
Learning to Manipulate Using
Diverse Datasets

Sudeep R. Dasari

CMU-RI-TR-24-30

June 2024

The Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Thesis Committee
Abhinav Gupta Carnegie Mellon University (chair)

Shubham Tulsiani Carnegie Mellon University
Deepak Pathak Carnegie Mellon University

Sergey Levine University of California at Berkeley

Thesis document submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in Robotics

© Sudeep R. Dasari, 2024

Acknowledgements
This document is the culmination of a 5 year research journey that I couldn’t

have done without my mentors, labmates, friends, and family. I would like to
take a moment now to thank you all. First, I’d like to thank the CMU Robotics
Insitute, Meta AI, and the NDSEG fellowship for supporting my research. Next to
my advisor Abhinav Gupta – thank you for teaching me how to conduct independent
research. Your incisive (and always playful) commentary pushed me to focus on more
interesting problems, and encouraged me to be the best version of myself. Abhinav
also taught me strong presentation skills, the value of making contrarian research
bets, and the thrill of vigorous research debates. On a personal level, I will always
remember our fun lab socials/retreats, coffee chats, and mafia games!

I’m also fortunate to have recieved wonderful mentorship from my committee
members. Shubham Tulsiani – thank you for reviewing, criticizing, and improving
so many of my papers and presentations over the last few years. And thank you for
opening my eyes to new vision problems and ways of thinking during the various
Smith Hall reading groups. To Deepak Pathak – thank you for pushing me to work
on more interesting problems and generate stronger results. I’ve truly enjoyed all
the long research discussions/debates with you and your lab that always helped me
question my core assumptions. And to Sergey Levine – thank you for teaching me
the fundamentals of machine learning and robotics research, and getting me started
down this road as an undergraduate student. I’m always inspired by your focus on
generalization over quick and easy results, and hope to always carry that with me.

This PhD took 5 years, and it would’ve been unbearable without all the encour-
agement and support from my friends and colleagues. Thank you to Kenny Marino,
Senthil Purushwalkam, Adithya Murali, Victoria Dean, Sam Powers, Gaoyue Zhou,
Russell Mendonca, Mihir Prabhudesai, Kenny Shaw, Murtaza Dalal, Mohan Kumar
Srirama, Jianren Wang, Dibya Ghosh, Katie Kang, Homer Walke, Oier Mees, Giri
Anantharaman, Lerrel Pinto, Frederik Ebert, Suraj Nair, Stephen Tian, Bernadette
Bucher, Karl Schmeckpeper, Siddharth Singh, Unnat Jain, Vikash Kumar, Chelsea
Finn, and many more for being excellent collaborators, lab-mates, and coffee-walk-
enjoyers. I’d also like to acknowledge the RoboFantasy League: Yufei Ye, Raunaq
Bhirangi, Alex Li, Shikhar Bahl, Helen Jiang, Jason Zhang, Suvansh Sanjeev, Peter
Manohar, and Magdalen Dobson for the fun hangouts, and late-afternoon board
game sessions every Wednesday. Special shoutout to Jason, Helen, and Shikhar for
being the best friends money can’t buy and making Pittsburgh feel like home!

Finally, I’d like to thank my family for all their love and encouragement. PhDs
are an inheritable disease, and I have to thank my wonderful parents – Drs. Anjali
Yeolekar and Venkat Dasari – for inspiring me to work on research and explore
my curiosity. I’d like to thank my brother, Shaunak Dasari, for being a life-long
partner in crime. And I’d like to acknowledge my amazing fiancée, Varsha Venkat,
for always encouraging me and believing in me. Thank you all for everything

I

Abstract
Autonomous agents can play games (like Chess, Go, and even Starcraft), they

can help make complex scientific predictions (e.g., protein folding), and they can
even write entire computer programs, with just a bit of prompting. However, even
the most basic physical manipulation skills, like unlocking and opening a door, still
remain literally out-of-reach. The key challenge is acquiring the manipulation prim-
itives themselves – there are infinite objects and environments in this world that a
robot will have to interact with. Even worse, physics is unforgiving and even small
errors can cause a task to fail entirely. In this thesis, I adopt a data-driven approach
to address this challenge. Instead of hard-coding or planning actions within a known
environment, I will explore methods/algorithms that acquire policies from increas-
ingly scalable sources of offline data. The first section will demonstrate how highly
effective policies can be learned from expert demonstrations and high-capacity neu-
ral networks. This work establishes the viability of data-driven policy learning for
manipulation tasks, but requires the most expensive form of data to collect. Thus,
the next part loosens the assumptions and demonstrates how diverse data can be
collected across multiple institutions, and be used to boost performance even in spe-
cific domains/tasks. The third section pushes this same philosphy even further, and
shows how human data can be used to improve robot policies. This is accomplished
via representation learning – human data is used to learn robotic representations us-
ing various contrastive, self-supervised, and semi-supervised alogrithms that trans-
fer strongly to downstream manipulation tasks. Finally, we look ahead and discuss
how these methods can continue to scale by leveraging larger datasets and massive
pre-trained vision/language models.

II

Contents

1 Introduction 1

I Learning from Expert Robot Data 4

2 Transformers for One-Shot Visual Imitation 5
2.1 Motivation . 5
2.2 Related Work . 6
2.3 Our Method . 8
2.4 Experimental Results . 11
2.5 Discussion . 16

II Learning From Autonomous Multi-Institution Robot Data 17

3 RoboNet: Large-Scale Multi-Robot Learning 18
3.1 Motivation . 18
3.2 Related Work . 20
3.3 Data-Driven Robotic Manipulation 21
3.4 The RoboNet Dataset . 22
3.5 Robot-Agnostic Visual Control: Model Training and Experiments . . 24
3.6 Discussion . 28

III Learning from Internet Scale Data 30

4 Manipulate by Seeing: Creating Manipulation Controllers
from Pre-Trained Representations 31
4.1 Motivation . 31
4.2 Related Work . 33
4.3 Methods . 34
4.4 Experimental Setup . 37
4.5 Experiments . 39

III

4.6 Discussion . 44

5 An Unbiased Look at Datasets for Visuo-Motor Pre-Training 45
5.1 Motivation . 45
5.2 Related Works . 47
5.3 Experimental Methods . 47
5.4 Probing Dataset Biases . 50
5.5 Ablating our Experimental Setup . 55
5.6 Discussion . 56

6 HRP: Human Affordances for Robotic Pre-Training 58
6.1 Motivation . 58
6.2 Related Work . 60
6.3 Preliminaries . 62
6.4 Introducing HRP . 64
6.5 Experimental Details . 66
6.6 Results . 68
6.7 Discussion . 74

7 Conclusions and Future Work 75
7.1 Tips and Tricks for Better Behavior Cloning 75
7.2 Future Work . 78

H Appendix 79
H.1 Transformers for One-Shot Visual Imitation 79
H.2 RoboNet: Large-Scal Multi-Robot Learning 82
H.3 Manipulate By Seeing: Creating Manipulation Controllers from Pre-

Trained Representations . 87
H.4 An Unbiased Look at Datasets for Visuo-Motor Pre-Training 92
H.5 HRP: Human Affordances for Robotic Pre-Training 97

IV

List of Figures

2.1 What should the robot do given video from another demonstration
agent? A human would immediately know to place the red triangle
on the blue square, and can use their past experience to execute the
task. Is it possible to teach a robot to do the same? 7

2.2 Our method uses a Transformer neural network to create task-specific
representations, given context and observation features computed
with ResNet-18 (w/ added positional encoding). The attention net-
work is trained end-to-end with a behavior cloning loss, an inverse
modelling loss, and an optional point loss supervising the robot’s fu-
ture pixel location in the image. 9

2.3 Our base environment is adopted from RoboTurk [145]. The 16 tasks
consist of taking an object (a-b) to a bin (1-4). Top robot is agent
and bottom is demonstrator. 12

2.4 Our Transformer model is compared against other neural networks
(all trained w/ our losses and code) to determine how useful the
attention mechanism really is. The Transformer architecture outper-
forms all others, including a version of itself w/out attention. 15

2.5 We compute success rate v.s number of train samples for our method
and versions with one loss excluded (all w/ Transformer). Note the
model without inverse loss is usually outperformed when compared
to its peers trained on the same data. 15

3.1 A glimpse of the RoboNet dataset, with example trajectories, robots,
and viewpoints. We collected data with Sawyer, Franka, WidowX,
Kuka, and Baxter robots, and augmented the dataset with publicly-
available data from a robot from Google [66], a Fetch [251], and a
Sawyer [61]. We use RoboNet to study the viability of large-scale
data-driven robot learning, as a means to attain broad generalization
across robots and scenes. 19

3.2 Qualitative examples of the various attributes in the RoboNet
dataset. 24

3.3 Zero-shot generalization to new backgrounds with a model trained
across multiple views. 25

V

3.4 Example task of grasping and moving a thin plastic cup with the Franka
robot, using visual foresight pre-trained on RoboNet w/o Franka and fine-
tuned on 400 trajectories from the Franka robot. 26

4.1 This chapter proposes to solve a range of manipulation tasks (e.g.
pushing) by learning a functional distance metric within the embed-
ding space of a pre-trained network. This distance function – in com-
bination with a learned dynamics model – can be used to greedily
plan for robot actions that reach a goal state. Our experiments re-
veal that the proposed method can outperform SOTA robot learning
methods across four diverse manipulation tasks. 32

4.2 We visualize the loss functions used to train our method. The dy-
namics function is trained via reconstruction loss in embedding space
(left). The distance function is trained via contrastive learning, with
positive anchors chosen by predicting the next state using the ground
truth action, F (it, at), and predicting negative pairs chosen using
noisy actions F (it, â

j). 34

4.3 Our method is tested on 4 different manipulation tasks (pictured above).
These tasks test different skill axis, ranging from task-level reasoning (e.g.
detect target, move to object before goal, etc.) to fine-grained motor control
(e.g. grab top of knob to turn). 35

4.4 In our problem setting we use a low-cost reacher grabber tool (left)
to collect training demonstrations. These demonstrations are used
to acquire a robot controller purely through distance/representation
learning. The final system is deployed on a robot (right) to solve
various tasks at test-time. 37

4.5 Trajectories executed on the robot using our learned distance func-
tion. For each task, we show the 1st person view (top) and 3rd person
view images (bottom). We show the learned visual embedding can
encode functional distances between states for challenging tasks, like
pushing, pick and place, door opening, and knob turning. 38

4.6 Our method can solve tasks with highly multi-modal action distribu-
tions that are difficult for the baselines. In this example, our distance
learning controller successfully pushes the block around the obstacle,
while Behavior Cloning learns to incorrectly push the block forward
(i.e. predicts mean action). 42

VI

5.1 Due to the scarcity of diverse, large-scale robotic data, visuo-motor
representations – which are necessary to solve tasks (e.g., put bread
in toaster) from visual inputs – must be learned from external
datasets [154]. But which datasets contain the best priors for
robotics? Surprisingly, we find that simply pre-training on standard
vision datasets (e.g., ImageNet) can outperform SOTA baseline
representations from the robot learning community, despite using
roughly 5x less data. 45

5.2 Our investigation considers 5 standard datasets from both the com-
puter vision and robotics: ImageNet [53], 100 Days of Hands [197]
(DoH), Ego4D [81], Kinetics [207], and RoboNet [44] (left). For
each dataset, we pre-train a visual representation on it using the
Masked Auto-Encoders (MAE) algorithm [94]. This masked image
modeling method works by randomly masking patches in the image,
and training an encoder/decoder to reconstruct them (center). Once
pre-training is concluded, we fine-tune the representation to various
robotics tasks, both in sim and in the real world (right). 48

5.3 Observations from our pouring task (left) are compared against
random pre-training images from ImageNet-1M/Ego4D-1M (right).
Note that all the pre-train images are very different from the
evaluation task. Nonetheless, the curated, single-object images from
ImageNet-1M yield stronger visuo-motor representations than the
Ego4D-1M frames do (see Table 5.1). 51

5.4 Effect of adding dropout [211] in sim vs. real (block stacking tasks).
Dropout frequently harms performance in simulation (blue) but con-
sistently improves real world (orange) success rate. Positive values
on Y axis indicate improvement by adding dropout and vice-versa. 55

5.5 Sim vs. real performance across pretraing datasets. We plot average
model performance, in sim and real, for all the models tested in our
study. Note how the sim scores are only weakly predictive of real
world performance (R2 = 32%). 55

6.1 Pre-trained representations offer a scalable solution to the robotics
data bottleneck [154, 170, 141], but existing methods fail to reliably
improve over simple baselines like ImageNet (see Chapter 5 and Burns
et. al. [25]). Thus, we present HRP, a method that mines affordances
(e.g., contact, hand pose, and object labels) from human videos and
uses them to improve self-supervised visual encoders. Our best HRP
representation consistently outperforms 6 SOTA baselines by ≥ 20%
across 5 diverse tasks and 3 camera views. 58

VII

6.2 HRP fine-tunes a pre-trained encoder to predict three classes of hu-
man affordance labels via L2 regression. Specifically, the network
must predict future contact points, human hand poses, and the target
object given an input frame from the video stream. These affordance
labels are mined autonomously from a human video dataset [81] us-
ing off-the-shelf vision detectors [197]. Representations produced by
HRP are then fine-tuned to solve downstream manipulation tasks via
behavior cloning. 59

6.3 We extract 3 affordances – contact heatmaps, hand poses and active
object bounding boxes – from human videos. 61

6.4 We present our policy training pipeline, which uses Behavior Cloning (BC)
to train policy π, using optimal expert demonstrations. The image obser-
vation (ot) is processed using our HRP representations resulting in a latent
vector z. The policy uses z to predict end-effector velocity actions (delta
ee-pose/gripper), which are directly executed on the robot during test-time. 62

6.5 Our experiments consider 5 unique manipulation tasks, ranging from
classic block-stacking to a multi-stage toasting scenario. These tasks
are implemented on 3 unique robot setups, including a high Degree-
of-Freedom dexterous hand (right). The 3 camera views shown –
front, ego, and side views (for xArm/dexterous hand) – are the same
views ingested by the policy during test-time. Note that 3 of the
tasks consider 2 unique camera views in order to test for robustness! 64

6.6 We apply HRP to 6 different baseline representations and plot how it affects
performance on average across the toasting, pouring, and stacking tasks.
This evaluation procedure is repeated using two distinct cameras (shown in
Fig. 6.5) in order to test if HRP representation are robust to view shifts.
We find that HRP representations consistently and substantially outperform
their vanilla baselines, and that this effect holds across both the front (left)
and ego (right) cameras. In fact, our strongest representation – ImageNet
+ HRP– delivers SOTA performance on both views! 67

6.7 This chart applies an ablated HRP method (full fine-tuning) to the 6 baseline
representations, and compares their average performance v.s. standard HRP
representations on the toasting, pouring, and stacking tasks (front cam). We
find that LayerNorm only fine-tuning is almost always superior. 70

6.8 We drop each of the 3 losses in HRP, and compare the ablated method’s
average performance (across the toasting, pouring, stacking tasks) against
full HRP representations. We find that the object and hand losses are critical
for good performance, but the contact loss only makes a significant impact
on the Ego4D base model. 70

VIII

H.1 One hypothesis is that the ablated models fail at test time because
they cannot optimize the behavior cloning loss. Comparing train and
val loss for models trained on the same data (N=1600) eliminates this
possibility. 80

H.2 Recurrent dynamics model for action-conditioned video-prediction based on
flow transformations. (Used with permission from [61]) 83

H.3 Architecture of the recurrent video-prediction architecture. (Used with per-
mission from [61]) . 83

H.4 Experimental setups for benchmarking tasks on the Kuka, Franka, and
Sawyer robots. 85

H.5 Example task of pushing an object with an unseen gripper, in this case the
Robotiq gripper. 86

H.6 Transform actions in camera frame to robot frame. 89
H.7 This table compares two representations trained on the same num-

ber of frames from ImageNet, but with different diversity levels (500
classes vs 1000). We find that the more diverse image set results in
a marginally stronger representation. 96

IX

List of Tables

2.1 Comparison between our method and baselines in 16 pick and place
tasks. Values indicate success rates and 95% confidence intervals for
“stages”Footnote 1 in the overall pick and place task. 13

3.1 Quantitative overview of the various attributes in the RoboNet
dataset, including the 7 different robot arms and 7 different grippers. 24

3.2 Evaluation of viewpoint generalization, showing the average distance
to the goal after executing the action sequence and standard error.
A model trained on multiple views can better generalize to a new
viewpoint. 25

3.3 Results for adaptation to an unseen Kuka robot. The model pre-trained on
RoboNet without the Kuka, R3, and Fetch data, achieves the best performance
when fine-tuned with 400 trajectories from the test robot. 26

3.4 Results for adaptation to an unseen Franka robot. The model pre-trained on
RoboNet without the Franka, R3, and Fetch data, achieves the best performance
when fine-tuned with 400 trajectories from the test robot. 26

3.5 Evaluation results for adaptation to an unseen Baxter robot. The model pre-
trained on RoboNet’s Sawyer data, achieves the best performance when fine-tuned
with 300 trajectories from the test robot. 26

3.6 Inverse model results on 5 reaching tasks. The model is successful
across multiple robot platforms and generalizes to a new viewpoint. . 28

4.1 We compare success rates for our method versus the baselines on all
four manipulation tasks. Our distance learning method outperforms
a suite of representative robot learning baselines. 40

4.2 We compare our distance learning method versus the behavior cloning
baselines (BC [179, 246] and IBC [69]) when trained on varying
amounts of data. Distance learning is able to learn faster than the
baselines and scale better with data. 40

4.3 This table compares success rates for our method versus the abla-
tions on the all four tasks. As you can see, removing the dynamics
module from our method during training and training with a weaker
representation both result in worse performance. 43

X

5.1 Comparing Datasets Apples-to-Apples. We compare pretrained rep-
resentations, learned on 1M images from five datasets. We report suc-
cess rates after finetuning representations with BC, and the real world
evaluations also include standard error (i.e., Success%±Std. Err.%).
For additional context, we benchmark SOTA baselines [141, 239] and
a “Scratch” representation with no pretaining. We find that visual
representations learned on standard vision datasets with internet im-
ages and curation (e.g., ImageNet) provide surprisingly strong per-
formance in the real world. 51

5.2 Marginal Value of Each Dataset. Soup-{1M,2M} models are trained
{1M,2M} images with {200K,400K} images from each of the five tar-
get datasets. The models on the right are trained with the Soup 1M
images and an additional 1M frames from the target dataset. We
find that image distribution matters more than the number of im-
ages trained on: Soup-2M does not improve on Soup-1M, but Soup-
1M + 1M DoH does. Results are reported as success rates for each
task, and the real world evaluations also report standard error (i.e.,
Success% ± Std. Err.%). 53

6.1 This table compares 3 representations trained w/ HRP against the teacher
ResNet [197] that generated our human affordance dataset (see Sec. 6.3.2).
We find that the ResNet teacher under-performs even the worst HRP rep-
resentation (fine-tuned from CLIP), even after excluding the stacking task,
which it failed on. 69

6.2 We present results of Ego4D + HRP and ImageNet + HRP, as well as the
respective baselines on the x-Arm (Pot on Stove) and a dexterous hand
task (Lift Cup). We see that HRP can even boost performance in multiple
morphologies, including a high-degree of freedom dexterous hand [201]. . . 71

6.3 This table compares Ego4D + HRP and ImageNet + HRP representations
against their respective baselines on a stacking w/ distractors task. Here the
robot must successfully complete the usual stacking task, when extraneous
objects (an orange carrot, and a green bowl) are added to the scene.
We find that Ego4D + HRP improved over its baseline on this task, but
ImageNet + HRP performed the same as its baseline. 72

XI

6.4 We create Semantic representations by fine-tuning the Ego4D, ImageNet,
and CLIP baselines using a classification loss, instead of HRP’s affordance
loss. Note that the exact same Ego4D clips (see Sec. 6.3.2) are used during
semantic fine-tuning, thanks to object class labels generated automatically
by Detic [266]. The sematic representations were evaluated (using the same
BC pipeline) on the Toasting, Pouring, and Stacking tasks, and compared
against their HRP counterparts. Success rates (and standard error) are re-
ported above. We find that the affordance supervision provided by HRP is
vastly superior to the semantic alternative. 72

6.5 This table tests if HRP representations can boost performance when using
a radically different imitation learning framework – namely Diffusion Pol-
icy [37]. We evaluate diffusion policies (following the U-Net + state action
formula described by Chi et. al [37]) on the toasting, pouring, and stacking
tasks using 3 different visual encoders: the default ResNet encoder from
RoboMimic [144], the ImageNet + MAE baseline, and our HRP + ImageNet
features. We find a clear improvement when using HRP weights, which
suggests that HRP is applicable to different imitation learning frameworks! 74

H.1 Evaluation results for adaptation to Robotiq gripper with the Sawyer arm. The
model trained on only Sawyer data performs the best when fine-tuned on 300
trajectories with a Robotiq gripper. 86

H.2 Training and architectural hyperparameters for MAE pretraining. . . 93
H.3 This table analyzes if Table 5.1’s conclusions apply to different pre-

training schemes, or if they are limited to MAE [94]. Specifically, we
apply a contrastive visual pre-training algorithm (SimCLR [35]) to
1M images from each of the target datasets. We also add an additional
baseline – R3M [154] – that was trained using temporal contrastive
learning on Ego4D clips. We evalaute these representations on our
3 real world tasks, and report results as success rates for each task
w/ standard error (i.e., Success% ± Std. Err.%). This experiment
reveals that the trends do generalize to different pre-training schemes
(e.g., vision datasets still stronger than Ego4D), and that the MAE
representations are stronger on average. 94

H.4 Front Cam Performance Breakdown 97
H.5 Ego Cam Performance Breakdown 98
H.6 Fine-Tuning Ablation Breakdown . 98
H.7 Loss Ablation Performance Breakdown 98
H.8 We present the different affordance loss weights we ran sweeps on. 99
H.9 Sim Performance . 100

XII

Chapter 1

Introduction

Autonomous agents can play games (like Go, Chess, and Starcraft) at a super-human
level [204, 228, 191]. They can help solve complex scientific and engineering problems
(like chip design [147] and protein folding [111]), and can even drive autonomously
in limited geographic regions (e.g. https://waymo.com/). Now with the advent of
Large Language Models [169, 56] (LLMs), we’re watching computers automate high-
level reasoning and planning tasks. These advances are breathtaking and they have
certainly revolutionized the world of bits and pixels. But their impact on the real,
physical world has been surprisingly limited. For example, a robot still cannot make
a cup of coffee or fold clothes on command. To be clear, the robot can definitely
reason (using LLMs) about the physical primitives required to transport coffee, but
executing the primitives themselves in the real world remains literally out of reach!

But why are these primitives so hard to acquire? The major challenge is that
manipulation tasks force the robot to precisely reason about object contact behav-
iors, which can vary subtly depending on object properties, environment details, and
the exact task itself. For example, the robot may need to gently grasp a mug by
the handle (when transporting coffee) or stably hold it upside down (when cleaning
the mug). Furthermore, it will have to perform these tasks in any kitchen, given
any novel mug. It is impossible to inumerate and explicitly plan across all these
scenarios. Even if we could, slight differences (e.g., robot wear and tear) during test
time could cause catostrophic failures, because the margin of error for these tasks
is so small and physics is unforgiving. So what can we do instead?

A good idea is to take inspiration from other AI subfields (like Natural Language
Processing [169]), where highly capable models/agents emerged naturally via data-
driven learning. They key insight is that these systems can automatically generalize
to new scenarios and tasks, by automatically learning fundamental skills and world
knowledge from vast amounts of training data. If applied to robotics, this capability
could allow agents to solve the novel test scenarios outlined in the previous section.
However, collecting enough data remains a fundamental challenge. After all, both
vision and language models are often trained on vast collections of data scraped

1

from the internet. In contrast, robot learning researchers often have to collect their
own data, and are thus limited to simple, lab scenarios.

This thesis seeks to scale both the data sources and the learning algorithms and
models used in robotics. More precisely, the objective is to learn a goal-conditioned
robotic policy at π(∗|ot, g) (where at is robot actions, ot is observations, and g is goal
vector), using a mix of the robot’s “prior experience” (i.e., expert demonstrations
and autonomous rollouts collected on the robot itself) and offline, out-of-domain
datasets (e.g., human video data). Note that there is a natural trade-off between
these data sources – the robot data is most targetted to the test-time tasks, but
is the most scarce due the difficulty of collecting it. As a result, this work will
explicitly investigate both ends of this trade-off. Specifically, it investigates:

1. Learning from Expert Robot Data: In this setting π is learned exclusively from
expert demonstrations. While this is a rich and highly targetted supervision
signal, it is also the most expensive to collect – it requires human tele-operators
to manually collect data in the real world for every task/scenario! This thesis
demonstrates the power of this learning signal for training high capacity policy
networks that can be used to scalably parameterize π.

2. Learning from Autonomous Multi-Instituion Robot Data: In this “middle
ground” setting, π is learned using a mix of robot data collected from different
institutions. To reduce human effort, this data is collected automatically using
random robot interactions in a table-top bin setting. This allows us to learn
significantly stronger policies using the increased amount of data, but is still
limited to table-top settings.

3. Learning from Internet Scale Data: In this final setting, the policy is initial-
ized (i.e., pre-trained) using Out-Of-Domain (OOD) data collected from more
scalable sources (e.g., human video data and internet mining). The hope is to
learn effective representations and physical/world knowledge from “cheaper”
data. Then these representations are transferred to robotics domain to learn
π, using a small amount of expert demonstration data.

1.0.1 Contributions

While investigating these data sources, this thesis makes the following contributions:

C1. Chapter 2 demonstrates how high-capacity transformer neural networks can
learn complicated goal conditioned behaviors using a simple imitation learn-
ing algorithm. This showcases the power of expert demonstration data, but
requires an unfeasible amount of demonstrations for real world tasks.

C2. Chapter 3 attempts to ease the data burden by developing a scalable strategy
for cross institution robot data collection. This data is used to pre-train a

2

robot policy that can then be quickly fine-tuned to solve new tasks in novel
hardware environments. While much more scalable than the original expert
demonstration assumptions, the level of diversity showcased in robot labs is
still limited.

C3. Chapter 4 shows how representations trained on internet scale video data can
be efficiently fine-tuned to solve robotic tasks in various domains. In other
words, representations allow us to bring priors learned from entirely different
domains into the robot setting.

C4. While representation learning is a powerful paradigm, it is unclear how to
create a stronger representation for robotics. The core question is, “what out-
of-domain data yields the strongest representations for downstream robotics
tasks?” Chapter 5 analyzes this questions and finds that standard internet
datasets transfer surprsingly well to robotics, but that self-supervised rep-
resentation alone does not efficiently capture scene information required for
robotics.

C5. Finally, Chapter 6 demonstrates how a semi-supervised approach can explicitly
inject relevant object and environment level visual cues into the representation.
This process yields a representation with stronger transfer to downstream ma-
nipulation tasks and can be applied to any pre-trained representation. Thus,
we are able to more efficiently transfer data to the robotics domain from out-
side sources.

3

Part I

Learning from Expert Robot Data

4

Chapter 2

Transformers for One-Shot Visual
Imitation

2.1 Motivation

Imitation is one of the most important cornerstones of intelligence. Watching other
humans act, inferring their intentions, and attempting the same actions in our own
home environments allows us to expand our skill set and enhance our representations
of the world [229]. On the other hand, robots - while capable of imitating skills like
table tennis [149] and driving [167] – are much less flexible when it comes to visual
imitation. Most prior work in robotic imitation assumes that the agent is trying
to acquire a single skill from demonstration(s) collected kinesthetically [161] (i.e. a
human manually guides a robot) or via tele-operation [258]. These approaches can
work so long as the target test-time task and environment are do not significantly
differ from those seen during training. Is it possible to develop a robotic agent which
can learn to imitate without these restrictions?

Visual imitation requires extracting a higher level goal from the visual demon-
stration and using the inferred goal to predict actions from pixels. But how does one
represent goal/intention and how can this contextual information be incorporated
into the policy function itself? There are three primary approaches in prior work:
the first approach is to represent goals/intentions as pixels by generating goal images,
and then inferring actions given current observations and inferred goals [200, 208].
While this approach is intuitive and interpretable, it is difficult to generate pixels, in
a way that respects structural differences in the image. Figure 2.1 shows an example
with well defined task semantics, but where a change in object positions makes it
difficult to visually map the human state to the robot environment. The second
approach has been to model visual imitation as a one-shot learning problem [59],
which can be solved with meta-learning algorithms [68]. Here, a robot is given
a single example, in the form of a video or demonstration (e.g. video + control
telemetry), and must use that information to perform new instances of the same

5

task. The demonstration is used to update the parameters of a policy function and
the updated policy is executed on the robot. Domain gaps can be addressed with
a learned adaptive los function [249]. While the one-shot formalism is very useful,
estimating policy parameters from a single example can be an extremely difficult
problem and prone to over-fitting.

In this chapter, we explore a third alternative: task-driven features for one-shot
learning. We process both observations from the target agent and demonstrations
frames from a ”teacher” agent in order to extract context-conditioned state represen-
tations. What neural network architectures can create task-driven features? While
in the past, approaches such as LSTMs have been used, in this chapter, we focus
on self-attention architectures. In particular, the Transformers architecture - while
simple - has seen broad success in NLP [225] and Vision [233] tasks. Furthermore,
using attention for control tasks has has basis in biology and psychology. Indeed,
humans use attention mechanisms to create context driven representations [180],
and directly supervising policies with human attention can dramatically increase
task performance [257].

In this chapter, we propose using transformers [225] (or non-local self-attention
modules [233]) to extract relational features which act as input state vectors for the
policy function. Our transformers take as input both the spatial ResNet Features
from teacher demonstration and the target agent. This allows the policy to automat-
ically adapt its features to the task at hand, by using context frames to focus only
on important task-specific details. For example, in Figure 2.1 the robot could use
human context frames to focus only on relevant details like the red block’s location,
and entirely ignore distracting elements like the table’s leg. However, transformer
features could easily end up improperly weighting important details during test
time. We propose to solve this issue by further supervising the state representa-
tion learning with an unsupervised inverse dynamics loss. This loss constrains the
learning problem and ensures the final representations can model the underlying dy-
namics, as well as task specific details. Ultimately, our method achieves significant
improvements over one-shot imitation learning baselines on a suite of pick and place
tasks: our final policies demonstrate a 2x performance gain and can match baseline
performance with 3x fewer data-points.

2.2 Related Work

Learning from Demonstration (LfD) is a rich and diverse field of study which focuses
on enabling robots to learn skills from human or other expert demonstrations. A
thorough review is out of scope for this chapter, so we gladly refer the reader to sur-
vey articles [8, 21, 187]. Of prior work, Behavior Cloning (BC) [179, 14], a common
formulation of LfD, is most related to our project. BC involves imitating an expert
agent given a set of trajectories (a.k.a time series of observations and actions), by
fitting a function which approximates the expert’s action in a given state. This

6

Figure 2.1: What should the robot do given video from another demonstration
agent? A human would immediately know to place the red triangle on the blue
square, and can use their past experience to execute the task. Is it possible to teach
a robot to do the same?

simple formulae has proven successful in imitating a wide range of behaviors from
visual inputs, including robotic manipulation tasks [173] and driving [22]. These
methods have been extended to situations where expert observations are present
without action labels [222], including prior work which linked this problem to in-
verse dynamics minimization [244]. However, both of these approaches require the
demonstration agent match the imitator.

BC algorithms often assume that they are approximating a single state condi-
tioned policy. In an environment with multiple tasks or multiple variations of the
same task, this constraint can be limiting. Work on goal conditioned imitation
learning seeks to relax these assumptions by allowing for policies which condition
on a goal variable alongside the current state, and adjust their behavior accordingly.
There are myriad ways to introduce goal conditioning, including with the robot’s
state [57], ”goal” images of the final state [143, 138, 70], natural language [139], and
video or images of humans [198, 240]. In our project, we assume the robot has a
single video of another agent (be it another robot or a human) doing a task, and
must complete that same task itself using past experience. This is a specific instance
of the one-shot learning problem [59], and has been investigated before previously
using meta-learning with an adaptive loss [249]. Instead of using meta-learning, we
propose to attack this problem with an attention mechanism over image frames.

A challenge in this line of work is learning visual representations which can en-
able the robot to deduce the task from video of another agent and perform the task
itself. Work in computer vision demonstrated that deep neural networks are capable
of learning such flexible representations for action recognition [205] and state esti-
mation [130], but often require large image datasets to fully train. Unfortunately,
collecting ImageNet [54] scale datasets on robotics platforms is prohibitively expen-
sive, due to the cost of continuous robot operation and hardware fragility. Work
in self-supervised learning [95, 35, 82] offers a glimmer of hope, by showing how

7

large and (relatively) cheap sets of unlabelled images can be used to learn expres-
sive and useful representations for other downstream tasks. These representations
could be used directly as reward functions [194, 192], but it can be very difficult
to define rewards for a suite of tasks. Instead, unsupervised learning techniques
alongside simple data augmentation can be used to increase data efficiency when
directly acquiring policies with reinforcement learning [210, 127, 120]. Even simpler
self-supervised losses - like inverse modelling (i.e. predicting action between two
sequential states) - can be used to learn robust policies which adapt to new envi-
ronments [91]. Our goal in this project is to apply these insights in representation
learning to the one-shot imitation learning problem.

2.3 Our Method

2.3.1 Problem Definition

Our method follows prior work [68, 249], and formalizes the one-shot imitation
learning problem as supervised behavior cloning on a data-set of tasks. For each
task T (e.g. place blue bottle in bin), we have several demonstration videos and
target trajectories. Note that the demonstration videos and target trajectories are
semantically similar tasks but could have different starting/end states. We represent
each demonstration video as vi and each target trajectory, ti, as a temporal sequence
of observations (o) and actions (a). Hence, ti = {(o(1)i , a

(1)
i), . . . , (o

(k)
i , a

(k)
i)}.

Models are trained on a dataset of tasks D = {T1, . . . , Tn}. During test time,
new test tasks - Ttest - are sampled which the model must successfully control the
imitator agent to perform. Thus, all methods are evaluated on task success rates
in held out environments. Our setup is challenging because: (a) morphological
differences between demonstration and target agent (e.g. one is human and other is
robot arm); (b) missing correspondence between demonstration videos and target
trajectories.

2.3.2 Feature Learning with Transformers

Given video context from a demonstrator agent and image frames from the test en-
vironment, our representation module must deduce relevant features and efficiently
pass them on to later stages of the pipeline for action prediction. For example,
when given a video of a green bottle being dropped in a bin, the vision module
should detect and represent the green bottle in its own environment while ignoring
other distracting objects. We propose to learn this mechanism end-to-end using
self-attention Transformer modules [225], in the hope that this powerful inductive
bias helps the policy perform tasks successfully.

