
Causal Robot Learning for Manipulation
Thesis

Tabitha Edith Lee
CMU-RI-TR-24-25

July 5, 2024

The Robotics Institute
School of Computer Science
Carnegie Mellon University
Pittsburgh, Pennsylvania

Thesis Committee:
Prof. Oliver Kroemer, Chair The Robotics Institute

Carnegie Mellon University
Prof. Shubham Tulsiani The Robotics Institute

Carnegie Mellon University
Prof. Kun Zhang Dept. of Philosophy &

Machine Learning Dept.
Carnegie Mellon University

Prof. Jonas Martin Peters Dept. of Mathematics
ETH Zürich

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Robotics.

Copyright © 2024 Tabitha Edith Lee. All rights reserved.

Abstract

Two decades into the third age of artificial intelligence, the rise of deep learning has
yielded two seemingly disparate realities. In one, massive accomplishments have been
achieved in deep reinforcement learning, protein folding, and large language models.
Yet, in the other, the promises of deep learning to empower robots that operate
robustly in real-world environments have yet remained unfulfilled. Vast diversity of
objects, distribution shifts, long-tailed phenomena: outside of laboratories, real-world
environments challenge modern statistical learning assumptions of the data.

Although such environments have generally been referred to as “unstructured,”
this terminology belies their nature. Real-world environments are not “unstructured,”
but arise because of structure: the underlying causal processes that generate the
observed data. In this view, robots should not only reason and learn with respect
to data, but also the data generating processes. Such processes can be formalized
by the language of causality. Therefore, to learn and leverage the structure of these
“open-world” environments, new causal-based robot learning algorithms are needed.

Towards this goal, this thesis explores a diversity of robot learning problems,
from perception to control. First, we explore how perception models can be learned
using sim-to-real transfer from synthetic data (DREAM, FormNet). In these works,
relevant features were learned through domain randomization, leading to insights into
how structure can be learned more directly using causality. To this end, we introduce
structural sim-to-real transfer, where simulation can serve as a causal reasoning engine
for the robot to select the relevant features for a control policy (CREST) or skill
(SCALE). By construction, these policies are robust to irrelevant distribution shifts
that would otherwise stymie correlation-based deep learning. Next, the rich interplay
between control, dynamical systems, and causality is explored through the Learning
By Doing (LBD) competition and LMeshNet, a methodology for constructing hybrid
causal world models that integrate both latent and semantic information. Lastly, we
examine curriculum learning. In ACL, we explore the commonalities and differences
between human and agent curriculum learning. Then, we employ these lessons learned
for CURATE: how agents can manipulate the sequencing of training data to efficiently
learn a control policy to solve a desired, difficult task.

The advantages of adopting the principles of causal inference have been witnessed
to date in fields such as biomedical sciences, economics, and genomics. In the ma-
chine learning community, it has recently been argued that such principles should
be integrated to harness deep learning, towards causal learning of representations.
Analogously, this thesis forwards that the robot learning community stands to gain
by leveraging the principles of causality. In so doing, this new paradigm holds promise
for robots to learn and leverage structure within the open world through causal robot
learning for manipulation.

To the mountains we climb,
the people who uplift us,

and the wisdom we gain at the summit.

Acknowledgments
“You don’t climb mountains without a team...” (Sen. Mark Udall)

While climbing mountains can be seen as an individual endeavor, for every suc-
cessful mountain summit is a host of people who contributed along the way. This
thesis would not have happened without the countless and innumerable contributions
of my colleagues, collaborators, friends, and family. Therefore, I dedicate this thesis
to you. Before I continue my acknowledgments, please allow me to first reflect upon
this journey to contextualize the profound impact that others have made.

“May your dreams be larger than mountains and may you have the courage
to scale their summits.” (Harley King)

Ten years ago, I decided to climb a mountain. This was not a literal mountain,
but a metaphorical one: the pursuit of a PhD in embodied artificial intelligence.
Robotics, long a curiosity, became a passion that propelled my dreams. And, in 2018,
I was given an opportunity: after completing my MS at Carnegie Mellon University,
I started my ascent in the PhD program. Yet, in order to climb one mountain, I had
to summit two other mountains first.

“Mountains know secrets we need to learn. That it might take time, it
might be hard, but if you just hold on long enough, you will find strength
to rise up.” (Tyler Knott Gregson)

In 2020, a worldwide pandemic left an indelible mark upon us all: for some of
us more than others. During the pandemic, lifelong impostor syndrome and feelings
of misalignment roared to an inescapable din. I felt stranded upon the mountain,
unable to make progress in my ascent while deeply vulnerable within a storm of
doubt. Having no other choice than to confront my incongruence, I realized that to
finish this climb, I needed to conquer another mountain first. Halfway through my
PhD, I made my first summit: I fully embraced my gender identity and transitioned
to exist as my most authentic self.

Feeling like I had been reborn, I embarked on my ascent towards the PhD once
again, now with a tailwind aiding my climb. Yet, nearly one year later, my life
profoundly changed once again. An accident led to the loss of my leg. Immediately, a
second mountain loomed. During this time, I grappled with fear, self-doubt, and an
overwhelming grief. But, through the support of family, friends, and faith, I recovered.
Slowly but surely, my fear gave way to hope. Self-doubt gave way to belief. Finally,
grief gave way to acceptance. I relearned to walk with a prosthesis and made my
second summit. What had been lost, has now been regained many times over.

v

“The summit is what drives us, but the climb itself is what matters.”
(Conrad Anker)

This thesis represents my third summit, conquering the mountain I had sought
to climb ten years ago. My steps may be slower now: more careful, more thoughtful.
But, they are also more intentional, more determined. Most important of all, they
are more grateful. Because, if there is one constant throughout this incredible, life-
changing journey, it has been the profound importance of people. Climbing these
mountains — becoming the researcher and person I am today — simply would not
have been possible without the immeasurable contributions of others.

I owe these summits to you.

∼

Thus, I will now begin my attempt to acknowledge every person who has made
this thesis a reality. For those who I have not mentioned in these acknowledgments,
please forgive my oversight. Please know that you remain in my heart.

First, to my PhD thesis advisor, Prof. Oliver Kroemer: I am forever grateful for
your steadfast and unwavering support throughout my journey. You have remained
a source of wisdom and guidance that I can always rely on. You are also a shining
beacon of kindness, an example you set not just within our department, but the
robotics field as a whole. I fondly remember our meeting during the pandemic where
I made a pitch for making causality a focus of my PhD thesis. The field had captured
my imagination, and to this day, I remain steadfast in my conviction that it is a
critical need for robot learning. That meeting, and all the ones after it, transformed
what were only ideas into tangible contributions. This thesis would not have been
possible without your support. I cannot express in words how much I am grateful for
all that you have done for me during this journey. Thank you.

To my thesis committee, Prof. Oliver Kroemer, Prof. Shubham Tulsiani, Prof. Kun
Zhang, and Prof. Jonas Peters: I have learned and grown so much from your guidance
and expertise. I am deeply grateful for your thoughtful comments and wisdom in
shaping this thesis to as strong as it can be. Each of you were vital in developing this
thesis through your unique and important perspectives. Undoubtedly, this thesis is
stronger because of you. Thank you.

To my funding agencies and sponsors, the U.S. Army Research Laboratory, Lock-
heed Martin Corporation, NVIDIA, and the U.S. Office of Naval Research: Our ideas
and dreams came to fruition because of your generous support of our research. For
this, I am dearly grateful. Thank you.

To the former and current members of the Intelligent Autonomous Manipulation
Lab (Pat Callaghan, Samuel Clarke, Siddharth Girdhar, Prof. Oliver Kroemer, Alex
LaGrassa, Jacky Liang, Janice Lee, Mark Lee, Steven Lee, Pragna Mannam, Tetsuya
Narita, Rohan Pandya, Sarvesh Patil, Ami Sawhney, Saumya Saxena, Yunus Seker,
Mohit Sharma, Zilin Si, Maximilian Sieb, Jeff Tan, Shivam Vats, Austin Wang, Xinyu

vi

Wang, Vicky Zeng, Erin Zhang, Kevin Zhang, Wuming Zhang, and Alan Zhao): What
a wonderful home the IAM Lab has been these past six years! I will never forget the
many good memories I have of visiting the lab, working with robots, and, importantly,
fostering friendships. I could not have asked for a more welcoming and inclusive home.
Each of you has touched my life and guided me in all those times I sought advice.
And, in those times when I was the one providing wisdom, I dearly hope it was helpful.
With Prof. Kroemer’s leadership, you are well-positioned to continue advancing the
state-of-the-art in robot manipulation. Thank you.

To the members of the Resilient Intelligent Systems Lab (Curtis Boirum, Ellen
Cappo, Micah Corah, Mosam Dabhi, Arjav Desai, Vishnu Desaraju, Aditya Dhawale,
Logan Ellis, Vibhav Ganesh, Kshitij Goel, Mike Lee, Lauren Lieu, Prof. Nathan
Michael, Derek Mitchell, Cormac O’Meadhra, Shaurya Shankar, Alex Spitzer, Shobhit
Srivastava, Prof. Wennie Tabib, Xuning Yang, John Yao): My journey to the PhD
started here as a MS student in 2015, where I began robotics research and got my
feet wet (metaphorically and literally, working on an underwater perception project).
I will look back at these years fondly. Not only were they instrumental in my growth
as a researcher, my first friendships in Pittsburgh were forged here. In particular, I
extend my heartfelt thanks to Prof. Nathan Michael for bringing me in to the lab and
advising my MS thesis, and to my research sponsor, Westinghouse Electric Company
(Lyman Petrosky and Nicholas Bhai), for supporting my MS research. I also wish
to thank my MS thesis committee (Prof. Nathan Michael, Prof. Stephen Nuske, Eric
Westman) for guiding my MS thesis. Thank you.

To the staff and my colleagues of the Robotics Institute (Arpit Agarwal, Prof. Chris
Atkeson, Cornelia and Dominik Bauer, Ankit Bhatia, Abhijat Biswas, Rachel Burcin,
Allie Chang, Nadine Chang, Arkadeep Chaudhury, Xianyi Cheng, Kiyn Chin, Mag-
gie Collier, Achal Dave, Victoria Dean, Akshay Dharmavaram, Allie Del Giorno,
Bart Duisterhof, B.J. Fecich, Carloz Gil, Rick Goldstein, Jaskaran Grover, Swami
Gurumurthy, Jean Harpley, Prof. David Held, Cherie Ho, Prof. George Kantor,
Azarakhsh Keipour, Terri Kent, Leo Keselman, Ashwin Khadke, Prof. Kris Kitani,
Prof. Oliver Kroemer, Tushar Kusnur, Ashlyn Lacovara, Ryan Lee, Haohong Lin,
Prof. Changliu Liu, Cecilia Morales, Tim Mueller-Sim, Shohin Mukherjee, Adithya
Murali, Suzanne Muth, Ram Natarajan, Prof. Jean Oh, Brian Okorn, Dinesh Reddy,
Suhail Saleem, Dhruv Saxena, Rosario Scalise, Prof. Jeff Schneider, Tanmay Shankar,
Kate Shih, Sam Speer, Prof. Aaron Steinfeld, Sudharshan Suresh, Gokul Swamy, Zhi
Tan, Ada Taylor, Prof. Zeynep Temel, Anirudh Vemula, Mrinal Verghese, Thomas
Weng, Michelle Zhao, Rachel Zheng, and Wenxuan Zhou): What a wonderful, col-
laborative community with state-of-the-art robotics research and expertise! I am so
grateful for the wonderful friendships that have formed over these nearly ten years.
The Robotics Institute is truly a special place. In particular, I offer my thanks to my
research qualifier committee (Prof. Oliver Kroemer, Prof. Chris Atkeson, Prof. Jeff
Schneider, Brian Okorn) for shaping my research ideas as I began my journey. Addi-
tionally, I wish to thank B.J. Fecich and Suzanne Muth for their efforts in coordinating

vii

the MS and PhD programs, respectively. Thank you.
To the CMU JEDI team (including Bailey Flanigan, Ananya Joshi, Pallavi Kop-

pol, Sara McAllister, Samantha Reig, Catalina Vajiac), the SCS Dean’s PhD Advisory
Committee (including Leo Chen, Kiyn Chin, Victoria Dean, Kalil Anderson Garrett,
Helen Zhou), and the SCS DEI Seminar Series team (Rachel Burcin, Prof. Ken Hol-
stein, Gael Hyppolite, Prof. Queenie Kravitz): I am deeply grateful for the opportu-
nity to work with you and endeavor towards making the School of Computer Science
a more welcoming and inclusive place for everyone. I dearly wish that the seeds and
ideals we planted will blossom beyond SCS and Pittsburgh, towards making the entire
world a better place. Thank you.

To my internship colleagues at NVIDIA (Stan Birchfield, Jia Cheng, Prof. Dieter
Fox, Terry Mosier, Thang To, Jonathan Tremblay) and Lockheed Martin (Chris De-
brunner, Eric Dixon, Saman Fahandezhsaadi, Joseph Gleason, Daniel Kolosa, Shruti
Mahadevan, John Steinbis): You have provided me wonderful, unique opportunities
to pursue research with impactful applications. My internships occurred at pivotal
moments in my PhD journey. In the summer of my first year, NVIDIA was my first
opportunity with deep learning, allowing me to understand its powerful impact and
planting research ideas that would later grow into my thesis. During my last year,
Lockheed Martin offered a rare opportunity to pursue causality research for robotic
applications, with similar conviction towards the technological capabilities of a robot
learning system that is grounded in causality. I am a better researcher because of
your guidance and what I have learned through these opportunities. Thank you.

To my workshop co-organizers for the Causality for Robotics workshop at IROS
2023 (Caleb Chuck, Jiaheng Hu, Prof. Oliver Kroemer, Sarvesh Patil, Zizhao Wang,
Prof. Yuke Zhu) and the Causal-HRI workshop at HRI 2024 (Jiaee Cheong, Nikhil
Churamani, Luke Guerdan, Prof. Hatice Gunes, Prof. Zhao Han): I am deeply for-
tunate for the opportunity to work with you and advocate for the importance of
causality to the robotics community. I hope that our efforts led to important ques-
tions, conversations, and collaborations that will yield new research and directions in
this nascent intersection of causality and robotics. I also wish to thank the speak-
ers, contributors, and attendees of these workshops for your important contributions.
Thank you.

To the organizers and hosts of my external talks with the University of Toronto
(Prof. Igor Gilitschenski, Reinhard Grassmann, Claas Voelcker), University of Michi-
gan GENDiR (Wami Ogunbi, Emily Sheetz, Andrea Sipos), and Talking Robotics
(Sooraj Krishna, Riddhiman Laha, Nitin Ragothaman, Prof. Silvia Tulli): Thank
you for such wonderful opportunities to share our research and the lessons we learned
along the way. I hope that I effectively communicated our work and sparked inter-
est in causal robot learning algorithms. I look back fondly on these talks with deep
gratitude. Thank you.

To my colleagues and collaborators of the Learning By Doing competition (Do-
minik Baumann, Prof. Isabelle Guyon, Prof. Oliver Kroemer, Søren Wengel Mo-

viii

gensen, Prof. Jonas Peters, Prof. Niklas Pfister, Prof. Sebastian Trimpe, Sebastian
Weichwald, and the competition participants), Automated Curriculum Learning (An-
nya Dahmani, Prof. Alison Gopnik, Nan Rosemary Ke, Prof. Oliver Kroemer, Eunice
Yiu), and at the University of Maryland (Prof. Yiannis Aloimonos, Pavan Mantripra-
gada, Yantian Zha, Bomin Zhang): You have given your time, your efforts, and your
attention to pursue important and novel research together. These collaborations have
greatly enriched my PhD, and I hope they are just the start of continued collaboration
for many years to come. Thank you.

To those whom I have had the privilege of learning from during my PhD (Montser-
rat Gonzalez Arenas, Yevgen Chebotar, Alexander D’Amour, and the CMU Eberly
Center, including Alexis Adams, Sophie le Blanc, Phoebe Cook, Steven Moore,
Patrick Walsh): Thank you for your advice, guidance, mentorship, and time. I am
fortunate and grateful to be able to learn and grow from our discussions, from research
ideas to teaching methods. Thank you.

To my medical, care, and support team: I cannot thank you enough for your
profound and selfless care. You helped me embrace my best self, uplifted me when I
was at my lowest, cared for me, gave me the gift of mobility, and taught me how to
walk again. I owe you a debt of gratitude that I could never repay. Thank you.

To Gettysburg Foursquare Church, Metropolitan Community Church of Toronto,
and Transmission Ministry Collective: I am grateful for your direction and wisdom,
serving as a place where I could explore and strengthen my faith. Thank you.

To my friends, both in Pittsburgh and beyond (Rohit Acharya, Cara Bloom, Blake
Buchanan, Chris and Lisa Cheok, Bryan Chu, Amanda and Jimmy Creegan, Dale,
Jackson Dehn, Lena Dickinson, Jeanne, Janet and Jim, Kate, Kate and Nick Klein-
schmidt, Grace and John Leatherman, Jill Marshall, Tanya Marwah, Dave Mitchell,
Janice Morgan, Niusha and Tony, Kate Pepper, Luke Perry, Scott Perrygo, Sara Pe-
terson, Katie Polak, Ralph, Samir, Heidi Stark, David Stebbins, Gail Stebbins, Jamila
Sykes, Uttara, Pras Velagapudi, Ariel Wrigley, Srujana Rao Yarasi, Yuriko): Thank
you for being there for me during this journey. I cherish the wonderful experiences we
have had together, and I am so grateful for our friendship. I look forward to growing
together with you for many years to come. Thank you.

To Mom, Dad, Becki, Noel White, Pastor Lisa Arrington, Rachel Nelson, Matt
Ferry, the Ferry family, the Humphrey family, the Lee family, the Nelson family, the
White family, and my extended family: I am forever grateful for your steadfast love
and support not just during the PhD, but for all the years of my life. You are all
so immeasurably important and special to me in ways that I cannot fully express in
words. I love you. Thank you.

Lastly, to the source of my faith, God: Thank you for never leaving or forsaking
me, for exemplifying perfect love, for leading me to joy (Isaiah 55:12). You have
lifted me from the depths of my grief through a promise that all things work for good
(Romans 8:28). Thank you. Soli Deo Gloria.

ix

Contents

Contents x

List of Tables xvii

List of Figures xxii

I Introduction 1

1 Introduction 2
1.1 Motivation . 2

1.1.1 Two Realities of Deep Learning 2
1.1.2 In an Open World, There Are No Unstructured Environments 3
1.1.3 Causality: The Structure of Data 3
1.1.4 From Correlational Learning to Causal Learning 5

1.2 Thesis Statement: Learning and Leveraging Structure within the Open
World . 6

1.3 Thesis Research Questions . 6
1.4 Thesis Contributions . 8
1.5 Thesis Conclusions and Takeaways 9
1.6 Thesis Outline . 10
1.7 A Note on Terminology . 11

II Correlation-Based Transfer Learning for Perception 13

2 DREAM: Camera-to-Robot Pose Estimation from a Single Image
through Synthetic Sim-to-Real Transfer 14
2.1 Summary . 15
2.2 Introduction . 15
2.3 Approach . 17

2.3.1 Network Architecture . 18
2.3.2 Pose Estimation . 18

x

2.3.3 Data Generation . 18
2.4 Experimental Results . 19

2.4.1 Datasets . 19
2.4.2 Metrics . 21
2.4.3 Training and Simulation Experiments 21
2.4.4 Real-world Experiments . 22
2.4.5 Comparison with Hand-Eye Calibration 24
2.4.6 Measuring Workspace Accuracy 27

2.5 Previous Work . 27
2.6 Conclusion . 29
2.7 Acknowledgments . 29

3 FormNet: Visual Identification of Articulated Objects from a Single
Image Observation through Synthetic Sim-to-Real Transfer 30
3.1 Summary . 31
3.2 Introduction . 31
3.3 Related Work . 33
3.4 Method . 35

3.4.1 Overview . 35
3.4.2 Dataset of Articulated Objects 36
3.4.3 Dataset of Scene Images with Articulated Objects 37
3.4.4 Network Architecture . 38
3.4.5 Articulation Prediction from Motion Residual Flows 39

3.5 Experiments . 40
3.5.1 Network Training . 40
3.5.2 Network Accuracy (All Object Categories) 40
3.5.3 Generalization to Novel Object Categories 42
3.5.4 Generalization from Training on One Category 45
3.5.5 Real-world Experiments . 46

3.6 Conclusion . 46
3.7 Acknowledgments . 46

III Structural Sim-to-Real Transfer 47

4 CREST: Causal Feature Selection for Policies 48
4.1 Summary . 49
4.2 Introduction . 50
4.3 Related Works . 51
4.4 Problem Formulation . 52
4.5 Causal Structure Learning . 53

4.5.1 Internal Model for Causal Reasoning 53
4.5.2 Causal Reasoning to Determine Relevant Contexts 53

xi

4.5.3 CREST Evaluation . 54
4.6 Policy Learning and Transfer . 55

4.6.1 Policy Architectures . 55
4.6.2 Network Training and Transfer 56

4.7 Experimental Results . 57
4.7.1 Block Stacking . 58
4.7.2 Crate Opening . 59

4.8 Conclusion . 64
4.9 Acknowledgments . 64

5 SCALE: Causal Learning of Skills 65
5.1 Summary . 65
5.2 Introduction . 66
5.3 Related Work . 67
5.4 Preliminaries . 68
5.5 Skill Formulation . 69

5.5.1 Regional Compressed Option 69
5.5.2 Data Generating Region . 69

5.6 Skill Discovery through Causal Reasoning in Simulation 70
5.6.1 Batch Data Generation . 70
5.6.2 Skill Training . 71

5.7 Experimental Results . 72
5.7.1 Block Stacking . 73
5.7.2 Sensorless Peg-in-Hole Insertion 74

5.8 Conclusion . 76
5.9 Acknowledgments . 77

IV Causality and Dynamical Systems 78

6 Learning By Doing: Controlling a Dynamical System using Causal-
ity, Control, and Reinforcement Learning 79
6.1 Summary . 80
6.2 Introduction . 80
6.3 Causality, Control, and Reinforcement Learning 81
6.4 Track CHEM: Optimally controlling a chemical reaction 83
6.5 Track ROBO: Controlling a robotic arm in a dynamical environment 87
6.6 Results and lessons learned . 90
6.7 Acknowledgments . 91

xii

7 Hybrid Causal World Models: Integrating Latent and Semantic In-
formation 92
7.1 Summary . 94
7.2 Introduction . 94
7.3 Related Works . 96
7.4 Preliminaries . 97

7.4.1 World Models . 97
7.4.2 Causal World Models: Variational Causal Dynamics 97

7.5 Hybridization of World Models . 98
7.5.1 Semantic World Model . 99
7.5.2 Synchronizing the Latent and Semantic Spaces 101
7.5.3 Causal Discovery of Shared Latent/Semantic Dimensions . . . 101
7.5.4 Training the Hybrid World Model 102

7.6 Experiments . 103
7.6.1 Multi-Body Dynamics Domain 103
7.6.2 Experimental Setup . 103
7.6.3 Experimental Results . 105

7.7 Conclusion . 110
7.8 Acknowledgments . 110

V Curriculum Learning 111

8 Automated Curriculum Learning: Humans and Agents 112
8.1 Summary . 113
8.2 Introduction . 113
8.3 Automated Curriculum Learning in Children 115

8.3.1 Methods . 116
8.3.2 Automated Curriculum Learning Results 116

8.4 Hand-Designed Curriculum Learning in Reinforcement Learning Agents 117
8.4.1 Formulation . 117
8.4.2 Methods . 118
8.4.3 Baseline Curriculum Learning Results 118
8.4.4 Curriculum Learning with Auxiliary Rewards 119
8.4.5 Additional Baselines and Comparisons 120

8.5 General Discussion . 120

9 CURATE: Learning to Train Reinforcement Learning Policies through
Curriculum Learning 122
9.1 Summary . 123
9.2 Introduction . 123
9.3 Preliminaries . 126

9.3.1 Learning with UPOMDPs . 126

xiii

9.3.2 Curriculum Learning within UPOMDPs 126
9.4 Methodology . 127

9.4.1 Training RL Policies with Curriculum Learning 127
9.4.2 Updating the Curriculum with Sample-Based Evaluations . . . 128
9.4.3 Description of Hyperparameters 130

9.5 Experimental Results . 133
9.5.1 Experimental Procedure . 133
9.5.2 MiniGrid Corridor Navigation: MultiRoom-N4-Random 136

9.6 Related Works . 140
9.7 Conclusion . 141

9.7.1 Extensions . 141
9.8 Acknowledgments . 142

VI Conclusion 143

10 Conclusion 144
10.1 Discussion . 144

10.1.1 The Generality of Causality 144
10.1.2 The Power of Causal Interventions and Counterfactuals 145
10.1.3 Causal Robot Learning: A Timely Need 145

10.2 Future Work . 145
10.2.1 Active Causal Learning of Robot Manipulation Skills through

Interactive Perception . 146
10.2.2 TRACE: Structural Task Transfer 146
10.2.3 RVS: Causal Visual Servoing for Robust Image-Based Control 148
10.2.4 Causal Discovery and Implicit Causal Models 148
10.2.5 Causality and Human-Robot Interaction 148
10.2.6 Unifying Foundation Models with Causality 149
10.2.7 CASIE: The Lifelong, Causal Robot Learning System 149

10.3 Limitations and Next Steps . 150
10.4 Towards Causal Embodied Intelligence 150

VII Appendices 152

A Appendix for FormNet 153
A.1 Algorithm for Computing Articulation from Motion Residual Flow . . 153
A.2 Summary of Public Datasets of Meshes 154
A.3 Extension of FormNet Performance on Object Categories 155

xiv

B Appendix for CREST 156
B.1 Summary of CREST . 156
B.2 CREST Analysis on Math Environment 156
B.3 Task Representation: Block Stacking 157
B.4 Sim-to-Real Block Stacking Experiment 160
B.5 Task Representation: Crate Opening 162
B.6 Crate Opening Distribution Shift in Irrelevant Contexts 164

C Appendix for SCALE 165
C.1 SCALE and Appendices Overview . 165
C.2 Related Work for Intuitive Physics 165
C.3 Simulation as a Causal Reasoning Engine 168
C.4 Nomenclature . 168
C.5 SCALE Algorithm . 169
C.6 SCALE and Higher-Dimensional Context Spaces 169
C.7 Block Stacking Intuitive Example . 172
C.8 Additional Details for Block Stacking Experiment 177
C.9 Sim-to-Real Block Stacking Experiment 179

C.9.1 Experimental Setup . 179
C.9.2 Experimental Results . 181

C.10 Skill Library Use in a Downstream Task: Stacking a Block Tower . . 182
C.11 Additional Details for Sensorless Peg-in-Hole Insertion Experiment . . 184
C.12 Sensorless Peg-in-Hole Insertion: Domain Shift Experiment 186
C.13 A Primer on Causality . 188

D Appendix for Learning By Doing 191
D.1 More Details on Track CHEM . 191

D.1.1 CHEM results . 193
D.2 More Details on Track ROBO . 193

D.2.1 Rotational robots . 195
D.2.2 Prismatic robot . 198
D.2.3 ROBO results . 199

E Appendix for ACL 200
E.1 Related Works . 200
E.2 Procgen Environments . 201

E.2.1 Our Adapted Procgen Environments 202
E.3 Automated Curriculum Learning in Children 204

E.3.1 Procgen Difficulty Levels . 204
E.3.2 Experimental Procedure . 204
E.3.3 Results . 206

E.4 Hand-Designed Curriculum Learning in Reinforcement Learning Agents 206
E.4.1 Additional Method Details . 206

xv

E.4.2 Results . 209
E.4.3 Random Level Baseline . 209

Bibliography 214

xvi

List of Tables

2.1 Results at different thresholds of the same network (DREAM-vgg-F)
on various datasets (and camera sensors). All but the last row are
taken from Figs. 2.3 and 2.4. 24

2.2 Euclidean error between the robot’s actual reached position and the
commanded position, using the camera pose estimated by each of the
three methods. 27

3.1 Dataset Statistics. Objects shows the number of object models. Parts
shows the total number of distinct object parts. Type lists the type
of articulations that exist in that category, where R = revolute and
P = prismatic. Dishw. stands for Dishwasher, and Cab. stands for
Cabinet. 36

3.2 Accuracy by Category on Test Set. B-CA refers to a classification-only
baseline method where the output head of the network is performing
articulation and connectedness classification directly instead of regress-
ing to motion residual flows. All numbers are shown in percentage. . 42

3.3 Performance on Novel Object Categories. 42
3.4 Performance of Training on One Category. Overall articulation accu-

racies when trained on one category (each row) and tested on other
categories (each column). 45

4.1 CREST evaluation for a toy environment on an aggregate (“Agg.”)
and mapping-specific (“Map.”) basis. Accuracy (“Acc.”) is whether all
relevant states were detected. False positives (“F.P.”) are states that
were incorrect detected as relevant. 100 trials are used. 55

4.2 Networks used for the block stacking task. 59
4.3 Transfer results for a distribution shift in 30 context variables (color)

that are irrelevant for the block stacking policy. 61

xvii

4.4 Sim-to-real policy evaluation results for block stacking with NB = 10.
The reward threshold for zero-shot transfer is -0.025 (about half of
the block width). We also note how often the block was successfully
stacked. “GT” is a ground truth policy to illustrate the degree of
uncertainty present within the robot perception and control system.
Each policy was evaluated 10 times. 61

4.5 Networks used for the crate opening task. 62
4.6 Pretraining and transfer results for crate opening policies compared to

training directly in target (without transfer). 63
4.7 Fine-tuning for crate opening policies with increasing crate stiffness

and correspondingly greater transition model difference between the
internal model and target task. 63

5.1 Skills Kblocks that were discovered for the block stacking task. A and
D are the variables used for the skill’s policy and DGR, respectively.
Data is the quantity of data used for each skill (from a batch dataset of
585 samples, 340 samples were used to train skills). Tsk. Sv. %, shown
for both scale-lin and scale-nonlin, is the rate of task solves over the
entire context space using only that skill. 74

5.2 Task evaluation results for using the skill library Kblocks for the block
stacking task. Ctrl. is the approach control (skills or one monolithic
policy). Fn. Cl. is the approach’s function class. Linear approaches
use Bayesian ridge regression, whereas nonlinear methods consist of a
multilayer perceptron with a 16x16x16 architecture using ReLU acti-
vations. Task Solve % is the rate of task solves over the entire context
space using the approach. Methods within ±2% (the stochasticity of
the simulator) of the best approach are bold. |A| is the quantity of
input variables used for the approach’s policy. Data is the amount of
training data used for the approach. A ground truth policy is also
shown, using all context variables and additional domain knowledge. 75

5.3 Skills Kpeg that were discovered for the peg-in-hole insertion task.
Columns are the same as in Tab. 5.1, except Data represents which
168 samples were used to train skills (from a batch dataset of 210
samples). 76

5.4 Task evaluation results for using the skill library Kpeg for peg insertion
(columns in Tab. 5.2). 76

8.1 Definitions of the terms we used in this paper 115

xviii

9.1 Statistics for sample efficiency for MultiRoom-N4-Random. C. Type
stands for curriculum type. 10 trials are evaluated for each approach.
Mean Frames are shown with ± one standard deviation. Median
Frames are shown with ± one interquartile range (IQR). Trials that
do not solve the task still count towards summary statistics and are
assessed the maximum allowable frames (50 million). 137

A.1 This table summarizes the different public datasets of meshes on their
number of object categories, number of object models, and whether it
contains articulation information between object parts. Column info
represents articulation information (y/n). 154

B.1 Transfer results for a distribution shift in 33 context variables that
are irrelevant for the crate opening policy. Variables are 3-tuple RGB
colors of the crate and 10 blocks in the scene. Light crate stiffness. . . 164

C.1 Table of nomenclature. 169
C.2 Skills KHH that were discovered for the Height-Height experiment. A

and D are the variables used for the skill’s policy and DGR, respec-
tively. Data is the quantity of data used for each skill (from a batch
dataset of 581 samples, 569 samples were used to train skills). These
samples are used to train a linear policy (Bayesian ridge regression)
using the features from variables in A. Task Solve % is the rate of task
solves over the entire context space using only that skill. 174

C.3 Task evaluation results for using the skill library KHH for the block
stacking task. Ctrl. is the approach control (skills or one monolithic
policy). Fn. Cl. is the approach’s function class. Linear approaches
use Bayesian ridge regression. Task Solve % is the rate of task solves
over the entire context space using the approach. Methods within ±2%
(the stochasticity of the simulator) of the best approach are bold. |A|
is the quantity of input variables used for the approach’s policy. Data
is the amount of training data used for the approach. A ground truth
policy is also shown, using all context variables and additional domain
knowledge. 177

xix

C.4 Task evaluation results for using the skill library Kblocks for the block
stacking task for a variety of policy functions and training data abla-
tions. This table expands upon Tab. 5.2. Ctrl. is the approach con-
trol (skills or one monolithic policy). Fn. Cl. is the approach’s func-
tion class. P. Fn. is the policy function. Task Solve % is the rate of
task solves over the entire context space using the approach. Methods
within ±2% (the stochasticity of the simulator) of the best approach
are bold. |A| is the quantity of input variables used for the approach’s
policy. Data is the amount of training data used for the approach. A
ground truth policy is also shown, using all context variables and addi-
tional domain knowledge. The abbreviation “mp” stands for monopolicy.180

C.5 Sim-to-real evaluation results for using the skill library Kblocks for a
real block stacking domain. Table columns are as described in Tab. 5.2.
Task Solve % is the rate of successful block stacks. Error is the mean
error (±1 standard deviation) in meters between the block position
when the block is ungrasped and the goal position determined at the
beginning of the trial. 182

C.6 Results for re-using learned behaviors in a representative downstream
task: stacking a block tower. The task solve percentage is shown for
stacking a tower of at least NB blocks tall. The sequence is executed
in one attempt, so a fully stacked tower (NB = 5) requires 4 successful
block stacking attempts. Methods within ±2% (the stochasticity of
the simulator) of the best approach at each step are bold. For SCALE
approaches, the skill selection rate at each step (not cumulative) is also
shown. The abbreviation “mp” stands for monopolicy. 185

C.7 Task evaluation results for using the skill library Kpeg for peg insertion
for a variety of policy functions and training data ablations. This table
expands upon Tab. 5.4. Ctrl. is the approach control (skills or one
monolithic policy). Fn. Cl. is the approach’s function class. P. Fn. is
the policy function. Task Solve % is the rate of task solves over the
entire context space using the approach. Methods within ±2% (the
stochasticity of the simulator) of the best approach are bold. |A| is
the quantity of input variables used for the approach’s policy. Data is
the amount of training data used for the approach. The abbreviation
“mp” stands for monopolicy. 187

C.8 Training and test distributions of the domain shift experiment in the
sensorless peg-in-hole domain. The relative position of the center of
each of the 4 walls is uniformly sampled from the given (min,max)
range. The ranges used to generate test tasks are more than double the
ranges used to generate training tasks in the domain shift experiment.
All values are in meters. 188

xx

C.9 Task evaluation results under domain shift for sensorless peg-in-hole
insertion. We evaluate only linear policies as nonlinear policies perform
worse in this domain. Table columns are as described in Tab. 5.4. . . 188

D.1 Overview of the 24 robot systems used in Track ROBO. Here, θ∗ refers
to the robot specification (link lengths and masses, moments of inertia,
friction coefficients, and locations of link center of masses) and A∗ ∈
Rq×p parametrizes the linear interface function; values are chosen at
random, while the above table indicates which properties where shared
across which robot systems. We refer to Appendix D.2.1 for details on
the 2- and 3-link rotational robots’ dynamics and to Appendix D.2.2
for details on the 2-link prismatic robots’ dynamics. 194

E.1 Description of levels used in selected Procgen games of Leaper, Climber,
and Heist. These games were chosen to vary certain aspects of each
game based on a particular axis. The levels increase in difficulty from
Level 1 through Level 4. The goal level to complete is Level 3; Level
4 is the most challenging level, which is not necessarily needed to be
solved to complete Level 3. 203

E.2 We provide the goals for each of the Procgen games. Participants were
never told the rules of the game and had to learn how to win the game
through their own learning. 204

xxi

List of Figures

1.1 The vision of this thesis is to develop learning algorithms that empower
robots to perform useful automation work to improve human quality-
of-life when deployed into the real world. Such real-world settings
include (in column-wise order): residential kitchens and living rooms,
assisted living centers, restaurants, community centers, and libraries,
to name a few. We specifically refer to these settings as open-world
environments. In the open world, environments are characterized by
a rich diversity of objects, a sparsity of relevant objects for complet-
ing any particular task, and distribution shifts owing to yet-unseen
settings, mechanisms, and long-tailed phenomena. These distinguish-
ing factors stymie modern correlation-based deep learning. Yet, there
exists common structure across these environments: books along the
same row all sit at the same height of a shelf; chairs are stationary
until they are pushed in; water flows from a kitchen faucet when the
handle is rotated; prismatic cabinet drawers are constrained to move
linearly along one axis; light is projected one-way into a camera to
generate an image, not vice versa. Indeed, the open world is not “un-
structured,” as commonly described, but arises because of structure —
from underlying causal processes that generate observed data for the
robot to use. Therefore, our learning algorithms would benefit from
learning and leveraging this structure towards realizing our vision of
open-world robots. (Images licensed from Shutterstock.) 7

2.1 The DREAM framework. A deep encoder-decoder neural network
takes as input an RGB image of the robot from an externally-mounted
camera, and it outputs n belief maps (one per keypoint). The 2D peak
of each belief map is then extracted and used by PnP, along with the
forward kinematics and camera intrinsics, to estimate the camera-to-
robot pose, R

CT . 17
2.2 Synthetic training images for the three robot models: Franka Panda

(top), Kuka LBR with Allegro hand (middle), and Rethink Baxter
(bottom). 20

xxii

2.3 PCK (left) and ADD (right) results for three different variants of our
DREAM network on the two simulated datasets. The numbers in
parentheses are the area under the curve (AUC). 22

2.4 PCK (top) and ADD (bottom) results on the real Panda-3Cam dataset. 23
2.5 Keypoint belief maps (red dots indicate peaks) detected by DREAM

in RGB images of three different robots (taken by three different cam-
eras). From left to right: Franka Emika Panda (Intel RealSense D415),
Kuka LBR iiwa (Logitech C920 webcam), and Rethink Baxter (cell
phone camera). 25

2.6 DREAM vs. HEC, measured by ADD as a function of the number of
image frames used for calibration. Shown are the mean (solid line),
median (dashed line), and min/max (shaded area), computed over dif-
ferent image combinations. DREAM requires only a single image frame
but achieves greater accuracy with more images. 26

3.1 Predicting articulation mechanisms using FormNet. Given the inputs
on the left (RGB-D image and segmentation masks of a pair of object
parts), a neural network predicts the articulation type (revolute, pris-
matic, fixed, or unconnected) and appropriate articulation parameters
(e.g., location and direction of revolute axis). The network is trained
on synthetic data and infers articulation parameters via predicting mo-
tion residual flows. 32

3.2 Neural network architecture for FormNet. It takes as input the RGB,
depth, and segmentation images of two queried object parts. Conv
means convolution layers, E means intermediate embedding, T-conv
means transposed convolution layers, and FC means fully-connected
layers. The network produces two outputs: motion residual flow and
binary part connectedness. If the two queried parts are predicted to
be connected, plane fitting via RANSAC is used to post-process the
motion residual flows to estimate the articulation mechanism’s type
and parameters. 35

3.3 Visualizations of estimated pre-motion and post-motion planes. In
both images, pre-motion planes are outlined in bright green on the
original object part, while the post-motion planes are visualized with a
blue infill. In the left image, the red annotations denote the estimated
axis of the predicted revolute joint. In the right image, the red arrow
denote the direction of the prismatic joint. 39

xxiii

3.4 Visualization of network inputs and outputs for the Door and Cabi-
net categories on synthetic data (top two rows) and real-world images
(bottom two rows). Additional categories are visualized in supplemen-
tary materials. PT means predicted articulation type, and GT ground
truth type. Articulation is either revolute (R), prismatic (P), fixed (F),
or unconnected (U). The network takes in a stack observation of RGB
image, depth image, and two part segmentation masks. The green seg-
mentation mask is the anchor object part and the yellow segmentation
mask is the candidate object part. The direction of the motion residual
flow is visualized by color gradients, where a prismatic articulation is
a single solid color, while a revolute articulation is a gradient towards
the axis of rotation. 41

3.5 Predicted articulation parameter accuracy for revolute axes (top) and
prismatic axes (bottom) on test set for all object categories. The rev-
olute axis distance error is the average distance between the points on
the ground truth axis to their projections on the predicted axis. The
revolute and prismatic angle errors are the angle between the ground
truth and the predicted axes. All plots show the percentage of data
points that have error below a given threshold. 43

3.6 Misleading examples of a window (left) and two doors (right). The
shapes of the door panel and window frames, and handles for the win-
dow and first door (brown) are similar. 44

3.7 Misleading examples of a prismatic cabinet (left) vs other objects (pris-
matic window, revolute dishwasher, refrigerator). The geometry of the
cabinet drawer is different from that of the window, but they both have
prismatic joints. By contrast, the handle of the drawer has a similar
shape to those of the dishwasher and the refrigerator, even though the
latter have revolute joints. 44

4.1 A visualization of the different policy types. CREST is used to con-
struct both the Reduced MLP (RMLP) and Partitioned MLP (PMLP).
The baseline MLP is also shown for comparison. The relevant states
are also used for the critic portion of the networks (only the actor por-
tion is shown). The notation used is [w1,...,wd], specifying the hidden
units and depth of both the actor and critic. 56

xxiv

4.2 Transfer experiments for block stacking and crate opening manipula-
tion tasks. Policies are pretrained in the internal model ((a),(d)) and
then transferred to the target domain ((b),(c),(e)). Target domains
consist of replications of real systems using a Franka Panda robot,
along with a real system for block stacking. Both tasks have distractor
objects. For block stacking, only two blocks are necessary to generalize
the policy. For crate opening, blocks represent distractor objects (e.g.,
if the crate were for a chest containing toys). 57

