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Abstract

Optimal Control is a popular formulation for designing controllers for dynamic
robotic systems. Under the formulation, the desired long-term behavior of
the system is encoded via a cost function and the policy, i.e. a mapping from
the state of the system to control commands, to achieve the desired behavior
is derived by solving an optimization problem. A fundamental challenge in
scaling up policy optimization to complex systems is that the computational
requirement scales exponentially with the dimensionality of the state-space.
Owing to this curse of dimensionality simplifying hierarchies are employed
to reduce the computational burden. Very often, these hierarchies are hand-
designed based on intuitions about the system’s dynamics, and do not account
for their effect on the system’s closed-loop behavior under the resulting
policies. The systematic design of hierarchies to simplify controller synthesis
is a critical and active area of research and is the focus of this work.

This thesis introduces Policy Decomposition, a framework that alleviates
the curse of dimensionality by algorithmically reducing a complex policy
optimization problem into a hierarchy of simpler subproblems that are much
more tractable to solve. Two standout features of this framework are its ability
to 1) automatically propose control hierarchies and 2) estimate a priori how
the control performance under policies resulting from different hierarchies
compares with the optimal policy. Additionally, we develop search methods
based on Genetic Algorithm and Monte Carlo tree search to automatically
discover promising hierarchies. Therefore, those that dramatically reduce the
required computation in policy optimization while sacrificing minimally on
control performance can be readily identified. The framework is agnostic to
the choice of policy representations and optimization algorithms.

We demonstrate the generality of the Policy Decomposition framework by
applying it towards finding hierarchies for several robotic systems, including
the control of a simplified biped, and a quadcopter. Furthermore, we present
results using Policy Iteration with look-up table based policy representa-
tions as well as more modern methods such as Proximal Policy Optimization
with neural network policies. The discovered hierarchies either outperform
heuristically constructed ones in closed-loop performance or provide dra-
matic reductions in required compute with marginally suboptimal control
performance.
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Chapter 1

Introduction

Optimal Control is a popular formulation for designing controllers for dynamical systems
that has found applications in varied domains [47, 67, 88] especially robotics [27]. The
solution to an optimal control problem is a policy that minimizes a specified cost function.
The optimal policy is a mapping from the state of the system to control commands that
regulate the system to exhibit the desired behavior encoded by the cost function. Although
several policy optimization methods exist [1, 8, 11, 73, 79] the complexity of synthesizing
the global optimal policy scales exponentially with the dimensionality of the state-space
[9]. As a consequence, several simplifying control architectures are adopted. The sys-
tematic design of such architectures is a critical research area [3] and their automated
discovery is an active line of research [23, 61]. This thesis introduces Policy Decomposi-
tion, a framework to alleviate this curse of dimensionality by algorithmically reducing
a complex policy optimization problem into a hierarchy of simpler subproblems that
are much more tractable. A key feature of this framework is its ability to automatically
propose control hierarchies/architectures and assess a priori how well the closed-loop
behavior under resulting hierarchical policies matches with that under the optimal pol-
icy. Therefore, policy optimization for complex systems can be readily simplified while
sacrificing minimally on closed-loop performance.

Several approaches have been devised to reduce the computational burden in optimiz-
ing control policies for complex systems, broadly based on three ideas: layered control
[61], decentralized control [83], and novel function approximators for the policy [82].
Layered control [61] refers to a two or three layer hierarchical structure where a reduced
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1. Introduction

order/lower-dimensional model of the system is used to reason about its long-term behav-
ior (either for online local policy computation in a model-predictive fashion [31, 70, 93]
or for offline global policy optimization [37, 99]). For robotic systems, the reduced order
models are typically hand-designed [29, 33, 45, 87]. Systematic approaches towards model
reduction by attempting to match the open loop-dynamics [76] or based on controllability
measures [55, 56] exist. These are more commonly applied towards controller design
for large linear systems [4] and continuum systems [57], but their adoption for robotic
control problems is limited [36, 69]. Reduction methods which explicitly attempt to match
the optimal closed-loop performance have been proposed for networked linear systems
[32, 100] and only recently for robotic systems [22, 30].

Decentralized controlmethods impose a structure on the controller whereby policies
for different subspaces of the control inputs are functions of only some subspace of the
system state. In some cases, structures arise naturally, such as in case of large networked
systems where controllers have locality constraints on account of communication delays
[96]. In other cases suitable structures have to be determined [52, 94], and the policies are
then optimized in a decentralized fashion leading to reduction in computation [38, 48, 83].
Extensive literature exists on structure selection for linear systems based on interaction
measures [19, 63], passivity measures [7], and controllability or observability measures
[77, 98]. Works addressing control structure selection for nonlinear systems do exist
[48]. However, all of these approaches are oblivious to the optimal control objective and
as such may lead to substantially suboptimal closed-loop behavior. In contrast, Policy
Decomposition explicitly reasons about the suboptimality of the resulting policies in
determining suitable hierarchical control structures.

The Policy Decomposition framework is agnostic to the choice of policy representation
and optimization algorithm. Although no particular choice of function approximator
for representing control policies inherently resolves the curse of dimensionality, practical
trade-offs arise. The simplest policy representations are look-up tables over the state-space
that store the desired values for control inputs over a grid of states [10]. Dynamic pro-
gramming based methods such as Policy Iteration provide strong convergence guarantees
to the optimal solution when policies are represented as look-up tables [74]. However, the
computational and memory complexity is exponential in the dimensionality of the state-
space. Tensor-train decompositions [35] provide a compact alternative to look-up tables
with polynomial complexity in the rank of the tensors they represent. Another choice
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1. Introduction

of function approximator for the optimal policy are state and input trajectories derived
by optimizing for the objective of the control problem [90]. Trajectory-based dynamic
programming is more memory efficient in practice but the number of trajectories required
to converge to the optimal solution still grows exponentially with the dimensionality of
the state-space [6]. A very popular and memory efficient choice for policy representation
are neural networks [11]. Algorithms that compute neural network policies have been
developed with [1, 2] and without [46, 65, 79, 80] knowing the dynamics model for the
underlying system. Although, neural networks have been successful in capturing policies
for control problems with very high-dimensional state-spaces [58], the obtained solutions
are at best local optima and convergence guarantees are missing [12, 43].

1.1 Contributions

We introduce Policy Decomposition, a framework to reduce complex policy optimiza-
tion problems into a hierarchy of simpler and much more tractable sub-problems. The
framework algorithmically constructs control hierarchies by decoupling and cascading
the process of computing policies for different subspaces of the control inputs. To iden-
tify promising hierarchies, Policy Decomposition solves relaxed versions of the policy
optimization problem to assess a priori how well the closed-loop behavior under different
hierarchical policies matches with that under the optimal policy. Policy Decomposition
faces a combinatorial challenge whereby the number of possible hierarchies turn out to
be substantial even for moderately complex systems, and we develop search algorithms
to efficiently discover promising ones. We have investigated a range of optimal control
problems, including the balance control of a simplified biped model, the swing-up control
of planar manipulators, and flight control of quadcopter. For these problems, we have
rediscovered some known control simplifications and also identified some new ones. The
specific contributions of this work are

• A framework to automatically propose decomposition strategies for the optimal
control of a dynamical system along with a suboptimality measure and two estimates
of it to assess the quality of control policies resulting from different reductions
(Chapter 2; [49]).

3



1. Introduction

• Genetic Algorithm and Monte Carlo Tree Search based formulation for efficiently
discovering hierarchies that optimally trade-off reduction in computation and closed-
loop performance (Chapter 3; [50]).

• A method to derive system representations conducive to hierarchical policy opti-
mization (Chapter 4; [51]).

• Experiments investigating the hierarchical policy optimization for a range of robotic
systems of varying complexity for regulation (Chapters 2 to 4) and trajectory track-
ing control (Chapter 5)

4



Chapter 2

Policy Decomposition

We motivate the idea of Policy Decomposition with an illustrative example. Consider
designing a control policy to swing up a pole on a cart while moving the cart to a goal
position (Figure 2.1). The dynamics of this cart-pole system are given by

¥𝑥 =
𝐹 − 𝜏

𝑙
cos𝜃 +𝑚𝑝𝑙 ¤𝜃2 sin𝜃 +

𝑚𝑝𝑔

2 sin 2𝜃

𝑚𝑐 +𝑚𝑝 sin
2 𝜃

¥𝜃 =

𝜏

𝑙2
(𝑚𝑐

𝑚𝑝
+ 1) − 𝐹

𝑙
cos𝜃 − 𝑚𝑝

¤𝜃2
2 sin 2𝜃 − 𝑔

𝑙
(𝑚𝑐 +𝑚𝑝) sin𝜃

𝑚𝑐 +𝑚𝑝 sin
2 𝜃

(2.1)

where 𝑥 and ¤𝑥 are the horizontal position and velocity of the cart, 𝜃 and ¤𝜃 are the angle
and angular velocity of the pole, and the cart force 𝐹 and pole torque 𝜏 are the two control
inputs driving the system. Parameters𝑚𝑝 and𝑚𝑐 are the masses of the pole and cart,
respectively, 𝑙 is the pole length, and 𝑔 is the gravitational acceleration (Figure 2.1(a)).
Optimal policies 𝜋∗

𝐹
and 𝜋∗𝜏 are obtained by jointly solving for the two over a 4-dimensional

state-space. However, note that the pole dynamics are independent of the position and
velocity of the cart (Equation (2.1)). Therefore, a cascaded control optimization, where a
policy 𝜋𝜏 (𝜃, ¤𝜃 ) is first computed disregarding the cart and then a policy 𝜋𝐹 (𝑥, ¤𝑥, 𝜃, ¤𝜃 ) is
derived keeping 𝜋𝜏 fixed, produces close to optimal closed-loop behavior (Figure 2.1(c))
while offering reduction in computation. Additionally, if the cart has significantly higher
inertia relative to the pole (𝑚𝑐 ≫ 𝑚𝑝), solving for 𝜋𝜏 (𝜃, ¤𝜃 ) and 𝜋𝐹 (𝑥, ¤𝑥) in a decoupled
fashion would further reduce the computation. Several hierarchies can be constructed
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2. Policy Decomposition

entire systemgoal

start
g

x, F

θ, τ

mp

mc

l

(a) (b) (c)

x, F

θ

πF(x,πτ(θ,θ))

πτ(θ,θ)

F
x

τ

πτ(x,x)

πF(θ,θ)

cascaded decoupled
πF(x, πτ(θ,θ))
πF(θ,θ), πτ(x,x)

θ, τ

Figure 2.1: Policy Decomposition for cart-pole system shown in (a). (b) Cascaded and decoupled examples of policy decomposition. (c)
Resulting closed-loop behavior (blue and green) in comparison to optimal control of entire system (red).

from just a combination of cascading and decoupling, however it isn’t always intuitive to
predict how closely the resulting policies approximate the optimal ones. For example, the
decoupled strategy shown in figure 2.1(b) produces an unstable policy (Figure 2.1(c)).

We introduce Policy Decomposition, a framework to reduce the required computation
in policy optimization for complex systems. It achieves this by constructing a hierarchy
of cascaded and/or decoupled lower-dimensional optimizations for subsystems of the
full-system that are much more tractable to solve. A key feature of Policy Decomposition
is that it estimates the suboptimality of the policies resulting from a hierarchy a priori, and
thus hierarchies that offer dramatic reduction in computation while sacrificing minimally
on control performance can be algorithmically discovered. In section 2.1, we formally
introduce the Policy Decomposition framework, specifically the approach to construct
hierarchies using a combination of the cascading and decoupling strategies. We also
present an intuitive abstraction that encodes the recipe to compute policies under such
hierarchies. Subsequently, in section 2.2 we introduce a metric to quantify the suboptimal-
ity of a hierarchical policy and present methods to estimate it. In section 2.3, we identify
hierarchies that offer near optimal control performance with significantly lower policy
computation times for several example systems.

2.1 Core Idea

To formally develop the idea of policy decomposition, we consider the general dynamical
system

¤x = f (x,u) (2.2)

6



2. Policy Decomposition

with state x and input u. The optimal control for this system is defined as the control
policy 𝜋∗u(x) that minimizes

𝐽 =

∫ ∞

0
𝑒−𝜆𝑡𝑐 (x(𝑡),u(𝑡)) 𝑑𝑡 . (2.3)

This objective function describes the discounted sum of some costs 𝑐 (x,u) accrued over
time with the discount factor 𝜆 characterizing the trade-off between immediate and future
costs. We assume a quadratic cost function,

𝑐 (x,u) = (x − x𝑑)𝑇Q(x − x𝑑) + (u − u𝑑)𝑇R(u − u𝑑) (2.4)

where x𝑑 and u𝑑 define the goal state and input. For the sake of simplicity and without
loss of generality we illustrate the main ideas behind Policy Decomposition considering
optimal regulation problems where x𝑑 is fixed and u𝑑 is the input that stabilizes the
system at this state. We discuss how the framework can be readily extended to trajectory
tracking problems in chapter 5.

Instead of jointly optimizing policies for all control inputs to a system 𝜋∗u(x), Policy
Decomposition computes lower-dimensional sub-policies for individual subsets of inputs.
These sub-policies are a function of only a subset of state variables and are derived by
solving lower-dimensional optimal control problems in either a cascaded or decoupled
fashion leading to reduction in policy computation times. These sub-policies together
form the hierarchical policy 𝜋𝛿

u(x) for the entire system (Figure 2.2).

A sub-policy 𝜋u𝑖
(x𝑖) is the solution to the optimal control problem characterized by

the subsystem dynamics and cost,

¤x𝑖 = f𝑖 (x𝑖,u𝑖 | x̄𝑖 = x̄𝑑
𝑖 , ū𝑖 = 𝜋ū𝑖

(x𝑖)),
𝑐𝑖 (x𝑖,u𝑖) = 𝑐 (x𝑖,u𝑖 | x̄𝑖 = x̄𝑑

𝑖 , ū𝑖 = 𝜋ū𝑖
(x𝑖))

where x𝑖 and u𝑖 are subsets of x and u, f𝑖 only contains the dynamics associated with
x𝑖 , and the complement state x̄𝑖 = x \ x𝑖 is assumed to be constant. The complement
input ū𝑖 = u \ u𝑖 = ucas

𝑖 ∪ udec
𝑖 comprises inputs (udec

𝑖 ) that are decoupled from, and
inputs (ucas

𝑖 ) that are in cascade with u𝑖 . The decoupled inputs are set to zero and
sub-policies for the cascaded inputs are used as is while computing 𝜋u𝑖

(x𝑖). In general,
𝜋ū𝑖
(x𝑖) = [0, . . . , 0, 𝜋u𝑗

(x 𝑗 ), 0, . . . , 0] where u 𝑗 ⊆ ucas
𝑖 are inputs that appear lower

7



2. Policy Decomposition

cascaded sub-policies computed
from innermost to outermost

decoupled sub-policies 
computed independently

vs

Figure 2.2: Idea of Policy Decomposition shown for a fictive system. Instead of jointly optimizing policies for all inputs over the full
state-space (top), the policies are approximated with decoupled and cascaded sub-policies for smaller sub-systems that are faster to
compute (bottom).

in the cascade to u𝑖 , and x 𝑗 ⊆ x𝑖 . The set of inputs udec
𝑖 are decoupled from u𝑖 in the

hierarchy, and their absence in the sub-policy calculation is captured by setting them to 0.
Note, (i) 𝜋ū𝑖

(x𝑖) can contain multiple sub-policies, (ii) these sub-policies can themselves
be computed in a cascaded or decoupled fashion, and (iii) they have to be known before
computing 𝜋u𝑖

(x𝑖).
We introduce an intuitive abstraction for hierarchies generated by Policy Decom-

position. A hierarchy 𝛿 can be represented using an input-tree 𝑇 𝛿 = (V, E) where all
nodes except the root node are tuples of disjoint subsets of inputs and state variables
v𝑖 =

(
u𝑖,xu𝑖

)
∀v𝑖 ∈ V \ {vroot}. Policy computation for inputs that belong to different

branches is decoupled. Inputs that lie on the same branch are in a cascade where policies
for inputs lower in the branch (leaf node being the lowest) influence the policies for inputs
higher-up. A sub-tree rooted at node v𝑖 characterizes a subsystem with control inputs
u𝑖 and state x𝑖 = xu𝑖

∪ (∪xu𝑗
), where u 𝑗 ⊆ ucas

𝑖 and xu𝑗
are inputs and state variables

corresponding to the other nodes in the sub-tree. Note, xu𝑖
can be an empty set if it does

not belong to a leaf-node. Figure 2.3 depicts the input-tree for the hierarchy in figure 2.2,
and the resulting subsystems. Policies are computed in a child-first order, starting from
leaf nodes followed by their parents and so on. An input-tree prescribes a recipe to
compute policies for different subspaces of the input-space (u𝑖 ) as functions of subspaces

8



2. Policy Decomposition

Subsystem 2

Subsystem 1

Subsystem 3

Figure 2.3: Input-tree (left) for the decomposition shown in figure 2.2 and the resulting subsystems (mid) are depicted. Policies for 𝑢1

and 𝑢4, i.e. inputs at the leaf nodes, are obtained first by independently solving optimal control problems for subsystems 1 and 2
respectively. Policies for 𝑢2 and 𝑢3 are computed jointly by solving the optimal control problem for subsystem 3. Resulting policies
for different inputs (right) are functions of different state variables.

of the state-space (x𝑖 ). Here, we restrict u𝑖 and x𝑖 to be subsets of the inputs and state
variables respectively. In chapter 4, we present a method to identify linear subspaces of
the input and state spaces that offer hierarchies with better control performance.