Before the attention module, individual images from both the context video and
current state are passed through a ResNet-18 architecture [97], and spatial features
(size [512, T,H,W]) are collected before the average pooling step. At this stage, the

8

Figure 2.2: Our method uses a Transformer neural network to create task-specific
representations, given context and observation features computed with ResNet-18
(w/ added positional encoding). The attention network is trained end-to-end with
a behavior cloning loss, an inverse modelling loss, and an optional point loss super-
vising the robot’s future pixel location in the image.

features are flattened (size [512, T ∗H ∗W]) and sinusoidal positional encodings [225]
are added to the tensor (i.e. time and space treated as single dimension). These
embeddings can allow neural networks to represent higher frequency functions [215],
and we empirically found that they were crucial to preserving spatial and temporal
information in the attention module. After adding positional encodings, the features
are reshaped to their original size.

Next, the non-local multi-head attention operator is applied to the input tensor.
We adopt a specific implementation of the Transformers self-attention module pre-
sented in Wang et al [233], which we augment with multi-headed self-attention [225].
First, the module generates Key, Query, and Value tensors by applying three sep-
arate 3D spatio-temporal convolutions (we use kernel size k = 1) with ReLU acti-
vation to the input tensor. To be clear, each convolution layer’s input and output
are [d, T,H,W] tensors, where d is the Transformer’s embedding size. These gener-
ated key, query, and value tensors are then flattened and projected down n separate
times - once for each attention “head” - before attention is applied (final shape per
head [d, T ∗H ∗W]). The self-attention operator is applied to each head individu-
ally. Considering attention head j, temperature parameter τ , and projected tensors
Kj , Qj , Vj , this amounts to:

Aj = softmax(KT
j Qj/τ) V

(out)
j = VjAj

The individual attention heads are then concatenated together channel-wise, and

9

then projected back to the original 512 dimension size with another 3D convolution
(O = Conv3D(concat[V (out)

1 , . . . , V
(out)
n])). Note that this multi-head attention op-

erator can be implemented with little overhead using batched matrix multiplication.
Dropout [211], then a residual connection, and finally batch normalization [104] are
applied to get the final output f(x) = batchnorm(x + dropout(O)), with final size
[512, T,H,W]. In order to appropriately apply this to behavior cloning (where ot+1

is not known during test time), we make this operation causal by appropriately
padding the 3D convolution operators and masking the attention.

2.3.3 Goal Conditioned Behavior Cloning

As discussed previously, our objective is to learn a policy π(at|o1:t, v) which ingests
the current (or optionally all previous) state observations alongside a context video,
and predicts a distribution over possible actions the expert policy would select. We
process the input video stream with stacked attention modules to yield fixed size
spatial features, with one feature map per time-step. The features are projected
down to a fixed size representation vector using a spatial softmax operator [131],
followed by a multi-layer perceptron with ReLU activations, and finally L2 nor-
malization to unit length. This representation φt = F (o1:T , v) is used for action
prediction.

Multi-Modal Action Prediction: One of the most naive ways to predict
π(at|o1:t, v) from φt is to simply parameterize the policy as a normal distribution
π(at|o1:t, v) = N (µ(φt), σ(φt)), and to sample actions from that. However, this
approach can run into severe limitations when the real expert distribution is
multi-modal. Consider a robot attempting to top-down lift a cup by its handle.
Rotating the gripper by 90◦or -90◦, but not rotating at all (i.e. the mean action)
would result in task failure since the gripper would close on top of the handle. Prior
work [173, 171, 138] showed this limitation matters in practice, and rectifies the
situation by predicting a mixture of uni-modal distributions. We adopt the same
solution used by Lynch et al [138]. First, we discretize the action space (discussed
in detail in Section 2.4.1) and then parameterize the policy as a discretized logistic
mixture distribution [184]. For each timestep, we predict k logistic distributions
with separate mean and scale, and form a mixture by convexly weighting them
with vector α. The behavior cloning training loss is simply negative log-likelihood
for this distribution:

LBC(D, θ) = − ln(Σk
i=0 αk(φt) P (at, µi(φt), σi(φt))

Where, P (at, µi(φt), σi(φt)) = F (at+0.5−µi(φt)
σi(φt)

)−F (at−0.5−µi(φt)
σi(φt)

) and F (·) is the
logistic CDF. During test time, actions are simply sampled from the distribution
and executed on the robot without rounding. For most of our experiments, the
model performed best when using two mixture components and learned constant
variance parameters per action dimension.

10

2.3.4 Inverse Model Regularizer

Our method also adds a self-supervised inverse modeling objective to act as a regular-
izer to the behavior cloning loss during training. Context and trajectory snippets are
sampled from the dataset, and images in them are randomized with sampled trans-
lations, color shifts, and crops. This randomization is applied consistently to frames
from the context video, whereas images from the agent’s observation stream (a.k.a
trajectory images) are randomized individually. This randomized image stream is
passed through the attention and representation modules to generate φ̃t. The repre-
sentations φ̃t and φ̃t+1 are used to predict a discretized logistic mixture distribution
over intermediate actions. Thus, the inverse loss is:

LINV (D, θ) = − ln(Σk
i=0 αk(φ̃t, φ̃t+1) logistic(µi(φ̃t, φ̃t+1), σi(φ̃t, φ̃t+1)))

We share parameters between the behavior cloning and inverse modeling objectives
for the attention module, representation module, and distribution prediction heads
(i.e. after first layer). In practice, we use the randomized image stream for both
tasks as well, in order to minimize memory consumption.

2.3.5 Point Prediction Auxiliary Loss

Finally, our model uses φt to predict a 2D keypoint location corresponding to the
location of the gripper in the image H timesteps in the future. Ground truth for this
auxiliary loss is easy to acquire given either a calibrated camera matrix or object
detector trained on the robot gripper. One could instead predict the 3D gripper posi-
tion in world coordinates if neither is available. While not strictly needed for control,
this loss is very valuable during debugging, since it lets us visually check during train-
ing if the model understand where the robot ought to be H timesteps in the future.
The point prediction is parameterized with a simple multi-variate 2D normal distri-
bution p̂t+H ∼ N (µ(φt),Σ(φt)) with loss Lpnt(D, θ) = − ln(likelihood(pt+H , p̂t+H)).
Thus, the overall loss for our method is:

L(D, θ) = λBC LBC(D, θ) + λINV LINV (D, θ) + λpnt Lpnt(D, θ)

2.4 Experimental Results
Our model is evaluated on robotic manipulation tasks - namely pick and place tasks
- in simulation using multi-agent MuJoCo [220] environments. Our evaluations
investigate the following questions: (1) can our model perform new task instances
(defined in 2.4.1) previously unseen during training? And (2) what components (e.g.
inverse loss, etc.) are most crucial for successful control?

2.4.1 Simulation Environment and Tasks

11

Figure 2.3: Our base environ-
ment is adopted from Robo-
Turk [145]. The 16 tasks con-
sist of taking an object (a-b)
to a bin (1-4). Top robot is
agent and bottom is demon-
strator.

Environment Description: The environments we use
are modified variants of those originally presented in
RoboTurk [145]. Visually, the base environment -
shown in Figure 2.3 - is the exact same as the orig-
inal from RoboTurk, except the object meshes are
replaced with primitive geometric types (e.g. boxes
and cylinders) in order to improve simulation con-
tact stability and run-time. This modification re-
sults in only minor visual differences. In order to in-
vestigate visual imitation across agent morphology,
we use duplicate versions of the environment with
two visually distinct robots. The Sawyer robot (red
robot in Figure 2.3) provides demonstration videos
and the Panda robot (white robot in Figure 2.3) acts
as the agent which our model must control. Both
environment’s action spaces are modified to support
end-effector control. Given a target x, y, z position,
rotation in axis-angle form, and gripper joint angle
the environment solves for desired robot joint angles

with inverse kinematics and sends joint velocities to the robot using a simple PD
controller. Thus, the final action space consists of a target pose discretized into 256
independent bins per dimension in order to support our behavior cloning loss. It’s
important to note that the demonstrations we train on do not cover the whole state
space, so the robot is mostly constrained to 3-DOF movement.

Task Definition: A “task instance” consists of picking an object from a specific
start location - uniformly distributed on the table in Fig. 2.3 - and placing the
object in one of the four bins on the right. Task instances are grouped into “tasks”
based on shared properties. For example, picking a milk carton (from Fig. 2.3)
and placing it into bin 1 is a task, and different task instances are constructed by
changing the carton’s start position. This precise definition allows us to collect a
suite of train task instances, train models on that data, and test generalization to
new task instances.

Data Collection Methodology: Training data is collected using an expert pick-
place policy (built using privileged information from the simulator) in the target
environment(s). For each task (T) we repeatedly, sample a demonstration video
(vi) by executing the expert policy on the Sawyer robot, then shuffle the objects,
and sample an expert trajectory (ti) by executing the expert policy on the Panda
robot. This way a dataset of tasks is formed from individual task instances.

2.4.2 Baseline Comparisons

Our investigation begins by evaluating our method’s performance in 16 tasks in the
base environment (Figure 2.3). We seek to determine the robot’s physical compe-

12

Model Reaching Success Picking Success Placing/Overall Success
Our Method 99.4% ± 1.2% 92.5% ± 4.1% 88.8% ± 5.0%
Contextual-LSTM 38.8% ± 7.6% 26.3% ± 6.9% 23.8% ± 6.7%
DAML [249] 36.9% ± 7.6% 10.6% ± 4.8% 6.9% ± 4.0%
DAML Auxiliary 47.8% ± 7.4% 17.8% ± 5.6% 13.3% ± 5.0%

Table 2.1: Comparison between our method and baselines in 16 pick and place tasks.
Values indicate success rates and 95% confidence intervals for “stages”Footnote 1 in
the overall pick and place task.

tency at manipulating all four objects, as well as its ability to deduce which task it
should perform from context video. A natural way to quantify this is by breaking
down the 16 pick and place tasks into “reach,” “pick,” and “place” stages1, and re-
porting success rates on each stage individually. Failure modes can be successfully
deduced from these rates. For example, since reaching is a physically easy task, if
the robot does not reach the object then it is likely unable to deduce the target
object from the context frames. Furthermore, if the robot reaches the object but is
unable to pick it up, its physical dexterity (or lack thereof) is likely to blame.

We collect 100 train task instances using the methodology described previously
for each of the 16 tasks. That amounts to 1600 total demonstration videos alongside
1600 expert robot trajectories. We train our method on the dataset and compare
against the following baselines:

• Contextual-LSTM: This baseline utilizes a standard Encoder-Decoder
LSTM [99, 212] (augmented with self-attention [11, 36]), to first consume
the context video, and then predict actions from encoded observations. It
uses the same mixture distribution our model uses. Before LSTM processing,
images frames are embedded using a pre-trained ResNet-18 [97] neural net
combined with spatial-softmax [131] and fully-connected layers. The whole
network is trained end-to-end with a behavior cloning loss.

• Domain Adaptive Meta-Learning: DAML [249] uses a learned loss function to
adapt a neural network’s parameters to perform the desired task. We used a
wider version of the network used in the original paper, since we found that
using deeper models (like ResNet-18) resulted in overfitting on this task. To
increase performance, the same discrete logistic action distribution is used.
DAML is trained end-to-end with the MAML meta-learning algorithm [65]
using a behavior cloning loss, along with explicit supervision of the pick and
drop locations.

• DAML-Auxiliary: This method uses the same meta-learning model described
1Reaching is defined as placing the gripper within < 0.03 units from the target object, picking

requires stably lifting the object > 0.05 units off ground, and placing requires putting the object in
the correct bin (a.k.a task completion)

13

above, except only the predicted pick and place locations are used during test
time. Given this prediction, a grasp motion is executed in the environment
using a hard coded grasp policy.

For each of the 16 tasks, the models are prompted to perform new task instances
(unseen during training) using freshly generated context videos. Success rates for
our method and baselines (averaged across tasks) are shown in Table 2.1. As you can
see, our method is the only one which can reliably perform new task instances. Its
overall success rate is double the competing models’ reaching success rate, including
the DAML-auxiliary model which makes strong task assumptions, and the LSTM
model which uses embedding level attention. The LSTM baseline’s (which uses
standard attention) relative failure supports our hypothesis that the Transformer
architecture uniquely enables difficult visual processing. For additional experiments
testing generalization to new objects (i.e. new tasks instead of new task instances)
refer to Appendix H.1.1.

2.4.3 Architecture Ablation

While the our model clearly outperforms the other baselines, it is unclear if the
Transformers architecture or additional losses deserve more credit. To test this
thoroughly, the Transformers model is tested against an ablated version of itself
without the attention mechanism (i.e. just temporal-spatial convolutions) using
the same base environment comparison described before. Furthermore, models are
trained with various versions of the baseline neural network architectures, alongside
the additional loss terms. Specifically, 4 baseline architectures are considered: 2 of
them adopt the small convolutional network used in prior work [249, 262] either with
or without an additional LSTM [99] on top, and the other 2 use ResNet features [97]
(again with or without LSTM). Note all architectures were tuned to maximize their
own test performance rather than to match some other metric (e.g. number of
parameters), since doing so often led to worse results for the baseline (e.g. larger
LSTMs overfit more than Transformers). Results are presented in Figure 2.4. The
key takeaways are encouraging. First, the Transformers architecture (w/ attention)
outperforms a library of other architectures for this task by large margins, even
using the same losses. Furthermore, the baselines perform better when trained with
the additional losses compared to being trained purely with a behavior cloning loss
as done before (contextual-LSTM’s success rate improves 20% → 40%).

14

Figure 2.4: Our Transformer model is
compared against other neural networks
(all trained w/ our losses and code)
to determine how useful the attention
mechanism really is. The Transformer
architecture outperforms all others, in-
cluding a version of itself w/out atten-
tion.

Figure 2.5: We compute success rate v.s
number of train samples for our method
and versions with one loss excluded (all
w/ Transformer). Note the model with-
out inverse loss is usually outperformed
when compared to its peers trained on
the same data.

2.4.4 Loss Function and Method Ablations

Given that our training losses/code boosted baseline architecture performance com-
pared to using just behavior cloning, we now seek to test exactly which component
was most useful. It’s entirely possible that some of the additional parts offer more
utility in the ”low-data” regime where over-fitting is more likely, and thus are less
useful when more data is present. Thus, we collect two more versions of the base en-
vironment dataset with fewer samples (480 and 800 samples pairs), and train three
ablations - one model without the inverse loss, one without the point loss, and one
without data augmentation - alongside our base model on all three datasets (two
new sets + original). That results in a total of 12 models, all of which we evaluate
in the same manner as before. Overall success rates for all models are in Figure 2.5.
Note that the model without the inverse loss is outperformed by its counterparts in
two out of three datasets, whereas the point loss only makes a significant difference
in the smallest dataset. Indeed as the number of datapoints increases, so does the
importance of the inverse loss: the model without inverse loss is more than 25%
worse than its counterparts in the N = 1600 case! While the inverse loss clearly
makes a difference, this cannot be observed as “positive transfer” in the behavior
cloning train/test loss (see Appendix H.1.2). This suggests inverse loss regulariza-
tion helps test time performance in ways not captured in the training objective.
Finally, conditioning our policy on context video proved to be more effective than
just feeding it the last frame, which indicates the demonstration helps our model
determine which task to perform compared to using a “goal image” frame. For more

15

check Appendix H.1.3.

2.5 Discussion
In this project we explore the one-shot visual imitation learning problem. Our
experiments highlight two technical contributions - applying the Transformers ar-
chitecture to one-shot imitation tasks and a self-supervised inverse modelling objec-
tive - which both result in large performance gains over baseline one-shot imitation
learning approaches. More specifically, our ablations show that our model trained
without the self-supervised inverse loss performs significantly worse when compared
to other versions with the inverse loss, and all of our Tansformers models (even with-
out inverse loss) outperform a Seq2Seq LSTM trained with traditional “embedding
level” attention mechanisms by roughly 2x.

The main takeaway here is that injecting the right biases - both in terms of
network design and the loss function - can help policies perform better during test-
time. We believe that the Transformer’s attention mechanism provides such a bias by
allowing for task conditioned representations, whereas the inverse model forces the
policy to preserve information which is needed for robust control during test time.
We hope that these findings prove useful to others working on one-shot imitation
learning and goal conditioned reinforcement learning in general.

16

Part II

Learning From Autonomous
Multi-Institution Robot Data

17

Chapter 3

RoboNet: Large-Scale Multi-Robot
Learning

3.1 Motivation

The key motivation for using machine learning in robotics is to build systems that
can handle the diversity of open-world environments, which demand the ability
to generalize to new settings and tasks. Such generalization may either be zero-
shot, without any additional data from the target domain, or very fast, using only
a modest amount of target domain data. Despite this promise, two of the most
commonly raised criticisms of machine learning applied to robotics are the amount
of data required per environment due to limited data-sharing, and the resulting
algorithm’s poor generalization to even modest environmental changes. A number of
works have tried to address this by developing simulations from which large amounts
of diverse data can be collected [182, 6], or by attempting to make robot learning
algorithms more data efficient [50, 52]. However, developing simulators entails a
deeply manual process, which so far has not scaled to the breadth and complexity
of open-world environments. The alternative of using less real-world data often also
implies using simpler models, which are insufficient for capturing the many details
present in complex real-world environments such as object geometry or appearance.

Instead, we propose the opposite – using dramatically larger and more var-
ied datasets collected in the real world. Inspired by the breadth of the ImageNet
dataset [54], we introduce RoboNet, a dataset containing roughly 162,000 trajectories
with video and action sequences recorded from 7 robots, interacting with hundreds
of objects, with varied viewpoints and environments, corresponding to nearly 15
million frames. The dataset is collected autonomously with minimal human inter-
vention, in a self-supervised manner, and is designed to be easily extensible to new
robotic hardware, various sensors, and different collection policies.

The common practice of re-collecting data from scratch for every new environ-
ment essentially means re-learning basic knowledge about the world — an unneces-

18

Sawyer Time Franka Time WidowX Time

Baxter Time Fetch Time

Google Robot Time

Kuka Time

Figure 3.1: A glimpse of the RoboNet dataset, with example trajectories, robots, and
viewpoints. We collected data with Sawyer, Franka, WidowX, Kuka, and Baxter
robots, and augmented the dataset with publicly-available data from a robot from
Google [66], a Fetch [251], and a Sawyer [61]. We use RoboNet to study the viability
of large-scale data-driven robot learning, as a means to attain broad generalization
across robots and scenes.

sary effort. In this chapter, we show that sharing data across robots and environ-
ments makes it possible to pre-train models on a large dataset of experience, thus
extracting priors that allow for fast learning with new robots and in new scenes.
If the models trained on this data can acquire the underlying shared patterns in
the world, the resulting system would be capable of manipulating any object in the
dataset using any robot in the dataset, and potentially even transfer to new robots
and objects.

To learn from autonomously-collected data without explicit reward or label su-
pervision, we require a self-supervised algorithm. To this end, we study two methods
for sharing data across robot platforms and environments. First, we study the visual
foresight algorithm [67, 61], a deep model-based reinforcement learning method that
is able to learn a breadth of vision-based robotic manipulation skills from random in-
teraction. Visual foresight uses an action-conditioned video prediction model trained
on the collected data to plan actions that achieve user-specified goals. Second, we
study deep inverse models that are trained to predict the action taken to reach one
image from another image, and can be used for goal-image reaching tasks [3, 138].
However, when trained in a single environment, robot learning algorithms, including
visual foresight and inverse models, do not generalize to large domain variations,
such as different robot arms, grippers, viewpoints, and backgrounds, precluding the
ability to share data across multiple experimental set-ups and making it difficult to
share data across institutions.

Our main contributions therefore consist of the RoboNet dataset, and an experi-

19

mental evaluation that studies our framework for multi-robot, multi-domain model-
based reinforcement learning based on extensions of the visual foresight algorithm
and prior inverse model approaches. We show that, when trained on RoboNet, we
can acquire models that generalize in zero shot to novel objects, novel viewpoints,
and novel table surfaces. We also show that, when these models are finetuned
with small amounts of data (around 400 trajectories), they can generalize to un-
seen grippers and new robot platforms, and perform better than robot-specific and
environment-specific training. We believe that this chapter takes an important step
towards large-scale data-driven approaches to robotics, where data can be shared
across institutions for greater levels of generalization and performance.

3.2 Related Work

Deep neural network models have been used widely in a range of robotics applica-
tions [75, 254, 30, 255, 16, 103]. However, most work in this area focuses on learning
with a single robot in a single domain, while our focus is on curating a dataset that
can enable a single model to generalize to multiple robots and domains.

The multi-task literature [51, 5], lifelong learning literature [216, 217], and meta-
learning literature [65, 4] describe ideas that are tightly coupled with this concept.
By collecting task-agnostic knowledge in wide variety of domains, a robotic system
should be able to rapidly adapt to new, unseen environments using relatively little
target domain data.

Large-scale, self-supervised robot learning approaches have adopted a similar
viewpoint [165, 133, 83, 67, 255, 3, 163, 61]. Unlike these methods, we specifically
consider transfer across multiple robots and environments, as a means to enable
researchers to share data across institutions. We demonstrate the utility of our
data by building on the visual foresight approach [67, 61], as it further enables
generalization across tasks without requiring reward signals. This method is related
to a range of recently proposed techniques that use predictive models for vision-based
control [26, 218, 234, 125, 153]. Further, we also study how we can extend vision-
based inverse models [3, 163, 251, 138] for generalizable robot-agnostic control.

A number of works have studied learning representations and policies that trans-
fer across domains, including transfer from simulation to the real world [182, 219,
108], transfer across different dynamics [38, 252, 164, 6], transfer across robot mor-
phologies with invariant feature spaces [85] and modularity [55], transfer across
viewpoints through recurrent control [183], and transfer across objects [68, 107],
tasks [59] or environments [39] through meta-learning. In contrast to these works,
we consider transfer at a larger scale across not just one factor of variation, but
across objects, viewpoints, tasks, robots, and environments, without the need to
manually engineer simulated environments.

Outside of robotics, large and diverse datasets have played a pivotal role in ma-
chine learning. One of the best known datasets in modern computer vision is the

20

ImageNet dataset [54], which popularized an idea presented earlier in the tiny im-
age dataset [224]. In particular, similar to our work, the main innovation in these
datasets was not in the quality of the labels or images, but in their diversity: while
prior datasets for image classification typically provided images from tens or hun-
dreds of classes, the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC)
contained one thousand classes. Our work is inspired by this idea: while prior robotic
manipulation methods and datasets [66, 247, 29, 83, 145, 61, 199] generally consider
a single robot at a time, our dataset includes 7 different robots and data from 4
different institutions, with dozens of backgrounds and hundreds of viewpoints.

This makes it feasible to study broad generalization in robotics in a meaningful
way.

3.3 Data-Driven Robotic Manipulation

In this work we take a data-driven approach to robotic manipulation. We do not
assume knowledge of the robot’s kinematics, the geometry of objects or their physical
properties, or any other specific property of the environment. Instead, basic common
sense knowledge, including rigid-body physics and the robot’s kinematics, must be
implicitly learned purely from data.

Problem statement: learning image-based manipulation skills. We use data-
driven robotic learning for the task of object relocation – moving objects to a spec-
ified location either via pushing or grasping and placing. However, in principle,
our approach is applicable to other domains as well. Being able to perform tasks
based on camera images alone provides a high degree of generality. We learn these
skills using a dataset of trajectories of images I0:T paired with actions a0:T , here T
denotes the length of the trajectory. The actions are sampled randomly and need
to provide sufficient exploration of the state space, which has been explored in prior
work [61, 241]. This learning and data collection process is self-supervised, requiring
the human operator only to program the initial action distribution for data collec-
tion and to provide new objects at periodic intervals. Data collection is otherwise
unattended.

Preliminaries: robotic manipulation via prediction. We build on visual fore-
sight [67, 61], a method based on an action-conditioned video prediction model
that is trained to predict future images, up to a horizon h, from on past images:
Ît+1:t+h = f(It, at:t+h−1), using unlabeled trajectory data such as the data presented
in the next section. The video prediction architecture used in visual foresight is a
deterministic variant of the SAVP video prediction model [128] based heavily on
prior work [66]. This model both predicts future images and the motion of pixels,
which makes it straightforward to set goals for relocating objects in the scene sim-
ply by designating points d0,i (e.g., pixels on objects of interest), and for each one
specifying a goal position dg,i to which those points should be moved. We refer to
d0,i as designated pixels. These goals can be set by a user, or a higher-level planning

21

algorithm. The robot can select actions by optimizing over the action sequence to
find one that results in the desired pixel motion, then executing the first action in
this sequence, observing a new image, and replanning. This effectively implements
image-based model-predictive control (MPC). With an appropriate choice of action
representation, this procedure can automatically choose how to best relocate ob-
jects, whether by pushing, grasping, or even using other objects to push the object
of interest. Full details can be found in Appendix H.2.1 and in prior work [61].

Preliminaries: robotic manipulation via inverse models. To evaluate RoboNet’s
usefulness for robot learning beyond use with the visual foresight algorithm, we
evaluate a simplified version of the inverse model in [138]. Given context data,
{. . . , (It−2, at−2), (It−1, at−1)}, the current image observation It, and a goal image
It+T , the inverse model is trained to predict actions at, . . . , at+T−1 (where T is a
given horizon) that are needed to take the robot from the start to the goal im-
age. Our experiments train a one-step inverse model where T = 1, which can be
trained with supervised regression. At test time, the model takes as input 2 context
frame/action pairs, the current image, and a goal image and then will predict an
action which ought to bring the robot to the goal. This process is can be repeated
at the next time-step, thus allowing us to run closed loop visual control for multiple
steps.

3.4 The RoboNet Dataset

To enable robots to learn from a wide range of diverse environments and generalize
to new settings, we propose RoboNet, an open dataset for sharing robot experience.
An initial set of data has been collected across 7 different robots from 4 different in-
stitutions, each introducing a wide range of conditions, such as different viewpoints,
objects, tables, and lighting. By having only loose specifications1 on how the scene
can be arranged and which objects can be used, we naturally obtain a large amount
of diversity, an important feature of this dataset. By framing the data collection as
a cross-institutional effort, we aim to make the diversity of the dataset grow over
time. Any research lab is invited to contribute to it.

3.4.1 Data Collection Process

All trajectories in RoboNet share a similar action space, which consists of deltas in
position and rotation to the robot end-effector, with one additional dimension of the
action vector reserved for the gripper joint. The frame of reference is the root link
of the robot, which need not coincide with the camera pose. This avoids the need to
calibrate the camera, but requires any model to infer the relative positioning between
the camera and the robots’ reference frames from a history of context frames. As
we show in Section 3.5, current models can do this effectively. The action space can

1Specifications can be found here: http://www.robonet.wiki

22

http://www.robonet.wiki

also be a subset of the listed dimensions. We chose an action parametrization in
end-effector space rather than joint-space, as it extends naturally to robot arms with
different degrees of freedom. Having a unified action space throughout the dataset
makes it easier to train a single model on the entire dataset. However, even with a
consistent action space, variation in objects, viewpoints, and robot platforms has a
substantial effect on how the action influences the next image.

In our initial version of RoboNet, trajectories are collected by applying actions
drawn at random from simple hand-engineered distributions. We most commonly
use a diagonal Gaussian combined the automatic grasping primitive developed in
[60]. More details on the data collection process are provided in Appendix H.2.3.

3.4.2 The Diverse Composition of RoboNet

The environments in the RoboNet dataset vary both in robot hardware, i.e. robot
arms and grippers, as well as environment, i.e arena, camera-configuration and
lab setting, which manifests as different backgrounds and lighting conditions (see
Figure 3.1 and 3.2). In theory, one could add any type (depth, tactile, audio, etc.)
of sensor data to RoboNet, but we stick to consumer RGB video cameras for the
purposes of this project. There is no constraint on the type of camera used, and
in practice different labs used cameras with different exposure settings. Thus, the
color temperature and brightness of the scene varies through the dataset. Object
sets also vary substantially between different lab settings. To increase the number
of tables, we use inserts with different textures and colors. To increase the number
of gripper configurations, we 3D printed different finger attachments. We collected
104.4k trajectories for RoboNet on a Sawyer arm, Baxter robot, low-cost WidowX
arm, Kuka LBR iiwa arm, and Franka Panda arm. We additionally augment the
dataset with publicly available data from prior works, including 5k trajectories from
a Fetch robot [251] and 56k trajectories from a robot at Google [66]. The full dataset
composition is summarized in Table 3.1.

3.4.3 Using and Contributing to RoboNet

The RoboNet dataset allows users to easily filter for certain attributes. For example,
it requires little effort to setup an experiment for training on all robots with a certain
type of gripper, or all data from a Sawyer robot. An overview of the current set of
attributes is shown in Table 3.1, and image examples are provided in Figure 3.2. We
provide code infrastructure and common usage examples on the project website.2

Scripts for controlling common types of robots, for collecting data, and for storing
data in a standard format are available on the project website. On the same webpage
we are also providing a platform that allows anyone to upload trajectories. After
data has been uploaded we will perform manual quality tests to ensure that the

2The project webpage is at http://www.robonet.wiki/

23

http://www.robonet.wiki/

trajectories comply with the standards used in RoboNet: the robot setup should
occupy enough space in the image, the action space should be correct, and the
images should be of the right size. After passing the quality test, trajectories are
added to the dataset. An automated quality checking procedure is planned for
future work.

Example viewpoints and scenes

End-effector grippers types

Example object types

Example robots

Figure 3.2: Qualitative exam-
ples of the various attributes
in the RoboNet dataset.

Robot type
(number of trajectories)

Sawyer (68k), Baxter (18k),
WidowX (5k), Franka (7.9k),
Kuka (1.8k), Fetch (5k) [251],
GoogleRobot (56k) [66]

Gripper type

Weiss Robotics WSG-50,
Robotiq, WidowX,
Baxter, Franka, Kuka

Arena types 7
Arena inserts 10
Gripper configurations 10
Camera configuration 113
Lab environments 4

Table 3.1: Quantitative overview of the various at-
tributes in the RoboNet dataset, including the 7
different robot arms and 7 different grippers.

3.5 Robot-Agnostic Visual Control: Model Training and Ex-
periments

A core goal of this chapter is to study the viability of large-scale data-driven robot
learning as a means to acquire broad generalization, across scenes, objects, and
even robotic platforms. To this end, we design a series of experiments to study the
following questions: (1) can we leverage RoboNet to enable zero-shot generalization
or few-shot adaptation to novel viewpoints and novel robotic platforms? (2) how
does the breadth and quantity of data affect generalization? (3) do predictive models
trained on RoboNet memorize individual contexts or learn generalizable concepts
that are shared across contexts? Finally, we evaluate a simple inverse model to test
if RoboNet can be used with learning algorithms other than visual foresight.

3.5.1 Visual Foresight: Experimental Methodology

For our visual foresight robot experiments, we evaluate models in terms of perfor-
mance on the object relocation tasks described in Section 3.3. A task is defined
as moving an object not in the training set to a particular location in the image.
After running the learned policy or planner, we measure the distance between the
achieved object position and the goal position. We judge a task to be successful
if the operator judges the object is mostly covering the goal location at the end of
the rollout. Models within an experiment are compared on the same set of object

24

relocation tasks. We use this evaluation protocol through the rest of the experi-
ments. Please refer to Appendix H.2.5 for some images of the testing environments.
Note that results should not be compared across different experiments, since task
difficulty varies across robots and human operators.

3.5.2 Visual Foresight: Zero-Shot Generalization to New Viewpoints and
Backgrounds

In this section, we study how well models trained on RoboNet can generalize, with-
out any additional data, to novel viewpoints and held-out backgrounds with a pre-
viously seen robot. Generalizing to a new viewpoint requires the model to implicitly
estimate the relative positioning and orientation between the camera and the robot,
since the actions are provided in the robot’s frame of reference. We attempt five
different object relocation tasks from two views in order to compare a model that
has been trained on 90 different viewpoints against a model that was only trained
on single viewpoint. The arrangement of the cameras is shown in Appendix H.2.5.
In Table 3.2, we show object relocation accuracy results for both of these models
when testing on both the seen viewpoint (left) and a novel viewpoint (right). The
results show that the model trained on varied viewpoints achieves lower final dis-
tance to the goal on the benchmark tasks for both views, thus illustrating the value
of training on diverse datasets.

We tested the same multi-view model on a similar set of tasks in an environment
substantially different from the training environment. In Figure 3.3 we show a
successful execution of a pushing task in this new environment. The multi-view
model achieves an average final distance of 14.4 ± 2 cm (std. error) in the new
setting. This performance is comparable to that achieved by the multi-view model
in a novel viewpoint, which suggests the model is also able to effectively generalize
to novel surroundings.

t = 0 t = 3 t = 6 t = 9 t = 12

Goal position
Starting position

Final position

Goal specification Final image

Predicted
trajectory

Actual
trajectory

Figure 3.3: Zero-shot generalization to
new backgrounds with a model trained
across multiple views.

Avg. dist. (cm)
seen view

Avg. dist. (cm)
held-out view

single view 14.8 ± 3.8 23.2 ± 2.6
multi-view 9 ± 2.2 16.2± 2.9

Table 3.2: Evaluation of viewpoint gen-
eralization, showing the average dis-
tance to the goal after executing the ac-
tion sequence and standard error. A
model trained on multiple views can bet-
ter generalize to a new viewpoint.

25

3.5.3 Visual Foresight: Few-Shot Adaptation to New Robots

t = 0 t = 3 t = 6 t = 9 t = 12

Goal position
Starting position

Final position

Goal specification Final image

Predicted
trajectory

Actual
trajectory

Figure 3.4: Example task of grasping and
moving a thin plastic cup with the Franka
robot, using visual foresight pre-trained on
RoboNet w/o Franka and fine-tuned on 400
trajectories from the Franka robot.

When evaluating on domains that dif-
fer more substantially from any domain
present in the dataset, such as settings
that contain an entirely new robotic
arm, zero-shot generalization is not pos-
sible. In this section, we evaluate how
well visual foresight can adapt to en-
tirely new robots that were not shown to
the model during training. This is one
of the most challenging forms of gen-
eralization, since robots have not only
different appearances, but also differ-
ent dynamics when interacting with ob-
jects, different kinematics, and different
work-space boundaries.

To test our hypothesis, we collect a small number (300-400) of random trajecto-
ries from the target robot environment. Models are then pre-trained on the entirety
of RoboNet, but holding out the data from the target robot. These models are then
fine-tuned using the aforementioned collected trajectories. We compare to a sepa-
rate model that is trained from scratch on those trajectories. Additionally, for the
Franka experiments another model is trained on all the Franka data in RoboNet,
and for the Baxter experiment one model is pre-trained on just Sawyer data in
RoboNet and fine-tuned to Baxter. The R3 and Fetch were also not included in the
pre-training data due to computational constraints.