4.3 Sample complexity of training a solved block stacking policy based on
context dimension for (a) internal model and (b) target setting. c)
Zero-shot transfer percentage, wherein the transferred policy needs no
further target training to solve the task. 60

5.1 The figure shows an overview of the proposed framework applied to a
block stacking task. The robot is given a context space, control policy,
task simulator, and task reward. The robot samples a set of contexts
to create task instances, which it subsequently solves for that instance.
The robot then applies interventions on the contexts to identify skill-
relevant parameters. Contexts with the same set of policy-relevant
parameters come from the same causal model and are hence combined
to form data generation regions. Here, we have two causal models: C1
with relevant variables from the yellow, blue, and red blocks and DGR
D1; and C2 with relevant variables from the yellow and blue blocks
and DGR D2. Each region is then used to learn a separate skill policy
with the corresponding set of policy-relevant parameters. For each
skill, we finally learn a set of preconditions within the context space
to determine where the skill can ultimately be applied. The pairs of
policies and preconditions are then combined to create a skill library
for completing the given task. 70

5.2 SCALE discovers skills for the Franka Emika Panda robot using causal
learning in simulation for two manipulation tasks: (a) block stacking
and (b) peg-in-hole insertion. In addition to skill learning experiments,
we also show how SCALE can yield skills (c) for sim-to-real transfer
(App. C.9); (d) for generalization in downstream tasks, such as stacking
a block tower (App. C.10); and (e) for robustness to task domain shifts
(App. C.12). 72

6.1 Graphical representation of the chemical reaction in Track CHEM. . 85

xxv

6.2 (Left) Rotational 2-link robot, the trail of previous positions of the
robot tip (orange line), and the target position (green star). (Right)
Prismatic 2-link robot and a target trajectory (green dotted line) to a
target position (green star). The gray area corresponds to the reachable
workspace of the robots. The black dotted lines indicate the initial
position of the robots. 88

7.1 A world model typically consists of the following components: an en-
coder that takes as input an observation o and learns a latent state
space embedding zt; a decoder that, from a latent state zt, yields a
reconstructed observation õ; and a transition model T that learns the
forward dynamics of the system (in the latent space) from the latent
state zt and action a in order to predict the next latent state zt+1. . 98

7.2 World models can become causal world models depending on their tran-
sition models and latent space representation. (a) A standard transi-
tion model is typically implemented as a recurrent neural network that
takes a fully connected input of zt and at and yields a fully connected
output of zt+1. (b) In VCD [209], a separate transition model exists
for each dimension of the latent state z, and the inputs of each tran-
sition model are the parents according to a learned causal graph. In
other words, the transition model for z1 (Tz1) would predict zt+1

1 from
the parents of z1 (PAz1). Moreover, VCD learns environment-specific
models (when a particular environment has an intervention) along with
an observational model when there are no interventions. Shown is the
case where there 4 environments total, one without interventions and
three with environment-specific interventions. 99

7.3 The hybrid world model comprises a latent world model and a semantic
world model, with machinery to synchronize these two halves. The
latent world model is as described in Fig. 7.1. The semantic world
model uses the standard world model architecture to model specific,
semantically meaningful dimensions within the semantic state space
st. The semantic encoder, semantic decoder, and semantic transition
model operate similarly to a (latent) world model. Synchronicity of the
two halves for predicting the next semantic state st+1 is provided by
aligning the semantic and latent halves through the semantic prediction
model fz→s and the semantic blending module Bs. 100

xxvi

7.4 The multi-particle dynamics domain. The domain consists of four par-
ticles that interact according to various forces. The domain consists of
either an observational setting with no interventions (a), or 18 inter-
ventional settings where various interventions are applied to the obser-
vational setting. The environment action a applies a force to Particle
4. (a) In the observational setting (no interventions), Particles 1 and
2 are connected by a spring, as are Particles 2 and 3. Particles 1 and
4 are pulled towards each other through an attraction force, whereas
Particles 3 and 4 are repelled from each other through a repulsion force.
(b) In this example interventional setting, the spring connecting Par-
ticles 1 and 2 has been removed. Besides this intervention, all other
environment mechanics are as defined in the observational setting. (Il-
lustration is adapted from [209].) . 104

7.5 Hybrid world model performance when the latent and semantic halves
operate independently in terms of (a) latent reconstruction L2 error,
(b) semantic reconstruction L2 error, and (c) latent/semantic L2 dis-
agreement. Results are aggregated across the test dataset and shown
for each timestep. Shading indicates the interquartile range. At the
100th timestep, observations are no longer used by the hybrid world
models, assessing their capability for long-term predictions. 106

7.6 A representative time history of the semantic state s for one test tra-
jectory, with the ground truth observation also shown. The latent and
semantic sides of each hybrid world model operate independently. . . 107

7.7 Hybrid world model performance when latent-to-semantic blending oc-
curs in terms of (a) latent reconstruction L2 error, (b) semantic recon-
struction L2 error, and (c) latent/semantic L2 disagreement. Results
are aggregated across the test dataset and shown for each timestep.
Shading indicates the interquartile range. At the 100th timestep, ob-
servations are no longer used by the hybrid world models, assessing
their capability for long-term predictions. 108

7.8 A representative time history of the semantic state s for one test tra-
jectory, with the ground truth observation also shown. Each hybrid
world model uses latent-to-semantic blending. 109

xxvii

9.1 The CURATE algorithm learns to train a RL agent using an automatic
curriculum provided by a curriculum agent. The curriculum agent
manipulates the RL agent’s training data by altering the difficulty
of the scene. The RL agent’s current capability is a measure of its
performance in relatively more difficult scenes. In this visualization,
the scenes offered by CURATE are initially too difficult, leading to
a simplification of scenes. Once the RL agent begins solving these
simple scenes, the curriculum agent dynamically adjusts the training
data accordingly to harder scenes. Finally, the agent solves the target
scene distribution at the end, indicating that training may conclude.
Scenes are from the MiniGrid MultiRoom-N4-Random domain (c.f.,
Fig. 9.2). 125

9.2 The MultiRoom-N4-Random domain [278]. This domain contains ran-
domly generated corridors consisting of (a) 1 room, (b) 2 rooms, (c)
3 rooms, and (a) 4 rooms. To solve a scene, the agent must navigate
from the first room to the goal in the last room. The size of each
room is determined by randomly sampling two dimensions of length 4
– 7. The corridor is generated within a 13 by 13 grid. Navigating to
an adjacent room requires the agent to open and proceed through the
obstructing door. The target scenes for curriculum learning are the
distribution of 4 rooms (d). 133

9.3 The ClutteredRoom-N60 domain [306]. This domain consists of a 15
by 15 room that contains a randomly selected number of blocks (from
0 to 60). Shown are representatives scenes consisting of (a) 0 blocks,
(b) 30 blocks, and (c) 60 blocks. To solve a scene, the agent must
navigate from the starting position to the goal. The target scenes for
curriculum learning will be the distribution of rooms with 60 blocks (c). 134

9.4 The Procgen domain [243], which consists of procedurally generated
games. (a) In Leaper, the agent must navigate from the bottom of the
screen across road lanes and water lanes to the finish line. Curriculum
learning will consist of varying the number of road lanes and water
lanes. (b) In Climber, the agent must collect all the coins in the scene
by jumping on platforms while avoiding enemies. Curriculum learning
will consist of varying the number of platforms and number of enemies.
(c) In Chaser, the agent must collect all of the orbs within the maze
while avoiding enemies. If the agent consumes a large orb, the enemies
can be defeated for a short period of time. Curriculum learning will
consist of varying the maze size and the number of enemies. 134

9.5 The IndustReal domain [299]. The robot must insert a peg into a
socket, which requires highly precise control. 135

xxviii

9.6 Median statistics for sample efficiency for MultiRoom-N4-Random.
The approach success rate is displayed beneath each approach’s name.
D. Rand stands for Domain Randomization. Hand Curr. stands for
Hand Curriculum. All trials for Target yielded the maximum allow-
able frames (50 million) with a 0% success rate. 137

9.7 Representative curriculum learning time histories for each approach.
Each time history shows the trial that is closest to the median perfor-
mance of all 10 trials for each approach. The top figure shows the time
history of the return, shown for the training environments and the tar-
get task. The bottom figure shows the time history of the curriculum,
with time discretization of 10 PPO updates to better show long-term
trends. 138

10.1 Proposed overview of TRACE. The robot starts with a structural task
representation (Toven) for solving an oven opening task, shown in (a).
The robot is now asked to complete a different, but related, task —
opening a cabinet. As shown in (b), initially, the structural task repre-
sentation of the cabinet task, Tcab, is not known. To learn it, the robot
collects in-scene data, Xcab, and then forms a dataset D that also in-
cludes Xoven, data generated by solving the oven opening task (either
real-world data or synthetic data generated by an internal model). Us-
ing this dataset D, structure learning discovers a structural model that
relates the solution for opening a cabinet to the solution for opening an
oven. This model is ∆T oven

cab , where the notation expresses that this is a
relationship defined between these two task representations. The task
representation is then recovered: Tcab := Toven⊕∆T oven

cab . The operator
⊕ represents the composition of these two task representations, anal-
ogous to how SE(3) poses can be defined with respect to composition
of other SE(3) poses. 147

A.1 Extension of Figure 3.4 with all object categories. 155

B.1 Diagram of the block stacking task. The world coordinate frame {W}
is defined at the base link of the robot. Each block coordinate frame
{B} is defined at the block’s centroid. 158

B.2 Block state estimation used for the sim-to-real experiments using RGB-
D perception. The perception algorithm takes as input a colored point
cloud, and outputs a position, rotation, and color for 10 blocks. The
red point in each block represents the block centroid, and the dashed
lines indicate the block length and width (known a priori). The best-
fit position and rotation angle for each point cloud cluster yields a pose
estimate for each block. 161

xxix

B.3 Diagram of the crate opening task. The world coordinate frame {W}
(not shown) is defined at the base link of the robot, similar to the block
stacking task (Fig. B.1). The z-axis of the crate coordinate frame {C}
is coincident with the crate hinge. There are 10 distractor blocks, each
with coordinate frame {B}. 163

C.1 In SCALE, the robot discovers skills in simulation using causal learn-
ing. (a) The simulation is used to solve task instances and conduct
interventions to determine causally relevant context variables. (b) Sim-
ulation data are used to train a library of skills, (c) which are suitable
for sim-to-real transfer learning. (d) Each skill that is learned is pa-
rameterized by the relevant variables selected in simulation. Here, red
context variables are unnecessary for the skill policy and can be safely
ignored. The boundary encircling the policy represents the skill DGR
and precondition, which are also learned. 166

C.2 Illustrations of the scene structural causal model used in the simulator
W . (a) From context space C and robot interventions I, the scene SCM
CS generates a context vector c that represents a particular scene that
defines objects and their properties. (b) In this block example, CS

is defined using scene variables Ψ := C ∪ zb and context variables
C := {xb, hb, hπ}, where xb is block x-position, hb is block height, hπ

is table height upon which the block rests, and zb := 1
2hb + hπ is block

z-position. Normally, values of C are sampled from context space C,
but the robot performs an intervention I = {do(hb = 0.6)} to force
the value of hb to be 0.6. As a result, the dependent variable zb is
determined as 0.7 using this intervened value. Lastly, the scene is
constructed and represented as context vector c = [0.1, 0.6, 0.4]T. . . 167

C.3 The Height-Height experiment is an intuitive example for SCALE in the
block stacking domain. In this experiment, only two context variables
can vary: the height (z-dimension) of the obstructing block (ho) and
the height of the target block (ht). All others variables (e.g., features
of the source block) do not change throughout this experiment. . . . 172

xxx

C.4 SCALE results for the Height-Height experiment. Two skills were
found: Kfree (free block motion), stylized in blue with rectangular
markers, and Kobstr (obstructed block motion), stylized in orange with
diamond markers. (a) Learned data generating regions. Each data-
point is a result from CREST. Datapoints that are crossed out are
considered outliers and not used for training the policy for that skill.
(b–c) Preconditions for Kfree and Kobstr, respectively. The black line is
the decision boundary for the prediction of whether the task would or
would not be solved with that skill. Note that each skill’s DGR gener-
ally falls within the positive precondition boundary. Training and test
data for learning the preconditions are indicated by circle and thin
diamond markers, respectively. Datapoints that result in a different
prediction than observed are crossed out. (d) Task evaluation when
using the skill library {Kfree,Kobstr} to solve the task. The marker
and color of each datapoint indicate which skill was selected for com-
pleting the task based on the skill preconditions (i.e., the skill with
the highest probability of success). Note that the separation between
selecting Kfree and Kobstr is consistent with each skills’ underlying pre-
condition and DGR. Datapoints that were not solved by the chosen
skill are crossed out. 175

C.5 Policy parameters for the Height-Height experiment (shown as interpo-
lated across the 569 dataset samples to better visualize the gradients).
The units of the parameters are in meters. The parameters θ∆x (a)
and θ∆y (b) are generally constant as they are unaffected by the varia-
tion in context variables. The notable variations occur in θ∆zu (c) and
θ∆zd

(d). Specifically, the relationship changes whether the obstruct-
ing block is taller or shorter than the target block (above or below the
ht − ho = 0 line, respectively). 176

C.6 Skill selection for the scale-lin approach for the block stacking task.
Skill K1 is generally selected when h2 is short, whereas taller h2 values
perform better with K2 because h2 ⊆ A. Skill K3 is dominated by the
other two skills and is not selected. Datapoints that were not solved
are crossed out. 178

C.7 The block tower task. As previously, five blocks are initially available
to the robot. However, after each stack attempt, the task does not
reset. Instead, the block enumeration changes, so that the previous
source block becomes the new target block. This happens four times,
after which the task resets. The robot must complete each of the four
individual steps successfully, as failure in any step renders the entire
block tower task a failure. (a) Initial task scene. (b – d) Successful
block stacks for intermediate attempts. (e) A successfully stacked block
tower. 183

xxxi

D.1 Diagram of a 3-link rotational robotic arm. 195
D.2 Diagram of the 2-link prismatic robot arm. 198

E.1 An illustration of all Procgen environments 201
E.2 We selected 3 Procgen environments with 2 different axes each and

varied the level of difficulty across the axes within a game. (a)-(f)
show the goal levels for the selected Procgen games. 202

E.3 (a)-(d) Levels of difficulty for the game Leaper with the number of log
lanes as the difficulty axis. (e)-(f) Levels of difficulty for the Procgen
game Leaper with the number of car lanes as the difficulty axis. . . . 203

E.4 Procgen levels that were shown to participants. 205
E.5 Level adjustments based on children’s level competence on the current

level. The x-axis measures current level competence as a percentage;
the y-axis shows subsequent level adjustment frequency. A level change
of 1 implies choosing a game one level harder, while -1 means opting
for one level easier. This figure includes participants’ selections of
levels easier than or equivalent to the goal level. Overall, children
tend to remain on the current level when their level competence is less
than 75%. However, upon reaching a 76% completion rate, children
often transition to more challenging levels. Conversely, when children
demonstrate less than 50% level competence, they are more inclined to
return to easier levels. Thus, children adapt their learning trajectory
based on their performance. 207

E.6 Level adjustments based on children’s percentage of competence on the
current level with the inclusion of the extra challenging Level 4. . . . 207

E.7 Children made level adjustments based on competence within each
level. Note that only 2 participants selected Level 4 at any point of
the curriculum. 208

E.8 There was no significant correlation between children’s percentage of
advancement within their current level and children’s level adjustment.
Most of the time children were making -24% to 0% level advancement,
and yet many of them still opted to remain on the same level or select
a more challenging level . 208

E.9 Representative results for baseline curriculum learning with an RL
agent. (a) Time history of mean episode reward obtained by the agent
in both the training levels and the goal level. Training divergence from
catastrophic forgetting results in a regression of reward to zero, which
occurs around 5.18 million frames. (b) Time history of mean level
competence in the training tasks. (c) Time history of the training task
difficulty, as measured by number of water lanes. 210

xxxii

E.10 Level competence is a proxy for reward. (a) Prior to training diver-
gence, mean episode training reward is proportional to mean episode
level competence. After training divergence, this relationship no longer
holds: the reward remains at zero regardless of level competence. (b)
Before training divergence, the exact relationship of reward and level
competence depends on the task difficulty. The easiest task (1 water
lane, dark blue) has the greatest slope, since changes in level com-
petence yield relatively greater mean training reward. The slope de-
creases as difficulty increases because tasks have increasingly more ver-
tical lanes before the goal. 211

E.11 Representative results for curriculum learning with an RL agent while
training on level competence as an auxiliary reward. (a) Time history
of mean episode reward obtained by the agent in both the training
tasks and the target task. The intrisic reward used for training is
also shown, which is derived from the agent’s level competence. The
agent begins to generalize to the target task around 2.8 million frames,
eventually leading to solving the target task in 2.806 million frames.
(b) Time history of mean level competence in the training tasks. (c)
Time history of the training task difficulty, as measured by number of
water lanes. 212

E.12 Training using level competence as an intrinsic reward can recover from
catastrophic forgetting that would have otherwise led to training di-
vergence. The vertical red line marks the increase in task difficulty
from 4 to 4.0625 water lanes, precipitating (recoverable) catastrophic
forgetting. 213

xxxiii

I
Introduction

1

1 Introduction

1.1 Motivation

1.1.1 Two Realities of Deep Learning
Two decades into the third age of artificial intelligence (AI) [1], the rise of deep

learning and massive neural networks has yielded two seemingly disparate realities.
In one reality, deep learning has empowered massive accomplishments: solving chess,
shogi, and Go with AlphaZero [2]; predicting protein structures with AlphaFold [3];
generating human-like language with GPT-4 and other large language models [4, 5].
In the other reality, OpenAI recently disbanded its robotics team, citing a lack of
rich data.1 Technology companies are resetting consumer expectations for less au-
tonomous capabilities as the fully autonomous self-driving car remains yet out of
reach [6]. The best-selling household robot remains a vacuum cleaner, which only re-
cently ventured into (vision-based) machine learning [7]. Even manufacturing robots
in factories struggle with integrating deep learning to move beyond simple, precise,
and repetitive tasks [8, 9]. Even in these controlled environments, deep learning may
be insufficiently robust when faced with seemingly inconsequential environmental
changes such as lighting [8]. If a robot can learn dexterous manipulation for solving
a Rubik’s cube in the first reality [10], then why are there no robot butlers in the
second [11]?

1Announced by Wojciech Zaremba, co-founder of OpenAI, on the June 3, 2021 episode of the
Gradient Dissent: Conversations on AI podcast. Full quote: “I disbanded the robotics team... There
[are] actually plenty of domains that are very, very rich with data [for unsupervised and reinforcement
learning]. And ultimately, that was holding us back in the case of robotics. This decision was quite
hard for me... But from the perspective of what we want to achieve, which is to build [Artificial
General Intelligence], I think there was actually some components missing.” [Link]

2

https://www.youtube.com/watch?v=429QC4Yl-mA&t=1157s

Ch. 1 – Introduction

1.1.2 In an Open World, There Are No Unstructured Envi-
ronments

A common motivation of roboticists to pursue deep learning is the powerful capa-
bility of representation learning. With representation learning, the hope is to over-
come the challenges and costs of imbuing robots with human domain expertise via
non-learning approaches, as well as achieve better generalization for problems in en-
vironments where it is challenging, or even impossible, for a human to even character-
ize a suitable representation. Representative examples of such environments include
homes, restaurants, and public places, where there is high impact potential for useful
automation work to improve human quality-of-life. Such environments have com-
monly been described within the robotics community as “unstructured environments.”
However, this terminology belies the true nature of these environments. Moreover,
it forwards a notion that modern correlation-based, structure-agnostic deep learning
may eventually — with enough data — take hold in this domain, much like advances
elsewhere, in the first reality of deep learning.

This thesis forwards a different view: there are no unstructured environments.
Adopting terminology from the vision community [12–14], these settings are best
referred to as open-world environments.2 As argued in a recent CVPR workshop [14],
open-world settings pose tremendous challenges for learning approaches. Data follow
a long-tailed distribution. Due to real-world novelty and progression, distribution
shifts will occur, so test data may fall outside the training distribution. Even collecting
training data in the first place is costly and, if not done safely, poses risk to the
safety of nearby humans, the environment, and the robot itself. Indeed, in these
domains, robot learning faces fundamentally different challenges than other, data-rich
domains [15], leading to questions whether significant advancements can be achieved
by applying modern machine learning techniques alone. Perhaps this view provides
some explanation for the bifurcation of deep learning realities.

Yet, an explanation is not a path forward. If open-world environments are not
unstructured, what are they? In the unstructured view of the real world, observed
data arise through correlations. The key insight is that the observed data in these
environments arise not despite structure, but because of it.

1.1.3 Causality: The Structure of Data
We now formalize this view through structural causal models using the principles

of causality [16]. Our objective is to provide sufficient understanding of the language
of causal inference for this thesis. To this end, we provide the following primer,
which has been paraphrased from Peters, Janzing, and Schölkopf [17]. We include

2In some sense, the fact that this term arose from the vision community is unsurprising. Their
domain is even more challenging due to the limited ability of real-world interaction. Our work posits
to use just that — manipulation — to overcome these challenges.

3

Ch. 1 – Introduction

occasional examples of these principles specifically for the robotics domain, which we
hope aids both roboticists as well as causal inference experts who may be unfamiliar
with robots. There are many important aspects of causal inference that are not
covered in this primer, such as faithfulness, confounders, structural minimality, and
so forth. For more information, we refer the reader to foundational texts in this
area, such as those by Pearl [16, 18]; Spirtes, Glymour, and Scheines [19]; Imbens
and Rubin [20]; Pearl, Glymour, and Jewell [21]; Peters, Janzing, and Schölkopf [17];
and Pearl and Mackenzie [22]. Additionally, we note that the formalism of structural
causal models is but one framework out of others that may exist (e.g., potential
outcomes [23, 24]).

Primer: A Crash Course on Causality. A structural causal model (SCM)
C := (S, PN) is defined as a system of d structural assignments (also referred to
as “structural equations”):

Xj := fj(PAj, Nj), j = 1, ..., d

where X = (X1, ..., Xd) are random variables with distribution PX, the variables
PAj ⊆ {X1, ..., Xd} \ {Xj} are parent variables of Xj, fj is the function (or process)
that generates Xj based on PAj, and Nj are noise variables. Note that these variables
are not “noise” in the sense of probabilistic estimates of uncertainty, e.g., a sensor
reading having some zero-mean Gaussian distribution noise. Rather, they are exoge-
nous variables, whose value is required and imposed upon the system. Importantly,
we require the noise variables to all be independent. The joint distribution of the
noise variables is PN . The noise variables “drive” the system, as they are required to
be instantiated first, before the calculation of structural assignments. This collection
of structural assignments can be expressed as a directed acyclic graph (DAG), where
the variables are nodes of this graph. The use of ‘:=’ denotes these equations should
not generally be treated as an equality, but rather, an assignment of the output of
fj to Xj. It is for this reason that the terminology “structural assignments” may be
preferred in some examples, to indicate that this is not an equation in the algebraic
sense that can be rearranged.

From this SCM, a probability distribution of X is entailed. Such a distribution
is referred to as the observational distribution. Learning the SCM model from data
samples is known as causal discovery, structure learning, or structure discovery. In
general, assumptions may be required to uniquely recover the SCM from observational
data, depending on the problem. If the SCM can be uniquely determined, it is said to
be identifiable. Depending on the assumptions made, however, sometimes the SCM
can only be learned up to a certain DAG equivalence class.

With the current formulation, we can now introduce the concept of interventions
as replacing a structural assignment with a different one. The distribution entailed
from a SCM under intervention is called the interventional distribution. We usually

4

Ch. 1 – Introduction

refer to the intervention in notation with the do operator, e.g., do(X = 1). For ex-
ample, intervening on a robot tactile sensor by touching and applying force would
cause a corresponding measurement signal. However, intervening on the measure-
ment signal — say, setting it to some value — would not cause a force to press the
tactile sensor. In this way, conducting an intervention may provide a strong indicator
for the structure of the underlying SCM, even if it is not known completely. This
is the principle by which randomized control trials are conducted. Unsurprisingly,
interventions can also be viewed as types of experiments.

Interventions can facilitate greater learning and reasoning capabilities than from
observational data alone. Indeed, learning from observational data alone (without
considering that data are generated by some causal process) is essentially correlation-
based learning. However, interventions can elicit different patterns, depending on
the relationship between variables, which provides a stronger “learning signal.” Im-
portantly, these interventions allow the robot to break spurious correlations — data
patterns that are thought to be causal, but are not. Variables that are irrelevant to
the problem at hand will induce spurious correlations, and interventions can assist
the robot with determining which variables to use and which can be neglected.

Lastly, we introduce the concept of counterfactuals. Counterfactuals are generally
intuitive for humans to pose. For example, “Would the robot have detected the cereal
box correctly, if the lighting was dimmer?” is a counterfactual. Counterfactuals can
be best explained as an intervention upon the SCM where some variables have already
been observed (i.e., some of the noise variables have been instantiated). In the case
of the cereal box, it requires some understanding of the scene to know how the cereal
box would have behaved in this specific context (i.e., observational data), in order to
make the interventional query of how that would change due to the effect of another
variable (lighting).

1.1.4 From Correlational Learning to Causal Learning
In the causal perspective, data arise from data generating processes. Learning

with respect to not only the data, but the processes that generated the data, holds
promise for addressing many outstanding questions with most modern, correlation-
based machine learning, such as how best to achieve out-of-distribution generalization,
handle robustness to distribution shifts, and how to learn re-usable mechanisms that
can transfer to new problems [25]. As recently argued by Schölkopf et al.,

“...the majority of current successes of machine learning boil down to large
scale pattern recognition on suitably collected independent and identically
distributed (i.i.d.) data.” (Schölkopf et al. [25])

Schölkopf et al. posit a path forward for the machine learning community through
harnessing deep learning through the principles of graph-based causality and causal
inference, thereby introducing causal representation learning.

5

Ch. 1 – Introduction

In robot learning, such sentiments of the limitations of statistical learning have
also been forwarded by Roy et al. [15]: “conventional machine learning and artificial
intelligence do not adequately address the needs of an embodied agent [i.e., robot]
that learns.”

We believe these challenges can be addressed through causality. The advantages
of adopting the principles of causal inference have been witnessed to date in fields
such as biomedical sciences, economics, and genomics [26–28]. This thesis argues that
causal inference is not only important for robot application, but more strongly, the
principles of causal learning, in fact, empower robot learning.

Analogously to Schölkopf et al.’s appeal to the machine learning community [25],
this thesis forwards that the robot learning community stands to gain by leveraging
the insights of causal inference and causal representation learning through collabora-
tion and cross-pollination. In so doing, this new paradigm holds promise for robots
to learn and leverage structure within the open world through causal robot learning
for manipulation.

1.2 Thesis Statement: Learning and Leveraging
Structure within the Open World

We now introduce the statement of this thesis that frames the broader vision of
this body of work (Fig. 1.1).

This thesis posits that, for robots to succeed in the open world, robot learning
algorithms should learn and reason with respect to not only the observed data,
but the processes that generate the data. Towards this end, the objective of this
thesis is to develop robot learning algorithms that learn and leverage the causal
structure of manipulation tasks. Consequentially, this thesis will synthesize the

principles of causal inference and causal representation learning for
causal robot learning for manipulation.

1.3 Thesis Research Questions
The completed work of this thesis addresses the following research questions that

entail this thesis statement.
R1. What are the relevant variables for a particular task or model? Where do these

variables come from, and what is the relationship between them?

R2. What are the implications of distribution and domain shifts for learning? How
do these shifts manifest in relevant variables? How can the sim-to-real gap be
bridged?

6

Ch. 1 – Introduction

Figure 1.1: The vision of this thesis is to develop learning algorithms that empower
robots to perform useful automation work to improve human quality-of-life when de-
ployed into the real world. Such real-world settings include (in column-wise order):
residential kitchens and living rooms, assisted living centers, restaurants, community
centers, and libraries, to name a few. We specifically refer to these settings as open-
world environments. In the open world, environments are characterized by a rich
diversity of objects, a sparsity of relevant objects for completing any particular task,
and distribution shifts owing to yet-unseen settings, mechanisms, and long-tailed phe-
nomena. These distinguishing factors stymie modern correlation-based deep learning.
Yet, there exists common structure across these environments: books along the same
row all sit at the same height of a shelf; chairs are stationary until they are pushed
in; water flows from a kitchen faucet when the handle is rotated; prismatic cabinet
drawers are constrained to move linearly along one axis; light is projected one-way
into a camera to generate an image, not vice versa. Indeed, the open world is not
“unstructured,” as commonly described, but arises because of structure — from un-
derlying causal processes that generate observed data for the robot to use. Therefore,
our learning algorithms would benefit from learning and leveraging this structure to-
wards realizing our vision of open-world robots. (Images licensed from Shutterstock.)

7

Ch. 1 – Introduction

R3. How can dynamical systems be better understood in order to achieve greater
control and understanding, including for both physical processes and learning
processes?

R4. How will the robot know when learning is complete? Which tasks should be
considered for bootstrapping the learning of a specific, target task?

R5. Can useful perception models arise from correlation-based learning with suffi-
cient domain randomization?

1.4 Thesis Contributions
In total, this body of work will contain eight contributions, each of which are dis-

tinct papers and chapters of this thesis. Mappings of the research questions onto these
contributions are provided below. These contributions are approximately chronolog-
ically ordered.

Correlation-Based Transfer Learning for Perception:

C1. DREAM [29], an approach for camera-to-robot pose estimation through syn-
thetic sim-to-real transfer.
→ Chapter 2, Research Questions: R2, R5

C2. FormNet [30], an approach for visual identification of articulated objects through
synthetic sim-to-real transfer.
→ Chapter 3, Research Questions: R2, R5

Structural Sim-to-Real Transfer:

C3. CREST [31], an algorithm for sim-to-real causal feature selection for manipu-
lation policies using an internal model of a task.
→ Chapter 4, Research Questions: R1, R2, R3

C4. SCALE [32], an algorithm for causal learning of manipulation skills using sim-
ulation that captures the underlying data generating processes.
→ Chapter 5, Research Questions: R1, R2, R3

Causality and Dynamical Systems:

C5. Learning By Doing (LBD) [33], a competition to foster research in the in-
tersection of causality, control theory, and reinforcement learning for controlling
dynamical systems.
→ Chapter 6, Research Questions: R1, R3

8

Ch. 1 – Introduction

C6. LMeshNet, a methodology for creating a hybrid causal world model that inte-
grates semantic information and provides greater interpretability of the world
model’s latent space.
→ Chapter 7, Research Questions: R1, R3

Curriculum Learning:

C7. ACL [34–36], an investigation of the commonalities and differences in curricu-
lum learning between humans and reinforcement learning agents. We note that
the agent study is the specific thesis contribution in this work, although the
human study has richly informed other contributions of the thesis.
→ Chapter 8, Research Questions: R2, R3, R4

C8. CURATE, an algorithm for curriculum learning for reinforcement learning
agents and robots based on sample-based evaluations.
→ Chapter 9, Research Questions: R2, R3, R4

1.5 Thesis Conclusions and Takeaways
As a consequence of these contributions, we introduce four conclusions and take-

aways of this thesis. These conclusions extend across multiple contributions and
support the forwarded position of this thesis.

T1. We introduce structural sim-to-real transfer, extending prior use of simulators
as statistical data generators currently used for sim-to-real transfer. In so doing,
we demonstrate that simulation can serve as a causal reasoning engine that the
robot can leverage in the open world. Through experimental demonstrations
on real-world robots, we also demonstrate that the principles of causality can
extend to robot applications in practice.
→ Contributions: C3, C4

T2. We introduce methods to identify, understand, and leverage the causal struc-
ture of a particular task or model, to better equip the robot with techniques
to operate in the open world with its vast diversity of objects, features, and
percepts.
→ Contributions: C3, C4, C5, C6

T3. We demonstrate various methodologies for transfer learning, particularly through
distribution and domain shifts, such as in bridging the sim-to-real gap or cur-
riculum learning.
→ Contributions: C1, C2, C3, C4, C7, C8

T4. We argue the position of integrating the principles of causal inference and causal
representation learning into robot learning to specifically address the challenges

9

Ch. 1 – Introduction

of open-world manipulation. Although success may be found for certain prob-
lems with approaches that are agnostic to the underlying causal structure, such
approaches may be either too brittle (due to distribution shifts or spurious cor-
relations) or, for more complex problems, require intractable amounts of data
or domain randomization. Our contributions demonstrate that methods that
learn and leverage the causal structure of tasks can endow robots with richer
capabilities that should lead to greater performance and success in the open
world. In so doing, we argue towards the adoption of causal robot learning for
manipulation through the eight contributions of the thesis.
→ Contributions: C1, C2, C3, C4, C5, C6, C7, C8

1.6 Thesis Outline
The contributions of this thesis are structured in four parts, where each part

consists of two works.
Part II, Correlation-Based Transfer Learning for Perception, pertains to initial

work in this thesis for learning perception models using sim-to-real transfer learn-
ing. Notably, these works explored bridging the sim-to-real gap with only synthetic
observations with domain randomization. The first work is DREAM (Chapter 2),
where sim-to-real transfer learning enabled camera-to-robot pose estimation for the
camera calibration problem. Our related work, FormNet (Chapter 3), is the “spir-
itual successor” of DREAM, applying these ideas for visual identification of articu-
lation mechanisms in real-world environments. This part serves as a reminder that
correlation-based techniques may yield successful models, although their robustness,
sample efficiency, and utility may still be improved through training objectives and
approaches that enforce greater causal structure. Moreover, training models primarily
through vast domain randomization may be intractable for problems with more com-
plex data generating processes, necessitating approaches that emphasize structure,
rather than being agnostic to it.

Part III, Structural Sim-to-Real Transfer, primarily considers the eponymous
methodology that learns how to construct the causal structure of a policy or skill
in simulation, and then transfer this structure to reality. The works in this part
leverage the concept of a simulator being more than a statistical data generator, as
commonly used in the sim-to-real community. Instead, simulation functions as a
causal reasoning engine for the robot to use in the open-world setting. These works
include causal feature selection (CREST) in Chapter 4 and causal learning of skills
(SCALE) in Chapter 5.

Part IV, Causality and Dynamical Systems, concerns the rich overlap between
causality and dynamical processes. Learning By Doing (Chapter 6) makes clear
the commonalities between causality, control theory, and reinforcement learning by
examining control of a chemical process as well as a robot manipulator. LMeshNet

10

Ch. 1 – Introduction

(Chapter 7) introduces an approach for hybridization of a world model (i.e., a model
of environment dynamics) that integrates and synchronizes latent and semantic infor-
mation. For hybrid causal world models, by leveraging the favorable disentanglement
properties of the latent space, causal discovery can be used to provide greater inter-
pretability of the latent space based on a provided semantic space.

Part V, Curriculum Learning, contains the final two thesis works. These works
explore curriculum learning as supported by insights from human cognition, towards
our goal of causal curriculum learning. ACL (Chapter 8) investigates the similarities
and contrasts in curriculum learning between agents and humans. Humans need not
completely solve a task before advancing to a more difficult task, seemingly due to
maintaining an internal measure of progress achieved in the task. On the other hand,
agents may experience catastrophic forgetting due to the inherent distribution shifts of
curriculum learning, but such training divergence may be mitigated (or, in some cases,
recovered from) using a human-inspired auxiliary reward based on progress. These
insights into human cognition have been key towards the development of CURATE
(Chapter 9), our curriculum learning algorithm. We plan on demonstrating the
generality of CURATE for a variety of agent domains, including a robot insertion task.
Moreover, we are currently investigating ways to extend CURATE with greater causal
reasoning and learning capabilities, towards a causal curriculum learning algorithm.
Such a capability for automated curriculum learning would be useful to boost the
generalization and sample efficiency of learning how to complete a particular target
task that could arise in the open-world setting.

Following the thesis contributions, the thesis concludes in Chapter 10. In this
chapter, we summarize and reflect on the themes of the thesis and provide future
directions that may emerge from the thesis works. Finally, we conclude by leaving a
vision for the thesis reader for the broader implications of causal robot learning as it
pertains to causal embodied intelligence.

1.7 A Note on Terminology
What does it mean for a method to be “causal”? For certain learning problems,

the framing of causality is apparent. This would be the case for many environmental
relationships, such as learning that turning a switch on a kitchen stove causes a burner
on top of the stove to ignite. Yet, what about robot actions in the environment, such
as grasping and moving a frying pan on top of the burner? These actions are also
causal, but what is the advantage of such a framing, and how does it compare to
existing methods for learning actions? To readers who are new to causality, we now
provide a short discussion on terminology to allay confusion before discussing the
thesis contributions in detail in later chapters.

Consider the field of reinforcement learning. As discussed in Learning By Do-
ing (Chapter 6), reinforcement learning agents learn to perform actions, which can

11

Ch. 1 – Introduction

also be seen as causal interventions within the environment. Therefore, is reinforce-
ment learning already “causal”? Kaddour et al. argues that although the answer is
technically yes, the approaches developed by the reinforcement learning and causal-
ity communities have different underlying goals [37]. The reinforcement learning
field emphasizes the maximization of rewards, whereas causality literature focuses
on learning and leveraging causal structure through identifiability and inference [37].
For a specific example of a causal reinforcement learning method, in Causal Dynam-
ics Learning for Task-Independent State Abstraction, a causal dynamics model that
learns the relationships between state variables can provide better generalization and
sample efficiency for model-based reinforcement learning [38]. Meanwhile, a non-
causal (i.e., correlation-based) approach for reinforcement learning would usually be
agnostic to any structure that may exist within the environment that the agent could
have otherwise used for richer learning outcomes.

We believe the key to dispelling confusion is to refer to approaches as “causal” if
they explicitly relate to causal structure: the underlying data generating processes of
the problem. Structure-based approaches seek to understand causal variables, create
causal representations, learn structural causal models, assess whether a causal effect is
identifiable, provide causal inferences, and offer model-based explanations. The fact
that causality can tie in broadly to many problems, although occasionally a source
of terminology confusion, is a testament to the generality of causality for reasoning,
learning, and structuring information.

12

II
Correlation-Based Transfer

Learning for Perception

13

2
DREAM:

Camera-to-Robot Pose
Estimation from a

Single Image through
Synthetic Sim-to-Real

Transfer

This section presents DREAM (Deep Robot-to-camera Extrinsics for Articulated
Manipulators), a correlation-based, sim-to-real transfer learning approach for learn-
ing a perception model. Specifically, DREAM’s key capability is a deep neural net-
work that predicts robot keypoints from a single RGB image. This network is trained
with only synthetic data that contain domain randomizations, such as robot joint
configuration, camera pose, scene lighting, and distractor objects. The predicted key-
points of the network are used as input to a geometric computer vision algorithm that
predicts the camera-to-robot pose. The accuracy of DREAM (approx. 2cm in robot
workspace accuracy) is sufficient to solve the camera calibration problem for manip-
ulation of objects that do not require fine precision. Moreover, DREAM matches the
state-of-the-art (hand-eye calibration) in accuracy, while also significantly lowering
the operational costs of camera calibration. Instead of carefully collecting several im-
ages with a fiducial marker for hand-eye calibration, DREAM only needs a minimum
of one RGB image of the robot — no fiducial marker needed.

Although this work did not specifically pertain to causal learning, we offer DREAM
as a case study and point of comparison. DREAM is a representative methodology for
correlation-based, sim-to-real transfer learning, which was the state-of-the-art when
this work was conducted in 2018. The strategy for bridging the sim-to-real gap with
the DREAM network is through large quantities of domain-randomized synthetic
data. With a sufficiently large number of synthetic images (on the order of 50,000
to 100,000 images), DREAM’s neural network learns a representation that transfers
successfully to real camera images. A similar strategy was employed in FormNet
(Ch. 3), a follow-up work to DREAM that estimates the articulation properties of
real-world household objects using one RGB-D observation frame.

14

Ch. 2 – DREAM: Camera-to-Robot Pose Estimation from a Single Image through
Synthetic Sim-to-Real Transfer

In contrast to causal learning, which is focused on learning with respect to an
underlying data generating process, DREAM’s correlation-based approach requires
enough data variations to break spurious correlations so that the underlying process
is learned. A version of DREAM that uses causal learning would likely be capable
of training the network with greater sample efficiency and robustness to broader
distributions beyond the limited laboratory environments used to evaluate DREAM.
However, we leave “Causal DREAM” for future work.

Sections of the remainder of this chapter first appeared in [29]. This work was
completed during an internship at NVIDIA and was presented at the 2020 IEEE
International Conference on Robotics and Automation (ICRA 2020). We thank

our collaborators on this work: Jonathan Tremblay, Thang To, Jia Cheng,
Terry Mosier, Prof. Oliver Kroemer, Prof. Dieter Fox, and Stan Birchfield.

2.1 Summary
We present an approach for estimating the pose of an external camera with respect

to a robot using a single RGB image of the robot. The image is processed by a deep
neural network to detect 2D projections of keypoints (such as joints) associated with
the robot. The network is trained entirely on simulated data using domain random-
ization to bridge the reality gap. Perspective-n-point (PnP) is then used to recover
the camera extrinsics, assuming that the camera intrinsics and joint configuration
of the robot manipulator are known. Unlike classic hand-eye calibration systems, our
method does not require an off-line calibration step. Rather, it is capable of computing
the camera extrinsics from a single frame, thus opening the possibility of on-line cal-
ibration. We show experimental results for three different robots and camera sensors,
demonstrating that our approach is able to achieve accuracy with a single frame that is
comparable to that of classic off-line hand-eye calibration using multiple frames. With
additional frames from a static pose, accuracy improves even further. Code, datasets,
and pretrained models for three widely-used robot manipulators are made available:
https://research.nvidia.com/publication/2020-03_DREAM

2.2 Introduction
Determining the pose of an externally mounted camera is a fundamental problem

for robot manipulation, because it is necessary to transform measurements made in
camera space to the robot’s task space. For robots operating in unstructured, dynamic
environments—performing tasks such as object grasping and manipulation, human-
robot interaction, and collision detection and avoidance—such a transformation allows
visual observations to be readily used for control.