2.2 Quantifying the Suboptimality of a Hierarchy

To assess the quality of the closed-loop behavior for a policy derived using a hierarchy 𝛿 ,
we introduce the value error: the average difference between value functions 𝑉 𝛿 and 𝑉 ∗

of policies obtained with and without the hierarchy,

err𝛿 =

∫
S
(
𝑉 𝛿 (x) −𝑉 ∗(x)

)
𝑑x∫

S𝑉
∗(x) 𝑑x

(2.5)

where
∫
S denotes the integral over state space S. The value function for a policy maps

states to the cumulative cost accrued by following the policy after initializing the system
from the said states, and is the ultimate measure of a policy’s closed-loop performance. As
defined, err𝛿 directly quantifies the suboptimality of the policies obtained from hierarchy
𝛿 . But, computing the value error requires knowing𝑉 𝛿 and𝑉 ∗ which can only be obtained
by solving the original and decomposed optimal control problems. To estimate the value
error for a hierarchy a priori, we present two approaches based on Linear Quadratic
Regulator (LQR) [72] and Control-limited Differential Dynamic Programming (DDP) [89].

9



2. Policy Decomposition

2.2.1 The LQR Estimate

The first approach relies on the system obtained by linearizing the dynamics (Equa-
tion (2.2)) about the goal state and input,

¤x = A(x − x𝑑) +B(u − u𝑑) (2.6)

A =
𝜕f (x,u)

𝜕x

����
(x𝑑 ,u𝑑 )

, B =
𝜕f (x,u)

𝜕u

����
(x𝑑 ,u𝑑 )

Because the costs are quadratic (Equation (2.4)), the optimal controller of this linearized
system is a Linear Quadratic Regulator (LQR). The optimal policy, 𝜋∗ulqr (x) = −K

∗(x−x𝑑),
and the corresponding value function, 𝑉 ∗lqr(x) = x𝑇P ∗x, can be computed by solving
the Algebraic Riccati Equation [72]. The value error estimate for decomposition 𝛿 then
becomes

err𝛿lqr =

∫
S
(
𝑉 𝛿
lqr(x) −𝑉

∗
lqr(x)

)
𝑑x∫

S𝑉
∗
lqr(x) 𝑑x

(2.7)

where 𝑉 𝛿
lqr(x) is the value function for the equivalent decomposition of the linear system.

Computing 𝑉 𝛿
lqr(x) entails first constructing the hierarchical policy for the linear system,

and then solving for its value function. The hierarchical policy is obtained by deriving
sub-policies for the linear subsystems generated by hierarchy 𝛿 , in a child-first order
as per the corresponding input-tree 𝑇 𝛿 , and then assembling them into a policy for the
full linear system. Sub-policies 𝜋u𝑖

(x𝑖) are LQR solutions to the corresponding linear
subsystems,

¤x𝑖 = A𝑖 (x𝑖 − x𝑑
𝑖 ) +B𝑖 (u𝑖 − u𝑑

𝑖 ) (2.8)

A𝑖 =
𝜕f𝑖
𝜕x𝑖

����(x𝑑 ,u𝑑)
+ 𝜕f𝑖

𝜕ū𝑖

����(x𝑑 ,u𝑑)
𝜕𝜋ū𝑖

𝜕x𝑖

����
x𝑑
𝑖

,

B𝑖 =
𝜕f𝑖
𝜕u𝑖

����(x𝑑 ,u𝑑)

where 𝜋ū𝑖
(x𝑖) = [0, . . . , 0, u𝑑

𝑗 −K 𝑗 (x 𝑗 − x𝑑
𝑗 ), 0, . . . , 0]. K 𝑗 is the LQR solution for a

subsystem characterized by u 𝑗 ⊆ ucas
𝑖 and x 𝑗 ⊆ x𝑖 . Inputs udec

𝑖 are set to 0.

LQR problem for the subsystem defined by u𝑖 and x𝑖 is then characterized by A𝑖 , B𝑖

10



2. Policy Decomposition

and cost

𝑐𝑖 (x𝑖,u𝑖) =
(
u𝑖 − u𝑑

𝑖

)𝑇
R𝑖

(
u𝑖 − u𝑑

𝑖

)
+ (x𝑖 − x𝑑

𝑖 )𝑇
©«
Q𝑖 +


0 · · · 0
... K 𝑗

...

0 · · · 0


𝑇

R̄𝑖


0 · · · 0
... K 𝑗

...

0 · · · 0


ª®®®®¬
(x𝑖 − x𝑑

𝑖 )

where Q𝑖 is the appropriate sub-matrix of the original cost function matrix Q, and R𝑖

and R̄𝑖 are sub-matrices ofR corresponding to u𝑖 and ū𝑖 respectively.

In effect, the hierarchical policy for the linear system is a linear controller,

𝜋𝛿
ulqr (x) = u𝑑 −K𝛿 (x − x𝑑)

whose gainK𝛿 is a block matrix composed of subsystem LQR gainsK𝑖 . For the hierarchy
in figure 2.2 the gain is

K𝛿example =



1×1︷︸︸︷
01×3 K1

2×3︷                ︸︸                ︷
K3 02×1

1×1︷︸︸︷
K2 01×3


With the gainK𝛿 defined, 𝑉 𝛿

lqr resolves to

𝑉 𝛿
lqr(x) = (x − x

𝑑)𝑇P 𝛿 (x − x𝑑) (2.9)

where P 𝛿 is the solution of the Lyapunov equation,(
A −BK𝛿 − 𝜆I

2

)𝑇
P 𝛿 + P 𝛿

(
A −BK𝛿 − 𝜆I

2

)
+Q +K𝛿𝑇RK𝛿 = 0

(2.10)
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2. Policy Decomposition

2.2.2 The Unscented Estimate

The second approach uses trajectory optimization methods to estimate the value error
(Equation (2.5))). These methods [62, 89, 91, 92] compute state and input trajectories for a
dynamical system that optimize the objective of the optimal control problem. An initial
guessX0(𝑡), U0(𝑡) is iteratively improved to produce a locally optimal solutionX (𝑡),
U (𝑡) whose value function,

𝑉 ∗unscented(x) =
∫ 𝑡max

0
𝑒−𝜆𝑡𝑐 (X (𝑡) ,U (𝑡)) 𝑑𝑡 (2.11)

approximates𝑉 ∗(x) for the system under consideration at the point x = X (0) in the state
space. We use this approximation to estimate the value error. Specifically, we introduce
the suboptimality estimate

err𝛿unscented

∑𝑘
𝑠=1

(
𝑉 𝛿
unscented(x

𝑠) −𝑉 ∗unscented(x
𝑠)
)∑𝑘

𝑠=1𝑉
∗
unscented(x𝑠)

(2.12)

which averages the value errors obtained from trajectories of the original and hierarchical
optimal control problems for 𝑘 initial points centered on the goal state x𝑑 (Figure 2.4(a)).
We use Control-Limited DDP (DDP) [89] to compute err𝛿unscented but a different trajectory
optimization algorithm can just as easily be applied. DDP uses quadratic approximations
of the system dynamics, but to curb computational costs, we consider only linear ones.

DDP starts from an initial input trajectory U0(𝑡), rolls it out with the system dy-
namics to get X0(𝑡), then iteratively updates the input trajectory U+(𝑡) = U−(𝑡) −
K (𝑡) (x −X−(𝑡)) and subsequently the state trajectoryX+(𝑡). Additionally, DDP pro-
duces a local linear approximation to the optimal control policy in the vicinity of the con-
verged trajectory. While𝑉 ∗unscented(x

𝑠) can be obtained right away, obtaining𝑉 𝛿
unscented(x

𝑠)
requires further explanation.

A policy decomposition 𝛿 with 𝑟 subsystems creates 𝑟 optimal control problems, whose
individual DDP solutions need to be combined for computing the approximate value
function 𝑉 𝛿

unscented(x
𝑠). We achieve this with the following procedure. First, starting from

the initial sub-states {x𝑠
𝑖 |𝑠 ∈ 1, · · · , 𝑘} we compute for each subsystem 𝑖 locally optimal

solutions characterized byX𝑠
𝑖 (𝑡), X̃𝑠

𝑖 (𝑡),U 𝑠
𝑖 (𝑡) andK𝑠

𝑖 (𝑡). X𝑠
𝑖 (𝑡) are the final DDP state

trajectories for the subsystem 𝑖 originating from state x𝑠
𝑖 . X̃𝑠

𝑖 (𝑡), U 𝑠
𝑖 (𝑡) and K𝑠

𝑖 (𝑡) are
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2. Policy Decomposition

Figure 2.4: Trajectory optimization based approximation of value function. (a) TrajectoriesX (𝑡 ) from 𝑘 = 2𝑛 initial points x𝑠 located
at edges of hyper-cube that defines boundary of explored state-space. (b) Nearest neighbors X𝑖 (𝑡†𝑖 ) on subsystem solutions X𝑖 (𝑡 )
for current state x along solution X (𝑡 ) .

the control reference trajectory, control inputs and local linear gains respectively that
produce the subsystem trajectory X𝑠

𝑖 (𝑡). Next, we define the subsystem control policy as
the nearest neighbor policy [6],

𝜋u𝑖 DDP(x𝑖) = min
(
max

(
U 𝑠†

𝑖 (𝑡†) −K𝑠†
𝑖 (𝑡†)

(
x𝑖 − X̃𝑠†

𝑖 (𝑡†)
)
,u𝑖 min

)
,u𝑖 max

)
(2.13)

where u𝑖 min and u𝑖 max are the bounds on the control inputs u𝑖 . 𝑠† and 𝑡† respectively
mark the trajectory ID and time at which X𝑠

𝑖 (𝑡) is closest to the subsystem state x𝑖

(Figure 2.4(b)),
𝑠†, 𝑡† = argmin

𝑠,𝑡

X𝑠
𝑖 (𝑡) − x𝑖


2
. (2.14)

Lastly, we run the policy 𝜋𝛿
uDDP (x) =

(
𝜋u1 DDP(x1), . . . , 𝜋u𝑟 DDP(x𝑟 )

)
on the complete

system (Equation (2.2))) initialized atx𝑠 and compute𝑉 𝛿
ddp(x

𝑠) from the resulting trajectory
X (𝑡),

𝑉 𝛿
unscented(x

𝑠) =
∫ 𝑡max

0
𝑒−𝜆𝑡𝑐

(
X (𝑡) , 𝜋𝛿

uDDP (X (𝑡))
)
𝑑𝑡 . (2.15)

Note thatX (𝑡) will differ from the collected trajectories of the individual DDP solu-
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2. Policy Decomposition

tions, (X1(𝑡), . . . ,X𝑟 (𝑡)), as the latter ignore at least some of the input couplings that
influence the behavior of the complete system. When optimizing for subsystem trajecto-
ries the linearized dynamics are derived similar to the procedure in section 2.2.1, except
the linearizations are computed at each sub-state in the reference trajectory. Furthermore,
LQR gains corresponding to subsystems lower in cascade that feature in the dynamics
linearization, are replaced with the appropriate DDP feedback gains based on the nearest
neighbor policy (Equation (2.13)). To generate the initial input sequence for a subsystem 𝑖 ,
we use the LQR controller gainK𝑖 (described in section 2.2.1), along with nearest neighbor
policies for subsystems lower in the cascade, to roll-out trajectories and generate U0

𝑖 (𝑡).

2.3 Results

We evaluate several hierarchies for the swing-up control of the cart-pole (Figure 2.1), 2 and
3 link planar manipulators (Figure 2.5(a) and (b)), and the balance control of a simplified
biped (Figure 2.5(c)). We compute the true value errors by solving for the optimal and

g

θ1, τ1
m1, l1

θ2, τ2
m2, l2

θ1, τ1

m1, l1

m2, l2

θ2, τ2m3, l3

θ3, τ3

m, I
d

Fl Fr

θ

τlτr

(a) (b)

g g

(c)

df

lrll
αrαl

Figure 2.5: 2 and 3 link planar manipulators are shown in (a) and (b) respectively, and a simplified model of a biped in stance is
depicted in (c). Policies to swing-up the manipulators into an upright position, and to balance the biped midway between the two
foot-holds are derived using several hierarchies. Appendix C describes the system dynamics and the cost functions used.

hierarchical policies using Policy Iteration [10]. The policies and value functions are
represented as look-up tables which store values corresponding to a uniform grid over the
state-space. When computing hierarchical policies the individual sub-policies are look-up
tables over appropriate subspaces of the state-space. The choice of algorithm and policy
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2. Policy Decomposition

representation is motivated by guaranteed convergence to the optimal solution (within
discretization resolution). Details pertaining to the system’s dynamics, cost functions,
and other hyper-parameters can be found in appendix C.
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Figure 2.6: Cart-pole hierarchies listed in order of true value error. The computation times (relative to optimal control) and value
errors (triangles) are shown together with their LQR and DDP estimates (filled and open circles). LQR estimates are set to infinity for
uncontrollable systems after linearization.
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Figure 2.7: Hierarchies for 2 link planar manipulator listed in order of true value error. The computation times (relative to optimal
control) and value errors (triangles) are shown together with their LQR and DDP estimates (filled and open circles). LQR estimates are
set to infinity for uncontrollable systems after linearization.

The cart-pole and the 2 link manipulator, with two control inputs and four state
variables, have 44 possible hierarchies. Comparison of the true and estimated value errors
as well as the required time to solve for hierarchical policies (as percentage of the time
required to compute the optimal policies) is reported in figure 2.6 and figure 2.7. The 3
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2. Policy Decomposition

link manipulator and the biped have 10,512 and 396,716 possible hierarchies, respectively
and computing DDP estimates for every hierarchy is not feasible. We thus identify the
Pareto optimal set of hierarchies (figure 2.8 and figure 2.9) based on the LQR estimates and
the expected reduction in computation time for policy optimization (see appendix A.2.1
for details), and evaluate their true value errors and DDP estimates.
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Figure 2.8: Hierarchies for 3 link planar manipulator listed in order of true value error. The computation times (relative to optimal
control) and value errors (triangles) are shown together with their LQR and DDP estimates (filled and open circles). LQR estimates are
set to infinity for uncontrollable systems after linearization.

In general, the two estimates trend similarly and in line with the true value error. For
the cart-pole, both estimates rank the cascaded hierarchy described before (Figure 2.1(b))
as the one with least value error, and it reduces policy computation times by a factor of
66. Importantly, the LQR and DDP estimates identify similar best policies for all problems
(top four hierarchies in figures 2.6 to 2.9), and the corresponding policies have a true value
error of less than 1% and offer about an order of magnitude improvement in computation
time. For the biped problem, these hierarchies include a popular heuristic strategy for
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2. Policy Decomposition

controller design [37, 60] (first design an independent policy for leg forces to regulate
the center of mass behavior and then compute a policy for the hip torques to balance the
torso, hierarchy #2 in figure 2.9). The Pareto optimal sets further include hierarchies with
much more dramatic improvements of 500 to 1000 times less computation time if value
errors of 10% are acceptable (hierarchies #5-8 in figure 2.8 and #5 in figure 2.9). While
the DDP estimate provides a closer estimate of the true value error in almost all of the
problems, it performs significantly worse than the LQR estimate in the biped problem. The
poor estimates are a consequence of diverging trajectories from DDP resulting in highly
inaccurate value function estimates for the hierarchical policy. More recent trajectory
optimization methods with better convergence properties such as [59] could help to
correct this issue.