Kuka Experiments Success
rate

Random
Train on N=400 10%
Random
Train on N=1800 30%
RoboNet
w/o Kuka
Finetune on N=400 40%

Table 3.3: Results for adap-
tation to an unseen Kuka
robot. The model pre-trained
on RoboNet without the Kuka,
R3, and Fetch data, achieves
the best performance when
fine-tuned with 400 trajectories
from the test robot.

Franka Experiments Success
rate

Random
Train on N=400 20%
Random
Train on N=8000 35%
RoboNet
w/o Franka
Finetune on N=400 40%

Table 3.4: Results for adapta-
tion to an unseen Franka robot.
The model pre-trained on
RoboNet without the Franka,
R3, and Fetch data, achieves
the best performance when
fine-tuned with 400 trajectories
from the test robot.

Baxter Experiments Success
rate

Random
Train on N=300 33%
Sawyer
Finetune on N=300 83%
RoboNet
w/o Baxter
Finetune on N=300 58%

Table 3.5: Evaluation results
for adaptation to an unseen
Baxter robot. The model pre-
trained on RoboNet’s Sawyer
data, achieves the best per-
formance when fine-tuned with
300 trajectories from the test
robot.

26

The quantitative results are summarized in Table 3.3, Table 3.4, and Table 3.5.
The results show that RoboNet pre-training provides substantial improvements over
training from scratch, on all three test robots. In the Kuka and Franka experiments,
a model fine-tuned on just 400 samples is able to outperform its counterpart trained
on all of RoboNet’s data from the respective robot. These results suggest that
RoboNet pre-training can offer large advantages over training tabula rasa, by sub-
stantially reducing the number of samples needed in a new environment. Figure 3.4
shows a successful rollout of visual foresight on a challenging task of positioning a
plastic cup to a desired location.

In the Baxter experiment, we also find that pre-training on specific subsets of
RoboNet (in this case the Sawyer, which is visually more similar to the Baxter than
other robots) can perform significantly better than training on the entire dataset.
Hence, this experiment (as well as the Robotiq gripper generalization experiment
in Appendix H.2.6) demonstrates that increased diversity during pre-training can
sometimes hurt performance when compared to pre-training on a subset of RoboNet.
We hypothesize that more specific pre-training works better, because our models
under-fit when trained on all of RoboNet, which we study in more detail in the next
section.

3.5.4 Visual Foresight: Model Capacity Experiments

When training video prediction models on RoboNet, we observe clear signs of under-
fitting. Training error and validation error are generally similar, and both plateau
before reaching very high performance on the training sequences. During test time,
inaccurate predictions are often the cause of poor performance on the robot. Thus,
we perform an additional experiment to further validate the underfitting hypothesis.
We train two large models, using a simplified deterministic version of the network
architecture presented in [226], on RoboNet’s Sawyer data: one model has 200M
parameters and the other has 500M parameters. The 200M parameter model has
0.104 ± 0.057 average `1 per-pixel error on a held out test set, whereas the 500M
model has 0.0847±0.045 `1 per-pixel error. These results suggest that current visual
foresight models – even ones much larger than the 5M - 75M parameter models used
in our control experiments – suffer from underfitting, and future research on higher
capacity models will likely improve performance.

3.5.5 Inverse Model: Multi-Robot and Multi-Viewpoint Reaching

To evaluate RoboNet’s applicability to different control algorithms, we train a simple
version of the inverse model from [138] (refer to Section 3.3 for details) on a subset
of RoboNet containing only Sawyer and Franka data. The same model is evaluated
on both robots: the Sawyer experiments also contain a held-out view. We evaluate
model performance on simple reaching tasks. Tasks are constructed by supplying
a goal image, by taking an image of the gripper in a different reachable state.

27

After task specification, the model runs continuously, re-planning each step until
a maximum number of steps is reached. Success is determined by a human judge.
This model is able to perform visual reaching tasks on both robots, including from
a novel viewpoint not seen during training. However, because of its comparatively
greedy action selection procedure, we observe that it tends to perform poorly on
more complex tasks that require object manipulation.

3.6 Discussion

Inverse Model Success
Sawyer Reaching
Front View 4/5
Sawyer Reaching
Unseen View 5/5
Franka Reaching
Front View 4/5

Table 3.6: Inverse model re-
sults on 5 reaching tasks.
The model is successful
across multiple robot plat-
forms and generalizes to a
new viewpoint.

We presented RoboNet, a large-scale and extensible
database of robotic interaction experience that com-
bines data from 7 different robots, multiple environ-
ments and backgrounds, over a hundred camera view-
points, and four separate geographic locations. We
demonstrated two example use-cases of the dataset
by (1) applying the visual foresight algorithm [61] and
(2) learning vision-based inverse models. We evalu-
ated generalization across many different experimen-
tal conditions, including varying viewpoints, grippers,
and robots. Our experiments suggested that fine-
tuning models pretrained on RoboNet offers a power-
ful way to quickly allow robot learning algorithms to
acquire vision-based skills on unseen robot hardware.

Our experiments further found that video predic-
tion models with ≤ 75M parameters tend to heavily underfit on RoboNet. While
much better, we even observe underfitting on 500M-parameter models. As a result,
prediction models struggle to take advantage of the breadth and diversity of data
from multiple robots, domains, and scenes, and instead seem to perform best when
using a subset of RoboNet that looks most similar to the test domain. This suggests
two divergent avenues for future work. On one hand, we can develop algorithms that
automatically select subsets of the dataset based on various attributes in a way that
maximizes performance on the test domain. In the short term, this could provide
considerable improvements with our current models. However, an alternative view
is to instead research how to build more flexible models and policies, that are ca-
pable of learning from and larger and more diverse datasets across many robots
and environments. We hope that the RoboNet dataset can serve as a catalyst for
such research, enabling robotics researchers to study such problems in large-scale
learning. Next, we discuss limitations of the dataset and evaluation, and additional
directions for future work.

Limitations. While our results demonstrated a large degree of generalization,
a number of important limitations remain, which we aim to study in future work.
First and foremost, the tasks we consider are relatively simple manipulation tasks

28

such as pushing and pick-and-place, with relatively low fidelity. This is an important
limitation that hinders the ability of these models to be immediately of practical use.
However, there are a number of promising recent works that have demonstrated how
predictive models of observations can be used for solving tasks of greater complexity
such as tool use [241] and rope manipulation [125], and tasks at greater fidelity
such as block mating [153] and die rolling [218]. Further, one bottleneck that likely
prevents better performance is the quality of the video predictions. We expect larger,
state-of-the-art models [236, 226] to produce significantly better predictions, which
would hopefully translate to better control performance.

Another limitation of our current approach and dataset is the source of data
being from a pre-determined random policy. This makes data collection scalable,
but at the cost of limiting more complex and nuanced interactions. In future work,
we plan to collect and solicit data from more sophisticated policies. This includes
demonstration data, data from modern exploration methods that scale to pixel
observations [18, 24, 162], and task-driven data from running reinforcement learning
on particular tasks. As shown in prior work [241], improving the forms of interactions
in the dataset can significantly improve performance.

In selecting how and where to collect additional data, our experiments suggest
that adaptation to new domains is possible with only modest amounts of data,
on the order of a few hundred trajectories. This suggests that prioritizing variety,
i.e. small amounts of data from many different domains, is more important than
quantity in future collection efforts.

Future Directions. This chapter takes the first step towards creating learned
robotic agents that can operate in a wide range of environments and across different
hardware. While in this chapter, we explored two particular classes of approaches,
we hope that RoboNet will inspire the broader robotics and reinforcement learning
communities to investigate how to scale model-based or model-free RL algorithms
to meet the complexity of the real world, and to contribute the data generated from
their experiments back into a shared community pool. In the long term, we believe
this process will iteratively strengthen the dataset, and thus allow the algorithms
derived from it to achieve greater levels of generalization across tasks, environments,
robots, and experimental set-ups.

29

Part III

Learning from Internet Scale Data

30

Chapter 4

Manipulate by Seeing: Creating
Manipulation Controllers
from Pre-Trained Representations

4.1 Motivation
The lack of suitable, large-scale data-sets is a major bottleneck in robot learning.
Due to the physical nature of data collection, robotics data-sets are: (a) hard to
scale; (b) collected in sterile, non-realistic environments (e.g. robotics lab); (c) too
homogeneous (e.g. toy objects with fixed backgrounds/lighting). In contrast, vision
data-sets contain diverse tasks, objects, and settings (e.g. Ego4D [81]). Therefore,
recent approaches have explored transferring priors from large scale vision data-sets
to robotics settings. What is the right way to accomplish this?

Prior work uses vision data-sets to pre-train representations [160, 154, 239] that
encode image observations as state vectors (i.e. s = R(i)). This visual representation
is then simply used as an input for a controller learned from robot data – e.g.
a policy π(a|s), trained with expert data via Behavior Cloning [179], or a Value
function V (s), trained using exploratory roll-outs via Reinforcement Learning [213].
Is this approach the most efficient way to use pre-trained representations? We argue
that pre-trained networks can do more than just represent states, since their latent
space already encodes semantic, task-level information – e.g. by placing semantically
similar states more closely together. Leveraging this structure to infer actions, could
enable us to use significantly less robotic data during train time.

This chapter achieves this by fine-tuning a pre-trained representation into: (a)
a one-step dynamics module, F (s, a), that predicts how the robot’s next state given
the current state/action; and (b) a “functional distance module”, d(s, g), that cal-
culates how close the robot is to achieving its goal g in the state s. The distance
function is learned with limited human demonstration data, using a contrastive
learning objective (see Fig. 4.1). Both d and F are used in conjunction to greedily

31

Current State

Goal Image

Choose Action
w/ Min Distance!

.5

.4 .3

Figure 4.1: This chapter proposes to solve a range of manipulation tasks (e.g. push-
ing) by learning a functional distance metric within the embedding space of a pre-
trained network. This distance function – in combination with a learned dynamics
model – can be used to greedily plan for robot actions that reach a goal state. Our
experiments reveal that the proposed method can outperform SOTA robot learning
methods across four diverse manipulation tasks.

plan robot actions (see Fig. 4.1 for intuition). Our experiments demonstrate that
this approach works better than policy learning (via Behavior Cloning), because
the pre-trained representation itself does the heavy lifting (thanks to its structure)
and we entirely dodge the challenge of multi-modal, sequential action prediction.
Furthermore, our learned distance function is both stable and easy to train, which
allows it to easily scale and generalize to new scenarios.

To summarize, we show a simple approach for exploiting the information hidden
in pre-trained visual representations. Our contributions include:

• Developing a simple algorithm for acquiring a distance function and dynamics
model by fine-tuning a pre-trained visual representation on minimal (human
collected) data.

• Creating an effective manipulation controller that substantially outperforms
State-of-the-Art (SOTA) prior methods from the robot learning community
(e.g. Behavior Cloning [179], Offline-RL [119], etc.).

• Demonstrating that our approach can handle four realistic manipulation tasks,

32

generalize to new objects and settings, and solve challenging scenarios w/
multi-modal action distributions.

4.2 Related Work

Behavior Cloning This chapter adopts the Learning from Demonstration (LfD)
problem setting [8, 21, 187], where a robot must acquire manipulation behaviors
given expert demonstration trajectories. A standard approach in this space is to
learn a policy (π) via Behavior Cloning [179] (BC), which directly optimizes π to
match the expert’s action distribution. While conceptually simple, realistic action
distributions are difficult to model, since they are inherently multi-modal and even
small errors compound over time. Thus, policy learning requires extensive intensive
network engineering (e.g. transformer architectures [45, 34], multi-modal prediction
heads [195, 138], etc.) and/or human-in-the-loop data collection algorithms [179,
109] to work in practice. Instead of learning a policy, we learn a functional distance
metric that captures the how “close” a state is to reaching a target goal. This lets
us build a manipulation controller using a simple greedy planner during test time,
without any explicit action prediction!

Offline RL Broadly speaking, the field of Reinforcement Learning [213] (RL) seeks
to learn a value/advantage/Q function by assuming access to a reward signal, which
“evaluates” a state (e.g. +1 reward for reaching goal). RL algorithms usually
require environment interaction to learn, though the field of Offline-RL [132] seeks
to extend these systems to learn from offline trajectories. While these approaches
have created some impressive robotics demos ranging from locomotion [129, 122] to
dexterous manipulation [6, 90, 47], RL methods are data hungry [174, 6], difficult
to implement, require extreme “reward engineering” (e.g. Meta-World [248] reward
functions are 50 lines!), hampered by unstable learning dynamics [123], and poorly
generalize in realistic robotic manipulation settings [48]. In contrast, our method
learns a proxy for value functions (i.e. distances) purely from offline data, using
representation learning algorithms (from the vision field) that are much more stable.

Learning Visual Rewards Finally, our distance learning approach is analogous to
learning visual rewards. Prior work learned success classifiers [194, 242, 223] and/or
video similarity metrics [192, 9, 189, 12, 31] from expert video demonstrations. Once
learned, these modules were used to parameterize reward functions that could be
used to train policies [1], and/or as cost functions for planners [7]. However, these
papers mostly consider simple settings (e.g. simulation) or require the test setting
to exactly match train time. This is because the learned reward functions are often
noisy and/or poorly generalize to new scenes. In contrast, our learned distance
metric is stable and can easily adapt to new scenarios, thanks to the pre-trained

33

Dynamics
Prediction

Noise Action

!𝑎!

𝐹(i", !𝑎!)

Distance Learning LossDynamics Loss

Actio
n: 𝑎 #

Predicted Repr.

Observation Repr.

Legend

State Transition

Negative Pair

Positive Anchor

L2 Recon. Loss

Start Obs: 𝑖#

Next Obs: 𝑖#$%

R
econ Loss

Start Obs: 𝑖#

Goal Obs: 𝑖&

Noise Action

!𝑎 %

Real
 Actio

n

𝑎 #

𝐹(i", !𝑎%)

𝐹(i", a")

Anchor

Negative Pair

Negative Pair

𝐹(i", a")

Figure 4.2: We visualize the loss functions used to train our method. The dynamics
function is trained via reconstruction loss in embedding space (left). The distance
function is trained via contrastive learning, with positive anchors chosen by predict-
ing the next state using the ground truth action, F (it, at), and predicting negative
pairs chosen using noisy actions F (it, â

j).

network’s latent structure. This allows us to solve diverse tasks during test time on
a real robot, using a simple (and fast) shooting method planner.

4.3 Methods

Preliminaries This chapter considers learning goal-conditioned manipulation be-
haviors from image observations. The robot agent is provided a goal observation
(Ig) – e.g. target object in robot gripper – and an observation (It) for the current
time-step t. The robot must process these observations and decide an action to take
(at). Note that all observations (I) are wrist-mounted RGB camera images with
no depth or proprioceptive data. Additionally, the actions (a) are specified as arbi-
trary SE(3) transforms for the robot’s end-effector. Our goal is to learn a robotic
manipulation controller, using a set of training trajectories D = {τ1, . . . , τN}, where
τi = {Ig, I1, a1, . . . , aT−1, IT }. The test and train settings are visualized in Fig. 4.4.

Our Approach Our method leverages a pre-trained representation network, R, to
encode observations, it = R(It), and enable control via distance learning. Specifi-
cally, we use contrastive representation learning methods [157, 148] to learn a dis-
tance metric, d(ij , ik), within the pre-trained embedding space. The key idea is to
use this distance metric to select which of the possible future state is closest to the
goal state. But how do we predict possible future states? We explicitly learn a dy-
namics function, F (it, at) that predicts future state for a possible action at. During

34

(a) Pushing (b) Pick and Place (c) Door Opening (d) Knob Turning

Figure 4.3: Our method is tested on 4 different manipulation tasks (pictured above). These
tasks test different skill axis, ranging from task-level reasoning (e.g. detect target, move to
object before goal, etc.) to fine-grained motor control (e.g. grab top of knob to turn).

test time, we predict multiple future states using different possible action and select
the one which is closes to goal state. The following sections describe the learned
dynamics module (see Sec. 4.3.1), distance learning method (see Sec. 4.3.2), and
test-time controller for robot deployment (see Sec. 4.3.4) in detail. Fig. 4.2 provides
a visual depiction of our training algorithm. Pseudo-code and hyper-parameters are
presented in Supplement H.3.1.

4.3.1 Dynamics Prediction

An ideal dynamics function would perfectly capture how a robot’s actions effects
its environment. In our setting, this translates to predicting the next observation
embedding, given the current embedding and commanded action: F (it, at) = it+1.
Thus, F can be learned via regression by minimizing reconstruction loss in em-
bedding space: LF = ||F (it, at) − it+1||2 (see Fig. 4.2, left). This module has two
primary uses: (1) during training it acts as a physically grounded regularizer that
relays action information into the embedding space, and (2) during test time it en-
ables the robot to plan actions in embedding space. As you will see, both properties
are leveraged extensively in the rest of our method.

4.3.2 Learning Task-Centric Distances

Our distance module d(ij , ik) seeks to learn functional distances that encode task-
centric reasoning (e.g. must reach for object before pushing it) alongside important
physical priors (e.g. object is to the left so move left). How can we learn such a
distance space? Since we have access to expert trajectories τ , we know that the next
state sequentially visited by the expert (it+1) is closer to the goal state (ig) than
arbitrary states (̂i) reachable from it – i.e. d(it+1, ig) << d(̂i, ig).

Our insight is that a distance metric with these properties can be learned via
contrastive learning. Specifically, we define d(ij , ik) = −cos(ij , ik), where cos is
cosine similarity, and sample a observation-state-goal tuples (it, at, ig), alongside
random noise action candidates â1, . . . , ân sampled from D. We apply NCE loss

35

and get:

Ld =
exp(−d(F (it, at), ig))

exp(−d(F (it, at), ig)) + Σjexp(−d(F (it, âj), ig))

This loss creates a warped embedding space where it+1 (hallucinated by F (it, at)) is
pushed closer towards the goal state ig, than other arbitrary states reachable from
it (again hallucinated by F). This process is shown visually in Fig. 4.2 (right), and
precisely satisfies our criteria for good distance functions.

4.3.3 Training Details

Both modules are trained jointly resulting in a final loss: L = λdLd + λFLF . Note
that F is implemented as small neural networks with 2 hidden layer, while d does
not require any extra learned networks since its implemented via contrastive loss
in the metric space. The shared representation network, R, we use is ResNet-18
initialized by R3M weights. The ADAM [117] stochastic gradient descent optimizer
and back-propagation are used to train the network end-to-end. Please refer to
Supplement H.3.1. for additional details.

4.3.4 Test Time Robot Deployment

During test time our learned modules must be able to solve real manipulation tasks
when deployed on robot hardware. Thus, we develop a simple inference policy that
solves for robot actions using our learned distance and dynamics function. First,
a cost function Cg(i) = d(i, ig) is parameterized given a goal observation Ig and
the learned distance function. Cg encodes how far an arbitrary image observation
is from the goal image. The optimal action, a∗t , will take the robot closest to the
goal, hence: a∗t = argminaCg(F (it, a)). Note that we use the dynamics function
F to predict the next state, since we do not know the real i∗t+1 during test time.
The cost minimization is performed using the shooting method: random candidate
actions, a1, . . . , aN , are sampled from D, passed through the dynamics function,
and the action with minimum cost Cg(F (it, ai)) is executed on the robot. This
process is illustrated in Fig. 4.1. Policy execution ends once the distance between
the current state and the goal falls below a threshold value: Cg(it) < λ. While a
more complicated planner could’ve been used, this solution was adopted due to its
speed, simplicity, lack of hyper-parameters, and good empirical performance.

The final detail to discuss is gripper control for prehensile tasks (e.g. pick and
place). Since the gripper status is binary (open/close) and highly correlated with
the current state (i.e. close when object in hand), it makes more sense to handle
it implicitly rather than as part of the action command at. Thus, we trained a
gripper action classifier G(it) ∈ [0, 1] that predicts the probability of closing the
gripper given the current image embedding. This is also implemented by adding
a single layer to ResNet-18 initialized by R3M weights and can be trained using
a small amount (< 100) of human labelled images from the train dataset D. As a

36

Distance
Learning

Low-Cost Human Videos Transferred to Robot

Figure 4.4: In our problem setting we use a low-cost reacher grabber tool (left)
to collect training demonstrations. These demonstrations are used to acquire a
robot controller purely through distance/representation learning. The final system
is deployed on a robot (right) to solve various tasks at test-time.

result, our system can seamlessly handle gripper control in prehensile tasks, without
requiring gripper labels for every frame in D!

4.4 Experimental Setup

Our method is tested on four different manipulation tasks (see Fig. 4.3) that require
a mix of high-level reasoning (e.g. go to object before target), low level precision
(must carefully grab knob to turn it), and time-time generalization (e.g. push
novel object). We collect behavior data for each task from human demonstrators as
described below. The trained policies are deployed on a real Franka Pandas robot
(see Fig. 4.4, right). Additional details on the hardware setup and control stack are
presented in Supplement H.3.2.

4.4.1 Tasks

We now introduce the tasks used in our experiments (pictured in Fig. 4.3), and
provide more details on their train and test conditions:

Pushing For this task (see Fig. 4.3a) the robot must approach a novel object placed
on the table and push it to the goal location (marked by target printout). Training:

37

Pu
sh

in
g

Pi
ck

 a
nd

 P
la

ce
D

oo
r

O
pe

ni
ng

K
no

b
Tu

rn
in

g

Figure 4.5: Trajectories executed on the robot using our learned distance func-
tion. For each task, we show the 1st person view (top) and 3rd person view images
(bottom). We show the learned visual embedding can encode functional distances
between states for challenging tasks, like pushing, pick and place, door opening, and
knob turning.

Our method was trained on a dataset of 100 demonstrations with diverse objects
and randomized targets. Testing: During test time, the method was evaluated using
20 trails that involved unseen objects and new target printouts placed in randomly
sampled positions. A trail is deemed successful if the robot pushes the object onto
the target. This is the only task that did not require gripper control.

Pick and Place This task (see Fig. 4.3b) is analogous to the pushing task (described
above), except the robot must now pick the object up from its initial location and
place it in a target bowl. This task requires more precision than pushing, since

38

grasping an object is harder than localizing it. Training: We collect a dataset of
400 demonstrations for training, using randomized train objects and target bowls.
Testing: The method is evaluated using 20 trails that used novel objects and unseen
target bowls (i.e. analogous to pushing). A trail is successful if the robot places an
object into the target.

Door Opening The opening task (see Fig. 4.3c) requires the robot to approach
a handle, grasp it, and then pull the door open. While conceptually simple, this
task requires a great deal of precision, since the commanded actions must (almost)
exactly match the direction of the door hinge. Training: We created a toy kitchen
setting for this task, and collected 100 demonstrations of opening the door when
starting from various initial positions. Testing: We evaluated on 20 real world test
trials, where the robot’s initial position and the door’s initial state (e.g. position
and hinge angle) were randomized. A trial was deemed successful if the door is
opened fully.

Knob Turning In this final task (see Fig. 4.3d) the robot must approach a knob
in the toy kitchen, and then turn it clock-wise. Similar to the opening task, knob
turning requires very precise motor control, since the robot must grab the knob at
exactly the right location and carefully rotate in order to turn. Training: We collect
a dataset of 100 knob turning demonstrations. Testing: The method is evaluated
on 20 trials, with randomized robot/knob initial positions. Success is determined
by if the knob is turned far enough to cause an audible “click.”

4.4.2 Robot-Free Data Collection

A major strength of our setup is that training data (D) can come from a different
agent than the test time robot. We leverage this property to collect videos directly
from humans operating a low-cost grabber stick (see Fig. 4.4, left), and use struc-
ture from motion [190] to recover actions. This allows us to collect demonstrations
without an expensive tele-op setup [258, 124] or time-intensive kinesthetic demon-
strations (i.e. manually moving the robot by hand). While based on prior work,
our stick setup makes two important contributions: it is easier build and use than
the highly instrumented setup in Song et. al. [209], and it provides higher quality
images and action labels than the GoPro used in Young et. al. [246]. Please refer
to Supplement H.3.1 for more information on our training and testing setups. We
will release our dataset publicly.

4.5 Experiments

The following experiments seek to validate our distance learning framework on real
control tasks (described above), and give some fundamental insights as to why they

39

Task Ours BC [179, 246] IBC [69] IQL [119]

Pushing 85% 70% 70% 65%
Pick and Place 60% 30% 30% 45%
Door Opening 55% 40% 45% 50%
Knob Turning 40% 20% 20% 35%

Table 4.1: We compare success rates for our method versus the baselines on all four
manipulation tasks. Our distance learning method outperforms a suite of represen-
tative robot learning baselines.

Pushing Pick and Place
Demos Ours BC IBC Ours BC IBC

50 70% 50% 40% 0% 0% 0%
100 85% 70% 70% 10% 10% 0%
200 90% 80% 100% 20% 20% 10%
400 100% 100% 100% 60% 30% 30%
600 100% 100% 100% 70% 50% 40%

Table 4.2: We compare our distance learning method versus the behavior cloning
baselines (BC [179, 246] and IBC [69]) when trained on varying amounts of data.
Distance learning is able to learn faster than the baselines and scale better with
data.

work. First, our baseline study (see Sec. 4.5.1) compares our method against rep-
resentative SOTA techniques in the field. In addition, in Sec. 4.5.2 we analyze a
specific scenario with highly multi-modal actions, where our model especially shines.
Finally, the ablation study (see Sec. 4.5.3) investigates which components of our sys-
tem are actually needed for good performance.

4.5.1 Baseline Study

We first note that this chapter uses only demonstration data and no online data.
Therefore, we compare our method against three SOTA baselines – ranging from
standard behavior cloning, to energy based modeling, and Offline Reinforcement
Learning (RL) – that cover a wide range of prior LfD work. The baseline methods
are described briefly below. To make the comparisons fair, we parameterize all neural
networks with the same R3M representation backbone used by our method, and tune

40

hyper-parameters for best possible performance. Please check Supplement H.3.2 for
in depth details.

• Behavior Cloning [179, 246] (BC): BC learns a policy (via regression) that
directly predicts actions from image observations: minπ ||π(It, Ig)−at||2. This
provides a strong comparison point for a whole class of LfD methods that focus
on learning motor policies directly (i.e. learn policies that predict actions).

• Implicit Behavior Cloning [69] (IBC): IBC learns an energy based model that
can predict actions during test time via optimization: at = argminaE(a, It, Ig).
This method is conceptually very similar to behavior cloning, but has the
potential to better handle multi-modal action distributions and discontinuous
actions.

• Implicit Q-Learning [119] (IQL): IQL is an offline-RL baseline that learns
a Q function Q(s, a) = Q((It, Ig), at), alongside a policy that maximizes it
π(It, Ig) = argmaxaQ(s, a). Note that IQL’s training process require us to
annotate our offline trajectories D with a reward signal rt for each time-step.
While this can be done automatically in our setting (Supplement H.3.2), this
is an additional assumption that could be very burdensome in the general case.

Our method is compared against the baselines on all four of our tasks (see
Sec. 4.4.1). Results are reported in Table 4.1. Note how our simple distance learning
approach achieves the highest success rates on all of four tasks. In addition, our
method is much simpler than the strongest baseline (IQL), which requires an expert
defined reward signal and uses a more complicated learning algorithm. The final
test time performance is visualized in Fig. 4.5 and on our website: https://agi-
labs.github.io/manipulate-by-seeing/.

Data Scaling A common cited strength of BC (versus RL) is its ability to con-
tinuously improve with additional expert data. Can our method do the same?
Table 4.2 compares our distance learning method versus the BC/IBC baselines (on
pushing/pick-place tasks), when trained on various amounts of data. Note how
our method both learns faster than BC/IBC, and continuously scales with added
demonstrations. This suggests that distance learning is a powerful alternative to
BC on robotic manipulation tasks, no matter how much training data is available.

4.5.2 Multi-Modality Experiment

A common challenge in policy learning is effectively handling multi-modal action
predictions. We propose a simple test scenario that allows us to test our method
in this setting without any other confounding variables. Specifically, we create a
“obstacle pushing” task where the robot must push an object to the target without
disturbing an obstacle placed in the middle (see Fig. 4.6). Observe that there are two

41

https://agi-labs.github.io/manipulate-by-seeing/
https://agi-labs.github.io/manipulate-by-seeing/

Obstacle

50
 P

us
h-

L
ef

t D
em

os
50 Push-R

ight D
em

os

Figure 4.6: Our method can solve tasks with highly multi-modal action distributions
that are difficult for the baselines. In this example, our distance learning controller
successfully pushes the block around the obstacle, while Behavior Cloning learns to
incorrectly push the block forward (i.e. predicts mean action).

equally valid ways that the robot could push the block; to the left or to the right.
We collect a training dataset of 100 demos, equally split between going left and
right. This creates action multi-modality where the agent must arbitrarily choose
between two scenarios in order to successfully perform the task, but will fail if it
simply averages the actions and pushes the block forward (into the obstacle). We
expect that standard BC will fall into this failure mode, since it is trained using
standard L2 action regression. In contrast, our method should still work since the
low distance states will move the robot either to the left or right state, thus allowing
it to make a discrete choice.

To test this hypothesis, we test our method, the BC baseline, and IQL (the
strongest non-BC baseline) on 20 trials in this task setting. Success is judged simi-
larly as to pushing (see Sec. 4.4.1), with the added condition that the robot should
not push the obstacles into the target. Our method achieves a 95% success rate,

42

Ours ImageNet Repr. No Dynamics [88]

Pushing 90% 40% 60%
Pick and Place 60% 40% 35%
Door Opening 55% 45% 50%
Knob Turning 40% 15% 40%

Table 4.3: This table compares success rates for our method versus the ablations
on the all four tasks. As you can see, removing the dynamics module from our
method during training and training with a weaker representation both result in
worse performance.

versus 0% for BC and 90% for IQL in this setting! As expected, our method is
able to greatly improve upon BC in this setting, because it explicitly avoids action
prediction. While IQL should not suffer as badly from multi-modality, thanks to
its learned value function, our method is still able to outperform it despite being
simpler algorithmically and trained without reward signal.

4.5.3 Ablation Study

Our final experiment removes components of our method in order to determine
which parts were most crucial for control performance. The representation ablation
replaces the R3M backbone in our neural network with a pre-trained ImageNet rep-
resentation (using same ResNet-18 architecture for both). We expect the ImageNet
weights to be be weaker, since they were trained on a smaller dataset that did not
include ego-centric videos (ImageNet vs Ego4D used by R3M). Additionally, the
dynamics ablation removes the dynamics module during training, thus leaving the
distance model/embeddings without any physical grounding. This is effectively the
method from Hahn et. al. [88], which trained a distance embedding for navigation
tasks without considering state dynamics at all. We expect this ablation to perform
worse on manipulation tasks, because dynamics is more important in this setting
v.s. visual navigation.

The two ablations are evaluated and compared against our method on all four
test tasks (see Table 4.3). We find that our method strongly outperforms both of our
baselines, which suggests that our intuition outline above is correct. In particular,
we conclude that stronger representations can directly stronger control performance
using our method. Additionally, this shows that the dynamics grounding is impor-
tant to ensure that our learned distances transfer onto real robot hardware during
test time, especially in manipulation tasks that involve object interactions/contact.

43

4.6 Discussion
This chapter demonstrates that neural image representations can be more than just
state representations: a simple metric defined within the embedding space can help
infer robot actions. We leverage this insight to learn a distance function and dy-
namics function using minimal low-cost human data. These modules parameterize
a robotic planner that is validated across 4 representative manipulation tasks. De-
spite its simplicity, our method is able to outperform standard imitation learning and
offline-RL methods in the robot learning field. This is especially true in situations
involving multi-modal action distributions, where our method entirely outclasses
a standard BC baseline. Finally, the ablation study demonstrates that stronger
representations directly result in stronger control performance, and that dynamics
grounding is important for our scheme to work in practice.

Future Work We hope that this chapter inspires future work in the space of repre-
sentation learning and robotics. Follow up works should improve visual representa-
tions specifically for robotics, by more precisely capturing fine-grained interactions
between gripper/hand and objects. This could improve performance on tasks like
knob turning, where the pre-trained R3M encoder often struggled to detect small
shifts of the gripper relative to the knob. Finally, we hope that our contrastive
learning method could be extended to learn entirely without action labels. This
would allow us to train on large scale manipulation datasets (e.g. YouTube videos)
and transfer the results directly to the control setting.

44

Chapter 5

An Unbiased Look at Datasets for
Visuo-Motor Pre-Training

5.1 Motivation

?
What Data Should Robots

Be Pre-Trained On?

Figure 5.1: Due to the scarcity
of diverse, large-scale robotic
data, visuo-motor representa-
tions – which are necessary to
solve tasks (e.g., put bread in
toaster) from visual inputs –
must be learned from exter-
nal datasets [154]. But which
datasets contain the best priors
for robotics? Surprisingly, we find
that simply pre-training on stan-
dard vision datasets (e.g., Im-
ageNet) can outperform SOTA
baseline representations from the
robot learning community, de-
spite using roughly 5x less data.

Consider a robot that must perform a manip-
ulation task in an unstructured environment:
e.g., toasting a bread slice. To accomplish this,
the robot must locate the target objects (bread,
toaster, etc.) in the scene and reason about their
physical properties (e.g., Center-of-Mass, etc.),
using RGB camera inputs. However, the real
world has innumerable objects, lightning condi-
tions, and environments that a robot may run
into. This incredible range of scenarios makes
hand-engineering a vision pipeline impossible.
Thankfully, the computer vision and represen-
tation learning communities have highlighted a
successful paradigm to overcome this challenge:
learn end-to-end neural representations directly
from data [53, 121], which can then be used for
downstream vision tasks. We seek to do the
same for policy learning.

But what data should these representations
be trained on? In an ideal world, we would lever-
age task-specific robotic data (i.e., trajectories)
to jointly learn a visual representation and a con-
troller, using end-to-end reinforcement or imita-
tion learning [213, 131, 178, 89]. Unfortunately,
learning visual representations in conjunction with action policies is frequently in-

45

tractable [33, 106] or requires a large amount of data, that may be too expensive to
collect on real hardware. Furthermore, the homogeneity of robotics data (collected
in single lab) hinders generalization to novel scenarios, which is the motivation
for learning in the first place! To overcome this, the field has trended towards
pre-training visual representations on large-scale, unlabeled vision datasets, using
self-supervised learning algorithms – e.g., Masked Auto-Encoders [94] (MAEs), con-
trastive learning [158, 96, 35], etc. These pre-trained representations decouple pol-
icy learning from perception, allowing us to learn behaviors with far less robotic
data [154, 170, 141, 115, 73].

The key insight is that self-supervised visual pre-training can learn useful priors
from out-of-domain data that will be useful for robotics. Recent work in robot
manipulation [170, 154, 140, 141] has investigated different neural architectures and
algorithms for learning these priors. However, there is one important commonality
– all these methods train (primarily) on the same dataset, Ego4D [81]. Indeed,
this seems like an intuitive choice, because: (1) Ego4D contains first-person camera
views, which are analogous to the robot’s camera; (2) Ego4D focuses on human-
object interaction – i.e., it is aligned with the downstream manipulation task; and
(3) the dataset offers thousands of hours of video frames to train on. But is this
intuitive bias empirically tested?

