object
Instance (Common Category) (orange) has comparable performance with the same
object category in the Train (blue). The overall success rate of 30 maximum episode
steps is higher than the one with 10 maximum episode steps.
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Figure B.7: The success rate of two different tasks over environment steps. Each
method is averaged over three different random seeds and the standard deviation is
represented in the shaded area. The baseline HacMan(logit) (orange) achieves compa-
rable performance on easy task ManiSkill Lift Cube but fails to match the performance
of our method (blue) in more challenging Double Bin task.

some false negative cases because the simulation sometimes cannot detect the
contact for some grasping poses due to simulation artifacts. For example, when
the gripper grasps the object in corner and it is able to lift the object, the
simulation only detects one inner side of the fingertip is in contact of the object.
Therefore, to reduce the false negatives, we add the second condition, that is
to check if the object is above the table. To be more specific, we check if
the object z position is above the table by at least two times of the object’s
maximum dimension. The final grasped state is evaluated to be true if either of
these two conditions is satisfied. Otherwise, the grasped state is false.

B.2.5 Simulation: Additional Evaluation

In order to have a comprehensive analysis of our method’s performance across
different geometries and shapes. In this section, we report the breakdown re-
sults, i.e., average success rate for each object category. Figure B.6 shows that
our method performs consistently well across a large category of objects. How-
ever, there are some categories with which our method struggles because of the
irregular geometries.

B.2.6 Simulation: Dexterous Hand Task

To demonstrate that our set of primitives applies to different morphologies of
end-effectors, we demonstrate the experimental results on tasks with dexterous
hands in simulation apart from the main results we have for grippers.

In the dexterous hand task, we use the Relocate task from Adroit simulation
benchmark [? ]. The goal is to grasp the red sphere with the ShadowHand and
move it to the goal position. The accepted range of the goal is denoted as a
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Figure B.8: Demonstration of our method’s rollouts on additional
tasks. The first two rows demonstrate our method performing the Pick-and-
Place (RoboSuite) task with different objects. The third row shows our method
performing the Door Opening (RoboSuite) task. The last two rows show our
method performing the Relocate (Adroit) task with different initializations.



large green sphere. We adapt the implementations of the five primitives to be
compatible with the robot morphology. When controlling the position of the
hand as in Poke, Grasp, and Move to, we align the palm center of the hand
to the target position. Grasp and Open Gripper crunches (all finger joints set
to 1) and stretches (all finger joints set to 0) all the fingers respectively. For
simplicity, we also remove all the parameters controlling the z-axis rotation.
In other words, the hand does not change its orientation during any primitive
execution.

Figure B.8 includes an example rollout of our agent. Our method achieves
100% success rate on this dexterous hand task within 20k training steps, proving
our method’s generality.

B.2.7 Simulation: Additional Baseline

Prior work [57] proposes a hybrid discrete-continuous action space for using
a single spatially-grounded poking primitive to align the object 6d pose in a
single bin. There are multiple ways to extend this single primitive framework
to incorporate more primitives to solve a diverse range of general manipulation
tasks. In order to demonstrate that designing a framework for multi-primitive
setting is non-trivial, we add an additional baseline in this section to show that a
naive extension of [57] can work on easier tasks like ManiSkill Lift Cube task but
fail to match our method’s performance in more challenging tasks like Double
Bin task.

We introduce a new baseline, named as HACMan (logit), which extends the
continuous action of [57] to also include logits. Specifically, the discrete action
aloc is to choose a point out of N points in the point cloud and the agent uses that
as a location to apply the primitive motion. The continuous action (amall, a

logit)
includes the continuous motion parameters amall = (amgrasp, a

m
poke, a

m
move to, a

m
move delta, a

m
open gripper)

of all the five primitives and additional 5d logits alogit ∈ R5. In execution, the
location aloc is chosen based on the Q value of the network. It first chooses the
point index argmaxi Qi(s, a

m
i ), 1 ≤ i ≤ N and maps the index to a 3d point

location. Then we get the corresponding logits alogiti . The primitive aprim is
selected by sampling through the softmax over these logits. The final primitive
motion parameter is selected by indexing the motion parameters amall[a

prim].
We conduct the experiments in two different tasks and the results are shown
in Figure B.7. Compared to our method, which predicts a separate Q value
for point and primitive, HACMan (logit) predicts only separate Q value for the
point. This structure makes it difficult to learn spatial reasoning with different
primitives, leading to its failure on challenging Double Bin tasks.