15

https://research.nvidia.com/publication/2020-03_DREAM

Ch. 2 – DREAM: Camera-to-Robot Pose Estimation from a Single Image through
Synthetic Sim-to-Real Transfer

The classic approach to calibrating an externally mounted camera is to fix a
fiducial marker (e.g., ArUco [39], ARTag [40], or AprilTag [41]) to the end effec-
tor, collect several images, then solve a homogeneous linear system for the unknown
transformation [42]. This approach is still widely used due to its generality, flexibility,
and the availability of open-source implementations in the Robot Operating System
(ROS). However, such an approach requires the somewhat cumbersome procedure
of physically modifying the end effector, moving the robot to multiple joint config-
urations to collect a set of images (assuming the marker-to-wrist transformation is
not known), running an off-line calibration procedure, and (optionally) removing the
fiducial marker. Such an approach is not amenable to online calibration, because if
the camera moves with respect to the robot, the entire calibration procedure must be
repeated from scratch.

A more recent alternative is to avoid directly computing the camera-to-robot
transform altogether, and instead to rely on an implicit mapping that is learned for
the task at hand. For example, Tobin et al. [43] use deep learning to map RGB images
to world coordinates on a table, assuming that the table at test time has the same
dimensions as the one used during training. Similarly, Levine et al. [44] learn hand-
eye coordination for grasping a door handle, using a large-scale setup of real robots
for collecting training data. In these approaches the learned mapping is implicit and
specific to the task/environment, thus preventing the mapping from being applied to
new tasks or environments without retraining.

We believe there is a need for a general-purpose tool that performs online camera-
to-robot calibration without markers. With such a tool, a researcher could set up a
camera (e.g., on a tripod), and then immediately use object detections or measure-
ments from image space for real-world robot control in a task-independent manner,
without a separate offline calibration step. Moreover, if the camera subsequently
moved for some reason (e.g., the tripod were bumped accidentally), there would be
no need to redo the calibration step, because the online calibration process would
automatically handle such disturbances.

In this paper, we take a step in this direction by presenting a system for solving
camera pose estimation from a single RGB image. We refer to our framework as
DREAM (for Deep Robot-to-camera Extrinsics for Articulated Manipulators). We
train a robot-specific deep neural network to estimate the 2D projections of prespec-
ified keypoints (such as the robot’s joints) in the image. Combined with camera
intrinsics, the robot joint configuration, and forward kinematics, the camera extrin-
sics are then estimated using Perspective-n-Point (PnP) [45]. The network is trained
entirely on synthetic images, relying on domain randomization [43] to bridge the re-
ality gap. To generate these images, we augmented our open-source tool, NDDS [46],
to allow for scripting robotic joint controls and to export metadata about specific 3D
locations on a 3D mesh.

This paper makes the following contributions:

• We demonstrate the feasibility of computing the camera-to-robot transforma-

16

Ch. 2 – DREAM: Camera-to-Robot Pose Estimation from a Single Image through
Synthetic Sim-to-Real Transfer

Figure 2.1: The DREAM framework. A deep encoder-decoder neural network takes
as input an RGB image of the robot from an externally-mounted camera, and it
outputs n belief maps (one per keypoint). The 2D peak of each belief map is then
extracted and used by PnP, along with the forward kinematics and camera intrinsics,
to estimate the camera-to-robot pose, R

CT .

tion from a single image of the robot, without fiducial markers, using a deep
neural network trained only on synthetic data.

• We show that the resulting accuracy with a single real image frame is compa-
rable to that of classic hand-eye calibration using multiple frames. For a static
camera, accuracy further improves with multiple image frames.

• Quantitative and qualitative results are shown for three different robot manipu-
lators (Franka Emika’s Panda, Kuka’s LBR iiwa 7 R800, and Rethink Robotics’
Baxter) and a variety of cameras.

The simplicity of our approach enables real-time pose estimation on a desktop com-
puter with an NVIDIA Titan Xp GPU, without manual optimization.

2.3 Approach
An externally mounted camera observes n keypoints pi ∈ R3 on various robot

links. These keypoints project onto the image as ki ∈ R2, i = 1, . . . , n. Some of
these projections may be inside the camera frustum, whereas others may be outside.
We consider the latter to be invisible/inaccessible, whereas the former are visible,
regardless of occlusion.1 The intrinsic parameters of the camera are assumed known.

Our proposed two-stage process for solving the problem of camera-to-robot pose
estimation from a single RGB image frame is illustrated in Fig. 2.1. First, an encoder-
decoder neural network processes the image to produce a set of n belief maps, one

1The network learns to estimate the positions of occluded keypoints from the surrounding context;
technically, since the keypoints are the robot joints (which are inside the robot links), they are always
occluded.

17

Ch. 2 – DREAM: Camera-to-Robot Pose Estimation from a Single Image through
Synthetic Sim-to-Real Transfer

per keypoint. Then, Perspective-n-Point (PnP) [45] uses the peaks of these 2D belief
maps, along with the forward kinematics of the robot and the camera intrinsics, to
compute the camera-to-robot pose, R

CT . Note that the network training depends only
on the images, not the camera; therefore, after training, the system can be applied
to any camera with known intrinsics. We restrict n ≥ 4 for stable PnP results.

2.3.1 Network Architecture
Inspired by recent work on object pose estimation [47–49], we use an auto-encoder

network to detect the keypoints. The neural network takes as input an RGB image
of size w × h × 3, and it outputs an αw × αh × n tensor, where w = 640, h = 480,
and α ∈ {1, 1

2 ,
1
4}, depending on the output resolution used. This output captures a

2D belief map for each keypoint, where pixel values represent the likelihood that the
keypoint is projected onto that pixel.

The encoder consists of the convolutional layers of VGG-19 [50] pretrained on
ImageNet. The decoder (upsampling) component is composed of four 2D transpose
convolutional layers (stride = 2, padding = 1, output padding = 1), and each layer
is followed by a normal 3× 3 convolutional layer and ReLU activation layer. We also
experimented with a ResNet-based encoder, viz., our reimplementation of [51], with
the same batch normalization, upsampling layers, and so forth as described in the
paper.

The output head is composed of 3 convolutional layers (3× 3, stride = 1, padding
= 1) with ReLU activations with 64, 32, and n channels, respectively. There is no
activation layer after the final convolutional layer. The network is trained using an
L2 loss function comparing the output belief maps with ground truth belief maps,
where the latter are generated using σ = 2 pixels to smooth the peaks.

2.3.2 Pose Estimation
Given the 2D keypoint coordinates, robot joint configuration with forward kine-

matics, and camera intrinsics, PnP [45] is used to retrieve the pose of the robot,
similar to [47–49, 52, 53]. The keypoint coordinates are calculated as a weighted av-
erage of values near thresholded peaks in the output belief maps (threshold = 0.03),
after first applying Gaussian smoothing to the belief maps to reduce the effects of
noise. The weighted average allows for subpixel precision.

2.3.3 Data Generation
The network is trained using only synthetic data with domain randomization (DR)

and image augmentation [54]. Despite the traditional challenges with bridging the
reality gap, we find that our network generalizes well to real-world images, as we
will show in the experimental results. To generate the data we used our open-source

18

Ch. 2 – DREAM: Camera-to-Robot Pose Estimation from a Single Image through
Synthetic Sim-to-Real Transfer

NDDS tool [46], which is a plugin for the UE4 game engine. We augmented NDDS to
export 3D/2D keypoint locations and robot joint angles, as well as to allow control
of the robot joints.

The synthetic robot was placed in a simple virtual 3D scene in UE4, viewed by
a virtual camera. Various randomizations were applied: 1) The robot’s joint angles
were randomized within the joint limits. 2) The camera was positioned freely in a
somewhat truncated hemispherical shell around the robot, with azimuth ranging from
−135◦ to +135◦ (excluding the back of the robot), elevation from −10◦ to 75◦, and
distance from 75 cm to 120 cm; the optical axis was also randomized within a small
cone. 3) Three scene lights were positioned and oriented freely while randomizing
both intensity and color. 4) The scene background was randomly selected from the
COCO dataset [55]. 5) 3D objects from the YCB dataset [56] were randomly placed,
similar to flying distractors [57]. 6) Random color was applied to the robot mesh.

Figure 2.2 shows representative images from synthetic datasets generated by our
approach. Domain randomized (DR) datasets were used for training and testing;
datasets without domain randomization (non-DR) were used for testing to assess
sim-to-sim generalization. The DR training data was generated using the publicly
available robot models, whereas the non-DR test data used models that were artisti-
cally improved to be more photorealistic.

2.4 Experimental Results
In this section we evaluate our DREAM method both in simulation and in the real

world. We seek to answer the following questions: 1) How well does the synthetic-
only training paradigm transfer to real-world data? 2) What is the impact of various
network architectures? 3) What accuracy can be achieved with our system, and how
does it compare to traditional hand-eye calibration?

2.4.1 Datasets
We collected several real-world datasets in our lab using various RGBD sensors.

Since our DREAM algorithm processes only RGB images, the depth images were
captured solely to facilitate ground truth camera poses via DART [58], a depth-based
articulated tracking algorithm. DART was initialized manually and monitored in
real-time during data collection to ensure tracking remained stable and correct, by
viewing the projection of the robot coordinate frames onto the camera’s RGB images
via the ROS visualization tool (RViz).

Panda-3Cam. For this dataset, the camera was placed on a tripod aimed at
the Franka Emika Panda robot arm. The robot was moved to five different joint con-
figurations, at which the camera collected data for approximately five seconds each,
followed by manual teleoperation to provide representative end effector trajectories

19

Ch. 2 – DREAM: Camera-to-Robot Pose Estimation from a Single Image through
Synthetic Sim-to-Real Transfer

domain-randomized (DR) non-DR

Figure 2.2: Synthetic training images for the three robot models: Franka Panda (top),
Kuka LBR with Allegro hand (middle), and Rethink Baxter (bottom).

20

Ch. 2 – DREAM: Camera-to-Robot Pose Estimation from a Single Image through
Synthetic Sim-to-Real Transfer

along cardinal axes, as well as along a representative reaching trajectory. During
data collection, neither the robot base nor the camera moved. The entire capture
was repeated using three different cameras utilizing different modalities: Microsoft
XBox 360 Kinect (structured light), Intel RealSense D415 (active stereo), and Mi-
crosoft Azure Kinect (time-of-flight). All images were recorded natively at 640× 480
resolution at 30 fps, except for the Azure Kinect, which was collected at 1280× 720
and downsampled to 640×480 via bicubic interpolation. This dataset consists of 17k
total image frames divided approximately equally between the three cameras.

Panda-Orb. To evaluate the method’s ability to handle a variety of camera
poses, additional data was captured of the Panda robot. The RealSense camera was
again placed on a tripod, but this time at 27 different positions in a roughly orbital
motion around the robot (namely, 9 different azimuths, ranging from roughly -180◦

to +180◦, and for each azimuth two different elevations approximately 30◦ and 45◦,
along with a slightly closer depth at 30◦). For each camera pose, the robot was
commanded using Riemannian Motion Policies (RMPs) [59, 60] to perform the same
joint motion sequence of navigating between 10 waypoints defined in both task and
joint space. The dataset consists of approximately 40k image frames.

2.4.2 Metrics
Metrics were computed on both 2D and 3D. For the 2D evaluation, the percentage

of correct keypoints (PCK) [61] below a certain threshold was calculated, as the
threshold varied. All keypoints whose ground truth was within the camera’s frustum
were considered, regardless of whether they were occluded. For 3D evaluation of
the accuracy of the final camera-to-robot pose, the average distance (ADD) [62, 63]
was calculated, which is the average Euclidean distance of all 3D keypoints to their
transformed versions, using the estimated camera pose as the transform. ADD is a
principled way, based upon Euclidean geometry, to combine rotation and translation
errors without introducing an arbitrary weighting between them. As with PCK, the
percentage of keypoints with ADD lower than a threshold was calculated, as the
threshold varied. For ADD, all keypoints were considered. In both cases, averages
were computed over keypoints over all image frames.

2.4.3 Training and Simulation Experiments
For comparison, we trained three versions of our DREAM network. As described

earlier, the architecture uses either a VGG- or ResNet-based encoder, and the decoder
outputs either full (F), half (H), or quarter (Q) resolution. Each neural network was
trained for 50 epochs using Adam [64] with 1.5e-4 learning rate and 0.9 momentum.
Training for each robot used approximately 100k synthetic DR images. The best-
performing weights were selected according to a synthetic validation set.

As a baseline, Fig. 2.3 compares these versions on two simulated datasets, one with

21

Ch. 2 – DREAM: Camera-to-Robot Pose Estimation from a Single Image through
Synthetic Sim-to-Real Transfer

Figure 2.3: PCK (left) and ADD (right) results for three different variants of our
DREAM network on the two simulated datasets. The numbers in parentheses are the
area under the curve (AUC).

domain-randomization (DR) and the other without (non-DR). The improvement due
to increasing resolution is clear, but different architectures have only minimal impact
for most scenarios.

2.4.4 Real-world Experiments
Results comparing the same three networks on the Panda-3Cam dataset are shown

in Fig. 2.4. Encouragingly, these results show that our training procedure is able to
bridge the reality gap: There is only a modest difference between the best performing
network on simulated and real data.

For 3D, it is worth noting that the standard deviation of ground truth camera
pose from DART was 1.6 mm, 2.2 mm, and 2.9 mm, respectively, for the XBox 360
Kinect (XK), RealSense (RS), and Azure Kinect (AK) cameras, respectively. The
degraded results for the Azure Kinect are due to DART’s sensitivity to noise in the
time-of-flight-based depth, rather than to DREAM itself. On the other hand, the
degraded results for XBox 360 Kinect are due to the poor RGB image quality from
that sensor.

Ultimately, the goal is to be able to place the camera at an arbitrary pose aimed
at a robot, and calibrate automatically. To measure DREAM’s ability to achieve
this goal, we evaluated the system on the Panda-Orb dataset containing multiple
camera poses. These results, alongside those of the previous experiments, are shown
in Tab. 2.1. For this table we used DREAM-vgg-F, since the other architectures
performed similarly as before.

We also trained DREAM on the Kuka LBR iiwa and Baxter robots. While the

22

Ch. 2 – DREAM: Camera-to-Robot Pose Estimation from a Single Image through
Synthetic Sim-to-Real Transfer

Figure 2.4: PCK (top) and ADD (bottom) results on the real Panda-3Cam dataset.

23

Ch. 2 – DREAM: Camera-to-Robot Pose Estimation from a Single Image through
Synthetic Sim-to-Real Transfer

Table 2.1: Results at different thresholds of the same network (DREAM-vgg-F) on
various datasets (and camera sensors). All but the last row are taken from Figs. 2.3
and 2.4.

PCK @ (pix) ADD @ (mm)
Dataset 2.5 5.0 10.0 20 40 60
Sim. DR 0.79 0.88 0.90 0.81 0.88 0.90

Sim. non-DR 0.77 0.87 0.90 0.80 0.88 0.90
Panda-3Cam (XK) 0.15 0.37 0.59 0.23 0.48 0.54
Panda-3Cam (RS) 0.24 0.83 0.96 0.80 0.83 0.87
Panda-3Cam (AK) 0.36 0.65 0.90 0.32 0.86 0.94
Panda-Orb (RS) 0.28 0.67 0.83 0.57 0.77 0.80

former is similar to the Panda, the latter is more difficult due to symmetry that causes
the two arms to be easily confused with one another. To alleviate this problem, we
had to restrict the azimuth range from -45◦ to +45◦. Although we did not perform
quantitative analysis on either robot, qualitatively we found that the approach works
about the same for these robots as it does for the Panda. The detected keypoints
overlaid on images of the three robots, using three different RGB cameras, are shown
in Fig. 2.5. Although in principle the keypoints could be placed anywhere on the
robot, we simply assign keypoints to the joints according to each robot’s URDF
(Unified Robot Description Format).

2.4.5 Comparison with Hand-Eye Calibration
The goal of our next experiment was to assess the accuracy of DREAM versus

traditional hand-eye calibration (HEC). For the latter, we used the easy handeye
ROS package2 to track an ArUco fiducial marker [39] attached to the Panda robot
hand.

The XBox 360 Kinect was mounted on a tripod, and the robot arm was moved to
a sequence of M = 18 different joint configurations, stopping at each configuration
for one second to collect data. Neither the camera nor the base of the robot moved.
The fiducial marker was then removed from the hand, and the robot arm was moved
to a different sequence of M joint configurations. The joint configurations were se-
lected favorably to ensure that the fiducial markers and keypoints, respectively, were
detected in the two sets of images. As before, DART with manual initialization was
used for ground truth.

Although our DREAM approach works with just a single RGB image, it can po-
tentially achieve greater accuracy with multiple images by simply feeding all detected
keypoints (from multiple frames) to a single PnP call. Thus, to facilitate a direct

2https://github.com/IFL-CAMP/easy_handeye

24

https://github.com/IFL-CAMP/easy_handeye

Ch. 2 – DREAM: Camera-to-Robot Pose Estimation from a Single Image through
Synthetic Sim-to-Real Transfer

Figure 2.5: Keypoint belief maps (red dots indicate peaks) detected by DREAM in
RGB images of three different robots (taken by three different cameras). From left to
right: Franka Emika Panda (Intel RealSense D415), Kuka LBR iiwa (Logitech C920
webcam), and Rethink Baxter (cell phone camera).

25

Ch. 2 – DREAM: Camera-to-Robot Pose Estimation from a Single Image through
Synthetic Sim-to-Real Transfer

Figure 2.6: DREAM vs. HEC, measured by ADD as a function of the number of image
frames used for calibration. Shown are the mean (solid line), median (dashed line),
and min/max (shaded area), computed over different image combinations. DREAM
requires only a single image frame but achieves greater accuracy with more images.

comparison with HEC, we applied DREAM to m ≥ 1 images from the set of M
images that were collected. Similarly, we applied HEC to m ≥ 3 images from the
set. Both algorithms were then evaluated by comparing the estimated pose with the
ground truth pose via ADD. For both algorithms, we selected

(
M
m

)
possible combina-

tions when evaluating the algorithm on m images, to allow the mean, median, min,
and max to be computed. To avoid unnecessary combinatorial explosion, whenever
this number exceeded N = 2500, we randomly selected N combinations rather than
exhaustive selection.

Results of this head-to-head comparison are shown in Fig. 2.6. Note that HEC is
unable to estimate the camera pose when m < 3, whereas DREAM works with just
a single image. As the number of images increases, the estimated pose from both
DREAM and HEC improves, depending somewhat on the robot configurations used.
In all cases, DREAM performs as well or better than HEC. (Note, however, that HEC
results would likely improve from manually, rather than randomly, selecting image
frames.)

26

Ch. 2 – DREAM: Camera-to-Robot Pose Estimation from a Single Image through
Synthetic Sim-to-Real Transfer

Table 2.2: Euclidean error between the robot’s actual reached position and the com-
manded position, using the camera pose estimated by each of the three methods.

DART HEC DREAM (ours)
camera depth RGB RGB

no. frames 1 10 1
min error (mm) 10.1 9.4 20.2
max error (mm) 44.3 51.3 34.7
mean error (mm) 21.4 28.2 27.4
std error (mm) 12.3 14.2 4.7

2.4.6 Measuring Workspace Accuracy
In the final experiment we evaluated the accuracy of DREAM’s output with re-

spect to the workspace of the robot. The RealSense camera was placed on a tripod
facing the Panda robot reaching toward an adjustable-height table on which were
placed five fiducial markers. A head-to-head comparison of the camera poses com-
puted by DART, DREAM, and HEC was conducted by transforming each fiducial
marker’s pose from the camera’s frame to the robot’s frame by applying each algo-
rithm’s camera-to-robot pose estimate. The robot was then commanded to move the
end effector to a target position defined 10 cm directly above the marker, to avoid
potential collision. This process was repeated for ten target positions (5 markers, 2
table heights). The Euclidean distance between the end effector’s position in 3D was
measured for each algorithm. Note that in this experiment DART was not considered
to be ground truth, but rather was compared against the other methods.

Results are shown in Tab. 2.2. Even though DREAM is RGB-only, it performs
favorably not only to HEC but also to the depth-based DART algorithm. This is
partly explained by the fact that the extrinsic calibration between the depth and RGB
cameras is not perfect. Note that DREAM’s error is similar to that of our previous
work [52] upon which it is based, where we showed that an error of approximately
2 cm for object pose estimation from RGB is possible.

2.5 Previous Work
Relationship to previous work is considered in this section.
Object pose estimation. In robotics applications, it is not uncommon for

objects to be detected via fiducial markers [65–67]. Even so, there is growing interest
in the problem of markerless object pose estimation in both the robotics and computer
vision communities [47–49, 52, 53, 62, 63, 68, 69], building upon work in keypoint
detection for human pose estimation [51, 70–73]. Recent leading methods are similar
to the approach proposed here: A network is trained to predict object keypoints in

27

Ch. 2 – DREAM: Camera-to-Robot Pose Estimation from a Single Image through
Synthetic Sim-to-Real Transfer

the 2D image, followed by PnP [45] to estimate the pose of the object in the camera
coordinate frame [48, 49, 52, 53, 74, 75], or alternatively, a deformable shape model
is fit to the detect keypoints [76]. Indeed, our approach is inspired by these methods.
Our approach builds upon the findings of Peng et al. [48], who showed that regressing
to keypoints on the object is better than regressing to vertices of an enveloping cuboid.
Other methods have regressed directly to the pose [63, 69], but care must be taken
not to bake the camera intrinsics into the learned weights.

Robotic camera extrinsics. Closely related to the problem of estimating the
camera-to-object pose (just described) is that of estimating the camera-to-robot pose.
The classic solution to this problem is known as hand-eye calibration, in which a
fiducial marker (such as ArUco [39], ARTag [40], AprilTag [41], or otherwise known
object) is attached to the end effector and tracked through multiple frames. Using
forward kinematics and multiple recorded frames, the algorithm solves a linear system
to compute the camera-to-robot transform [77–79]. Similarly, an online calibration
method is presented by Pauwels and Kragic [80], in which the 3D position of a known
object is tracked from nonlinear optimization over multiple frames.

An alternate approach is to move a small object on a table, command the robot
to point to each location in succession, then use forward kinematics to calibrate [81].
However, the accuracy of such an approach degrades as the robot moves away from
the table used for calibration. Aalerund et al. [82] present a method for calibrating
an RGBD network of cameras with respect to each other for robotics applications,
but the camera-to-robot transforms are not estimated.

For completeness, we mention that, although our paper addresses the case of an
externally mounted camera, another popular configuration is to mount the camera on
the wrist [83], for which the classic hand-eye calibration approach applies [80]. Yet
another configuration is to mount the camera on the ceiling pointing downward, for
which simple 2D correspondences are sufficient [81, 84, 85].

Robotic pose estimation. Bohg et al. [86] explore the problem of markerless
robot arm pose estimation. In this approach, a random decision forest is applied to
a depth image to segment the links of the robot, from which the robot joints are
estimated. In follow-up work, Widmaier et al. [87] address the same problem but
obviate the need for segmentation by directly regressing to the robot joint angles.
Neither of these approaches estimate the camera-to-robot transform.

The most similar approach to ours is the simultaneous work of Lambrecht and
Kästner [88, 89], in which a deep network is also trained to detect projected keypoints,
from which the camera-to-robot pose is computed via PnP. A key difference is that our
network is trained only on synthetic data, whereas theirs requires real and synthetic
data. In other recent work, Zuo et al. [90] also present a keypoint-based detection
network. But rather than use PnP, nonlinear optimization directly regresses to the
camera pose and the unknown joint angles of a small, low-cost manipulator. The
network is trained using synthetic data, with domain adaptation to bridge the reality
gap.

28

Ch. 2 – DREAM: Camera-to-Robot Pose Estimation from a Single Image through
Synthetic Sim-to-Real Transfer

2.6 Conclusion
We have presented a deep neural network-based approach to compute the extrinsic

camera-to-robot pose using a single RGB image. Compared to traditional hand-eye
calibration, we showed that our DREAM method achieves comparable accuracy even
though it does not use fiducial markers or multiple frames. Nevertheless, with addi-
tional frames, our method is able to reduce the error even further. We have presented
quantitative results on a robot manipulator using images from three different cam-
eras, and we have shown qualitative results on other robots using other cameras. We
believe the proposed method takes a significant step toward robust, online calibration.
Future work should be aimed at filtering results over time, computing uncertainty,
and incorporating the camera pose into a closed-loop grasping or manipulation task.

2.7 Acknowledgments
We gratefully acknowledge Karl van Wyk, Clemens Eppner, Chris Paxton, Ankur

Handa, and Erik Leitch for their help. Many thanks also to Kevin Zhang and Mohit
Sharma (Carnegie Mellon University).

29

3
FormNet: Visual
Identification of

Articulated Objects
from a Single Image

Observation through
Synthetic Sim-to-Real

Transfer

This section presents FormNet (Flow of Object Residual Motion Network). Like
DREAM (Ch. 2), FormNet is also a correlation-based, sim-to-real transfer learning
approach for learning a perception model. FormNet identifies the kinematic mech-
anism between pairs of articulated object parts using only one image observation
containing an RGB-D image and segmentation mask. Visual identification of such
articulated objects is highly useful for robot manipulation in open-world settings, as
many objects in these settings — such as doors, cabinets, drawers, and windows — are
articulated. In evaluation for novel object instances in trained categories, FormNet
achieves 82.5% accuracy. Importantly, FormNet demonstrated zero-shot sim-to-real
transfer for real-world image observations.

In many ways, FormNet is the “spiritual successor” of DREAM. FormNet’s archi-
tecture was inspired by the DREAM architecture, and FormNet also blends together
a model-free technique (estimating object residual motion with a neural network)
with a model-based technique (estimating articulation parameters based on the net-
work’s prediction of residual motion). It was also trained similarly, using 100,000
synthetic images with domain randomizations of background, texture, lighting, and
pose. Through sufficient domain randomization, this methodology yielded a model
that could complete this perception task. It is hypothesized that incorporating causal
learning into FormNet would also improve the sample efficiency and robustness to
broader distributions. However, like “Causal DREAM”, we leave such improvements
for future work.

30

Ch. 3 – FormNet: Visual Identification of Articulated Objects from a Single Image
Observation through Synthetic Sim-to-Real Transfer

Sections of the remainder of this chapter first appeared in [30]. Additional
information is provided in App. A. We thank Vicky Zeng, who was first author
and presented this work at the 2021 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS 2021). We thank our other collaborators
on this work: Jacky Liang and Prof. Oliver Kroemer.

3.1 Summary
As autonomous robots interact and navigate around real-world environments such

as homes, it is useful to reliably identify and manipulate articulated objects, such as
doors and cabinets. Many prior works in object articulation identification require ma-
nipulation of the object, either by the robot or a human. While recent works have ad-
dressed predicting articulation types from visual observations alone, they often assume
prior knowledge of category-level kinematic motion models or sequence of observa-
tions where the articulated parts are moving according to their kinematic constraints.
In this work, we propose FormNet, a neural network that identifies the articulation
mechanisms between pairs of object parts from a single frame of an RGB-D image
and segmentation masks. The network is trained on 100k synthetic images of 149 ar-
ticulated objects from 6 categories. Synthetic images are rendered via a photorealistic
simulator with domain randomization. Our proposed model predicts motion resid-
ual flows of object parts, and these flows are used to determine the articulation type
and parameters. The network achieves an articulation type classification accuracy of
82.5% on novel object instances in trained categories. Experiments also show how
this method enables generalization to novel categories and can be applied to real-world
images without fine-tuning.

3.2 Introduction
Reliable, autonomous robots have many potential applications as assistants to hu-

mans in settings such as homes, businesses, and hospitals [11, 91–95]. One prerequisite
for these applications is the capability for robots to both recognize and manipulate
articulated objects: objects that have moving parts that are kinematically linked
with each other, such as doors, windows, drawers, caps, dials, buttons, and switches.
For example, a robot tasked with fetching medicine must identify and interact with
several articulated objects: opening a door to enter a room, searching a cabinet of
drawers for a medicine bottle, twisting the bottle cap open, and then delivering the
contents. Manually specifying articulation constraints for the vast diversity of objects
is intractable, so it is important for a robot to autonomously identify these constraints
and their parameters.

Interactive Perception (IP) is a well-known approach to this problem [96]. With
IP, the robot interacts with objects in the environment through physical contact,

31

Ch. 3 – FormNet: Visual Identification of Articulated Objects from a Single Image
Observation through Synthetic Sim-to-Real Transfer

Figure 3.1: Predicting articulation mechanisms using FormNet. Given the inputs on
the left (RGB-D image and segmentation masks of a pair of object parts), a neural
network predicts the articulation type (revolute, prismatic, fixed, or unconnected) and
appropriate articulation parameters (e.g., location and direction of revolute axis). The
network is trained on synthetic data and infers articulation parameters via predicting
motion residual flows.

observes the changes, and predicts the underlying kinematic constraints. For example,
the robot may pull on a handle, and if the handle’s trajectory forms a straight line,
then the constraint is prismatic (e.g., drawer); if the handle follows an arc, then
the constraint is revolute (e.g., door). Prior IP works often share the limitation
of not leveraging the object’s visual features — either at all [97–100] or only as a
contextual prior to exploration [101]. Most articulated objects that humans interact
with are designed to visually signify their articulation affordances through pronounced
geometry and texture. An elongated bar with one contact at the end to another
surface is probably a revolute handle; a cabinet handle with a connection at each end
is likely prismatic.

Other approaches consider visual aspects while identifying articulation mecha-
nisms. Existing works in this direction track the relative movements of object parts
from videos and predict the constraint types [102–108]. However, these still require
the articulated object to be manipulated — an onerous assumption for robots oper-
ating in novel environments.

32

Ch. 3 – FormNet: Visual Identification of Articulated Objects from a Single Image
Observation through Synthetic Sim-to-Real Transfer

The contribution of our work is FormNet1: a neural network model that identifies
articulation mechanisms between objects with only single-frame vision observations,
no interactions, and no pre-specified object category model (Fig. 3.1). We leverage
recent developments in high-quality object mesh datasets2 that contain information
about both object parts and their relative kinematic constraints. Color and depth
(RGB-D) images, as well as part segmentation masks, are collected across six ob-
ject categories found in PartNet-Mobility [109]. These categories include common
household objects like doors, windows, and cabinets. Training images are rendered
in simulation with domain randomization. To predict articulation type, we represent
and encode the displacement of an object part under a given articulation mechanism
as motion residual flow. The network uses convolutions to predict this flow and the
parts’ “connectedness” (i.e., whether two object parts are connected), which we then
post-process with RANSAC to form the articulation type prediction. We evaluate
the performance of the trained network with ablation studies across multiple object
categories, and we also demonstrate that it can predict articulation types of objects
in real-world images without further fine-tuning. See supplementary materials at
https://sites.google.com/view/articulated-objects/home

3.3 Related Work
Our work relates to two broad classes of vision-based object perception for (1)

articulation constraints and (2) pose estimation in manipulation settings.
Visual identification of object articulation constraints. To identify artic-

ulation mechanisms via visual observations, the authors of [110] manually labeled a
large dataset with motion parameters, such as the location and axis of revolute and
prismatic joints. Then, they proposed using motion-driven features and losses to train
neural networks that jointly solves for motion-driven part segmentation and motion
parameters. Here, motion parameters were encoded as displacement and orientation
residuals, corresponding to prismatic and revolute joints. However, this method as-
sumes access to the complete point cloud of an object, not a partial or noisy point
cloud that would be found with egocentric depth sensors used in most robotic ma-
nipulation applications.

Later works relaxed the assumption of complete point clouds, but they leveraged
knowledge of a set of predefined articulated object categories and their kinematic
models. For example, doors would be one category, and cabinets another. Knowledge
of object categories allow these algorithms to fit predefined geometric and kinematic
models to the observed visual features, which are often point clouds. For instance,
in [111] the authors formed Gaussian mixture models over six predefined kinematic

1FormNet stands for Flow of Object Residual Motion Network. The name alludes to the form,
or shape, of object motion under articulation constraints.

2https://sim2realai.github.io/Synthetic-Datasets-of-Objects-Part-I/

33

https://sites.google.com/view/articulated-objects/home
https://sim2realai.github.io/Synthetic-Datasets-of-Objects-Part-I/

Ch. 3 – FormNet: Visual Identification of Articulated Objects from a Single Image
Observation through Synthetic Sim-to-Real Transfer

models, and they trained a neural network to predict parameters of the mixture model
from single depth images. The parameters include kinematic model parameters for
each category, the object’s joint configurations, and geometry parameters (e.g., door
length). Training data is generated in simulation, and the model generalizes to novel
objects within known categories.

In [112], the authors forgo mixture of Gaussians by proposing the articulation-
aware normalized coordinate space hierarchy, a canonical representation for each ar-
ticulated object category. Within this representation, object scales, orientations, and
articulation parameters are normalized, allowing a neural network to directly regress
to coordinates in this space. The proposed model uses PointNet++ to process point
clouds extracted from depth images, and depth image data for training is also gener-
ated in simulation.

The authors of ScrewNet [113] removed the assumption of known object categories
or kinematic models. Instead, they represent the relative motion of point clouds as
a screw motion: rotation of a body around an axis coupled with a translation in
the axis. ScrewNet is a neural network that directly predicts parameters of this
screw motion between articulated parts, inferring articulation type without known
kinematic models. However, to make this prediction, the network requires a sequence
of depth images, with the articulated object parts moving relative to each other.

Procrustes-Lo-RANSAC (PLR) [114, 115] similarly predicts articulation types
without a priori kinematic models. PLR leverages a geometric vision-based algo-
rithm instead of a neural network, but it requires observations of the object in two
distinct articulation configurations.

Like [113–115], our work does not require prior definitions of category-level kine-
matic models. Instead, our proposed method uses a single image observation to
predict articulation type; no observations of part motion are required.

Vision-based object pose estimation for manipulation. Our work can be
viewed as a form of vision-based pose estimation, wherein we infer the constrained
poses that the connected parts of an object would move under the predicted articu-
lation kinematics. In this view, our work relates to pose estimation in manipulation
settings, which includes both objects [48, 52, 63, 116] and robots [29, 86, 87, 117].
Of these works, PVNet [48] also regresses to a residual (pointing to object keypoints
for pose estimation), whereas our motion residual is used to infer the kinematic con-
straint. For practical manipulation scenarios, we also note the success of DART [58],
a depth-based tracking algorithm for articulated models. Our learning-based model
facilitates single-image estimation of articulation motion that generalizes without
needing a model specification for novel objects, as DART does. Lastly, our system
can be integrated into a vision-based manipulation pipeline, such as the one described
in [118]. Instead of object pick-and-place, our approach would facilitate object artic-
ulated motion, such as opening cabinets and doors.

34

Ch. 3 – FormNet: Visual Identification of Articulated Objects from a Single Image
Observation through Synthetic Sim-to-Real Transfer

Figure 3.2: Neural network architecture for FormNet. It takes as input the RGB,
depth, and segmentation images of two queried object parts. Conv means convolu-
tion layers, E means intermediate embedding, T-conv means transposed convolution
layers, and FC means fully-connected layers. The network produces two outputs:
motion residual flow and binary part connectedness. If the two queried parts are pre-
dicted to be connected, plane fitting via RANSAC is used to post-process the motion
residual flows to estimate the articulation mechanism’s type and parameters.

3.4 Method
In this section, we describe the proposed neural network model (FormNet) for

vision-based identification of articulations of object parts, how its training data is
generated, and the representations of the model’s inputs and outputs.

3.4.1 Overview
Our approach identifies kinematic constraints between pairs of object parts from a

stationary visual observation alone. We construct a neural network model that takes
as input a single-view RGB-D image and segmentation masks of two distinct object
parts. We focused on designing and training this network, and assume the part seg-
mentation masks are provided from a pre-existing algorithm (e.g., [119]). The neural
network provides two outputs for the segmented parts: (1) a parts connectedness
classification and (2) the motion residual flow, which is the displacement of the sec-
ond part relative to the first part if the second part moves under their kinematic
constraint. Two parts are connected if they are parts of the same articulated ob-
ject and are neighbors of one another in the object’s kinematic chain. The joint for
two connected parts is classified as revolute, prismatic, or fixed, depending on the
predicted motion residual flow. Furthermore, we apply RANSAC on the predicted
motion residual flow to extract articulation parameters for revolute (rotation axis)
and prismatic (direction of movement) joints.

By formulating our network to infer the articulation type between a pair of object
parts, our approach works with images containing an arbitrary number of articu-
lated objects. Therefore, predefined categorical models or shared coordinate spaces
of articulated objects are not needed; the network does not need to reason about

35

Ch. 3 – FormNet: Visual Identification of Articulated Objects from a Single Image
Observation through Synthetic Sim-to-Real Transfer

Door Window Faucet Dishw. Fridge Cab.
Objects 30 28 23 30 20 18
Parts 92 112 115 92 98 109
Type R P R R R P,R

Table 3.1: Dataset Statistics. Objects shows the number of object models. Parts
shows the total number of distinct object parts. Type lists the type of articulations
that exist in that category, where R = revolute and P = prismatic. Dishw. stands
for Dishwasher, and Cab. stands for Cabinet.

multiple articulation mechanisms belonging to specific object categories. In addition,
this formulation also allows our model to generalize to object categories unseen dur-
ing training. The entire kinematic chain of an articulated object in an image can be
recovered by querying the network with all pairs of object parts.

The proposed model is trained via a large dataset of synthetically rendered images
of articulated objects. Domain randomization and augmentations are applied to the
training images, facilitating a network that is robust and invariant to changes in
viewpoint, lighting, textures, occlusions, and object joint configurations. Models of
articulated objects came from PartNet-Mobility, from which we filtered and cleaned
models to form our training set.

3.4.2 Dataset of Articulated Objects
We considered several public datasets of objects with object part information for

making our training data, including RBO [120], ShapeNet [121], and PartNet [122].
To train a generalizable articulation identification model, an object dataset is needed
that contains a wide variety of object categories, a large number of diverse objects
within each category, and labels of articulation types between connected object parts.
The RBO dataset is a collection of 14 objects with 358 RGB-D interaction video
sequences. While it provides articulation and part segmentation, the relatively small
size makes it inadequate as training data. ShapeNet consists of over 3 million 3D CAD
models, of which 220K are classified to 3135 categories. PartNet contains roughly 26K
models across 24 object categories with good part segmentation. While ShapeNet and
PartNet are sufficiently large, both datasets lack articulation information.

In recent works, Shape2Motion [121] and PartNet-Mobility [109] have augmented
ShapeNet and PartNet to include articulation information. Shape2Motion is large
with over 2.4K objects. However, it is not amenable to simulation and rendering;
it lacks joint limit information and object textures. PartNet-Mobility does not face
such limitations and has our desired properties: the dataset has over 2.4K objects
across 46 categories, object textures, and articulation information with joint limits.

36

Ch. 3 – FormNet: Visual Identification of Articulated Objects from a Single Image
Observation through Synthetic Sim-to-Real Transfer

As such, we use PartNet-Mobility to generate the training data for our articulation
prediction model (Table 3.1).

We processed meshes from PartNet-Mobility to choose (1) categories with strong
visual signals in kinematic constraints and (2) characteristic subsets of objects from
each chosen category. The six categories chosen were doors, windows, faucets, dish-
washers, refrigerators and cabinets. In each category, we choose a representative
subset of objects that maintains intra-category variability. In total, 149 objects were
selected. We cleaned the selected mesh models by scaling meshes to realistic sizes and
standardizing the orientation of their coordinate frames. The former makes rendered
images more realistic (i.e., faucets are typically smaller than refrigerators). The latter
ensures that objects of the same categories appear in similar poses when loaded for
rendering. Lastly, we removed object parts and articulation connections that were
too detailed. For example, the interior racks of dishwasher models were ignored in
our dataset.

3.4.3 Dataset of Scene Images with Articulated Objects
The network is trained using synthetic data with domain randomization and image

augmentation. Data was generated using NVIDIA Isaac Sim3, a GPU-accelerated
robotics simulator that supports photorealistic rendering. Articulated objects were
loaded into a clean virtual scene and several randomizations were applied, including
camera pose, scene lighting, object pose, size, texture, and distractor objects.

To make the trained articulation prediction model generalizable across a wide
variety of scenes, we perform domain randomizations to render the synthetic dataset.
The camera is positioned randomly within the front upper hemisphere of the object,
a region where a robot is likely to be to perform manipulation. Joint configurations
of articulated objects are randomized within their joint limits. Object sizes are also
randomly scaled between 0.5 and 2.0 during generation. In addition, we randomize
object textures and scene lighting. These randomizations accommodate for intra-
category variation. While household items have diverse appearances (i.e., the width,
color, and length of doors might differ), these particular differences do not affect the
underlying articulation mechanisms. Scaling and changing the visual properties of
the objects in the training data makes the model invariant to such details. Lastly,
distractor objects consisting of common objects and household items are included to
produce natural occlusions of articulated object parts.

In total, approximately 100K image scenes were rendered, each including an RGB-
D image of resolution 640× 480, an object part segmentation image, and the articu-
lation information of objects in the scene.

In addition to domain randomization, we apply standard image augmentation
techniques during training, including geometric transformations such as random ro-
tations, flips, and crops [54]. For RGB images, we perform random visual transfor-

3https://developer.nvidia.com/isaac-sim

37

https://developer.nvidia.com/isaac-sim

Ch. 3 – FormNet: Visual Identification of Articulated Objects from a Single Image
Observation through Synthetic Sim-to-Real Transfer

mations such as contrast and brightness. We also add realistic noises to depth and
segmentation masks to make the trained model more robust. For depth images, we
apply additive correlated Gaussian noise and multiplicative gamma noise to simulate
realistic depth sensor noise [85]. To add realistic noise to the boundaries of the bi-
nary segmentation masks, we apply salt and pepper noise followed by a morphological
closing operation.