In this chapter, we empirically investigate these research questions from the
perspective of robotic manipulation tasks. Specifically, we pre-train a total of 15
representations on various datasets using MAEs [94], a state-of-the-art (SOTA) self-
supervised learning algorithm. We then fine-tune each of these representations to
solve various manipulation tasks in simulated and real settings via Behavior Cloning
(w/ ≤ 50 demonstrations). Our experiments reveal that many intuitive biases and
common assumptions in our field need to be revisited. Surprisingly, we find that
standard image datasets based on curated internet data (e.g., ImageNet [53], Kinet-
ics [207], 100 Days of Hands [197]) can learn stronger visuo-motor representations
than egocentric human interaction data (of Ego4D)! In fact, pre-training on the Im-
ageNet compares favorably against SOTA (visuo-motor) baseline representations,
which were trained on far more data (e.g. MVP [239] was trained on 2M+ frames)
using the exact same algorithm and hyperparameters. This leads us to an impor-
tance insight – the pre-training image distribution is far more crucial for effective
representation learning than naively increasing the number of images to train on.
Building on this, we investigate various schemes for scaling pre-training dataset size
while creating a broader image distribution. Our best model improves performance
by 30% (v.s. SOTA baselines [141, 239]) on real world robotics tasks and is the
direct result of this search. Finally, we show how simple implementation details
(like using dropout [211] during evaluation) can have a significant impact on policy
performance, and how these trends are poorly captured in simulation studies. Our
project code and models are released publicly, and we encourage the reader to view

46

our website for added context1.

5.2 Related Works

Learning Actionable Representations The robotics field has long focused on learn-
ing actionable representations, which focus on task relevant details and are max-
imally predictive of the actions the robot should take. These representations can
be learned end-to-end as part of policy learning, using data collected by expert
demonstrations (e.g., Imitation Learning [187]) or the robot itself (e.g., Reinforce-
ment Learning [213]). This paradigm has been successfully applied to a wide range
of tasks like in-the-wild grasping [83], bin-picking [112, 133, 165], insertion [131],
pick-place [23], and even self-driving [22, 166, 33]. Prior work also added tertiary
optimization objectives (e.g. observation reconstruction [152], inverse modeling [46],
dynamics modeling [237], etc.) on top of policy learning, in order to make represen-
tation learning more efficient. However, all of these techniques share the same flaw:
they require a wealth of task-specific robotic data for learning representations.

Self-Supervised Visual Pre-Training Thus, the robotics community has trended
towards pre-training representations on out-of-domain, vision datasets, (which
are both larger and more diverse) and transferring them to robotics tasks. Prior
works [154, 140, 239, 170, 141] all seem to follow a common formula: representa-
tions are trained using SOTA self-supervised vision algorithms (e.g., contrastive
learning [158, 35, 96], masked image modeling [94, 17], etc.) on frames (primarily)
sampled from the Ego4D dataset [81]. These representations are then evaluated
mostly in sim [220], using a common policy learning framework [154, 141]. These
choices may seem reasonable (see Sec. 5.1), but there is surprisingly little evidence
backing them. Importantly, R3M [154] and MVP [170] compared only with
supervised ImageNet representations but not apples-to-apples with self-supervised
ImageNet representations [94]. Our investigation fills in these critical gaps. We find
that representations learned on standard image datasets (like ImageNet) are surpris-
ingly applicable to the robotics space, and that common evaluation/experimental
techniques can give a misleading sense of progress.

5.3 Experimental Methods

Our investigation follows a simple formula (see Fig. 5.2). Step 1: We pre-train
visual representations on various datasets using the same self-supervised algorithm
(masked image modeling). Step 2: We fine-tune each representation for downstream
manipulation tasks in both simulated and real (via behavior cloning). For evaluation

1https://data4robotics.github.io

47

https://data4robotics.github.io

K
in

et
ic

s
R

ob
oN

et
10

0
D

oH
E

go
4D

Im
ag

eN
et

Datasets
Pre-Training Evaluation

Behavior Cloning TasksMasked Auto-Encoder

Encoders

D
ecoder

Encoder

Sim

Real

Block StackingPouring Toasting

Franka KitchenMeta-World RoboMimic

Figure 5.2: Our investigation considers 5 standard datasets from both the computer
vision and robotics: ImageNet [53], 100 Days of Hands [197] (DoH), Ego4D [81],
Kinetics [207], and RoboNet [44] (left). For each dataset, we pre-train a visual
representation on it using the Masked Auto-Encoders (MAE) algorithm [94]. This
masked image modeling method works by randomly masking patches in the image,
and training an encoder/decoder to reconstruct them (center). Once pre-training
is concluded, we fine-tune the representation to various robotics tasks, both in sim
and in the real world (right).

of representation quality, we rate based on performance on downstream tasks, with
emphasis on performance in the real world.

Visual Pre-Training This project requires a scalable representation learning algo-
rithm that can seamlessly operate on heterogeneous data sources, with the high-
est possible performance. We chose to use Masked Auto-Encoders (MAEs), a
self-supervised representation learning algorithm with SOTA performance on var-
ious vision [94, 17, 221, 232, 206, 155, 64], multimodal [101, 10], and robotics
tasks [141, 239]. The MAE encoder (E) is a Vision Transformer (ViT) network [256]
that produces an embedding vector to represent an input image I: i.e. E(I) ∈ R768.
During training E is tasked to represent I, using only 25% random patches sampled
from the image. Then a decoder network (D) attempts to reconstruct I in its en-
tirety (see Fig. 5.1, middle). Both E and D are trained end-to-end, minimizing the
MSE reconstruction objective: ||D(E(I))−I||2. During training, the visual encoder
learns to reason spatially: i.e., it learns how patches relate to each other, and how
they can come together to form the final image. Thus, E learns a highly efficient im-
age descriptor that can be transferred to downstream tasks without any algorithmic
changes (e.g. no masking needed during transfer). The MAE hyperparameters are

48

described in Appendix H.4.1. Note that they are directly copied from the original
MAE work by He et al. [94] and shared by prior works in robot learning [141, 239].

Fine-Tuning w/ Behavior Cloning Pre-trained visual representations are fine-tuned
to solve downstream tasks of robotic manipulation. To this end, we adopt the
paradigm of Learning from Demonstration (LfD) [8, 21, 187, 114, 98, 235]. Our goal
is to learn a policy π that uses the given observation ot to predict an optimal action
distribution for the task: at ∼ π(·|ot). Note that the actions at are commands
sent to the robot controller, while the observations consist of the current image
and robot joint information: ot = [it, jt]. The policy π must be learned given a
set of expert demonstrations (D = {τ1, . . . , τn}), where each demonstration τi =
[(o0, a0), . . . , (oT , aT)] is a trajectory with optimal observation-action tuples (i.e.
collected by a proficient agent).

π is parameterized using a 2-layer network (p), built atop the pre-trained encoder
E. The forward pass works as follows: first, the observation image is encoded
E(it); then jt is concatenated to the encoding and passed to the policy network –
p(E(it), jt). p predicts a policy distribution, which in our case is a Gaussian Mixture
Model [144, 172]. During test time, actions are sampled from this distribution and
then executed on the robot. The entire policy network (both p and E) is fine-tuned
end-to-end (using Adam [117] for 50K iterations) to maximize the log probability of
actions from the expert demonstrations: minπ −log(π(at|E(it), jt)). This procedure
was designed to closely match prior work with two important modifications: we
apply dropout to the policy network p, and we apply data augmentation to it before
passing it to the encoder. Both of these deviations are validated in our experiments
(see Sec. 5.5). Please refer to Appendix H.4.2 for the exact hyperparameters.

Evaluation Procedure To evaluate a representation, we apply the above fine-tuning
stack separately on 13 sim tasks and 3 real tasks. Each policy’s final checkpoint is
evaluated on N test rollouts for every task, with novel initializations (e.g., test
objects, new initial positions, etc.). All evaluation hyperparameters (e.g., demon-
stration set, number of test-time rollouts, initial positions, test objects, BC hy-
perparameters, etc.) are kept fixed within a task. This allows for maximally fair
evaluation.
Simulation Tasks: Our simulated tasks set spans a set of 3 MuJoCo [220] environ-
ments – MetaWorld [250], RoboSuite [144], Franka Kitchen [86] – that are frequently
used by the robot learning community, and the exact setups (e.g., task rewards/suc-
cess criteria, camera positioning, object sets, demonstration trajectories, etc.) were
directly taken from prior work [141, 154, 144] (fully documented in Appendix H.4.3).
As a result, our simulated results should be very accessible to the community.
Real World Tasks: While simulation is a useful tool, there is a significant sim2real
gap in manipulation. Thus, we designed 3 distinct tasks for real world validation
on a Franka Panda Robot (visualized in Fig. 5.2).

49

1. Block Stacking requires the robot to pick up the red block and place it on the
green block. This is the simplest of three tasks as the robot only has to adapt
to new object configurations during test time. However, the robot still needs
to precisely localize and grasp the (small) red block.

2. Pouring requires the robot to lift the cup and pour almonds in the target
bowl. At test time, the cup and target bowls are both novel objects (unseen
during training), and are placed in random positions, requiring the robot to
generalize to new visual inputs.

3. Toasting is our most challenging task, and it requires the robot to pick up
the object, place it in the toaster, and then shut the toaster. At test time,
we use a novel object and randomize both the object’s initial pose and the
toaster’s initial orientation. Toasting requires the robot to execute a multi-
stage manipulation strategy, while also generalizing to new visual scenarios.

Each of the three tasks use a shared action space: Cartesian velocity control; and
a shared observation space: proprioceptive inputs and 3rd person camera view
(visualized in Fig. 5.3, left). We collect n = 50 tele-op demonstrations per task.
Please refer to Appendix H.4.3 for all other task hyperparameters and our website
for task videos: https://data4robotics.github.io.

5.4 Probing Dataset Biases

In our empirical study, we evaluate 5 widely-used datasets as pre-training candidates
(see Fig. 5.2, left): ImageNet [53], Ego4D [81], 100 Days of Hands [197] (DoH), Ki-
netics [207], and RoboNet [44] (see Sec. 5.4.1 for descriptions). We apply our experi-
mental methodology (from Sec. 5.3) on various sub-samplings/combinations of these
datasets. First, we conduct single dataset pre-training: i.e., we evaluate a dataset’s
performance in isolation to empirically determine which is most suited for our diverse
downstream manipulation tasks (Sec. 5.4.1). In our second suite of experiments, we
analyze how well various combinations of the data perform (Sec. 5.4.2). Finally,
we investigate dataset scaling for pre-training, and find that the pre-training image
distributions matter most (Sec. 5.4.3).

5.4.1 Comparing Datasets Apples-to-Apples

Before diving into the details, let’s take a step back and add context about the
datasets we probe.

50

https://data4robotics.github.io

4 Frames Sampled Randomly from ImageNet-1M

4 Frames Sampled Randomly from Ego4D-1M

Observations from Train Demo (Pouring Task)

Robot Observations vs Pre-Train Image Distributions

Figure 5.3: Observations from our pouring task (left) are compared against random
pre-training images from ImageNet-1M/Ego4D-1M (right). Note that all the pre-
train images are very different from the evaluation task. Nonetheless, the curated,
single-object images from ImageNet-1M yield stronger visuo-motor representations
than the Ego4D-1M frames do (see Table 5.1).

Single Dataset Models (1M Images) Baselines
Task ImageNet Ego4D Kinetics 100 DoH RoboNet Scratch VC-1 [141] MVP [239]

Si
m

RoboSuite [144] 62% 61% 65% 52% 58% 2% 63% 51%
MetaWorld [250] 90% 93% 87% 86% 74% 72% 70% 83%

Franka Kitchen [86] 63% 68% 55% 62% 62% 40% 61% 61%
Average (Sim) 72% 74% 69% 67% 65% 38% 65% 65%

R
ea

l

Block Stacking 68% ± 9.5% 64% ± 9.5% 72% ± 9.8% 55% ± 9.2% 76% ± 8.7% 0% ± 0% 60% ± 10% 52% ± 10%
Pouring 44% ± 12% 19% ± 9.0% 50% ± 9.0% 19% ± 12% 13% ± 7.6% 0% ± 0% 25% ± 10% 13% ± 7.6%
Toasting 10% ± 16% 0% ± 0% 10% ± 16% 40% ± 17% 0% ± 0% 0% ± 0% 10% ± 10% 10% ± 10%

Average (Real) 41% ± 7.1% 28% ± 6.9% 44% ± 7.1% 38% ± 6.9% 30% ± 7.0% 0% ± 0% 33% ± 6.9% 25% ± 6.6%

Table 5.1: Comparing Datasets Apples-to-Apples. We compare pretrained repre-
sentations, learned on 1M images from five datasets. We report success rates after
finetuning representations with BC, and the real world evaluations also include
standard error (i.e., Success%±Std. Err.%). For additional context, we benchmark
SOTA baselines [141, 239] and a “Scratch” representation with no pretaining. We
find that visual representations learned on standard vision datasets with internet
images and curation (e.g., ImageNet) provide surprisingly strong performance in the
real world.

1. ImageNet (ImageNet-1K) contains 1000 train images for each of its 1000
classes. ImageNet is a popular and classical computer vision dataset, i.e.,
curated carefully from internet images. The broad image distribution may
result in more expressive representations (as observed in purely visual tasks
like classification). However, ImageNet is focus on centered, single-object, and
high-quality internet images. As a result of this domain gap, many believe
that ImageNet is an ill fit for robotics.

51

2. Ego4D is a modern, ego-centric, and in-the-wild video dataset, with 3.6K hrs
of video collected by humans performing daily tasks. It is conjectured that
Ego4D is well suited for robot learning as it contains realistic images that
a robot may observe in real-world environments. However, frames collected
within the same video tend to look similar to each other, and the lack of
curation mean that some object classes (e.g. blocks, cups, etc.) rarely appear.

3. DoH is focussed on human hands and contains curated YouTube videos of
people manipulating various household objects (e.g. in cooking video). The
curation ensures that action classes are balanced and that videos look distinct
from each other. Furthermore, the focus on manipulation may help the rep-
resentations pick useful cues (e.g. where objects can be grasped). However,
YouTube videos look quite different from robot’s visual observations, so its
an open question if priors learned from DoH would benefit downstream tasks
in robotics.

4. Kinetics(-700) is similar to DoH in that it’s curated from YouTube, but its
videos contain a much wider distribution of human actions (e.g. with objects
and/or other humans) instead of the focus of DoH on hands and manipulation.

5. RoboNet contains 13M+ image observations of robots randomly interacting
with objects placed in a bin in front of them. RoboNet could be invaluable
for pre-training, since its images are highly domain-specific for our use case.
But robot data is collected in sterile lab setting, which could cause the repre-
sentations to overfit to only those specific settings.

It is clear that these five datasets have complex trade-offs that may affect their
usability for robotics. However, none of them clearly match the robot observation
space (see Fig. 5.3). The only way to settle the question is to undertake an unbiased
and empirical study, comparing them apples-to-apples. Thus, we apply our evalua-
tion methodology to 1 Million frames sampled randomly from every dataset. This
is easy to do in ImageNet, since it has 1M balanced train images. But for the video
datasets (Ego4D/Kinetics/DoH), we first processed them into frames (sub-sampled
at 3FPS) and then randomly select 1M images from the whole set. For RoboNet,
we followed a similar procedure as used for the video datasets, but randomly sam-
pled 1M image observations instead. Visual pre-training on each of these results
in 5 representations that we evaluate on our task suite (via BC). For additional
context, we also evaluate a ‘Scratch’ model with no pre-training, i.e., randomly ini-
tialized weights before BC. We also evaluate pre-trained weights downloaded from
two SOTA baselines (VC-1 [141], MVP [239]). Note that both MVP and VC-1 share

52

Soup-1M + 1M Extra Frames (2M Total)
Task Soup-1M Soup 2M ImageNet Ego4D Kinetics 100 DoH RoboNet

Si
m

RoboSuite [144] 64 64 52 53 59 67 58
MetaWorld [250] 87 89 92 86 87 92 88

Franka Kitchen [86] 66 67 56 61 64 62 60
Average (Sim) 72 73 67 67 70 74 69

R
ea

l

Block Stacking 76% ± 8.7% 44% ± 10% 72% ± 9.2% 60% ± 10% 76% ± 8.7% 92% ± 5.5% 76% ± 8.7%
Pouring 38% ± 13% 38± 13% 32% ± 12% 38% ± 13% 32% ± 12% 38% ± 13% 32% ± 12%
Toasting 10% ± 10% 40% ± 16% 0% ± 0% 10% ± 10% 22% ± 13% 50% ± 17% 0% ± 0%

Average (Real) 41% ± 7.1% 41% ± 7.0% 35% ± 7.1% 36% ± 7.1% 43% ± 7.1% 60% ± 6.7% 36% ± 7.1%

Table 5.2: Marginal Value of Each Dataset. Soup-{1M,2M} models are trained
{1M,2M} images with {200K,400K} images from each of the five target datasets.
The models on the right are trained with the Soup 1M images and an additional
1M frames from the target dataset. We find that image distribution matters more
than the number of images trained on: Soup-2M does not improve on Soup-1M, but
Soup-1M + 1M DoH does. Results are reported as success rates for each task, and
the real world evaluations also report standard error (i.e., Success% ± Std. Err.%).
our vision transformer architecture and pre-training recipe of masked image model-
ing, but were trained on significantly more # of frames (2.5M+), sampled primarily
from Ego4D. The results are presented in Table 5.1.

Our first observation is that performance trends from popular simulation bench-
marks do not transfer to the real world at all (see Sec. 5.5 for more). Thus, we
focus the rest of our analysis on the real world trends, since that is the primary
focus of this thesis. The real robot experiments reveal that ImageNet/Kinetics/-
DoH representations all perform better than those trained on RoboNet/Ego4D
(roughly 40% v.s. 30% success rate). Critically, this result goes beyond just MAE
pre-training. As we show in Appendix H.4.4, our finding that ImageNet/Kinetics/-
DoH performs best also holds with contrastive pre-training [35]! This is surprising
and important since both Ego4D and RoboNet seem like better matches to the
downstream tasks (e.g., RoboNet entirely contains images of robot interactions)
and as more works in the research community implicitly assume/expect Ego4D to
do better. Note that ImageNet/Kinetics/DoH were all sampled and curated from
the internet (using YouTube/image search), so they contain cleaner images with a
much greater range of content (e.g., 1000 classes [53] vs 4 robot labs [44]). These
unbiased, empirical results strongly suggest that the pre-training image distribution
is far more important than the images’ content.

5.4.2 Combining Data from Different Sources

Another surprising result from Table 5.1 is that the baselines representations perform
worse than the ImageNet/Kinetics/DoH representations, despite being trained on
significantly more images. For example, VC-1 pre-trains on ImageNet alongside
2.5M+ images from Ego4D, while using the exact same pre-training strategy that
we do. A possible explanation for this discrepancy is that VC-1’s representation

53

is functionally very similar to our only-Ego4D ablation, since the majority of its
pre-training frames come from Ego4D. Consequently, each batch the encoder sees
during pre-training primarily consists of Ego4D frames. The key insight here is
that distribution of the pre-training set matters more than the sheer number of
frames trained on. We experimentally test this hypothesis, and find that VC-1’s
representation performs only marginally better than Ego4D’s (33% vs 28%).

The natural next question is, “How does one optimally combine datasets for
visuo-motor pre-training?” A simple idea is to proportionally mix the datasets so
that the model is pre-trained on an equal number of frames from each dataset.
Particularly, we create a “Soup-1M” containing 200K images randomly sampled
from each of the 5 datasets. We then evaluate this model on our test suite (see
Table 5.2, left). Note that the Soup-1M model performs about the same as the
ImageNet/Kinetics/DoH models (41%), even though it was trained on a significant
amount of Ego4D/RoboNet frames (recall, these performed lowest in Sec. 5.4.1).
This suggests that scaling to multiple datasets can increase robustness, so long as
the datasets are kept carefully balanced during pre-training.

5.4.3 Analyzing the Marginal Value of Each Dataset

Soup-1M provides a sensible first step for combining datasets for visuo-motor pre-
training – keeping training set size to 1M using equal proportions of data sources.
This leads to the natural next question: “how can we effectively scale dataset size
to improve performance?” To answer this question, we’ll also need to understand
the marginal value of adding additional data to the soup. To answer this, we un-
dertake another empirical study. Particularly, we obtain visual representations on
pre-training sets containing the aforementioned Soup-1M along with 1M images from
each of the five subject datasets (e.g. Soup-1M + 1M ImageNet frames). In effect,
this both scales the size of pre-training dataset, while shifting the train distribution
towards that of the subject dataset. For fair comparison, we also train a Soup-2M
model (identical to Soup-1M but with 400K images per dataset) that tests a naive
scaling of the Soup-1M model. All six models are evaluated and results are present
in Table 5.2.

As reported in Table 5.2 (left), we find that Soup-2M model performs marginally
better in simulation than Soup-1M, and performs exactly the same (on average)
in the real world. That is, data scaling is more nuanced than naively increasing
the number of frames. In contrast, the strongest model, Soup-1M + 1M DoH,
is able to perform 20% better than Soup-1M (and 30% better than the strongest
baseline) on the real world tasks (bold results in Table 5.2)! Finally, the Soup-1M
+ 1M {Ego4D/ImageNet/RoboNet} models perform slightly worse than Soup-1M,
whereas the Soup-1M + 1M Kinetics model performs slightly better. These results
are mostly in line with our expectations from Sec. 5.4.1 (e.g. adding more RoboNet
data reduces performance, while adding more Kinetics/DoH increases performance).

54

5.5 Ablating our Experimental Setup

This section presents some insights from our real-world experiments. We find: (1)
that old-school dropout regularization is highly effective; and (2) sim evaluation
does not transfer to real world.

Regularizing Policies w/ Dropout Early in our physical robot evaluations, we no-
ticed that the policies often produced jerky motions that could damage the robot and
its environment. Thus, we searched for a simple fix that could improve robustness
in the real world. We found that adding dropout [211] to the policy network (w/
p = 0.2) significantly improved the robot’s qualitative behavior: the commanded
motions became smoother, with improved generalization to new scenarios. We
quantify this with ablations on the Block Stacking task, i.e., fine-tuning the five
1M models (see Sec. 5.4.1) with and without dropout. Note how adding dropout to
visuo-motor policies almost consistently improves policy performance on the phys-
ical robot (see Fig. 5.4, orange bars). However, the opposite effect is observed in
simulation. This indicates that adopting sim benchmarks as a (fast) proxy to make
policy design choices may warrant caution and a healthy doze of skepticism.

ImageNet Ego4D Kinetics 100 DoH RoboNet MVP VC1
Representation

10

0

10

20

30

40

%
 C

ha
ng

e
in

 P
er

fo
rm

an
ce

Effect of Dropout on Real/Sim Performance

Task
Sim
Real (Block Stacking)

Figure 5.4: Effect of adding
dropout [211] in sim vs. real (block
stacking tasks). Dropout frequently
harms performance in simulation
(blue) but consistently improves real
world (orange) success rate. Positive
values on Y axis indicate improve-
ment by adding dropout and vice-
versa.

66 68 70 72 74
Simulated Performance (Average)

25

30

35

40

45

50

55

60

R
ea

l W
or

ld
 P

er
fo

rm
an

ce
 (A

ve
ra

ge
)

Real vs Simulated Performance for All Models

Figure 5.5: Sim vs. real per-
formance across pretraing datasets.
We plot average model performance,
in sim and real, for all the models
tested in our study. Note how the
sim scores are only weakly predic-
tive of real world performance (R2 =
32%).

We further test the regularization effect of dropout in this setting using a new
task: Block Stacking Robust. In this task, a human adversary pushes the cube out of

55

the robot’s gripper in the middle of the episode (i.e. right before the robot grasps).
This forces the robot to dynamically replan its actions, and adapt to a scenario it
never saw during fine-tuning with BC (in the demonstrations). We find that the
success rate on Block Stacking Robust (average across all models) increases to 24%
from 10% thanks to this regularization.

Analyzing Sim-to-Real Transfer On one hand the sim2real gap in manipulation is
well known and on the other it’s still very common practice in prior work [154, 141,
239, 140, 92] to draw inferences about pre-trained representations using simulated
benchmarks (e.g. CortexBench [141], Franka Kitchen [86], Isaac Gym [239], etc.) In
several unbiased experiments we undertook, we have found that trends in simula-
tion are almost entirely disconnected from their real world performance. First, the
simulation suite predicts that Ego4D is the best representation for robotics, but the
real world results consistently disagree with that assessment (see Table 5.1). Sec-
ond, key implementation details in the real world (like Dropout) can actually hurt
performance in simulation (see how Dropout hurts sim performance in Fig. 5.4). To
objectively investigate this, we plot the sim performance vs real performance for all
our models (trained on dataset configurations detailed in Sec. 5.4) in Fig. 5.5. We
find that sim and real performance are almost entirely uncorrelated (a very low
R2 = 32%). Even if we were to ‘cherry-pick’ the two most similar sim/real tasks
(RoboMimic’s block-lift [144] vs our stacking task) the correlation is still very low:
R2 = 34%.

5.6 Discussion

In this chapter, we investigated how dataset biases and implementation choices can
affect visual pre-training for robotics. With the modus operandi of masked image
modeling [94], our experiments analyzed pre-trained visuo-motor representations
trained on 15 different data distributions, sourced from 5 common computer vision
and robotics datasets. These models were evaluated on standard sim environments,
alongside 3 unique and challenging real world tasks (each with 50+ robot evalua-
tions, for rigor). We find that traditional computer vision datasets (e.g. ImageNet)
provide surprisingly strong performance for robotic pre-training. In fact, our simple
ImageNet representations outperform both Ego4D representations and representa-
tive baselines in the field. The key insight is that the image distribution matters
much more than the sheer number of images during pre-training. Guided by this
insight, we explore various strategies for scaling data distribution, by carefully mix-
ing data from different sources. As part of this investigation, we train a final model
(Soup-1M + 1M DoH) that exhibits a 30% improvement over the baselines on real
world robotic tasks. Finally, we analyze our experimental methodology, and show
how simple regularization techniques (e.g. dropout [211]) can boost real world per-
formance, and conclude that trends in simulation do not correlate to real world

56

deployment. We hope that our unbiased empirical probes and associated findings
will inspire others in the field to study how various sources of offline data can trans-
fer to robotics tasks. To enable future efforts, we released all of our pre-trained
representations and evaluation code on our website2.

Limitations and Future Work While our experiments were extensive, there are
some limitations that should be addressed by future work. First, there is no simple
theory or experimental test that can predict if a representation will actually work
well on the robot after pre-training. In fact, our experiments show that the easiest
evaluation technique, i.e. the proxy of simulation, may give a misleading sense
of progress in the real world! Thus, it is vital for our community to find faster
ways to evaluate representations, and share reproducible results. One possibility
is a standardized cloud robotics benchmark [49, 263] that could greatly reduce the
load for researchers. Next, our experiments heavily focused on Behavior Cloning
combined with MAE pre-training (though we did explore SimCLR pre-training in
Appendix H.4.4). Finally, it would be valuable to extend our study in more scenarios
(e.g., Reinforcement Learning), and on other robotic tasks, like visual navigation
and grasping.

2https://data4robotics.github.io

57

https://data4robotics.github.io

Chapter 6

HRP: Human Affordances for
Robotic Pre-Training

6.1 Motivation

Contact
Points

Active
Object

Pretrained Visual
Representation

…

VC-1

CLIP ImageNet-MAE

DINO

…

Hand Pose

Affordance
Fine-tuning

+

Figure 6.1: Pre-trained representa-
tions offer a scalable solution to the
robotics data bottleneck [154, 170,
141], but existing methods fail to re-
liably improve over simple baselines
like ImageNet (see Chapter 5 and
Burns et. al. [25]). Thus, we present
HRP, a method that mines affor-
dances (e.g., contact, hand pose, and
object labels) from human videos and
uses them to improve self-supervised
visual encoders. Our best HRP repre-
sentation consistently outperforms 6
SOTA baselines by ≥ 20% across 5
diverse tasks and 3 camera views.

A truly generalist robotic agent will need to
acquire diverse manipulation skills (ranging
from block stacking to pouring) that work
with novel objects and are robust to realis-
tic environmental disturbances (e.g., light-
ing changes, small camera shifts). Due to
the scale of this challenge, the field has
trended towards learning these agents di-
rectly from data [131, 165] (i.e., robot tra-
jectories), which is either collected by ex-
pert demonstrators or (via Reinforcement
Learning [213]) autonomously by the agent
itself. Unfortunately, there are innumerable
objects/environments, so roboticists cannot
tractably collect enough real-world demon-
stration data and/or design a simulator that
captures all this diversity.

One promising solution for this “data
challenge” is for the robot to learn a suit-
able representation from Out-Of-Domain
(OOD) data that can be transferred into
the robotics domain. For example, prior
work [154, 170, 141] trained self-supervised
image encoders on large scale datasets of hu-
man videos (e.g., Ego4D [81]), using stan-

58

Encoder

M
LP

N
or

m +

M
ul

ti-
he

ad

at
te

nt
io

n

+

N
or

m

Frozen layer

ℒ ct

hand

obj

Contacts

Hand pose

Active object

Frame

Actionable visual representations

ℒ

ℒ

Figure 6.2: HRP fine-tunes a pre-trained encoder to predict three classes of human
affordance labels via L2 regression. Specifically, the network must predict future
contact points, human hand poses, and the target object given an input frame
from the video stream. These affordance labels are mined autonomously from a
human video dataset [81] using off-the-shelf vision detectors [197]. Representations
produced by HRP are then fine-tuned to solve downstream manipulation tasks via
behavior cloning.

dard reconstruction objectives and contrastive learning [158] objectives – e.g.,
Masked Auto-Encoders [94] (MAE) and Temporal Contrastive Networks [193]
(TCN) respectively – developed by the broader learning community. After pre-
training, these representations are used to initialize downstream imitation learn-
ing [188] algorithms. This formula is extremely flexible, and can substantially reduce
the amount of robot data required for policy learning. However, the representations
are often only effective when using specific camera views and robot setups. Fur-
thermore, independent evaluations (see Chapter 5 and Burns et. al. [25]) recently
showed that these representations cannot improve (on average) over the most obvi-
ous baseline – a self-supervised ImageNet representation [94, 53]!

This result is surprising since robotic trajectories and human video sequences
share so much common structure: both modalities contain an agent (e.g., human
or robot) using their end-effector (e.g., human hand, robot gripper) to manipu-
late objects in its environment. Ideally, representations trained on this data would
learn useful object attributes (e.g., where to grasp a mug), and spatial relationships
between the end-effector and target objects. We hypothesize that traditional, self-
supervised learning objectives are unable to extract this information from human
video data, and that explicitly predicting these object/spatial features would result
in a stronger robotic representation (i.e., higher down-stream control performance).
Our key insight is that abandoning self-supervision comes at minimal cost – the
necessary object and hand labels can be scalably mined using off-the-shelf vision
pipelines.

59

This chapter proposes Human affordances for Robotic Pre-training (HRP), a
semi-supervised pipeline to learn effective robotic representations from human video.
HRP works in two stages: first, it extracts hand-object “affordance” information –
i.e., which objects in the scene are graspable and how the robot should approach
them – from human videos using off-the-shelf tracking models [197, 176]. These
affordances are then distilled into a pre-existing representation network (e.g., Im-
ageNet MAE [94]), before the policy fine-tuning stage. This paradigm allows us
to inject useful information into the vision encoder, while preserving the flexibil-
ity of self-supervised pre-training – i.e., all labels are automatically generated and
the network can be easily slotted into downstream robotic policies/controllers via
fine-tuning. To summarize, we learn stronger robotic representations by predicting
object interactions and hand motion from human video dataset images (see Fig. 6.1).
Our investigations and experiments reveal:

1. We present a semi-supervised learning algorithm – HRP– that leverages off-
the-shelf human affordance models to learn effective robotic representations
from human video. The proposed pipeline strongly outperforms representa-
tions learned purely via self-supervision.

2. Applying HRP to 6 pre-existing representations (including ImageNet [53, 94],
VC-1 [141], and DINO [27]) substantially boosts robot performance. This
conclusion is backed by 3000+ robot trials, and replicates across 3 camera
views, 3 distinct robotic setups, and 5 manipulation tasks!

3. Our ablation study reveals that HRP’s three affordance objectives (hand, ob-
ject, and contact based loss terms) are all critical for effective representation
learning.

4. We show that HRP representations generalize across different imitation learn-
ing stacks – HRP improves diffusion policy [37] performance by 20%!

5. Our best representation, which increases performance by 20% over State-of-
the-Art (SOTA), will be fully open-sourced, along with all code and data.

6.2 Related Work
Representation Learning in Robotics End-to-end policy learning offers a scalable
formula for acquiring robotic representations: instead of hand-designing object de-
tectors or image features, a visual encoder is directly optimized to solve a down-
stream robotic task [131]. Numerous works applied this idea to diverse tasks includ-
ing bin-picking [112, 133, 165], in-the-wild grasping [83, 209], insertion [49, 131],
pick-place [23], and (non-manipulation tasks like) self-driving [22, 166, 33]. Further-
more, secondary learning objectives – e.g., dynamics modeling [87, 237], observation
reconstruction [152], inverse modeling [46], etc. – can be easily added to improve

60

data efficiency. While this paradigm can be effective, learning purely from robot
data requires an expensive data collection effort (e.g., using an arm farm [133, 112],
large-scale tele-operation [23], or multi-institution data collection [44, 40]), which is
infeasible for (most) task settings.

Hand ObjectContact

Figure 6.3: We extract 3 affordances
– contact heatmaps, hand poses and
active object bounding boxes – from
human videos.

To increase data efficiency, prior work
applied self-supervised representation learn-
ing algorithms on out-of-domain datasets
(like Ego4D [81]), and then fine-tuned the
resulting representations to solve down-
stream tasks with a small amount of robot
data – e.g., via behavior cloning on a ≤ 50
expert demonstrations [154, 141, 170],
directly using them as a cost/distance
function to infer robot actions (see Chap-
ter 4), or directly pre-training robot policies
from extracted human actions [202, 142].
While this transfer learning paradigm can
certainly be effective, it is unclear if these
robotic representations [141, 154, 170] ac-
tually provide a substantial boost over pre-existing vision baselines (see Chapter 5
and Burns et. al. [25]), like ImageNet MAE [94] or DINO [27]. One potential issue
is that roboticists often use the same exact pre-training methods from the vision
community, but merely apply them to a different data mix (e.g., VC-1 [141] applies
MAE [94] to Ego4D [81]). Thus, the resulting representations are never forced to
key in on object/agent level information in the scene. This chapter proposes a
simple formula for injecting this information into a vision encoder, using a mix of
hand and object affordance losses, which empirically boost performance on robotic
tasks by 25%.