B.3 Primitive Heatmap Visualization

In Figure B.9, we visualize the spatial Critic maps for different primitives, which
vary based on the primitive type and in different regions of an object, based on



the geometry of the object. This visualization showcases the agent’s capacity
for multi-modal reasoning and geometric adaptability in task execution.

Same Goal

Grasp

Same Primitive

Primitive 1: Grasp Primitive 2: Poke

Goal Goal

Pose 1 Pose 2

Figure B.9: Primitive Heatmap. The first row shows two critic heatmap for
two different primitives at the same time step in an rollout. The agent learns to apply
different primitives at different regions of the mug, based on its geometric features:
Grasp needs to be applied to the center of the mug; Poke needs to be applied to the
side of the mug to flip it into a more easily graspable pose. The second row shows
two critic heatmaps for the same object and the same primitive at two different poses.
The agent learns to adapt its grasp location when there is a pose difference of the mug.

B.4 Real-world Experiments

B.4.1 Real World Setup

Figure B.2 demonstrates the setup for our real-world DoubleBin experiment. We
employ 4 Azure Kinect cameras to capture multi-view point clouds, minimizing
the observation occlusion. We use two plastic bins with dimensions similar to
the simulation ones, albeit with slight shape differences.

We use a Franka Emika robot equipped with a Franka hand for our exper-
iments. We replace the original Franka hand fingertips with the Festo DHAS-



GF-60-U-BU fingertip for improved compliance during contact.

B.4.2 Observation and Goal Processing

Our input point cloud to the policy contains “flow”, e.g. vectors of corre-
spondences between the observation point cloud and each point’s corresponding
point in the goal point cloud. The computation of flow requires us knowing
the transformation between the current observation and the goal. In order to
estimate this transformation in the real-world, we use point cloud registration.
Specifically, this process involves:

1. Global registration using RANSAC with FPFH features.

2. Local refinement via Point-to-Plane ICP. We only match the object
shape, which empirically produces more robust performance than match-
ing both the shape and the color.

We predetermine 4 goal poses for each object by placing them at 2 random
positions inside each of the two bins. The robot operates autonomously across
episodes without manual intervention. When calculating the success rates, we
mark episodes with “fake” successes (the episode fails but the agent believes it
as a success due to point cloud registration failure) as failures.

B.4.3 Primitive State Estimation

In real-world experiments, we also estimate the primitive state grasped. The
state is set to true when the camera detects the object’s lowest point is at least
4cm above the bin. Conversely, the state switches to false as soon as the gripper
releases.

B.4.4 Accuracy and Repeatability

While our method demonstrates promising results in real-world scenarios, there
are several sources of error that impact the accuracy and repeatability of the
system:

1. Camera calibration errors: Inaccuracies in camera calibration can lead
to misalignment between the perceived and actual positions of objects
in the workspace. Right now the camera calibration error is at around
0.3cm. This can affect the precision of primitive actions, especially for
tasks requiring high accuracy.

2. Robot controller inaccuracies: The current implementation uses roughly
tuned controller parameters. The current average controller error is around



0.6cm. This error tends to be higher on long-distance movements, result-
ing in imprecise movements This is particularly noticeable in tasks re-
quiring fine manipulation or when executing primitives that demand high
precision.

3. Depth measurement noise: The consumer-grade depth cameras used
in our setup introduce noise in the point cloud observations. This can
cause the policy to occasionally select points in empty space, leading to
unsuccessful or inefficient actions.

4. Sim-to-real discrepancies: Differences in object and background ge-
ometries between simulation and reality contribute to the sim-to-real gap.
These discrepancies can affect the generalization of learned policies when
transferred to the real world.

To address these challenges and improve system performance, we propose
the following solutions:

1. Industrial-grade RGBD cameras: Upgrading to high-quality indus-
trial cameras would significantly reduce sensor errors, particularly depth
measurement noise. This would provide more accurate and reliable point
cloud data, enabling more precise primitive execution.

2. Enhanced robot controller tuning: Implementing a more systematic
and thorough tuning process for the robot controller parameters could
substantially improve control accuracy. This may involve using advanced
optimization techniques or adaptive control methods to achieve more pre-
cise movements across different tasks and object interactions.

3. Pretrained vision models: Leveraging large pretrained vision models
for RGB feature extraction could potentially mitigate sim-to-real gaps.
These models, trained on diverse datasets, may provide more robust and
generalizable features, helping the system better adapt to real-world vari-
ations in objects.