Each data sample during training is generated with a pair of object parts in a
rendered image. We first pick a pair of object parts from the segmentation image.
The network input then consists of the RGB-D image of the entire scene and two
binary segmentation masks of the chosen pair of object parts. The output consists
of a binary part-connectedness label of the corresponding pair as well as the motion
residual flow of the second part relative to the first part. The motion residual flow is
a W ×H × 3 image, where each pixel is only non-zero if it occupies a pixel belonging
to the second object part. See Figure 3.4 for some examples. In these non-zero
pixels, the values of each pixel correspond to where the corresponding point on the
object part in 3D space would be if the object part is moved by a fixed magnitude
following its kinematic constraint with the other part. The direction of the motion is
expressed in the camera frame. For fixed joints, the motion residual is 0. For revolute
joints, the movement magnitude is 30◦. For prismatic joints, the movement magnitude
is 0.3M , where M is the maximum joint movement distance provided by PartNet-
Mobility. The exact magnitudes of these movement offsets are not important, since
the network is not tasked with learning the range of motion of articulated objects,
just their articulation types.

3.4.4 Network Architecture
The neural network for our approach is an hourglass encoder-decoder architecture

similar to the network used for DREAM [29]. As shown in Fig. 3.2, the network takes
as input a stacked image observation of size 640 × 480 × 6, with 4 RGB-D channels
and 2 part-segmentation mask channels. The network predicts the motion residual
flow as a 640× 480× 3 image and binary part-connectedness label.

The image encoder consists of the convolutional layers of VGG19 pretrained on
ImageNet [123]. The decoder (upsampling) module has four 2D transpose convo-
lutional layers (stride = 2, padding = 1, output padding = 1), and each layer is
followed by a normal 3× 3 convolutional layer and ReLU activation layer. The first
output head is the part connectedness, consisting of 3 fully connected layers. The
second output head for the motion residual flow is composed of 3 convolutional layers
(3× 3, stride = 1, padding = 1) with ReLU activations with 64, 32, and 3 channels,
respectively. There is no activation layer after the final convolutional layer.

The network is trained with a Cross Entropy loss on part connectedness and a
Mean Square Error loss on the motion residual flow. Let yc

n ∈ {0, 1} and yf
n ∈

R640×480×3 respectively denote the binary part-connectedness and motion residual

38

Ch. 3 – FormNet: Visual Identification of Articulated Objects from a Single Image
Observation through Synthetic Sim-to-Real Transfer

Figure 3.3: Visualizations of estimated pre-motion and post-motion planes. In both
images, pre-motion planes are outlined in bright green on the original object part,
while the post-motion planes are visualized with a blue infill. In the left image, the
red annotations denote the estimated axis of the predicted revolute joint. In the right
image, the red arrow denote the direction of the prismatic joint.

flow of the nth training sample, and ŷc
n, ŷ

f
n be their estimated counterparts produced

by the neural network. The weighted loss function on the two outputs is defined as:

SE(yf
n, ŷ

f
n) = ∥yf

n − ŷf
n∥2 (3.1)

CE(yc
n, ŷ

c
n) = −yc

n log(ŷc
n) + (1− yc

n) log(1− ŷc
n) (3.2)

L = 1
N

N∑
n=1

wsey
c
nSE(yf

n, ŷ
f
n) + wceCE(yc

n, ŷ
c
n) (3.3)

Note that we only propagate the motion residual squared error loss when the parts are
connected. The weights wse = 0.6 and wce = 0.4 were chosen after hyperparameter
search.

3.4.5 Articulation Prediction from Motion Residual Flows
If the network predicts that the two queried object parts are connected, then we

process the predicted motion residual flow to robustly estimate the part articulation
type and parameters. Algorithm pseudocode can be found in the supplementary
materials. First, a plane is fitted on the point cloud of the object part in the input
observation. We refer to this as the pre-motion plane. Next, we fit a second plane
on the point cloud of the object part, where each point is translated by the predicted
motion residual flow. We refer to this as the post-motion plane. Refer to Fig. 3.3 for
examples of revolute and prismatic planes.

For fitting both planes, RANdom Sample Consensus (RANSAC) [124] is used
to obtain robust estimations given depth and segmentation noise that exists in the

39

Ch. 3 – FormNet: Visual Identification of Articulated Objects from a Single Image
Observation through Synthetic Sim-to-Real Transfer

network inputs as well as estimation errors in the network outputs.
The articulation type and parameters can be inferred through comparison of the

position and orientation of the pre-motion and post-motion planes. If the planes are
sufficiently close together (i.e., the predicted motion residuals are all close to 0), then
the predicted articulation type is fixed. Otherwise, if the pre-motion and post-motion
planes are sufficiently parallel, then the articulation type is prismatic. In this case, the
direction of the prismatic kinematic constraint is the direction of the average motion
residual flow. Lastly, if the motion residuals are not all close to 0 and the planes are
not parallel, then the predicted articulation type is revolute. In this case, the axis
and location of the revolute joint is the line where the pre-motion and post-motion
planes intersect. Extracting articulation parameters from motion residual planes in
this manner allows the network to learn a single output representation that works for
fixed, revolute, and prismatic joints.

3.5 Experiments
We evaluate our network on synthetic images and show successful transfer to real-

world data. Specifically, we report (1) test accuracy achieved with our network with
synthetic images when trained on all object categories, (2) generalization to categories
unseen during training in a leave-one-out fashion, and (3) generalization to real-world
images. See Fig. 3.4 for representative qualitative results. An ablation study is further
conducted to train the network on each single category and test against all others, to
analyze knowledge transfer between categories.

3.5.1 Network Training
The neural network was implemented with PyTorch and optimized via the Adam

optimizers with a learning rate of 1.2 × 10−4 and momentum of 0.9. These were
tuned via hyperparameter search. The training set consisted of 70k images, and the
remaining 30k were used in the test set. The network took 30 epochs to train, taking
32 hours on an NVIDIA Tesla V100 GPU.

3.5.2 Network Accuracy (All Object Categories)
To evaluate the accuracy of the classified articulation types, we separate the pre-

dictions into 4 classes: prismatic, revolute, fixed, and unconnected. We refer to this
as combined accuracy (CA). Two additional metrics are evaluated: accuracy over
part connectedness (PC) and accuracy over connected articulation type (AT). The
former is the binary classification accuracy of whether or not two parts are connected.
The latter is only the articulation type accuracy when the network predicts a true
positive part connectedness.

40

Ch. 3 – FormNet: Visual Identification of Articulated Objects from a Single Image
Observation through Synthetic Sim-to-Real Transfer

Figure 3.4: Visualization of network inputs and outputs for the Door and Cabinet
categories on synthetic data (top two rows) and real-world images (bottom two rows).
Additional categories are visualized in supplementary materials. PT means predicted
articulation type, and GT ground truth type. Articulation is either revolute (R),
prismatic (P), fixed (F), or unconnected (U). The network takes in a stack obser-
vation of RGB image, depth image, and two part segmentation masks. The green
segmentation mask is the anchor object part and the yellow segmentation mask is
the candidate object part. The direction of the motion residual flow is visualized by
color gradients, where a prismatic articulation is a single solid color, while a revolute
articulation is a gradient towards the axis of rotation.

41

Ch. 3 – FormNet: Visual Identification of Articulated Objects from a Single Image
Observation through Synthetic Sim-to-Real Transfer

Object Category
Metric Door Wind. Fauc. Dish. Frid. Cab. Avg.

AT 85.6 75.1 84.4 72.1 76.2 67.7 76.4
PC 97.8 91.2 94.6 95.7 95.4 92.5 94.1
CA 88.7 79.6 87.5 78.6 84.2 77.5 82.5

B-CA 81.5 58.7 74.3 60.1 62.7 71.2 68.0

Table 3.2: Accuracy by Category on Test Set. B-CA refers to a classification-only
baseline method where the output head of the network is performing articulation and
connectedness classification directly instead of regressing to motion residual flows.
All numbers are shown in percentage.

Object Category
Metric Door Window Faucet Dishw. Fridge Cabinet

AT 78.8 26.5 66.2 76.3 60.3 33.5
PC 94.6 96.7 85.7 95.5 93.6 89.2
CA 82.1 47.2 73.0 81.48 73.8 58.6

Table 3.3: Performance on Novel Object Categories.

Table 3.2 shows the test classification metrics by object category when the network
is trained on all object categories. Similar test accuracies are achieved across cate-
gories. Fig. 3.5 shows the accuracy of the predicted articulation parameters (location
and direction of revolute axes, and direction of prismatic axes).

3.5.3 Generalization to Novel Object Categories
We also evaluate how well the proposed method generalizes to novel object cat-

egories unseen during training. See Table 3.3 for results. We use a leave-one-out
scheme for this evaluation. Specifically, we train six additional models, with the same
hyperparameters, such that each model is trained on all categories except a left out
category. Each model is then evaluated on the category it was not trained on.

We observe worst performance on windows and cabinets, mediocre performance
on faucets and refrigerators, and best performance on doors and dishwashers. The
difference between the best and worst performing category is significant, differing by
over 50% (windows at 26.5% vs doors at 78.8%). The prediction for windows was
worse than chance.

We investigate the abnormally low AT performance of windows in Table 3.3,

42

Ch. 3 – FormNet: Visual Identification of Articulated Objects from a Single Image
Observation through Synthetic Sim-to-Real Transfer

Figure 3.5: Predicted articulation parameter accuracy for revolute axes (top) and
prismatic axes (bottom) on test set for all object categories. The revolute axis distance
error is the average distance between the points on the ground truth axis to their
projections on the predicted axis. The revolute and prismatic angle errors are the
angle between the ground truth and the predicted axes. All plots show the percentage
of data points that have error below a given threshold.

43

Ch. 3 – FormNet: Visual Identification of Articulated Objects from a Single Image
Observation through Synthetic Sim-to-Real Transfer

Figure 3.6: Misleading examples of a window (left) and two doors (right). The
shapes of the door panel and window frames, and handles for the window and first
door (brown) are similar.

Figure 3.7: Misleading examples of a prismatic cabinet (left) vs other objects (pris-
matic window, revolute dishwasher, refrigerator). The geometry of the cabinet drawer
is different from that of the window, but they both have prismatic joints. By con-
trast, the handle of the drawer has a similar shape to those of the dishwasher and the
refrigerator, even though the latter have revolute joints.

which mainly consists of sliding prismatic joints. High PC across all categories shows
that the model identifies connected parts of windows, but it is predicting the wrong
articulation types. Analyzing the outputs indicate that most wrong predictions are
revolute. We hypothesize two reasons for this: (1) lack of representation of prismatic
objects in the training data and (2) misleading revolute objects that share visual
similarities with the prismatic windows. Eliminating windows from the training data
leaves five categories, of which only one comprises of prismatic-dominant joints.

We also observe similar visual features across windows, doors, and refrigerators,
with the latter two as revolute objects. Specifically, they share similar frames, boards

44

Ch. 3 – FormNet: Visual Identification of Articulated Objects from a Single Image
Observation through Synthetic Sim-to-Real Transfer

Train Test Category
Category Door Window Faucet Dishw. Fridge Cab.

Door 98.7 2.5 48.7 53.7 49.6 37.3
Window 3.2 93.2 8.9 7.8 5.6 38.2
Faucet 33.7 8.7 88.7 4.1 4.3 17.2
Dishw. 34.2 12.8 3.8 98.5 52.1 34.6
Fridge 56.2 15.5 23.2 55.2 87.5 38.7
Cab. 49.6 32.5 13.5 3.4 38.7 83.2

Table 3.4: Performance of Training on One Category. Overall articulation accuracies
when trained on one category (each row) and tested on other categories (each column).

and handles, as observed in Fig 3.6.
High visual similarity between windows and revolute objects in the training set

may explain the high prediction rate of revolute for windows. The importance of
visual similarity is further reflected in cabinets, the other low-performing category.
Although cabinets consist of both prismatic and revolute joints, 73% of the errors
occur on the prismatic slots. There was only one training category that was prismatic-
dominant (windows), and their object parts showed conflicting visual features with
the cabinets as seen in Fig 3.7.

3.5.4 Generalization from Training on One Category
We formed hypotheses to explain the low transfer for certain unseen categories in

the previous section. A lack of or misleading similarity in visual features of the object
parts resulted in misclassifications. This could be significant in our understanding of
category generalization. What features and representation do we need in our training
categories for good generalization? To answer the question and test our hypotheses,
we perform an additional ablation study – training networks on just a single category
and testing them across all the other five categories. See Table 3.4 for results.

Learning is limited between articulation mechanisms. Different articulation mech-
anisms (prismatic, revolute) cannot learn well from each other. When trained on a
category with only one articulation mechanism, predicting objects with different artic-
ulation is low. For instance, a model trained on windows (prismatic) performs below
10% for all but cabinets (the only other category that contains prismatic joints). We
also observe relatively high, consistent performance when testing cabinets, regardless
of the trained category. Limited learning between articulation mechanisms explain
this better performance because only cabinets contain both articulation mechanisms.
Therefore, cabinets have partial representation in each trained category. Conse-
quently, cabinets also fail to achieve at least 40% for any trained category, due to

45

Ch. 3 – FormNet: Visual Identification of Articulated Objects from a Single Image
Observation through Synthetic Sim-to-Real Transfer

the presence of both articulation mechanisms. Having both articulation mechanisms
imply that one of the articulations would be unseen in the train category.

The results also support our hypothesis that misleading similarity in visual fea-
tures create misclassifications. The lowest transfer occurs between doors and windows.
While both performs well on its own category, correct prediction of the other cate-
gory falls in the 2−3% range. Comparing two sample objects from the two categories
show similar handles, boards and frames in Fig. 3.6. However, their ground truth
articulation types are different, which explains the low performance. Dishwashers
and refrigerators have the highest transfer, and comparing two sample objects show
similar handles and physical structure in Fig. 3.7.

3.5.5 Real-world Experiments
Despite only being trained using synthetic data, our network also bridges the

reality gap when deployed in the real world. To assess how well our model transfers
to real-world data, we took 18 RGB-D images of various household items in our homes
(comprising of refrigerators, doors, faucets, and cabinets). Part segmentation masks
were generated with semi-automatic DEXTR segmentation [125]. Results showed
successful transfers, where the model predicts the correct articulation types for 12 of
the 18 images. Example visualizations are shown in the bottom rows in Fig 3.4.

3.6 Conclusion
We present FormNet, a deep learning approach that predicts articulation mech-

anisms of object parts from a single image observation without physical interactions
and pre-specified categorical kinematic models. Training data is generated with a
photorealistic simulator with 6 object categories and 149 objects. Domain random-
ization over camera poses, lighting, object sizes, textures, and occlusions make the
trained network robust to these variations. Experiment results show that our ap-
proach generalizes to novel object categories in simulation and can be applied to
real-world images without fine-tuning.

3.7 Acknowledgments
This work is supported by the NSF Graduate Research Fellowship Program Grant

No. DGE 1745016, NSF Grants No. IIS-1956163 and CMMI-1925130, the Office of
Naval Research Grant No. N00014-18-1-2775, the NVIDIA NVAIL Program, and the
CMU Summer Undergraduate Research Fellowship.

46

III
Structural Sim-to-Real

Transfer

47

4 CREST: Causal Feature
Selection for Policies

Which state features are important for learning a control policy? Our approach,
CREST, addresses this question through causal feature selection. CREST selects
the relevant state variables for a given control policy, which apply over the policy’s
preconditions. The assumptions for CREST are that an internal model (i.e., an ap-
proximate task simulation) exists, the context space representation of the internal
model facilitates causal interventions, and the (parameterized) control policy and its
preconditions are known. Through structure and transfer learning, CREST enables
learning of policies that are compact, avoiding unnecessary state features. By con-
struction, policies built using CREST are robust to distribution shifts in irrelevant
variables, whereas baseline methods may yield policies with spurious correlations
that are brittle. Such distribution shifts could arise from transfer between the in-
ternal model and reality, due to variations in dynamics or context distributions not
encountered during pretraining with the internal model.

Application example. As a concrete example of the types of problems that
could be addressed using CREST, consider the case of a home manipulation robot
that is tasked with cleaning up fitness weights in a household living room. This task
requires the robot to grasp a weight, pick it up, and place it back on a rack. The
robot executes this action using a control policy that is a parameterized controller
that takes as input various context variables corresponding to factors related to the
scene. Fitness weights may often have a coating with a particular, uniform color
based on its mass. So, some of the context variables the robot could consider includes
the weight color and the geometric dimensions (e.g., length) of the weight. For this
example, we assume that the weight’s mass is observable or otherwise known to the
robot, so mass would also be a variable to consider. With an approach that is agnostic
to causal structure, the robot may learn a correlation that, in order to provide the
correct controller input, color has an influence on the controller parameters. However,
this relationship does not hold in general. If the robot were to attempt this task us-
ing weights from a different manufacturer (and thus different color for each weight),
the robot would fail to complete the task by incorrectly estimating the controller
parameters based on color. However, CREST can provide a solution for determining

48

Ch. 4 – CREST: Causal Feature Selection for Policies

which variables should be used as input to the control policy. Assuming an internal
model and context space representation are available of the task that admits causal
interventions, the robot can use CREST to conduct interventions upon context vari-
ables within the internal model to determine which variables affect the policy. This
approach would correctly determine that color, while useful for perception, would be
irrelevant for control, whereas the robot should instead incorporate mass as an input
to the policy.

This example demonstrates the difference between conditioning and intervening
upon a variable. For the set of weights from one manufacturer, conditioning upon
color may work, but this will not generalize to weights from other manufacturers.
Instead, intervening upon color would demonstrate that changing a weight’s color,
with all other factors held equal, would not affect how the robot should pick and
place the weight. On the other hand, an intervention upon mass would correctly
expose this feature as the causal variable needed for control, instead of color, which
is a rule that generalizes across weights from different manufacturers.

Sections of the remainder of this chapter first appeared in [31]. Additional
information is provided in App. B. This work was presented at the 2021 IEEE
International Conference on Robotics and Automation (ICRA 2021). We thank

our collaborators on this work: Jialiang (Alan) Zhao, Amrita S. Sawhney,
Siddharth Girdhar, and Prof. Oliver Kroemer.

4.1 Summary
We present CREST, an approach for causal reasoning in simulation to learn the

relevant state space for a robot manipulation policy. Our approach conducts inter-
ventions using internal models, which are simulations with approximate dynamics
and simplified assumptions. These interventions elicit the structure between the state
and action spaces, enabling construction of neural network policies with only relevant
states as input. These policies are pretrained using the internal model with domain
randomization over the relevant states. The policy network weights are then trans-
ferred to the target domain (e.g., the real world) for fine tuning. We perform extensive
policy transfer experiments in simulation for two representative manipulation tasks:
block stacking and crate opening. Our policies are shown to be more robust to domain
shifts, more sample efficient to learn, and scale to more complex settings with larger
state spaces. We also show improved zero-shot sim-to-real transfer of our policies for
the block stacking task.

49

Ch. 4 – CREST: Causal Feature Selection for Policies

4.2 Introduction
Real-world environments, such as homes and restaurants, often contain a large

number of objects that a robot can manipulate. However, usually only a small set of
objects and state variables are actually relevant for performing a given manipulation
task. The capability of reasoning about what aspects of the state space are relevant
for the task would lead to more efficient learning and greater skill versatility.

Current approaches to learning versatile manipulation skills often utilize sim-to-
real transfer learning [126–129], wherein the skill is learned in a simulation and then
deployed and fine-tuned (if feasible) on the real robot. Sim-to-real learning is often
combined with domain randomization (DR) [43], which involves training the skill on a
wide range of task instances in simulation such that the resulting skill is more robust
and generalizes across task variations. However, for scenes with distractor objects,
the policy still takes the irrelevant state features as inputs. Larger domain shifts in
the irrelevant features can therefore still be detrimental to the performance of the skill
policy. Rather than relying only on DR, the robot can use model-based reasoning to
identify the “structure” of a policy — the interplay between relevant state inputs and
control outputs.

In this paper, we propose using causal reasoning to improve sim-to-real transfer
through conducting interventions in simulation to determine which state variables are
relevant for the successful execution of a task using a given controller. We refer to the
resulting algorithm as CREST: Causal Reasoning for Efficient Structure Transfer.
The relevant state variables from CREST are used to construct policies that encode
the causal structure of the manipulation task. These policies are initially trained
in simulation using domain randomization over only the states that have explicitly
been determined as relevant. Moreover, policies that only use relevant state variables
require significantly fewer parameters and, by construction, are robust to distribution
shifts in irrelevant state spaces. In this manner, our approach produces lightweight
policies that are designed for efficient online adaptation to unforeseen distribution
shifts that may occur when bridging the sim-to-real gap. This contrasts with existing
sim-to-real approaches that train large policies over enormous state spaces, where the
costs for achieving robust zero-shot transfer may be intractable.

Our proposed approach was successfully evaluated on block stacking and crate
opening tasks. Although our method is intended for sim-to-real transfer, we primar-
ily conduct our experiments by transferring to task simulations in NVIDIA Isaac
Gym [130], a high-fidelity physics simulator, as a proxy for real systems. This is
necessary to experimentally evaluate distributions shifts that would be intractable to
evaluate (but nonetheless feasible) in practical manipulation scenarios. Additionally,
we validate our approach for zero-shot, sim-to-real performance for the block stacking
task.

The contributions of our work are as follows.
• We propose CREST, an algorithm that uses causal reasoning in simulation to

50

Ch. 4 – CREST: Causal Feature Selection for Policies

identify the relevant input state variables for generalizing manipulation policies.

• We propose two neural network architectures that are constructed using the
causal information from CREST.

• We conduct rigorous transfer learning experiments to demonstrate these poli-
cies generalize across task scenarios, scale in relevant state complexity, and are
robust to distribution shifts.

• We propose CREST as one approach to a broader methodology of structure-
based transfer learning from simulation as a new paradigm for sim-to-real robot
learning, i.e., structural sim-to-real.

4.3 Related Works
Our work relates to research areas in robotics and machine learning for structure-

based learning, causality, attention, and sim-to-real transfer of higher-level policies.
Structure-based learning, causality, and attention. Causal reasoning for

structure, transfer, and reinforcement learning is an emerging area of research [131,
132], having been demonstrated for transferring multi-armed bandits policies [133],
examining distribution shifts via imitation learning [134], modeling physical interac-
tions from videos [135], and clustering causal factors [136]. Causality reasons about
the data generation process with respect to an underlying model [16], which our
CREST policies encode. The motivation of our approach to transfer learned causal
structure is similar to that described by [137]. In our work, we represent this struc-
ture through the policy inputs, and we demonstrate the approach achieves sim-to-real
transfer.

Our view of policy structure can be seen as an explicitly encoded form of state
space attention, achieved via construction of policies using only relevant inputs. We
are primarily concerned with object feature states, which enable significantly smaller
neural networks to be constructed under our assumptions. As a comparison, [138]
learns implicit attention to task-relevant objects to generalize manipulation skills.
This approach requires a few example trajectories to be provided and uses a vision-
based state representation, making explicit reasoning about states more challenging.

Similar to [139], our approach can also generalize policies to unforeseen dynamic
distribution shifts; ours does so primarily through more efficient fine-tuning.

Our work is also similar in spirit to the work of Nouri and Littman [140] in terms
of achieving dimensionality reduction for reinforcement learning. Whereas our work
seeks to reduce the dimensionality for the state’s possible influence on the task policy
under different contexts, they instead demonstrate dimensionality reduction in the
action space. Kolter and Ng [141] as well as Parr et al. [142] approximate the value
function by learning the relevant basis functions.

51

Ch. 4 – CREST: Causal Feature Selection for Policies

Sim-to-real and higher-level policies. Our work is a form of simulation-to-
reality transfer of controllers [43, 126, 143, 144]. Unlike in the typical sim-to-real
paradigm, our policies are not required to transfer zero-shot. Rather, the dimension-
ality reduction afforded by transferring the relevant state space with CREST enables
more efficient online adaptation. Unlike [145], we do not transfer any target samples
back to the internal model. Similar to the problem settings of [146–148], our agent
predicts the best parameters for a controller.

4.4 Problem Formulation
We formulate our problem as a multi-task reinforcement learning problem, wherein

a policy π is learned to complete a series of tasks Ti. Each task is modeled as a
Markov decision process (MDP). The state space S and action space A are the same
across tasks. However, each task Ti defines a separate initial state s0(ci), transition
function p(s′|s, a, ci), and reward function r(a, s, ci) that are parameterized by the
task’s context variables ci ∈ C. We assume that the robot has an internal model
pint(s′|s, a, ci) that approximates the transition function of the target task domain
p(s′|s, a, ci).The context variables capture object parameter variations, such as shapes,
appearances, and initial states. We assume that the context variables are always set
such that the task is feasible.

To solve the tasks, the robot learns a policy π(a|s, c) that is decomposed into two
parts [149]: an upper policy π(θ|c) and a lower control policy πθ(a|s), where θ ∈ Rd

are the controller parameters. Transferring the parameters from the internal model
to the target domain may require fine-tuning. At the start of each task, the upper
policy, which is responsible for generalizing between different task contexts, selects a
set of parameters for the control policy to use throughout the task execution. We use
multilayer perceptron (MLP) neural networks for the upper policy. In principle, the
control policies can take on a variety of parameterized forms, such as motor primitives,
planners, waypoint trajectories, or linear feedback controllers, depending on the task.
We assume a control policy with known preconditions is available.

Of the context variables c that describe the object variations in the scene, only a
subset may be relevant for the policy. We refer to this subset of relevant variables as
τ ⊆ c, such that the robot can learn a policy π(θ|τ) to complete the tasks. Our goal
is to determine τ through causal reasoning with the internal model, yielding policies
with fewer input variables as compared to naively using all of c.

The set of controller parameters can be divided into individual parameters [θ]j∀j ∈
1, ..., d, where [θ]j indicates the jth element of vector θ. Each of these parameters may
rely on a different set of relevant variables. We can thus further divide the problem
into determining a set of context variables τj for each policy parameter [θ]j, such that
the robot can learn a partitioned task policy π([θ]j|τj)∀j ∈ 1, ..., d.

52

Ch. 4 – CREST: Causal Feature Selection for Policies

4.5 Causal Structure Learning
CREST uses an internal model of the task to learn the relevant context τ and

parameter-specific mappings τj that define the structure of the upper policy (c.f,
Sec. 4.6.1).

4.5.1 Internal Model for Causal Reasoning
Our approach assumes an internal model, an approximate simulation of the task,

is available. Analogous to mental models and approximate physics models [150, 151],
the internal model facilitates reasoning about the effects of different context variations
∆c on completing the task with policy parameters θ. Varying the relevant context
parameters τ will affect the execution and outcome of the task in the internal model
while irrelevant ones will not.

Given its approximate nature, the solution obtained in the internal model is not
necessarily expected to transfer zero-shot to reality. Instead, the internal model pro-
vides both an estimate of the policy structure and a task-specific initialization via
network pretraining. Intuitively, it is easier to reason about which variables are im-
portant for a model rather than exactly characterizing the exact model itself. For
example, the internal model can capture that the weight of an object affects the
required pushing force, but the exact details of frictional interaction may be approxi-
mated for the purposes of pretraining the policy. We assume that the internal model
approximates the task sufficiently well and includes all context variables c that vary
in the target domain. Given the existing challenges in causal representation learn-
ing [25], we additionally assume the representation of c is amenable for determining
the underlying model for θ via causal interventions [18].

4.5.2 Causal Reasoning to Determine Relevant Contexts
At its core, CREST uses simulation-based causal reasoning to determine the rel-

evant context variables for the policy input. This process is divided into two phases:
1) determining the overall set of relevant variables τ , and 2) determining the relevant
variables τj for specific policy parameters [θ]j.

Causal interventions to determine relevant variable set. In this phase,
the relevance of a state variable is determined by posing the following question: “If
a context variable were different, would the same policy execution still complete the
task successfully?” To answer this, we first uniformly sample a context ci ∼ p(c) and
solve the resulting task in simulation to acquire the corresponding policy parameters
θi. In practice, the policy parameters are optimized using Relative Entropy Policy
Search [152]. Importantly, the policy is solved for only this specific context ci (not
the general policy).

53

Ch. 4 – CREST: Causal Feature Selection for Policies

Given the solved task, we conduct interventions ∆c to determine if the policy
parameters θi remain valid for the new context ci+∆c. Interventions ∆c are conducted
to only alter one context variable at a time, i.e. ||∆c||0 = 1. If the policy subsequently
failed, the intervened variable is considered relevant and thus appended to τ . If the
policy succeeded, despite the intervention, then the variable is considered irrelevant
and is not required for the general policy. The resulting relevant variable set τ is
sufficient for constructing Reduced MLP policies (c.f., Sec. 4.6.1).

Causal interventions to determine individual policy mappings. Reducing
the set of state variables from the full set c to the relevant set τ may greatly reduce the
size of the policy input. However, for some problems, each of the policy parameters
may only depend on a subset of τ . Therefore, in the next phase, the individual
mappings from the relevant state variables to the controller parameters are determined
by posing the question: “Does altering this relevant context variable require this policy
parameter to be changed?”

We begin from the previous phase, where ci with solution θi is available with
interventions ∆c. In this phase, interventions are only applied to relevant context
variables τ .

For each new context ci + ∆c, the task is solved to obtain the resulting policy
parameters θi + ∆θ, starting the optimization from the original parameters θi. The
optimization will often alter all of the policy parameters, i.e., all elements of ∆θ
are non-zero, and the magnitude of their changes are not reliable estimators of their
importance. Instead, a solution that minimizes the number of non-zero changes, i.e.,
min ||∆θ||0, is obtained using search. This search involves setting subsets of elements
in ∆θ to zero and evaluating if the resulting policy still solves the task with context
ci + ∆c. In our experiments, we used a breadth-first search to find a solution with
a minimal set of parameter changes. Once a subset of parameter changes has been
found, the context variable intervened on in ∆c is added to the sets τj of relevant
inputs for the policy parameters with non-zero elements in the final ∆θ. The output of
this phase (the parameter-specific variables τj) can then be used to learn Partitioned
MLP policies (c.f., Sec. 4.6.1).

4.5.3 CREST Evaluation
Although we primarily use CREST for manipulation policies, we quantify the ac-

curacy of CREST in a limited, application-agnostic manner. Table 4.1 shows the
results of CREST on an environment that replicates the causal structure of hierarchi-
cal manipulation policies. This environment is designed so that, given a set of ground
truth mappings between context variables and policy parameters, a controller with
randomized structure is generated for the agent to “manipulate” the environment to
a goal location determined by the causal structure of the problem. These mappings
were either linear or (weakly) nonlinear.

Under the assumptions of our controller and the context c, CREST excels at

54

Ch. 4 – CREST: Causal Feature Selection for Policies

Table 4.1: CREST evaluation for a toy environment on an aggregate (“Agg.”) and
mapping-specific (“Map.”) basis. Accuracy (“Acc.”) is whether all relevant states
were detected. False positives (“F.P.”) are states that were incorrect detected as
relevant. 100 trials are used.

Class Dim. Noise Agg.
Acc.

Agg.
F.P.

Map.
Acc.

Map.
F.P.

Linear 8 None 1.00 0.00 0.98 0.19
Nonlinear 8 None 1.00 0.00 0.97 0.23

Linear 20 None 1.00 0.00 0.99 0.53
Nonlinear 20 None 1.00 0.00 0.97 0.24

Linear 8 Limited 1.00 0.23 0.99 0.32
Nonlinear 8 Limited 1.00 0.13 0.95 0.22

Linear 20 Limited 1.00 0.22 0.98 0.50
Nonlinear 20 Limited 1.00 0.12 0.96 0.23

determining whether a variable is relevant. This is expected by construction of the
underlying mathematics of this environment and represents an expected upper bound.
We choose action space dimension of 8 and 20 (larger than our transfer learning
experiments, c.f., Sec. 4.7) and select the state space accordingly to permit calculation
of ground truth for testing. We also introduce action noise to test the robustness to
uncertainty from interventions, leading to more variables detected. Relatively higher
false positive rates arise in higher dimensions, but the overall reduction to the relevant
set of variables is nonetheless significant.

4.6 Policy Learning and Transfer
Given the relevant context from CREST, the structure and transfer learning

pipeline of our work begins through 1) constructing the appropriate policy; 2) pre-
training using the internal model; and 3) fine-tuning in the target setting.

4.6.1 Policy Architectures
Given the full context c, the reduced context τ , and the parameter-specific contexts

τj, the three MLP-based network architectures shown in Fig. 4.1 are constructed and
trained using actor-critic approaches [153].

The baseline π(θ|c) uses a standard MLP network. The approach π(θ|τ) uses a
Reduced MLP (RMLP): an MLP network where the inputs are reduced to only the
relevant context τ . The approach π([θ]j|τj) has independent sets of fully connected

55

Ch. 4 – CREST: Causal Feature Selection for Policies

Figure 4.1: A visualization of the different policy types. CREST is used to construct
both the Reduced MLP (RMLP) and Partitioned MLP (PMLP). The baseline MLP
is also shown for comparison. The relevant states are also used for the critic portion
of the networks (only the actor portion is shown). The notation used is [w1,...,wd],
specifying the hidden units and depth of both the actor and critic.

layers for each policy parameter θj, but with potentially overlapping inputs depend-
ing on τj. This Partitioned MLP (PMLP) network represents the structural causal
model [16] for each θj with τj as parent variables.

To provide a fair comparison, we choose the weights for the PMLP according to
heuristics and multiply the number of hidden units by the size of the action space to
size the RMLP and MLP. We originally sized the PMLP network according to [154]
to provide theoretical guarantees regarding function approximation for one-element
outputs (i.e., each θj), but the resulting network size for the baseline MLP was in-
tractable to train. All neural network weights are randomly initialized per orthogonal
initialization [155] using

√
2 and 0.01 for the scale terms of the hidden layers and out-

put layers, respectively. All networks use tanh activations.

4.6.2 Network Training and Transfer
For both the internal model and target domain, we train our policies using Proxi-

mal Policy Optimization (PPO) [156] with Stable Baselines [157]. First, each network
is pretrained with the internal model until the task family is solved. Then, we trans-
fer the network weights to the target domain and evaluate the policy to determine
whether the policy transfers zero-shot. Otherwise, fine-tuning is performed. Although
freezing network layers has been explored for fine-tuning control policies [158], we per-
mit the entire network to adapt because of the approximate nature of pretraining with
the internal model. The learned policy is considered to have solved the task family
if it successfully achieves a predefined reward threshold on 50 validation tasks; this
evaluation occurs after each policy update.

56

Ch. 4 – CREST: Causal Feature Selection for Policies

(a) (b) (c)

(d) (e)

Figure 4.2: Transfer experiments for block stacking and crate opening manipulation
tasks. Policies are pretrained in the internal model ((a),(d)) and then transferred to
the target domain ((b),(c),(e)). Target domains consist of replications of real systems
using a Franka Panda robot, along with a real system for block stacking. Both tasks
have distractor objects. For block stacking, only two blocks are necessary to generalize
the policy. For crate opening, blocks represent distractor objects (e.g., if the crate
were for a chest containing toys).

4.7 Experimental Results
We evaluate how CREST can construct policies with greater (target) sample-

efficiency and robustness for the robot manipulation tasks of block stacking and crate
opening (Fig. 4.2). Our experiments for each task follow the structure and transfer
learning pipeline motivating our approach: 1) use CREST to determine the causal
structure of the task; 2) construct and pretrain policies with this structure; and
3) transfer and fine-tune these policies in the target domain. The target domains
include manipulation tasks in NVIDIA Isaac Gym, enabling rigorous investigation of
representative distribution shifts that may occur when deploying sim-to-real policies.
For the block stacking task, we additionally leverage a real robot system to assess
sim-to-real transfer.

Target simulation and training was conducted using a NVIDIA DGX-1. Pretrain-
ing was done using a NVIDIA GeForce RTX 2080. Samples from the block stacking

57

Ch. 4 – CREST: Causal Feature Selection for Policies

and crate opening internal models were 400 and 65 times faster to obtain than target
simulation samples, respectively. This is consistent with the concept of the internal
model as a cheap, approximate simulator, whereas samples from the target domain
are costly and therefore desirable to minimize.

Ten independent trials (from internal model pretraining to target fine-tuning) are
conducted for each simulation experiment to provide statistically meaningful results
given the variance inherent in model-free learning. Statistics are provided in terms of
mean and ±1 standard deviation of policy updates requires to solve the task family.
Samples are provided per 1000 (“k-Samples”) using a batch size of 512.

The supplementary materials describe further experiment details, such as the
setup for the real block stacking target.

4.7.1 Block Stacking
The network architectures for the block stacking policies are specified in Table 4.2.

Although our policies are nonlinear, note this particular task is linear between τ and
θ.

Task representation. In the block stacking task, the context vector

c = [cB0
T, . . . , cBNB−1

T]T ∈ R7NB

consists of the concatenation of NB individual block contexts. The context vector
for block b is cBb

= [xw
b , z

w
b , ψb, hb, Cb

T]T ∈ R7 In the above equations, xw
b and zw

b

are the world x- and z-positions of the blocks. Each block orientation is defined by
its rotation angle ψb about the block’s vertical axis (y). The y-dimension, or height,
of each block is hi. Lastly, the block color Cb = [Rb, Gb, Bb]T is specified via red-
green-blue tuple. Note that yw

b is not part of the context, as the initial scene always
consists of blocks on the workspace plane.

The control policy π(a|s, θb) for block stacking is a sequential straight-line skill
parameterized by θb = [θ∆x, θ∆y, θ∆z]T ∈ R3. This skill specifies waypoints that the
robot traverses via impedance control by lifting the source block vertically, moving
horizontally, and descending to the desired location. The skill preconditions are that
the block is grasped and there are no obstructions to moving the object. The reward
function is determined from the source block’s position and the goal position upon
the target block.

Using the internal model, CREST correctly obtained the relevant context vari-
ables:

τ = [xw
0 , x

w
1 , h1, z

w
0 , z

w
1]T

τ∆x = [xw
0 , x

w
1]T, τ∆y = [h1], τ∆z = [zw

0 , z
w
1]T

Nominal transfer for increasing context size. We conduct transfer exper-
iments for NB = {2, 6, 10, 14, 18}, with each NB conducted independently. Our ap-
proach scales with the relevant part of the context space (Fig. 4.3), bounding the

58

Ch. 4 – CREST: Causal Feature Selection for Policies

Table 4.2: Networks used for the block stacking task.

Network Parameters Input Dim. (Total) Architecture
MLP (NB = 2) 3298 14 (14) [24, 24, 24]
MLP (NB = 6) 4642 42 (42) [24, 24, 24]
MLP (NB = 10) 5986 70 (70) [24, 24, 24]
MLP (NB = 14) 7330 98 (98) [24, 24, 24]
MLP (NB = 18) 8674 126 (126) [24, 24, 24]

RMLP (ours) 2866 5 (7NB) [24, 24, 24]
PMLP (ours) 754 5 (7NB) [8, 8, 8] x 3

sample requirements for the target (as well as the cheaper, internal model). The in-
creasing number of irrelevant dimensions from more blocks are eliminated by CREST
prior to conducting domain randomization during pretraining.

For the case of NB = 10, we trained directly in the target domain without transfer
and observed similar results as for pretraining, suggesting the internal model accords
well with the target domain. This explains why our approaches exhibit good zero-
shot behavior over increasing context dimensions, unlike the baseline whose initial
performance degrades as the number of irrelevant contexts increase.

Distribution shift in irrelevant contexts. We now evaluate the robustness of
the learned block stacking policy to distributions shifts in irrelevant context variables.
We conduct two transfer experiments, wherein the policies are pretrained using only
half of the color space. In the first case, the target has the same context distribution
as the internal model. In the second case, the target has the opposite color space
(without overlap). The experimental results (Table 4.3) elucidate how a seemingly
inconsequential variable can degrade policy execution through a distribution shift that
the robot is not trained to expect. Our approaches generate policies that are robust
to these irrelevant domain shifts by construction; as CREST explicitly identifies this
dimension as unimportant and excludes it from target learning.

Sim-to-real policy evaluation. Lastly, to validate our approach for sim-to-
real transfer, we evaluate the zero-shot policy performance on a real robot system
that implements the block stacking task with NB = 10 (Fig. 4.2c). As shown in
Table 4.4, our policies successfully demonstrate greater zero-shot, sim-to-real transfer
as compared to the baseline.

4.7.2 Crate Opening
The crate opening experiment is nonlinear between τ and θ, and the internal

model, which is kinematic, presents a greater sim-to-real gap than block stacking.

59

Ch. 4 – CREST: Causal Feature Selection for Policies

(a)

(b)

(c)

Figure 4.3: Sample complexity of training a solved block stacking policy based on
context dimension for (a) internal model and (b) target setting. c) Zero-shot transfer
percentage, wherein the transferred policy needs no further target training to solve
the task.

60

Ch. 4 – CREST: Causal Feature Selection for Policies

Table 4.3: Transfer results for a distribution shift in 30 context variables (color) that
are irrelevant for the block stacking policy.

Network MLP RMLP (ours) PMLP (ours)
IM Updates
(k-Samples)

237.5 (121.6)
± 11.6 (5.9)

137.6 (70.5)
± 7.2 (3.7)

139.2 (71.3)
± 8.2 (4.2)

Target Updates
(k-Samples), no shift

1.6 (0.8)
± 1.5 (0.8)

0.5 (0.3)
± 0.9 (0.5)

0.0 (0.0)
± 0.0 (0.0)

Zero-Shot Transfer
no shift 4 7 10

Target Updates
(k-Samples), shift

17.3 (8.9)
± 4.8 (2.5)

1.0 (0.5)
± 1.5 (0.8)

0.1 (0.1)
± 0.3 (0.2)

Zero-Shot Transfer,
shift 0 6 9

Table 4.4: Sim-to-real policy evaluation results for block stacking with NB = 10. The
reward threshold for zero-shot transfer is -0.025 (about half of the block width). We
also note how often the block was successfully stacked. “GT” is a ground truth policy
to illustrate the degree of uncertainty present within the robot perception and control
system. Each policy was evaluated 10 times.