Policy Decomposition, is an approximate method for solving policy optimization
problems that reduces search for one high-dimensional control policy to a search for a
collection of lower-dimensional sub-policies that are faster to compute yet preserve closed-
loop performance when combined. We also introduced the value error, a measure of a
hierarchy’s suboptimality, and derived two estimates of it using LQR and Control-Limited
DDP. These estimates allow us to assess a decomposition’s closed-loop performance
without computing the policy. A measure to predict the closed-loop performance of
control hierarchies is a useful tool. Proposed measures to help select simplified controller
structures typically make use of open-loop transfer functions [5] and Gramians [24] or
are based on an assessment of controller robustness [101]. These measures are agnostic to
the objective of the optimal control problem and need not correlate well with closed-loop
behavior. For linear systems, measures that account for the control objective have been
proposed, including sum of output covariances of the resulting LQG control [39] and
value function bounds for LQR controllers obtained through nested−𝜖 decompositions
[83]. In contrast, the value error is a general measure for a hierarchy’s suboptimality in
nonlinear systems.

Although, we primarily discussed regulation control problems where the objective is to
drive the system to a fixed desired state, Policy Decomposition readily extends to trajectory
tracking problems where the objective is to track a time-indexed sequence of desired
states. In this setting, the control policies and the corresponding value functions are now
also a function of a time. The hierarchical policies are a collection of policies for subspaces
of the inputs as functions of subspaces of the state-space and time. We discuss this in more
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2. Policy Decomposition

detail in chapter 5. Additionally, the combinatorics of Policy Decomposition challenges
its practical utility. The number of possible hierarchies grows prohibitively with system
complexity and even for moderately complex systems discussed in this chapter, evaluating
the suboptimality estimates for all possible hierarchies quickly becomes infeasible. We
tackle this problem next.
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Chapter 3

Search for Hierarchies within the
Policy Decomposition Framework

Although Policy Decomposition provides a systematic approach to construct hierarchies
that lessen the curse of dimensionality in solving a policy optimization problem, the num-
ber of possible hierarchies grows combinatorially with system complexity. Exhaustively
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Figure 3.1: Number of possible decompositions as the number of state variables and control inputs increase. Appendix A.1 details
the procedure to count the number of decompositions. Assuming it takes 0.1sec/value error estimate computation, the number of
decompositions that can be evaluated in some fixed times are marked with dotted lines.
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3. Search for Hierarchies within the Policy Decomposition Framework

evaluating the suboptimality estimates for all possible hierarchies becomes impractical
(Figure 3.1). This necessitates the development of search algorithms that efficiently search
over the combinatorial space of possibilities. Moreover, the search for promising hierar-
chies is a bi-objective optimization problem, in which the suboptimality of the resulting
policies and the reduction in the required computation to obtain them have to be suitably
traded off. We investigate two strategies, first to perform a single objective search by
combining the two criteria into a single fitness function (Section 3.1), and second to find a
Pareto-optimal set of candidates based on the two criteria (Section 3.2).

Among the several existing methods [15, 34, 95] to address combinatorial search
problems, population based evolutionary algorithms [95] have been remarkably effective
over others in several domains [21, 84, 85]. Genetic Algorithm (GA) is a popular method in
this category [41, 64]. GA evolves a randomly generated initial population of candidates
through mutation, selection and crossover to find promising candidates based on the
fitness function. GA is a metaheuristic [13] which makes minimal assumptions on the
underlying fitness landscape and thus can be applied to problems in varied domains. But,
designing problem specific sampling strategies and operators for population evolution are
critical to its success. In section 3.1.1, we describe our GA based search for hierarchies.

A top-down alternative to GA is to start from the original system and decompose
it step-by-step. The search for promising hierarchies can then be posed as a sequential
decision making problem for which a number of algorithms exist, especially in the context
of computer games [18]. Among these, Monte-Carlo Tree Search (MCTS) [20] methods
have been shown to be highly effective for games that have a large number of possible
moves in each step, a similar challenge that we encounter when generating hierarchies.
Similar to GA, we tailor MCTS to find promising hierarchies (Section 3.1.2).

3.1 Single Objective Search

We introduce the following fitness function to assess the quality of a hierarchy.

𝐹 (𝛿) = 𝐹err(𝛿) × 𝐹comp(𝛿)
where 𝐹err(𝛿) = (1 − exp(−err𝛿lqr)),

𝐹comp(𝛿) =
# estimated FLOP for 𝜋𝛿

# estimated FLOP for 𝜋∗

(3.1)
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3. Search for Hierarchies within the Policy Decomposition Framework

Algorithm 1 Genetic Algorithm (Systeminfo, timemax, itermax)
1: timecurrent ← 0
2: iter← 0
3: HashTable← { : } ⊲ initialize an associative array
4: while timecurrent < timemax do
5: if iter == 0 then
6: P← UniformSample(Systeminfo, NP) ⊲ initialize population
7: end if
8: FP ←

{
Fitness

(
Systeminfo, 𝛿, HashTable

)
| 𝛿 ∈ P

}
⊲ evaluate fitness

9: Pelite ← Selection(P, FP, 𝑟elite)
10: Pmutate ← Mutate(P, FP, 1 − (𝑟elite))
11: P← Pelite ∪ Pmutate ⊲ union with repitition
12: iter← Modulo(iter + 1, itermax)
13: timecurrent ← ElapsedTime()
14: end while

where 𝐹err(𝛿) and 𝐹comp(𝛿) quantify the suboptimality of a hierarchy and potential re-
duction in policy computation time respectively. 𝐹err(𝛿), is the value error estimate
(Section 2.2.1, equation (2.7)) scaled to the range [0, 1]. We use the LQR based estimate
for assessing the suboptimality because it can be computed in minimal time. 𝐹comp(𝛿) is
the ratio of estimates of floating point operations required to compute policies with and
without decomposition 𝛿 . 𝐹comp(𝛿) depends on the policy representation used as well as
the algorithm of choice for policy optimization. We use look-up tables corresponding to a
uniform grid over the state-space to represent the control policies and Policy Iteration
[10] to compute them. And in appendix A.2.1, we describe how 𝐹comp(𝛿) is computed for
this choice of algorithm and policy representation.

Note, 𝐹err(𝛿), 𝐹comp(𝛿) ∈ [0, 1] and thus 𝐹 (𝛿) ∈ [0, 1] where lower values indicate bet-
ter hierarchies. Lower 𝐹err(𝛿) indicates lower suboptimality i.e. better control performance
and lower 𝐹comp(𝛿) indicates lower required compute to obtain the policies.

3.1.1 Genetic Algorithm

GA iteratively evolves a randomly generated initial population of candidates, through
selection, crossovers and mutations, to find promising ones (Algorithm 1). In this case,
the candidates are input-trees. The objective of the search is to minimize the fitness
(Equation (3.1)). We generate the initial population by uniformly sampling from the set
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3. Search for Hierarchies within the Policy Decomposition Framework

of all possible input-trees for a system (Section 3.1.1.1). In each iteration, 𝑟elite fraction
of the next generation of the population is composed of candidates with the lowest
fitness (the elite) from the current population. The remaining candidates for the next
generation are obtained by mutating promising parents from the current population. In
section 3.1.1.2, we introduce the mutation operators for input-trees. In standard GA, a
fraction of the next generation is obtained by crossing over pairs of candidates from the
current population. We also developed crossover operators for input-trees and investigated
incorporating them in the search. But, we found that they slowed down the search with
no significant improvement in the best fitness hierarchy discovered and therefore exclude
them (Appendix A.3). Moreover, we add a memory component to GA using a hash
table, that alleviates the need to recompute fitness values for previously seen candidates
(Section 3.1.1.3).

3.1.1.1 Uniform Sampling of Input-Trees

The strategy to sample input-trees is tightly linked to the process of constructing them,
which entails partitioning the set of control inputs into groups, arranging the groups
in a tree, and then assigning the state variables to nodes of the tree. We use the idea of
probability-proportional-to-size sampling [40] in each step of the construction process to
uniformly draw input-trees. Specifically, the probabilities of choosing a partition and tree
structure are scaled proportional to the number of valid input-trees resulting from said
partition and structure. Finally, an assignment of state variables to different nodes of the
input-tree consistent with the tree structure is uniformly sampled.

For a system with𝑚 inputs and 𝑛 state variables we first sample 𝑟 ∈ {2, · · · ,𝑚}, i.e.
the number of input groups in an input-tree, with probability proportional to the number
of possible input-trees with 𝑟 input groups (each entry in the outermost summation
in Eq. A.1). Next, we generate all partitions of the inputs into 𝑟 groups and pick one
uniformly at random. Subsequently, we sample the number of leaf-nodes 𝑘 ∈ {1, · · · , 𝑟 },
with probabilities proportional to the number of input-trees with 𝑟 input groups and 𝑘
leaf-nodes (each entry in the inner summation in Eq. A.1). To sample the tree structure
we use Prufer Codes [14]. Any tree with 𝑁 labelled nodes can be uniquely represented
using a (𝑁 − 2) character long sequence of its node labels, such sequences are called
Prufer Codes. Furthermore, labels corresponding to leaf-nodes are always absent from the
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3. Search for Hierarchies within the Policy Decomposition Framework

encoding. We uniformly sample a sequence of numbers of length 𝑟 − 1 with exactly 𝑟 − 𝑘
distinct entries from {1, · · · , 𝑟 + 1} to generate an input-tree with 𝑘 leaf-nodes. Finally, for
assigning state variables to different nodes of the input-tree we uniformly sample a label
for every variable from {1, · · · , 𝑟 }. Variables with the label 𝑖 are assigned to node 𝑖 . We
re-sample labels if a state assignment is invalid i.e. no variables are assigned to leaf-nodes.

In figure 3.2, the KL-divergence between the uniform distribution and the resulting
sample distribution from our scheme for systems of varying complexity is noted. The
KL-divergence tends to 0 with increasing samples, establishing the uniformity of our
sampling scheme.
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Figure 3.2: DKL between the uniform distribution and sampling distribution of hierarchies for systems of varying complexity

3.1.1.2 Mutations

We introduce the following operations for mutating an input-tree into another valid
input-tree:
(i) Swap state variables between nodes

(ii) Move a single state variable from one node to another

(iii) Move a sub-tree

(iv) Couple two nodes

(v) Decouple a node into two nodes
Fig. 3.3 depicts the above operations applied to an input-tree. In every GA iteration, a
candidate selected for mutation is modified using only one operator. Operators (i), (ii)
and (iii) each have a 25% chance of being applied to a candidate. If neither of these three
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3. Search for Hierarchies within the Policy Decomposition Framework

operators are applied then two distinct inputs are randomly selected and depending on
whether they are decoupled or coupled operators (iv) or (v) are applied respectively.
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Figure 3.3: Mutation operators for input-trees described in Sec. 3.1.1.2.

3.1.1.3 Hashing Input-Trees

To avoid re-evaluating the fitness for previously seen candidates, we maintain a hash
table [25]. This hash table maps a unique identifier, or a key, for an input-tree to its
computed fitness values. For a system with𝑚 inputs, we use a binary connectivity matrix
(𝐶 ≡𝑚 ×𝑚) to encode the graph. If input 𝑢 𝑗 belongs to node v 𝑗 in the input-tree, then
the 𝑗 th row in 𝐶 has entries 1 for all other inputs that belong to v 𝑗 as well as for inputs
that belong to the parent node of v 𝑗 . Additionally, We define the binary state-dependence
matrix (𝑆 ≡𝑚 × 𝑛) to encode the influence of the 𝑛 state variables on the𝑚 inputs. The
𝑗 th row in 𝑆 corresponds to input 𝑢 𝑗 and has entries 1 for all state variables that belong to
the node v 𝑗 . For the input-tree in Fig. 3.3 the connectivity and state-dependence matrices
are

𝐶 =

𝑢1 𝑢2 𝑢3 𝑢4


𝑢1 0 0 0 0

𝑢2 0 0 1 0

𝑢3 0 1 0 0

𝑢4 0 1 1 0

, 𝑆 =

𝑥1 𝑥2 𝑥3 𝑥4


𝑢1 0 0 0 1

𝑢2 0 1 1 0

𝑢3 0 1 1 0

𝑢4 1 0 0 0
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({u4}, {x1})

Cascade {u4} and {u1, u2, u3} Decouple {u1} and {u2, u3, u4}

Decouple {u1, u3} and {u2} Cascade {u2} and {u3, u4} Cascade {u2, u3} and {u4} 

({u1, u2, u3, u4}, {x1, x2, x3, x4})
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({u2, u3}, {x2, x3})({u2}, {x1})

Figure 3.4: Example of a search tree generated from MCTS rollouts for a fictive system with four inputs and four state variables.

The matrices 𝐶 and 𝑆 uniquely encode an input-tree.

3.1.2 Monte-Carlo Tree Search

MCTS takes a top-down approach, and creates a search tree of input-trees with the
original system at its root. It builds the search tree through continuous rollouts. Each
rollout is a sequence of node expansions starting from the root till a terminal node is
reached. After every rollout, a backup operation is performed to assign/update a value
to/for nodes in the explored branch of the search tree. These values guide subsequent
rollouts toward promising parts of the search space. The pseudo-code can be found in
algorithm 2. In a rollout, expanding a node for hierarchy 𝛿 entails evaluating the fitness
𝐹 (𝛿) (Equation (3.1)), enumerating possible children to the node, and then selecting which
child to expand next. The children are input-trees created by splitting the subsystem
corresponding to a leaf in 𝑇 𝛿 into two cascaded or decoupled subsystems (Figure 3.4). If
no valid children are possible we terminate the rollout. To decide which child to expand
next, we use the UCT strategy [53],

𝑇 𝛿expand = argmin
𝑇 𝛿′∈children(𝑇 𝛿 )

𝑄 (𝑇 𝛿 ′) −

√︄
2 ln(𝑁𝑇 𝛿 + 1)

𝑁𝑇 𝛿′
(3.2)

where 𝑄 (𝑇 𝛿 ′) is the minimum fitness in the subtree rooted at 𝑇 𝛿 ′ and 𝑁𝑇 𝛿′ denotes the
number of times𝑇 𝛿 ′ was visited. We break ties randomly. 𝑄 (𝑇 𝛿 ′) is initialized to 𝐹 (𝛿′) and
at the end of each rollout, the values for the nodes visited during the rollout are updated
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3. Search for Hierarchies within the Policy Decomposition Framework

Algorithm 2Monte Carlo Tree Search (Systeminfo, timemax, itermax)
1: timecurrent ← 0
2: HashTable← { : } ⊲ initialize an associative array
3: SearchTree.initialize(𝑇 𝛿0)
4: while timecurrent < timemax do
5: nodecurrent ← SearchTree.get_root()
6: while not is_terminal(nodecurrent) do ⊲ Rollout
7: if nodecurrent.𝑁 == 0 then
8: nodecurrent.𝑄 ← Fitness

(
Systeminfo, nodecurrent.𝛿, HashTable

)
9: nodecurrent.enumerate_children()
10: end if
11: nodecurrent.𝑁 ← (nodecurrent.𝑁 + 1)
12: nodecurrent ← nodecurrent.select_child_with_UCT()
13: end while
14: while not is_root(nodecurrent) do ⊲ Backup
15: nodeparent ← nodecurrent.get_parent()
16: nodeparent.𝑄 ← min(nodeparent.𝑄, nodecurrent.𝑄)
17: nodecurrent ← nodeparent
18: end while
19: timecurrent ← ElapsedTime()
20: end while

𝑄 (𝑇 𝛿 ) = min
𝑇 𝛿′∈({𝑇 𝛿 } ∪ children(𝑇 𝛿 ))

𝑄 (𝑇 𝛿 ′)

starting from the terminal node and going towards the root of the search tree. Moreover,
to prevent redundant rollouts, we remove a node from consideration in the UCT strategy
(Equation (3.2)) if all possible nodes reachable through it have been expanded. The𝑄-value
of the root is the fitness value of the best hierarchy identified in the search. Similar to GA,
we maintain an associative array to avoid re-evaluating the fitness for previously visited
input-trees (Section 3.1.1.3).