Affordances from Humans HRP is heavily inspired by the affordance learning lit-
erature in computer vision [78, 77]. These works use human data as a probe to
learn environmental cues (i.e., affordances) that tell us how humans might inter-
act with different objects. These include physical [63, 15, 84, 267, 93, 261, 150]
and/or semantic [181, 186] scene properties, or forecast future poses [118, 175,
74, 105, 100, 230, 2, 126, 227, 81, 72, 146, 79] Affordances can also be learned
at object or part levels [268, 71, 80, 151, 135, 245]. Usually such approaches lever-
age human video datasets [81, 41, 43, 41] or use manually annotated interaction
data [136, 42, 197]. In addition to these cues, robotic affordances must consider how
to move before and after interaction [13, 113]. A simple, scalable way to capture
this information is by detecting these cues from human hand poses in monocular
video streams [231, 113, 176, 137], which show robots reaching for and manipulat-

61

Policy Training

Scene Image ot

M
LP

N
or

m +

M
ul

ti-
he

ad

at
te

nt
io

n

+N
or

m 𝜋

HRP Representation
End-Effector Pose +

Gripper Action

policy

Figure 6.4: We present our policy training pipeline, which uses Behavior Cloning (BC)
to train policy π, using optimal expert demonstrations. The image observation (ot) is
processed using our HRP representations resulting in a latent vector z. The policy uses z
to predict end-effector velocity actions (delta ee-pose/gripper), which are directly executed
on the robot during test-time.

ing diverse, target objects. Our method combines these three approaches to create
a human affordance dataset automatically from human video streams. The labels
generated during this process are distilled into a representation and used to improve
downstream robotics task performance.

6.3 Preliminaries

6.3.1 Visual Representation Learning

Our goal is to learn a visual encoder network fθ that takes an input image I and
processes it into a low-dimensional vector fθ(I) ∈ Rd. This resulting “embedding
vector” would ideally encode important scene details for robotic policy learning –
like the number and type of objects in a scene and their relationship to the robot
end-effector. In this chapter, fθ is a transformer network (specifically ViT-B [256],
with patch size 16 and d = 768) parameterized with network weights θ. But to be
clear, all our methods are network architecture agnostic.

Self-Supervised Learning The computer vision community has broadly adopted
self-supervised representation learning algorithms that can pre-train network weights
without using any task-specific supervision. This can be accomplished using a gen-
erative learning objective [58], which trains fθ alongside a decoder network D that
reconstructs the original input image input from the representation. Another com-
mon approach is contrastive learning [158, 96], which optimizes fθ to maximize the
mutual information between the encoding and the input image (i.e., place “similar”
images closer in embedding space). In practice, these methods can learn highly
useful features for downstream vision tasks [94, 96], but struggle in robotics settings
(see Chapter 5). Our goal is to inject these features into an existing self-supervised
network, with an affordance-driven fine-tuning stage.

62

6.3.2 Extracting Affordance Labels from Human Data

Before we can do any fine-tuning, we must first curate a suitable human affordance
dataset DH . Thankfully this task can be done automatically using off-the-shelf
vision modules, applied to a set of 150K human-object interaction videos from
Ego4D (originally sampled by Nair et. al. [154]). These are subsets of larger videos
(around 1.2K) videos, which were further broken down into shorter clips. Each
clip contains a semantically meaningful action by the human. Each video clip V
contains image frames V = {I1, . . . , IT } that depict human hands performing tasks
and moving around in the scene. From these images, we obtain contact locations,
future hand p-oses, and active object labels (examples in Fig. 6.3) that capture
various agent-centric properties (how to move and interact) and environment
centric properties (where to interact) at multiple scales, i.e. contact-level and
object-level. The following sections detail how each of these labels were generated.

Contact Locations To extract contact locations for an image It (with no object
contact), we find the frame Ij ; j > t where contact with a given object will begin,
using a hand-object interaction detection model [197]. Then, we use Ij to find
the active object Oj and the hand mask Mj . The points intersecting Mj and Oj

(acquired via skin segmentation) are our contact affordances (Cj). To account
for motion between It and Ij , we compute the homography matrix between the
frames and project those points forward. This is done using standard SIFT feature
tracking [264]: Ct = Hj,tCj . In other words, the contact locations denote where
in It the human will contact in the future. Note that there could be a different
number of points for each contact scenario, which is non-ideal for learning. Thus,
we fit a Gaussian Mixture Model with k = 5 modes on Ct to make a uniform
contact descriptor – defined as the means ct of the mixture model.For more details
on extraction, we refer to Appendix H.5.6.

Future Hand Poses This affordance label captures how the human moves next
(e.g., to complete a task or reach an object), as the video V progresses. Given a
current frame It, we detect the human hand’s 2d wrist position (ht+k) in a future
frame It+k, where usually k = 30 (empirically determined). This is done using the
Frank Mocap [176] hand detector. To correctly account for the human’s motion,
these wrist points are back-projected (again using the camera homography matrix)
to It to create the final “future wrist label,” ht = Ht+k,tht+k.

Active Object Labels In a similar manner to the contact location extraction, we run
a hand-object interaction detection model [197] on V to find the image where contact

63

Franka xArm Dexterous Hand

Toasting Pouring Stacking Pot on Stove Lift Cup
Ego Cam EndEgo Cam Ego Cam

Start

End

StartFront CamFront Cam Front Cam

Figure 6.5: Our experiments consider 5 unique manipulation tasks, ranging from
classic block-stacking to a multi-stage toasting scenario. These tasks are imple-
mented on 3 unique robot setups, including a high Degree-of-Freedom dexterous
hand (right). The 3 camera views shown – front, ego, and side views (for xAr-
m/dexterous hand) – are the same views ingested by the policy during test-time.
Note that 3 of the tasks consider 2 unique camera views in order to test for robust-
ness!

began Ic. The same detector is used to find the four bounding box coordinates of the
object that is being interacted with, which we refer to as the “active object.” These
coordinates bc are then projected to every other frame It, using the homography
matrix (see above). This results in an active bounding box bt for each image in V .

6.4 Introducing HRP

A variety of visual pre-training tasks have been shown to help with downstream
robotic performance– ranging from simple ImageNet classification [196] to self-
supervised learning on human video [170, 154, 140, 141, 159]. These approaches
treat human video and simple image frames, and do not explicitly model the rich
hand-object contacts depicted by them. In contrast, we believe explicitly modeling
the affordances [77] in this data could allow us to learn useful information about
the agent’s intents, goals and actions. Indeed, past work has shown that affordances
can act as strong prior for manipulation [265, 110, 203, 253, 13, 28, 102, 19] in gen-
eral. Moreover, this information can be represented in many different formats, such
as physical attributes, geometric properties, interactions, object bounding boxes,
or motion forecasting. We observe that most tasks of interests humans perform
are with their hands. We thus focus on training our model to predict hand-object
interactions and hand motion.

We present HRP, a simple and effective representation learning approach that
injects hand-object interaction priors into a self-supervised network, fθ, using an

64

automatically generated human affordance dataset, DH (see above for definitions
and dataset mining approach). HRP is illustrated in Fig. 6.2, and the following
sections describe its implementation in detail.

6.4.1 Training HRP

The initial network fθ is fine-tuned using batches sampled from the human dataset:
(It, ct, ht, bt) ∼ DH , where ct, ht, and bt are contact, hand, and object affordances
corresponding to image It (see Sec. 6.3.2 for definitions). Some frames may not
include all 3 affordances, so we include 3 mask variables – m

(c)
t ,m

(h)
t ,m

(b)
t – so the

missing values can be ignored during training. We add 3 small affordance modules
– pc, ph, pb – on top of fθ that are trained to regress the respective affordances for
It. This results in the following three loss functions:

Lct = ||ct − pc(fθ(It))||2 (6.1)

Lhand = ||ht − ph(fθ(It))||2 (6.2)

Lobj = ||bt − pb(fθ(It))||2 (6.3)

The full loss is:

L = m
(c)
t λctLct +m

(h)
t λhandLhand +m

(b)
t λobjLobj (6.4)

Where the λs are hyper-parameters that control the relative weight of each affor-
dance loss. We empirically found λobj = 0.05, λct = 0.005, λhand = 0.5 to be optimal
for downstream performance (see Appendix H.5.5).

6.4.2 Implementation Details

Our affordance dataset (DH) is at least an order of magnitude smaller than the pre-
training image dataset initially used by the baseline representation (e.g., ImageNet
has 1M frames v.s. our 150K). To preserve the useful features learned from the larger
pre-training distribution, we keep most of the parameters in θ fixed during HRP fine-
tuning. Specifically, we only fine-tune the baseline network’s normalization layers
and leave the rest fixed, which has been shown to be an effective approach [76, 259].
In the case of our ViT-B this amounts to fine-tuning only the LayerNorm parameters
γ and β:

LayerNorm(x) =
x− µ

σ
γ + β (6.5)

These parameters are fine-tuned to minimize L using standard back-propagation
and the ADAM [117] optimizer.

65

6.5 Experimental Details
Our contributions are validated using a simple empirical formula: first, HRP
is applied to each baseline model (listed below). Then, (following standard
practice [154, 141]) the resulting representation is fine-tuned into a manipulation
policy using behavior cloning. Details for each stage are provided below, and the
HRP is illustrated in Fig. 6.2.

Baseline Representations We chose 6 representative, SOTA baselines from both
the vision and robotics communities:

1. ImageNet MAE was pre-trained by applying the Masked Auto-Encoders [94]
(MAE) algorithm to the ImageNet-1M dataset [53]. It achieved SOTA per-
formance across a suite of vision tasks, and is the first self-supervised repre-
sentation to beat supervised pre-training. We use the standard Masked Auto
Encoder training scheme for this, using hyperparmaeters from MAE [94].

2. Ego4D MAE was trained by applying the MAE algorithm to a set of 1M frames
sampled from the Ego4D dataset [81]. For consistency with prior work, we use
the same 1M frame-set sampled by the R3M authors [154]. We use the stan-
dard Masked Auto Encoder training scheme for this, using hyperparmaeters
from MAE [94].

3. CLIP [168] is a SOTA representation for internet data. It was learned by
applying contrastive learning [158] to a large set natural language - image pairs
crawled from internet captions. We used publicly available model weights.

4. DINO [27] was trained using a self-distillation algorithm that encourages the
network to learn local-to-global image correspondences. DINO’s emergent
segmentation capabilities could be well suited for robotics, and it has al-
ready shown SOTA performance in sim [25]. We used publicly available model
weights.

5. MVP [170] was trained by applying MAEs to a mix of in-the-wild datasets
(100 DoH [197], Ego4D [81], etc.). The authors showed strong performance
on various manipulation tasks. We used publicly available model weights.

6. VC-1 [141] was trained in a similar fashion to MVP, but used a larger dataset
mix. It showed strong performance on visual navigation tasks. We used pub-
licly available model weights.

Note that each baseline is parameterized with the same ViT-B encoder w/ patch
size 16 (see Sec. 6.3.2), to ensure apples-to-apples comparisons.

66

Ego4D ImageNet CLIP DINO MVP VC-1
Initial Representation

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Pe

rf
or

m
an

ce
HRP v.s. Baselines (Front Cam)

Ours
Baseline

Ego4D ImageNet CLIP DINO MVP VC-1
Initial Representation

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pe
rf

or
m

an
ce

HRP v.s. Baselines (Ego Cam)

Ours
Baseline

Figure 6.6: We apply HRP to 6 different baseline representations and plot how it affects
performance on average across the toasting, pouring, and stacking tasks. This evaluation
procedure is repeated using two distinct cameras (shown in Fig. 6.5) in order to test if HRP
representation are robust to view shifts. We find that HRP representations consistently and
substantially outperform their vanilla baselines, and that this effect holds across both the
front (left) and ego (right) cameras. In fact, our strongest representation – ImageNet +
HRP– delivers SOTA performance on both views!

Policy Learning Each representation is evaluated on downstream robotic manipu-
lation tasks, by fine-tuning it into a policy (π) using Behavior Cloning [166, 187, 179].
Note that π must predict the expert action (at – robot motor command) given the
observation (ot – input image and robot state): at ∼ π(·|ot). And π is learned using
a set of 50 expert demonstrations D = {τ1, . . . , τ50}, where each demonstration
τi = [(o0, a0), . . . , (oT , aT)] is a trajectory of expert observation-action tuples. In
our case, π is parameterized by a small 2-layer MLP (p) placed atop the pre-trained
encoder p(f(ot)) that predicts a Gaussian Mixture policy distribution w/ 5 modes.
Both the policy network and visual encoder are optimized end-to-end (using
ADAM [117] w/ lr = 0.0001 for 50K steps) to maximize the log-likelihood of
expert actions: maxp,f log(π(at|p(f(ot)))). During test time actions are sampled
from this distribution and executed on the robot: at ∼ π(·|p(f(ot))). This is a
standard evaluation formula that closely follows best practice from prior robotic
representation learning work [144].

Real World Tasks We fine-tune policies for each representation on the 5 diverse
tasks listed below, which are implemented on 3 unique robotic setups, including a
dexterous hand (illustrated in Fig. 6.5). 50 expert fine-tuning demonstrations were
collected for each task via expert tele-operation. Note that the stacking, pouring,
and toasting tasks were evaluated twice using different camera views to test robust-
ness!

67

• Stacking: The stacking task requires the robot to pick up the red block and
place it on the green block. During test time both blocks’ starting positions
are randomized to novel locations (not seen in training). A trial is marked
as successful if the robot correctly picks and stacks the red block, and half
successful if the red block is unstably placed on the green block. This task
is implemented on a Franka robot, and used both an Ego and Front camera
viewpoint.

• Pouring: The pouring task requires the robot to pick up the cup and pour the
material (5 candies) into the target bowl. During test time we use novel cups
and bowls and place each in new test locations. This task’s success metric
is the fraction of candies successfully poured (e.g., 2/5 candies poured → 0.4
success). This task was also implemented on the Franka using Ego and Front
cameras.

• Toasting: The toasting task requires the robot to pick up a target object, place
it in the toaster oven, and shut the toaster. This is a challenging, multi-stage
task. During test time the object type, and object/toaster positions are both
varied. A test trial is marked as successful if the whole task is completed, and
0.5 successful if the robot only successfully places the object. This is the final
task implemented on Franka w/ Ego and Front camera views.

• Pot on Stove: The stove task requires picking up a piece of meat or carrot
from a plate and placing it within a pot on a stove. During test time, novel
“food” objects are used and the location is randomized. A trial is marked as
successful if the food is correctly placed in the pot. This task is implemented
on a xArm and uses the side camera view.

• Hand Lift Cup This task requires a dexterous hand to reach, grasp, and lift
up a deformable red solo up. The hand’s high dimensional action space (R20)
makes this task especially challenging. A trial is marked successful if the cup
is stably grasped and picked. This task is implemented on a custom dexterous
hand using a side camera view.

6.6 Results
Our experiments are designed to answer the following:

1. Can HRP improve the performance of the pre-trained baseline networks
(listed above)? Does the effect hold across different camera views and/or
new robots? (see Sec. 6.6.1)

2. Our affordance labels are generated using off-the-shelf vision modules – does
distilling their affordance outputs into a representation (via HRP) work better
than simply using those networks as encoders? (see Sec. 6.6.2)

68

Teacher ResNet HRP Models
Front Cam 100DoH [197] w/ Ego4D w/ ImageNet w/ CLIP

Toasting 35% ± 15% 83% ± 9% 75% ± 10% 50% ± 11%
Pouring 34% ± 13% 60% ± 11% 48% ± 12% 39% ± 11%
Stacking 0% 77% ± 10% 70% ± 11% 57% ± 11%

Average 35% ± 10% 73% ± 6% 64% ± 7% 48% ± 6%

Table 6.1: This table compares 3 representations trained w/ HRP against the teacher
ResNet [197] that generated our human affordance dataset (see Sec. 6.3.2). We find that the
ResNet teacher under-performs even the worst HRP representation (fine-tuned from CLIP),
even after excluding the stacking task, which it failed on.

3. How does HRP compare against alternate forms of supervision on the same
human video dataset? (see Sec. 6.6.3)

4. How important are each of the three affordance losses for HRP’s final perfor-
mance? And is it really best to only fine-tune the LayerNorms and leave the
other weights fixed? (see Sec. 6.6.4)

5. Can HRP handle scenarios with OOD distractor objects during test time? (see
Sec. 6.6.5)

6. Can HRP representations work with different imitation learning pipelines, like
diffusion policy [37]? (see Sec. 6.6.6)

Note that all experiments were conducted on real robot hardware, and the models
were all tested back-to-back (i.e., using proper A/B evaluation) using 50+ trials per
model to guarantee statistical significance. Note that all of our figures and tables
report success rates (sometimes averaged across the toasting, stacking, and pouring
tasks) alongside std. err. to quantify experimental uncertainty – i.e. success% ±
std. err..

6.6.1 Improving Representations w/ HRP

To begin, we evaluate the 6 baseline representations (detailed in Sec. 6.5) on the
toasting, pouring, and stacking tasks using the front camera view. Then, we apply
HRP to each of these baselines, and evaluate those 6 new models on the same
tasks. Average success rates across all 3 tasks are presented in Fig. 6.6 (left),
and the full table is in the Appendix H.5.2. First, this experiment demonstrates
that ImageNet MAE is still highly competitive on real-world manipulation tasks,
when compared to other self-supervised representations from the vision [81, 27],
machine learning [168], and robotics communities [239, 141]. Second, we show

69

that HRP uniformly boosts performance on downstream robotics tasks – i.e.,
baseline+ HRP > baseline for every baseline representation considered! Thus, we
conclude that the affordance information injected by our method is highly useful for
robot learning, and (for now) cannot be learned in a purely self-supervised manner.

Ego4D ImageNet CLIP DINO MVP VC-1
Initial Representation

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pe
rf

or
m

an
ce

Finetuning Setup Ablation

LayerNorm Only
All Weights

Figure 6.7: This chart applies an ab-
lated HRP method (full fine-tuning) to
the 6 baseline representations, and com-
pares their average performance v.s. stan-
dard HRP representations on the toasting,
pouring, and stacking tasks (front cam).
We find that LayerNorm only fine-tuning
is almost always superior.

Ego4D ImageNet VC-1
Initial Representation

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pe
rf

or
m

an
ce

Loss Function Ablations

Ours
Ablate Contact
Ablate Object
Ablate Hand

Figure 6.8: We drop each of the 3
losses in HRP, and compare the ablated
method’s average performance (across the
toasting, pouring, stacking tasks) against
full HRP representations. We find that the
object and hand losses are critical for good
performance, but the contact loss only
makes a significant impact on the Ego4D
base model.

Second Camera View A common critique is that robotic representations perform
very differently when the camera view (even slightly) changes. To address this
issue, we replicated the first experiment using a radically different ego view, where
the camera is placed over the robot’s shoulder (i.e., on its “head”). While perhaps
a more realistic view, it is significantly more challenging due to the increased
robot-object occlusion. Average success rates are presented in Fig. 6.6 (right),
and a per-task breakdown is in Appendix H.5.3. Note that our findings replicate
almost exactly from the front camera view. The ImageNet MAE representation
is still competitive with the other baselines, and applying HRP uniformly improves
the baseline performance. In addition, we find that HRP injects a higher level of
robustness to camera view shifts, when compared to the baselines. For example,
we find that ImageNet + HRP performs the same on the ego and front camera, even
though the ImageNet baseline clearly prefers the front cam. This general effect
holds (to varying degrees) across all six baselines!

70

Ego4D ImageNet
w/ HRP Baseline w/ HRP Baseline

Pot on Stove 50% ± 17% 40% ± 16% 60% ± 16% 40% ± 16%
Hand Lift Cup 50% ± 17% 40% ± 16% 50% ± 17% 30% ± 15%

Table 6.2: We present results of Ego4D + HRP and ImageNet + HRP, as well as the respec-
tive baselines on the x-Arm (Pot on Stove) and a dexterous hand task (Lift Cup). We see
that HRP can even boost performance in multiple morphologies, including a high-degree of
freedom dexterous hand [201].

Scaling to More Robots Finally, we verify that HRP representations can provide
benefits on other robotic hardware setups. Specifically, we compare Ego4D + HRP
and ImageNet + HRP versus the respective baselines on the Pot on Stove (xARM)
and Hand Lift Cup (dexterous hand) tasks. Results are presented in Table 6.2. Note
that HRP representations provide a consistent and significant performance during
policy learning on these radically different robot setups, which both also use a unique
side camera view. This gives us further confidence in HRP’s view robustness, and
demonstrates that these representations are not tied to specific hardware setups,
and can scale to complex morphologies like dexterous hands.

6.6.2 Distillation w/ HRP Improves Over Label Networks

It is clear that applying HRP to self-supervised representations results in a consistent
boost. However, the hand, object, and contact affordance labels for HRP themselves
come from neural networks (see Sec. 6.3.2) – specifically we use the ResNet-101 [97]
detector from 100DoH [197] as a label generator for our active object and contact
affordance. The hand affordance we use comes from FrankMocap [176], which uses
100DoH [197] as a base model. Thus, does distilling labels from this detector via
HRP actually provide a benefit over simply using the 100DoH model itself as a pre-
trained representation? To test this question, we fine-tune policies on the toasting,
pouring, and stacking (front cam) tasks and compare them against HRP applied to
ImageNet, Ego4D, and (the weakest model) CLIP (see Table 6.1). In all cases, our
representation handily beats the 100DoH policy. So while the affordance labels can
dramatically boost policy learning (via HRP), the source/teacher models are not at
all competitive on robotics tasks.

6.6.3 Comparing Against Alternate Forms of Supervision

We now analyze if HRP’s losses are betters suited for robotics tasks than an alternate
supervision scheme. To be clear, the previous results already demonstrated that
HRP + Ego4D out-performed the Ego4D baseline by up to 20% (see Fig. 6.6; left),
despite being sourced from the same image data. However, it could be that the

71

Initialization w/ HRP MAE Initialization

Ego4D 40% ± 15% 15% ± 11%
ImageNet 40% ± 15% 40% ± 15%

Table 6.3: This table compares Ego4D + HRP and ImageNet + HRP representations against
their respective baselines on a stacking w/ distractors task. Here the robot must successfully
complete the usual stacking task, when extraneous objects (an orange carrot, and a green
bowl) are added to the scene. We find that Ego4D + HRP improved over its baseline on this
task, but ImageNet + HRP performed the same as its baseline.

Ego4D ImageNet CLIP
+ HRP + Semantic + HRP + Semantic + HRP + Semantic

Toasting 83% ± 9% 25% ± 13% 75% ± 10% 40% ± 14% 50% ± 11% 20% ± 13%
Pouring 60% ± 11% 30% ± 13.4% 48% ± 12% 26% ± 11% 39% ± 11% 22% ± 10%
Stacking 77% ± 10% 30% ± 11% 70% ± 11% 40% ± 12% 57% ± 11% 30% ± 13%

Average 73% ± 6% 28% ± 7% 64% ± 7% 35% ± 7% 48% ± 6% 24% ± 7%

Table 6.4: We create Semantic representations by fine-tuning the Ego4D, ImageNet, and
CLIP baselines using a classification loss, instead of HRP’s affordance loss. Note that the
exact same Ego4D clips (see Sec. 6.3.2) are used during semantic fine-tuning, thanks to
object class labels generated automatically by Detic [266]. The sematic representations were
evaluated (using the same BC pipeline) on the Toasting, Pouring, and Stacking tasks, and
compared against their HRP counterparts. Success rates (and standard error) are reported
above. We find that the affordance supervision provided by HRP is vastly superior to the
semantic alternative.

additional fine-tuning step with the 100K filtered interaction clips is responsible,
and the specific affordance losses are not key. To test this, we ran a modified
version of HRP using a semantic classification loss, instead of our affordance hand-
object losses. The ground-truth labels for each image were obtained using the Detic
object detector [266]. We then similarly fine-tuned the ImageNet, Ego4D, and CLIP
baseline representation using these labels, and compared them against the respective
HRP models on the toasting, pouring, and stacking tasks. The results are presented
in Table 6.4 We find that the HRP models perform significantly better on every task.
Thus, we conclude that HRP’s affordance losses play an important role in boosting
performance (i.e., it’s not just data or extra fine-tuning).

6.6.4 What Design Decisions are Important?

The following section ablates the key components of HRP to evaluate their relative
importance. First, we apply HRP to each of the 6 baseline representations again, but
this time none of the weights are kept fixed (see Sec. 6.4.2). These representations are
fine-tuned on the toasting, stacking, and pouring tasks (front cam), and compared

72

against the original HRP representations in Fig. 6.7. Note that fine-tuning all the
layers results in a substantial performance hit on average, and this trend is consistent
regardless of the base representation! Thus, we conclude fine-tuning only the layer
norms when applying HRP is the correct decision.

Next, we ablate each of the affordance losses in Eq. 6.4, by applying HRP three
times: once with λct = 0, then with λhand = 0, and finally λobj = 0. This pro-
cess is repeated using 3 different base models; ImageNet, Ego4D, and VC-1. This
creates 9 ablated models (3 losses x 3 initializations) that are compared versus the
full HRP models on the toasting, pouring, and stacking tasks. The average results
are presented in Fig. 6.8, and the full, per-task breakdown is presented in the Ap-
pendix H.5.4. We find that removing the object (Eq. 6.3) and hand (Eq. 6.2) losses
uniformly results in significant performance degradation. Meanwhile, the contact
loss (Eq. 6.1) only provides a significant boost for the Ego4D base model but does
not affect the others. Thus, we conclude that object and hand losses are critical
for our method, while the contact loss is more marginal, most likely due to the fact
that extraction of contacts is a relatively noisy process.

6.6.5 Novel Distractors During Test-Time

We evaluate the performance of HRP and baseline approaches in OOD settings, by
adding extraneous “distractor” objects (an orange carrot and a light green bowl) in
the stacking task. The robot must successfully ignore the distractor and complete
the task. Results are presented in Table 6.3. We found that both ImageNet +
HRP and ImageNet had the same level of robustness to distractors. Meanwhile,
Ego4D’s performance dropped substantially, while Ego4D + HRP remained robust.
Our hypothesis is that human data by itself does not contain enough information
to allow for OOD tasks. However, using HRP allows for more focus on task-relevant
features, even when the representation is trained on less diverse data.

6.6.6 Evaluating w/ Diffusion Policy

Finally, we analyze if HRP representations offer improvements when using a radically
different imitation learning framework, like diffusion policy [37]. Specifically, we
adopt the original U-Net action prediction head and environment setup from Chi
et. al. [37], but replace their ResNet visual encoder (inspired from RoboMimic [144])
with our HRP + ImageNet ViT-B model. Then we compare this HRP enhanced dif-
fusion policy implementation, against (diffusion agents which use) both the original
ResNet encoder and the baseline ImageNet ViT-B. Results for the (Franka) stack-
ing, pouring, and toasting tasks are presented in Table 6.5. We find that HRP +
ImageNet significantly improves over both alternatives (76% for HRP v.s., 56%
for Chi et. al.’s implementation [37]), despite using a radically different imitation
learning objective/setup! Thus, we conclude that HRP representations can boost
performance across different setups.

73

HRP + ImageNet ImageNet ResNet [144, 37]

Toasting 80% ± 13% 60% ± 16% 55% ± 16%
Pouring 74% ± 14% 48% ± 16% 38% ± 16%
Stacking 75% ± 13% 70% ± 15% 50% ± 17%

Average 76% ± 8% 59% ± 9% 48% ± 9%

Table 6.5: This table tests if HRP representations can boost performance when using a
radically different imitation learning framework – namely Diffusion Policy [37]. We eval-
uate diffusion policies (following the U-Net + state action formula described by Chi et.
al [37]) on the toasting, pouring, and stacking tasks using 3 different visual encoders: the
default ResNet encoder from RoboMimic [144], the ImageNet + MAE baseline, and our HRP
+ ImageNet features. We find a clear improvement when using HRP weights, which suggests
that HRP is applicable to different imitation learning frameworks!

6.7 Discussion
In this chapter, we investigate human affordances as a strong prior for training
visual representations. Thus, we present HRP, a semi-supervised pipeline that ex-
tracts contact points, hand poses and activate objects from human videos, and use
these affordances for fine-tuning representations. HRP improves base model perfor-
mance drastically, for five different, downstream behavior cloning tasks, across three
robot morphologies and three camera views. All components of our approach, in-
cluding LayerNorm tuning, our three affordances, and our distillation process (from
affordance labels to representations) are important for the model’s success. One key
limitation of this approach is that it has only been tested on imitation settings in
this chapter. In the future, we hope to not only scale this approach to many more
tasks and robot morphologies, but also incorporate HRP in other robot learning
paradigms such as reinforcement learning or model based control.

74

Chapter 7

Conclusions and Future Work

This thesis explored 5 distinct strategies for acquiring data-driven robotic controllers
from increasingly diverse data sources. First, Chapter 2 demonstrated how a sim-
ple behavior cloning loss can learn a complex, one-shot imitation policy, thanks to
a high-capacity Transformer neural network architecture. This approach outper-
formed prior baselines that required significantly more complicated alogirithms and
network architectures, but was prevented from scaling due to its reliance on expert
demonstrations. To solve this issue, Chapter 3 presented a method for acquiring
a generalist robotic controller by pre-training across data collected from different
labs and institutions. This general controller could be fine-tuned to solve novel
tasks in new environments in a more data efficient manner. Many modern robotics
projects – like Open-X [40], Octo [156], and DROID [116] – were heavily inspired by
this approach. However, robot lab data is still limited in terms of diversity. Thus,
the third section of this thesis explored different mechanisms for pre-training effec-
tive robotic represtations from human data, and transferring them to the robotics
regime. Chapter 4 found that self-supervised representations can strongly transfer
to downstream robotics tasks, but the effect only materializes when given suffi-
ciently diverse pre-training data (see Chapter 5). Finally, Chapter 6 proposed a
semi-supervised fine-tuning method that could boost downstream task performance
on 6+ representations, by injecting human affordance priors into the pre-trained
representations. Altogether, we found that human data can boost downstream per-
formance on robotic tasks by over 50%, especially in the low (robot) data regime.

7.1 Tips and Tricks for Better Behavior Cloning

In addition to scaling data, this thesis demonstrated how Behavior Cloning [188]
(BC) – one of the simplest algorithms for robotic policy learning – can efficiently
solve complex manipulation tasks (e.g., toasting in Chap. 5 and dexterous grasping
in Chap. 6). These results were built on the back of critical engineering decisions
that often go unmentioned in academic writing/research. Thus, this thesis concludes

75

with an unofficial list of tips and tricks (below) for the benefit of future practitioners.
Please note that these tricks are not rigorously proven, but are consistent trends from
my experiments/experience. Refer to the code-base from Chap. 5 and Chap. 6, which
provides a clean implementation w/ many of these tricks: https://github.com/
sudeepdasari/data4robotics.

• Use a High Capacity Network: Parameterize the policy with a sufficiently large
network. In particular, make sure that enough capacity is allocated to action
prediction (not just image processing) – a small action prediction MLP head
is often insufficient for multi-modal action prediction (e.g., via diffusion). This
lesson holds even in low data regimes (≤ 100 demos). For example, Chap. 5
trained successful BC policies by fine-tuning a 90M parameter ViT-B network
with 50 demos, and Chap. 6 combined a ViT-B image encoder with a 50M
parameter U-Net action head to learn a SOTA diffusion policy with 100 demos.

• Process Cameras with Separate Encoders: If the robot has multiple cameras
(like a wrist + front camera), use separate encoders weights for each camera
during image tokenization. For example, use two separate ResNet-18 (or larger
if memory allows) networks to tokenize frames from each camera, before pass-
ing the combined features to a transformer for action prediction [260, 156, 37].
This allows the policy to learn separate features for each viewpoint.

• Train w/ Large Batch Sizes: Larger batch sizes result in more stable training
and (often times) stronger policies. Try to use B ≥ 128 at minimum, but
scaling beyond that (e.g., B ≥ 512) is advisable for final runs.

• Predict Longer Action Chunks: Given an observation ot, predict a chunk
of H actions {at, at+1, . . . , at+H}, instead of just the next action at+1. This
often results in more stable policy learning, since it allows the network to
better model multi-modal action scenarios (like pauses). It also allows for
trajectory level smoothing during test time, which can significantly improve
performance [260]. If possible, make H large enough to fit 2 seconds of robot
action predictions (so H = 100 for a 50Hz action space). Feel free to add a
loss mask, to accommodate shorter trajectories during training.

• Fine-Tune the Whole Network: Avoid freezing parameters during behavior
cloning, even when starting from pre-trained features. This is especially im-
portant for image encoders, since precise visual localization is required for
most manipulation tasks. The effect is often quite significant: e.g., unfreezing
parameters can boost performance by over 20%+!

• Experiment with Velocity and State Actions: It may be better to predict
either velocity or state actions, depending on the exact choice of policy archi-
tecture, loss function, and robot platform. It’s best to experiment with both

76

https://github.com/sudeepdasari/data4robotics
https://github.com/sudeepdasari/data4robotics

options, and choose the best. Ideally, your demonstration collection code will
automatically collect both types of action labels, to make this switch seamless.

• Normalize the Action Space: Be sure to normalize the action space (e.g., via
Gaussian whitening, or max/min bounds normalization) based on the action
statistics seen in the training demonstrations. This both stabilizes policy
learning, and prevents dangerous scenarios during test time (e.g., policy can’t
erroneously command large actions).

• Explicitly Handle Action Multi-Modality: Explicitly model action multi-
modality in your policy architecture – e.g., via action chunking [260] (see
above), diffusion [37] (Chap. 6 uses DDIM w/ 100 train iters. and 10
evaluation iters.), and/or mixture model policies [144] (Chap. 5 predicts
a Gaussian Mixture Model w/ 5 modes). Failing to do this can result in
indecisive and ineffective policies.

• Carefully Process Proprioception: Action proprioception can greatly improve
policy performance, but naively adding it to the network can result in heavy
overfitting. We found that simply adding dropout (w/ p = 0.2) to the input
signal can solve this issue (see Chap. 5).

• Collect Diverse Demonstrations: Repetitive demonstrations provide little
value, so ensure that the training demonstrations cover the full range of task
scenarios the policy may see during test time. One solution for this is marking
each train position (e.g., w/ non-permanent pencil marks), and ensuring that
they cover ≥ 80% of the task workspace.

• Collect Consistent Demonstrations: Try to limit action multi-modality, by
demonstrating behaviors in a consistent way: e.g., always pick up mug from
the handle, grasp objects from the same angle/direction, and avoid pauses.
This is especially important in the low-data regime (≤ 100 demos), since
multi-modal distributions are hard to fit with little data.

• Create a Low-Data Sanity Test: Use a simple task (like block stacking) for
fast policy evaluation in the real world. This will allow for quick iteration and
debugging on an actual robot.