Policy Reward Zero-Shot Transfer Block Stacked
MLP -0.033 ± 0.012 3 1

RMLP (ours) -0.018 ± 0.007 9 4
PMLP (ours) -0.014 ± 0.004 10 6

GT -0.009 ± 0.003 10 10

61

Ch. 4 – CREST: Causal Feature Selection for Policies

Table 4.5: Networks used for the crate opening task.

Network Parameters Input Dim. (Total) Architecture
MLP 13496 80 (80) [40, 40, 40]

RMLP (ours) 7576 6 (80) [40, 40, 40]
PMLP (ours) 1152 6 (80) [8, 8, 8] x 5

PMLP-R (ours) 8032 6 (80) [24, 24, 24] x 5

Therefore, we also consider a second partitioned network, PMLP-R, with the same
number of weights as the RMLP, to elicit possible influence of network expressivity
in this domain due to the structural assumptions of the PMLP. The crate experiment
primarily focuses on dynamics and context shifts, rather than varying numbers of
objects, so unlike in blocks, the networks (Table 4.5) are the same for all experi-
ments. Beyond our two experiments in nominal transfer and dynamics shift, we also
conducted a color shift experiment with similar results as with the blocks experiment.

Task representation. For the crate opening task, the context vector is c =
[cC

T, cB0
T, . . . , cB9

T]T ∈ R80. The block context is as defined previously. The crate
context is cC = [pw

C
T, Φ, xC

g , z
C
g , Θo, CC

T]T ∈ R10, where pw
C = [xw

C , y
w
C , z

w
C]T is the

position of the crate coordinate frame with respect to the world frame with vertical
angle Φ. The crate is always initially closed (horizontal), but the desired goal angle
is specified by Θo. The robot interacts with the crate via a grasp point specified in
the frame of the crate by xC

g and zC
g which are orthogonal and parallel to the crate

rotational axis, respectively. The color of the crate is CC .
The control policy π(a|s, θa) is a robot skill that executes circular arcs emerging

from the grasp point with the following parameterization: θa = [θpw
a

T, θ∆γ, θ∆ϕ]T ∈
R5, where θpw

a
= [θxw

a
, θyw

a
, θzw

a
]T is the sphere position used to calculate the radius

from the grasp point. Then, the arc is traced out θ∆γ in azimuth and θ∆ϕ in inclination
in polar coordinates from the grasp point. The skill preconditions are that the crate
is grasped and unobstructed. To learn this policy, the reward function is calculated
from the crate angle error and total kinematic error.

In this formulation, CREST determined the following relevant context variables,
which are expected based on rigid body articulation kinematics:

τ = [xw
C , y

w
C , z

w
C , Φ, zC

g , Θg]T

τxw
a

= [xw
C , Φ, zC

g]T, τyw
a

= [yw
C], τzw

a
= [zw

C , Φ, zC
g]T,

τ∆γ = [Φ, Θg]T, τ∆ϕ = [Φ, Θg]T

Nominal transfer. The transfer learning results for the crate opening policy is
shown in Table 4.6. Pretraining the model reduced the number of target updates
for the non-partitioned networks. However, this was not the case for the partitioned
networks, regardless of size. This is likely a result of the discrepancy between the

62

Ch. 4 – CREST: Causal Feature Selection for Policies

Table 4.6: Pretraining and transfer results for crate opening policies compared to
training directly in target (without transfer).

Network IM Updates
(k-Samples)

Target Updates
(k-Samples), transfer

Target Updates
(k-Samples), direct

MLP 45.0 ± 3.16
(23.04 ± 1.62)

12.20 ± 1.72
(6.25 ± 0.88)

38.70 ± 10.99
(19.8 ± 5.63)

RMLP
(ours)

32.40 ± 3.67
(16.59 ± 1.88)

7.0 ± 1.18
(3.58 ± 0.61)

16.40 ± 4.05
(8.40 ± 2.08)

PMLP
(ours)

48.20 ± 13.33
(24.68 ± 6.83)

14.0 ± 3.74
(7.17 ± 1.92)

14.20 ± 6.32
(7.27 ± 3.24)

PMLP-R
(ours)

51.30 ± 10.82
(26.27 ± 5.54)

14.3 ± 4.34
(7.32 ± 2.22)

15.80 ± 3.97
(8.09 ± 2.03)

Table 4.7: Fine-tuning for crate opening policies with increasing crate stiffness and
correspondingly greater transition model difference between the internal model and
target task.

Network Target Updates
(k-Samples), light

Target Updates
(k-Samples), nominal

Target Updates
(k-Samples), stiff

MLP 3.90 ± 0.54
(2.00 ± 0.28)

12.20 ± 1.72
(6.25 ± 0.88)

27.30 ± 5.51
(13.98 ± 2.82)

RMLP
(ours)

3.20 ± 0.60
(1.64 ± 0.31)

7.00 ± 1.18
(3.58 ± 0.61)

16.40 ± 5.90
(8.40 ± 3.02)

PMLP
(ours)

9.10 ± 1.58
(4.66 ± 0.81)

14.00 ± 3.74
(7.17 ± 1.92)

24.00 ± 15.06
(12.29 ± 7.71)

PMLP-R
(ours)

9.20 ± 1.54
(4.71 ± 0.79)

14.30 ± 4.34
(7.32 ± 2.22)

19.10 ± 4.91
(9.80 ± 2.51)

internal model and the target domain, which also explains the difference between the
policy updates required for pretraining versus training directly in the target. However,
the reduction of relevant variables reduces the number of updates required to train
directly in the target for both the RMLP and PMLP.

Dynamics distribution shift. Unlike the block stacking problem, the modeling
gap between the internal model and target setting is sufficiently large that the trained
policies incur a significant performance degradation upon first evaluating in the target
domain. We investigated this further by transferring the policies to two target settings
with different crate stiffness values. To focus on this dynamics shift, no other shifts
(e.g., in context space) were induced.

The results in Table 4.7 suggest that increasing the stiffness is sufficient as a proxy
for increasing the modeling difference between the internal model and the target. The

63

Ch. 4 – CREST: Causal Feature Selection for Policies

optimal parameters for the kinematic case (internal model) are not necessarily the
same as the target domain with realistic dynamics of manipulation using impedance
control. Therefore, greater modeling differences implies that greater search in policy
parameter space is required to converge to parameters that generalize in the target
domain.

In all cases, we see that the RMLP network performs best. As a likely consequence
of a less expressive network with a larger dynamics gap, the smaller PMLP network
demonstrated a significant variance increase in the higher stiffness case than the
larger PMLP-R. Overall, our policies are more robust to distribution shifts in model
dynamics. However, we note that partitioning imposes structure that may not be
optimal for this problem, as the MLP outperformed the partitioned networks in the
light and nominal stiffness cases.

4.8 Conclusion
The causal reasoning afforded by CREST allows the robot to structure robot ma-

nipulation policies with fewer parameters that are more sample efficient and robust
to domain shifts than a naive approach that includes all known contexts. Indeed,
using causality to reason about the simulation of a task identifies what variables are
important to generalize a policy, while domain randomized pretraining provides a
strong, task-specific prior in terms of how they matter. We believe that CREST is
one step towards a new paradigm for structural sim-to-real transfer of robot manipu-
lation policies that are sufficiently lightweight to be adapted in-the-field to overcome
unforeseen domain shifts.

For future work, we will investigate using precondition learning to relax the as-
sumption that the policy execution is feasible. We will also explore how the robot
can learn the internal model used as the causal reasoning engine.

4.9 Acknowledgments
We gratefully acknowledge support for this work from the U.S. Office of Naval Re-

search (Grant N00014-18-1-2775), U.S. Army Research Laboratory (Grant W911NF-
18-2-0218 as part of the A2I2 Program), and the NVIDIA NVAIL Program.

64

5 SCALE: Causal
Learning of Skills

In our preceding work, we demonstrated how the causal features for a low-level
control policy could be determined using CREST (Ch. 4) [31]. CREST assumes that
the preconditions of this low-level control policy are given. In this chapter, we present
SCALE, our approach for causal learning of skills. This work both extends and builds
upon CREST by learning multiple distinct skills, which are behaviors defined by
control policies and additional characteristics. These skills are also learned with their
preconditions, which relaxes the assumptions needed for CREST. Importantly, we
make the connection between causal learning for manipulation and data generating
processes explicit in this work. The Data Generating Region for each skill, in fact,
captures where the underlying data generating process exists in state space, where
the process is the skill being used to successfully complete a task.

Sections of the remainder of this chapter first appeared in [32]. Additional
information is provided in App. C. This work was presented at the 7th Annual
Conference on Robot Learning (CoRL 2023). We thank our collaborators on

this work: Shivam Vats (co-first author), Siddharth Girdhar, and Prof. Oliver
Kroemer.

5.1 Summary
We propose SCALE, an approach for discovering and learning a diverse set of

interpretable robot skills from a limited dataset. Rather than learning a single skill
which may fail to capture all the modes in the data, we first identify the different modes
via causal reasoning and learn a separate skill for each of them. Our main insight is
to associate each mode with a unique set of causally relevant context variables that
are discovered by performing causal interventions in simulation. This enables data
partitioning based on the causal processes that generated the data, and then compressed
skills that ignore the irrelevant variables can be trained. We model each robot skill as
a Regional Compressed Option, which extends the options framework by associating

65

Ch. 5 – SCALE: Causal Learning of Skills

a causal process and its relevant variables with the option. Modeled as the skill Data
Generating Region, each causal process is local in nature and hence valid over only
a subset of the context space. We demonstrate our approach for two representative
manipulation tasks: block stacking and peg-in-hole insertion under uncertainty. Our
experiments show that our approach yields diverse skills that are compact, robust to
domain shifts, and suitable for sim-to-real transfer.

5.2 Introduction
We want robots to help and work alongside humans in their homes, kitchens, and

restaurants. However, outside of structured environments, robots currently struggle
at reliably performing even some of the basic manipulation tasks that humans can do
with ease. Why are humans so much better despite the vast diversity of objects and
their complex interactions that they potentially need to reason about? First, humans
usually know multiple ways to solve a task to be robust to failures and variations in
the environment. For example, if a tight jar doesn’t open with our bare hands, we
may use a piece of cloth to improve our grip. Second, humans excel at selectively
attending [159] to only a small part of the environment that is relevant to the task.
Selective attention significantly reduces the computational complexity of reasoning
and allows us to handle complicated situations.

Prior works in manipulation skill learning have leveraged these two observations
separately. Most methods [160–164] learn skills by associating each skill with a sub-
goal, where, the sub-goals are hand-designed or learned from demonstrations. Once
the sub-goals have been assigned, feature selection [138, 141] and abstraction selec-
tion [165, 166] can be used to reduce the complexity of skill learning. However, such
approaches are quite sensitive to the sub-goals and struggle to distinguish between
different strategies to achieve the same goal. Our main insight is to associate a skill
with not just a sub-goal, but also with the variables that are causally relevant to it.
For example, opening a jar with our bare hands is a skill distinct from opening it
with the help of a piece of cloth. Only hand and jar are relevant to the former, while
the latter also relies on the properties of cloth. Hence, these two strategies should be
represented as two distinct skills even though they achieve the same goal.

Based on this principle, a manipulation task involving n variables can have up to
2n skills, based on variable subsets being causally relevant. This is a very large space
to search for skills and not all subsets may correspond to a useful skill. Hence, we
propose SCALE (Skills from CAusal LEarning), an efficient approach for robot skill
learning through causal feature selection in simulation.1 Instead of näıvely generating
data, in our approach, the robot interacts with the simulator by conducting causal
interventions. This elicits the causal features for completing a task under different
settings, yielding a diverse and compact library of skills. Our approach learns skills

1Website: https://sites.google.com/view/scale-causal-learn-robot-skill

66

https://sites.google.com/view/scale-causal-learn-robot-skill

Ch. 5 – SCALE: Causal Learning of Skills

that are described by physically meaningful properties without spurious variables that
would be related to irrelevant objects.

Our contributions of this work are two-fold. First, we introduce SCALE, an algo-
rithm for learning a robot skill library from causal interventions in simulation. Second,
we conduct a variety of experiments that demonstrate that SCALE outperforms base-
line approaches for two manipulation domains of block stacking and sensorless peg
insertion. As a part of these experiments, we also demonstrate sim-to-real transfer of
the skills learned by SCALE for block stacking.

5.3 Related Work
Robot skill learning. Building robots that can solve a wide variety of com-

plex tasks is one of the fundamental problems in robotics. A popular approach is
to learn skills parameterized by the task parameters as these can generalize over
related tasks. Prior works [167, 168] show such parameterized skills lie on a low di-
mensional piecewise-smooth manifold in the context space and identify this structure
using ISOMAP [169]. For higher-dimensional problems, it becomes infeasible to learn
directly in the full context space. One approach is to learn a library of simple param-
eterized skills which can be composed to solve more complex tasks [170–173]. Recent
works [174, 175] propose a differentiable attention mechanism to learn context-specific
attention, but these have been evaluated only in relatively small domains. Popular
methods for unsupervised skill discovery include graph-based methods [176, 177] that
seek to build a graph of skills to cover the task space and information-theoretic meth-
ods [164, 178, 179] that seek to maximize the diversity of skills.

Causality in robotics and reinforcement learning. Causality is the sci-
ence of cause and effect [16, 17, 19]. Although the advantages of causal infer-
ence and discovery within the biomedical sciences, economics, and genomics have
been well-established [20, 28], the integration of causality within machine learning
is nascent [25, 37]. In robotics, causality-based approaches are particularly under-
explored despite the potential advantages of greater reasoning and learning capabil-
ities [180], particularly through structure and transfer learning [137]. Most similar
to our work is that of CREST [31], an algorithm for identifying features for a robot
policy through causal interventions. Our algorithm SCALE leverages the work of
Lee et al. on CREST for determining the causally relevant variables for each robot
skill. Causality has also empowered learning the structure of physical systems from
videos [135] and explanations for robot failures [181]. Within reinforcement learn-
ing more broadly, causality plays a central role for improving performance through
greater structure [182], learning latent factors in dynamics via causal curiosity [183],
learning invariant policies [184], and learning a dynamics model that can yield state
abstractions [38].

Intuitive physics. Please see App. C.2 for a discussion of how SCALE relates

67

Ch. 5 – SCALE: Causal Learning of Skills

to intuitive physics.

5.4 Preliminaries
The robot learns a set of skills K = {K1, . . . ,KK}, where each skill solves a dis-

tribution of manipulation tasks. Each task is modeled as a manipulation MDP [185],
M := (S,A,R, T, γ, τ), where s ∈ S is the state space, a ∈ A is the action space, R
is the reward function, T is the transition function, γ is the discount factor, and τ is
additional task information. Tasks are solved if the final reward Rf > RS, where RS

is a solved threshold.
Options. Each skill K is a parameterized option [166, 186]. An option O :=

(π, I, β) is defined using three components: (1) the option control policy π(a|s); (2)
an initiation set I = {Rf > RS|s} that specifies where the final reward Rf solves
the task when taking option O in state s using option policy π; and (3) termination
condition β(s) that specifies when the option concludes. For the termination condition
of this work, our skills execute open-loop with fixed duration.

Context. We define the context c ∈ C as a set of variables C that fully specify
the manipulation task. The context space C := S × τ generalizes the state space to
include geometric and other time-invariant task properties defined by τ . Each skill
requires only a subset of the full context, determined via causal feature selection (c.f.,
Sec. 5.6.1).

Contextual policies. We use a hierarchical approach [149] to decompose the op-
tion control policy into an upper-level policy πu(θ|c) and a lower-level policy πl(a|s, θ).
Given a context c ∈ C, πu : c 7→ θ specifies the parameters θ for the lower-level policy
πl. For example, πl could be a Cartesian-space impedance controller, where θ specifies
the sequence of waypoints to be followed by the robot end-effector. For our work, we
assume the lower-level controller πl is given, and we learn the upper-level policy πuk.
The lower-level controller is shared across the different skills.

Compressed Context and Feature Selection. SCALE learns compressed
skills that only use causally relevant context variables, as many will be unimportant.
For our work, we disregard dimensions of the context space that are not chosen by
causal feature selection (c.f., Sec. 5.6.1), leading to a compressed context space ĉ that
is obtained by selecting dimensions of the full context space that correspond to the
relevant variables of interest.

Causal Reasoning in Simulation. SCALE leverages a simulator with the key
capability of interacting with scenes through context interventions, which enables the
causal learning in SCALE. For this reason, we formalize the simulator as a causal
reasoning engine W := (CS, T), where CS is the scene structural causal model (SCM)
and T is the transition model. App. C.3 provides greater discussion of this formal-
ization. This formalism addresses SCALE’s assumption that the simulator is capable
of answering questions to scene interventions, i.e., constructing new scenes with a

68

Ch. 5 – SCALE: Causal Learning of Skills

change to one variable to assess if there is a change (c.f., Sec. 5.6.1). These variables
are required to be intervenable within the simulator, but not all variables need to be
intervenable. For instance, gravity is a simulation variable, but for this work, it is
not considered as a candidate for causal reasoning; therefore, it does not need to be
intervenable.

5.5 Skill Formulation

5.5.1 Regional Compressed Option
In our work, we formalize each robot skill K as a Regional Compressed Option

(RCO), where K := (πk,Pre, β,D) and πk is the option control policy, Pre is the
precondition, β is the termination condition, and D is the data generating region
(DGR). In this model, the policy πk(a|ĉAk

) uses compressed context ĉAk
, which is

obtained by selecting dimensions of the context space according to the relevant vari-
able set Ak ⊆ C (c.f., Sec. 5.6.1). The learned, upper-level policy is πuk(θ|ĉAk

). The
precondition Pre(c) = P (Rf > RS|c) is a probabilistic initiation set [187].

5.5.2 Data Generating Region
Our goal is to learn an upper-level policy πu : c→ θ, i.e., a mapping that generates

the correct parameters θ for solving the task from any initial context c. We refer to
this unknown mapping as a data generating process or causal process. Instead of
trying to learn this data generating process directly, which may be difficult when
many variables are involved, our main insight is to model it as a mixture of multiple
causal processes. Each such process is likely to have a smaller set of relevant variables
and thus would be easier to learn. For example, consider the task of opening jars,
where the jar could be tight or not tight. We can model the data generating process
for this task as a combination of two simpler causal processes: C1 which uses only
your hand, and C2 which uses a piece of cloth along with your hand. However, these
causal processes don’t hold for all jar opening tasks. C1 holds when the jar is not
tight, while C2 holds when the jar is tight. Thus, every causal process is valid only in a
subset of the context space. We refer to this subspace D ⊆ C as the data generating
region (DGR) of the causal process. Here, D1 := {not tight} and D2 := {tight}.
The robot learns a separate skill for every such causal process. Furthermore, each
skill should be trained by only using data from inside its DGR; data lying outside
the DGR are generated by a different causal process and is hence out-of-distribution.
The DGR uses compressed context ĉDk

obtained from relevant variable set Dk ⊆ C
(c.f., Sec. 5.6.1).

69

Ch. 5 – SCALE: Causal Learning of Skills

Figure 5.1: The figure shows an overview of the proposed framework applied to a block
stacking task. The robot is given a context space, control policy, task simulator, and
task reward. The robot samples a set of contexts to create task instances, which it
subsequently solves for that instance. The robot then applies interventions on the
contexts to identify skill-relevant parameters. Contexts with the same set of policy-
relevant parameters come from the same causal model and are hence combined to form
data generation regions. Here, we have two causal models: C1 with relevant variables
from the yellow, blue, and red blocks and DGR D1; and C2 with relevant variables
from the yellow and blue blocks and DGR D2. Each region is then used to learn
a separate skill policy with the corresponding set of policy-relevant parameters. For
each skill, we finally learn a set of preconditions within the context space to determine
where the skill can ultimately be applied. The pairs of policies and preconditions are
then combined to create a skill library for completing the given task.

5.6 Skill Discovery through Causal Reasoning in
Simulation

The SCALE algorithm (Fig. 5.1) comprises two steps: 1) skill dataset generation
and 2) skill training. These steps are described in Sec. 5.6.1 and 5.6.2, respectively.
Algorithm descriptions are in App. C.5.

5.6.1 Batch Data Generation
First, the robot interacts with the simulator W to collect skill training data.

This is done by collecting a batch dataset DB. The robot samples n random scenes
represented by ci and attempts to determine the lower-level controller parameters
θi that solve the specific task. In practice, we use Relative Entropy Policy Search

70

Ch. 5 – SCALE: Causal Learning of Skills

(REPS) [152], but any suitable planner, trajectory optimizer, or reinforcement learn-
ing algorithm would suffice. Unsolved tasks are disregarded and not collected in DB.

Causal feature selection. For successfully solved scenes, the relevant variables
for the policy Ai and DGR Di are selected using the CREST algorithm [31]. CREST
conducts feature selection through causal interventions. Intuitively, a variable is
causal if, for all other variables held equal, interventions upon this variable induce a
change in the final obtained rewardRf . A spurious variable has no effect on the reward
and thus can safely be ignored. To summarize CREST, the process begins by solving a
scene, which we refer to as the non-intervened scene. For each context variable, a new
value is randomly sampled from a distribution (in the CREST work, this distribution
is the context variable’s possible values). A scene is constructed with that intervened
value, with all other context variables holding the same, non-intervened value. Then,
the robot executes the solution to the non-intervened scene in this intervened scene
to obtain an intervened reward. This process repeats a given number of times, and a
statistical test is assessed to determine how often the intervened rewards differ from
the non-intervened reward. If the intervened rewards are frequently no different than
the non-intervened reward, the context variable is considered spurious (and causally
relevant otherwise).

In this work, CREST performs interventions I over a local (e.g., 10%) fraction
of context space C to yield Ai. Similarly, Di is obtained through interventions over
the entire space C. Finally, the batch dataset is appended by the dataset point
(ci, θi,Ai,Di). Note that CREST is not a strict requirement of SCALE. In principle,
SCALE requires only a determination of which variables are causally relevant, which
CREST provides. Other approaches, such as using causal discovery, are also possi-
ble. An important consideration of choice of approach is whether the context space
is disentangled. In our work, we assume a disentangled context space, and so the
variable-by-variable intervention process of CREST (which also assumes disentangled
variables) will suffice. If the context space is entangled, then causal disentanglement
approaches could first be used.

Splitting batch data into skill data. After dataset collection, batch dataset
DB is split into different skill datasets according to the relevent variable sets. In this
work, we assign highly occurring batch data that contain the same relevant variables
A into the same skill dataset Dk, while also taking the union over all associated D.
This assumption may not always hold, but is sufficient for the tasks we examine in
this work. More sophisticated ways of splitting the batch dataset is left for future
work.

5.6.2 Skill Training
The second phase of SCALE trains each skill Kk using Dk. Each skill has relevant

variable sets Ak and Dk with task solution datapoints (c, θ).
DGR. The DGR D is first trained on ĉDk

using Dk. For this work, we use a one-

71

Ch. 5 – SCALE: Causal Learning of Skills

(a) (b) (c) (d) (e)

Figure 5.2: SCALE discovers skills for the Franka Emika Panda robot using causal
learning in simulation for two manipulation tasks: (a) block stacking and (b) peg-in-
hole insertion. In addition to skill learning experiments, we also show how SCALE can
yield skills (c) for sim-to-real transfer (App. C.9); (d) for generalization in downstream
tasks, such as stacking a block tower (App. C.10); and (e) for robustness to task
domain shifts (App. C.12).

class SVM to model the DGR, but in principle, any one-class classification algorithm
would suffice.

Policy. The policy is trained next. The skill dataset contexts are filtered through
the DGR D to obtain inliers c+ for policy training data. This ensures policy training
data are consistent with the underlying causal process. Then, the policy πuk(θ|ĉAk

)
is trained using ĉ+

Ak
(using Ak) and the corresponding parameters θ+. For our

work, policies are learned using regression, but reinforcement learning could also
be used [31]. With πuk learned, the final skill policy πk(a|ĉAk

) is determined.
Preconditions. The preconditions Pre are learned last through policy evaluation.

Using the simulator W , contexts c are re-sampled and evaluated with policy πk to
obtain rewards Rf . This evaluation data (c, Rf) is used to train a precondition
classifier to obtain Pre. For our work, we use a nonlinear SVM classifier that has
probability estimates.

5.7 Experimental Results
We conduct skill learning experiments with SCALE for block stacking and peg-

in-hole insertion tasks with the Franka Emika Panda robot (Fig. 5.2). Both tasks
are emblematic of high-precision control that is desirable in many industrial appli-
cations [188]. We conduct our experiments in NVIDIA IsaacGym [130, 189], a high-
fidelity physics simulator that also serves as our causal reasoning engine W . We use
a custom library that implements the scene SCM CS to facilitate scene creation and
interventions. The forward simulation of physics provides the transition model T .

72

Ch. 5 – SCALE: Causal Learning of Skills

Baselines. We compare SCALE to baseline approaches with monolithic policies
(without any skills) for either the full-dimensional context space (“monopolicy”) or a
reduced context space obtained by using the most commonly occurring CREST result
(“crest-monopolicy”). The CREST monopolicy represents näıvely using CREST,
ignoring that CREST provides locally different results within the underlying data (a
property that SCALE leverages).

5.7.1 Block Stacking
Task representation. In the block stacking task, the robot starts with a source

block (B1) grasped, and it learns to place it on top of a target block (B2). To do
this, the robot uses a controller πl that defines the trajectory for the robot end-
effector to traverse via impedance control. This trajectory is parameterized by θb =
[θ∆x, θ∆y, θ∆zu θ∆zd

]T ∈ R4, which specify waypoints the robot follows sequentially.
Specifically, these parameters characterize a trajectory where the robot lifts the source
block vertically, moves horizontally, descends vertically, and releases the block.

For this task, the context variables CB are {CB1 , . . . ,CBNB
, hπ}, which is the

union of context variables for each of NB = 5 blocks plus the table height hπ upon
which the blocks are placed. The context variables for each block b are {xw

b , y
w
b , ψb,

hb, Rb, Gb, Bb}, yielding a 36-dimensional context space for this problem. Here, xw
b

and yw
b are the world x- and y-positions of the block, and the block’s orientation

is represented by a rotation angle ψb around the block’s vertical axis (z). The z-
dimension (height) of the block is hi. Additional experimental details are available in
App. C.8.

Skill learning results: variable selection. From a batch dataset of 585 sam-
ples, SCALE found the skill library Kblocks = {K1,K2,K3} that is shown in Tab. 5.1
that were learned using 340 samples of the dataset. These 340 samples were selected
for being the most commonly occurring within the dataset, based on a heuristic
threshold. Even though there are five blocks and 36 possible variables, the skills
generally consisted of a much smaller subset of variables, relating to the geometry of
the source and target blocks. Note that K2’s relevant variables for the policy, AK2 ,
are consistent with earlier work by Lee et al. [31] for this domain. This is generally
considered to be the “ground truth” variable result for unobstructed block motion in
this case. Skill K1 could be seen as a version of K2 when h2 is not needed. Rarely,
the source block’s rotation ψ1 become important (e.g., the source block’s final pose
was not fully stable when stacked on the target block), and thus a skill emerges with
this variable (K3). Variables for neither block color nor table height are observed as
expected.

Skill learning results: task evaluation. We evaluate the skill library Kblocks

over the entire task distribution and show the results in Tab. 5.2. That is, for each
context sample, the robot evaluates each skill’s precondition and selects the skill

73

Ch. 5 – SCALE: Causal Learning of Skills

Table 5.1: Skills Kblocks that were discovered for the block stacking task. A and D are
the variables used for the skill’s policy and DGR, respectively. Data is the quantity
of data used for each skill (from a batch dataset of 585 samples, 340 samples were
used to train skills). Tsk. Sv. %, shown for both scale-lin and scale-nonlin, is the rate
of task solves over the entire context space using only that skill.

Skill Data Tsk. Sv. %, Lin Tsk. Sv. %, N.L.

K1
A: {xw

1 , y
w
1 , x

w
2 , y

w
2 }

D: {xw
1 , y

w
1 , x

w
2 , y

w
2 , h2}

53 (9.06%) 65.36% (200) 18.36% (56)

K2
A: {xw

1 , y
w
1 , x

w
2 , y

w
2 , h2}

D: {xw
1 , y

w
1 , h1, x

w
2 , y

w
2 , h2}

272 (46.50%) 78.76% (241) 55.88% (171)

K3
A: {xw

1 , y
w
1 , ψ1, x

w
2 , y

w
2 , h2}

D: {xw
1 , y

w
1 , ψ1, x

w
2 , y

w
2 , h2}

15 (2.56%) 34.31% (105) 1.31% (4)

with the highest probability of success. The suffix “-all” denotes that the entire batch
dataset is used for the approach. For both function classes, SCALE yields an approach
that outperforms full-dimensional policies and is generally comparable to CREST-
reduced policies. However, the CREST-reduced policies only learn one approach to
solving the task, whereas SCALE learns three. The overall best performing approach
was scale-lin (90.49%) with similar performance to the CREST baseline. Performance
across all nonlinear approaches was generally lower. App. C.8 details the SCALE skill
selection and further ablations.

Sim-to-real experiment. We transfer the skills learned by SCALE and our
baselines to a real Franka Panda robot without any fine-tuning. As discussed in
App. C.9, SCALE outperforms the baselines.

5.7.2 Sensorless Peg-in-Hole Insertion
Our second domain is peg-in-hole insertion under sensing uncertainty. It requires

the robot to insert a cuboidal peg of cross-section 1 cm × 1 cm into a cuboidal hole of
cross-section 1.3 cm × 1.3 cm. The robot gets a noisy initial position of the hole with
the noise sampled from a Gaussian distribution N (0, 0.32 cm2). No further sensory
observations are available. Due to this uncertainty, a näıve strategy of directly trying
to push the peg down at the observed location of the hole achieves a success rate of
only 34%. To address this, the robot should take uncertainty reducing [190] actions
by initiating contact with the environment (e.g., a fixture next to the hole). Our goal
in this experiment is to learn such skills autonomously.

Task representation. Each assembly task has 4 axis-aligned cuboidal fixtures
(i.e., walls) of fixed dimensions around the hole. The 8-dimensional context variables
CP are {x1, y1, . . . , x4, y4}, containing the (x, y) coordinates of these fixtures with
respect to the hole. The positions are different in every task, but it is always possible
for the robot to localize against any of the walls to complete the task. We use a

74

Ch. 5 – SCALE: Causal Learning of Skills

Table 5.2: Task evaluation results for using the skill library Kblocks for the block stack-
ing task. Ctrl. is the approach control (skills or one monolithic policy). Fn. Cl. is the
approach’s function class. Linear approaches use Bayesian ridge regression, whereas
nonlinear methods consist of a multilayer perceptron with a 16x16x16 architecture
using ReLU activations. Task Solve % is the rate of task solves over the entire context
space using the approach. Methods within ±2% (the stochasticity of the simulator)
of the best approach are bold. |A| is the quantity of input variables used for the
approach’s policy. Data is the amount of training data used for the approach. A
ground truth policy is also shown, using all context variables and additional domain
knowledge.

Approach Ctrl. Fn. Cl. Task Solve % |A| Data
scale-lin (ours) 3 skills Linear 90.49% (276) 4/5/6 340
monopolicy-lin-all 1 policy Linear 85.95% (263) 36 585
crest-monopolicy-lin-all 1 policy Linear 89.87% (275) 5 585
scale-nonlin (ours) 3 skills Nonlinear 63.40% (194) 4/5/6 340
monopolicy-nonlin-all 1 policy Nonlinear 10.13% (31) 36 585
crest-monopolicy-nonlin-all 1 policy Nonlinear 60.78% (186) 5 585
ground-truth-policy 1 policy Nonlinear 95.75% (293) * –

6-parameter policy space: three (∆x,∆y,∆z) actions executed in sequence in the
robot’s end-effector frame. In every policy, ∆z’s are designed to move the peg down
while ∆x and ∆y are parameters that are learnt using RL. Additional experimental
details are available in App. C.11.

Skill learning results: variable selection. Table 5.3 enumerates the skills
Kpeg = {K1, . . . ,K5} discovered by SCALE. Skills K2−5 localize against one of the 4
walls. For each such skill, only the wall being used for localization is relevant to the
skill and the other walls can be ignored. Consequently, the set of relevant variables
for these skills contains only the distance to the wall that it localizes against. For the
linear case, all of these skills except forK3 have high success rate, whereas success rates
are slightly lower for the nonlinear approach. Interestingly, SCALE also discovers a
skill K1 that has an empty set of relevant variables. For more discussion of this skill,
see App. C.11.

Skill learning results: task evaluation. Table 5.4 presents the task evaluation
of the skill library Kpeg for 256 randomly sampled tasks. For both linear and nonlinear
cases, SCALE outperforms both baselines. The low success of monopolicy-nonlin-
all is likely due to insufficient data owing to a larger network. The most common
CREST result was variable x4 (21.90%), so this was used for the CREST baselines.
However, it only localizes against one wall. The improvement of SCALE over the
CREST baselines implies SCALE skills benefit from the DGRs through greater quality
training data, whereas the CREST approaches use the entire dataset despite most
samples having a differing CREST result than x4. For details of SCALE skill selection

75

Ch. 5 – SCALE: Causal Learning of Skills

Table 5.3: Skills Kpeg that were discovered for the peg-in-hole insertion task. Columns
are the same as in Tab. 5.1, except Data represents which 168 samples were used to
train skills (from a batch dataset of 210 samples).

Skill A D Data Task Solve %, Lin Task Solve %, Nonlin.
K1 {} {x1, y2, y3, x4} 56 (26.67%) 64.84% (166) 61.72% (158)
K2 {x4} {x4} 25 (11.90%) 97.66% (250) 84.38% (216)
K3 {x1} {x1} 27 (12.86%) 44.53% (114) 84.77% (217)
K4 {y3} {y3} 28 (13.33%) 94.14% (241) 82.81% (212)
K5 {y2} {y2} 32 (15.24%) 98.44% (252) 79.69% (204)

Table 5.4: Task evaluation results for using the skill library Kpeg for peg insertion
(columns in Tab. 5.2).

Approach Ctrl. Fn. Cl. Task Solve % |A| Data
scale-lin (ours) 5 skills Linear 96.48% (247) 0/1/1/1/1 168
monopolicy-lin-all 1 policy Linear 62.50% (160) 8 210
crest-monopolicy-lin-all 1 policy Linear 62.89% (161) 1 210
scale-nonlin (ours) 5 skills Nonlinear 88.67% (227) 0/1/1/1/1 168
monopolicy-nonlin-all 1 policy Nonlinear 12.89% (33) 8 210
crest-monopolicy-nonlin-all 1 policy Nonlinear 55.47% (142) 1 210

and further ablations, see App. C.11.
Domain shift experiment. To evaluate the out-of-distribution generalization

capabilities of SCALE, we evaluate the skills on a test distribution that is signifi-
cantly harder than the training distribution. All approaches see a degradation in
performance, but ours is more robust. See App. C.12 for details.

5.8 Conclusion
We present SCALE, an approach for discovery of compact, diverse robot manip-

ulation skills from causal interventions in simulation. These skills arise from the skill
DGR: a region that captures the underlying data generating process. We demonstrate
the advantages of skill libraries discovered with SCALE for two simulation domains
as well as on a real robot system.

Limitations and future work. SCALE assumes the robot has access to a causal
reasoning engine. We provide this via simulation and scene structural causal models,
but these models could be learned via causal discovery. SCALE primarily learns from
batch dataset collection; active learning of skills would reveal useful behaviors that are
statistically uncommon in the batch setting. Lastly, SCALE assumes that the context
variables are defined, intervenable, and disentangled. For tasks and domains where
these assumptions do not currently hold, future work in adjacent fields may ultimately

76

Ch. 5 – SCALE: Causal Learning of Skills

provide a path forward. Specifically, methods from causal representation learning [25]
— learning high-level intervenable variables from low-level observations — may hold
promise for learning a causal, disentangled state representation that SCALE can use
in cases where a suitable representation cannot be provided by hand.

5.9 Acknowledgments
We gratefully acknowledge support from the National Science Foundation (Grant

No. CMMI-1925130), U.S. Office of Naval Research (Grant No. N00014-18-1-2775),
U.S. Army Research Laboratory (Grant No. W911NF-18-2-0218 as part of the A2I2
Program), and the NVIDIA NVAIL Program. We also gratefully thank our reviewers,
whose helpful comments strengthened this work.

77

IV
Causality and Dynamical Systems

78

6
Learning By Doing:

Controlling a
Dynamical System using

Causality, Control, and
Reinforcement Learning

The implications of reasoning and learning with respect to data generating pro-
cesses for control extend more broadly than robot manipulation. For example, the
control of a chemical process may be more effective if the underlying interaction struc-
ture of the chemical reactions can be learned and leveraged. Indeed, the principles
of causality can be insightful for control of not only robots and chemical reactions,
but dynamical systems in general. Controlling dynamical systems is an objective for
not only the field of causality (interventions), but also for the fields of control theory
(controllers) and reinforcement learning (policies). This work, the Learning By Doing
competition, investigates this intersection more deeply.

Sections of the remainder of this chapter first appeared in [33]. Additional
information is provided in App. D. This work was first presented at the

Thirty-Fifth Conference on Neural Information Processing Systems (NeurIPS
2021) Competition Track. It also appeared in the Proceedings of Machine

Learning Research (PMLR), Volume 176: NeurIPS 2021 Competitions and
Demonstrations Track. We thank our collaborators on this work: Sebastian

Weichwald (University of Copenhagen), Søren Wengel Mogensen (Lund
University), Dominik Baumann (Uppsala University), Prof. Oliver Kroemer,
Prof. Isabelle Guyon (Université Paris-Saclay, ChaLearn), Prof. Sebastian

Trimpe (RWTH Aachen University), Prof. Jonas Peters (University of
Copenhagen), and Prof. Niklas Pfister (University of Copenhagen). We also

thank all of the participants of this competition.

79

Ch. 6 – Learning By Doing: Controlling a Dynamical System using Causality,
Control, and Reinforcement Learning

6.1 Summary
Questions in causality, control, and reinforcement learning go beyond the clas-

sical machine learning task of prediction under i.i.d. observations. Instead, these
fields consider the problem of learning how to actively perturb a system to achieve a
certain effect on a response variable. Arguably, they have complementary views on
the problem: In control, one usually aims to first identify the system by excitation
strategies to then apply model-based design techniques to control the system. In (non-
model-based) reinforcement learning, one directly optimizes a reward. In causality,
one focus is on identifiability of causal structure. We believe that combining the dif-
ferent views might create synergies and this competition is meant as a first step toward
such synergies. The participants had access to observational and (offline) interven-
tional data generated by dynamical systems. Track CHEM considers an open-loop
problem in which a single impulse at the beginning of the dynamics can be set, while
Track ROBO considers a closed-loop problem in which control variables can be set
at each time step. The goal in both tracks is to infer controls that drive the sys-
tem to a desired state. Code is open-sourced to reproduce the winning solutions of
the competition and to facilitate trying out new methods on the competition tasks:
https://github.com/LearningByDoingCompetition/learningbydoing-comp

6.2 Introduction
Modeling actively performed changes in an observed system is an important goal

that has appeared in various versions and settings in statistics, engineering, and com-
puter science. Each community has developed their own terminology and methods
to tackle the specific applications relevant to their disciplines, leading to the emer-
gence of causality, control theory, and reinforcement learning (RL). Each of these
fields brings a different perspective to modeling system changes and our goal of the
Learning by Doing NeurIPS 2021 competition was to bring together researchers from
each of these fields to work on the same set of tasks.

We decided to focus on dynamical systems as these appear in all three fields.
To offer a sufficiently diverse set of problems, we provided two competition tracks:
Track CHEM and Track ROBO. Track CHEM considers the open-loop problem of
choosing a single impulse that can be set at the beginning of a chemical reaction with
the goal of reaching a specific concentration of a target reactant. Track ROBO con-
siders the closed-loop problem of continuously providing inputs to a robot that guides
the tip of the robot to move along a target trajectory. In both cases, participants
were given a recorded data set from the systems and needed to use this data to learn
how to optimally interact with the system in new settings.

In Section 6.3, we briefly introduce the three fields, provide the relevant terminol-
ogy, and discuss how each field models exogenous changes to a system. In Section 6.4,

80

https://github.com/LearningByDoingCompetition/learningbydoing-comp

Ch. 6 – Learning By Doing: Controlling a Dynamical System using Causality,
Control, and Reinforcement Learning

we introduce Track CHEM and in Section 6.5 Track ROBO. In both aforementioned
sections, we also point out the challenges the tasks pose and how they relate to each
field. We conclude in Section 6.6 with some of the lessons learnt throughout the
competition.

The competition website learningbydoingcompetition.github.io provides tutorials,
results, and presentations of some of the competing teams. We provide open-source
code at github.com/LearningByDoingCompetition/learningbydoing-comp to repro-
duce the winning solutions and to allow the application of new methods to the com-
petition tasks.

6.3 Causality, Control, and Reinforcement Learn-
ing

To foster cross-pollination, we begin by introducing causality, control, and RL and
describe how each framework models changes to a system.

Causality In classical statistics, a multivariate stochastic system is thought of as
describing a single observational distribution. In contrast, a causal system1 describes a
set of distributions that models system behavior not only under passive observation,
but also under interventions [16, 19, 20]. To make this more precise, assume we
observe a response variable Y and a set of predictors X = (X1, . . . , Xp) and wish to
model how Y is affected by interventions on the predictors X. We now assume that
there exists a subset PA ⊆ {1, . . . , p} of the predictors, called the parents of Y , that
determine the value of the response Y via the following fixed functional form

Y = f(XPA, ϵ), (6.1)

where ϵ is a noise variable. This equation is understood to be functional in the sense
that the expected value of Y given that XPA was set to a fixed value xPA (denoted
by E[Y | do(X = xPA)]) is given by E[f(xPA, ϵ)]. Such structural equations are the
building blocks of structural causal models (SCMs) [16, 17], which is an important
class of causal models. Usually, causal models assume some version of stability of
mechanisms under interventions [191, 192]. In (6.1) this corresponds to assuming that
f remains fixed under any intervention on X. Much research in causality investigates
under which conditions the function f and the set of parent variables XPA can be
identified from data and how to do so data-efficiently. Causal models also exist
for dynamical systems, for example, a multivariate process Z(t) = (Z1(t), . . . , Zp(t))
can be modeled by differential equations of the form dZj(t) = F (Z(t))j for each

1Here, the notion of a causal system differs from what is usually called a causal system in the
systems and control literature where it refers to systems in which outputs only depend on past and
current inputs.