3.1.3 Results

We evaluate the efficacy of our search methods in finding promising hierarchies in a fixed
time budget (Section 3.1.3.1) and performance of the resulting policies (Section 3.1.3.2)
for three distinct robotic control problems: balancing a simplified biped (Figure 3.5(a)),

28



3. Search for Hierarchies within the Policy Decomposition Framework

swinging up a planar manipulator (Figure 3.5(b)), and hover control of a quadcopter
(Figure 3.5(c)).
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Figure 3.5: (a) Balance control of a simplified planar biped. (b) Swing-up control of a 4-link planar manipulator. (c) Hover control of a
quadcopter.

3.1.3.1 Search Performance

We compare GA and MCTS based search against random sampling (Section 3.1.1.1). Each
algorithm is run 5 times with a fixed time budget for every system; results are summarized
in Table 3.1. Overall, GA consistently outperformsMCTS and random sampling in terms of
the lowest fitness hierarchy found as well as the number of unique hierarchies discovered.
For the biped and manipulator, GA identified hierarchies with markedly lower value error
estimates than the other methods.

The GA search performed well in absolute terms too. For the biped and manipulator
problems, brute force evaluation of all possible hierarchies (396,716 and 7,147,628) took
2,433 and 81,318 seconds respectively. (With over 120×106 possibilities, this was not
possible for the quadcopter problem.) In contrast, GA evaluated only a fraction of the
possible hierarchies (in a fraction of the time, see Table 3.1), but consistently found the
one with the absolute lowest fitness.

3.1.3.2 Evaluation of Identified Control Hierarchies

To evaluate the identified control hierarchies, we first use Policy Iteration [10] with a
look-up table representation to obtain the hierarchical controllers and note the required
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Table 3.1: Summary of search results. The number of unique hierarchies discovered, and the fitness (𝐹 (𝛿 ) ) and LQR suboptimality
estimates (err𝛿lqr ) for the lowest fitness hierarchy found are reported, averaged across 5 runs. Each algorithm is allotted a fixed time
budget in each run; 150, 600 and 1200 seconds for the biped, manipulator and quadcopter, respectively.

GA MCTS Random

Biped
F (δ) (×10−8 ) 4.89± 0 6.36 ± 0.12 13.8 ± 12.5

errδlqr (×10
−2 ) 2.95± 0 3.78 ± 0 8.8 ± 8.4

#δ found 18604 ± 1037 11716 ± 171 19684± 447

Manipulator
F (δ) (×10−12 ) 7.76± 0 1756 ± 334 2627 ± 791

errδlqr 0.0327± 0 4.17 ± 9.29 4.61 ± 8.41

#δ found 58465± 2549 18962 ± 399 37499 ± 1341

Quadcopter
F (δ) (×10−20 ) 0.29± 0.18 3.9 ± 4.7 833 ± 742

errδlqr (×10
−16 ) 0.66 ± 0.38 2.33 ± 1.3 0.31± 0.22

#δ found 185797±5290 33882 ± 1404 70776 ± 1296

computation time. Second, to assess their closed-loop performance, we additionally solve
for the optimal policy (𝜋∗) in the biped problem or, in the computationally intractable
manipulator and quadcopter problems, use popular reinforcement learning algorithms,
Advantage Actor Critic (A2C) [65] and Proximal Policy Optimization (PPO) [80], to obtain
reference policies. In either case, we then simulate 100 closed-loop trajectories from the
computed policies to evaluate the value error (Equation (2.5)) for the biped problem or
the reference value errors

err𝛿A2C/PPO =

∑(𝑉 𝛿 −𝑉 A2C/PPO)∑
𝑉 A2C/PPO

for the manipulator and quadcopter problems, where 𝑉 𝛿 , 𝑉 A2C, and 𝑉 PPO are the dis-
counted costs of the simulated closed-loop trajectories using the hierarchical, A2C and
PPO policies, respectively (Table 3.2). In table 3.2, the negative err𝛿A2C/PPO indicate that
the look-up table hierarchical policies computed using PI offer better closed-loop perfor-
mance than the neural network policies obtained with A2C and PPO. This is not entirely
surprising as neural network policies are at best locally optimal [43] but they scale much
better, in terms of memory footprint, to more complex systems in comparison to look-up
tables. PI with look-up tables provides guaranteed convergence to the optimal solution
(within discretization resolution) and hence our pick to compute and compare policies.
We omit a comparison of the required computation time as the methods to obtain the
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Table 3.2: Comparison of policy computation + search times and value errors of the hierarchical policies. Value errors are obtained by
simulating 100 closed-loop trajectories with the hierarchical and the optimal policy.

Biped Manipulator Quadcopter
time err𝛿 time err𝛿A2C err𝛿PPO time err𝛿A2C err𝛿PPO
(sec) (sec) (sec)

𝜋∗ 12288 - - - - - - -
GA 93.4 150 0.28 104.5600 −0.025 −0.098 30420 + 1200 −0.114 −0.26

MCTS 103.2+150 0.33 465.9+600 −0.0235 −0.096 64061 + 1200 0.22 0.02

Random 109.1+150 0.34 465.2+600 −0.016 −0.09 - - -
Baseline 1936.6 0.01 - - - 6502 −0.038 −0.20

policies are vastly different.

3.1.3.3 Balance control of simplified biped

As a baseline we use a popular hierarchy for the balance control of a bipedal system which
regulates the behavior of the center of mass (𝑙𝑟 , 𝛼𝑟 , ¤𝑥 , ¤𝑧) using leg forces (𝐹𝑟 and 𝐹𝑙 ), and
then a controller for the hip torques (𝜏𝑟 and 𝜏𝑙 ) is designed in cascade to balance the torso
(𝜃 , ¤𝜃 ) [37, 60] (compare figure 3.5 for notations). In contrast, the hierarchies discovered by
GA, MCTS and random sampling further decompose control. All three discover controllers
that decouple the torso from the center of mass control and further decouple the latter into
separate fore-aft and height regulation (Figure 3.6). This aggressive decoupling reduces
the computation cost by an order of magnitude when compared to the baseline hierarchy
but it comes at the cost of clearly worse performance (biped columns, table 3.2).

3.1.3.4 Swing-up control for planar manipulator

The 4 link manipulator shown in figure 3.5(b) is similar in design to the 2 and 3 link ones
presented earlier (Figure 2.5(a) and (b)). (See appendix C for details on the dynamics
parameters, the cost function to design policies for swing-up control, and other details for
policy optimization.) GA discovers the hierarchy with the best overall fitness (Table 3.2),
a fully decoupled manipulator control (Figure 3.7(a)). The best hierarchy that MCTS
discovers is similar but retains a coupled control for the first two joints (Figure 3.7(b)).
Both hierarchies have comparable reference value errors, but the GA hierarchy is com-
puted four times faster than the MCTS hierarchy. Moreover, these errors are negative,
which means that the hierarchical policies offer better closed-loop performance than the

31



3. Search for Hierarchies within the Policy Decomposition Framework

[τr, τl](θ, ·θ)

π[τr, τl](θ, ·θ)

[Fl](αr, ·x) [Fr](lr, ·z)

πFr
(lr, ·z)πFl

(αr, ·x)

[Fl, τr](αr, ·x) [τl](θ, ·θ)

πτl
(θ, ·θ)π[Fl, τr](αr, ·x)

[Fr](lr, ·z)

πFr
(lr, ·z)

(a) GA

(b) MCTS

[Fr, Fl](lr, αr, ·x, ·z)

[τr, τl](θ, ·θ) π[τr, τl](lr, αr, ·x, ·z, θ, ·θ, π[Fr,Fl])

π[Fr,Fl](lr, αr, ·x, ·z)

[Fl](αr, ·x) [τl](θ, ·θ)[Fr](lr, ·z)

πFr
(lr, ·z)

πτl
(θ, ·θ, πτr

)

πFl
(αr, ·x) [τr](θ) πτr

(θ)

(c) Random

(d) Baseline(b) MCTS

Figure 3.6: Hierarchies for the simplified biped shown in figure 3.5(a). Hierarchies discovered by GA, MCTS and random sampling
decouple the fore-aft control, the height regulation and the torso balance. The baseline hierarchy is based on several reported works in
the literature [37, 60].

policies obtained with the popular A2C and PPO methods. This observation holds even
for the hierarchy discovered by random sampling, although it is coupled and cascaded
(Figure 3.7(c)) and does not perform as well as the other two hierarchies.

3.1.3.5 Hover control of a quadcopter

The quadcopter depicted in figure 3.5(c) is described with its center of mass height (𝑧)
and velocity ( ¤𝑥 , ¤𝑦, ¤𝑧), orientation expressed as roll (𝜙), pitch (𝜃 ) and yaw (𝜓 ), and angular
velocity expressed as roll, pitch and yaw rates ( ¤𝜙 , ¤𝜃 and ¤𝜓 ). The control inputs are defined
as the net thrust 𝑇 and the differential thrusts for roll, pitch and yaw, 𝐹roll, 𝐹pitch and
𝐹yaw, respectively. We search for hierarchical policies that stabilize attitude and bring the
quadcopter to a stop at a height of 1m. (See appendix C for dynamics parameters, the cost
function used to design policies, and hyper-parameters for policy optimization.)

The best hierarchies discovered by GA and MCTS are reported in figure 3.8. These
hierarchies decouple the yaw control from the rest, and the one identified by GA further
cascades the roll and pitch controller with the thrust controller. Note that random sampling
did not yield a hierarchy with significant decoupling or cascading; hence, computing its
policy remained beyond our computational budget and we do not report on it further. A
widely recognized Integral Backstepping Control for the quadcopter is presented in [17].
We extract a suitable hierarchy for policy optimization based on the reported cascaded
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Figure 3.7: Hierarchies discovered by GA, MCTS and random sampling for the manipulator shown in figure 3.5(b).

control structure as a baseline and compare its performance with the algorithmically
identified ones. This baseline hierarchy is depicted in figure 3.8(c) 1.

As for the previous problems, the hierarchy discovered with GA offers the best closed-
loop performance (Table 3.2). It provides significant improvements in performance over
the baseline, highlighting the utility of the Policy Decomposition search framework.
Furthermore, it also outperforms the neural network based policies derived using A2C and
PPO. For the hierarchy discovered with MCTS, only 78 of the 100 simulated trajectories
converge, resulting in a very high value error estimate (even though the trajectories that
do converge have substantially lower costs than those derived from other hierarchical
policies).

1This controller structure cannot be represented using an input-tree and does not correspond to a valid
hierarchy under the current framework. A directed acyclic graph can be used to represent such a structure
and inclusion of such hierarchies in the Policy Decomposition framework is left for future work.
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Figure 3.8: Hierarchies discovered by GA and MCTS for the quadcopter shown in figure 3.5(c), as well as a baseline hierarchy based on
[17].

3.2 Pareto Search

The search for promising hierarchies is a bi-objective optimization with suboptimality
and computation time as the two competing goals. The fitness function (Equation (3.1))
reduces this optimization to a single score and can thereby introduce bias toward one of
the two goals. For example, in the biped problem (Section 3.1.3.3), cascaded hierarchies
exist which offer lower suboptimality than the decoupled ones discovered by GA and
MCTS. But, these cascaded hierarchies do not feature as the top candidates based on fitness
score, because their lower suboptimality cannot compensate for the orders of magnitude
reduction in computation time offered by the decoupled hierarchies. Contrarily, in the
quadcopter problem (Section 3.1.3.5), the suboptimality criterion dominates the fitness.
To avoid such bias, we investigate finding a Pareto front of hierarchies using a variant
of GA (NSGA-II [26]) with the adaptations introduced in section 3.1.1, and 𝐹err(𝛿) and
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3. Search for Hierarchies within the Policy Decomposition Framework

𝐹comp(𝛿) (Equation (3.1)) as measures of the two competing criteria.
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Figure 3.9: Pareto fronts of hierarchies for the biped and the quadcopter. Hierarchies towards the top-left exhibit low suboptimality
but require more floating point operations to compute control policies whereas those towards the bottom-right are highly suboptimal
but offer dramatic reduction in computation. Discernible structural changes in the hierarchies for the biped and the quadcopter are
highlighted.

Figure 3.9 depicts the Pareto front of hierarchies for the biped and quadcopter. We
allowed a time budget of 150 seconds and 1200 seconds in finding hierarchies for the
biped and the quadcopter respectively. Hierarchies that require more computation for
policy optimization but offer low value errors appear in the top left corner of figure 3.9,
and those that require minimal computation but have large errors feature in the bottom
right. For the biped problem, the hierarchies in the Pareto front fall into four groups
(yellow stars) based on the number of branches in the underlying input-trees. Similarly,
the quadcopter hierarchies (red diamonds) fall into three groups, one for hierarchies with
a single branch in the underlying input-trees (top left), one for hierarchies with the yaw
control decoupled (middle), and one for highly decoupled and suboptimal hierarchies
(towards bottom right). Additionally, for the purpose of demonstration, assumed ranges
of acceptable suboptimality (blue area) and computation time (yellow area) are shown
with their overlap defining acceptable hierarchies (green area). Two of these acceptable
hierarchies corresponding to the lowest possible suboptimality for the biped and the
quadcopter are highlighted (bold red diamond and yellow star, respectively) in figure 3.9.
The input-trees for these highlighted hierarchies are shown in figure 3.10, and the required
time for policy optimization as well as the value error estimates for the resulting policies
are reported in table 3.3. For the quadcopter, the highlighted hierarchy reduces policy
computation time by more than half in comparison to the hierarchy with the lowest fitness
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[Fr, Fl, τl](lr, αr, ·x, ·z, θ, ·θ)

[τr] πτr
(lr, αr, ·x, ·z, θ, ·θ, π[Fr,Fl,τl])

π[Fr,Fl,τl](lr, αr, ·x, ·z, θ, ·θ)

[Fyaw](ψ, ·ψ) [Fpitch](θ, ·x) πFpitch
(z, ·z, ϕ, ·ϕ, ·y, θ, ·θ, ·x, πFroll

, πT)

[T](z, ·z, ϕ, ·ϕ, ·y) πT(z, ·z, ϕ, ·ϕ, ·y)

[Froll](
·θ) πFroll

(z, ·z, ϕ, ·ϕ, ·y, ·θ, πT)πFyaw
(ψ, ·ψ)

(a) Biped

(b) Quadcopter

Figure 3.10: Hierarchies for the biped (Figure 3.5(a)) and the quadcopter (Figure 3.5(c)) selected from the Pareto fronts depicted in
figure 3.9.

found previously by GA (compare quadcopter columns in table 3.2 and table 3.3) with
only marginally worse suboptimality. In the case of the biped, the highlighted hierarchy
requires substantially more computation time but provides a dramatic improvement in
performance compared to the lowest fitness hierarchy found previously by GA (compare
biped columns in table 3.2 and table 3.3).

Table 3.3: Policy computation + search times and value error estimates for the Pareto optimal hierarchies for the biped and quadcopter
depicted in figure 3.10.

Biped Quadcopter
time
(sec)

err𝛿 time
(sec)

err𝛿A2C err𝛿PPO

8220 + 150 0.0005 12725 + 1200 −0.085 −0.236

Deriving the Pareto front for the two competing search criteria of suboptimality and
computation time not only provides choices of hierarchies that satisfy design constraints
but also delivers more fundamental insights into what changes in the control structure
affect the closed-loop performance of a given dynamical system. These analysis benefits
are obtained with negligible additional search effort, as in the examples above, the total
time allotted for search with the NSGA-II algorithm equalled the time alloted for the plain
GA search (150 and 1200 seconds for the biped and quadcopter problems respectively).
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3.3 Discussion

As an alternative to the discrete search methods described earlier, we explored a formula-
tion to pose the search for hierarchies as a continuous optimization problem. Specifically,
we investigated if the cascading and decoupling operations used to generate different
hierarchies under the Policy Decomposition framework could be emulated by constructing
suitable masks to the original system dynamics. The search for promising hierarchies
could then be posed as an optimization over the masking variables with the fitness func-
tion (Equation (3.1)) as the optimization objective. To formulate the search as a continuous
optimization problem that can be solved using gradient descent, we require 1) an encoding
scheme that uses continuous variables to represent hierarchies, and 2) a differentiable
process to compute the corresponding suboptimality estimate. In section 3.3.1 we present
an encoding scheme for decentralized hierarchies using binary variables (which are then
relaxed to be continuous variables in the range [0, 1]), and discuss how gradients of
the LQR suboptimality estimate can be computed with respect to the encoding. The
resulting optimization is not a tight convex relaxation and thus the converged solution to
the optimization need (does) not in fact correspond to a valid hierarchy. We then apply
randomized rounding to find the "closest" valid solution.