• Leverage Sim for Debugging Only: Despite the large sim2real evaluation gap
(see Chap. 5), it is still possible to detect major breaking bugs with simulators.
Use it as a rough sanity check, but do not evolve the project based solely on
signals from simulation.

77

7.2 Future Work
Despite the progress made in recent years (by the field and in this thesis), robotic
manipulation still remains far from solved. These models still make frequent errors,
especially when object and scene details change significantly from the training data
distribution. The most straight-forward, scalable solution to this problem, is to
continue broadening the training data distribution. This would entail both collect-
ing, annotating, and curating more diverse manipulation datasets, and also enabling
robots to learn more and more attributes (e.g., where to grasp, what trajectories to
take, etc.) directly from human data. This thesis took initial steps in this direction,
but it will require a large community-wide effort to fully land this vision.

However, scale is not the only possible solution – it is equally (if not more)
important to make the learning process itself more efficient. This could be ac-
complished by fine-tuning a large model from another domain (e.g., large vision
language model), which may have learned general world information and priors, to
solve robotics tasks. Another reasonable idea is to inject physics and visual priors
into the learning process. For example, the robot could learn 3D aware represen-
tations that help it grasp objects more precisely, even as camera views shift and
change. Finally, improving the robotic hardware itself, could make learning far
faster and more efficient in the long term. This could take the form of adding a
second arm and/or utilizing dexterous hands, which could solve more tasks with
simpler strategy. One could also integrate tactile signals (like RealSense [20]) into
the learning process in order to make fundamental tasks like grasping easier. In the
long term, these approaches could help robots solve more compelling tasks, with far
less training data.

78

Chapter H

Appendix

H.1 Transformers for One-Shot Visual Imitation

H.1.1 Baseline Comparisons: Multi-Object Environments

While the prior experiments showed our model could successfully generalize to new
task instances, can it also generalize to new tasks including unseen objects? To an-
swer this question the baseline comparisons (described in Section 2.4.2) are repeated
in environments with multiple objects. Importantly, the objects used during test
time are unseen during training.

Environment Description: The multi-object environment is cloned from the base
environment (presented in Section 2.4.1) and modified to include more objects with
different shapes and textures. Note that while object appearance and shape is
randomized, dynamical properties - like friction - are kept constant since they cannot
be visually judged. The simulator has 30 unique objects, 26 of which are seen during
training and 4 are only used during test time.

Data Collection Process: To collect train tasks, 4 objects are sampled from
the 26 train objects, which results in an environment with 16 tasks. For each
task, multiple task instances composed of expert demonstration videos (vi) and
imitator trajectories (ti) are collected using the same methodology as before (refer
to Section 2.4.2 and Section 2.4.1). In total, the train dataset is composed of 1200
tasks (2400 task instances total). Test tasks are also sampled in the same fashion as
before, except using the 4 new objects. Our method is able to succeed at the object
picking stage of the tasks 50± 9.9% of the time which is ∼ 2x better than the best
baseline (contextual-LSTM) which only picks 23± 8.4% of the time. Unfortunately,
all methods (including ours) often place objects in the wrong bin resulting in final
success rates of 23 ± 8.4% for our method and 22 ± 8.3% for the best baseline. In
practice, this failure mode is easy to rectify since a hard coded policy will always
place the object in the right bin. Encouragingly, our policy is best at grasping
and picking unseen objects which is the hardest part of this task. Nonetheless,

79

Figure H.1: One hypothesis is that the ablated models fail at test time because they
cannot optimize the behavior cloning loss. Comparing train and val loss for models
trained on the same data (N=1600) eliminates this possibility.

this failure mode shows more improvements are needed for this method to work in
broader settings.

H.1.2 Regularization Effect on Behavior Cloning Loss

While the inverse model regularization term clearly changed test time performance
for the better (shown in Section 2.4.4), can this be explained by positive transfer
to the behavior cloning task? In other words, it is possible the inverse modelling
loss merely prevents over-fitting in the behavior cloning loss, and thus some other
regularization term could achieve the same effect.

To test this theory, we plot behavior cloning loss (both training and valida-
tion) vs train iteration for both the base model, and ablation models from Section
2.4.4. Note that behavior cloning train performance is nearly identical, whereas final
success rates are dramatically different. We believe these facts in tandem confirm
that self-supervised inverse modeling forces our representation to capture informa-

80

tion which is useful for robust test performance, but not necessary to minimize the
cloning loss.

H.1.3 Time-Step Ablation

Instead of using a context video from the demonstrator agent to infer the task,
our model could just use the last frame from the demonstration video. After all,
the last frame should uniquely specify which object should go in which bin, and
prior work [70] has successfully used goal image conditioning. To test this, we train
a version of our model which conditions just on the final frame from the context
video, and compare its performance on the benchmarks from Section 2.4.2. This
modified model achieves a final success rate of 61 ± 9.7% which is significantly
less than the 88 ± 5.0% our model (which ingests more frames from context) can
achieve. This effect holds even if the base model uses just one extra context frames
(i.e. both beginning and end frame). We hypothesize that these frames, while not
strictly necessary, help the infer which task it needs to perform, thus resulting in a
performance boost.

81

H.2 RoboNet: Large-Scal Multi-Robot Learning

H.2.1 Action conditioned video-prediction model

Here we give a brief introduction into the visual foresight algorithm used in this
chapter, see [67, 62, 60] for a more detailed treatment.

The core of visual foresight is the action conditioned video-prediction model,
which is a deterministic variant of the model described in [128]. The model is illus-
trated in Figure H.2 and implemented as a recurrent neural network using actions
a0:T , and images I0:T as inputs and outputting future predicted images Î1:T . In-
stead of using a context of 1 as shown in Figure H.2, a longer context can be used
which increases the model’s ability to adapt to environment variation such as held-
out view-points. In all experiments in this chapter we used a context of 2 frames.
Longer contexts can potentially help the model adapt to unseen conditions in the
environment, however, this is left for future work. The RNN is unrolled according
to the following equations:

[ht+1, F̂t+1←t] = gθ(at, ht, It) (H.1)
Ît+1 = F̂t+1←t � Ît (H.2)

Here gθ(at, ht, It) is a forward predictor parameterized by θ and F̂t+1←t is two-
dimensional flow field with the same size as the image which is used to transform
an image from one time-step into the next via bilinear-sampling.

The architecture of the RNN, which is illustrated in Figure H.3, uses a stack of
convolutional LSTMs [243] interleaved with convolution layers, skip connection help
the learning process.

Training details For pretraining all models are trained for 160k iterations using
a batchsize of 16. For SGD we use the Adam optimizer. Finetuning is carried out
for another 150k steps. The learning rate starts at 1e-3 and is annealed linearly to
0 after 200k steps until the end of training.

H.2.2 Sampling-based Planning

In visual foresight tasks are specified in terms of the motion of user-selected pixels.
To predict where pixels move in response to a sequence of actions, we define a
probability distribution P0 over the locations of the designated pixel. At time step
0 this we use a one-hot-distribution with 1 a the user-selected pixel and 0 everywhere
else. When then apply the same transformations to these distributions that we also
apply to the images. This is summarized in the following equation:

P̂t+1 = F̂t+1←t � P̂t (H.3)

Here P̂t+1 denotes the predicted probability distribution of the designated pixel.

82

Transformations

True Images

LSTM-States

Actions

Predicted Images

Time

Figure H.2: Recurrent dynamics model for action-conditioned video-prediction based on
flow transformations. (Used with permission from [61])

Actions

5x5

48x64x16
48x64x3

24x32x32

3x3

12x16x64

3x3

6x8x128

3x3

48x64x2

Flow Field

Compositing
Masks

24x32x32

3x3

12x16x64

3x3

tile

skip

Transformation
6x8x5

3x3

48x64x2

Convolution+
Bilinear Upsampling

Conv-LSTM

3x3

Convolution+
Bilinear Downsampling

Figure H.3: Architecture of the recurrent video-prediction architecture. (Used with per-
mission from [61])

The planning cost is computed as the expected distance to the goal pixel position
dg under the predicted distribution P̂t, averaged over time:

c =
∑

t=1,...,T

ct =
∑

t=1,...,T

Ed̂t∼Pt

[
‖d̂t − dg‖2

]
(H.4)

To find the optimal action sequence we apply the model-predictive path intregral
(MPPI) [238] algorithm, since this allows us to find good actions sequences more
efficiently than random shooting. In the first iteration the actions are sampled
from a unit Gaussian, in subsequent iterations the mean action is computed as an

83

exponential weighted average as follows:

µt =

∑N
k=0 e

−γckak,0:T∑N
k=0 e

−γck
(H.5)

Here N is the number of samples, chosen to be 600. The prediction horizon is 15
steps. We found that a number of 3 MPPI iterations works best in our settings. We
apply temporal smoothing to the action samples using a low-pass filter to achieve
smoother control and better exploration of the state space.

After finding an action sequence, the first action of this sequence is applied to
the robot and the planner is queried again, thus operating in an MPC-like fashion.
In order to perform re-planning, it is required to know the current position of the
designated pixel. In this work we use a simple method for obtaining an estimate for
the designated pixel by using the model’s prediction, i.e. the flow maps from the
previous time-step, we call this predictor propagation. While this position estimate
is noisy and more complex alternatives, such as hand-engineered trackers or self-
supervised registration [60] exist, we opt for the simple approach in this work.

H.2.3 Data Collection Details

State and Action Space Most of the robots in RoboNet (excluding Google R3 from
[66]) employ the same Cartesian end-effector control action space with restricted
rotation, and a gripper joint. At each time-step, the state is a R5 vector containing
the grippers XYZ position, the gripper’s yaw angle (rest of orientation is locked, with
the gripper pointed downwards), and the gripper joint-angle value. The user must
specify safety bounds per-robot, which constrain the end-effector to operate within
a ”safe” region of space at all time-steps. Actions are specified as deltas between the
current state and commanded state for the next time-step. Note that the gripper
action is binarized to ”open” or ”close” for simplicity. Actions are blocking with a
set time-out, so user defined policies only receive states and calculate actions once
the robot has reached (or gotten as close as possible to) the commanded state. There
are no ”real-time” constraints on the user policy. As a result, the robot must come
to a complete stop at each step. While this scheme can easily generalize to new
robots, it does impose constraints on the final robot behavior. We hope to relax
these constraints in future work.

Exploration Policy During data collection, actions are either sampled from a sim-
ple diagonal Gaussian with one dimension per action-space dimension, or a more
sophisticated distribution that biases the probability of grasping when the gripper is
at the table height, increasing the chance that the robot will randomly grasp objects.
This primitive is described further below. The variances in the diagonal Gaussians
are hand-tuned per robot and differ between different action dimensions. The exact
parameters are stored in inside the hdf5-files under the field policy-description.

84

Held out viewpoint

Training
viewpoints

Franka PandaKUKA Sawyer

Figure H.4: Experimental setups for benchmarking tasks on the Kuka, Franka, and Sawyer
robots.

While using a simple action distribution such as a diagonal Gaussian, the robot
arm frequently pushes objects, however the arm quite rarely grasps objects. In
order for a learning algorithm such as visual foresight to effectively model grasping,
it must have seen a sufficient number of grasps in the dataset. By applying a grasping
primitive, such as the one originally introduced in [60], the likelihood for these kinds
of events can be increased. The grasping primitive is implemented as a hard-coded
rule that closes the gripper when the z-level of the end-effector is less than a certain
threshold, and opens the gripper if the arm is lifted above a threshold while not
carrying an object.

There are, however, two robots in this dataset which employ significantly dif-
ferent exploration policies. The Google R3 robot samples random pushing motions
instead of simply taking random Cartesian motions, and the Fetch robot data only
contains random exploration in the x and y dimensions.

H.2.4 Database Implementation Details

The database stores every trajectory as a separate entity with a set of attributes
that can be filtered. We provide code infrastructure that allows a user to filter
certain subsets of attributes for training and testing. The database can be accessed
using the Pandas python-API, a popular library for structuring large amounts of
data. Data is stored in the widely adopted hdf5-format, and videos are encoded via
MP4 for efficiency reasons. New trajectory attributes can be added easily.

H.2.5 Description of Benchmarking Tasks

For all control benchmarks we used object relocation tasks from a set of fixed initial
positions towards a set of fixed goal positions marked on a table. The experimental
setups for each robot are depicted in Figure H.4. After executing the action se-
quences computed by the algorithm the remaining distance to the goal is measured
using a tape, and success is determined by human judges.

85

H.2.6 Experimental evaluation of adaptation to unseen gripper

We evaluate on a domain where a Sawyer robot is equipped with a new gripper that
was not seen in the dataset. We collected 300 new trajectories with a Robotiq 2-
finger gripper, which differs significantly in visual appearance and dimensions from
the Weiss Robotics gripper used in all other Sawyer trajectories (see Figure 3.2), and
used this data to evaluate four different models: zero-shot generalization for a model
trained on RoboNet, a model trained only on the new data, a model pre-trained on
only the Sawyer data in RoboNet and then finetuned with the new data, and a
model pre-trained on all of RoboNet and finetuned with the new data. The results
qualitative results of this evaluation are shown in Figure H.5 and the quantitative
results are in Table H.1, averaging over 10 trajectories each. The best-performing
model in this case is the one that is pretrained on only the Sawyer data, and it
attains performance that is comparable to in-domain generalization (see, e.g., the
seen viewpoint result in Table 3.2 for a comparison). The model pre-trained on the
more diverse RoboNet dataset actually performs worse, likely due to the limited
capacity and underfitting issues discussed in Section 3.5.4. However, these results
do demonstrate that visual foresight models can adapt to moderate morphological
changes using a modest amount of data.

t = 0 t = 3 t = 6 t = 9 t = 12

Goal position
Starting position

Final position

Goal specification Final image

Predicted
trajectory

Actual
trajectory

Figure H.5: Example task of pushing an ob-
ject with an unseen gripper, in this case the
Robotiq gripper.

Avg. distance (cm)
zero-shot 15.5 ± 2.6
without pretraining 17 ± 1.8
pretraining on
Sawyer-only 9.8 ± 2.1
pretraining on
all of RoboNet 14.7 ± 2.1

Table H.1: Evaluation results for adapta-
tion to Robotiq gripper with the Sawyer arm.
The model trained on only Sawyer data per-
forms the best when fine-tuned on 300 tra-
jectories with a Robotiq gripper.

86

H.3 Manipulate By Seeing: Creating Manipulation Con-
trollers from Pre-Trained Representations

H.3.1 Method Details

In this section, we present more details of our method.

Algorithm Algorithm 1 provides the psuedo-code of training our method. Algo-
rithm 2 provides the psuedo-code of deploying our method on real robot during test
time.

Data Collection Details Our Robot-Free Data Collection is built around the 19-
inch RMS Handi Grip Reacher and Intel RealSense D435 camera to collect visual
data. We attach a 3D printed mount above the stick to hold the camera in place. At
the base of the reacher-grabber, there is a lever to control the opening and closing of
the gripper fingers. To collect demonstrations, a human user uses the setup shown
in Fig 4.4 (a) which allows the user to easily push, grab and interact with everyday
objects in an intuitive manner. We also use an Intel RealSense T265 camera to
track the end-effector position via visual inertial odometry. The demonstrations are
represented as a sequence of images It with corresponding end-effector positions Pt.

Once we have the end-effector pose Pt for every image It,we extract the relative
transformation Tt,t+1 = P−1t × Pt+1 between consecutive frames and use them as
the action for training.

Training Details Our method is composed of two modules: 1) a pre-trained rep-
resentation network, R, to encode observations, it = R(It), and enables control via
distance learning. 2) a dynamics function F , to predict the future state for a possible
action at.

Here we encode the image It via a ResNet18 [97] and use a 1-layer projection
head to get the visual embedding it ∈ R128. For the dynamics function F (it, at), we
use a 3-layer MLP (128 + action dimension to 128 to 128) with ReLU activation.
Both modules are trained jointly with L = λdLd + λFLF where λd = λF = 1.
We use the Adam optimizer [117] for training the network with a batch size of 64
and a learning rate of 10−3. We train the network for 500 epochs and report the
performance.

For each current observation, we randomly sample 4096 actions from training set
as negative logits and use the ground truth action as possitive logit. For rotation-
free tasks, like pushing and stacking, we use only the translation of Tt,t+1 as the
action, such that at ∈ R3. For rotation-heavy tasks, like knob turning, we use both
translation and rotation of Tt,t+1 as the action, such that at ∈ R12 (first three rows
in the SE(3) homogeneous transformation).

87

###################Initialize###################
R: observation encoder; F: dynamics function
G: gripper action classifier
#####################Input######################
I_t: current images; I_t+1: current images;
I_g: goal images; a_t: current actions;
a_r: sampled random actions; g_t: gripper action
##
Learning Task-Centric Distances
for x in loader: # load a minibatch x with N samples

i_t = R(x.I_t) # encode current images
i_t+1 = R(x.I_t+1) # encode next images
i_g = R(x.I_g) # encode goal images
i_p = F(i_t, x.a_t) # predict next state
i_h = F(i_t, x.a_r) # hallucinated next state
l_pos = cosine_similarity(i_p, i_g)#positive: N*1
l_neg = cosine_similarity(i_h, i_g)#negative: N*M
logits = cat([l_pos, l_neg], dim=1)#logits: Nx(1+K)
labels = zeros(N) # contrastive loss
loss_dis = CrossEntropyLoss(logits, labels)
loss_dyn = MSELoss(i_p, i_t+1) # dynamics loss
loss = loss_dis + loss_dyn
loss.backward()
update(R.params, F.params) # Adam update

Learning Binary Gripper Classifier
for x in loader: # load a minibatch x with N samples

i_t = R(x.I_t) # encode current images
g = G(i_t) # predict gripper action
loss = BCELoss(g, x.g_t)
loss.backward() # Adam update
update(R.params, F.params)

Algorithm 1: LMLS (Train of Passive Videos)

###################Initialize###################
T_0: robot home position; I_0: initial observation
#####################Input######################
R: observation encoder; F: dynamics function
G: gripper action classifier; I_g: goal;
a_r: sampled random actions
##
i_g = R(I_g)
While not reach_goal or t < max_step:

i_h = F(R(I_t), a_r) # hallucinated next state
distance = - cosine_similarity(i_h, i_g)
choose action leads to smallest distance-to-goal
best_action_index = argmin(distance)
a_t = a_r[best_action_index]
g = G(I_t) # predict gripper action
Send command to robot and get new observation
T_t+1, I_t+1 = Robot(T_t, a_t, g)

Algorithm 2: LMLS (Test on Robots)

To improve the performance of our networks with limited data, we use the fol-
lowing data augmentations in training: (a) color jittering: randomly adds up to
±20% random noise to the brightness, contrast and saturation of each observation.
(b) gray scale: we randomly convert image to grayscale with a probability of 0.05.
(c) crop: images are randomly cropped to 224× 224 from an original image of size
240× 240.

88

Figure H.6: Transform actions in camera frame to robot frame.

H.3.2 Experiment Details

Hardware Setup and Control Stack Our real-world experiments make use of a
Franka Panda robot arm with all state logged at 50 Hz. Observations are recorded
from an Intel RealSense D435 camera, using RGB-only images at 1280 × 720 reso-
lution, logged at 30 Hz. On the robot’s end, we use the same 19-inch RMS Handi
Grip Reacher and attach it using metal studs to the robot end effector through a
3D-printed mount. To control the fingers of the tool, we remove the lever at the base
of the grip reacher and replace it with a dynamixel XM430-W350-R servo motor.

The learned visual-feedback policy operates at 5 Hz. On a GTX 1080 Ti GPU.
The learned action space is a 6 Dof homogeneous transformation, from the previous
end-effector pose to the new one. We then calculate the new joint position using in-
verse kinematics through Mujoco [220]. The joint positions are linearly interpolated
from their 5 Hz rate to be 100 Hz setpoints to our joint level controller. The joint
positions are then sent to Facebook Polymetis [134] to control the Franka robot.

It worth noticing the learned action space is in camera frame instead of robot
frame. Thus, we need to transform the predicted actions Tc0c1 to robot frame
through a fixed homogeneous transformation Tcr (Fig H.6).

Using chain rule, we can easily calculate the motion in robot frame (Tr0r1) as:

89

Tr0r1 = Trc × Tc0c1 × Tcr (H.6)
= T−1cr × Tc0c1 × Tcr (H.7)

Baselines We compare our method against three SOTA baselines: behavior
cloning, implicit behavior cloning, implicit Q-learning. To make the comparisons
fair, we parameterize all neural networks with the same R3M representation
backbone used by our method, and tune hyper-parameters for best possible
performance.

• Behavior Cloning [179, 246] (BC): BC learns a policy (via regression) that
directly predicts actions from image observations: minπ ||π(It, Ig)−at||2. This
provides a strong comparison point for a whole class of LfD methods that focus
on learning motor policies directly (i.e. learn policies that predict actions).
Here we encode the image It via a ResNet18 [97] and use a 4-layer multi-layer
perceptron [177] to regress the actions (512-256-128-action dimension). The
predicted actions are supervised with ground-truth actions via MSELoss. We
use the Adam optimizer [117] for training the network with a batch size of 64
and a learning rate of 10−3. We train the network for 200 epochs and report
the performance.

• Implicit Behavior Cloning [69] (IBC): IBC learns an energy based model that
can predict actions during test time via optimization: at = argminaE(a, It).
This method is conceptually very similar to behavior cloning, but has the
potential to better handle multi-modal action distributions and discontinuous
actions. Similarly, we encode the image It via a ResNet18 [97] and use a 1-
layer projection head to get the visual embedding it ∈ R128. We also encode
the actions with a 3-layer multi-layer perceptron (action dimension to 32 to
64 to 128). For each current observation, we randomly sample 4096 actions
âj from training set as negative logits and use the ground truth action at as
possitive logit. Both visual encoder and action encoder are trained with NCE
loss:

L =
exp(cos(it, at))

exp(cos(it, at)) + Σjexp(cos(it, âj))

We use the Adam optimizer [117] for training the network with a batch size
of 64 and a learning rate of 10−3. We train the network for 500 epochs and
report the performance.

• Implicit Q-Learning [119] (IQL): IQL is an offline-RL baseline that learns
a Q function Q(s, a) = Q((It, Ig), at), alongside a policy that maximizes it

90

π(It, Ig) = argmaxaQ(s, a). Note that IQL’s training process require us to
annotate our offline trajectories D with a reward signal rt for each time-step.
Here we label the trajectories with sparse reward: +1 for end-effector reaching
the target object, +2 for reaching the goal state, and +0 for all other states.
We use d3rlpy [214] and trained the model for 500k steps.

91

H.4 An Unbiased Look at Datasets for Visuo-Motor Pre-
Training

H.4.1 MAE Hyperparameters

We list key hyperparameters for the MAE training loop in Table H.2. Note that these
parameters were employed directly from original MAE paper [94] and are actually
shared by relevant robotics baselines [141, 239]. Consistent with the terminology
in [94], the employed learning rate is the base learning rate scaled by (total batch
size / 256). For a head-on comparison with prior work [94, 141], we train the
ViT for iterations equivalent of 800 epochs over ImageNet dataset. This rigorous
benchmarking took # GPUs×wall clock time×# data ablations = 64×1.5×12 =
1152 GPU days.

H.4.2 BC Hyperparameters

The following section describes the hyperparameters used in our behavior cloning
loop. As discussed in Sec. 5.3, the BC policy begins by taking in the image and
passing it through the pre-trained encoder to get a representation, E(it). That
representation is then concatenated to the joint information to get a policy input,
xt = [E(it), jt]. The policy input is fed through a 2-layer mlp network, with a
batchnorm preceding the first layer, ReLU activations [121], and hidden dimensions
of [512, 512]. Additionally, we add dropout [211] to the two mlp layers w/ probability
p = 0.2 after the ReLU activations. The result of the top layer is then passed to
2 linear layers, that predict the mean (µ), mixing parameters (φ), and standard
deviation (σ) of a Gaussian Mixture Model (GMM) distribution w/ m modes:

p(x) = Σm
i=1φiN(x|µi, σi)

The choice of GMM was based on prior work [144, 172] that showed it could
dramatically improve performance. After some tuning, we used m = 5 on the Robo-
Suite tasks (note their benchmark [144] used m = 5) and the real world tasks, since
it worked best. However, for Franka Kitchen and MetaWorld, we found no signif-
icant difference. As a result, we used m = 1 (i.e. standard Gaussian distribution)
for those tasks to maximize comparability with prior benchmarks [141, 86].

The policy was optimized for 50000 iterations using the ADAM optimizer [117],
with a learning rate of 0.0001 and a L2 weight decay of 0.0001. In addition, we
applied data augmentation (random crops and random blur) to the input image it,
before passing it E. This was based on recommendations for best practices from
Hansen et. al. [92]. The full code for this setup is open-sourced on our website:
https://data4robotics.github.io.

92

https://data4robotics.github.io

Hyperparameter Value
MAE Pretraining

optimizer AdamW [117]
base learning rate 1e-4
weight decay 0.05
optimizer momentum β1, β2 = 0.9, 0.95
batch size 4096
learning rate schedule cosine decay
total batches or iterations 249600
warmup iterations 1/8 × total iterations
augmentation RandomResizedCrop
#GPU 64 V100 (32 gb)
Wall-clock time ∼36 hours

Encoder ViT Architecture
#layers 12
#MHSA heads 12
hidden dim 768
class token yes
positional encoding sin cos

Decoder ViT Architecture
#layers 8
#MHSA heads 16
hidden dim 512
class token used yes
positional encoding sin cos

Table H.2: Training and architectural hyperparameters for MAE pretraining.

H.4.3 Task Hyperparameters

This section describes the hyperparameters made while setting up both sim and
real world tasks. All code (for robot/sim environments and BC training) is open
sourced: https://data4robotics.github.io.

Simulation We evaluate on 5 tasks from Metaworld [250] (BinPick, ButtonPress,
Hammering, Drawer Opening, and Assembly), 5 tasks from Franka Kitchen [86]
(Knob Turning, Door Opening, Light Switch, Microwave, and Sliding Door), and 3
tasks from RoboSuite [269, 144] (Lift, Can, and Square). These environments are
frequently used by the robot learning community, and the exact setups (e.g., camera
positioning, object sets, demonstration trajectories, etc.) were directly taken from
prior work [141, 154, 144]. As a result, our simulated results should be very accessible

93

https://pytorch.org/vision/main/generated/torchvision.transforms.RandomResizedCrop.html
https://data4robotics.github.io

Single Dataset Models (1M Images) Baselines
Task ImageNet Ego4D Kinetics 100 DoH RoboNet R3M [154]

R
ea

l

Block Stacking 60% ± 10% 52% ± 10% 60% ± 10% 76% ± 8.7% 56% ± 10% 4% ± 4%
Pouring 25% ± 11% 13% ± 8.8% 22% ± 11% 25% ± 12% 6% ± 6% 19% ± 10%
Toasting 10% ± 10% 10% ± 10% 10% ± 10% 30% ± 10% 0% ± 0% 0% ± 0%

Average (Real) 32% ± 6.9% 25% ± 6.6% 31% ± 6.9% 44% ± 7.1% 21% ± 6.5% 8% ± 3.8%

Table H.3: This table analyzes if Table 5.1’s conclusions apply to different pre-
training schemes, or if they are limited to MAE [94]. Specifically, we apply a
contrastive visual pre-training algorithm (SimCLR [35]) to 1M images from each
of the target datasets. We also add an additional baseline – R3M [154] – that was
trained using temporal contrastive learning on Ego4D clips. We evalaute these rep-
resentations on our 3 real world tasks, and report results as success rates for each
task w/ standard error (i.e., Success% ± Std. Err.%). This experiment reveals that
the trends do generalize to different pre-training schemes (e.g., vision datasets still
stronger than Ego4D), and that the MAE representations are stronger on average.

to the community.
The training demonstrations for these tasks were collected by previous work

(CortexBench [141], Relay Policy Learning [86], RoboMimic [144] respectively). We
fine-tune on n = 25 demos for MetaWorld/Franka Kitchen, and n = 200 demos on
RoboSuite (again to stay consistent with older papers). Task success is measured
by the environments themselves, and we get numbers by estimating success rates
empirically using 50 test trajectories. Note that we only evaluate the policy at
the end of training (unlike some prior work that evaluated multiple times over the
course of training). This was done to ensure the sim evaluation setup matched the
real world (i.e. we can’t evaluate real policies multiple times during training).

Real World As discussed in Sec. 5.3, our real world tasks were built using a Franka
Panda robot, and we collected 50 demonstrations for each task using a VR tele-op
setup. We heavily encourage the reader to get a feel for the training data and tasks
by viewing the supplemental video on our website: https://data4robotics.github.io.

The following section expands on our real world task descriptions from Sec. 5.3,
and provides some additional details:

• Block stacking requires the robot to pick up the red block and place it on the
green block. This is the simplest task, since the robot only has to adapt to
new object configurations during test time, but it still requires the robot to
precisely localize and grasp the (small) red block.
We evaluated agents on this task using 25 test positions for the red/green
block. These test positions were kept fixed for all policies to ensure maximum
reproducibility.

94

https://data4robotics.github.io

• Pouring requires the robot to lift the cup and pour almonds in the target bowl.
During test time the cup and target bowls are both novel objects (unseen
during training), and are placed in random locations. Thus, this task forces
the robot to generalize to new visual inputs.
We evaluated 3 separate cup/target bowl pairs in 5 positions each (so 15
trials total). Note that none of these objects or positions were seen during
test time. Again, the object and position combinations were kept fixed across
every model tested.

• Toasting is the final task, and it requires the robot to pick up the object,
place it in the toaster, and then shut the toaster. During test time, we use
a novel object and randomize both the object’s initial pose and the toaster’s
initial orientation. This is the most difficult task, since it requires the robot
to execute a multi-stage manipulation strategy, while also generalizing to new
visual scenarios.
We evaluated 2 target objects pairs and randomized the toaster orientation
into 5 separate poses (so 10 trials total). Note that none of these objects
or toaster orientations were seen during test time. As before, all the test
conditions were shared across all policies.

H.4.4 Replication with SimCLR

Our results from Sec. 5.4.1 raise questions about several key assumptions in the field.
For example, we find that visuo-motor representations learned on the classic Ima-
geNet [53] dataset are stronger than those learned on Ego4D [81] (in-the-wild data)
and RoboNet [44] (random robot interactions). But are these trends fundamental
to the data, or are they just a quirk of the specific pre-training algorithm/network?

To test this, we repeat the real world evaluation from Table 5.1 using the Sim-
CLR [32] pre-training algorithm and ResNet-18 architecture [97]. As a refresher,
SimCLR is a contrastive learning algorithm that optimizes a network R to “pull
together” different views of the same image (i.e., two randomly augmented ver-
sions of the same image: R(zi), R(z∗i)) and “push apart” different images from each
other (R(zi), R(zj)). This is accomplished with the following loss function, where
sim(x, y) = xT y/(|x||y|):

L = −log
exp(sim(R(zi), R(z∗i))/τ)∑
i 6=j exp(sim(R(zi), R(zj))/τ)

This SimCLR pre-training scheme is applied to each of the 1M images from our
target datasets, using the same hyperparameters from the original paper [35].

We compare the newly trained representations alongside an additional ResNet-
18 baseline, R3M [154], which was also trained using contrastive learning applied to
Ego4D. The results for real world tasks are presented in Table H.3. Note that the

95

trends we found in the ViT + MAE evaluations are replicated in these ResNet + Sim-
CLR experiments: the vision datasets – ImageNet/Kinetics/DoH – create stronger
visuo-motor features w/ SimCLR compared to Ego4D/RoboNet! We also find that
despite additional tuning, which was not given to any other model (including trying
the bigger R3M ResNet-34/50 architectures), the R3M baseline struggles heavily
on our tasks (especially stacking). Finally, we note that the average performance
of MAEs in Table 5.1 is stronger than the SimCLR performance (36% v.s. 31%),
which further justifies our choice of setup. It is unclear if this is because of the
pre-training scheme or architecture choice.

H.4.5 ImageNet Diversity Ablations

One potential hypothesis that would explain our results is that the dataset’s diver-
sity is critical for effective visuo-motor pre-training. This explanation is intuitive,
since information compression is the basis of most self-supervised pre-training al-
gorithms – e.g., MAEs [94] are based upon reconstructing a whole image from an
encoding calculated from patches of the image. Thus, a cleaner and more diverse
data distribution (like cureated ImageNet dataset) will make pre-text compression
task “harder,” which in turn could result in a stronger, more robust visuo-motor
representation.

Task IN-500K-500C IN-500K-1000C

Stacking 70% 70%
Pouring 16% 32%
Toasting 25% 32%

Average 37% 46%

Figure H.7: This table com-
pares two representations trained
on the same number of frames
from ImageNet, but with differ-
ent diversity levels (500 classes
vs 1000). We find that the
more diverse image set results in
a marginally stronger representa-
tion.

While this hypothesize is attractive, the
main results in this chapter are not able to eval-
uate its veracity. Thus, we’ve added an addi-
tional experiment to try and shed some light on
this theory. Specifically, we take two 500K sub-
sets from ImageNet [53] that have varying levels
of diversity. The first, IN-500K-500C consists of
500 classes each with 1000 images (500K frames
total). The second, IN-500K-1000C uses all 1000
ImageNet classes with 500 images sampled from
each (again 500K frames total). Note that these
two datasets are the same size, but the second
dataset is more diverse (2x more classes)! Thus,
if diversity is critical, we should expect the 2nd
dataset to perform better even though it’s the
same size.

We evaluate these two models on our real world tasks and present the success
rates in Table. H.7. Note how the more diverse representation (IN-500K-1000C) per-
forms better on the Pouring and Toasting tasks (w/ equal performance on Stacking),
resulting in marginally better performance overall (46% vs 37%). In other words,
keeping all else equal a more diverse pre-training set results in a 7% performance
boost! While this result isn’t fully definitive, it is an encouraging sign in favor of
the diversity hypothesis.

96

H.5 HRP: Human Affordances for Robotic Pre-Training

H.5.1 Robot Controller Details

Franka: We use a 7-DOF Franka Emika Panda robot arm with a parallel grip-
per, operating in delta end-effector action space. We use a VR-based teleoperation
system to collect expert demos on Franka.

xArm: We use a 6-DOF xArm robot arm with a parallel gripper, operating in
absolute end-effector action space. We use an off-the-shelf hand tracking system to
collect expert demos on xArm.

Dexterous Hand: We use a 6-DOF xArm robot arm with a custom dexterous hand,
operating in absolute end-effector space.

For each task, the expert gets to practice for 30 to 60 mins before collecting the
demonstrations. We collect 50 expert demonstrations for each of the tasks.