81

https://learningbydoingcompetition.github.io/
https://github.com/LearningByDoingCompetition/learningbydoing-comp

Ch. 6 – Learning By Doing: Controlling a Dynamical System using Causality,
Control, and Reinforcement Learning

component. Interventions then correspond to modifying parts of these equations, for
example, by fixing one of the coordinate processes at a certain value over a given time
interval (see Peters et al. [193] for an overview). Causal models induce a graph over
the coordinate processes, which is useful for visualizing a multivariate causal system.
In such a graph, each node represents a coordinate process, Zi. We include a directed
edge, Zi → Zj, i ̸= j, if the right-hand side of dZj(t) = F (Z(t))j is not constant in Zi

and in this case we say that Zi is a (causal) parent of Zj and that Zj is a child of Zi.

Control In automatic control, one assumes that a target process y : [0, T]→ Rp is
generated by a dynamical system. A common setup is a continuous-time state-space
model, given by

ẋ(t) = F (x(t), u(t))f (6.2)
y(t) = H(x(t), u(t)),

where x(t) is the time-dependent state of the systems (which could include y(t) itself),
ẋ(t) the derivative of x with respect to time, and u(t) is the control input. Control
design is the task of constructing a controller, that is, a map from measurements
y(t) to control inputs u(t). The dynamical system (6.2), sometimes called a plant, is
often nonlinear in the state x(t), and linear in the control input u(t). When both the
inputs x(t) and u(t) and the target process are vector-valued, one also uses the term
multi-input multi-output (MIMO) system.

A typical approach of control engineering for obtaining a controller may consist
of the following steps: (1) Use problem insight to select a useful (often parametric)
model class (such as linear/nonlinear, auto-regressive, continuous/discrete-time); (2)
Fit the parameters of the model (that have not been set yet); (3) Use the model in a
control design method to obtain a controller (for example, by minimizing a given loss
function); (4) Test the controller on the system or in simulation; (5) Possibly repeat
the cycle if results are not satisfactory.

Control design traditionally builds model classes from first principles, for example,
laws in chemistry or physics, even though not all parameters may be known. The task
of fitting the model from input-output data is known as system identification (see,
for example, Ljung [194]). Identifying a system and obtaining a controller is a well-
understood problem for linear dynamical systems and we refer the reader to textbooks
such as the one by Åström and Murray [195] for a more detailed introduction into
system identification and control design.

For nonlinear systems, however, many design methods exist for specific problem
settings, but they lack the generality of approaches for linear systems. Furthermore,
in some practical applications, including the setup of this competition, a derivation
from first order principles (including all parameters) may be impossible and even
the model class may be unknown. In slight deviation of items (1–3) above, one can
attempt to control the system without an explicit model of the underlying dynamics,
for example, using a PID controller [195]. Alternatively, model-predictive control [196,

82

Ch. 6 – Learning By Doing: Controlling a Dynamical System using Causality,
Control, and Reinforcement Learning

197] and similar optimization-based controller schemes may not compute a controller
explicitly but model the effect of control inputs directly and exploit this model in
an online optimization procedure. While model-predictive control typically relies
on a given system model with fixed parameters, the field of adaptive control [198]
considers settings where model or controller parameters need to be tuned online.
More recently, researchers in control have been exploring ways to incorporate data-
based and machine-learning approaches into control design, partly making the above
pipeline more flexible. This emerging area between control and machine learning is
known as learning-based control or data-based control.

Reinforcement learning In RL, one commonly starts by defining a reward that
specifies how desirable it is to transition from one state to another under a given
action. The system is modeled sequentially by explicitly accounting for interactions
with the system in each time step. The goal is to learn how to interact with the
system in a way that maximizes the expected value of the reward. Mathematically,
this can be achieved using Markov Decision Processes (MDPs). An MDP consists of a
tuple (S,A,R, T, γ) [199]. S is the set of states of the system and A is a set of actions
that the agent can execute. The reward R(s, a, s′) expresses the immediate reward for
executing action a ∈ A in state s ∈ S and then transitioning to the next state s′ ∈ S.
T (s′|s, a) is the transition distribution which gives the distribution over next states
s′ given the current state s and action a. γ ∈ [0, 1] is a discount factor that expresses
the agent’s preference for immediate rewards over long-term rewards. Usually, S,
A and γ are known (user-defined), T and R are unknown. To select an action, the
agent applies a policy π(a|s) that defines the distribution over the next action, a, to
execute given the current state s. Policies can be stochastic or deterministic. The
t-th sampled transition thus results in a tuple (st, at, s

′
t, rt), where st is the current

state, at is the sampled action, s′
t is the next state after the transition, and rt ∈ R

is the resulting scalar reward. The goal of learning is to acquire an optimal policy,
often denoted as π∗, that maximizes the expected return Es′∼T,a∼π

[∑T
t γ

trt

]
where T

is the duration of the task [200].

6.4 Track CHEM: Optimally controlling a chemi-
cal reaction

Track CHEM tackles the problem of optimally choosing impulses or shocks in a
dynamical system to control a specific part of the system. This task is motivated
by applications related to chemical reactions in which one is interested in generating
a desired concentration of a specific chemical compound by controlling the initial
concentration of some other chemical compounds. When considering such systems
there are constraints on how and at what cost experimentation can be performed. To
reflect this, we only provided participants with offline training data instead of allowing

83

Ch. 6 – Learning By Doing: Controlling a Dynamical System using Causality,
Control, and Reinforcement Learning

them to actively interact with the reactions. The task was to extract knowledge from
observed experiments, and use it to control the system in previously unseen settings.
Methods that tackle this problem may also apply to systems in which experimentation
is infeasible and instead only exogenous shocks to the system can be observed and
leveraged for learning.

Background on chemical reaction networks In a chemical reaction, one set
of chemical compounds is transformed into another. We usually say that reac-
tants are turned into products. Reactants and products are both called species.
In Track CHEM, the goal is to find optimal controls (or policies or interventions) on
the concentrations of reactants to ensure a desired concentration of one of the species.
The dynamical behaviour of species concentrations in chemical reactions is modeled
by mass-action kinetics [201], which results in an ordinary differential equation (ODE)
over the species. During training, the participants were not able to interact with the
system and instead only had access to past observations from the system. For these
observations, the applied control inputs were known to participants. The goal in
this track is to control one specific process in the observed system when provided
only with initial observations. We give more details on chemical reaction networks in
Appendix D.1.

Data generating process Data is generated by an artificial chemical reaction
network. Specifically, a 15-dimensional process Z(t)t≥0 is generated as:

Z(0) = z

Ż(t) = F (Z(t)) +BU(t),
(6.3)

where U(t) ∈ [−10, 10]8 is the control input at time t, z ∈ (0,∞)15 is an initial
value, B ∈ R15×8 is a matrix specifying how the controls influence the dynamics and
F : R15 → R15 is a function from the function class

F =
F : R15 → R15 |Fℓ(Z) =

15∑
j=1

θℓ
jZj +

15∑
k,j=1

θℓ
j,kZjZk, ℓ = 1, . . . , 15

 . (6.4)

The parameter θ satisfies additional constraints since we only consider ODE systems
that are generated by converting chemical reactions using the law of mass-action
kinetics. Furthermore, the rates of the underlying chemical reactions are non-negative
which also adds constraints on the coefficients θ.

Among the 15 species, Y = Z15 is the species for which the concentration should
be controlled. There are eight controls, U1(t), . . . , U8(t), that affect the concentrations
of a subset of the species. A (to participants unknown) graphical representation of
the model that generated the data for the competition is given in Figure 6.1. The
model has a simple structure consisting of four blocks of variables: {Z1, Z2, Z9, Z13},

84

Ch. 6 – Learning By Doing: Controlling a Dynamical System using Causality,
Control, and Reinforcement Learning

Figure 6.1: Graphical representation of the chemical reaction in Track CHEM.

{Z3, Z4, Z10}, {Z5, Z6, Z11}, and {Z7, Z8, Z12, Z14}. Each block corresponds to an
interaction mechanism that can either increase or decrease the concentration of Y .
There are two types of controls. (1) Control variables U1, U2, U3, and U4 affect the
system strongly and they affect an increasing and a decreasing block simultaneously.
(2) Variables U5, U6, U7, and U8 have a weaker effect on the system but they tar-
get only an increasing block (U7 and U8) or only a decreasing block (U5 and U6).
Hence, the controls in (2) offer an easy strategy to control Y but are expensive, while
using the controls in (1) is cheaper but might be more difficult. The participants
only observed data with pre-specified control settings where we had incorporated
confounding structure in the observed controls; the problem therefore also featured a
causal challenge.

Task Participants knew the function class but did not know the parameters. They
did not know the graphical structure of the system, either. Furthermore, participants
did not observe the process Z directly. Instead, they only observed X, a noisy version
of the process, sampled on a time grid (t0, . . . , tL); that is, the observed data is
sampled, at t ∈ {t0, . . . , tL}, from the process

X(t) = (Z1(t), . . . , Z15(t)) +N(t), (6.5)

85

Ch. 6 – Learning By Doing: Controlling a Dynamical System using Causality,
Control, and Reinforcement Learning

where N is a mean-zero noise process such that {N(t) : t = t0, . . . , tL} are indepen-
dent. The goal of the task is to choose a value u ∈ R8 such that the controls

U(t) =
u if t ∈ [t0, t3)

0 if t ≥ t3,
(6.6)

lead to Y being close to a (pre-specified) desired value y∗ at the end of the reaction.
As the value u for the control is set only once and after having observed X(0),
Track CHEM is an open-loop problem.

Participants had access to data from 12 different ODE systems which are specified
by the functions F 1, . . . , F 12 ∈ F and they knew the index of the system from which
data originated. The function class F was known but F 1, . . . , F 12 were unknown to
the participants. Participants knew that the 12 systems had the same structure, that
is, the same parameters θℓ

j and θℓ
j,k were zero in all 12 systems, and that every θℓ

j

and θℓ
j,k had the same sign in all systems. The parameters of the noise as well as

the matrix B were the same in all 12 systems and these facts were also known to
participants.

The training data available to participants was generated by running the data
generating process 20 times for each F i with different pairs of initial conditions z
and controls u. The distributions used to select z and u in the training data were
unknown to participants and differed among systems.

Evaluation For each of the systems participants were provided with 50 additional
sets of initial vectors, X(0), as well as an indicator specifying the corresponding
system (i = 1, . . . , 12). For each of these combinations participants were asked to
select a control input to minimize the loss function. The loss function measures the
proximity of Y i,k to the desired value yi,k

∗ toward the end of the observation interval
while also adding a penalty term depending on the size of the control input used.
The exact loss function can be found in Appendix D.1.

Three perspectives Causality The system is causal in the sense that it specifies
not only an observational distribution (U ≡ 0 in Equation (6.3)) but also a set of
interventional distributions (BU ≢ 0 in Equation (6.3)). The intrinsic dynamics are
the same regardless of which (if any) intervention is applied as they are described by
the function F . That is, the mechanism described by F is stable under interventions.
The task can be thought of as a causal learning task where participants should predict
the effect of interventions and choose an optimal intervention.

Control theory The task seeks a functional map from measurements y(t) to control
inputs u(t) which is the classical task of control design. The control inputs are to be of
the form (6.6), which can be understood as impulse control. Formalizing the control
objective as an optimization problem is commonly known as optimal control (see, for
example, Bertsekas [202] or Anderson and Moore [203]). The objective function is a

86

Ch. 6 – Learning By Doing: Controlling a Dynamical System using Causality,
Control, and Reinforcement Learning

weighted sum that, as typical in control applications, balances control performance
and control effort.

Reinforcement learning In this task, the vector u is selected at the start of each
trial and then executed for a number of steps. This problem formulation without
state transitions is closely connected to bandit or contextual bandit problems [199]
where the agent receives a reward based solely on the selected action and context.
Classical online RL approaches learn the policy by iteratively interacting with the
environment and improving the policy. However, for the proposed task, the agent
will need to use offline reinforcement learning as no interaction with the system is
possible (see, for example, Lange et al. [204] or Levine et al. [205]).

6.5 Track ROBO: Controlling a robotic arm in a
dynamical environment

Track ROBO is motivated by the long-term goal of learning skills that can be
performed by a diverse set of robots to complete real-world tasks. For instance, one
may want to teach robots new skills such as stirring a pot or cutting vegetables for
cooking. The new skills can be learned more efficiently by leveraging prior experience
in related tasks such as whisking eggs. Robots may also have different kinematic
structures, requiring individualized control policies to accurately execute the end-
effector trajectory required by a new skill. Even robots of the same type can differ
because of minor variations in the production process. If we can leverage a robot’s
prior movement data to derive an individualized controller for a new skill, we may
avoid the need for additional training and enable rapid roll-out of new skills.

We mimic this challenge in Track ROBO: participants are provided with move-
ment data and asked to provide a controller that sequentially interacts with a robotic
arm such that its end-effector reaches a target position provided for the next time
step. The two difficulties are: (1) Participants can only set abstract control variables
instead of, for example, setting the torques of individual joints directly. This restric-
tion imitates a setting in which the robot dynamics are complicated to write down
explicitly. (2) The training data is comprised of different types of trajectories than
those in the test data, imitating a setting in which the robot must adjust to a new
task given previous data of an old task.

We consider three robot arms: (1) A two-joint rotational robot arm, (2) a three-
joint rotational robot arm, and (3) a two-joint prismatic robot arm. The rotational
joints produce a rotary motion around the joint, and the prismatic joints produce
a linear motion between links (see Figure 6.2). Each joint can be controlled by
applying a voltage signal to a DC motor located in the joint. (In this challenge,
the voltage is not set directly, see below.) In rotational joints, this creates a torque,
while in prismatic joints this creates a linear acceleration. The resulting movement
of the joints of the robot arm (and its tip in particular) are governed by the physical

87

Ch. 6 – Learning By Doing: Controlling a Dynamical System using Causality,
Control, and Reinforcement Learning

Figure 6.2: (Left) Rotational 2-link robot, the trail of previous positions of the robot
tip (orange line), and the target position (green star). (Right) Prismatic 2-link robot
and a target trajectory (green dotted line) to a target position (green star). The gray
area corresponds to the reachable workspace of the robots. The black dotted lines
indicate the initial position of the robots.

laws of motion. Given a specific robot one can derive exact differential equations that
describe the robot’s movement, known as the dynamics model (or dynamics for short)
of the robot with parameters that depend on various specifications of the robot such
as link mass, rotational moment of inertia, link length, location of center of mass,
and friction coefficients, see Appendix D.2.

Data generating processes Participants were able to sequentially interact with
24 different robotic arm systems, with dynamics given by

(Z(0),W (0)) = (z, w)
(Ż(t), Ẇ (t)) = F s(Z(t),W (t), C(t)) = F s(Z(t),W (t), As · U(t)),

(6.7)

for s ∈ {1, ..., 24} where Z(t) = ((X(t), Y (t)) ∈ R2 is the position of the tip of the
robot, the positions of other joints are W (t) = (X1(t), Y1(t), ..., Xd(t), Yd(t)) ∈ R2d,
z ∈ R2 and w ∈ R2d are the initial values, and C(t) ∈ Rq are the underlying robot
controls, that is, voltage signals applied to DC motors located in each joint (d and
q depend on the underlying robot). The (to participants unknown) functions F s :
R2(d+1)+q → R2(d+1) are given by the second-order dynamic system of the underlying
robots: F 1, ..., F 8 and F 9, ..., F 16 correspond to 2-link (d = 1) and 3-link (d = 2)
open chain planar manipulators with revolute joints (cf. D.2.1), respectively, and F 17,
..., F 24 correspond to 2-link (d = 1) prismatic manipulators (cf. D.2.2); the dynamics
differ further between robots due to different robot specifications denoted by θs (link

88

Ch. 6 – Learning By Doing: Controlling a Dynamical System using Causality,
Control, and Reinforcement Learning

masses and lengths, moments of inertia, friction coefficients, and locations of link
center of masses). The (to participants unknown) interface function Gs : Rp →
Rq, x 7→ Asx for As ∈ Rq×p relates the participants’ abstract control inputs U(t) ∈ Rp

to the underlying robots’ control inputs C(t) via C(t) = Gs(U(t)); As is either the
identity, a square (p = q), or a rectangular (p > q) real matrix with imbalanced row-
norms and full rank. Participants can control the systems only on a linearly spaced
discrete time grid (t0, t1, . . . , t200) with t0 = 0 and t200 = 2, that is, for each time step
ℓ ∈ {0, . . . , 199} it holds that C(t) = Gs(U(t)) ≡ const for all t ∈ [tℓ, tℓ+1). Some
of the 24 systems share robot dynamics (F s), specifications (θs), and/or the control
interfaces (As) in a systematic way, which is reflected in the naming convention but
was not explicitly revealed to the participants (cf. Table D.1 for an overview).

Task The competition task is to control the robots’ end-effector position Z(t) to
follow a given target process t 7→z∗(t). More specifically, participants needed to im-
plement a controller, that is, a function controllers : R2(d+1)+2 → Rp for each robot
(s ∈ {1, ..., 24}). At each time step ℓ ∈ {0, . . . , 199}, the controller is queried for
the next control input U(tℓ) ∈ Rp given the current positions Z(tℓ),W (tℓ) ∈ Rd+1,
their derivatives Ż(tℓ), Ẇ (tℓ) ∈ Rd+1, and a target end-effector position z∗(tℓ+1) ∈ R2

for the next time step. The task does not involve planning as the controller only
gets access to the next time step’s end-effector target position, however, the imple-
mented controller can gather information during the control process2. If the con-
troller does not return within given compute time and resource constraints, we set
C(tℓ) = Gs(U(tℓ)) = 0. This way, the different robots are propagated forward for
different target trajectories (z∗(t0), ..., z∗(t200)) following their respective dynamics un-
der the participant-provided controller; the participants’ task is to align the resulting
end-effector trajectory (Z(t0), ..., Z(t200)) with the target trajectory.

For deriving and implementing their controllers, participants were provided with
(offline) training data for each system (F s, θs, As) in the form of 50 realized end-
effector trajectories and corresponding control input sequences. Training trajecto-
ries are obtained using an LQR-controller [203] (based on inverse dynamics and the
(pseudo-)inverse of Gs to map robot controls to participant controls) to transition
from some random starting positions to some random target positions in the robot’s
workspace. The one-step ahead end-effector target positions used to generate the
training trajectories were not provided to participants. For each of these repetitions,
participants were provided with the observed processes W and Z, their derivatives
Ẇ and Ż, a time indicator t, the applied controls U and an indicator i specifying the
system.

2By implementing controllers as a function with state to log previous queries, the controller can
at each time step also be viewed as a function of positions Z(t0),W (t0), ..., Z(tℓ),W (tℓ), derivatives
Ż(t0), Ẇ (t0), ..., Ż(tℓ), Ẇ (tℓ), and targets z∗(t1), ..., z∗(tℓ+1), while the interface between robot and
participant controller was specified as a function of only the current position, derivatives, and target.

89

Ch. 6 – Learning By Doing: Controlling a Dynamical System using Causality,
Control, and Reinforcement Learning

Evaluation For each of the 24 systems (F 1, θ1, A1), . . . , (F 24, θ24, A24) the partici-
pants’ controller implementation is used to follow 10 different target processes. More
specifically, for each system i ∈ {1, . . . , 24} and repetition k ∈ {1, . . . , 10}, there
is a target process zi,k

∗ : [0, 2] → R2 and the robot is propagated forward using
the participant-provided controller. The loss function measures how far the realized
end-effector trajectory is from the target process and penalizes the size of the par-
ticipants’ control inputs (cf. Appendix D.2 for details). Mimicking a real-time robot
control scenario, the participants’ computational resources spent on evaluating the
code that implemented their controller were restricted. If the time constraints were
not met, the submission was invalid.

Three perspectives Causality We can formulate the task of controlling a robot as
a causal task. First, we need to estimate a model that allows us to evaluate the effect
of various interventions, where interventions now correspond to setting the inputs
U(t). Second, we optimize a sequential intervention scheme.

Control The task consists of both system identification and controller design and
it relies on all the steps in a typical control engineering application as outlined in
Section 6.3.

Reinforcement learning Track ROBO has a standard MDP formulation wherein
the action is defined by the command sent to the abstract controller and the state
space is given by the joint positions and velocities. The time-varying reward is given
by the robot’s accuracy in following the desired trajectory with a penalty on the size
of the control inputs.

6.6 Results and lessons learned
The results of the competition can be found on our website3 and in the appendices.

The website also contains videos, in which some of the competing teams describe their
solutions in more detail. Code is available, too4.

For us, one of the key questions was whether, for the model classes considered
in this challenge, it is better to aim to build a model and then infer the optimal
control, or to directly estimate the effect of the applied control. The competition
results suggest the former in that in both tracks the winning solution was indeed
inferring a data-generating model first (see in D.1.1 and D.2.3 in the appendices); it

3See learningbydoingcompetition.github.io
4See github.com/LearningByDoingCompetition/learningbydoing-comp for open-source code to

reproduce the winning solutions of the competition and to try out new methods on the competition
tasks; see [206] for code that implements the winning solutions to Track CHEM and Track ROBO;
see github.com/Quarticai/learning by doing solution for code that implements the second winning
solutions to Track CHEM and Track ROBO; see [207] for code that implements the third win-
ning solution to Track CHEM; see [208] for code that implements the third winning solution to
Track ROBO.

90

https://learningbydoingcompetition.github.io/
https://github.com/LearningByDoingCompetition/learningbydoing-comp
https://github.com/Quarticai/learning_by_doing_solution

Ch. 6 – Learning By Doing: Controlling a Dynamical System using Causality,
Control, and Reinforcement Learning

outperformed approaches of the latter type by a significant margin. We speculate that
imposing a model structure (even if both the structure and the parameters still need
to be inferred from data) acts as strong regularization helping to ensure successful
control which is robust to environmental changes. Clearly, further research is needed
to better understand in which settings this is expected to be the case. In the future,
it would be interesting to consider situations where the model inference becomes even
harder, for example, because more parts of the system are unobserved.

6.7 Acknowledgments
We thank the NeurIPS 2021 competition track organizers, Barbara Caputo, Marco

Ciccone, and Douwe Kiela. We also thank all the participants who took part in the
competition. SW and JP were supported by the Carlsberg Foundation. SWM was
supported by a DFF-International Postdoctoral Grant (0164-00023B) from Indepen-
dent Research Fund Denmark. TL and OK were supported by the Office of Naval
Research under Grant No. N00014-18-1-2775. IG was supported by ANR Chair of
Artificial Intelligence HUMANIA ANR-19-CHIA-0022. JP was supported by a re-
search grant (18968) from VILLUM FONDEN. NP was supported by a research
grant (0069071) from Novo Nordisk Fonden. The competition has been supported by
the Department of Mathematical Sciences at the University of Copenhagen.

91

7
Hybrid Causal World

Models: Integrating
Latent and Semantic

Information

As evidenced by our previous work in the Learning by Doing competition (Ch. 6),
there exists a rich overlap between causality and dynamical systems. This remains
true for world models, models that capture environment dynamics. Typically, world
models learn a latent state space through unsupervised representation learning. While
advantageous in certain regards (e.g., a hand-specified state space is not required), a
learned representation may be difficult to understand or interpret. Moreover, subject-
matter expertise of a particular robotic system may be known in semantic, not latent,
terms. This work, LMeshNet, explores how semantic information can be integrated
into a world model, yielding a hybrid world model that synchronizes latent and se-
mantic information. Specifically, semantic information is integrated by the addition
a separate semantic world model, which operates synchronously with a given and
pretrained latent world model. This hybridization procedure yields a hybrid world
model that comprises one latent world model and one semantic world model. Syn-
chronization of both halves of the hybrid world model is provided at inference time
through blending latent-to-semantic predictions into the semantic space. In cases
where the (latent) world model is a causal world model, the latent space may have
favorable disentanglement properties, and causal discovery can then be used to pro-
vide interpretability for the latent space based on the semantic space. The resulting
hybrid causal world model provides greater utility and interpretability as compared
to standard world models.

Application example. To provide a concrete example, one such application
could be a depth-based robot tracking system for a dynamical object, where a (latent)
causal world model captures dynamics through a depth observation. Assuming there
is a particular point of interest or fiducial on the object, a semantic world model can be
used to track the distance to this fiducial through a unidimensional range observation.
As both the depth and range observations have overlapping information, the causal
discovery procedure used by this work can recover the overlapping interrelationships

92

Ch. 7 – Hybrid Causal World Models: Integrating Latent and Semantic Information

between the latent space and the semantic space. This procedure provides two major
benefits. First, interpretability arises by understanding which the dimensions of the
latent space relate to the semantic space. Second, only the dimensions of the latent
space obtained from causal discovery can be used for latent-to-semantic predictions,
rather than using all dimensions, leading to a smaller network and an approach that
scales with the dimensionality of the latent space.

Same-environment synchronicity and benefits of learning causal struc-
ture. Our work leverages Variational Causal Dynamics (VCD) [209] as the causal
world model used for hybridization. VCD has been shown to more accurately learn
the underlying dynamical structure through causal representation learning, and fur-
thermore, this approach was used to adapt to new environments. Our work focuses
primarily on synchronizing semantic information with the same environment distri-
bution that was used to train the latent space, although our work can be extended
to consider cases of adapting this synchronization to new environments. Moreover,
we show that the advantage of learning the causal structure in the latent side of the
hybrid world model also benefits the semantic world model in terms of more accurate
long-term semantic predictions, as compared to hybridizing a standard world model
that is agnostic to causal structure.

Identifiability. One important consideration for world models is that of identifia-
bility: whether the underlying latent causal processes can be identified and recovered.
For LMeshNet, we demonstrate that causal discovery can obtain the relationship be-
tween the latent state and given semantic information for a hybrid causal world model.
Our experiments show that the latent state captured the ground truth causal pro-
cesses, and the semantic information was one of the ground truth causal processes.
Therefore, this relationship could be found. For this work, we assume that overlap
exists between the latent state and semantic information. In general, this assumption
will hold if 1) the ground truth causal processes are identifiable and recovered with
the latent state, and 2) the semantic information is related to the ground truth causal
processes. Specifically, we require that a mapping exists between the latent causal
processes and the semantic information used for hybridization.

The requirement for identifiability of the latent state is important, as LMesh-
Net inherits the identifiability and modeling assumptions of the latent world model.
This study uses Variational Causal Dynamics, which models each latent variable as
an independent causal mechanism [209]. However, Liu et al. recently showed this
assumption may be overly restrictive and instead presented a general factorization
for causally-related latent processes [210]. Specifically, in IFactor, Liu et al. model
four distinct categories of latent variables (reward-relevant and controllable, reward-
relevant but uncontrollable, reward-irrelevant but controllable, and reward-irrelevant
and uncontrollable) and prove block-wise identifiability of these variables [210]. In
principle, other causal world models and factorizations, such as IFactor, should yield
a causal representation that would permit the relationship between the latent and
semantic information to be found, assuming that the assumptions stated above are

93

Ch. 7 – Hybrid Causal World Models: Integrating Latent and Semantic Information

satisfied. These assumptions may also restrict the types of tasks for which this ap-
proach can be used. Tasks with more complex relationships or structures may require
interventions.

Lastly, a related assumption is that of observability. The experiments in LMeshNet
concern a multi-particle dynamics problem, where the underlying causal processes
could be inferred and identified. If the particles became occluded or otherwise not
completely observed, then it may not be possible for the latent state to be identified
or the relationship with the semantic space to be found.

For this work, our study in learning the relationship between latent and semantic
information is empirical, and we believe there is rich future work in understanding
the theoretical aspects of discovering this relationship and its implications for iden-
tifiability. For more interest in state space identifiability, we direct the reader to Yao
et al. [211, 212], Huang et al. [213], Lippe et al. [214, 215], and Liu et al. [210].

This work was completed during an internship at Lockheed Martin Space
Advanced Technology Center. We thank our Lockheed Martin collaborators on

this work: Joseph Gleason, Shruti Mahadevan, Daniel Kolosa, and Eric Dixon.
We also thank Anson Lei for providing an official implementation of VCD [209].

7.1 Summary
Although world models provide a compelling model-based approach to learning en-

vironment dynamics, the latent state representation that is learned is often uninter-
pretable. Therefore, the utility of these world models is limited when comparing against
semantic state information about the environment that is known by domain experts.
Recent work has extended world models to yield a causal latent representation, lead-
ing to a causal world model. In this work, we propose the hybrid causal world model,
which integrates known semantic information with a pretrained causal world model.
Importantly, our approach uses causal discovery to learn the relationship between the
world model latent space and the semantic space, rendering the learned state repre-
sentation interpretable. Our experiments show that the hybrid causal world model can
successfully synchronize both latent and semantic representations, improving world
model utility and functionality.

7.2 Introduction
A hallmark of human intelligence is the capability of creating mental models that

capture our perception of the world for use in reasoning [216]. The promise of endow-
ing machine learning agents and robots with similar cognitive capabilities has lead
to the development of learning world models: models of environment dynamics that
can be learned from observations, akin to how humans develop such models of the

94

Ch. 7 – Hybrid Causal World Models: Integrating Latent and Semantic Information

world from our senses. Through representation learning, world models typically learn
the dynamics in terms of a latent state representation, as opposed to a (commonly
hand-provided) state representation that often is understandable in semantic terms.
Learning a latent state space can be particularly advantageous in domains where it
is not clear how a semantically meaningful state space can be constructed.

However, the advantages of a latent state space yield disadvantages towards their
utility. Such learned latent spaces are not inherently interpretable, as they arise
from learning an opaque world model. It is not obvious how the learned latent space
relates to a state space that is known to end users of systems, such as robotics
practitioners who monitor the success of these systems in real operational scenarios.
Subject-matter expertise may be known in terms of semantic information, making
analysis of latent information cumbersome or even impossible. For this reason, there
may be semantic knowledge about the system that is desirable to track in a certain
representation known to end users, even if it is not possible to construct an entire
state space that would be semantically meaningful. Yet, this semantic information
may also encapsulate knowledge that is also known by the latent space. How can
latent and semantic information work harmoniously together?

To this end, we introduce LMeshNet,1 a “best of both worlds” approach for one
world model that encapsulates both a learned latent model and a semantic model.
We assume the semantic model captures information known already about the sys-
tem that is desirable for end users. When uniting the semantic world model with a
structured world model that more strongly captures the underlying causal structure
of the world (i.e., a causal world model), LMeshNet creates a hybrid causal world
model that leverages the favorable disentanglement properties of the latent space.
The contributions of this work are as follows:

• We propose a methodology to “hybridize” an existing world model, integrating
the world model’s latent space with a given semantic space.

• We show that with a causal world model, causal discovery can elicit a latent
subspace that provides overlapping information with the semantic space, leading
to interpretability of the latent space and a reduction in model parameters
needed for a hybrid causal world model.

• We perform experiments that demonstrate that integrating the semantic space
provides greater utility, and long-term predictions of the semantic space can be
stabilized from the latent space when no observations are available.

1LMeshNet stands for “Latent Meshed with Semantic Hybrid Network.” The name refers to
how the latent and semantic spaces are meshed together, working synchronously. LM is also a
reference to Lockheed Martin.

95

Ch. 7 – Hybrid Causal World Models: Integrating Latent and Semantic Information

7.3 Related Works
World models and dynamics models. The goal of a world model is to learn a

latent dynamics model of an environment, typically from high-dimensional observa-
tions (e.g., images) and often for use in model-based reinforcement learning [217–219].
Representative examples includes the model introduced by Ha and Schmidhuber [151]
and several models by Hafner et al. [220–223]. PlaNet [220] uses a latent dynamics
model for planning, and this work was subsequently followed by Dreamer [221] for
learning long-horizon behaviors in the latent space. DreamerV2 [222] builds from
Dreamer, using a categorical (rather than Gaussian) latent distribution and focus-
ing on Atari tasks. Recently, DreamerV3 [223] expands on DreamerV2 in various
areas, such as using symlog predictions and unimix categorical distributions. No-
tably, DreamerV3 enables a Minecraft agent to collect diamonds from scratch. Other
works that investigate learning a dynamics model include E2C [224], RCE [225], and
SOLAR [226].

Structured world models. Coinciding with broader interest in causal machine
learning [37] and causal representation learning [25], recent works have explored imbu-
ing world models with greater causal structure [209, 227, 228]. Zhu et al. [227] inves-
tigate training a structured world model using offline reinforcement learning. Their
contributions include 1) a theoretical result showing causal world models are more
performant than standard world models, and 2) the FOCUS algorithm for learning
the underlying causal structure from offline data. Lei et al. [209] introduce Varia-
tional Causal Dynamics (VCD), which uses differentiable causal discovery to learn a
world model with a structured transition model that captures the causal structure of
the environmental dynamics in both observational and intervened settings. Poudel
et al. [228] proposes a methodology for training a world model using a contrastive
loss and an interventionally-invariant auxiliary task to learn invariant causal features.
Our work explores the use of “hybridizing” a causal world model with semantic in-
formation.

Causal interpretability. Through causal discovery, LMeshNet provides a degree
of interpretability to a causal world model’s latent space by identifying dimensions
that overlap with the provided semantic information. In this view, our work can be
seen as a method for causal interpretability [229], a subset of interpretable machine
learning [230–233] that specifically seeks to provide understanding through a causal
lens.

96

Ch. 7 – Hybrid Causal World Models: Integrating Latent and Semantic Information

7.4 Preliminaries

7.4.1 World Models
A world model learns a dynamics model of an environment in terms of a latent

state space z that emerges from unsupervised representation learning. Typically,
this representation is learned from high-dimensional observations o, such as images.
The distribution of the latent space z is a design choice, with examples such as
Gaussian [151, 209, 221] or categorical [222, 223]. Figure 7.1 illustrates the standard
architecture of a world model. Major components include 1) the encoder, which
models the probability P (zt|ot) and is referred to as the posterior ; the decoder (or
observation model) which models P (ot|zt) and reconstructs the observation õ from
the latent state z; and a transition model T that models the forward progression of
dynamics P (zt+1|zt, at), where a is the environment action. As shown in Fig. 7.2a,
the transition model T is typically modeled as a recurrent neural network (RNN) that
is fully connected with the latent space z. Because the transition model T in entirely
in the latent space (i.e., without incorporating observations), long-term predictions
can be achieved by forward simulating the environment dynamics model with given
actions a. This capability has been referred to as the “latent imagination” [221] of
world models. The encoder and decoder are typically modeled as feedforward neural
networks.

For this work in comparing to standard world models, we use the recurrent state
space model (RSSM) [220] as the implementation of the transition model T . The
RSSM comprises two parts: 1) a deterministic part ht+1 = fd(ht, zt, at), where fd is
a gated recurrent unit (GRU) [234] and ht is the associated hidden state; and 2) a
stochastic part, where zt+1 ∼ P (zt+1|ht+1).

7.4.2 Causal World Models: Variational Causal Dynamics
Despite the success of world models, it is unclear how high-dimensional observa-

tions relate to the low-level latent space. To this end, Variational Causal Dynamics
(VCD) [209] introduces a structured world model with a causally factorized transi-
tion model (Fig. 7.2b), yielding a causal world model that is learned from differen-
tiable causal discovery. This causal approach lends itself toward modeling environ-
ment dynamics in terms of independent mechanisms which can be modeled only with
causally relevant latent variables. Moreover, by the Sparse Mechanism Shift hypoth-
esis [25, 235], domain shifts in the environment data generating process arise due
to sparse and local changes, and therefore other mechanisms remain invariant across
these domains. Therefore, VCD also captures how these independent mechanisms
change from an undisturbed environment to those with interventions.

97

Ch. 7 – Hybrid Causal World Models: Integrating Latent and Semantic Information

Figure 7.1: A world model typically consists of the following components: an encoder
that takes as input an observation o and learns a latent state space embedding zt;
a decoder that, from a latent state zt, yields a reconstructed observation õ; and a
transition model T that learns the forward dynamics of the system (in the latent
space) from the latent state zt and action a in order to predict the next latent state
zt+1.

To accomplish this, along with jointly learning the latent representation and tran-
sition model (as in standard world models), VCD also jointly learns a causal graph
G of the environment dynamics and intervention targets Ik across K intervened en-
vironments for use in the causally factorized transition model. This is achieved by
extending Differentiable Causal Discovery from Interventions (DCDI) [236] for use
with latent variables. These improvements in imbuing greater causal structure into
the world model lead towards learning a causal latent representation that has favor-
able disentanglement properties as compared to standard world models.

For our work, we use VCD as our representative causal world model. Notably,
VCD is the first structured world model to implement a causal transition model with
high-dimensional inputs.

7.5 Hybridization of World Models
LMeshNet integrates a semantic space s in concert with an existing world model,

leading to a hybrid world model with two halves for the latent and semantic spaces
(Fig. 7.3). This semantic space s enables world model interpretability along dimen-
sions that may be critical for system practitioners to monitor in a specific represen-
tation. We assume the semantic space s is inferred from a semantic observation, os,
which is distinct from the observation o.

98

Ch. 7 – Hybrid Causal World Models: Integrating Latent and Semantic Information

(a) (b)

Figure 7.2: World models can become causal world models depending on their tran-
sition models and latent space representation. (a) A standard transition model is
typically implemented as a recurrent neural network that takes a fully connected in-
put of zt and at and yields a fully connected output of zt+1. (b) In VCD [209], a
separate transition model exists for each dimension of the latent state z, and the
inputs of each transition model are the parents according to a learned causal graph.
In other words, the transition model for z1 (Tz1) would predict zt+1

1 from the parents
of z1 (PAz1). Moreover, VCD learns environment-specific models (when a particular
environment has an intervention) along with an observational model when there are
no interventions. Shown is the case where there 4 environments total, one without
interventions and three with environment-specific interventions.

We assume that this semantic space s is known and provided to LMeshNet as
a part of the hybridization process. Moreover, we assume that there exists some
overlap of information between the observation o and semantic observation os, such
that latent information could in principle be used to augment semantic information.
For example, a depth-based robotic system for tracking an object could utilize a hybrid
world model with depth observations as o and a unidimensional range measurement
(i.e., to a particular fiducial on the object) as os.

7.5.1 Semantic World Model
As shown in Fig. 7.3, the hybrid world model is created by integrating a latent

world model with a semantic world model. The components of the semantic world
model are generally similar to those in a standard world model, except that the
models are intended to learn a particular semantic space s of interest using a semantic
observation os. The semantic world model also contains components to synchronize
the latent and semantic spaces (c.f., Sec. 7.5.2), which may primarily be of concern
when conducting long-horizon predictions.

In principle, it is possible to have a completely orthogonal semantic space s and

99

Ch. 7 – Hybrid Causal World Models: Integrating Latent and Semantic Information

Figure 7.3: The hybrid world model comprises a latent world model and a semantic
world model, with machinery to synchronize these two halves. The latent world model
is as described in Fig. 7.1. The semantic world model uses the standard world model
architecture to model specific, semantically meaningful dimensions within the seman-
tic state space st. The semantic encoder, semantic decoder, and semantic transition
model operate similarly to a (latent) world model. Synchronicity of the two halves
for predicting the next semantic state st+1 is provided by aligning the semantic and
latent halves through the semantic prediction model fz→s and the semantic blending
module Bs.

100

Ch. 7 – Hybrid Causal World Models: Integrating Latent and Semantic Information

observation os that shares no information with the latent world model. For these
cases, synchronicity does not become a concern, and the two halves of the world
model will operate independently. However, such cases are not examined in this
work.

7.5.2 Synchronizing the Latent and Semantic Spaces
As the latent world model and semantic world model operate separately, disagree-

ment may arise between the latent and semantic spaces. When the world model is
continually updating the state spaces at each timestep with new observations o and
os, this disagreement may be bounded and within acceptable tolerances. However,
in long-horizon forward predictions without new observations, the disagreement may
grow unacceptably large, leading to desynchronization of the hybrid world model. To
ensure the latent and semantic spaces remain synchronized, the semantic space can
be updated by predictions from the latent space.

Synchronicity of the hybrid world model is provided at inference time by two
components: 1) a semantic prediction model fz→s and 2) a semantic blending module
Bs.

Semantic prediction model. The semantic prediction model fz→s takes as in-
put the next latent state zt+1 and outputs a prediction for the next semantic state
ŝt+1. This model is implemented as a multilayer perceptron that is either fully con-
nected with zt+1 or, if the latent space has favorable disentanglement properties, the
dimensions can either be prespecified or learned by causal discovery (c.f., Sec. 7.5.3).

Semantic blending module. The semantic blending module Bs blends ŝt+1

with s̄t+1, the next semantic state from the semantic world model, to yield st+1. This
module implements the weighted sum of two independent Gaussian distributions:

µst+1 = (1− β)µs̄t+1 + βµŝt+1 (7.1)
σ2

st+1 = (1− β)2σ2
s̄t+1 + β2σ2

ŝt+1 (7.2)

where µst+1 and σ2
st+1 refer to the mean and variance, respectively, of the next semantic

state and β is a hyperparameter that controls the degree to which the latent prediction
is blended into the semantic space. When β = 0, no blending occurs and the hybrid
world model operates asynchronously. When β = 1. the semantic world model
becomes disabled, and the semantic space is exclusively estimated from the latent
space.

7.5.3 Causal Discovery of Shared Latent/Semantic Dimen-
sions

Although it is possible to use all dimensions of the latent space z to infer the
semantic space s using a fully-connected fz→s, in practice, this näıve assumption may

101

Ch. 7 – Hybrid Causal World Models: Integrating Latent and Semantic Information

lead to unnecessary complexity and network size, particularly if the latent dimen-
sionality is large. Such unnecessary complexity may be unacceptable for hardware
with SWaP (Size, Weight, and Power) constraints, such as robotic space systems and
satellites. Therefore, for certain applications, it is critical to determine only the nec-
essary dimensions of the latent space z that are needed for predicting the semantic
space s.