The encoding scheme in section 3.3.1 only captures decentralized hierarchies. Encom-
passing hierarchies that include cascaded subsystems in such a scheme is difficult since
cascading reduces the original optimization problem into subproblems that need to be
solved in a particular order. Furthermore, even for decentralized hierarchies, this approach
for continuous search does not find better hierarchies than the discrete methods we have
presented earlier in this chapter. We include the formulation here only for completeness.

3.3.1 Hierarchy Search as a Continuous Optimization

An encoding scheme for decentralized hierarchies is as follows
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¤x = Ã(x − x𝑑) + B̃(u − u𝑑)
where Ã = A ⊙X, B̃ = B ⊙ S

A =
𝜕f (x,u)

𝜕x

����
(x𝑑 ,u𝑑 )

, B =
𝜕f (x,u)

𝜕u

����
(x𝑑 ,u𝑑 )

X𝑖, 𝑗 = 1 if 𝑥 𝑗 affects 𝑥𝑖 ’s dynamics

S𝑖,𝑘 = 1 if 𝑢𝑘 affects 𝑥𝑖 ’s dynamics

C𝑘,𝑙 = 1 if policies for 𝑢𝑘 and 𝑢𝑙 jointly optimized

(3.3)

For a system with 𝑛 state variables and𝑚 control inputs, the binary masking matrices
X ≡ 𝑛 × 𝑛 and S ≡𝑚 × 𝑛 encode the cross-dependence of different state-variables and
control inputs on the dynamics and the coupling matrix C ≡ 𝑚 ×𝑚 encodes policies
for which inputs are jointly optimized. Figure 3.11 depicts the resulting masks for a
decentralized hierarchy of fictive system with four state variables and control inputs. To

[u1](x4) [u2, u3](x2, x3)

[u4](x1)

X =
1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 1

S =
0 0 0 1
0 1 1 0
0 1 1 0
1 0 0 0

2 3= 1,C

x1
x2

x3

x4

u1 u2 u3 u4

x1
x2

x3

x4

x1 x2 x3 x4

Figure 3.11: Encoding for a hierarchy of a fictive system with four state variables and control inputs under the scheme described in
equation (3.3)

.
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ensure a valid decentralized hierarchy, the following constraints are imposed

𝑚∑︁
𝑘=1

S𝑖,𝑘 ≥ 1 each state variable 𝑥𝑖 must be controlled by at least one input

|S𝑖, 𝑗 − S𝑖,𝑘 | ≤ 1 −C 𝑗,𝑘 coupled inputs 𝑢 𝑗 and 𝑢𝑘 must control the same state variables

S𝑖, 𝑗 + S𝑖,𝑘 ≤ 1 +C 𝑗,𝑘 decoupled inputs 𝑢 𝑗 and 𝑢𝑘 must not control the same state variables

X𝑖,𝑖 = 1 each state variable 𝑥𝑖 affects its dynamics

X𝑖, 𝑗 ≥ S𝑖,𝑘 + S 𝑗,𝑙 +C𝑘,𝑙 if 𝑥𝑖 and 𝑥 𝑗 are controlled by coupled inputs 𝑢𝑘 and 𝑢𝑙 respectively then their dynamics are coupled

C𝑖, 𝑗 +C 𝑗,𝑘 ≤ 1 +C𝑖,𝑘 and C𝑖, 𝑗 = C 𝑗,𝑖 coupling must satisfy transitivity and reflectivity
(3.4)

Then to compute the LQR suboptimality estimate (Equation (2.7)) over a unit ball around
x𝑑 we have from equation (2.10)∫

S={x | ∥x−x𝑑 ∥≤1}
𝑉 𝛿
lqr(x) = trace(P 𝛿 )

s.t.
(
A −BK̃ − 𝜆I

2

)𝑇
P 𝛿 + P 𝛿

(
A −BK̃ − 𝜆I

2

)
+Q + K̃𝑇RK̃ = 0

(3.5)

where K̃ is the LQR controller for the masked system obtained by solving the riccatti
equation

K̃ = R−1B̃𝑇 P̃

s.t. Ã𝑇 P̃ + P̃ Ã +Q + P̃ B̃R−1B̃P̃ = 0
(3.6)

The gradients for the masking matricesX and S are obtained using chain rule

𝜕trace(P 𝛿 )
𝜕X𝑖 𝑗

=
𝜕trace(P 𝛿 )

𝜕K̃︸        ︷︷        ︸
refer [42]

𝜕K̃

𝜕Ã︸︷︷︸
refer [42]

𝜕Ã

𝜕X𝑖, 𝑗

𝜕trace(P 𝛿 )
𝜕S𝑖,𝑘

=
𝜕trace(P 𝛿 )

𝜕K̃︸        ︷︷        ︸
refer [42]

𝜕K̃

𝜕B̃︸︷︷︸
refer [42]

𝜕B̃

𝜕S𝑖,𝑘

(3.7)
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3.3.2 Conclusions

We addressed the combinatorial challenge of applying Policy Decomposition to complex
systems, finding non-trivial hierarchies using Genetic Algorithm and Monte-Carlo Tree
Search. By applying to three very distinct control problemswe demonstrated the generality
of the framework. Optimal control problems with more than 7 dimensional state have
remained intractable when representing policies as look-up tables over the state-space,
and we showcase near optimal solutions for the control of a quadcopter system with a 10
dimensional state. Although, look-up tables and Policy Iteration are a primitive choice of
policy representation and algorithm, they provide strong convergence guarantees to the
optimal solution [10]. Look-up tables do not scale well in terms ofmemory footprint as well
as required computation for policy optimization of further higher-dimensional problems.
In chapter 5 we showcase that Policy Decomposition can be applied even towards training
neural network policies which scale much better to more complex problems.

Under the current framework, we assume a fixed system representation, i.e. the state-
variables and control inputs describing a system, and derive hierarchies accordingly. This
assumption is restrictive. For example, in case of the quadcopter, policy computation for
the rotor forces 𝐹𝑖 cannot be readily reduced to a hierarchy that offers notable reduction
in computation while still providing desirable closed-loop performance. However, for
the linearly transformed inputs (net thrust 𝑇 , and the roll, pitch and yaw differential
thrusts 𝐹𝜙 , 𝐹𝜃 and 𝐹𝜓 ), we demonstrated that hierarchies that offer dramatic reduction in
computation while sacrificing minimally on closed-loop performance can be found. Next,
in chapter 4 we address the problem of discovering system representations that lead to
promising hierarchies.
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Chapter 4

Aligning System Representations for
Policy Decompositions

The Policy Decomposition framework simplifies the process of computing optimal control
policies by decomposing (decoupling and/or cascading) the policy computation for differ-
ent control inputs. However, the choice of system representation, namely state variables
and control inputs describing a system, directly influences the quality of the resulting
hierarchies. Consider the problem of obtaining an optimal controller for the quadcopter
to hover in place (Figure 4.1). Policy Decomposition is unable to find a strategy for de-
composing the policy optimization for motor thrusts 𝐹𝑖 that offers significant reduction in
computation while producing stable closed-loop behavior. In contrast, suitable hierarchies
are found if one uses the linearly transformed inputs, net thrust 𝑇 and the roll, pitch and
yaw differential thrusts (𝐹𝜙 , 𝐹𝜃 and 𝐹𝜓 respectively). For the quadcopter, we intuitively
posit a system representation that lead to hierarchies with lower suboptimality. Such
representations are difficult to hand design for a general system.

Methods that find a change of coordinates for the state and input spaces to facilitate
hierarchical controller design do exist. These works can be divided into two categories
based on the type of hierarchical controllers they design: decentralized or cascaded. For
decentralized controller design [5], different subspaces of inputs are paired with subspaces
of the outputs1 and controllers for the resulting subsystems are derived in a decoupled
fashion. These pairings are constructed based on measures of interaction between the

1for fully observable systems outputs are the same as the system state
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Search Methods for Policy Decomposition, 
A. Khadke and H. Geyer, 2022
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Figure 4.1: Best hierarchies for the two representations of the quadcopter system found using Genetic Algorithm.

inputs and outputs, primarily based on controllability [19, 24, 38, 48, 52, 63, 77, 98]. For
cascaded design, either underlying kinetic symmetries are exploited [71] or feedback is
employed to transform the system into a normal form [44] which naturally lends itself
to a cascaded controller design. All of these works are agnostic to the objective of the
optimal control problem, and as such the transformed system representations can lead to
highly suboptimal controllers. Here, we present an approach that accounts for the control
objective to transform a given system representation to one that generates hierarchies
with reduced suboptimality. Furthermore, our approach is not specific to any particular
type of hierarchy.

4.1 Sparsity Inducing System Representations

We pose the search for a system representation (y, v) as the search for state and input
mappings from a known representation (x,u). Here, we only consider linear and invertible
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π*(x1, x2)

x1

x2

y1

y2

π*(y2) ≈

Figure 4.2: Illustrating the idea of maximal variation co-ordinates for an optimal policy. Contour plot of an optimal policy over a two
dimensional state-space is shown. Expressing the policy in the maximal variation co-ordinates allows ignoring dependencies along
sub-spaces with minimal variation.

mappings,
y = T𝑦 (x − x𝑑), v = T𝑣 (u − u𝑑)

The dynamics of the system in equation (2.2) can then be expressed in representation
(y, v) as,

¤y = T𝑦f (T −1𝑦 y + x𝑑 ,T −1𝑣 v + u𝑑)

Let 𝛿 (y,v) denote the hierarchies of the system when expressed in the (y, v) representation.
We desire mappings that minimize the value-error of the least suboptimal hierarchy,

argmin
T𝑦,T𝑣

(
min
𝛿 (y,v)

err𝛿 (y,v)
)

(4.1)

However, the above objective is not differentiable even for a linear system, and using
gradient-free methods to search for mappings T𝑦 and T𝑣 along with the hierarchy can be
too computationally expensive.

An alternative heuristic is to find a system representation that alignswith themaximum
variation in the optimal policy. Every hierarchy imposes certain information constraints
on the resulting policy 𝜋𝛿 at the cost of optimality, whereby the dependence of (variation
in) the policy for different input subspaces on (with respect to) certain subspaces of the
state-space is ignored. Intuitively, aligning with the directions of maximal variation in
the optimal policy would lead to minimal dependencies being ignored when constructing
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hierarchical policies (Figure 4.2). The mappings T𝑦 and T𝑣 , that transform the known
system representation to one aligned with the maximal variation, Jacobian of the optimal
policy with respect to the state variables. However, this requires knowing the optimal
policy. Subsequently, we obtain T𝑦 and T𝑣 based on an approximation of the optimal
policy and its Jacobian near the goal state x𝑑 . We linearize the system dynamics,

¤y = T𝑦AT −1𝑦 y + T𝑦BT −1𝑣 v

A =
𝜕f (x,u)

𝜕x

����
(x𝑑 ,u𝑑 )

, B =
𝜕f (x,u)

𝜕u

����
(x𝑑 ,u𝑑 )

Since our cost function is quadratic, the approximation to the optimal policy, 𝜋∗approxv (y),
is the solution to the LQR problem(

A − 𝜆

2
I
)𝑇
P + P

(
A − 𝜆

2
I
)
+Q − PBR−1B𝑇P = 0

𝜋
∗approx
v (y) = −𝚯y, 𝜕𝜋

∗approx
v

𝜕y
= −𝚯

where, 𝚯 = T𝑣K
∗T −1𝑦 and K∗ = R−1B𝑇P

(4.2)

We obtain a sparse Jacobian to the optimal policy using the singular value decomposition.
Let K∗ = UK∗SK∗V 𝑇

K∗ where UK∗ ∈ R𝑚×𝑚 and VK∗ ∈ R𝑛×𝑛 are orthogonal, then
T𝑦 = V 𝑇

K∗ and T𝑣 = U𝑇
K∗ result in a completely diagonal 𝚯 = SK∗ . Note that the singular

value decomposition is not unique for rectangular matrices. We encounter wide K∗s
as all our systems have fewer control inputs than state variables (𝑚 < 𝑛) and therefore
we have some degree of freedom in choosing UK∗ and VK∗ . Appendix B.1 presents a
regularization strategy to resolve this non-uniqueness.

4.2 Empirical Analysis with Linear Systems

We verify our intuition that system representations which induce sparsity in the Jacobian
of the optimal policy indeed lead to hierarchies with reduced value-errors. Towards this
end, we sample several optimal control problems with linear system dynamics, enumerate
all possible hierarchies of the original and transformed systems, and compare the value-
errors. We use two sampling strategies to randomly generate the underlying linear

44



4. Aligning System Representations for Policy Decompositions

dynamical system and cost function that define the optimal control problem

• strategy I : We directly sample the linear system and the cost function. A,B,Q𝑠

andR𝑠 are sampled independently and uniformly over [0, 1]𝑛×𝑛 , [0, 1]𝑛×𝑚 , [0, 1]𝑛×𝑛

and [0, 1]𝑚×𝑚 respectively. A and B are the dynamics matrices, and the cost
matrices areQ = Q𝑠Q

𝑇
𝑠 andR = R𝑠R

𝑇
𝑠 . The discount factor 𝜆 is set to 0.

• strategy II : We sample a square optimal gain matrixK∗ with equal singular values.
Repeating singular values introduces additional degrees of freedom in the singular
value decomposition. This sampling procedure is meant to test our regularization
strategy (Appendix B.1) for resolving the non-uniqueness. Dynamics matricesA
andB, and cost matricesQ andR are chosen such thatK∗ is the solution to the
LQR problem equation (4.2). The discount factor 𝜆 is set to 0.

For each of these, we compute mappings T𝑦 and T𝑣 using our approach (Section 4.1) as
well as using balanced realization [66], and evaluate the value-error for every possible
hierarchy of the original and transformed systems. In table 4.1, we report the number
of instances when value-error corresponding to the least suboptimal hierarchy of the
transformed system is smaller than that for the original one. For more than 90% of the
sampled linear systems, transforming to a representation using our approach leads to
hierarchies with reduced suboptimality.

Table 4.1: Number of linear systems that exhibit hierarchies with lower value-errors when transformed with the singular value
decomposition based mappings introduced in section 4.1, and when transformed with balanced realization [66]. For system sizes
indicated with †, evaluating all possible hierarchies is too time consuming and we thus use Genetic Algorithm (Section 3.1.1) to find
hierarchies of the original and transformed systems that minimize the value error.

# systems with lower
strategy system value-error when transformed

(# inputs, states) ours balanced realization

I

(2,4) 97 / 100 56 / 100
(2,6) 100 / 100 48 / 100
(2,10) 99 / 100 45 / 100
(2,15) 100 / 100 44 / 100
(3,3) 100 / 100 60 / 100
(3,4) 100 / 100 50 / 100
(3,10)† 100 / 100 64 / 100

II
(2,2) 92 / 100 27 / 100
(3,3) 99 / 100 49 / 100
(4,4) 99 / 100 73 / 100
(8,8)† 95 / 100 66 / 100
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4. Aligning System Representations for Policy Decompositions

4.3 Hierarchies for Biped, Manipulator and

Quadcopter

We revisit the design of hierarchical policies for balancing the simplified biped, swing-up
control of 4 degree of freedom manipulator and hover control of the quadocpter figure 4.3.
The original system representations (x,u) used to describe these systems are,
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Figure 4.3: (a) Balance control of a simplified planar biped. (b) Swing-up control of a 4-link planar manipulator. (c) Hover control of a
quadcopter.

• Biped : The simplified biped shown in figure 4.3(a) has four inputs (leg forces
𝐹𝑙/𝑟 and hip torques 𝜏𝑙/𝑟 ) and is described by six state variables, the leg length
𝑙𝑟 , leg angle 𝛼𝑟 , and torso angle 𝜃 ; velocities, ¤𝑥 , ¤𝑧, and ¤𝜃 . Therefore, (x,u) =

( [𝑙𝑟 , 𝛼𝑟 , ¤𝑥, ¤𝑧, 𝜃, ¤𝜃 ], [𝐹𝑙 , 𝐹𝑟 , 𝜏𝑙 , 𝜏𝑟 ]).
• Manipulator : The planar manipulator shown in figure 4.3(b) has four inputs (joint
torques 𝜏𝑖 ) and is completely described by the joint positions 𝜃𝑖 and joint velocities
¤𝜃𝑖 . Therefore, (x,u) = ( [𝜃1, 𝜃2, 𝜃3, 𝜃4, ¤𝜃1, ¤𝜃2, ¤𝜃3, ¤𝜃4], [𝜏1, 𝜏2, 𝜏3, 𝜏4]).