H.5.2 Front Cam: Full Task Performance Breakdown

Table H.4: Front Cam Performance Breakdown

Initial
Representation Method Toasting Pouring Stacking Avg. (Real)

Ego4D Baseline 0.58 0.36 0.60 0.51
Ours 0.83 0.60 0.77 0.73

ImageNet Baseline 0.53 0.45 0.47 0.48
Ours 0.75 0.48 0.70 0.64

CLIP Baseline 0.28 0.33 0.33 0.32
Ours 0.50 0.39 0.57 0.48

DINO Baseline 0.38 0.32 0.40 0.37
Ours 0.67 0.57 0.50 0.58

MVP Baseline 0.27 0.41 0.47 0.38
Ours 0.73 0.44 0.63 0.60

VC1 Baseline 0.52 0.33 0.57 0.47
Ours 0.83 0.34 0.53 0.57

We observe that HRP (Ours) consistently boosts the performance across all three
tasks for the front cam.

97

H.5.3 Ego Cam: Full Task Performance Breakdown

Table H.5: Ego Cam Performance Breakdown

Initial
Representation Method Toasting Pouring Stacking Avg. (Real)

Ego4D Baseline 0.2 0.12 0.3 0.21
Ours 0.2 0.22 0.45 0.29

ImageNet Baseline 0.3 0.3 0.45 0.35
Ours 0.6 0.48 0.7 0.59

CLIP Baseline 0.2 0 0 0.07
Ours 0.275 0.02 0 0.1

DINO Baseline 0.35 0.32 0.3 0.32
Ours 0.45 0.7 0.55 0.57

MVP Baseline 0.175 0.32 0.45 0.32
Ours 0.3 0.4 0.65 0.45

VC1 Baseline 0.5 0.28 0.4 0.39
Ours 0.55 0.6 0.65 0.6

We also find that HRP (Ours) consistently boosts the performance across all three
tasks for the ego camera.

H.5.4 Ablation Breakdown

Table H.6: Fine-Tuning Ablation Breakdown

Initial
Representation

Finetuning
Scheme Toasting Pouring Stacking Avg. (Real)

Ego4D All Weights 0.92 0.51 0.77 0.73
LayerNorm (Ours) 0.83 0.60 0.77 0.73

ImageNet All Weights 0.82 0.34 0.63 0.60
LayerNorm (Ours) 0.75 0.48 0.70 0.64

CLIP All Weights 0.23 0.27 0.13 0.21
LayerNorm (Ours) 0.50 0.39 0.57 0.48

DINO All Weights 0.57 0.39 0.40 0.45
LayerNorm (Ours) 0.67 0.57 0.50 0.58

MVP All Weights 0.45 0.39 0.47 0.43
LayerNorm (Ours) 0.73 0.44 0.63 0.60

VC1 All Weights 0.52 0.41 0.47 0.47
LayerNorm (Ours) 0.83 0.34 0.53 0.57

Table H.7: Loss Ablation Performance Breakdown

Initial
Representation Condition Toasting Pouring Stacking Avg.

(Real)

Ego4D No Contact 0.65 0.34 0.5 0.50
No Object 0.425 0.42 0.3 0.38
No Hand 0.625 0.48 0.4 0.50
Ours 0.9 0.66 0.75 0.77

Imagenet No Contact 0.625 0.64 0.7 0.66
No Object 0.525 0.52 0.55 0.53
No Hand 0.525 0.3 0.7 0.51
Ours 0.8 0.62 0.7 0.71

VC-1 No Contact 0.625 0.48 0.75 0.62
No Object 0.225 0.38 0.65 0.42
No Hand 0.5 0.44 0.4 0.45
Ours 0.525 0.44 0.8 0.59

98

Note: do not compare numbers between Table H.7 and the other tables. The loss
ablation experiments were run on a separate day, so all numbers were re-ran on that
day. This was done to ensure a proper A/B comparison between the all methods in
this table.

H.5.5 Loss Weighting Sweep

We swept through a range of weights for each of the losses to narrow down on a
particular set of loss weights for HRP (presented in Table H.8). These were based
relative orders of magnitude of the ground truth labels in the dataset. We empirically
saw that increasing the loss weights more than 0.5 negatively affected performance
and led to collapse.

Table H.8: We present the different affordance loss weights we ran sweeps on.

Exp Loss Weights

HRP λobj = 0.05, λct = 0.005, λhand = 0.5
Drop Contact Only λobj = 0.05, λct = 0, λhand = 0.5
Drop Object Only λobj = 0, λct = 0.005, λhand = 0.5
Drop Hand Only λobj = 0.05, λct = 0.005, λhand = 0

H.5.6 Data Pipeline Description

To obtain human data, we first extract video clips from Ego4D [81]. Our dataset
contains approximately 1200 videos. Each video is broken down semantically into
smaller, by human annotators (as a part of the Ego4D). Our clips are between 1 and
30 seconds. For a given clip, we pass every frame through the 100 DOH model [197],
which gives us hand object contact information. These are {hl, hr, ol, or, cl, cr}. h
are the hand bounding boxes, o are the object bounding boxes (which are in contact
with the hand). c are contact variable (i.e. fixed, portable, self or no contact). We
only look at contacts with fixed and portable. r or l represent left or right hand.
Active object and hand trajectories used for our representations are directly used.
For contact points, it is assumed that at the start of the clip there is no contact,
from where we find the frame of first contact t. Since per-frame predictions are
noisy, we run a filter [185] over the predictions. From the contact frame, we obtain
the hand bounding box h and object bounding o. Contact points are computed in
the intersection of h and o, and the exterior of the hand. This exterior is obtained
via skin segmentation (similar to [13, 135]. These contacts can then be projected
to previous frames in the clips by the homography matrix Ht obtained via SIFT
features.

99

H.5.7 Behavior Cloning Hyper-Parameters

We list the hyper-paramaters that we used for policy training using behavior-cloning
in this section. As shown in Figure 6.4, we pass an image through the learned HRP
visual representation to obtain a 768 dimensional latent vector. This latent vector
is passed through a two-layer MLP with (512, 512) hidden layer dimensions. To
the output of the MLP we apply RELU activation along with dropout regulariza-
tion with prob=0.2 to estimate the mean (µ), the mixing parameters (φ), and the
standard deviation (σ) of a Gaussian Mixture Model (GMM) distribution with 5
modes.

We choose GMM model based on prior work [144] that showed its crucial role in
increasing BC performance. We use ADAM optimizer [117] with the learning rate
set to 1e-4, l2 weight decay also set to 1e-4. We train policy for 50K iterations. We
also apply data augmentation (random crop and random blur) for the input images.
We use the same set of hyper-parameters for both the real-world and the simulation
tasks.

H.5.8 Simulation Results

Table H.9: Sim Performance

Initial
Representation Method MetaWorld Avg Performance

Ego4D Baseline 0.656
Ours 0.580

ImageNet Baseline 0.556
Ours 0.664

CLIP Baseline 0.444
Ours 0.408

DINO Baseline 0.660
Ours 0.664

MVP Baseline 0.592
Ours 0.640

VC1 Baseline 0.576
Ours 0.648

For simulation tasks, we choose 5 tasks from the Metaworld [250] benchmark namely:
BinPick, ButtonPress, Hammering, Drawer Opening, and Assembly. This bench-
mark is extensively used by the robot learning community. We used the same camera
viewpoint, object sets, and expert demonstrations as used by prior work [141]. We
report the average performance on all 5 tasks in table H.9.

H.5.9 Evaluation

For each task, we run around 50 trials (per model), at various initial poses (for
objects) and with different variations in objects. In every task, about half the

100

trials are from the training distribution and half are from test. The differences in
objects include: different colors, shapes, even semantic differences: for example in
the toasting task, plush toys were tested on instead of the vegetables used to train.
Cups or bowls tested, instead of mugs that were used to train the pouring task, etc.

Lighting is not controlled between train and test. We did try to run all baselines
and methods as closely together as possible to avoid any confounding factors: i.e.
for every trial, we ran all the baselines and our method together. Across trials, we
allowed for variation in lighting conditions.

The results presented in this chapter are the average of the successes, on a scale
from 0 to 1. We present the criteria for success in each task:

• Stacking: 1 if the robot correctly picks and stacks the red block, and 0.5 if the
red block is unstably placed on the green block.

• Pouring: The fraction of candies, out of 5, successfully poured (e.g., 2/5 can-
dies poured → 0.4 success).

• Toasting: 1 if the whole task is completed, and 0.5 successful if the robot only
successfully places the object.

• Pot on Stove: 1 if the food is correctly placed in the pot.

• Hand Lift Cup 1 if the cup is stably grasped and picked.

We also compute the standard error for these trials and show that as our confi-
dence in Tables 1-3, and as an error bar in Figures 5-7.

101

Bibliography

[1] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement
learning. In Proceedings of the twenty-first international conference on Machine learn-
ing, page 1, 2004. 33

[2] Yazan Abu Farha, Alexander Richard, and Juergen Gall. When will you do what?-
anticipating temporal occurrences of activities. In CVPR, 2018. 61

[3] Pulkit Agrawal, Ashvin V Nair, Pieter Abbeel, Jitendra Malik, and Sergey Levine.
Learning to poke by poking: Experiential learning of intuitive physics. In Advances
in Neural Information Processing Systems, 2016. 19, 20

[4] Ferran Alet, Tomás Lozano-Pérez, and Leslie P Kaelbling. Modular meta-learning.
arXiv:1806.10166, 2018. 20

[5] Haitham Bou Ammar, Eric Eaton, Paul Ruvolo, and Matthew Taylor. Online multi-
task learning for policy gradient methods. In International Conference on Machine
Learning, pages 1206–1214, 2014. 20

[6] Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew,
Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al.
Learning dexterous in-hand manipulation. arXiv:1808.00177, 2018. 18, 20, 33

[7] Daniel Angelov, Yordan Hristov, Michael Burke, and Subramanian Ramamoorthy.
Composing diverse policies for temporally extended tasks. IEEE Robotics and Au-
tomation Letters, 5(2):2658–2665, 2020. 33

[8] Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of
robot learning from demonstration. Robotics and autonomous systems, 57(5):469–483,
2009. 6, 33, 49

[9] Yusuf Aytar, Tobias Pfaff, David Budden, Thomas Paine, Ziyu Wang, and Nando
De Freitas. Playing hard exploration games by watching youtube. Advances in neural
information processing systems, 31, 2018. 33

[10] Roman Bachmann, David Mizrahi, Andrei Atanov, and Amir Zamir. Multimae:
Multi-modal multi-task masked autoencoders. In ECCV, 2022. 48

[11] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation
by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014. 13

[12] Shikhar Bahl, Abhinav Gupta, and Deepak Pathak. Human-to-robot imitation in the
wild. RSS, 2022. 33

102

[13] Shikhar Bahl, Russell Mendonca, Lili Chen, Unnat Jain, and Deepak Pathak. Affor-
dances from human videos as a versatile representation for robotics. 2023. 61, 64,
99

[14] Michael Bain and Claude Sammut. A framework for behavioural cloning. Machine
Intelligence, 1995. 6

[15] Aayush Bansal, Bryan Russell, and Abhinav Gupta. Marr revisited: 2d-3d alignment
via surface normal prediction. In CVPR, 2016. 61

[16] Mayank Bansal, Alex Krizhevsky, and Abhijit S. Ogale. Chauffeurnet: Learning to
drive by imitating the best and synthesizing the worst. CoRR, abs/1812.03079, 2018.
20

[17] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. BEit: BERT pre-training of
image transformers. In ICLR, 2022. 47, 48

[18] Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and
Remi Munos. Unifying count-based exploration and intrinsic motivation. In Advances
in Neural Information Processing Systems, 2016. 29

[19] Homanga Bharadhwaj, Abhinav Gupta, Vikash Kumar, and Shubham Tulsiani. To-
wards generalizable zero-shot manipulation via translating human interaction plans.
arXiv preprint arXiv:2312.00775, 2023. 64

[20] Raunaq Bhirangi, Tess Hellebrekers, Carmel Majidi, and Abhinav Gupta. Reskin:ver-
satile, replaceable, lasting tactile skins. In CoRL, 2021. 78

[21] Aude Billard, Sylvain Calinon, Ruediger Dillmann, and Stefan Schaal. Survey: Robot
programming by demonstration. Handbook of robotics, 59(BOOK_CHAP), 2008. 6,
33, 49

[22] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat
Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang,
et al. End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316, 2016.
7, 47, 60

[23] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis,
Chelsea Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine
Hsu, Julian Ibarz, Brian Ichter, Alex Irpan, Tomas Jackson, Sally Jesmonth, Nikhil
Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang, Isabel Leal, Kuang-Huei
Lee, Sergey Levine, Yao Lu, Utsav Malla, Deeksha Manjunath, Igor Mordatch,
Ofir Nachum, Carolina Parada, Jodilyn Peralta, Emily Perez, Karl Pertsch, Jor-
nell Quiambao, Kanishka Rao, Michael Ryoo, Grecia Salazar, Pannag Sanketi, Kevin
Sayed, Jaspiar Singh, Sumedh Sontakke, Austin Stone, Clayton Tan, Huong Tran,
Vincent Vanhoucke, Steve Vega, Quan Vuong, Fei Xia, Ted Xiao, Peng Xu, Sichun
Xu, Tianhe Yu, and Brianna Zitkovich. Rt-1: Robotics transformer for real-world
control at scale. In arXiv preprint arXiv:2212.06817, 2022. 47, 60, 61

[24] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by
random network distillation. arXiv preprint arXiv:1810.12894, 2018. 29

[25] Kaylee Burns, Zach Witzel, Jubayer Ibn Hamid, Tianhe Yu, Chelsea Finn, and Karol
Hausman. What makes pre-trained visual representations successful for robust ma-
nipulation? ArXiv, 2023. VII, 58, 59, 61, 66

103

[26] Arunkumar Byravan and Dieter Fox. Se3-nets: Learning rigid body motion using deep
neural networks. In 2017 IEEE International Conference on Robotics and Automation
(ICRA), pages 173–180. IEEE, 2017. 20

[27] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bo-
janowski, and Armand Joulin. Emerging properties in self-supervised vision trans-
formers. CVPR, 2021. 60, 61, 66, 69

[28] Matthew Chang, Aditya Prakash, and Saurabh Gupta. Look ma, no hands! agent-
environment factorization of egocentric videos. Advances in Neural Information Pro-
cessing Systems, 36, 2024. 64

[29] Yevgen Chebotar, Karol Hausman, Zhe Su, Artem Molchanov, Oliver Kroemer, Gau-
rav Sukhatme, and Stefan Schaal. Bigs: Biotac grasp stability dataset. In ICRA 2016
Workshop on Grasping and Manipulation Datasets, 2016. 21

[30] Yevgen Chebotar, Karol Hausman, Marvin Zhang, Gaurav Sukhatme, Stefan Schaal,
and Sergey Levine. Combining model-based and model-free updates for trajectory-
centric reinforcement learning. In International Conference on Machine Learning,
2017. 20

[31] Annie S Chen, Suraj Nair, and Chelsea Finn. Learning generalizable robotic reward
functions from” in-the-wild” human videos. arXiv preprint arXiv:2103.16817, 2021.
33

[32] Boyuan Chen, Shuran Song, Hod Lipson, and Carl Vondrick. Visual hide and seek.
In Artificial Life Conference Proceedings. MIT Press, 2020. 95

[33] Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp Krähenbühl. Learning by
cheating. In CoRL, 2020. 46, 47, 60

[34] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin,
Pieter Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Rein-
forcement learning via sequence modeling. Advances in neural information processing
systems, 34:15084–15097, 2021. 33

[35] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple
framework for contrastive learning of visual representations. In International con-
ference on machine learning, pages 1597–1607. PMLR, 2020. XII, 7, 46, 47, 53, 94,
95

[36] Jianpeng Cheng, Li Dong, and Mirella Lapata. Long short-term memory-networks for
machine reading. arXiv preprint arXiv:1601.06733, 2016. 13

[37] Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion.
In Proceedings of Robotics: Science and Systems (RSS), 2023. XII, 60, 69, 73, 74, 76,
77

[38] Paul F. Christiano, Zain Shah, Igor Mordatch, Jonas Schneider, Trevor Blackwell,
Joshua Tobin, Pieter Abbeel, and Wojciech Zaremba. Transfer from simulation to
real world through learning deep inverse dynamics model. CoRR, abs/1610.03518,
2016. 20

104

[39] Ignasi Clavera, Anusha Nagabandi, Ronald S. Fearing, Pieter Abbeel, Sergey Levine,
and Chelsea Finn. Learning to adapt: Meta-learning for model-based control. CoRR,
abs/1803.11347, 2018. 20

[40] Open X-Embodiment Collaboration, Abhishek Padalkar, Acorn Pooley, Ajinkya Jain,
Alex Bewley, Alex Herzog, Alex Irpan, Alexander Khazatsky, Anant Rai, Anikait
Singh, Anthony Brohan, Antonin Raffin, Ayzaan Wahid, Ben Burgess-Limerick,
Beomjoon Kim, Bernhard Schölkopf, Brian Ichter, Cewu Lu, Charles Xu, Chelsea
Finn, Chenfeng Xu, Cheng Chi, Chenguang Huang, Christine Chan, Chuer Pan,
Chuyuan Fu, Coline Devin, Danny Driess, Deepak Pathak, Dhruv Shah, Dieter Büch-
ler, Dmitry Kalashnikov, Dorsa Sadigh, Edward Johns, Federico Ceola, Fei Xia, Freek
Stulp, Gaoyue Zhou, Gaurav S. Sukhatme, Gautam Salhotra, Ge Yan, Giulio Schiavi,
Hao Su, Hao-Shu Fang, Haochen Shi, Heni Ben Amor, Henrik I Christensen, Hiroki
Furuta, Homer Walke, Hongjie Fang, Igor Mordatch, Ilija Radosavovic, Isabel Leal,
Jacky Liang, Jaehyung Kim, Jan Schneider, Jasmine Hsu, Jeannette Bohg, Jeffrey
Bingham, Jiajun Wu, Jialin Wu, Jianlan Luo, Jiayuan Gu, Jie Tan, Jihoon Oh, Jiten-
dra Malik, Jonathan Tompson, Jonathan Yang, Joseph J. Lim, João Silvério, Junhyek
Han, Kanishka Rao, Karl Pertsch, Karol Hausman, Keegan Go, Keerthana Gopalakr-
ishnan, Ken Goldberg, Kendra Byrne, Kenneth Oslund, Kento Kawaharazuka, Kevin
Zhang, Keyvan Majd, Krishan Rana, Krishnan Srinivasan, Lawrence Yunliang Chen,
Lerrel Pinto, Liam Tan, Lionel Ott, Lisa Lee, Masayoshi Tomizuka, Maximilian Du,
Michael Ahn, Mingtong Zhang, Mingyu Ding, Mohan Kumar Srirama, Mohit Sharma,
Moo Jin Kim, Naoaki Kanazawa, Nicklas Hansen, Nicolas Heess, Nikhil J Joshi, Niko
Suenderhauf, Norman Di Palo, Nur Muhammad Mahi Shafiullah, Oier Mees, Oliver
Kroemer, Pannag R Sanketi, Paul Wohlhart, Peng Xu, Pierre Sermanet, Priya Sun-
daresan, Quan Vuong, Rafael Rafailov, Ran Tian, Ria Doshi, Roberto Martín-Martín,
Russell Mendonca, Rutav Shah, Ryan Hoque, Ryan Julian, Samuel Bustamante, Sean
Kirmani, Sergey Levine, Sherry Moore, Shikhar Bahl, Shivin Dass, Shuran Song,
Sichun Xu, Siddhant Haldar, Simeon Adebola, Simon Guist, Soroush Nasiriany, Ste-
fan Schaal, Stefan Welker, Stephen Tian, Sudeep Dasari, Suneel Belkhale, Takayuki
Osa, Tatsuya Harada, Tatsuya Matsushima, Ted Xiao, Tianhe Yu, Tianli Ding, Todor
Davchev, Tony Z. Zhao, Travis Armstrong, Trevor Darrell, Vidhi Jain, Vincent Van-
houcke, Wei Zhan, Wenxuan Zhou, Wolfram Burgard, Xi Chen, Xiaolong Wang, Xing-
hao Zhu, Xuanlin Li, Yao Lu, Yevgen Chebotar, Yifan Zhou, Yifeng Zhu, Ying Xu,
Yixuan Wang, Yonatan Bisk, Yoonyoung Cho, Youngwoon Lee, Yuchen Cui, Yueh
hua Wu, Yujin Tang, Yuke Zhu, Yunzhu Li, Yusuke Iwasawa, Yutaka Matsuo, Zhuo
Xu, and Zichen Jeff Cui. Open X-Embodiment: Robotic learning datasets and RT-X
models, 2024. 61, 75

[41] Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler, Antonino
Furnari, Evangelos Kazakos, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will
Price, and Michael Wray. Scaling egocentric vision: The epic-kitchens dataset. In
European Conference on Computer Vision (ECCV), 2018. 61

[42] Ahmad Darkhalil, Dandan Shan, Bin Zhu, Jian Ma, Amlan Kar, Richard Higgins,
Sanja Fidler, David Fouhey, and Dima Damen. Epic-kitchens visor benchmark: Video
segmentations and object relations. Advances in Neural Information Processing Sys-
tems, 35:13745–13758, 2022. 61

105

[43] Pradipto Das, Chenliang Xu, Richard F Doell, and Jason J Corso. A thousand frames
in just a few words: Lingual description of videos through latent topics and sparse
object stitching. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2634–2641, 2013. 61

[44] Sudeep Dasari, Frederik Ebert, Stephen Tian, Suraj Nair, Bernadette Bucher, Karl
Schmeckpeper, Siddharth Singh, Sergey Levine, and Chelsea Finn. Robonet: Large-
scale multi-robot learning. arXiv preprint arXiv:1910.11215, 2019. VII, 48, 50, 53,
61, 95

[45] Sudeep Dasari and Abhinav Gupta. Transformers for one-shot imitation learning. In
CoRL 2020, 2020. 33

[46] Sudeep Dasari and Abhinav Gupta. Transformers for one-shot visual imitation. In
Conference on Robot Learning, pages 2071–2084. PMLR, 2021. 47, 60

[47] Sudeep Dasari, Abhinav Gupta, and Vikash Kumar. Learning dexterous manipulation
from exemplar object trajectories and pre-grasps. In IEEE International Conference
on Robotics and Automation 2023, 2023. 33

[48] Sudeep Dasari, Jianren Wang, Joyce Hong, Shikhar Bahl, Yixin Lin, Austin Wang,
Abitha Thankaraj, Karanbir Chahal, Berk Calli, Saurabh Gupta, et al. Rb2: Robotic
manipulation benchmarking with a twist. arXiv preprint arXiv:2203.08098, 2022. 33

[49] Sudeep Dasari, Jianren Wang, Joyce Hong, Shikhar Bahl, Yixin Lin, Austin S Wang,
Abitha Thankaraj, Karanbir Singh Chahal, Berk Calli, Saurabh Gupta, et al. Rb2:
Robotic manipulation benchmarking with a twist. In Thirty-fifth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track (Round 2), 2021. 57,
60

[50] Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient
approach to policy search. In International Conference on machine learning (ICML),
2011. 18

[51] Marc Peter Deisenroth, Peter Englert, Jan Peters, and Dieter Fox. Multi-task policy
search for robotics. In 2014 IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 3876–3881. IEEE, 2014. 20

[52] Marc Peter Deisenroth, Dieter Fox, and Carl Edward Rasmussen. Gaussian processes
for data-efficient learning in robotics and control. IEEE transactions on pattern anal-
ysis and machine intelligence, 37(2):408–423, 2013. 18

[53] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. Ieee, 2009. VII, 45, 46, 48, 50, 53, 59, 60, 66,
95, 96

[54] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. Ieee, 2009. 7, 18, 21

[55] Coline Devin, Abhishek Gupta, Trevor Darrell, Pieter Abbeel, and Sergey Levine.
Learning modular neural network policies for multi-task and multi-robot transfer. In
International Conference on Robotics and Automation (ICRA), 2017. 20

106

[56] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. 2018. 1

[57] Yiming Ding, Carlos Florensa, Mariano Phielipp, and Pieter Abbeel. Goal-conditioned
imitation learning. arXiv preprint arXiv:1906.05838, 2019. 7

[58] Carl Doersch. Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908,
2016. 62

[59] Yan Duan, Marcin Andrychowicz, Bradly Stadie, OpenAI Jonathan Ho, Jonas Schnei-
der, Ilya Sutskever, Pieter Abbeel, and Wojciech Zaremba. One-shot imitation learn-
ing. In Advances in neural information processing systems, pages 1087–1098, 2017. 5,
7, 20

[60] Frederik Ebert, Sudeep Dasari, Alex X Lee, Sergey Levine, and Chelsea Finn. Ro-
bustness via retrying: Closed-loop robotic manipulation with self-supervised learning.
arXiv:1810.03043, 2018. 23, 82, 84, 85

[61] Frederik Ebert, Chelsea Finn, Sudeep Dasari, Annie Xie, Alex Lee, and Sergey Levine.
Visual foresight: Model-based deep reinforcement learning for vision-based robotic
control. arXiv:1812.00568, 2018. V, IX, 19, 20, 21, 22, 28, 83

[62] Frederik Ebert, Chelsea Finn, Alex X Lee, and Sergey Levine. Self-supervised visual
planning with temporal skip connections. arXiv:1710.05268, 2017. 82

[63] D Eigen and R Fergus. Predicting depth, surface normals and semantic labels with
a common multi-scale convolutional architecture. corr, abs/1411.4734. arXiv preprint
arXiv:1411.4734, 2014. 61

[64] Christoph Feichtenhofer, Yanghao Li, Kaiming He, et al. Masked autoencoders as
spatiotemporal learners. NeurIPS, 2022. 48

[65] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for
fast adaptation of deep networks. In International Conference on Machine Learning,
pages 1126–1135. PMLR, 2017. 13, 20

[66] Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsupervised learning for physical
interaction through video prediction. In Advances in neural information processing
systems, pages 64–72, 2016. V, 19, 21, 23, 24, 84

[67] Chelsea Finn and Sergey Levine. Deep visual foresight for planning robot motion.
In 2017 IEEE International Conference on Robotics and Automation (ICRA), pages
2786–2793. IEEE, 2017. 19, 20, 21, 82

[68] Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, and Sergey Levine. One-
shot visual imitation learning via meta-learning. In Conference on Robot Learning,
pages 357–368, 2017. 5, 8, 20

[69] Pete Florence, Corey Lynch, Andy Zeng, Oscar Ramirez, Ayzaan Wahid, Laura
Downs, Adrian Wong, Johnny Lee, Igor Mordatch, and Jonathan Tompson. Implicit
behavioral cloning. Conference on Robot Learning (CoRL), 2021. X, 40, 41, 90

[70] Justin Fu, Avi Singh, Dibya Ghosh, Larry Yang, and Sergey Levine. Variational
inverse control with events: A general framework for data-driven reward definition.
arXiv preprint arXiv:1805.11686, 2018. 7, 81

107

[71] Antonino Furnari, Sebastiano Battiato, Kristen Grauman, and Giovanni Maria
Farinella. Next-active-object prediction from egocentric videos. Journal of Visual
Communication and Image Representation, 2017. 61

[72] Antonino Furnari and Giovanni Maria Farinella. Rolling-unrolling lstms for action
anticipation from first-person video. TPAMI, 2020. 61

[73] Samir Yitzhak Gadre, Mitchell Wortsman, Gabriel Ilharco, Ludwig Schmidt, and
Shuran Song. Cows on pasture: Baselines and benchmarks for language-driven zero-
shot object navigation. In CVPR, 2023. 46

[74] Jiyang Gao, Zhenheng Yang, and Ram Nevatia. Red: Reinforced encoder-decoder
networks for action anticipation. arXiv preprint arXiv:1707.04818, 2017. 61

[75] Ali Ghadirzadeh, Atsuto Maki, Danica Kragic, and Mårten Björkman. Deep predictive
policy training using reinforcement learning. In International Conference on Intelligent
Robots and Systems (IROS), 2017. 20

[76] Angeliki Giannou, Shashank Rajput, and Dimitris Papailiopoulos. The expressive
power of tuning only the normalization layers. arXiv preprint arXiv:2302.07937, 2023.
65

[77] James Jerome Gibson. The senses considered as perceptual systems, volume 2. 61, 64

[78] JJ Gibson. The ecological approach to visual perception. Houghton Mifflin Comp,
1979. 61

[79] Rohit Girdhar and Kristen Grauman. Anticipative video transformer. In ICCV, 2021.
61

[80] Mohit Goyal, Sahil Modi, Rishabh Goyal, and Saurabh Gupta. Human hands as
probes for interactive object understanding. In CVPR, 2022. 61

[81] Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino
Furnari, Rohit Girdhar, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu,
et al. Ego4d: Around the world in 3,000 hours of egocentric video. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
18995–19012, 2022. VII, VIII, 31, 46, 47, 48, 50, 58, 59, 61, 66, 69, 95, 99

[82] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H
Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel
Guo, Mohammad Gheshlaghi Azar, et al. Bootstrap your own latent: A new approach
to self-supervised learning. arXiv preprint arXiv:2006.07733, 2020. 7

[83] Abhinav Gupta, Adithyavairavan Murali, Dhiraj Prakashchand Gandhi, and Lerrel
Pinto. Robot learning in homes: Improving generalization and reducing dataset bias.
Advances in neural information processing systems, 31, 2018. 20, 21, 47, 60

[84] Abhinav Gupta, Scott Satkin, Alexei A Efros, and Martial Hebert. From 3d scene
geometry to human workspace. In CVPR, 2011. 61

[85] Abhishek Gupta, Coline Devin, YuXuan Liu, Pieter Abbeel, and Sergey Levine.
Learning invariant feature spaces to transfer skills with reinforcement learning.
arXiv:1703.02949, 2017. 20

108

[86] Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman.
Relay policy learning: Solving long horizon tasks via imitation and reinforcement
learning. Conference on Robot Learning (CoRL), 2019. 49, 51, 53, 56, 92, 93, 94

[87] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to
control: Learning behaviors by latent imagination. In International Conference on
Learning Representations, 2020. 60

[88] Meera Hahn, Devendra Singh Chaplot, Shubham Tulsiani, Mustafa Mukadam,
James M Rehg, and Abhinav Gupta. No rl, no simulation: Learning to navigate with-
out navigating. Advances in Neural Information Processing Systems, 34:26661–26673,
2021. 43

[89] Siddhant Haldar, Jyothish Pari, Anant Rai, and Lerrel Pinto. Teach a robot
to fish: Versatile imitation from one minute of demonstrations. arXiv preprint
arXiv:2303.01497, 2023. 45

[90] Ankur Handa, Arthur Allshire, Viktor Makoviychuk, Aleksei Petrenko, Ritvik Singh,
Jingzhou Liu, Denys Makoviichuk, Karl Van Wyk, Alexander Zhurkevich, Balaku-
mar Sundaralingam, Yashraj Narang, Jean-Francois Lafleche, Dieter Fox, and Gavriel
State. Dextreme: Transfer of agile in-hand manipulation from simulation to reality.
arXiv, 2022. 33

[91] Nicklas Hansen, Yu Sun, Pieter Abbeel, Alexei A Efros, Lerrel Pinto, and Xiao-
long Wang. Self-supervised policy adaptation during deployment. arXiv preprint
arXiv:2007.04309, 2020. 8

[92] Nicklas Hansen, Zhecheng Yuan, Yanjie Ze, Tongzhou Mu, Aravind Rajeswaran, Hao
Su, Huazhe Xu, and Xiaolong Wang. On pre-training for visuo-motor control: Re-
visiting a learning-from-scratch baseline. In International Conference on Machine
Learning (ICML), 2023. 56, 92

[93] M Hassanin, S Khan, and M Tahtali. Visual affordance and function understanding:
a survey. arxiv. arXiv preprint arXiv:1807.06775, 2018. 61

[94] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick.
Masked autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 16000–16009, 2022.
VII, XII, 46, 47, 48, 49, 56, 59, 60, 61, 62, 66, 92, 94, 96

[95] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum con-
trast for unsupervised visual representation learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 9729–9738, 2020. 7

[96] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum con-
trast for unsupervised visual representation learning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 9729–9738, 2020. 46, 47,
62

[97] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. CVPR, 2016. 8, 13, 14, 71, 87, 90, 95

[98] Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot,
Dan Horgan, John Quan, Andrew Sendonaris, Ian Osband, et al. Deep q-learning
from demonstrations. In AAAI, 2018. 49

109

[99] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-
tation, 9(8):1735–1780, 1997. 13, 14

[100] De-An Huang and Kris M Kitani. Action-reaction: Forecasting the dynamics of human
interaction. In ECCV, 2014. 61

[101] Po-Yao Huang, Vasu Sharma, Hu Xu, Chaitanya Ryali, Haoqi Fan, Yanghao Li,
Shang-Wen Li, Gargi Ghosh, Jitendra Malik, and Christoph Feichtenhofer. Mavil:
Masked audio-video learners. arXiv preprint arXiv:2212.08071, 2022. 48

[102] Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li, Jiajun Wu, and Li Fei-Fei.
Voxposer: Composable 3d value maps for robotic manipulation with language models.
arXiv preprint arXiv:2307.05973, 2023. 64

[103] Brody Huval, Tao Wang, Sameep Tandon, Jeff Kiske, Will Song, Joel Pazhayampallil,
Mykhaylo Andriluka, Pranav Rajpurkar, Toki Migimatsu, Royce Cheng-Yue, et al.
An empirical evaluation of deep learning on highway driving. arXiv:1504.01716, 2015.
20

[104] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.
10

[105] Ashesh Jain, Avi Singh, Hema S Koppula, Shane Soh, and Ashutosh Saxena. Recurrent
neural networks for driver activity anticipation via sensory-fusion architecture. In
ICRA, 2016. 61

[106] Unnat Jain, Iou-Jen Liu, Svetlana Lazebnik, Aniruddha Kembhavi, Luca Weihs, and
Alexander G Schwing. Gridtopix: Training embodied agents with minimal supervision.
In ICCV, 2021. 46

[107] Stephen James, Michael Bloesch, and Andrew J Davison. Task-embedded control
networks for few-shot imitation learning. arXiv preprint arXiv:1810.03237, 2018. 20

[108] Stephen James, Paul Wohlhart, Mrinal Kalakrishnan, Dmitry Kalashnikov, Alex Ir-
pan, Julian Ibarz, Sergey Levine, Raia Hadsell, and Konstantinos Bousmalis. Sim-
to-real via sim-to-sim: Data-efficient robotic grasping via randomized-to-canonical
adaptation networks. In Computer Vision and Pattern Recognition, 2019. 20

[109] Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Frederik Ebert, Corey Lynch,
Sergey Levine, and Chelsea Finn. Bc-z: Zero-shot task generalization with robotic
imitation learning. In Conference on Robot Learning, pages 991–1002. PMLR, 2022.
33

[110] Yuanchen Ju, Kaizhe Hu, Guowei Zhang, Gu Zhang, Mingrun Jiang, and Huazhe Xu.
Robo-abc: Affordance generalization beyond categories via semantic correspondence
for robot manipulation. arXiv preprint arXiv:2401.07487, 2024. 64