To do this, we use causal discovery to determine the interrelationships between the
latent space z and semantic space s. We first generate a dataset consisting of trajecto-
ries of the latent variables z and semantic variables s. Then, we use the TS-ICD [237]
algorithm to learn a temporal graph Gz→s with hyperparameter α (controlling graph
sparsity) and window size of 2. Thus, the learned graph Gz→s encodes the relation-
ships between the preceding timestep (zt−1 and st−1) and the present timestep (zt

and st). To extract the dimensions, we focus on the contemporaneous subgraph and
take the dimensions of st that are connected to zt. In principle, the edges between
st and zt will often be bidirectional, corresponding to having a common cause (the
physical mechanism captured by the observations o and os), rather than being di-
rected. Nonetheless, a bidirectional edge suggests statistically which dimensions of
latent space z overlap with s.

We note that using causal discovery to determine the latent/semantic overlapping
dimensions requires a compatible latent representation and depends on the degree of
disentanglement within the latent space. We find that latent representations obtained
with structured world models from causal learning have better disentanglement prop-
erties and thus perform better than representations trained from correlation-based
learning (c.f., Sec. 7.6.3).

7.5.4 Training the Hybrid World Model
For training the hybrid world model, our goal is to unify the semantic world model

with a pre-existing latent world model. Such cases would arise when fine-tuning of the
latent world model is prohibitive due to limited computational resources or would lose
favorable generalization properties during the fine-tuning process. Thus, for training
the hybrid world model in this work, the latent world model is frozen and not adapted;
gradient updates therefore only affect the weights of the semantic world model.

To train the hybrid world model, three training objectives are used:

1. Minimizing the reconstruction error between the semantic observation os and
the reconstructed semantic observation õs (training the semantic encoder and
semantic decoder);

2. Minimizing the KL divergence between the prior semantic state and the poste-
rior semantic state (i.e., before and after updating the semantic state s with an
observation os);

102

Ch. 7 – Hybrid Causal World Models: Integrating Latent and Semantic Information

3. Minimizing the KL divergence between the next semantic state from the se-
mantic and latent sides, i.e., between s̄t+1 and ŝt+1.

Note that the semantic blending module Bs is not used during training, as blending
only occurs at inference time.

7.6 Experiments
To assess the capability of LMeshNet, we conduct experiments in learning a hybrid

causal world model for a multi-body particle dynamics domain.

7.6.1 Multi-Body Dynamics Domain
As introduced by Lei et al. [209] and illustrated in Fig. 7.4, this domain consists

of four particles that interact with one another based on various interparticle forces,
such as spring force, attraction, and repulsion. The action a ∈ R2 applies a force
to Particle 4 in the x- and y-direction. The domain consists of an observational
setting and 18 interventional settings, where various interventions are applied to the
observational setting. Such interventions include removing springs, changing particle
masses, increasing the spring force constant, and constraining particle movement
horizontally or vertically. The underlying causal variables in this problem can be
represented as a ground truth state c ∈ R8, corresponding to the x- and y-position of
each of the four particles. The system observations either are images, where an RGB
image of the scene is captured, or mixed-state, where the 8 causal variables are passed
through a mixing matrix M ∈ R12×8 to yield a 12-vector observation (i.e., o = Mc).

7.6.2 Experimental Setup
The hybrid causal world model is trained to unify a semantic space to a pretrained

latent causal world model that has been trained with VCD (“VCDHybrid”). We com-
pare the performance of the hybrid causal world model against a hybrid world model
that adjoins a semantic space to a structure-agnostic (i.e., no specific causal training
objectives) pretrained latent world model that uses a fully-connected RSSM transi-
tion module (“RSSMHybrid”). Additionally, for each hybrid world model, we explore
the the effects of using a fully-connected latent-to-semantic prediction (“-FC”) or us-
ing dimensions obtained from causal discovery (“-M”) as described in Sec. 7.5.3. We
assess these four models for two cases: when the world models operate independently
(no latent-to-semantic blending) or when latent-to-semantic blending occurs (“-B”).

For these experiments, the mixed-state observation space is used; examining image
observations is left for future work. The semantic state of interest s ∈ R is Particle
1’s x-position (i.e., c1), which also serves as the semantic observation os. Neither the

103

Ch. 7 – Hybrid Causal World Models: Integrating Latent and Semantic Information

(a) (b)

Figure 7.4: The multi-particle dynamics domain. The domain consists of four par-
ticles that interact according to various forces. The domain consists of either an
observational setting with no interventions (a), or 18 interventional settings where
various interventions are applied to the observational setting. The environment ac-
tion a applies a force to Particle 4. (a) In the observational setting (no interventions),
Particles 1 and 2 are connected by a spring, as are Particles 2 and 3. Particles 1 and
4 are pulled towards each other through an attraction force, whereas Particles 3 and
4 are repelled from each other through a repulsion force. (b) In this example inter-
ventional setting, the spring connecting Particles 1 and 2 has been removed. Besides
this intervention, all other environment mechanics are as defined in the observational
setting. (Illustration is adapted from [209].)

mixed-state observation o nor semantic observation os have sensing noise. The six
environments used for these experiments consisted of one observational setting with
five interventional settings, consisting of 1) removing the spring between Particles 1
and 2 (Fig. 7.4b), 2) constraining Particle 2 horizontally, 3) constraining Particle 1
vertically, 4) increasing the mass of Particle 3, and 5) constraining Particle 4 vertically.

Experimental results are from evaluation on a test dataset of trajectories that are
drawn from the same distribution as the training data. For the first 100 timesteps,
the hybrid world models receive the observation o and semantic observation os at
every timestep. Starting at the 100th timestep, no observations are used by the
hybrid world models, assessing their capability for long-horizon predictions from only
their environment model. Results are shown in terms of reconstruction error for both
the latent and semantic spaces, by comparing the reconstructed observations õ and
õs against their ground-truth observations o and os. Synchronicity between the two
halves of the hybrid world model is measured in terms of disagreement: the difference
between the semantic state s and the predicted semantic state ŝ from the latent state

104

Ch. 7 – Hybrid Causal World Models: Integrating Latent and Semantic Information

z via fz→s. Representative time history trajectories are also presented.

7.6.3 Experimental Results
Independent (no latent-to-semantic blending). Figure 7.5 shows the aggre-

gate results of the hybrid world models when no latent-to-semantic blending occurs
(β = 0) and the latent and semantic sides operate independently.

As shown in Fig. 7.5a, VCDHybrid models (VCHybrid-FC, VCDHybrid-M) pro-
vide lower reconstruction error for the latent space during long-term predictions than
RSSMHybrid-FC and RSSMHybrid-M. This is specifically because of VCD’s improved
modeling of environmental dynamics through capturing the underlying causal factors.
However, the reconstruction error grows over 100 timesteps as the latent space in-
creasingly diverges from ground truth and long-term predictions continue to worsen
as the duration since the last observation increases. Both types of models had similar
performance while observations are used. Note that the choice of dimensions for the
latent-to-semantic module fz→s does not affect the reconstruction error for the latent
space, as information does not flow into the latent side from the semantic side.

Figure 7.5b shows that three models (both VCHybrid models and RSSMHybrid-
FC) have little semantic reconstruction error before the 100th timestep and similar
rise in error afterward. As in the latent case, errors arising after 100 timesteps are due
to the semantic state diverging from ground truth. However, unlike the latent case,
Fig. 7.5b shows that the choice of fz→s dimensions affects semantic reconstruction,
even while observations are used. RSSMHybrid-M has a notable, consistent semantic
reconstruction error before the 100th timestep; afterward, the error sharply increases
before reaching a steady-state value similar to the other three models. The reason
for RSSMHybrid-M’s poorer semantic reconstruction error is likely because the latent
space is more entangled than in the VCD case. This leads to causal discovery not
capturing enough dimensions that would be needed for predicting the semantic space.
Thus, when training the hybrid world model, the training objective to align s̄t+1 and
ŝt+1 spoils learning by leading to a poorer and misaligned semantic representation.
This does not occur in the RSSMHybrid-FC or VCDHybrid-FC case, as all dimen-
sions are used. For the VCDHybrid-M model, the VCD latent representations have
better causal disentanglement properties, so the downselection of dimensions suffi-
ciently captures enough latent dimensions to reasonably predict the semantic state.
Thus, the same reconstruction performance is achieved for VCDHybrid-M with fewer
parameters than VCDHybrid-FC.

The synchronicity between the latent and semantic spaces (expressed in terms of
disagreement) is shown in Fig. 7.5c. Generally, RSSMHybrid-FC, VCDHybrid-FC,
and VCDHybrid-M have little disagreement prior to 100 timesteps, and afterward, the
models start to diverge and desynchronize from the latent space. Statistically similar
performance between the fully connected models is observed, whereas VCDHybrid-M

105

Ch. 7 – Hybrid Causal World Models: Integrating Latent and Semantic Information

(a)

(b)

(c)

Figure 7.5: Hybrid world model performance when the latent and semantic halves
operate independently in terms of (a) latent reconstruction L2 error, (b) semantic
reconstruction L2 error, and (c) latent/semantic L2 disagreement. Results are ag-
gregated across the test dataset and shown for each timestep. Shading indicates the
interquartile range. At the 100th timestep, observations are no longer used by the
hybrid world models, assessing their capability for long-term predictions.

106

Ch. 7 – Hybrid Causal World Models: Integrating Latent and Semantic Information

Figure 7.6: A representative time history of the semantic state s for one test trajectory,
with the ground truth observation also shown. The latent and semantic sides of each
hybrid world model operate independently.

has slightly better disagreement than RSSMHybrid-FC. As in Fig. 7.5b, RSSMHybrid-
M exhibits differing behavior. Prior to 100 timesteps, the consistent offset in disagree-
ment is likely due to the same reason it has poorer reconstruction error in this regime.
Although RSSMHybrid-M has the lowest disagreement after 100 timesteps, this model
has the worst semantic reconstruction error. In this view, the latent and semantic
spaces of RSSMHybrid-M are better synchronized with each other, but not with the
ground truth.

Figure 7.6 shows the time history of the semantic state s (i.e., Particle 1 x-position)
for one representative trajectory, where the ground truth semantic observation os is
also shown. RSSMHybrid-FC and the VCD models have similar behavior in generally
tracking os prior to the 100th timestep, whereas RSSMHybrid-M has a notably worse
error both before and after (similar to aggregate results in Fig. 7.5b). After 100
timesteps, RSSMHybrid-FC, VCDHybrid-FC, and VCDHybrid-M start to diverge
from the ground truth around the 150th timestep, before reconverging near the end
of the trajectory. As shown by the ground truth observation, this is just before
Particle 1 collides into the boundary at x = 3 and reverses direction. This behavior is
not well-captured by the semantic transition models Ts of these world models, yet the
predictions eventually reverse direction as desired. Although by Fig. 7.6 it appears
that VCDHybrid-FC has slightly poorer error, in an aggregate sense (Fig. 7.5b), the
three models have similar error characteristics and also outperform RSSMHybrid-M.

Latent-to-semantic blending. Figure 7.7 presents aggregate results for the
hybrid world models when latent predictions are integrated into the semantic state.

107

Ch. 7 – Hybrid Causal World Models: Integrating Latent and Semantic Information

(a)

(b)

(c)

Figure 7.7: Hybrid world model performance when latent-to-semantic blending occurs
in terms of (a) latent reconstruction L2 error, (b) semantic reconstruction L2 error,
and (c) latent/semantic L2 disagreement. Results are aggregated across the test
dataset and shown for each timestep. Shading indicates the interquartile range. At
the 100th timestep, observations are no longer used by the hybrid world models,
assessing their capability for long-term predictions.

108

Ch. 7 – Hybrid Causal World Models: Integrating Latent and Semantic Information

Figure 7.8: A representative time history of the semantic state s for one test trajectory,
with the ground truth observation also shown. Each hybrid world model uses latent-
to-semantic blending.

A blending coefficient of β = 0.5 is used.
The latent reconstruction error is presented in Fig. 7.7a. Because information only

flows from latent half into the semantic half, the latent space operates independently.
Thus, results are identical to the case without blending (Fig. 7.5a).

Figure 7.7b shows the results for semantic reconstruction error. All models ex-
cept RSSMHybrid-M-B experience a marked improvement of error during long-term
predictions as compared to when the latent and semantic spaces operate indepen-
dently. With blending, both VCDHybrid models now outperform RSSMHybrid-FC-
B, where VCDHybrid-M-B is as performant as VCDHybrid-FC-B with fewer param-
eters. These blending results indicate that stabilization of the semantic space can be
improved by integrating information from the latent side. This result implies that,
during long-term predictions in these models, the latent transition model T captures
the environment better than the semantic transition model Ts (or else, blending would
increase error). For RSSMHybrid-M-B, blending prior to the 100th timestep yields
an increase in reconstruction error, likely owing to poor learned representations for
the semantic space as discussed previously. Compared to Fig. 7.5b, error is slightly
improved when blending, but overall error rates lead to RSSMHybrid-M-B remaining
the least performant model.

When blending, Figure 7.7c shows that synchronization of the two halves of the
hybrid world model is achieved: disagreement is all but eliminated.

Figure 7.8 presents the time history of the semantic state for the same candidate
trajectory as in Fig. 7.6. Compared to without blending, the long-term predictions
have been improved, leading to closer predictions to the ground truth observation

109

Ch. 7 – Hybrid Causal World Models: Integrating Latent and Semantic Information

from 150 - 200 timesteps.
Summary. The experimental results show that a hybrid causal world model

that uses blending and masked fz→s dimensions (VCDHybrid-M-B) is most per-
formant, successfully tracking semantic information with fewer parameters than in
the full-dimensional case. Moreover, masked fz→s dimensions from causal discovery
can be used for hybrid causal world models (i.e., VCDHybrid models), whereas this
methodology appears incompatible with more entangled latent representations (e.g.,
RSSMHybrid models). Lastly, we find that blending improves semantic reconstruc-
tion error and eliminates disagreement during long-term predictions. Improvement
in semantic reconstruction error occurs because long-term predictions in the latent
space are more stable than in the semantic space. However, this outcome is likely
specific to this domain and may not apply in general. Hypothetically, for domains
where long-term predictions in the semantic space are more stable than in the la-
tent space, latent-to-semantic blending may lead to a degradation in performance. In
those domains, independent operation of both halves of the hybrid world model is
the recommended design choice.

7.7 Conclusion
We present LMeshNet, an approach for creating a hybrid causal world model by

unifying a semantic world model with a pretrained causal world model. Further-
more, for causal world models with latent representations with good disentanglement
properties, causal discovery can elicit the shared dimensions between the latent and
semantic spaces, leading to hybrid world models with fewer parameters and improved
interpretability of the latent space. Lastly, we show that latent-to-semantic blending
can fully synchronize both halves of the hybrid world model for this experimental
domain.

For future work, we will investigate how richer semantic information can be imbued
into the hybrid causal world model beyond tracking certain semantic states. For
example, the semantic transition model could be given instead of learned, or structural
causal models relating to known system behavior could also be integrated. Lastly,
for domains where long-term predictions of the semantic space are more stable than
the latent space, we will investigate semantic-to-latent blending, wherein information
would now flow from the semantic world model to the latent world model.

7.8 Acknowledgments
We gratefully acknowledge Anson Lei for providing an official implementation of

VCD.

110

V
Curriculum Learning

111

8 Automated Curriculum
Learning: Humans and

Agents

The aim of this thesis is to forge a path for causal robot learning, towards a grand
vision of causal embodied intelligence. Considering that humans and animals are the-
orized to reason and learn through causal-based structure [238–242], we can derive
insight into how to construct agents by understanding how humans approach prob-
lems. Such is the goal of Automated Curriculum Learning (ACL), a collaboration that
seeks to compare and contrast human versus agent cognition for the problem of cur-
riculum learning. Specifically, this study from ACL examines the differing approaches
between 5- to 7-year old children and reinforcement learning agents in selecting levels
to play in order to solve a challenging level of Procgen [243]. These children show
contrasting learning capabilities as those required for curriculum learning with a re-
inforcement learning agent, which may experience catastrophic forgetting through
domain shifts induced by the curriculum. However, we find that if the agent has an
auxiliary reward that indicates competence, or progress, without necessarily solving
the level (as perhaps the children have), catastrophic forgetting is generally mitigated
or, if it occurs, recoverable. This insight has been critical towards the development
of our curriculum learning algorithm, CURATE (Ch. 9).

We note that studying the intersection between human cognition and machine
learning algorithms can offer benefits in both directions. As we show in ACL, we
can derive clues from human cognition and problem solving for how to design more
capable machine learning agents. However, the benefits of machine learning can also
provide insights into human cognition. Whereas humans often behave rationally, we
are not perfect and can often make mistakes. In this light, human intelligence provides
an example of a complete, though perhaps not always optimal, intelligence (although
human intelligence may take more forms than problem-solving capability, such as
emotional intelligence). Conversely, there are tasks for which machine intelligence
and powerful computational optimization are better suited and thus where algorithms
can inform human decision-making, particularly for tasks where cognitive biases can
affect our judgment. Thus, we advocate for more interest in the areas of psychology
and machine learning, so that we may better understand intelligence in all its forms.

112

Ch. 8 – Automated Curriculum Learning: Humans and Agents

Sections of the remainder of this chapter first appeared in [36]. Additional
information is provided in App. E. This work was presented at the Intrinsically
Motivated Open-ended Learning Workshop at the Thirty-seventh Conference on

Neural Information Processing Systems (IMOL@NeurIPS 2023). Earlier
versions of this work appeared in The 6th International Workshop on

Intrinsically Motivated Open-ended Learning (IMOL 2023) [34] and the 2023
Interactive Causal Learning Conference (ICLC 2023) [35]. We thank our

collaborators on this work: Annya Dahmani (first author), Eunice Yiu (first
author), Nan Rosemary Ke, Prof. Oliver Kroemer, and Prof. Alison Gopnik.
Annya Dahmani, Eunice Yiu, and Prof. Alison Gopnik are affiliated with the

University of California, Berkeley. Rosemary Ke is affiliated with Google
DeepMind. Human experiments in this chapter were conducted by Prof. Alison

Gopnik’s team and are separate from the contributions of this thesis.

8.1 Summary
We study how reinforcement learning algorithms and children develop a causal

curriculum to achieve a challenging goal that is not solvable at first. Adopting the
Procgen environments that include various challenging tasks, we found that 5- to
7-year-old children actively used their current level competence to determine their
next step in the curriculum and made improvements to their performance during
this process as a result. This suggests that children treat their level competence as
an intrinsic reward, and are motivated to master easier levels in order to do better
at the more difficult one, even without explicit reward. To evaluate RL agents, we
exposed them to the same demanding Procgen environments as children and employed
several curriculum learning methodologies. Our results demonstrate that RL agents
that emulate children by incorporating level competence as an additional reward signal
exhibit greater stability and are more likely to converge during training, compared
to RL agents that are solely reliant on extrinsic reward signals for game-solving.
Curriculum learning may also offer a significant reduction in the number of frames
needed to solve a target environment. Taken together, our human-inspired findings
suggest a potential path forward for addressing catastrophic forgetting or domain shift
during curriculum learning in RL agents.

8.2 Introduction
Humans are exceptionally remarkable learners, especially when they are faced

with challenging tasks. We possess the capacity to craft personalized curricula that
shape our experiences in ways that maximize our acquisition of new knowledge and
skills [244–252]. Similarly, reinforcement learning (RL) agents also rely on curriculum-
based learning to accomplish challenging tasks [253–257].

113

Ch. 8 – Automated Curriculum Learning: Humans and Agents

When designing a curriculum, it is essential to strike a balance between exploita-
tion (leveraging existing skills and information for rewards) and exploration (discov-
ering new skills and information to enhance decision-making). Studies have demon-
strated that humans begin to master this balance between exploration and exploita-
tion from early childhood [244, 258–261]. The question arises: How do humans learn
to reason about their own learned capabilities and use this information to bootstrap
the future knowledge they need to learn to address their current limitations? Causal
learning may be crucial for enabling us to efficiently explore various levels of task
difficulty and complexity within an environment [182, 262, 263]. In particular, first
mastering the causal relations that are involved in a simpler task can allow agents
to solve more complex tasks that involve similar relations [25, 182, 255, 262, 263].
This ability contrasts with the abilities of even the most advanced RL agents. We
use causal inference and monitor our competence and learning progress to help guide
our exploration, rather than randomly varying policies and observing the results.
Causal models are well-designed precisely to afford a wide range of novel actions
and interventions on the world [17, 19, 264, 265]. The ability to collect data from
causal interventions can allow an agent to construct a new causal model, leverage
that model to make decisions, and repeat this process for improvement. This may be
key to improving the performance of RL agents in the future [25, 182, 262, 263]. See
Appendix E.1 for related works.

Machines may likewise benefit from structuring their learning through a causal
curriculum, improving the speed of convergence and boosting generalization through
sequencing training data, developing hierarchical causal models and self-assessment
[253–257, 266]. Curriculum learning [253–255, 266, 267] is relevant and beneficial for a
broad range of applications from computer vision [266, 268, 269] and natural language
processing [270, 271] to reinforcement learning [256, 257, 272]. For instance, success-
ful learning in neural networks has resulted from a curriculum that starts small [273].
In the case of RL, while the advantages of improving learning progress [274] through a
curriculum are generally recognized [257, 275], it is still unclear how to develop or se-
lect a curriculum in the automated and spontaneous way that humans do [267]. Tasks
are often specified a priori from human domain knowledge, and it is not necessarily
clear in what sequence the tasks should be visited within a curriculum.

Our research poses a crucial question that applies to both humans and RL agents:
When we approach a goal that is too complex and challenging to achieve outright,
how do we evaluate our existing skills and knowledge, and then craft a curriculum of
more manageable ”sub-tasks”? This curated sequence of sub-tasks serves as a means
to construct a causal model, ultimately aiding us in reaching the ultimate goal. This
line of work bears interests on both RL and cognitive science. On the cognitive sci-
ence side, we seek to understand how children autonomously develop a curriculum
to attain a goal that is difficult to accomplish at first. In particular, we hypothesize
that children are intrinsically motivated to monitor their competence and proceed
to acquire higher levels of skill accordingly, even without explicit rewards, and find

114

Ch. 8 – Automated Curriculum Learning: Humans and Agents

evidence that this is true. By putting children and RL agents on a level playing field,
we also provide a benchmark and point of comparison for human curriculum learn-
ing against curriculum learning in RL agents. On the RL front, our initial goal is to
evaluate RL agents through a predefined curriculum inspired by recent research [272].
We subsequently use this as a baseline against which we assess RL agents that in-
clude level competence as an auxiliary reward, inspired by our results with children.
Our findings indicate that incorporating this reward significantly enhances the pace
of learning and improves convergence. We discover something new about children;
that is, we show that children use intrinsic rewards based on level competence. We
then show that designing RL agents in a similar way leads to great progress and
improvement. We outline the definitions of the terms we used in the paper here in
Table 8.1:

Term Definition
Level Competence An indicator of success in an episode of game play on a spe-

cific level, reaching 100% when the specific level is successfully
solved in that episode

Global Competence A measure of success in an episode of game play with respect
to the target level, reaching 100% if the target level is suc-
cessfully solved in that episode

Level Advancement Difference between current level competence and initial level
competence within a particular level in the curriculum; it is
a measure of how much competence increases or decreases in
the same level

Global Advancement Difference between current global competence and initial
global competence across levels in the curriculum; it is a
measure of how much competence increases or decreases with
respect to achieving the target level

Auxiliary Reward An internal reward used by the RL agent that augments the
extrinisic reward

Table 8.1: Definitions of the terms we used in this paper

8.3 Automated Curriculum Learning in Children
Procgen, as introduced by [243], represents a procedurally generated environment

that develops a wide range of RL games with varying levels of difficulty. To sys-
tematically analyze curriculum learning for both human players and RL agents, we
selected a subset of Procgen environments and tailored them by adjusting game diffi-
culty along a single parameter or variable. Our experiments focused on three distinct

115

Ch. 8 – Automated Curriculum Learning: Humans and Agents

games: Leaper, Climber, and Heist (Appendix E.2, Figure E.2). We ask how children
scaffold their own learning to solve a difficult level of a game. Our primary focus is to
explore whether children employ a systematic and rational approach in constructing
a learning curriculum for themselves. To assess this, we observe children engaging
with Procgen games [243] of varying difficulty levels and analyze their automated
decisions in curriculum development.

8.3.1 Methods
We have gathered data from a cohort of 22 children (10 females, 12 males), with

a mean age of 5.55 years (σ = 0.74 years) at public museums in the Bay Area,
California, USA. Participants were told that they would be rewarded with a sticker
if they won a target game level. The target level was set to be too challenging to win
in a single attempt - it required some form of multi-step, curriculum-like learning.
Children were then given the opportunity to autonomously select different difficulty
levels of the game (Levels 1-4, with Level 3 being the target game level). Children
could play either until they won the target level, or for up to a total of 10 rounds,
whichever came first (see Appendix E.3.2 for details).

8.3.2 Automated Curriculum Learning Results
Overall, children made an average global advancement toward the goal of µ =

58.4% with a standard error SE = 11.8% towards the goal (this is computed as the
difference in competence between the initial attempt and the final attempt at the
target level), which was significantly different from 0% (t(15) = 4.96, p < .001). This
was even though they did not necessarily make positive level advancement between
the first and last attempt at the same level (t(17) = .29, p = .78 in a one-sample t-test
compared to µ = 0). After failing the initial goal level, 72.7% participants started
their curriculum by selecting an easier level: 9 chose Level 1, 7 chose Level 2, 5 chose
Level 3, 1 (of the 7 presented with Level 4) chose Level 4 - the even more difficult
level.

Next, we examined the change in levels selected by children across their auto-
mated curricula, given their competence on their current level (see Figure E.5 in
Appendix E.3.3). A change in level of 0 indicates that the participant chose to re-
main on the same level, a change in level of -1 indicates that they chose the next
easiest level, and so on. We found that children were more likely to remain on the
same level or go to easier levels if their progress was low, and were more likely to
move to more challenging levels if their competence was high. More specifically, level
change (z-scored) was positively predicted by level competence (z-scored) in a lin-
ear mixed effects model with participant as a random effect, β = .37, t(75) = 3.38,
p < .01. Thus, children, like adults in free exploration [251], used competence in-
formation to avoid overly easy tasks and advance to more difficult levels that were

116

Ch. 8 – Automated Curriculum Learning: Humans and Agents

closer to the target level in their curriculum. However, children neither used their
global advancement (z-scored) to guide their level change in the curriculum (z-scored)
(β = .029, t(77) = −.26, p = .80), nor did they use their level advancement (z-scored)
to guide their level change (z-scored) (β = .070, t(50) = .49, p = .63). One possible
reason is because children were not told to freely explore all levels, but were given
the extrinsic goal of solving a difficult level (Level 3). Thus, selecting more difficult
levels was appealing even when children did not make much level advancement. This
is evident in Figure E.8 in Appendix E.3.3.

Furthermore, we also found that children demonstrated a causal understanding of
their curriculum learning. We introduced 7 children to Level 4 which was even more
difficult than the target Level 3. If children were selecting their curricula at random,
all four levels should be equally likely to be selected, resulting in a 25% chance of
selecting Level 4. However, children only selected Level 4 9.68% of the time. This
suggests that children recognized that spending extra effort on Level 4 would not
cause them to win a reward.

8.4 Hand-Designed Curriculum Learning in Rein-
forcement Learning Agents

8.4.1 Formulation
Reinforcement learning (RL) agents are trained to solve tasks modeled as a Markov

Decision Process (MDP) [276, 277]. In this formulation, M = ⟨S,A, T,R, γ⟩, where S
is the state space, A is the action space, T is the transition function, R ∈ R : S → R
is the reward function, and γ is the discount factor. Within each MDP, the agent
acts according to policy π : S → A, which concerns low-level control. For this work,
Proximal Policy Optimization (PPO) [156] is used to train the policy π.

During the training of the low-level control policy, the agent experiences different
distributions of MDPs depending on the agent’s curriculum. Specifically, the distri-
bution of MDPs is provided by a high-level curriculum selection function ϕ : Θ→M ,
where Θ are environment parameters that specifies the “difficulty” of the tasks. The
goal of the agent is to learn a policy π that can solve a complex target task Mt, anal-
ogous to needing to solve the goal level as in Sec. 8.3. Tasks are considered solved
when the episode reward R exceeds a predetermined threshold, RS. For the purposes
of monitoring agent learning, we assume there exists a function Λ : S → R, called
level competence, that describes how far the agent is into the task. Examples of level
competence may include normalized distance traveled from a start position (relative
to the total distance from the start position to the goal position) for a navigation
task, or the fraction of items collected for a item collection task. Level competence
generally holds values from 0 to 1, although negative competence is possible for tasks
where negative progress can occur (e.g., increasing distance from the goal at the start

117

Ch. 8 – Automated Curriculum Learning: Humans and Agents

of a navigation task).

8.4.2 Methods
We assess curriculum learning in RL agents through a hand-designed curriculum

on the Procgen game of Leaper. Task difficulty Θ is varied within the curriculum by
parameterizing the number of water lanes, from 1 (easiest) to 5 (hardest). The goal
level Mt has 5 water lanes, consistent with Level 3 (Sec. 8.3). The agent starts at 1
water lane and advances to a more complex level (i.e., increased water lanes) when the
training reward exceeds a threshold. The level competence Λ for Leaper is the vertical
lane that the agent has reached, normalized by the total number of lanes between the
start and the finish line. We use the implementation and hyperparameters from [278]
for training the policy π using PPO. All experiments were run using an NVIDIA RTX
2080 GPU. Additional method details are available in Appendix E.4.1.

8.4.3 Baseline Curriculum Learning Results
We conduct six trials of training the agent using the hand-designed curriculum as

specified by ϕ. Representative results are summarized in Figs. E.9-E.10 in App. E.4.2.
Overall, results are poor. None of the six trials successfully finished training. Five
trials experienced training divergence, where the agent experiences catastrophic for-
getting, leading to a permanent regression of reward to zero and a corresponding
decrease in level competence. Figure E.9 shows a representative time history of an
agent exhibiting training divergence by catastrophic forgetting. It has been shown
that agents can experience catastrophic forgetting in continual learning problems with
distribution shifts [279–282]. In our problem, our hand-designed curriculum induces
intentional distribution shifts in order to train the agent in tasks of increasing dif-
ficulty. Behaviorally, when this divergence arises, the agent completely forgets the
ability to cross lanes, thereby losing the reward signal in such a sparse rewards prob-
lem. Note that, for the representative result in Fig. E.9c, after divergence, the agent
never exceeds 40% mean global competence, which is approximately where the first
lane occurs in the distribution of tasks of this difficulty (4.25 water lanes). Without
the reward signal, the agent does not receive feedback on which actions are good to
take. Although for simpler environments it may be possible to recover, as the diffi-
culty is smaller and random actions may find the goal, for harder environments with
multiple lanes, this divergence is unrecoverable. Of the five trials that diverged, the
average number of water lanes at time of divergence is 3.8625 lanes, with all five tri-
als reaching at least 3 lanes. The remaining trial did not diverge, yet it only reached
2.6875 lanes.

Figure E.10 shows the relationship between mean episode training reward and
mean episode level competence. Prior to training divergence, level competence is a
proxy for reward, although the specific relationship depends on the difficulty of the

118

Ch. 8 – Automated Curriculum Learning: Humans and Agents

task.

8.4.4 Curriculum Learning with Auxiliary Rewards
Motivated by the human capability for learning (i.e., achieving competence) de-

spite not necessarily completing a level, we conducted an additional experiment where
the agent uses level competence as an auxiliary reward. As before, six trials were con-
ducted. Specifically, the auxiliary reward function is Ri = 2Λ, which is calculated at
the termination of an episode. For this experiment, we assume the agent has access to
level competence, leaving how it should be computed for future work. The auxiliary
reward function Ri is defined such that the maximum auxiliary reward that could be
obtained (when the level is solved and therefore Λ is 1) is 20% of the extrinsic reward
obtained when solving the level (10). Here, 20% is a heuristic that is chosen such that
the effects of the auxiliary reward are smaller and less influential than the extrinsic
reward, but large enough so that they still impact agent behavior. In this way, the
extrinsic reward predominantly drives learning, with the auxiliary reward providing
smaller, consistent feedback even when levels are not solved.

When training using auxiliary rewards, results were markedly improved. Five of
the six trials were able to successfully finish training by solving the goal level via gen-
eralization. On average, generalization occurred at 3.353 million frames. Figure E.11
in App. E.4.2 shows a representative time history for training using level compe-
tence as an auxiliary reward where generalization occurred. Although the remaining
trial did not solve the target environment, training reached the maximum number of
frames allowed without experiencing divergence.

The experimental results with using an auxiliary reward for level competence sug-
gest this prevents training divergence. We confirmed this by examining one particular
trial, shown in Fig. E.12 in App. E.4.2, in which the agent recovers from catastrophic
forgetting using the auxiliary reward of level competence. A difficulty level increase
from 4 to 4.0625 water lanes around 4.141 million frames induces catastrophic forget-
ting, eventually leading to zero (extrinsic) reward and the complete loss of ability to
cross lanes around 4.5 million frames. However, unlike the baseline experiments, the
agent still obtains an auxiliary reward. Although the auxiliary reward decreases with
level competence, it does not reach zero. Despite it being small, the learning signal is
sufficient: the agent can still receive feedback for how to increase competence. This
leads to a gradual restoration of agent capability, starting with an increase in level
competence around 4.75 million frames. Eventually, this restoration yields a gradual
increase of extrinsic reward, which is only obtained if the agent can solve the task.
Although the restoration is not quick, taking about 1.5 million frames, the agent can
nonetheless recover from catastrophic forgetting that would have otherwise led to
training divergence.

119

Ch. 8 – Automated Curriculum Learning: Humans and Agents

8.4.5 Additional Baselines and Comparisons
In addition to Secs. 8.4.3 and 8.4.4, we conducted two additional experiments with

a stochastic curriculum. Additionally, we conducted a random level baseline that is
described in App. E.4.3.

Stochastic curriculum: selection of random levels In this experiment, 30%
of the time, levels are chosen to be selected from the distribution of possible levels,
from 1 water lane to 5 water lanes. In the remaining 70%, levels are determined
based on the agent’s current progress in the curriculum (as in Secs. 8.4.3 and 8.4.4).
This experiment was conducted six times, and the agent was only trained using the
extrinsic reward. In general, this strategy performs poorly. Four trials experienced
training divergence. In only one trial was training still active at the end of the trial
(getting to 3.0 water lanes). The average progression of the agent was 2.0313 water
lanes, significantly less than in Sec. 8.4.3.

Stochastic curriculum: selection of previously solved levels This experiment
is similar to the previous stochastic curriculum experiment, except that instead of
selecting from any level, previously solved levels are chosen. This experiment is
conducted six times with only the extrinsic reward being used. None of the six trials
experienced catastrophic forgetting. However, the agent does not progress through
the curriculum as quickly as with an auxiliary reward (Sec. 8.4.4). The average
progression in the curriculum was 2.9583 water lanes. Of the six trials, none could
solve the goal level, and only one trial reached 4 water lanes. Therefore, learning and
leveraging level competence as an auxiliary reward appears promising as not only a
way to prevent forgetting, but also to advance the curriculum.

8.5 General Discussion
Level competence as an auxiliary reward signal to overcome catastrophic
forgetting While children are given the extrinsic reward of a sticker if and only if
they solve the goal level of the game, they can visually observe their success in each
game play and so assess their competence at each level. Seeing their competence
allows for dense reward signals that are set by their performance. They further use
this signal to determine the next step to take in the curriculum, leading to an average
of 58.4% competence made towards the goal at the end of their automated curriculum
learning. Similarly, level competence is a crucial and beneficial signal for RL agents.
Our RL training demonstrates that exploiting level competence as an auxiliary reward
signal reduces the odds of divergence and catastrophic forgetting.

Future directions Building on our finding that children employed level competence
as a metric to assess advancements in curriculum-based learning, our RL experiments

120

Ch. 8 – Automated Curriculum Learning: Humans and Agents

incorporating level competence as an auxiliary signal yielded notably improved re-
sults. This compelling evidence underscores the pivotal role of level competence as
an incentive to overcome distribution shifts induced by a curriculum. These findings
suggest that extracting level competence information from high-dimensional image
inputs and using it as a reward mechanism has the potential to significantly enhance
the efficiency of RL agents in curriculum learning. In fact, it might potentially enable
them to autonomously acquire proficiency in curriculum learning. In addition, we
hope to further explore whether automated curriculum learning necessarily outper-
forms curriculum learning in a sequence based on strictly incremental difficulty or in
a random sequence [283, 284] among both children and RL agents.

121

9
CURATE: Learning to

Train Reinforcement
Learning Policies

through Curriculum
Learning

In our previous works of CREST (Ch. 4) and SCALE (Ch. 5), we framed causal
reasoning and learning through the lens of counterfactual scene interventions in simu-
lation that answer queries such as “What would the reward be, had one of the context
components been different and the robot still used the same control inputs?” How-
ever, finding an initial solution in order to perform causal reasoning required some
initial random exploration. In both CREST and SCALE, the initial step of CREST
requires a model-free policy search step, which was provided by REPS [152]. Addi-
tionally, for CREST, once the relevant variables are selected, the policy is trained
using a representative model-free reinforcement learning algorithm, PPO [156]. The
scene interventions used by CREST are only leveraged for policy feature selection and
construction, not policy training. Can scene interventions be used more effectively
to train model-free reinforcement learning policies by assessing the agent’s current
capabilities, while limiting expensive initial random exploration?

In CURATE, we address this question by investigating how curriculum learning
can offer an automatic curriculum for training any reinforcement learning policy.
We present our initial findings in this chapter, noting that our eventual goal is to
imbue CURATE with greater structure-based capabilities, towards causal curriculum
learning.

This work is planned for submission as either a publication of a flagship
conference on machine learning or robotics, or as a larger publication combined
with ACL for a machine learning or cognitive psychology journal. We thank our

collaborators on this work: Nan Rosemary Ke, Annya Dahmani and Eunice
Yiu, Sarvesh Patil, Prof. Alison Gopnik, and Prof. Oliver Kroemer. Rosemary

Ke is affiliated with Google DeepMind. Annya Dahmani, Eunice Yiu, and
Prof. Alison Gopnik are affiliated with the University of California, Berkeley.

122

Ch. 9 – CURATE: Learning to Train Reinforcement Learning Policies through
Curriculum Learning

9.1 Summary
We present CURATE, an algorithm for automatic curriculum learning for rein-

forcement learning agents to solve a desired target task. Initially, due to the exploration-
exploitation problem, agents may receive little useful feedback at the beginning of train-
ing, leading to inefficient learning. Through “exploration by exploitation,” CURATE
dynamically scales the task difficulty to match the current proficiency of the agent.
Thus, the agent can more easily acquire initial behaviors to solve easier tasks before ad-
vancing to more challenging tasks. To maintain the curriculum, CURATE conducts
sample-based interventions during training to determine a task distribution corre-
sponding to the easiest tasks that the agent has not yet solved. As the agent’s mastery
grows, the task-directed curriculum offered by CURATE adapts correspondingly in an
approximately easiest-to-hardest fashion, ultimately culminating in an agent that can
solve the target task. Our initial experiments in grid-based navigation demonstrate
that CURATE achieves greater curriculum learning performance than state-of-the-art
algorithms that yield an implicit curriculum, as well as curriculum baselines such as a
random curriculum and no curriculum. Although a hand-specified, easiest-to-hardest
curriculum is slightly more performant than CURATE, we expect CURATE to achieve
better performance in other domains where such a hand-specified curriculum either
cannot be easily specified or is too simple.

9.2 Introduction
The advent of reinforcement learning (RL) has ushered in a promising era of im-

pressive milestones in sequential decision making by agents [277, 285–287]. The gener-
ality of RL has empowered advancements across many domains, including Atari [288,
289]; board games like chess, shogi, and Go [2]; StarCraft II [290]; and in the robotics
domain, learning dexterous manipulation [291] and solving Rubik’s cube [10]. Of the
various desiderata for RL policies, generalization enables agents to succeed beyond
its training data to solve test or target data. However, model-free reinforcement
learning methods (i.e., those without inductive biases, models, or expert trajectories)
are often sample inefficient particularly because of a fundamental tradeoff between
exploration and exploitation that occurs at the beginning of training. Initially, the
agent’s actions are essentially random, requiring many environments interactions be-
fore the agent can start accruing reward and developing useful behaviors. For some
domains with sparse rewards, the sample cost is significant, if not intractable. Thus,
a benefit exists to improving the sample-efficiency of model-free RL algorithms (i.e.,
without providing privileged information that, while could improve efficiency, may be
expensive or intractable to collect).

How can such a model-free agent bootstrap learning? Inspiration can be drawn
from human intelligence, where a hallmark is the capability of reasoning with respect

123

Ch. 9 – CURATE: Learning to Train Reinforcement Learning Policies through
Curriculum Learning

to one’s own learned capabilities, and using this information to bootstrap what future
knowledge should be learned to address these limitations. How best to attain this
future knowledge through sequencing learning objectives arises both from learner
self-discovery of innovations and timely instructor interventions. This characteristic
of human learning is evident in effective pedagogy, such as problem-based learning
and assisted discovery learning [246–249].

As informed by work in cognitive neuroscience [273, 292], these motivations have
informed the possibility of learning machines to also structure their learning in a
similar manner. For machine learning, curriculum learning [253] seeks to answer
how machine learning algorithms can learn training strategies to improve speed of
convergence and boost generalization, where learning guidance comes in the form of
sequencing training data and self-assessment. Curriculum learning is relevant for a
broad range of applications, such as computer vision, natural language processing for
text and speed, and reinforcement learning [269]. These fields all benefit from the
two broad aims of curriculum learning [293]: to guide training (i.e., achieve greater
learning sample efficiency) and to denoise training (i.e., improve learning robustness
and generalization through focus on high-confidence training data regimes).