• Quadcopter : The quadcopter shown in figure 4.3(c) has four inputs (motor thrusts
𝐹𝑖 ) and is described by ten state-variables, its centre-of-mass height 𝑧, attitude
expressed in roll (𝜙), pitch (𝜃 ) and yaw (𝜓 ), and velocities ¤𝑥 , ¤𝑦, ¤𝑧, ¤𝜙 , ¤𝜃 and ¤𝜓 .
Therefore, (x,u) = ( [𝑧, 𝜙, 𝜃,𝜓, ¤𝑥, ¤𝑦, ¤𝑧, ¤𝜙, ¤𝜃, ¤𝜓 ], [𝐹1, 𝐹2, 𝐹3, 𝐹4]).

We consider the linearized system dynamics at the goal state only to derive the linear
mappings T𝑦 and T𝑣 using the approach in section 4.1; these are shown in figure 4.4. For
the biped, the inputs are split into two groups in the transformed space, one consisting
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4. Aligning System Representations for Policy Decompositions

(a) T𝑣 for Biped (b) T𝑦 for Biped

(c) T𝑣 for Manipulator (d) T𝑦 for Manipulator

(e) T𝑣 for Quadcopter (f) T𝑦 for Quadcopter

Figure 4.4: Singular value decomposition based mappings T𝑦 and T𝑣 for the systems shown in Fig. 3.5.

of the leg-forces 𝐹𝑙 and 𝐹𝑟 , and the other the hip torques 𝜏𝑙 and 𝜏𝑟 (Figure 4.4(a)). The
transformed state variables 𝑦1, 𝑦2, 𝑦4 and 𝑦5 roughly describe the positions and velocities
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4. Aligning System Representations for Policy Decompositions

of the center-of-mass in the sagittal plane, whereas 𝑦3 and 𝑦6 correspond to the torso
orientation and angular velocity respectively (Figure 4.4(b)). For the manipulator, 𝑣3 and
𝑣4 correspond to the torques applied at joints 3 and 4 respectively, whereas 𝑣1 and 𝑣2 are
a combination of torques at joints 1 and 2 (Figure 4.4(c)). the state variable mapping is
difficult to interpret (Figure 4.4(d)). The mappings for the quadcopter are quite intuitive.
Transformed inputs 𝑣2, 𝑣1, 𝑣3 and 𝑣4 are the scaled net thrust and differential yaw, pitch
and roll thrusts respectively (Figure 4.4(e)). Furthermore, transformed state variables can
be split into four sets {𝑦1, 𝑦10}, {𝑦2, 𝑦7}, {𝑦3, 𝑦5, 𝑦9} and {𝑦4, 𝑦6, 𝑦8} corresponding to the
system’s yaw, altitude, pitch and roll descriptors (Figure 4.4(f)).

We search for promising hierarchies in the original and transformed system represen-
tations using our GA based search (Section 3.1.1). We compute the hierarchical policies
using Policy Iteration [10] where the policies are look-up tables over the appropriate
subspaces of the state-space. Additionally, as baselines to compare performance against,
we compute policies using Proximal Policy Optimization (PPO) [80], and Advantage Actor
Critic (A2C) [65]. For PPO and A2C, we use the SB3 implementation [75], and the policies
are feedforward neural networks with rectified linear unit activations. These neural
network policies have two hidden layers of sizes [128, 128], [512, 512] and [256, 256] for
the biped, the manipulator and the quadcopter respectively. The PPO and A2C policies are
trained for 20 million steps. At the end of training, the policy parameters (neural network
weights) corresponding to the best performing policy are used for comparison.

To compare the closed-loop performance, we compute 50 trajectories for each system
starting from different initial states with the different policies and note the number of
trajectories that converge to the goal state (Table 4.2, column 5). Note that, for the
quadcopter, decomposing policy computation in the original system representation leads
to unstable closed-loop behavior (none of the trajectories converge to the goal) whereas
the policy computation in the transformed representation is readily decomposable and
results in a stable closed-loop system (all trajectories converge to the goal). Furthermore,
we estimate the value function for the different policies using costs of the trajectories that
converge to the goal state. We use the normalized value function error,(

V δ(y,v) − V
)
/V δ(y,v) (4.3)

to quantify the relative quality of a policy, with value function estimate V , in comparison

48



4. Aligning System Representations for Policy Decompositions

to the decomposition policy derived from the transformed system representation, whose
value function estimate we term V δ(y,v) . More negative the error, relatively more optimal
the decomposition policy. As can be seen in table 4.2, columns 2, 3 and 4, for all three
systems the normalized value function error is negative, indicating that the policy derived
by decomposing the transformed system representation provides lower closed-loop tra-
jectory costs, and thus is more optimal, than the hierarchical policy obtained from the
original representation as well as the policies computed using A2C and PPO.

Table 4.2: Fifty trajectories of the closed-loop system under the policies obtained from decompositions 𝛿 and 𝛿 (y,v) , and state-of-the-art
reinforcement learning algorithms are computed. Value function estimates are derived from trajectories that converge to the goal state.

system normalized value function error #trajectories converged
𝛿 A2C PPO 𝛿 / 𝛿 (𝑦,𝑣) / A2C / PPO

Biped −0.29±0.49 −0.39 ± 0.61 −0.08±0.35 43 / 39 / 42 / 50
Manipulator −0.3 ± 0.58 −1 ± 1.16 −0.39±0.33 50 / 50 / 38 / 49
Quadcopter - −1.14 ± 1.34 −1.47±1.25 0 / 50 / 46 / 50

Here, we presented a heuristic to automatically discover system representations that
are more suited for policy decomposition. Our approach is based on the intuition that
sparsity in the variation of the optimal policy is likely to lead to hierarchies with lower
suboptimalities (or value-errors). Building on this intuition we construct linear state and
input mappings from a known system representation to one that induces sparsity in the
Jacobian of the optimal policy. For more than 90% of systems with linear dynamics, our
strategy produces representations that lead to hierarchies with lower value-errors. For
the balancing control of a simplified biped, the swing-up control of a planar manipulator
and hover control of a quadcopter, hierarchies discovered with the transformed system
representation result in reduced trajectory costs. Furthermore, the hierarchical policies,
represented as lookup tables over the state-space, produce trajectories with substantially
lower costs compared to neural network policies derived from A2C and PPO. Although,
representing policies as lookup tables provides convergence guarantees [78], it becomes
difficult with increasing dimensionality. And although neural network policies converge
to at best locally optimal solutions [43], they scale well to more complex systems [81]. In
chapter 5, we discuss how the Policy Decomposition framework can be applied towards
training neural network policies for optimal control.
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Chapter 5

Extension to Optimal Trajectory
Tracking Control

In chapter 2, we developed the theory for the Policy Decomposition framework applied
to optimal regulation problems where the control objective is to drive the system to a
fixed state. Here, we present how the theory can be readily extended to address optimal
trajectory tracking problems, where the objective is to track a time-indexed sequence of
desired states. Regulation problems are in fact a special case where the trajectory is a
sequence of the same fixed state. In case of trajectory tracking control, the optimal policy
is not just a function of the state of the system but also time. A natural extension then is
to have hierarchical policies with individual sub-policies being functions of subspaces of
the state of the system and time (Figure 5.1). Additionally, we have so far used look-up
tables to represent policies and Policy Iteration [10] to compute them, which do not scale
well to complex problems. In this chapter, we discuss how Policy Decomposition can be
applied towards training neural network policies using actor-critic methods [80], which
have been demonstrably effective in high-dimensional state-spaces [81].

This chapter is organized similar to chapter 2 to highlight only the key modifications
to the theory of Policy Decomposition for trajectory tracking control. In section 5.1, we
formally state the problem. In section 5.2 we discuss how the suboptimality estimates can
be derived for this setting. In section 5.3, we discuss how neural network policies can be
trained in a hierarchical fashion in-line with the Policy Decomposition framework for
optimal trajectory tracking control.
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cascaded sub-policies computed
from innermost to outermost

decoupled sub-policies 
computed independently

vs

t

tttt

t

t

Figure 5.1: Policy Decomposition of a fictive system for trajectory tracking control. The optimal policy and the hierarchical policies
are now functions of the system state and time.

5.1 Core Idea

We consider the finite horizon optimal trajectory tracking problem where an optimal
policy 𝜋∗u(x, 𝑡) that minimizes

𝐽 =

∫ 𝑡𝑓

0
𝑒−𝜆𝑡𝑐 (x,u, 𝑡) 𝑑𝑡 .

where 𝑐 (x,u, 𝑡) =
(
x − x𝑑 (𝑡)

)𝑇
Q(𝑡)

(
x − x𝑑 (𝑡)

)
+
(
u − u𝑑 (𝑡)

)𝑇
R(𝑡)

(
u − u𝑑 (𝑡)

) (5.1)

is to be computed. Here x𝑑 (𝑡) and u𝑑 (𝑡) are the desired state and input trajectories to
track, Q and R are the weighting matrices, and 𝜆 trades-off between the current and
future tracking costs.

Policy Decomposition computes sub-policies for subsets of inputs as functions of some
subset of the system’s state variables; except now the sub-policies are also a function
of time. These sub-policies together form the hierarchical policy 𝜋𝛿

u(x, 𝑡) for the entire
system. The sub-policies are computed by optimizing the behavior of subsystems, with a
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time-varying control objective

¤x𝑖 = f𝑖 (x𝑖,u𝑖, 𝑡 | x̄𝑖 = x̄𝑑
𝑖 (𝑡), ū𝑖 = 𝜋ū𝑖

(x𝑖, 𝑡)),
𝑐𝑖 (x𝑖,u𝑖, 𝑡) = 𝑐 (x𝑖,u𝑖, 𝑡 | x̄𝑖 = x̄𝑑

𝑖 (𝑡), ū𝑖 = 𝜋ū𝑖
(x𝑖, 𝑡))

Input-trees, as described in section 2.1, can be used as is to encode a hierarchy.

5.2 Quantifying the Suboptimality of a Hierarchy

Since the optimal and the hierarchical polices are now time-varying, so are the corre-
sponding value functions. Therefore, the value-error to quantify the suboptimality of the
hierarchical policies is modified to

err𝛿 =

∫ 𝑡𝑓

0

∫
S
(
𝑉 𝛿 (x, 𝑡) −𝑉 ∗(x, 𝑡)

)
𝑑x 𝑑𝑡∫ 𝑡𝑓

0

∫
S𝑉
∗(x, 𝑡) 𝑑x 𝑑𝑡

(5.2)

5.2.1 The Time-varying LQR Estimate

For the LQR estimate, we earlier adopted a time-invariant infinite horizon formulation
(Section 2.2.1). For trajectory tracking control we consider the finite horizon time-varying
formulation. Similar to the time-invariant case, we construct linearized dynamics of the
system

A(𝑡) = 𝜕f

𝜕x

���� (
x𝑑 (𝑡),u𝑑 (𝑡)

) , B(𝑡) = 𝜕f

𝜕u

���� (
x𝑑 (𝑡),u𝑑 (𝑡)

)
The time-varying LQR estimate of the optimal value function then becomes

𝑉 ∗lqr(x, 𝑡) =
(
x − x𝑑 (𝑡)

)𝑇
P (𝑡)

(
x − x𝑑 (𝑡)

)
𝜋∗ulqr (x, 𝑡) = u𝑑 (𝑡) −K∗(𝑡)

(
x − x𝑑 (𝑡)

)
,

where K∗(𝑡) = R−1B(𝑡)𝑇P (𝑡)

− ¤P (𝑡) = Q +
(
A(𝑡) − 𝜆

2
I

)𝑇
P (𝑡) + P (𝑡)

(
A(𝑡) − 𝜆

2
I

)
− P (𝑡)B(𝑡)R−1B𝑇 (𝑡)P (𝑡), s.t. P (𝑡 𝑓 ) = Q(𝑡 𝑓 )

(5.3)
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To obtain 𝑉 𝛿
lqr(x, 𝑡), we first compute the hierarchical policy for the linearized system.

Similar to the time-invariant case, the hierarchical policy is

𝜋𝛿
ulqr (x, 𝑡) = u𝑑 (𝑡) −K𝛿 (𝑡)

(
x − x𝑑 (𝑡)

)
whereK𝛿 (𝑡) is a time-varying block matrix composed of linear sub-policies derived from
time-varying LQR solutions for the corresponding linear subsystems

A𝑖 (𝑡) =
𝜕f𝑖
𝜕x𝑖

����(x𝑑 (𝑡),u𝑑 (𝑡))
+ 𝜕f𝑖

𝜕ū𝑖

����(x𝑑 (𝑡),u𝑑 (𝑡))
𝜕𝜋ū𝑖

𝜕x𝑖

����
x𝑑
𝑖
(𝑡)

,

B𝑖 (𝑡) =
𝜕f𝑖
𝜕u𝑖

����(x𝑑 (𝑡),u𝑑 (𝑡))

where 𝜋ū𝑖
(x𝑖, 𝑡) = [0, . . . , 0, u𝑑

𝑗 (𝑡) −K 𝑗 (𝑡) (x 𝑗 − x𝑑
𝑗 (𝑡)), 0, . . . , 0]. K 𝑗 (𝑡) is the LQR

solution for the subsystems in cascade with the 𝑖th subsystem. The time-varying LQR
solution for the 𝑖th subsystem is then characterized byA𝑖 (𝑡), B𝑖 (𝑡) and cost

𝑐𝑖 (x𝑖,u𝑖, 𝑡) =
(
u𝑖 − u𝑑

𝑖 (𝑡)
)𝑇

R𝑖 (𝑡)
(
u𝑖 − u𝑑

𝑖 (𝑡)
)

+
(
x𝑖 − x𝑑

𝑖 (𝑡)
)𝑇 ©«

Q𝑖 (𝑡) +


0 · · · 0
... K 𝑗 (𝑡)

...

0 · · · 0


𝑇

R̄𝑖 (𝑡)


0 · · · 0
... K 𝑗 (𝑡)

...

0 · · · 0


ª®®®®¬
(
x𝑖 − x𝑑

𝑖 (𝑡)
)

where Q𝑖 (𝑡) is the appropriate sub-matrix of the original cost function matrix Q(𝑡), and
R𝑖 (𝑡) and R̄𝑖 (𝑡) are sub-matrices ofR(𝑡) corresponding to u𝑖 and ū𝑖 respectively.

The value function estimate for the hierarchical policy then resolves to

𝑉 𝛿
lqr(x, 𝑡) =

(
x − x𝑑 (𝑡)

)𝑇
P 𝛿 (𝑡)

(
x − x𝑑 (𝑡)

)
− ¤P 𝛿 = Q +K𝛿 (𝑡)𝑇RK𝛿 (𝑡) +

(
A(𝑡) −B(𝑡)K𝛿 (𝑡) − 𝜆

2
I
)𝑇
P 𝛿 (𝑡)

+ P 𝛿 (𝑡)
(
A(𝑡) −B(𝑡)K𝛿 (𝑡) − 𝜆

2
I
)
, where P 𝛿 (𝑡 𝑓 ) = Q

(5.4)
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Algorithm3OnPolicyActorCritic(Systeminfo, stepmax, rollout_length, epochmax, batchmax)
1: step← 0
2: buffer← [ ]
3: while step < stepmax do
4: a← πθ (s) ⊲ forward pass actor
5: s′, r ← simulate(Systeminfo, a) ⊲ step
6: v′← Vϕ(s′) ⊲ forward pass critic
7: buffer.append(s, a, r, s′, v′)
8: step← step + 1
9: if Modulo(step, rollout_length) == 0 then
10: for epoch, batch = 1, 1 to epochmax, batchmax do
11: loss, gradient← compute_loss(buffer, batch) ⊲ backward pass
12: πθ, Vϕ ← update(πθ, Vϕ, gradient)
13: end for
14: buffer← [ ]
15: end if
16: end while

5.2.2 The Time-varying Unscented Estimate

The approach to derive the time-varying unscented estimate is very similar to the time-
invariant case described in section 2.2.2. The approximations to the optimal and hierar-
chical policies are still based on a nearest neighbor look-up with trajectories of the full
system and appropriate subsystems respectively (Equation (2.13)). However, the nearest
neighbor strategy is now time conditioned

𝑠†(𝑡) = argmin
𝑠

X𝑠
𝑖 (𝑡†) − x𝑖


2
, where 𝑡† = argmin

𝑡 ′
|𝑡 ′ − 𝑡 | (5.5)

and 𝑡 ′ are the time instances along the discrete-time trajectories X𝑠
𝑖 . The estimates of the

value function of the optimal and hierarchical policies are then obtained by rolling out
trajectories with these approximated policies.