[111] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,
Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna
Potapenko, et al. Highly accurate protein structure prediction with alphafold. Na-
ture, 596(7873):583–589, 2021. 1

110

[112] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric
Jang, Deirdre Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al.
Qt-opt: Scalable deep reinforcement learning for vision-based robotic manipulation.
arXiv preprint arXiv:1806.10293, 2018. 47, 60, 61

[113] Angjoo Kanazawa, Michael J. Black, David W. Jacobs, and Jitendra Malik. End-to-
end recovery of human shape and pose. CoRR, abs/1712.06584, 2017. 61

[114] Bingyi Kang, Zequn Jie, and Jiashi Feng. Policy optimization with demonstrations.
In ICML. PMLR, 2018. 49

[115] Apoorv Khandelwal, Luca Weihs, Roozbeh Mottaghi, and Aniruddha Kembhavi. Sim-
ple but effective: Clip embeddings for embodied ai. CVPR, 2022. 46

[116] Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ashwin Balakrishna, Sudeep Dasari,
Siddharth Karamcheti, Soroush Nasiriany, Mohan Kumar Srirama, Lawrence Yun-
liang Chen, Kirsty Ellis, Peter David Fagan, Joey Hejna, Masha Itkina, Marion Lep-
ert, Yecheng Jason Ma, Patrick Tree Miller, Jimmy Wu, Suneel Belkhale, Shivin Dass,
Huy Ha, Arhan Jain, Abraham Lee, Youngwoon Lee, Marius Memmel, Sungjae Park,
Ilija Radosavovic, Kaiyuan Wang, Albert Zhan, Kevin Black, Cheng Chi, Kyle Beltran
Hatch, Shan Lin, Jingpei Lu, Jean Mercat, Abdul Rehman, Pannag R Sanketi, Archit
Sharma, Cody Simpson, Quan Vuong, Homer Rich Walke, Blake Wulfe, Ted Xiao,
Jonathan Heewon Yang, Arefeh Yavary, Tony Z. Zhao, Christopher Agia, Rohan Bai-
jal, Mateo Guaman Castro, Daphne Chen, Qiuyu Chen, Trinity Chung, Jaimyn Drake,
Ethan Paul Foster, Jensen Gao, David Antonio Herrera, Minho Heo, Kyle Hsu, Jia-
heng Hu, Donovon Jackson, Charlotte Le, Yunshuang Li, Kevin Lin, Roy Lin, Zehan
Ma, Abhiram Maddukuri, Suvir Mirchandani, Daniel Morton, Tony Nguyen, Abigail
O’Neill, Rosario Scalise, Derick Seale, Victor Son, Stephen Tian, Emi Tran, Andrew E.
Wang, Yilin Wu, Annie Xie, Jingyun Yang, Patrick Yin, Yunchu Zhang, Osbert Bas-
tani, Glen Berseth, Jeannette Bohg, Ken Goldberg, Abhinav Gupta, Abhishek Gupta,
Dinesh Jayaraman, Joseph J Lim, Jitendra Malik, Roberto Martín-Martín, Subrama-
nian Ramamoorthy, Dorsa Sadigh, Shuran Song, Jiajun Wu, Michael C. Yip, Yuke
Zhu, Thomas Kollar, Sergey Levine, and Chelsea Finn. Droid: A large-scale in-the-
wild robot manipulation dataset. 2024. 75

[117] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014. 36, 49, 65, 67, 87, 90, 92, 93, 100

[118] Hema S Koppula and Ashutosh Saxena. Anticipating human activities using object
affordances for reactive robotic response. TPAMI, 2015. 61

[119] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with
implicit q-learning. arXiv preprint arXiv:2110.06169, 2021. 32, 40, 41, 90

[120] Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you
need: Regularizing deep reinforcement learning from pixels. arXiv preprint
arXiv:2004.13649, 2020. 8

[121] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. Communications of the ACM, 60(6):84–90, 2017.
45, 92

[122] Ashish Kumar, Zipeng Fu, Deepak Pathak, and Jitendra Malik. Rma: Rapid motor
adaptation for legged robots. RSS, 2021. 33

111

[123] Aviral Kumar, Rishabh Agarwal, Dibya Ghosh, and Sergey Levine. Implicit under-
parameterization inhibits data-efficient deep reinforcement learning. arXiv preprint
arXiv:2010.14498, 2020. 33

[124] Vikash Kumar and Emanuel Todorov. Mujoco haptix: A virtual reality system for
hand manipulation. In Humanoid Robots (Humanoids), 2015 IEEE-RAS 15th Inter-
national Conference on, pages 657–663. IEEE, 2015. 39

[125] Thanard Kurutach, Aviv Tamar, Ge Yang, Stuart J. Russell, and Pieter Abbeel.
Learning plannable representations with causal infogan. CoRR, abs/1807.09341, 2018.
20, 29

[126] Tian Lan, Tsung-Chuan Chen, and Silvio Savarese. A hierarchical representation for
future action prediction. In ECCV, 2014. 61

[127] Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Ar-
avind Srinivas. Reinforcement learning with augmented data. arXiv preprint
arXiv:2004.14990, 2020. 8

[128] Alex X Lee, Richard Zhang, Frederik Ebert, Pieter Abbeel, Chelsea Finn, and Sergey
Levine. Stochastic adversarial video prediction. arXiv:1804.01523, 2018. 21, 82

[129] Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hut-
ter. Learning quadrupedal locomotion over challenging terrain. Science robotics,
5(47):eabc5986, 2020. 33

[130] Timothy E Lee, Jonathan Tremblay, Thang To, Jia Cheng, Terry Mosier, Oliver
Kroemer, Dieter Fox, and Stan Birchfield. Camera-to-robot pose estimation from a
single image. arXiv preprint arXiv:1911.09231, 2019. 7

[131] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end train-
ing of deep visuomotor policies. The Journal of Machine Learning Research,
17(1):1334–1373, 2016. 10, 13, 45, 47, 58, 60

[132] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforce-
ment learning: Tutorial, review, and perspectives on open problems. arXiv preprint
arXiv:2005.01643, 2020. 33

[133] Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre Quillen.
Learning hand-eye coordination for robotic grasping with deep learning and large-
scale data collection. The International journal of robotics research, 37(4-5):421–436,
2018. 20, 47, 60, 61

[134] Yixin Lin and Austin Wang. Polymetis: a real-time pytorch controller manager. In
https://github.com/facebookresearch/polymetis, 2021. 89

[135] Shaowei Liu, Subarna Tripathi, Somdeb Majumdar, and Xiaolong Wang. Joint hand
motion and interaction hotspots prediction from egocentric videos. In CVPR, 2022.
61, 99

[136] Yunze Liu, Yun Liu, Che Jiang, Kangbo Lyu, Weikang Wan, Hao Shen, Boqiang
Liang, Zhoujie Fu, He Wang, and Li Yi. Hoi4d: A 4d egocentric dataset for category-
level human-object interaction. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 21013–21022, 2022. 61

112

[137] Camillo Lugaresi, Jiuqiang Tang, Hadon Nash, Chris McClanahan, Esha Uboweja,
Michael Hays, Fan Zhang, Chuo-Ling Chang, Ming Guang Yong, Juhyun Lee,
et al. Mediapipe: A framework for building perception pipelines. arXiv preprint
arXiv:1906.08172, 2019. 61

[138] Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan Tompson, Sergey
Levine, and Pierre Sermanet. Learning latent plans from play. In Conference on Robot
Learning, pages 1113–1132. PMLR, 2020. 7, 10, 19, 20, 22, 27, 33

[139] Corey Lynch and Pierre Sermanet. Grounding language in play. arXiv preprint
arXiv:2005.07648, 2020. 7

[140] Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Ku-
mar, and Amy Zhang. Vip: Towards universal visual reward and representation via
value-implicit pre-training. arXiv preprint arXiv:2210.00030, 2022. 46, 47, 56, 64

[141] Arjun Majumdar, Karmesh Yadav, Sergio Arnaud, Yecheng Jason Ma, Claire Chen,
Sneha Silwal, Aryan Jain, Vincent-Pierre Berges, Pieter Abbeel, Jitendra Malik,
Dhruv Batra, Yixin Lin, Oleksandr Maksymets, Aravind Rajeswaran, and Franziska
Meier. Where are we in the search for an artificial visual cortex for embodied intel-
ligence? 2023. VII, XI, 46, 47, 48, 49, 51, 52, 56, 58, 60, 61, 64, 66, 69, 92, 93, 94,
100

[142] Priyanka Mandikal and Kristen Grauman. Dexvip: Learning dexterous grasping with
human hand pose priors from video. In Conference on Robot Learning (CoRL), 2021.
61

[143] Ajay Mandlekar, Fabio Ramos, Byron Boots, Li Fei-Fei, Animesh Garg, and Dieter
Fox. Iris: Implicit reinforcement without interaction at scale for learning control from
offline robot manipulation data. arXiv preprint arXiv:1911.05321, 2019. 7

[144] Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun
Kulkarni, Li Fei-Fei, Silvio Savarese, Yuke Zhu, and Roberto Martín-Martín. What
matters in learning from offline human demonstrations for robot manipulation. In
Conference on Robot Learning (CoRL), 2021. XII, 49, 51, 53, 56, 67, 73, 74, 77, 92,
93, 94, 100

[145] Ajay Mandlekar, Yuke Zhu, Animesh Garg, Jonathan Booher, Max Spero, Albert
Tung, Julian Gao, John Emmons, Anchit Gupta, Emre Orbay, et al. Roboturk: A
crowdsourcing platform for robotic skill learning through imitation. arXiv preprint
arXiv:1811.02790, 2018. V, 12, 21

[146] Esteve Valls Mascaro, Hyemin Ahn, and Dongheui Lee. Intention-conditioned long-
term human egocentric action forecasting@ ego4d challenge 2022. arXiv preprint
arXiv:2207.12080, 2022. 61

[147] Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim
Songhori, Shen Wang, Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi,
et al. A graph placement methodology for fast chip design. Nature, 594(7862):207–212,
2021. 1

[148] Andriy Mnih and Koray Kavukcuoglu. Learning word embeddings efficiently with
noise-contrastive estimation. Advances in neural information processing systems, 26,
2013. 34

113

[149] Katharina Mülling, Jens Kober, Oliver Kroemer, and Jan Peters. Learning to select
and generalize striking movements in robot table tennis. The International Journal
of Robotics Research, 32(3):263–279, 2013. 5

[150] Austin Myers, Ching L Teo, Cornelia Fermüller, and Yiannis Aloimonos. Affordance
detection of tool parts from geometric features. In ICRA), 2015. 61

[151] Tushar Nagarajan, Christoph Feichtenhofer, and Kristen Grauman. Grounded human-
object interaction hotspots from video. In ICCV, 2019. 61

[152] Ashvin V Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey
Levine. Visual reinforcement learning with imagined goals. Advances in neural infor-
mation processing systems, 31, 2018. 47, 60

[153] Suraj Nair, Mohammad Babaeizadeh, Chelsea Finn, Sergey Levine, and Vikash Ku-
mar. Time reversal as self-supervision. arXiv:1810.01128, 2018. 20, 29

[154] Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta.
R3m: A universal visual representation for robot manipulation. arXiv preprint
arXiv:2203.12601, 2022. VII, XII, 31, 45, 46, 47, 49, 56, 58, 61, 63, 64, 66, 93,
94, 95

[155] Duy-Kien Nguyen, Vaibhav Aggarwal, Yanghao Li, Martin R Oswald, Alexander Kir-
illov, Cees GM Snoek, and Xinlei Chen. R-mae: Regions meet masked autoencoders.
arXiv preprint arXiv:2306.05411, 2023. 48

[156] Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier
Mees, Sudeep Dasari, Joey Hejna, Charles Xu, Jianlan Luo, Tobias Kreiman, You
Liang Tan, Dorsa Sadigh, Chelsea Finn, and Sergey Levine. Octo: An open-source
generalist robot policy. https://octo-models.github.io, 2023. 75, 76

[157] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with
contrastive predictive coding. arXiv preprint arXiv:1807.03748, 2018. 34

[158] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with
contrastive predictive coding. arXiv preprint arXiv:1807.03748, 2018. 46, 47, 59, 62,
66

[159] Jyothish Pari, Nur Muhammad, Sridhar Pandian Arunachalam, Lerrel Pinto, et al.
The surprising effectiveness of representation learning for visual imitation. arXiv
preprint arXiv:2112.01511, 2021. 64

[160] Simone Parisi, Aravind Rajeswaran, Senthil Purushwalkam, and Abhinav Gupta. The
unsurprising effectiveness of pre-trained vision models for control. arXiv preprint
arXiv:2203.03580, 2022. 31

[161] Peter Pastor, Ludovic Righetti, Mrinal Kalakrishnan, and Stefan Schaal. Online
movement adaptation based on previous sensor experiences. In 2011 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, pages 365–371. IEEE, 2011.
5

[162] Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via
disagreement. arXiv preprint arXiv:1906.04161, 2019. 29

114

https://octo-models.github.io

[163] Deepak Pathak, Parsa Mahmoudieh, Guanghao Luo, Pulkit Agrawal, Dian Chen, Yide
Shentu, Evan Shelhamer, Jitendra Malik, Alexei A Efros, and Trevor Darrell. Zero-
shot visual imitation. In Conference on Computer Vision and Pattern Recognition
Workshops, 2018. 20

[164] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-
to-real transfer of robotic control with dynamics randomization. In International
Conference on Robotics and Automation (ICRA), 2018. 20

[165] Lerrel Pinto and Abhinav Gupta. Supersizing self-supervision: Learning to grasp from
50k tries and 700 robot hours. In 2016 IEEE international conference on robotics and
automation (ICRA), pages 3406–3413. IEEE, 2016. 20, 47, 58, 60

[166] Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Ad-
vances in neural information processing systems, 1, 1988. 47, 60, 67

[167] Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In
Advances in neural information processing systems, pages 305–313, 1989. 5

[168] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sand-
hini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual models from natural lan-
guage supervision. CoRR, abs/2103.00020, 2021. 66, 69

[169] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. Language models are unsupervised multitask learners. OpenAI blog, 1(8):9,
2019. 1

[170] Ilija Radosavovic, Tete Xiao, Stephen James, Pieter Abbeel, Jitendra Malik, and
Trevor Darrell. Real-world robot learning with masked visual pre-training. CoRL,
2022. VII, 46, 47, 58, 61, 64, 66

[171] Rouhollah Rahmatizadeh, Pooya Abolghasemi, Aman Behal, and Ladislau Bölöni.
From virtual demonstration to real-world manipulation using lstm and mdn. In Thirty-
Second AAAI Conference on Artificial Intelligence, 2018. 10

[172] Rouhollah Rahmatizadeh, Pooya Abolghasemi, Aman Behal, and Ladislau Bölöni.
From virtual demonstration to real-world manipulation using lstm and mdn. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018. 49, 92

[173] Rouhollah Rahmatizadeh, Pooya Abolghasemi, Ladislau Bölöni, and Sergey Levine.
Vision-based multi-task manipulation for inexpensive robots using end-to-end learn-
ing from demonstration. In 2018 IEEE International Conference on Robotics and
Automation (ICRA), pages 3758–3765. IEEE, 2018. 7, 10

[174] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schul-
man, Emanuel Todorov, and Sergey Levine. Learning complex dexterous ma-
nipulation with deep reinforcement learning and demonstrations. arXiv preprint
arXiv:1709.10087, 2017. 33

[175] Nicholas Rhinehart and Kris M Kitani. Learning action maps of large environments
via first-person vision. In CVPR, 2016. 61

115

[176] Yu Rong, Takaaki Shiratori, and Hanbyul Joo. Frankmocap: A monocular 3d whole-
body pose estimation system via regression and integration. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, pages
1749–1759, October 2021. 60, 61, 63, 71

[177] Frank Rosenblatt. Principles of neurodynamics. perceptrons and the theory of brain
mechanisms. Technical report, Cornell Aeronautical Lab Inc Buffalo NY, 1961. 90

[178] Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In
AISTATS, 2010. 45

[179] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning
and structured prediction to no-regret online learning. In Proceedings of the fourteenth
international conference on artificial intelligence and statistics, pages 627–635. JMLR
Workshop and Conference Proceedings, 2011. X, 6, 31, 32, 33, 40, 41, 67, 90

[180] Constantin A Rothkopf, Dana H Ballard, and Mary M Hayhoe. Task and context
determine where you look. Journal of vision, 7(14):16–16, 2007. 6

[181] Anirban Roy and Sinisa Todorovic. A multi-scale cnn for affordance segmentation in
rgb images. In ECCV, 2016. 61

[182] Fereshteh Sadeghi and Sergey Levine. Cad2rl: Real single-image flight without a
single real image. arXiv:1611.04201, 2016. 18, 20

[183] Fereshteh Sadeghi, Alexander Toshev, Eric Jang, and Sergey Levine. Sim2real view-
point invariant visual servoing by recurrent control. In Conference on Computer Vision
and Pattern Recognition, 2018. 20

[184] Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P Kingma. Pixelcnn++:
Improving the pixelcnn with discretized logistic mixture likelihood and other modifi-
cations. arXiv preprint arXiv:1701.05517, 2017. 10

[185] Abraham Savitzky and Marcel JE Golay. Smoothing and differentiation of data by
simplified least squares procedures. Analytical chemistry, 36(8), 1964. 99

[186] Johann Sawatzky, Abhilash Srikantha, and Juergen Gall. Weakly supervised affor-
dance detection. In CVPR, 2017. 61

[187] Stefan Schaal. Is imitation learning the route to humanoid robots? Trends in cognitive
sciences, 3(6):233–242, 1999. 6, 33, 47, 49, 67

[188] Stefan Schaal et al. Learning from demonstration. Advances in neural information
processing systems, pages 1040–1046, 1997. 59, 75

[189] Karl Schmeckpeper, Oleh Rybkin, Kostas Daniilidis, Sergey Levine, and Chelsea Finn.
Reinforcement learning with videos: Combining offline observations with interaction.
In Conference on Robot Learning, pages 339–354. PMLR, 2021. 33

[190] Johannes Lutz Schönberger and Jan-Michael Frahm. Structure-from-motion revisited.
In Conference on Computer Vision and Pattern Recognition (CVPR), 2016. 39

[191] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent
Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Grae-
pel, et al. Mastering atari, go, chess and shogi by planning with a learned model.
Nature, 588(7839):604–609, 2020. 1

116

[192] Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan
Schaal, Sergey Levine, and Google Brain. Time-contrastive networks: Self-supervised
learning from video. In 2018 IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 1134–1141. IEEE, 2018. 8, 33

[193] Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan
Schaal, Sergey Levine, and Google Brain. Time-contrastive networks: Self-supervised
learning from video. In 2018 IEEE international conference on robotics and automation
(ICRA), pages 1134–1141. IEEE, 2018. 59

[194] Pierre Sermanet, Kelvin Xu, and Sergey Levine. Unsupervised perceptual rewards for
imitation learning. arXiv preprint arXiv:1612.06699, 2016. 8, 33

[195] Nur Muhammad Mahi Shafiullah, Zichen Jeff Cui, Ariuntuya Altanzaya, and Lerrel
Pinto. Behavior transformers: Cloning k modes with one stone. In Thirty-Sixth
Conference on Neural Information Processing Systems, 2022. 33

[196] Rutav M Shah and Vikash Kumar. Rrl: Resnet as representation for reinforcement
learning. In ICML, 2021. 64

[197] Dandan Shan, Jiaqi Geng, Michelle Shu, and David Fouhey. Understanding human
hands in contact at internet scale. In CVPR, 2020. VII, VIII, XI, 46, 48, 50, 59, 60,
61, 63, 66, 69, 71, 99

[198] Lin Shao, Toki Migimatsu, Qiang Zhang, Karen Yang, and Jeannette Bohg. Con-
cept2robot: Learning manipulation concepts from instructions and human demon-
strations. In Proceedings of Robotics: Science and Systems (RSS), July 2020. 7

[199] Pratyusha Sharma, Lekha Mohan, Lerrel Pinto, and Abhinav Gupta. Multiple
interactions made easy (mime): Large scale demonstrations data for imitation.
arXiv:1810.07121, 2018. 21

[200] Pratyusha Sharma, Deepak Pathak, and Abhinav Gupta. Third-person visual imita-
tion learning via decoupled hierarchical controller. arXiv preprint arXiv:1911.09676,
2019. 5

[201] Kenneth Shaw, Ananye Agarwal, and Deepak Pathak. Leap hand:low-cost, efficient,
and anthropomorphic hand for robot learning. RSS, 2023. XI, 71

[202] Kenneth Shaw, Shikhar Bahl, and Deepak Pathak. Videodex: Learning dexterity
from internet videos. In CoRL, 2022. 61

[203] Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Cliport: What and where pathways
for robotic manipulation. In CoRL, 2022. 64

[204] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al.
Mastering the game of go without human knowledge. nature, 550(7676):354–359,
2017. 1

[205] Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks for ac-
tion recognition in videos. In Advances in neural information processing systems,
pages 568–576, 2014. 7

117

[206] Mannat Singh, Quentin Duval, Kalyan Vasudev Alwala, Haoqi Fan, Vaibhav Ag-
garwal, Aaron Adcock, Armand Joulin, Piotr Dollár, Christoph Feichtenhofer, Ross
Girshick, et al. The effectiveness of mae pre-pretraining for billion-scale pretraining.
arXiv preprint arXiv:2303.13496, 2023. 48

[207] Lucas Smaira, João Carreira, Eric Noland, Ellen Clancy, Amy Wu, and Andrew Zis-
serman. A short note on the kinetics-700-2020 human action dataset. arXiv preprint
arXiv:2010.10864, 2020. VII, 46, 48, 50

[208] Laura Smith, Nikita Dhawan, Marvin Zhang, Pieter Abbeel, and Sergey Levine. Avid:
Learning multi-stage tasks via pixel-level translation of human videos. arXiv preprint
arXiv:1912.04443, 2019. 5

[209] Shuran Song, Andy Zeng, Johnny Lee, and Thomas Funkhouser. Grasping in the
wild: Learning 6dof closed-loop grasping from low-cost demonstrations. Robotics and
Automation Letters, 2020. 39, 60

[210] Aravind Srinivas, Michael Laskin, and Pieter Abbeel. Curl: Contrastive unsupervised
representations for reinforcement learning. arXiv preprint arXiv:2004.04136, 2020. 8

[211] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
The journal of machine learning research, 15(1):1929–1958, 2014. VII, 10, 46, 55, 56,
92

[212] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neu-
ral networks. In Advances in neural information processing systems, pages 3104–3112,
2014. 13

[213] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018. 31, 33, 45, 47, 58

[214] Michita Imai Takuma Seno. d3rlpy: An offline deep reinforcement library. In NeurIPS
2021 Offline Reinforcement Learning Workshop, December 2021. 91

[215] Matthew Tancik, Pratul P Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin
Raghavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T Barron, and Ren Ng.
Fourier features let networks learn high frequency functions in low dimensional do-
mains. arXiv preprint arXiv:2006.10739, 2020. 9

[216] Sebastian Thrun. A lifelong learning perspective for mobile robot control. In Intelli-
gent Robots and Systems, 1995. 20

[217] Sebastian Thrun and Tom M Mitchell. Lifelong robot learning. Robotics and au-
tonomous systems, 1995. 20

[218] Stephen Tian, Frederik Ebert, Dinesh Jayaraman, Mayur Mudigonda, Chelsea Finn,
Roberto Calandra, and Sergey Levine. Manipulation by feel: Touch-based control
with deep predictive models. arXiv:1903.04128, 2019. 20, 29

[219] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter
Abbeel. Domain randomization for transferring deep neural networks from simulation
to the real world. In International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2017. 20

118

[220] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-
based control. In 2012 IEEE/RSJ international conference on intelligent robots and
systems, pages 5026–5033. IEEE, 2012. 11, 47, 49, 89

[221] Zhan Tong, Yibing Song, Jue Wang, and Limin Wang. Videomae: Masked autoen-
coders are data-efficient learners for self-supervised video pre-training. NeurIPS, 2022.
48

[222] Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation.
arXiv preprint arXiv:1805.01954, 2018. 7

[223] Faraz Torabi, Garrett Warnell, and Peter Stone. Generative adversarial imitation
from observation. arXiv preprint arXiv:1807.06158, 2018. 33

[224] Antonio Torralba, Rob Fergus, and William T Freeman. 80 million tiny images: A
large data set for nonparametric object and scene recognition. transactions on pattern
analysis and machine intelligence, 2008. 21

[225] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances
in neural information processing systems, pages 5998–6008, 2017. 6, 8, 9

[226] Ruben Villegas, Arkanath Pathak, Harini Kannan, Dumitru Erhan, Quoc V Le, and
Honglak Lee. High fidelity video prediction with large neural nets. 27, 29

[227] Ruben Villegas, Jimei Yang, Seunghoon Hong, Xunyu Lin, and Honglak Lee. De-
composing motion and content for natural video sequence prediction. arXiv preprint
arXiv:1706.08033, 2017. 61

[228] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew
Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko
Georgiev, et al. Grandmaster level in starcraft ii using multi-agent reinforcement
learning. Nature, 575(7782):350–354, 2019. 1

[229] Stefan Vogt and Roland Thomaschke. From visuo-motor interactions to imita-
tion learning: behavioural and brain imaging studies. Journal of Sports Sciences,
25(5):497–517, 2007. 5

[230] Carl Vondrick, Deniz Oktay, Hamed Pirsiavash, and Antonio Torralba. Predicting
motivations of actions by leveraging text. In CVPR, 2016. 61

[231] Jiayi Wang, Franziska Mueller, Florian Bernard, Suzanne Sorli, Oleksandr Sot-
nychenko, Neng Qian, Miguel A Otaduy, Dan Casas, and Christian Theobalt.
Rgb2hands: real-time tracking of 3d hand interactions from monocular rgb video.
ACM Transactions on Graphics (TOG), 39(6):1–16, 2020. 61

[232] Limin Wang, Bingkun Huang, Zhiyu Zhao, Zhan Tong, Yinan He, Yi Wang, Yali
Wang, and Yu Qiao. Videomae v2: Scaling video masked autoencoders with dual
masking. In CVPR, 2023. 48

[233] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural
networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 7794–7803, 2018. 6, 9

119

[234] Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed
to control: A locally linear latent dynamics model for control from raw images. In
neural information processing systems, 2015. 20

[235] Luca Weihs, Unnat Jain, Iou-Jen Liu, Jordi Salvador, Svetlana Lazebnik, Aniruddha
Kembhavi, and Alex Schwing. Bridging the imitation gap by adaptive insubordination.
NeurIPS, 2021. 49

[236] Dirk Weissenborn, Oscar Täckström, and Jakob Uszkoreit. Scaling autoregressive
video models. arXiv preprint arXiv:1906.02634, 2019. 29

[237] William Whitney, Rajat Agarwal, Kyunghyun Cho, and Abhinav Gupta. Dynamics-
aware embeddings. arXiv preprint arXiv:1908.09357, 2019. 47, 60

[238] Grady Williams, Andrew Aldrich, and Evangelos Theodorou. Model predic-
tive path integral control using covariance variable importance sampling. CoRR,
abs/1509.01149, 2015. 83

[239] Tete Xiao, Ilija Radosavovic, Trevor Darrell, and Jitendra Malik. Masked visual pre-
training for motor control. arXiv preprint arXiv:2203.06173, 2022. XI, 31, 46, 47, 48,
49, 51, 52, 56, 69, 92

[240] Annie Xie, Frederik Ebert, Sergey Levine, and Chelsea Finn. Improvisation through
physical understanding: Using novel objects as tools with visual foresight. arXiv
preprint arXiv:1904.05538, 2019. 7

[241] Annie Xie, Frederik Ebert, Sergey Levine, and Chelsea Finn. Improvisation through
physical understanding: Using novel objects as tools with visual foresight. CoRR,
abs/1904.05538, 2019. 21, 29

[242] Annie Xie, Avi Singh, Sergey Levine, and Chelsea Finn. Few-shot goal inference for
visuomotor learning and planning. In Conference on Robot Learning, pages 40–52.
PMLR, 2018. 33

[243] SHI Xingjian, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-
chun Woo. Convolutional lstm network: A machine learning approach for precipitation
nowcasting. In Advances in neural information processing systems, pages 802–810,
2015. 82

[244] Chao Yang, Xiaojian Ma, Wenbing Huang, Fuchun Sun, Huaping Liu, Junzhou Huang,
and Chuang Gan. Imitation learning from observations by minimizing inverse dy-
namics disagreement. In Advances in Neural Information Processing Systems, pages
239–249, 2019. 7

[245] Yufei Ye, Xueting Li, Abhinav Gupta, Shalini De Mello, Stan Birchfield, Jiaming
Song, Shubham Tulsiani, and Sifei Liu. Affordance diffusion: Synthesizing hand-
object interactions. In CVPR, 2023. 61

[246] Sarah Young, Dhiraj Gandhi, Shubham Tulsiani, Abhinav Gupta, Pieter Abbeel, and
Lerrel Pinto. Visual imitation made easy. In Conference on Robot Learning, pages
1992–2005. PMLR, 2021. X, 39, 40, 41, 90

[247] Kuan-Ting Yu, Maria Bauza, Nima Fazeli, and Alberto Rodriguez. More than a
million ways to be pushed. a high-fidelity experimental dataset of planar pushing. In
International Conference on Intelligent Robots and Systems (IROS), 2016. 21

120

[248] Lantao Yu, Tianhe Yu, Chelsea Finn, and Stefano Ermon. Meta-inverse reinforce-
ment learning with probabilistic context variables. Advances in Neural Information
Processing Systems, 32:11772–11783, 2019. 33

[249] Tianhe Yu, Chelsea Finn, Annie Xie, Sudeep Dasari, Tianhao Zhang, Pieter Abbeel,
and Sergey Levine. One-shot imitation from observing humans via domain-adaptive
meta-learning. arXiv preprint arXiv:1802.01557, 2018. 6, 7, 8, 13, 14

[250] Tianhe Yu, Deirdre Quillen, Zhanpeng He, R. Julian, Karol Hausman, Chelsea Finn,
and S. Levine. Meta-world: A benchmark and evaluation for multi-task and meta
reinforcement learning. In CoRL, 2019. 49, 51, 53, 93, 100

[251] Tianhe Yu, Gleb Shevchuk, Dorsa Sadigh, and Chelsea Finn. Unsupervised visuomotor
control through distributional planning networks. arXiv:1902.05542, 2019. V, 19, 20,
23, 24

[252] Wenhao Yu, C. Karen Liu, and Greg Turk. Preparing for the unknown: Learning a
universal policy with online system identification. CoRR, abs/1702.02453, 2017. 20

[253] Andy Zeng, Pete Florence, Jonathan Tompson, Stefan Welker, Jonathan Chien, Maria
Attarian, Travis Armstrong, Ivan Krasin, Dan Duong, Vikas Sindhwani, and Johnny
Lee. Transporter networks: Rearranging the visual world for robotic manipulation.
CoRL, 2020. 64

[254] Andy Zeng, Shuran Song, Johnny Lee, Alberto Rodriguez, and Thomas
Funkhouser. Tossingbot: Learning to throw arbitrary objects with residual physics.
arXiv:1903.11239, 2019. 20

[255] Andy Zeng, Shuran Song, Stefan Welker, Johnny Lee, Alberto Rodriguez, and Thomas
Funkhouser. Learning synergies between pushing and grasping with self-supervised
deep reinforcement learning. arXiv:1803.09956, 2018. 20

[256] Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision
transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 12104–12113, 2022. 48, 62

[257] Ruohan Zhang, Zhuode Liu, Luxin Zhang, Jake A Whritner, Karl S Muller, Mary M
Hayhoe, and Dana H Ballard. Agil: Learning attention from human for visuomotor
tasks. In Proceedings of the european conference on computer vision (eccv), pages
663–679, 2018. 6

[258] Tianhao Zhang, Zoe McCarthy, Owen Jow, Dennis Lee, Xi Chen, Ken Goldberg,
and Pieter Abbeel. Deep imitation learning for complex manipulation tasks from
virtual reality teleoperation. In 2018 IEEE International Conference on Robotics and
Automation (ICRA), pages 1–8. IEEE, 2018. 5, 39

[259] Bingchen Zhao, Haoqin Tu, Chen Wei, Jieru Mei, and Cihang Xie. Tuning lay-
ernorm in attention: Towards efficient multi-modal llm finetuning. arXiv preprint
arXiv:2312.11420, 2023. 65

[260] Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained
bimanual manipulation with low-cost hardware. Proceedings of Robotics: Science and
Systems (RSS), 2023. 76, 77

121

[261] Yibiao Zhao and Song-Chun Zhu. Scene parsing by integrating function, geometry
and appearance models. In CVPR, 2013. 61

[262] Allan Zhou, Eric Jang, Daniel Kappler, Alex Herzog, Mohi Khansari, Paul Wohlhart,
Yunfei Bai, Mrinal Kalakrishnan, Sergey Levine, and Chelsea Finn. Watch, try, learn:
Meta-learning from demonstrations and reward. arXiv preprint arXiv:1906.03352,
2019. 14

[263] Gaoyue Zhou, Victoria Dean, Mohan Kumar Srirama, Aravind Rajeswaran, Jyothish
Pari, Kyle Hatch, Aryan Jain, Tianhe Yu, Pieter Abbeel, Lerrel Pinto, et al. Train
offline, test online: A real robot learning benchmark. arXiv preprint arXiv:2306.00942,
2023. 57

[264] Huiyu Zhou, Yuan Yuan, and Chunmei Shi. Object tracking using sift features and
mean shift. Computer vision and image understanding, 113(3):345–352, 2009. 63

[265] Wenxuan Zhou, Bowen Jiang, Fan Yang, Chris Paxton, and David Held. Hacman:
Learning hybrid actor-critic maps for 6d non-prehensile manipulation. In 7th Annual
Conference on Robot Learning, 2023. 64

[266] Xingyi Zhou, Rohit Girdhar, Armand Joulin, Phillip Krähenbühl, and Ishan Misra.
Detecting twenty-thousand classes using image-level supervision. arXiv preprint
arXiv:2201.02605, 2022. XII, 72

[267] Yixin Zhu, Chenfanfu Jiang, Yibiao Zhao, Demetri Terzopoulos, and Song-Chun Zhu.
Inferring forces and learning human utilities from videos. In CVPR, 2016. 61

[268] Yuke Zhu, Alireza Fathi, and Li Fei-Fei. Reasoning about object affordances in a
knowledge base representation. In Computer Vision–ECCV 2014: 13th European
Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part II 13, pages
408–424. Springer, 2014. 61

[269] Yuke Zhu, Josiah Wong, Ajay Mandlekar, Roberto Martín-Martín, Abhishek Joshi,
Soroush Nasiriany, and Yifeng Zhu. robosuite: A modular simulation framework and
benchmark for robot learning. In arXiv preprint arXiv:2009.12293, 2020. 93

122