4. Data augmentation: Incorporating more diverse and realistic synthetic
data during training, including variations in object geometries, textures,
and lighting conditions, could help bridge the sim-to-real gap. This ap-
proach could be complemented by domain randomization techniques to
further enhance robustness.

5. Online adaptation: Implementing an online adaptation mechanism could
allow the system to fine-tune its behavior based on real-world feedback,
potentially overcoming some of the limitations imposed by sim-to-real dis-
crepancies.

These enhancements could all theoretically improve the accuracy and re-
peatability of our method in real-world applications. Their exact effect needs
to be determined through further experiments.



B.5 Extended Discussion with Related Work

B.5.1 Compared to Zhou et al. [57]

This previous work only demonstrated a spatially-grounded action space with
one type of primitive and one task; we are the first to demonstrate that spatially-
grounded manipulation can be extended to a wide range of tasks.

To achieve this generality, we design 2 additional spatially-grounded primi-
tives (grasp and move-to) and 2 non-spatially-grounded primitives (open gripper
and move-delta) to enable a range of tasks to be achieved. We have presented
a set of spatially-grounded primitives that we show to be sufficiently general
to be applied to a wide range of tasks and can be adopted by others in the
community.

How to spatially-ground each of these primitives is non-obvious and we ex-
perimented with different choices of spatial grounding before we found this set
of spatially-grounded primitives that work well and cover a range of tasks.

Further, there are multiple ways in which one can imagine extending [57] to
try to incorporate multiple primitives. In our current approach, we predict a
separate Q-value for each point and each primitive, and we choose the point and
primitive combination with the highest Q-value. We have added an experiment
to compare this approach to an alternative: Similar to RAPS [6], we extend
the actor’s action space to include the log probability (logit) of selecting each
primitive; we can treat the logits as a continuous action output which we up-
date using reinforcement learning (e.g. TD3) and then select the action based
on a softmax over these logits. This second approach is similar to the approach
used in RAPS and this baseline can be viewed as a spatially-grounded variant
of RAPS. We conduct experiments to test this approach, as shown in the Ap-
pendix B.2.7. The results show that while the alternative method solves the
easier tasks, our method achieves significantly better performance on the more
challenging double-bin task.

B.5.2 Compared to Feldman et al. [7]

Our method has additional primitives that enable our method to achieve a wide
range of tasks, compared to the single task shown in [7]. As mentioned above,
designing a set of spatially-grounded primitives that could achieve a wide range
of tasks was not straight-forward in our experience.
For example, the method in [7] only includes 2 primitives, referred to as “shift”
and “grasp” (which are similar to our “poke” and grasp” primitives). These
primitives would not be capable of achieving our double-bin task which requires
placing an object into a specific 6D pose. For this task, we needed the additional
primitives that we included: “move to”, “move delta”, and “open gripper”.
Other differences compared to [7] include:

1. 2D vs. 3D. The previous work [7] provides a solution based on the



assumption that their spatial grounding can be represented in a top-down
2D pixel space, while we provide a generic solution for manipulation in full-
3D-space. The 2D representation limits both the set of available locations
and the action flexibility: the set of points that can be selected in [7] are
limited to only those visible from a top-down camera, whereas our method
can select any visible point on the object surface (such as on the sides of
an object); furthermore, the 2D pushing actions used in the previous work
are insufficient for more dexterous non-prehensile manipulation motions
such as flipping an object, which require 3D pushing actions as we use in
our method.

2. Limited horizon. The previous work [7] assumes their task can be
completed within 2 primitive steps. It requires a separate value func-
tion for each step, which is not scalable for longer horizon-tasks like our
Double-Bin task. Additionally, the limited two-step horizon restricts the
exploration of multiple solution modalities, as it yields only one possible
solution.

3. Limited experiments.

• Tasks diversity. The prior work [7] focuses on how to pick up ob-
jects, with two specialized primitives designed for this task (grasping
and 2D shifting). We focus on how an agent can discover longer-
horizon strategies using a diverse set of primitives on more general
manipulation tasks.

• Object generalization: [7] shows their method working on limited ob-
jects geometry (cubes, spheres, and cylinders). Prior work [57] has
shown that the difficulty is much lower when there is limited geomet-
ric diversity. In contrast, our method maintains good performance
across diverse and even diverse unseen geometries.

• The prior work [7] does not show any real-world experiments and
does not explore how the method can be transferred to real-world.
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