5.3 Decomposing Neural Policy Optimization

In chapter 3, we analysed the trade-offs between closed-loop performance and reduction in
computation in decomposing the policy optimization when the policies were represented
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as look-up tables over the state-space and computed using Policy Iteration [50]. Guarantees
of convergence to the optimal solution (within discretization resolution) exist, when using
look-up tables to represent policies [78]. But, these representations do not scale well in
terms of memory footprint and required computation to higher-dimensional problems,
making the advantages of Policy Decomposition very apparent. On the other hand, neural
networks have been demonstrably effective as policy representations for complex policy
optimization problems [46, 80] but are known to at best converge to locally optimal
solutions [43]. Here, we apply Policy Decomposition towards training neural network
policies and investigate whether the advantages translate.

Algorithm 3 outlines on-policy actor-critic methods [54], a class of algorithms to
simultaneously train policies (actor) and value functions (critic) for an optimal control
problem. These methods iterate between two phases, 1) monte carlo rollouts with the
existing policy to collect interaction data and 2) updating the policy and value function
using temporal differences learning [81]. The majority of the computation happens during
the forward passes to the actor and critic (Lines 4 and 6: O(|θ | + |ϕ|)), simulating the
dynamics of the underlying system (Line 5), and computing gradients (Line 11: O(|θ |+|ϕ|))
to update the policy and value function. Table 5.1 depicts how the time required to train
policies scales with increasing size. As the network size grows, the majority of the compute

#hidden units time steps to converge
(sec / 20 million steps) (million)

forward gradient simulation
[256, 256, 256] 49.4 71.5 24.47
[512, 512, 512] 50.8 133.2 18.48

[1024, 1024, 1024] 78.9 438.3 476.1 ± 8.76 35.95
[2048, 2048, 2048] 182.3 2028 24.97
[4096, 4096, 4096] 864.5 8779 25.97

Table 5.1: Breakdown of policy computation times for quadcopter control using Proximal Policy Optimization [80]. The cumulative
time required for forward pass (policy and value function inference), and computation of gradients for neural network weights when
training networks of different sizes is reported. The time required for simulating system dynamics is also reported for comparison.

effort is spent in the forward pass and the gradient computation which scale linearly with
the number of weights. This motivates the use of smaller neural networks to represent
sub-policies. We scale the number of hidden units proportional to the dimension of the

56



5. Extension to Optimal Trajectory Tracking Control

Subsystem 1

Full system

vs

Subsystem 2

Subsystem 3

Figure 5.2: The idea of Policy Decomposition extended towards training neural network policies. The optimal policy is represented
using a fully-connected neural network, and the sub-policies are represented using networks with reduced hidden units proportional
to the dimensionality of the input and state-space for the subsystem.

input and state subspaces of a subsystem, in the neural network sub-policies (Figure 5.2).

[ℎ1, · · · , ℎ𝑁 ]︸         ︷︷         ︸
#hidden units in the full policy

→ [ℎ1, · · · , ℎ𝑁 ] ×
dim(x𝑖) × dim(u𝑖)
dim(x) × dim(u)︸                                        ︷︷                                        ︸

#hidden units in the 𝑖th sub-policy

(5.6)

The estimates of reduction in policy computation with this scheme are derived in ap-
pendix A.2.2.

5.4 Results

We design policies for the quadcopter to track trajectories shown in figure 5.5. In figure 5.6,
hierarchies discovered by GA for the optimally tracking the corresponding trajectories
are depicted. For constant hover control, the yaw control is decoupled from the rest of the
system and the pitch control is optimized in cascade with thrust and roll (Figure 5.6(a)).
Tracking the sinusoid trajectory requires a more tightly coupled controller structure, the
thrust, roll and pitch policies are jointly optimized first followed by the yaw policy as a
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Figure 5.3: Constant hover

Figure 5.4: Sinusoid

Figure 5.5: Candidate trajectories for tracking control of the quadcopter

(a) Constant hover

(b) Sinusoid

Figure 5.6: Hierarchies discovered by GA for optimal trajectory tracking for the quadcopter for the corresponding trajectories depicted
in figure 5.5

function of the full state (Figure 5.6(b)).
Using PPO, we train neural networks of different widths to approximate the optimal

policy and proportionally scaled smaller networks for the hierarchical policies. We test and
track the performance of the policies during the training process by rolling out trajectories
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and computing their costs. These are depicted in Figures 5.7 and 5.8. We observe that
the hierarchical policies require more environment interactions to train in comparison to
the full policy. However, for larger neural network sizes, i.e. in the regime where neural
network inference and gradient estimation require more computation than simulating
the environment, the hierarchical policies, which employ smaller networks, require less
wall-clock time to train.
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Figure 5.7: Performance trend of the jointly optimized and hierarchical policies for constant hover control of the quadcopter. The
policies are optimized using PPO and trends for neural network policies of different widths is shown.
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Figure 5.8: Performance trend of the jointly optimized and hierarchical policies for tracking a sinusoid trajectory with the quadcopter.
The policies are optimized using PPO and trends for neural network policies of different widths is shown.
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Chapter 6

Conclusions and Future Work

We introduced a novel framework for approximately solving optimal control problems of
complex dynamical systems. Policy Decomposition stands out from other hierarchical
control methods by automatically proposing candidate hierarchies with minimal assump-
tions about the underlying system and by providing a priori estimates of suboptimality for
the resulting hierarchical policies. Furthermore, we demonstrated how Genetic Algorithm
and Monte Carlo tree search can be adapted to efficiently discover hierarchies that can
sharply reduce the computational cost without giving up much on closed-loop perfor-
mance. Additionally, we investigated how the choice of system representation affects the
suitability for hierarchical policy optimization and presented an approach to construct
representations more amenable to hierarchical control.

We applied Policy Decomposition to identify control hierarchies for a range of robotic
systems, including planar manipulators of varying complexity, a simplified biped and a
quadcopter, highlighting the generality of the framework. The discovered hierarchies
either outperform heuristically constructed ones in closed-loop performance or provide
dramatic reductions in required compute but marginally worse control. Furthermore,
Policy Decomposition is agnostic to the choice of policy representation and optimization
algorithm. We showcase hierarchical policy optimization using Policy Iteration with look-
up table based policies as well as using more modern methods such as Proximal Policy
Optimization with neural network policies. The computational resources for this work
were provided by the Advanced Cyberinfrastructure Coordination Ecosystem: Services
and Support (ACCESS) program [16].

61



6. Conclusions and Future Work

Two future research directions would further broaden the utility of the policy decompo-
sition framework. First, to identify system representations more amenable to hierarchical
control. In chapter 4, we discussed the tight coupling between system representations and
resulting hierarchies and posited that representations that induce sparsity in the optimal
policy are more conducive to decomposition. A more through investigation and a more
general approach would further broaden the class of control problems that can be tackled
with this framework. Second, we assumed a noiseless system, and perfect knowledge of
the dynamics. These assumptions almost never hold for realistic systems. Almost every
actuator is noisy with some uncertainty in the applied output, and dynamics parameters
for the system are usually only known only up to a certain level of accuracy. Incorporating
these uncertainties in the Policy Decomposition framework, specifically, in evaluating
different hierarchies would provide more realistic estimates of control performance.
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Appendix A

Search Methods

A.1 Hierarchy Count

Any hierarchy for a system can be represented using a unique input-tree, and therefore the
number of possible hierarchies equals the number of valid input-trees. For a system with
𝑛 state variables and𝑚 control inputs, a valid input-tree has at most𝑚 nodes (excluding
the root) and can be constructed as follows
(I) Group the𝑚 inputs into 𝑟 ∈ {2, · · · ,𝑚} non-empty subsets.

(II) Arrange the 𝑟 subsets of inputs into input-trees such that 𝑘 ∈ {1, · · · , 𝑟 } of these
are leaf-nodes1.

(III) Distribute the 𝑛 state variables into 𝑟 groups (one for each input subset) such that
the 𝑘 groups corresponding to the leaf nodes are non-empty.

We first enumerate I(𝑚, 𝑟 ), II(𝑟, 𝑘) and III(𝑛, 𝑟, 𝑘). Subsequently, the number of possible
hierarchies is

𝑚∑︁
𝑟=2

I(𝑚, 𝑟 )
𝑟∑︁

𝑘=1

II(𝑟, 𝑘)III(𝑛, 𝑟, 𝑘) (A.1)

(I) 𝑚 inputs can be divided into 𝑟 non-empty subsets in

I(𝑚, 𝑟 ) = Δ(𝑚, 𝑟 )
𝑟 !

(A.2)

1Leaf-nodes are nodes that do not have children.
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A. Search Methods

ways, where Δ(𝑚, 𝑟 ) is as follows

Δ(𝑚, 𝑟 ) = 𝑟𝑚 −
(
𝑟

1

)
(𝑟 − 1)𝑚 +

(
𝑟

2

)
(𝑟 − 2)𝑚 + · · · + (−1)𝑟−1

(
𝑟

𝑟 − 1

)
(1)𝑚 (A.3)

𝑟𝑚 denotes the number of possibilities of assigning𝑚 inputs to 𝑟 distinct subsets
but some of the subsets can be empty. Therefore we subtract the cases where at
least one subset is empty i.e.

(𝑟
1

)
(𝑟 − 1)𝑚 . But we end up subtracting the cases where

at least two subsets are empty twice, therefore we add these back i.e.
(𝑟
2

)
(𝑟 − 2)𝑚 .

Continuing with this reasoning we arrive at Eq. (A.3). In Eq. A.2, division by 𝑟 ! is to
account for repetitions from treating the subsets as distinct [86].

(II) We first select 𝑘 of the 𝑟 input subsets to assign to the 𝑘 leaf-nodes of the input-tree.
There are

(𝑟
𝑘

)
possible ways to make this selection. To enumerate the different

possible structures of an input-tree we make use of Prüfer codes [14]. Every tree
consisting of 𝑁 labelled nodes can be represented using a unique (𝑁 − 2) character
long sequence of these labels. The sequence can have repetitions. Furthermore, this
mapping is a bijection, i.e. every sequence of size (𝑁 − 2) corresponds to a unique
valid tree structure. Additionally, the only missing characters in a Prüfer code are
labels of the leaf-nodes. An input-tree for 𝑟 input subsets consists of 𝑁 = (𝑟 + 1)
nodes and has an encoding of length (𝑟 − 1). If 𝑘 of the input subsets are leaf-nodes
then the encodings have either (𝑟 − 𝑘) or (𝑟 − 𝑘 + 1) distinct characters, depending
on whether the root node is or is not a leaf-node.

(a) If the root node is also a leaf-node, the encoding has to be generated by only
using labels of the (𝑟 − 𝑘) remaining input subsets, each of which must appear
at least once. This is equivalent to assigning the (𝑟 − 1) spots in the sequence
to (𝑟 − 𝑘) non-empty groups

(
Δ(𝑟 − 1, 𝑟 − 𝑘), from Eq. (A.3)

)
.

(b) If the root node is not a leaf-node, the (𝑟 − 1) length encoding must consist of
all the remaining (𝑟 − 𝑘 + 1) labels, Δ(𝑟 − 1, 𝑟 − 𝑘 + 1) possibilities.

Thus number of possible input-trees with 𝑟 input subsets and 𝑘 leaf-nodes are2

II(𝑟, 𝑘) =
(
𝑟

𝑘

) (
Δ
(
𝑟 − 1, 𝑟 − 𝑘

)
+ Δ

(
𝑟 − 1, 𝑟 − 𝑘 + 1

) )
(A.4)

2When 𝑘 = 1, II(𝑟, 𝑘) =
(
𝑟
𝑘

)
Δ(𝑟 − 1, 𝑟 − 𝑘) whereas when 𝑘 = 𝑟 , II(𝑟, 𝑘) =

(
𝑟
𝑘

)
Δ(𝑟 − 1, 𝑟 − 𝑘 + 1)
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A. Search Methods

(III) A valid state assignment for an input-tree consisting of 𝑟 input subsets and 𝑘 leaf-
nodes can be generated by selecting 𝑖 ∈ {0, · · · , 𝑛 − 𝑘} of the 𝑛 variables, assigning
them to the 𝑟 − 𝑘 non-leaf-nodes, and distributing the remaining (𝑛 − 𝑖) variables
into 𝑘 non-empty groups corresponding to the 𝑘 leaf-nodes. Possible number of
valid state-assignments are

III(𝑛, 𝑟, 𝑘) =
𝑛−𝑘∑︁
𝑖=0

(
𝑛

𝑖

)
Δ(𝑛 − 𝑖, 𝑘) (𝑟 − 𝑘)𝑖 (A.5)

A.2 Estimates of reduction in computation from

Policy Decomposition

A.2.1 Policy Iteration

Here, we calculate the potential reduction in floating point operations offered by a hi-
erarchy when policies are represented as look-up tables and are optimized using Policy
Iteration (PI) [10]. A look-up table based policy stores control values corresponding to a
uniform grid over the state-space. For a hierarchical policy, the individual subpolicies are
look-up tables over appropriate subspaces of the state-space, and are derived by applying
PI to the corresponding subsystem.

PI starts with a randomly initialized policy and iterates through the evaluation and
improvement phases to converge to the optimal policy. In the evaluation phase an estimate
of the value function for the current policy is derived by applying the policy at every state
in the grid, estimating the value function at the subsequent states through interpolation,
and updating the value function at grid points using the Bellman equation

𝑉 (iter+1) (x) = 𝑐 (x,𝜋u(x)) +𝑉 iter (x + 𝑑𝑡f (x, 𝜋u(x)))

#operationsevaluate =
𝑛

Π
𝑖=1

NS𝑖
(

2𝑛ME︸︷︷︸
interpolate

+ FLOPsimulate

)
where 𝑛 is the number of state variables, NS𝑖 is the size of the look-up table along state
dimension 𝑖 , ME is the maximum number of evaluation iterations, and FLOPsimulate is the
number of floating point operations required to simulate one time-step of the system. The
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improvement phase involves sampling NA 𝑗 candidate values for the 𝑗 th control input and
greedily updating the policy based on the current value function estimates

𝜋
(iter+1)
u (x) = argmin

u∈[umin,umax]
(𝑐 (x,u) +𝑉 (x + 𝑑𝑡f (x,u)))

#operationsupdate =
𝑛

Π
𝑖=1

NS𝑖
𝑚

Π
𝑗=1

NA 𝑗(
2𝑛︸︷︷︸

interpolate

+ FLOPsimulate + 3︸︷︷︸
sample action+
update value

)

where umin and umax are control bounds and𝑚 is the number of control inputs. Estimate
for total maximum operations is

#operationstotal = M
(
#operationsevaluate +#operationsupdate

)
where M is the maximum iterations for PI. The estimated reduction in policy computation
is the ratio of #operationstotal for hierarchy 𝛿 , and for the optimal policy.

A.2.2 Proximal Policy Optimization

Here, we report our strategy to estimate the reduction in computation when deriving
neural network policies using Policy Decomposition. We use a fully connected architecture
for the policies and the value function, and compute them with the Proximal Policy
Optimization (PPO) [80] algorithm. The architectures for the individual subpolicies in a
hierarchy are derived by proportionally scaling down the number of hidden units in the
optimal policy by dimensionality of the state and input subspaces for the corresponding
subsystem. Therefore, the number of weights for the subpolicies are

|𝑤𝜋u𝑖
| = |𝑤𝜋∗ | ×

(
dim(x𝑖)
dim(x)

)2
×
(
dim(u𝑖)
dim(u)

)2
(A.6)

As described in algorithm 3, PPO iterates between applying the current policy to collect
trajectories and updating the policy and value function through stochastic gradient descent
(applying gradients for sampled batches of collected data and repeating it for some epochs
E). The complexity of the forward pass and backward pass are both O(|𝑤𝜋u𝑖

| + |𝑤𝑉 𝜋u𝑖 |). If
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the algorithm is allowed T time-steps of system interactions, the estimate for the number
of operations to optimize the policy for a subsystem turns out to be

#operationsrollout = T × (|𝑤𝜋u𝑖
| + |𝑤𝑉 𝜋u𝑖 | + FLOPsimulate)

#operationsupdate = T × E ×
(
|𝑤𝜋u𝑖

| + |𝑤𝑉 𝜋u𝑖 |
)

where FLOPsimulate is the number of floating point operations required to simulate one
time-step of the system. The estimated reduction in policy computation is the ratio of(
#operationsrollout +#operationsupdate

)
for hierarchy 𝛿 , and for the optimal policy.

A.3 Ablations for Genetic Algorithm based hierarchy

search

Table A.1: Ablations for GA with the quadcopter (Figure 3.5(c))

Fδ
(×10−19 )

time
(sec)

#δ
found

with hash-map 53.8 ± 12 254.3±85.9 25599±2469

without hash-map 17.8 ± 21 164.7±62.2 89477±2306

0% with crossover 8.95±17.5 226.6± 156 90594±2744

25% with crossover 8.95±17.5 260.5± 124 80639±3357

50% with crossover 0.18 ± 0 232 ± 188 70258±2481

We evaluate the advantage of using a hash-map by running the GA based search
with and without it for the quadcopter system for 600 seconds. Additionally, we apply
crossover operator which swaps tree structure and state assignment between compatible
input-trees to create a percentage of the next generation of population in every iteration
of GA (Algorithm 1). In table A.1, we note the number of unique hierarchies discovered,
the lowest fitness found and the time required to discover the hierarchy with that fitness.
The search benefits with the use of hash-map as more hierarchies are evaluated and the
time required to find the best is reduced. Moreover, the crossover operators do not provide
a significant benefit but instead slow down the search (fewer hierarchies found) and so
we do not use them.
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Appendix B

System Representations

B.1 Singular Value Decomposition Regularization

A singular value decomposition ofK∗ is UK∗SK∗V 𝑇
K∗ where UK∗ ∈ R𝑚×𝑚 and VK∗ ∈

R𝑛×𝑛 are orthogonal. Based on the singular values ofK∗ there are three possibilities
• Case I : If all singular values are unique and non-zero then UK∗ and the first𝑚
columns of VK∗ are uniquely defined. Last (𝑛 −𝑚) columns of VK∗ span the null-
space of K∗ and can be arbitrarily chosen such that they are mutually orthogonal
and orthogonal to the first𝑚 columns.

• Case II : Subsets of columns of UK∗ corresponding to repeated and non-zero
singular values span orthogonal subspaces (of dimension > 1) in the range of
K∗. Each of these subsets of columns can be chosen arbitrarily such that they are
mutually orthogonal and orthogonal to the subspaces spanned by the remaining
columns. Note that the orthogonality constraints between columns corresponding
to different subsets are tied to the subspace they span rather than the choice of the
columns (basis) themselves. Consequently, these subsets of columns of UK∗ can
be solved for in tandem. The first𝑚 columns of VK∗ can be derived using UK∗ ,
SK∗ and the first𝑚 columns ofK∗. The last (𝑛 −𝑚) columns of VK∗ can then be
obtained as in Case I .

• Case III : If some of the singular values are zero the corresponding columns ofUK∗

can be derived as in Case II . Furthermore, corresponding columns in VK∗ belong
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B. System Representations

to the null-space ofK∗ and can be derived along with the last (𝑛 −𝑚) ones as in
Case I .

We solve the following optimization to determine the last (𝑛 −𝑚) columns of VK∗ in
Case I and Case II

min
𝑛∑︁

𝑖=𝑚+1
∥V 𝑖

K∗ ∥1

s.t. (V 𝑖
K∗)𝑇V 𝑗

K∗ = 1𝑖== 𝑗 𝑖, 𝑗 ∈ {𝑚 + 1, · · · , 𝑛}
(V 𝑖

K∗)𝑇V 𝑘
K∗ = 0 𝑖 ∈ {𝑚 + 1, · · · , 𝑛}, 𝑘 ∈ {1, · · · ,𝑚}

For Case II , a similar optimization is also posed over the subsets of columns of UK∗ .
Intuitively, we find directions that closely align with the original state (or input) basis,
x (or u), and span an appropriate subspace either in the null-space (or range) of K∗.
We solve these optimization problems using the method described in [97]. A feasible
initialization to the optimization is obtained using [28].
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Appendix C

System Descriptions and
Hyperparameters

C.1 System Descriptions

The dynamics for all the systems presented in this work can be found in standard dynamics
textbooks such as [68], barring the biped shown in Fig. 2.5(c). For the biped the legs are
massless and make contact with the ground at fixed locations 𝑑 𝑓 distance apart. A leg
breaks contact if its length exceeds 𝑙0. In contact, legs can exert forces (𝐹𝑙/𝑟 ) and hip
torques (𝜏𝑙/𝑟 ).

𝑚 ¥𝑥 = 𝐹𝑟 cos𝛼𝑟 +
𝜏𝑟

𝑙𝑟
sin𝛼𝑟 + 𝐹𝑙 cos𝛼𝑙 +

𝜏𝑙

𝑙𝑙
sin𝛼𝑙

𝑚 ¥𝑧 = 𝐹𝑟 sin𝛼𝑟 −
𝜏𝑟

𝑙𝑟
cos𝛼𝑟 + 𝐹𝑙 sin𝛼𝑙 −

𝜏𝑙

𝑙𝑙
cos𝛼𝑙 −𝑚𝑔

𝐼 ¥𝜃 = 𝜏𝑟 (1 +
𝑑

𝑙𝑟
sin(𝛼𝑟 − 𝜃 )) + 𝐹𝑟𝑑 cos(𝛼𝑟 − 𝜃 ) + 𝜏𝑙 (1 +

𝑑

𝑙𝑙
sin(𝛼𝑙 − 𝜃 )) + 𝐹𝑙𝑑 cos(𝛼𝑙 − 𝜃 )

where, 𝑙𝑙 =
√︃
𝑙2𝑟 + 𝑑2𝑓 + 2𝑙𝑟𝑑 𝑓 cos𝛼𝑟 , and 𝛼𝑙 = arcsin

𝑙𝑟 sin𝛼𝑟
𝑙𝑙

(C.1)
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C.2 Hyperparameters

All policies are represented as look-up tables over the state-space (Sfull) and we use Policy
Iteration (PI) [10] to compute them, except for the optimal policies for the 4 degree of
freedom manipulator and the quadcopter in chapters 3 and 4 which are approximated
using Advantage Actor Critic [65] and Proximal Policy Optimization [80]. For hierarchical
policies the individual subpolicies are look-up tables over the appropriate subspace of the
state-space. Hyper-parameters for PI as described in appendix A.2.1 are also reported in
table C.1. We compute err𝛿 , err𝛿lqr and err𝛿ddp over a smaller set S ⊂ Sfull. The set S for
different systems are reported in table C.2. For err𝛿ddp calculations, we compute trajectories
starting from the corners of set S, over a horizon of 𝑇 = 4s with 𝑑𝑡 = 1ms

In chapter 3, for the 4 link manipulator and the quadcopter, we use the Stable Base-
lines implementation [75] for Advantage Actor Critic (A2C) [65] and Proximal Policy
Optimization (PPO) [80] to approximate the optimal policy using neural networks. We use
the RMSProp optimizer with linearly decaying learning rate to train for 20 million steps.
The decaying learning rate was crucial to stable policy optimization. We experimented
with fully connected neural networks of different sizes, smaller ones with two hidden
layers of dimensions [256, 256] for both the systems, and larger ones with three hidden
layers of dimensions [1729, 1729, 1729] and [2700, 2700, 2700] for the manipulator and
quadcopter respectively. For both systems, the smaller ones led to better policies and we
report results
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Table C.1: Dynamics, cost function and hyper-parameters for policy computation of all systems presented in chapters 2 to 4

type parameters
C
ar
t-
po

le
Dynamics [𝑚𝑐 ,𝑚𝑝 ] = [5, 1]kg, 𝑙𝑝 = 0.9m, 𝑔 = 9.81m/s2

Bounds |𝐹 | ≤ 9N, |𝜏 | ≤ 9Nm, Sfull : 𝑥 ∈ [−1.5, 1.5], ¤𝑥 ∈ [−3, 3], 𝜃 ∈ [0, 2𝜋 ], ¤𝜃 ∈ [−3, 3]

Cost Q = diag( [25, 0.02, 25, 0.02] ), R = 10−3diag( [1, 1] ), 𝜆 = 3

Hyper-parameters NS = [31, 31, 31, 31], NA = [12, 12], ME = 500, M = 2000

B
ip
ed

Dynamics 𝑚 = 72kg, 𝐼 = 3.6kgm2, 𝑔 = 9.81m/s2, 𝑙0 = 1.15, 𝑑 = 0.2m, 𝑑𝑓 = 0.5m

Bounds
|𝐹𝑟/𝑙 | ≤ 3𝑚𝑔 (N), |𝜏𝑟/𝑙 | ≤ 0.25𝑚𝑔𝑙0 (Nm)

Sfull :
𝑙𝑟 ∈ [0.85, 1.25], (𝛼𝑟 − 𝜋/2) ∈ [0, 0.6],
¤𝑥 ∈ [−0.3, 0.5], ¤𝑧 ∈ [−0.5, 1], 𝜃 ∈ [−𝜋/8, 𝜋/8], ¤𝜃 ∈ [−2, 2]

Cost Q = diag( [350, 700, 1.5, 1.5, 500, 5] ), R = 10−6diag( [1, 1, 10, 10] ), 𝜆 = 1

Hyper-parameters NS = [13, 13, 14, 19, 14, 21], NA = [5, 5, 2, 2], ME = 100, M = 2000

2
D
oF

M
an

ip
ul
at
or Dynamics [𝑚1,𝑚2 ] = [1.25, 0.25]kg, 𝑔 = 9.81m/s2, [𝑙1, 𝑙2 ] = [0.25, 0.125]m

Bounds |𝜏1 | ≤ 5Nm, |𝜏2 | ≤ 0.5Nm, Sfull : 𝜃1 ∈ [0, 2𝜋 ], 𝜃2 ∈ [−𝜋, 𝜋 ], ¤𝜃1, ¤𝜃2 ∈ [−3, 3]

Cost Q = diag( [1.6, 1.6, 0.12, 0.12] ), R = diag( [0.003, 0.3] ), 𝜆 = 3

Hyper-parameters NS = [31, 31, 31, 31], NA = [15, 5], ME = 300, M = 3000

3
D
oF

M
an

ip
ul
at
or

Dynamics [𝑚1,𝑚2,𝑚3 ] = [2.75, 0.55, 0.11]kg, [𝑙1, 𝑙2, 𝑙3 ] = [0.5, 0.25, 0.125]m, 𝑔 = 9.81m/s2

Bounds |𝜏1 | ≤ 16Nm, |𝜏2 | ≤ 7.5Nm, |𝜏3 | ≤ 1Nm
Sfull : 𝜃1 ∈ [0, 2𝜋 ], 𝜃2, 𝜃3 ∈ [−𝜋, 𝜋 ], ¤𝜃1, ¤𝜃2, ¤𝜃3 ∈ [−3, 3]

Cost Q = diag( [1.6, 1.6, 1.6, 0.12, 0.12, 0.12] ), R = diag( [0.004, 0.04, 0.4] ), 𝜆 = 3

Hyper-parameters NS = [17, 17, 17, 13, 13, 13], NA = [8, 3, 2], ME = 300, M = 3000

4
D
oF

M
an

ip
ul
at
or

Dynamics [𝑚1,𝑚2,𝑚3,𝑚4 ] = [5.4, 1.8, 0.6, 0.2]kg,
[𝑙1, 𝑙2, 𝑙3, 𝑙4 ] = [0.2, 0.5, 0.25, 0.125]m, 𝑔 = 9.81m/s2

Bounds |𝜏1 | ≤ 24Nm, |𝜏2 | ≤ 15Nm, |𝜏3 | ≤ 7.5Nm, |𝜏4 | ≤ 1Nm
Sfull : 𝜃1 ∈ [0, 2𝜋 ], 𝜃2, 𝜃3, 𝜃4 ∈ [−𝜋, 𝜋 ], ¤𝜃1, ¤𝜃2, ¤𝜃3, ¤𝜃4 ∈ [−12, 12]

Cost Q = diag( [4, 4, 4, 4, 0.1, 0.1, 0.1, 0.1] ), R = diag( [0.002, 0.004, 0.024, 0.1440] ), 𝜆 = 3

Hyper-parameters
PI : NS = [13, 13, 13, 13, 21, 21, 21, 21], NA = [12, 8, 6, 6], ME = 300, M = 3000

A2C : Layers = [256, 256], Learning rate : 0.0015 20M−−−→ 0

PPO : Layers = [256, 256], Learning rate : 0.0005 20M−−−→ 0

Q
ua

dc
op

te
r

Dynamics 𝑚 = 0.5kg, 𝐼 = 10−3diag( [4.86, 4.86, 8.8] )kgm2,

𝑙 = 0.225m, 𝑘𝑀 = 0.0383m, 𝑔 = 9.81m/s2

Bounds
𝑇 ∈ [0, 2𝑚𝑔] (N), |𝐹roll/pitch | ≤ 0.25𝑚𝑔 (N), |𝐹yaw | ≤ 0.125𝑚𝑔 (N)

Sfull :
𝑧 ∈ [0.5, 1.5], 𝜙, 𝜃 ∈ [−0.7, 0.7], 𝜓 ∈ [−𝜋, 𝜋 ],
¤𝑥, ¤𝑦 ∈ [−2, 2], ¤𝑧 ∈ [−1.5, 1.5], ¤𝜙, ¤𝜃 ∈ [−6, 6], ¤𝜓 ∈ [−2.5, 2.5]

Cost Q = diag( [5, 1e-3, 1e-3, 5, 0.5, 0.5, 0.05, 0.075, 0.075, 0.05] ),
R = diag( [2e-3, 0.01, 0.01, 4e-3] ), 𝜆 = 3

Hyper-parameters
PI : NS = [7, 7, 7, 35, 7, 7, 7, 11, 11, 35], NA = [12, 3, 3, 10], ME = 250, M = 2500

A2C : Layers = [256, 256], Learning rate : 0.0015 20M−−−→ 0

PPO : Layers = [256, 256], Learning rate : 0.0005 20M−−−→ 0
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C. System Descriptions and Hyperparameters

Table C.2: Regions of state-space (S ⊂ Sfull ) over which value errors are computed for different systems (Chapter 2: Figure 2.6,
Figure 2.7, Figure 2.8, Figure 2.9 and Chapter 3: Table 3.1)

S
Cart-pole 𝑥 ∈ [−0.5, 0.5], ¤𝑥 ∈ [−1, 1], 𝜃 ∈ [2𝜋/3, 4𝜋/3], ¤𝜃 ∈ [−1, 1]

Biped 𝑙𝑟 ∈ [0.92, 1], (𝛼𝑟 − 𝜋/2) ∈ [0.2, 0.3],
¤𝑥 ∈ [−0.1, 0.1], ¤𝑧 ∈ [−0.3, 0.3], 𝜃 ∈ [−0.2, 0.2], ¤𝜃 ∈ [−0.2, 0.2]

2 DoF
Manipulator 𝜃1 ∈ [2𝜋/3, 4𝜋/3], 𝜃2 ∈ [−𝜋/3, 𝜋/3], ¤𝜃1, ¤𝜃2 ∈ [−0.5, 0.5]

3 DoF
Manipulator 𝜃1 ∈ [2𝜋/3, 4𝜋/3], 𝜃2, 𝜃3 ∈ [−𝜋/3, 𝜋/3], ¤𝜃1, ¤𝜃2, ¤𝜃3 ∈ [−0.5, 0.5]

4 DoF
Manipulator 𝜃1 ∈ [3𝜋/5, 7𝜋/5], 𝜃2, 𝜃3, 𝜃4 ∈ [−2𝜋/5, 2𝜋/5], ¤𝜃1, ¤𝜃2, ¤𝜃3, ¤𝜃4 ∈ [−0.6, 0.6]

Quadcopter 𝑧 ∈ [0.7, 1.3], 𝜙, 𝜃 ∈ [−0.7, 0.7], 𝜓 ∈ [−𝜋/4, 𝜋/4],
¤𝑥, ¤𝑦 ∈ [−1, 1], ¤𝑧 ∈ [−0.75, 0.75], ¤𝜙, ¤𝜃 ∈ [−0.5, 0.5], ¤𝜓 ∈ [−0.25, 0.25]
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