For reinforcement learning, the advantages of improving learning progress [274]
through a curriculum are generally recognized [257, 294]. However, an automated
way of selecting the curriculum (e.g., reinforcement learning tasks), remains an open-
problem; tasks are often specified a priori from human domain knowledge. Further-
more, it is not necessarily clear in what sequence the tasks should be visited for the
curriculum. Insight from evolutionary algorithms for open-ended learning [295, 296]
suggest innovations can arise in a nonlinear, spontaneous fashion. However, for single-
task RL, it has been argued that solving from an easy-to-hard fashion endows greater
sample efficiency [272]. Additional concerns for sample-constrained domains, such as
robotics, emerge if the costs of the curriculum itself outweigh the benefits given costly
real-world robot samples [257].

Our ambition is to learn an automatic, task-directed curriculum for any model-
free RL algorithm that can conduct evaluations across the distribution of tasks. Our
insight is that the agent should learn to select its own tasks in order to solve a more
complex target task, providing a way for the agent to attempt intermediate problems
that are “just right” — not too challenging, but not too simple — so that behav-
ioral innovations can more easily emerge that can bootstrap learning. To this end,
we introduce CURATE (Curriculum Agent for Targeted Exploration, Fig. 9.1), an
algorithm for conducting sample-based evaluations for curriculum learning of a re-
inforcement learning policy that solves a target task. Our approach overcomes the
fundamental exploration/exploitation tradeoff by conducting exploration by exploita-
tion, as coined by [297], through sequential solving of easier tasks that bootstraps
learning across particular axes of learning generalization. Our contributions are as
follows:

• We introduce CURATE, a curriculum learning algorithm that learns which

124

Ch. 9 – CURATE: Learning to Train Reinforcement Learning Policies through
Curriculum Learning

Figure 9.1: The CURATE algorithm learns to train a RL agent using an automatic
curriculum provided by a curriculum agent. The curriculum agent manipulates the
RL agent’s training data by altering the difficulty of the scene. The RL agent’s
current capability is a measure of its performance in relatively more difficult scenes.
In this visualization, the scenes offered by CURATE are initially too difficult, leading
to a simplification of scenes. Once the RL agent begins solving these simple scenes,
the curriculum agent dynamically adjusts the training data accordingly to harder
scenes. Finally, the agent solves the target scene distribution at the end, indicating
that training may conclude. Scenes are from the MiniGrid MultiRoom-N4-Random
domain (c.f., Fig. 9.2).

tasks should be solved to improve learning progress for ultimately solving a
target task.

• We formulate curriculum learning as conducting causal interventions within the
agent’s learning process, introducing a connection between these two fields.

• We conduct experiments that demonstrate CURATE achieves state-of-the-art
performance using curriculum learning for RL policies. Currently, our exper-
iments focus on the MiniGrid domain [298], a partially observable navigation
task with discrete actions. We are currently planning to also conduct exper-
iments for two additional domains: 1) Procgen [243], a suite of image-based
games with discrete actions; and 2) IndustReal [299], a robot insertion task
that requires highly precise continuous control.

125

Ch. 9 – CURATE: Learning to Train Reinforcement Learning Policies through
Curriculum Learning

9.3 Preliminaries

9.3.1 Learning with UPOMDPs
The agent learns within an Underspecified Partially Observable Markov Decision

Processs (UPOMDP) framework as introduced by [300]. Essentially, the UPOMDP
defines a distribution of Partially Observable Markov Decision Process (POMDP)
tasks [301, 302] as determined by the selection of environment parameters. The
UPOMDP is defined as follows:

M = ⟨A, O,Θ,SM, TM, IM,RM, γ⟩ (9.1)

where a ∈ A ⊆ R|A| is a set of actions, o ∈ O ⊆ R|O| is a set of observations,
θ ∈ Θ ⊆ R|Θ| is a set of environment parameters, and γ is a discount factor for
future rewards. The remainder of the UPOMDP tuple is defined with respect to the
chosen environment parameters θ and are thus superscripted byM. Therefore, for the
POMDPM specified by θ, s ∈ S×Θ ⊆ R|SM| is a set of states that are not observable
to the agent, TM : S×A×Θ→ SM defines the transition function, IM : S×Θ→ O
is the observation (i.e., introspection) function, and R ∈ RM : S × Θ → R is the
reward function. A task is considered solved if its reward exceeds a solved threshold
RS.

In principle, the generality of the UPOMDP framework allows a temporally-
varying trajectory of environment parameters to be specified, but in practice, we
are primarily concerned with environment parameters that specify the construction
of the initial scene via the state space SM. Other aspects of the UPOMDP, such as
the transition, introspection, and reward functions, do not change in the domains we
investigate in this work. In this view, our use of UPOMDPs is conceptually similar
to Contextual MDPs [303–305].

9.3.2 Curriculum Learning within UPOMDPs
Our problem addresses automated curriculum learning for solving a particular

target task that is initially challenging or impossible for the agent to complete. Cur-
riculum learning is conducted across the axes of learning generalization of the UP-
OMDP, which is the space of environment parameters Θ. The target task is defined
by environment parameters θt ∈ Θ, and the POMDP specifying this target task is
therefore Mθt . Our approach is an algorithm to decide how to select θ to efficiently
train the agent by solving easier tasks in order to solve the target task Mθt . In this
view, our problem uses the UPOMDP framework like other works in the Unsuper-
vised Environment Design (UED) and Dual Curriculum Design (DCD) literature.
However, our target task setting differs from state-of-the-art UED methods, inso-
far that our approach is less concerned with unsupervised discovery of environments
within the environment space of the UPOMDP. In our work, traversing the space

126

Ch. 9 – CURATE: Learning to Train Reinforcement Learning Policies through
Curriculum Learning

of environments is a means to an end for solving the target environment within the
UPOMDP.

9.4 Methodology
The goal of CURATE is to conduct curriculum learning to automatically train

a control policy π to complete a difficult target task Mt. To do this, CURATE
conducts sample-based evaluations to determine a curriculum policy πc that shapes
the distribution of tasks used for the agent’s sequencing of training data. In this
way, curriculum learning is an active process in steering the agent’s mastery of tasks,
and changes to the curriculum can be seen as meta-level causal interventions within
the agent training process. The curriculum policy πc is represented by a Gaussian
distribution over environment parameters θ with mean µθ and covariance Σθ. This
distribution is managed throughout training, adapting to the agent’s capabilities. In
cases where environment parameters take discrete values (e.g., parameters that refer
to the number of rooms in a maze), the curriculum policy πc is obtained by discretiz-
ing the continuous distribution (µθ, Σθ). The overview of the training procedure
is presented in Alg. 9.1 (Sec. 9.4.1), which calls the UpdateCurriculum method
(Alg. 9.2, Sec. 9.4.2) as a part of training. A description of algorithm hyperparameters
is provided in Sec. 9.4.3.

9.4.1 Training RL Policies with Curriculum Learning
Algorithm 9.1 describes the training procedure. The control policy π is initialized

randomly via InitializeRandomPolicy. Initially, the curriculum policy πc pro-
vided by InitializeRandomCurriculumPolicy corresponds to a Gaussian dis-
tribution that approximates a uniform distribution over the environment parameter
space. Then, the curriculum policy is updated prior to training with the (initially ran-
dom) control policy π via UpdateCurriculum. For each iteration in the training
loop, tasks are sampled from the curriculum policy πc by first sampling environ-
ment parameters θi, which are in turn transformed into tasks via TaskGenerator.
TaskGenerator manages the creation of scenes of particular difficulty given by
θi. Then, RolloutAgentOnParallelTasks generates a dataset of trajectories D
with mean training reward RD. The agent policy is next updated via UpdateAgent
using this dataset, which handles the calculation of losses and gradient updates of
policy parameters. Although in principle any on-policy reinforcement learning algo-
rithm could be used, we use Proximal Policy Optimization (PPO) [156]. Following
the policy update, the curriculum policy is updated if the training reward RD exceeds
the task solved threshold RS. This trigger indicates that the agent has mastered pro-
ficiency in its current distribution of scenes and is ready for more challenging tasks.
On this trigger, hyperparameter ∆µθ is used to help induce a new curriculum that

127

Ch. 9 – CURATE: Learning to Train Reinforcement Learning Policies through
Curriculum Learning

corresponds to harder tasks. Curriculum learning can also be triggered if a maxi-
mum number of frames since the last curriculum update has been reached, which is
dictated by hyperparameter ∆fsync. This prevents training stagnation if CURATE
selects tasks that are too difficult for the agent, eventually leading the curriculum
to better synchronize with the agent’s capabilities after some time. In either case,
the covariance used for the update is specified by hyperparameter Σθu . Finally, the
agent is evaluated on the target taskMθt via EvaluateAgent to obtain task eval-
uation reward Rt. We typically conduct stochastic, rather than deterministic, policy
evaluation. If the agent solves the target task (Rt > RS), then training concludes
successfully. Otherwise, training continues while the number of maximum training
frames fmax has not been reached.

9.4.2 Updating the Curriculum with Sample-Based Evalua-
tions

Besides at the beginning of training, CURATE’s curriculum update is triggered
when the task distribution seen in training exceeds the solved threshold RS, or when
a prespecified number of training frames has been reached without a curriculum
update. CURATE’s curriculum update, UpdateCurriculum, is a sample-based
nonlinear optimization within environment parameter space. This method conducts
sample-based evaluations to probe the current proficiency of the agent.

Algorithm 9.2 describes this method. First, the initial parameter distribution for
the curriculum policy πc is provided by µθ0 and Σθ0 , which becomes (µθ,Σθ). Then, for
each of Nr rounds, the agent draws Ns parameter samples from the curriculum policy
parameter distribution (µθ,Σθ). For each parameter sample θj, the corresponding
task Mθj

is generated, and the agent is evaluated on this task to yield reward Rj.
However, this reward is not used directly for the curriculum learning reward Rc.
Instead, it is assessed whether it exceeds the threshold RS, i.e., the task is solved. If
so, the agent receives zero curriculum reward for this task, as the agent has mastered
this task. Otherwise, the curriculum reward is assessed as Rj/RS. This reward signal
induces the agent towards the easiest (i.e., highest return) task that has not yet
been solved. Thereafter, the curriculum learning reward Rc is regularized by λθ||θj||2.
This regularization addresses cases where samples consistently return zero reward
(e.g., at the beginning of training, all tasks may be too difficult), leading to a small
bias towards easier levels. If this regularization did not exist, then the curriculum
would remain close to a uniform distribution if all sampled tasks return zero reward.
The parameter samples θj and curriculum reward Rc are appended to buffers, which
are eventually passed to REPSUpdate. This function uses Relative Entropy Policy
Search [152] to yield an updated Gaussian distribution that maximises the reward,
subject to a information loss bound based on Kullback-Leibler divergence. Then, for
domains where tasks are discrete, the continuous curriculum parameters (µθ,Σθ) are

128

Ch. 9 – CURATE: Learning to Train Reinforcement Learning Policies through
Curriculum Learning

Algorithm 9.1: CURATE: Curriculum Agent for Targeted Ex-
ploration

Input: target task Mθt , task solved threshold RS , maximum number of training
frames fmax, number of parallelized tasks Nv, curriculum advancement on
solve ∆µθ, curriculum covariance for update Σθu , maximum frames
between curriculum updates ∆fsync

Initialize: training indicator train← True, target task solved indicator
converged← False, number of training frames f ← 0, control policy
π ← InitializeRandomPolicy(), curriculum policy and parameters
πc, µθ,Σθ ← InitializeRandomCurriculumPolicy(), previous curriculum
update frame fprev ← 0

// Initial curriculum policy update
πc, µθ,Σθ ← UpdateCurriculum(πc, π, µθ,Σθ)
while train do

// Sample tasks from the curriculum
Mθc ← ∅
for i = 1 to Nv do

θi ∼ πc

Mθi
← TaskGenerator(θi)

Mθc

+←Mθi

end
// Collect experience
D, RD ← RolloutAgentOnParallelTasks(π,Mθc)
// Update policy
π ← UpdateAgent(π,D)
// Update curriculum policy
if RD > RS then

πc, µθ,Σθ ← UpdateCurriculum(πc, π, µθ + ∆µθ,Σθu)
fprev ← f

if (f − fprev) > ∆fsync then
πc, µθ,Σθ ← UpdateCurriculum(πc, π, µθ,Σθu)
fprev ← f

// Evaluate agent on target task
Rt ← EvaluateAgent(π,Mθt)
// Determine whether to continue training
if Rt > RS then

train← False
converged← True

f = f + NumFrames(D)
if f > fmax then

train← False
end

Result: control policy π, target task solved indicator converged, number of
frames f

129

Ch. 9 – CURATE: Learning to Train Reinforcement Learning Policies through
Curriculum Learning

discretized to yield the updated curriculum policy πc.

Algorithm 9.2: UpdateCurriculum: Curriculum Update for CURATE
Input: curriculum policy πc, control policy π, initial curriculum policy mean

µθ0 , initial curriculum policy covariance Σθ0 , task solved threshold
RS, parameter regularization λθ, number of rounds Nr, samples per
round Ns, relative entropy bound ϵ, minimum temperature η

Initialize: µθ ← µθ0 , Σθ ← Σθ0

for i = 1 to Nr do
// Reset buffers
θeval ← ∅
Reval ← ∅
for j = 1 to Ns do

// Sample task
θj ∼ N (µθ,Σθ)
Mθj

← TaskGenerator(θj)
// Evaluate agent on sampled task
Rj ← EvaluateAgent(π,Mθj

)
// Determine reward for curriculum learning
if Rj < RS then

Rc ← Rj/RS

else
Rc ← 0

Rc = Rc − λθ||θj||2
// Append to buffers
θeval

+← θj

Reval
+← Rc

end
// Run REPS and update curriculum policy
µθ,Σθ ← REPSUpdate(θeval,Reval, ϵ, η)
πc ← DiscretizeGaussian(µθ,Σθ)

end

Result: updated curriculum policy πc, updated curriculum policy mean µθ,
updated curriculum policy covariance Σθ

9.4.3 Description of Hyperparameters
The performance of the CURATE algorithm is influenced by the selection of sev-

eral algorithm hyperparameters. We discuss these hyperparameters in detail below.

130

Ch. 9 – CURATE: Learning to Train Reinforcement Learning Policies through
Curriculum Learning

The task solved threshold RS is assumed to be known and given as a definition
of the task. It represents the return that an agent who has mastered the task would
receive. In general, we expect the amount of training frames that CURATE would
require will vary based on the selection of this threshold. A higher threshold would
require more training frames, whereas lowering the threshold would lead to fewer
frames. In practice, this setting is chosen to ensure the examined baselines (c.f.,
Sec. 9.5.1) can generally solve the target task in a reasonable amount of frames. If
this threshold is too high, then low-performing baselines may be unable to solve the
target task. Additionally, we note that it is possible in principle for CURATE to have
two separate thresholds: one threshold for the target task, and one threshold for all
other tasks (an intermediate task threshold). We are currently exploring the effects
of reducing the intermediate task threshold while keeping the target task threshold
unchanged, which would tend to induce the agent to advance more quickly in the
curriculum than it otherwise would have. However, we leave analysis of this extension
for future work.

A curriculum learning update can be triggered if the task distribution is not solved
in ∆fsync frames. This hyperparameter prevents learning from stagnating indefinitely
if the current task distribution is too difficult for the agent to make progress. For our
initial experiments, this hyperparameter is set to run a curriculum learning update
if the task distribution has not been solved in 128 PPO updates. In practice, this
hyperparameter is most advantageous at the start of training, as it can update the
curriculum if the initial task distribution is too difficult. Once the agent has reached
some proficiency and can start solving tasks, then the curriculum learning update is
more often triggered by the task distribution being solved. Setting the value of ∆fsync

too low generally means more curriculum learning updates will occur than necessary,
which may increase algorithm runtime as the curriculum update is relatively expensive
to run (in terms of time). Setting ∆fsync too high, or disabling it altogether, may
lead to undesirable training stagnation.

The parameter regularization hyperparameter λθ provides a bias towards less dif-
ficult tasks, under the assumption that task difficulty is proportional to environment
parameters θ. This capability induces a curriculum composed of easier tasks in the
case that all tasks are too difficult for the agent and no reward is obtained. It is
important that this hyperparameter is not too large, or else the curriculum reward
Rc would be offset by the regularization. In practice, we set λθ such that a maximum
of 0.05 – 0.1 is reduced from Rc for tasks with maximum θ. For example, in a cur-
riculum where the most difficult task occurs when θ is 4, setting λθ to 0.0125 would
correspond to a maximum reduction of 0.05.

The task distribution is controlled in part by the initial setting of µθ and Σθ prior
to each curriculum update, as well as hyperparameters specific to REPS, such as the
number of rounds Nr and samples per round Ns. At the start of training prior to the
initial curriculum learning update, the curriculum policy is initialized by the routine
InitializeRandomCurriculumPolicy such that (µθ, Σθ) approximates a uniform

131

Ch. 9 – CURATE: Learning to Train Reinforcement Learning Policies through
Curriculum Learning

distribution. This approximate uniform distribution is determined by centering the
initial mean through setting µθ to (θmax−θmin)/2 and choosing an initial covariance to
spread out probability mass evenly. In practice, we find that setting this to ((θmax −
θmin)/3)2 suffices. For subsequent curriculum updates, the mean of the distribution
begins at µθ +∆µθ if the task distribution has been solved, or just µθ if the update has
been triggered by the ∆fsync hyperparameter. However, the distribution covariance
for subsequent curriculum updates always begins with a new covariance of Σθu . The
reason for this design choice (rather than using the existing Σθ) is to ensure the task
distribution does not completely collapse, as it may be beneficial to have a distribution
of tasks for the agent to use for training. We generally set Σθu to be ((θmax−θmin)/5)2,
which was found to have acceptable task variance after a curriculum update with Nr

set to 2 and Ns set to 8 for domains with few tasks, or 16 for domains with many
tasks. For a given Σθu , the task variance after a curriculum update will be lower if
Nr or Ns is increased. Similarly, for a given Nr and Ns, if a larger task variance
is desired after the curriculum learning update, Σθu can be increased. Generally, it
is desirable for the task distribution following the curriculum update to be centered
around the easiest task not yet solved, with some variance to include nearby tasks.
This may help with generalization and preventing catastrophic forgetting. However,
if the variance is too large, then the effects of focusing on a small set of tasks will
be lost. Lastly, we note that the curriculum learning update is a relatively expensive
procedure. Thus, it is recommended to set Nr and Ns first, so that the curriculum
update can take an acceptable amount of time, then size Σθu accordingly.

The curriculum advancement on solve hyperparameter ∆µθ is an optimization
that can be used to bias the agent towards more difficult tasks after the current task
distribution is solved. This hyperparameter shifts the initial parameter distribution
(µθ,Σθ) at the start of the curriculum learning update. By default, this is set to 10% of
the parameter space. The optimal selection of this parameter is likely task-dependent.
If there is little difficulty change between adjacent tasks, the agent may be able to
skip several intermediate tasks to find the next best task for learning. Thus, ∆µθ

can be set to a relatively high value. Conversely, if a significant difficulty gap exists
between adjacent tasks, then the next best task may be the task that immediately
follows the task just solved. In this case, ∆µθ may be best set to either zero or
the smallest parameter increment between tasks. We expect that this parameter has
some tolerance and may not need to be set precisely, so long as it is in distribution
with the optimal task. The curriculum update will ultimately settle on the best task
distribution at the end of the curriculum update. However, if ∆µθ is set too high,
then the curriculum update may fail to find the optimal task, thereby offering tasks
that are too difficult to the agent. Should this occur, the agent’s learning will likely
stagnate until the curriculum can be synchronized if ∆fsync frames occur without the
task distribution being solved. As the curriculum shift ∆µθ only applies when the
task distribution is solved, running a curriculum update from ∆fsync may ultimately
find the best tasks to use for training (although it may require multiple curriculum

132

Ch. 9 – CURATE: Learning to Train Reinforcement Learning Policies through
Curriculum Learning

(a) (b) (c) (d)

Figure 9.2: The MultiRoom-N4-Random domain [278]. This domain contains ran-
domly generated corridors consisting of (a) 1 room, (b) 2 rooms, (c) 3 rooms, and
(a) 4 rooms. To solve a scene, the agent must navigate from the first room to the
goal in the last room. The size of each room is determined by randomly sampling
two dimensions of length 4 – 7. The corridor is generated within a 13 by 13 grid.
Navigating to an adjacent room requires the agent to open and proceed through the
obstructing door. The target scenes for curriculum learning are the distribution of 4
rooms (d).

updates).

9.5 Experimental Results
We intend to evaluate how CURATE can yield automatic curriculum learning

across a wide range of experimental domains for reinforcement learning agents and
robots using both discrete and continuous action spaces. These domains include
two MiniGrid domains [298], MultiRoom-N4-Random (Fig. 9.2) and ClutteredRoom-
N60 (Fig. 9.3), where the agent must master grid-based navigation; three Procgen
domains [243] (Fig. 9.4), where proficiency must be achieved over different procedu-
rally generated games; and IndustReal [299] (Fig. 9.5), where a robot must demon-
strate high-precision continuous control. At present, we present our experiments in
MultiRoom-N4-Random (c.f., Sec. 9.5.2); the other domains are currently in progress.

9.5.1 Experimental Procedure
Each domain features a curriculum learning problem, where the agent must de-

termine how best to navigate learning within the space of tasks, as parameterized by
environment parameters θ. In general, increasing parameters θ corresponds to a more
difficult task (and corresponding decrease in expected agent return). The ultimate

133

Ch. 9 – CURATE: Learning to Train Reinforcement Learning Policies through
Curriculum Learning

(a) (b) (c)

Figure 9.3: The ClutteredRoom-N60 domain [306]. This domain consists of a 15 by
15 room that contains a randomly selected number of blocks (from 0 to 60). Shown
are representatives scenes consisting of (a) 0 blocks, (b) 30 blocks, and (c) 60 blocks.
To solve a scene, the agent must navigate from the starting position to the goal. The
target scenes for curriculum learning will be the distribution of rooms with 60 blocks
(c).

(a) (b) (c)

Figure 9.4: The Procgen domain [243], which consists of procedurally generated
games. (a) In Leaper, the agent must navigate from the bottom of the screen across
road lanes and water lanes to the finish line. Curriculum learning will consist of
varying the number of road lanes and water lanes. (b) In Climber, the agent must
collect all the coins in the scene by jumping on platforms while avoiding enemies.
Curriculum learning will consist of varying the number of platforms and number of
enemies. (c) In Chaser, the agent must collect all of the orbs within the maze while
avoiding enemies. If the agent consumes a large orb, the enemies can be defeated for
a short period of time. Curriculum learning will consist of varying the maze size and
the number of enemies.

134

Ch. 9 – CURATE: Learning to Train Reinforcement Learning Policies through
Curriculum Learning

Figure 9.5: The IndustReal domain [299]. The robot must insert a peg into a socket,
which requires highly precise control.

goal is to solve a particular target taskMθt that is contained within the distribution
of tasks within the domain. Usually, the target task is a distribution that contains
the most difficult tasks within the domain. For each domain, we evaluate CURATE
along with other UED algorithms and baselines.

Training and test procedure. All approaches use PPO [156] for training the
control policy π. After every control policy update, the agent is evaluated on the
target task. If the return achieved in the target task exceeds a predetermined thresh-
old RS, training concludes. Otherwise, training continues, up to a predetermined
maximum allowable frames fmax.

Baselines. In total, we assess 6 approaches for each domain. Besides CURATE,
we assess two UED algorithms, Robust PLR [307] and ACCEL [306], as well as
curriculum baselines that include Domain Randomization, Hand Curriculum, and
Target.

Robust PLR seeks to learn an implicit curriculum through judicious selection and
replay of prior scenes through managing a replay buffer of tasks. Unlike in PLR [278],
gradient updates only apply to replayed scenes in Robust PLR. ACCEL learns a
curriculum through random mutations of tasks provided by the environment, starting
from the most simple tasks. Task mutations are applied to the tasks contained in the
replay buffer. Like Robust PLR, gradient updates only apply to replayed scenes.

Three curriculum learning baselines are also investigated. In Domain Randomiza-

135

Ch. 9 – CURATE: Learning to Train Reinforcement Learning Policies through
Curriculum Learning

tion, tasks are randomly sampled from the domain. In this way, Domain Random-
ization serves as a random curriculum. Hand Curriculum evaluates a straightforward
curriculum, where the agent solves tasks in order of increasing difficulty. Once a task
is solved above the solved threshold RS, the agent advances to the next task. For
some domains, Hand Curriculum can be seen as an approximate ground truth, but
as shown in our previous work in ACL (Ch. 8), even a Hand Curriculum can suffer
from training divergence when the agent changes tasks [36], and more sophisticated
curriculum navigation may be necessary. Lastly, in Target, the agent only trains in
the target task; no curriculum is used.

Finally, we note that although our work was greatly informed by Li et al. [272],
which showed that solving tasks from easiest to hardest is optimal under certain
conditions, we do not assess their algorithm, ROLLIN. This is primarily because
of two reasons: 1) ROLLIN requires a near-optimal control policy initialization for
solving the first task (such as an agent starting upon or immediately next to a goal),
which is not the case in our domains; and 2) ROLLIN requires consecutive tasks to
be sufficiently close, whereas our domains have some task-to-task differences that are
not trivial (e.g., shifting from a maze of one room to two rooms requires learning how
to open and proceed through the door that separates the rooms).

9.5.2 MiniGrid Corridor Navigation: MultiRoom-N4-Random
MultiRoom-N4-Random (Fig. 9.5.2) requires the agent to master grid-based nav-

igation with partial observability. This domain was introduced by Jiang et al. [278]
by extending a prior domain that was first introduced in MiniGrid [298]. In this
domain, tasks consist of corridors of random numbers of rooms, from 1 room to 4
rooms. Each task is specified by the environmental parameter θ ∈ {1, 2, 3, 4} that
specifies the number of rooms. The agent must navigate from the starting room to
the goal, which is always contained in the last room. The target task Mθt requires
the agent to solve a distribution of corridors with 4 rooms. Specifically, the agent
attempts 128 tasks using stochastic evaluation. For observations, the agent receives
a low-dimensional encoding of the agent’s viewpoint. This is a sparse reward setting,
where the agent receives a time-discounted sparse reward upon solving the corridor, or
zero otherwise. Each approach is evaluated over 10 trials with different random seeds.
Generally, each PPO update occurs after 3072 frames, except in ACCEL, where 6144
frames occur before each PPO update when mutation occurs. All approaches have
access to the full distribution of scenes (although some approaches, e.g., Robust PLR,
only use a subset).

Results. Results for MultiRoom-N4-Random are shown in Tab. 9.1 and Figs. 9.6–
9.7. Table 9.1 provides the summary statistics for each approach, where the corre-
sponding sample efficiency (in terms of the median) is shown in Fig. 9.6. Represen-

136

Ch. 9 – CURATE: Learning to Train Reinforcement Learning Policies through
Curriculum Learning

Approach C. Type Success Rate Mean Frames (×106) Median Frames (×106)
CURATE (ours) Explicit 100% 6.114 ± 1.551 5.737 ± 2.006

Robust PLR Implicit 100% 18.280 ± 1.994 18.156 ± 3.190
ACCEL Implicit 90% 38.108 ± 10.122 34.265 ± 12.490

Dom. Rand. Random 100% 9.418 ± 1.806 9.136 ± 2.447
Hand Curr. Explicit 100% 4.750 ± 0.608 4.663 ± 0.726

Target None 0% 50.000 ± 0.000 50.000 ± 0.000

Table 9.1: Statistics for sample efficiency for MultiRoom-N4-Random. C. Type stands
for curriculum type. 10 trials are evaluated for each approach. Mean Frames are
shown with ± one standard deviation. Median Frames are shown with ± one in-
terquartile range (IQR). Trials that do not solve the task still count towards summary
statistics and are assessed the maximum allowable frames (50 million).

Figure 9.6: Median statistics for sample efficiency for MultiRoom-N4-Random. The
approach success rate is displayed beneath each approach’s name. D. Rand stands
for Domain Randomization. Hand Curr. stands for Hand Curriculum. All trials for
Target yielded the maximum allowable frames (50 million) with a 0% success rate.

137

Ch. 9 – CURATE: Learning to Train Reinforcement Learning Policies through
Curriculum Learning

(a) CURATE (b) Robust PLR

(c) ACCEL (d) Domain Randomization

(e) Hand Curriculum (f) Target

Figure 9.7: Representative curriculum learning time histories for each approach. Each
time history shows the trial that is closest to the median performance of all 10 trials
for each approach. The top figure shows the time history of the return, shown for
the training environments and the target task. The bottom figure shows the time
history of the curriculum, with time discretization of 10 PPO updates to better show
long-term trends.

138

Ch. 9 – CURATE: Learning to Train Reinforcement Learning Policies through
Curriculum Learning

tative trials for each approach are shown in Fig. 9.7.
In general, we see that CURATE outperforms all approaches except for Hand

Curriculum. Figure 9.7a shows that CURATE tends to start curriculum learning
in the easiest set of tasks, 1 room. Switching from 1 room to 2 rooms is a notable
domain shift, requiring the agent to learn how to open and navigate through doors.
Thus, the return tends to decrease upon switching, which may lead to a backwards
step in the curriculum. However, generally, CURATE induces an easiest-to-hardest
curriculum, leading to solving the target task when it has reached 4 rooms in the
curriculum.

The performance gap between CURATE and the UED algorithms, Robust PLR
and ACCEL, is relatively large. As shown in Fig. 9.7b and Fig. 9.7c, these algorithms
do yield an increase in agent return, but such improvement is generally focused on
the training environments. The increase in target task return is gradual, as there is
otherwise no curriculum pressure for the agent to increase difficulty once the training
reward is sufficiently great (above 0.8). Therefore, long-term training return is higher,
but this does not necessarily yield gains to advancing the curriculum. There is evi-
dence of an implicit curriculum that is learned in both Robust PLR and ACCEL, but
such changes are not as task-directed as CURATE. ACCEL tends to yield a higher
training return faster than Robust PLR, yet overall an easier curriculum (mostly 1
and 2 rooms), leading to longer generalization than Robust PLR.

Domain Randomization (Fig. 9.7d) provides a stronger performance than the UED
algorithms, which likely is due to the relatively narrow possible values that the envi-
ronment parameters can take. We also note that the improvement of Domain Ran-
domization over Robust PLR is surprising; in Jiang et al. [278], PLR was shown to
outperform Domain Randomization. We hypothesize that this difference is due to Do-
main Randomization using the entire distribution of scenes, whereas it and PLR were
both constrained to 4,000 scenes in [278]. Robust PLR, ACCEL, and Domain Ran-
domization all eventually achieve generalization, although indirectly (as compared to
directly training in the same distribution as the target, as CURATE does.)

Hand Curriculum (Fig. 9.7e) performs the best out of all approaches, although it
is just slightly more performant than CURATE. Its function is similar to CURATE,
and we hypothesize is that CURATE tends to switch tasks more often, leading to
greater accumulated frames than in Hand Curriculum. Like CURATE, generalization
occurs directly when the training environment consists of the same distribution as the
target task. Although this type of curriculum is successful in this domain, we do not
expect that, in general, Hand Curriculum would always be ideal. In cases where
training divergence may occur when switching tasks, a hand curriculum may suffer
catastrophic forgetting, requiring more complex ways of managing distribution shifts
than what a straightforward curriculum can provide.

Lastly, as shown in Fig. 9.7f, Target represents the performance without using a
curriculum. Overall, performance is markedly poor: no trials were successful. The
target task is too difficult to solve initially due to the exploration problem that agents

139

Ch. 9 – CURATE: Learning to Train Reinforcement Learning Policies through
Curriculum Learning

face when initially solving a task. CURATE addresses this exploration problem by
dynamically changing the task to be more simple, leading to success early that can
be bootstrapped into solving harder tasks.

9.6 Related Works
Curriculum Learning. As formalized by Bengio et al. [253], curriculum learning

concerns how to meaningfully organize data for training machine learning models.
The effectiveness of introducing concepts in an orderly fashion has support from
cognitive psychology and machine learning research [273], although related work in the
intersection of these fields has found differing evidence [292]. Therefore, as suggested
by Bengio et al. [253], “some curriculum strategies work better than others,” and thus
how to optimally sequence training data for a given problem remains an open area of
research. Thus, a diversity of approaches exist.

Graves et al. [267] introduce a general curriculum learning method based on a non-
stationary multi-armed bandit algorithm, leading to a stochastic curriculum. Wang
et al. [295, 296] show that curricula can emerge from co-evolving environments and
agents. Portelas et al. [308] introduce a Gaussian mixture model in the parame-
ter space of the environment, where the curriculum is driven by absolute learning
progress. Algorithms from the Unsupervised Environment Design [300] and Dual
Curriculum Design [307] frameworks yield implicit curricula that emerge from un-
supervised learning. For the case of reinforcement learning, Li et al. [272] recently
proposed that, under certain assumptions, solving tasks from easiest to hardest is
optimal. Our algorithm, CURATE, is most similar to Portelas et al. [308] and Li
et al. [272]. CURATE also maintains a distribution within the environment param-
eter space similar to Portelas et al. [308], but the curricula found by CURATE are
driven by seeking out the easiest set of tasks that are not yet solved, leading to an
approximately easiest-to-hardest curriculum that is similar to Li et al. [272].

Unsupervised Environment Design and Dual Curriculum Design. First
introduced by Dennis et al. [300], the Unsupervised Environment Design (UED)
paradigm provides a framework wherein parameters of an underspecified environ-
ment are varied by a teacher to produce distributions over environments for a stu-
dent learner. This paradigm can support various teaching modes, such as domain
randomization, minimax regret, or a “environment-generating adversary” [300] in the
PAIRED algorithm, which learns to construct scenes adversarially to maximize the
regret between the student learning and an antagonist who is allied with the ad-
versary. Jiang et al. [307] unifies the UED framework with prior work on replaying
experiences [278] to form the Dual Curriculum Design (DCD) framework, wherein
the student learns from either the environment-generating teacher (as in UED) or
from replaying past experiences. In so doing, Jiang et al. introduced REPAIRED
(replay-augmented PAIRED) and an extension of PLR, Robust PLR (also stylized as

140

Ch. 9 – CURATE: Learning to Train Reinforcement Learning Policies through
Curriculum Learning

PLR⊥), in which gradient updates only occur on replayed scenes, leading to improved
theoretical guarantees and empirical performance. Later, Parker et al. [306] introduce
ACCEL, an evolutionary-based algorithm that randomly mutates scenes starting from
environments of minimal complexity. The first multi-agent extension of UED was in-
troduced by Samvelyan et al. [309], which also proposed an algorithm (MAESTRO)
for two-player, zero-sum settings. Mediratta et al. [310] revisited PAIRED to improve
its performance through different mechanisms, such as a bonus term to prevent en-
tropy collapse, different teacher optimizers, and behavior cloning. Recently, Beukman
et al. [311] examined that an adversary optimizing for minimax regret may lead to
learning stagnation, leading to the introduction of the Bayesian level-perfect minimax
regret objective and corresponding algorithm (ReMiDi) that overcomes this limita-
tion. Our algorithm, CURATE, is framed within the UED and DCD frameworks,
where the teacher designs levels that are at the leading edge of the student’s capabil-
ities as determined by feedback from the student through sample-based evaluations.
Whereas UED and DCD approaches typically yield an implicit curriculum, our ap-
proach handles how to navigate an explicit curricula (that is, within environment
parameter space).

9.7 Conclusion
We present CURATE, an approach for automatic curriculum learning that learns

how to train reinforcement learning policies. Our work frames curriculum learning
as causal in nature, with agent selection of tasks expressed as interventions in se-
quencing its own training data. CURATE navigates a curriculum by conducting
sample-based evaluations to establish the best task distribution for training. In a
grid-based navigation task, we demonstrate that CURATE outperforms recent state-
of-the-art algorithms from Unsupervised Environment Design and Dual Curriculum
Design as well as other curriculum baselines, with a hand curriculum being slightly
more performant. Although the hand curriculum slightly outperforms CURATE, this
general method of solving easiest-to-hardest is leveraged by CURATE, and we expect
CURATE to be competitive with or outperform a hand curriculum in domains where
training divergence via catastrophic forgetting is more likely.

9.7.1 Extensions
As work on CURATE is still ongoing, we anticipate several extensions in the

near future. First, we intend to demonstrate CURATE on other domains, including
ClutteredRoom-N60, Procgen, and IndustReal. We also will continue to explore
extensions of CURATE to further integrate with ACL (Ch. 8) and interleave greater
causal structure and principles. We outline a few possible directions below.

• In ACL, children tended to not wait until solving a task before switching to a

141

Ch. 9 – CURATE: Learning to Train Reinforcement Learning Policies through
Curriculum Learning

harder task. CURATE uses a task solved threshold for determining when tasks
should be selected for curriculum learning. Usually this threshold is the same
as the target task solved threshold, but we can explore using a slightly lower
threshold that mimics human behavior.

• In ACL, children learned how to control the agent without necessarily solving
tasks they selected for curriculum learning. This capability is in stark contrast
to reinforcement learning agents in sparse reward settings, where the learning
signal to determine how to learn is only achieved after solving a task to receive
a reward. Thus, we are currently exploring a learned progress model that can
bootstrap agent behavior with an auxiliary reward, which ultimately “densifies”
learning. We also showed in ACL how, if such an auxiliary reward was available
to use, training divergence via catastrophic forgetting was either mitigated or
recoverable. We have explored the use of Explore Like Experts [312], which
has been shown to improve learning using a dataset of expert trajectories in
the domain of NetHack. For our purposes, we would extend this methodology
by first using trajectories that solve the initial task distribution, then gradu-
ally fine-tuning and generalizing the progress model as CURATE advances the
curriculum.

• What if the environment parameters θ contain dimensions that are not relevant
for the target task? For example, consider a new parameter for MultiRoom-N4-
Random that controls the color of the corridor, but generalizing over color is not
necessary for solving the target task. For these cases, we can imbue CURATE
with greater causal principles by conducting causal reasoning in concert with
curriculum learning, where probing the underlying causal structure can assess
the effect of each parameter on agent performance to learn over which parameter
axes the agent should generalize. Such capability would be advantageous for
curriculum learning in open-world settings, which may have many possible axes,
although only a few may be relevant.

9.8 Acknowledgments
We gratefully acknowledge support from the Manufacturing Futures Institute and

the NVIDIA NVAIL program. We also gratefully acknowledge Jake Bruce and Minqi
Jiang for their helpful feedback regarding Explore Like Experts and Procgen integra-
tion into the DCD codebase, respectively.

142

VI
Conclusion

143

10 Conclusion

With the contributions discussed, we now provide the conclusion for the thesis.
We first start with a discussion of lessons learned from the thesis (Sec. 10.1). Then,
we identify future research directions (Sec. 10.2) and present limitations and next
steps (Sec. 10.3). Lastly, in Sec. 10.4, we conclude the thesis with a vision that we
hope this thesis will bring to bear.

10.1 Discussion
We now present major themes and lessons learned from the completed works of

the thesis.

10.1.1 The Generality of Causality
Causality is a fundamental property of not only processes within our world, but

of information. The generality of causality leads to rich opportunities in imbuing a
wide range of robot learning problems with greater reasoning and learning capabil-
ities. This is evidenced by the various contributions within this thesis that pertain
to causality, such as learning and transferring the causal structure of policies and
skills from simulation to reality (Part III, CREST and SCALE) and better under-
standing and modeling dynamical systems from a causal perspective (Part IV, LBD
and LMeshNet). Our concluding work in curriculum learning (Part V, ACL and CU-
RATE) is currently exploring greater causal capabilities, towards our goal of causal
curriculum learning. Even for contributions that did not specifically leverage causal
structure (Part II, DREAM and FormNet), these methods can be readily extended
by incorporating causal learning objectives. This diversity also suggests a litany of
other problems that would benefit from the integration of causality (c.f., Sec. 10.2).

144

Ch. 10 – Conclusion

10.1.2 The Power of Causal Interventions and Counterfactu-
als

In 2018, Pearl and Mackenzie introduced the “Ladder of Causation” [22], in which
association, intervention, and counterfactuals are framed as increasing levels of cog-
nition within a hierarchy. Such a framework corresponds to the human capability of
seeing, doing, and imagining: critical aspects of learning that demand greater levels
of cognition. Currently, state-of-the-art correlational robot learning generally con-
sists of learning from observations: the first rung of the ladder. However, human-like
capabilities may demand higher levels of cognition through interventions and coun-
terfactuals, which leverage the causal structure of information. This thesis explores
in part how robots can achieve greater performance through harnessing interventions,
such as causal feature selection in a simulated version of reality (Part III, CREST
and SCALE). These interventions can be seen as answering counterfactual queries
such as “What would the reward be, had one of the context components been dif-
ferent and the robot still used the same control inputs?” We believe this work is an
important step for how robots can answer counterfactuals in a general sense (i.e., as
used by the causal inference literature) for problems with richer causal structures and
interrelationships. In this way, this thesis pioneers a trail for how robots can climb
the Ladder of Causation towards human-like cognition.

10.1.3 Causal Robot Learning: A Timely Need
As discussed in Ch. 1, the bifurcation of deep learning realities suggests that,

for certain problems, state-of-the-art statistical machine learning may be sufficient
for solving tasks to an acceptable degree. Despite the significant progress made in
this area for robot learning, the ubiquitous deployment of robot manipulators into
the open world currently remains out of reach. Even with the rise of foundation
models [313], generative models trained with vast quantities of data at scale, certain
learning questions may not be sufficiently answered without a causal lens. Thus,
robots would benefit from learning to reason about the processes that generate the
data, beyond just the data alone. This thesis argues that causal robot learning would
expedite robots breaking this barrier and operating seamlessly within the open world,
ultimately achieving the “promise of robotics.” [185]

10.2 Future Work
The completed works of this thesis suggest future directions in integrating the

principles of causality for a vast set of robot learning problems. Some example re-
search thrusts are discussed below. These thrusts build towards a unified endeavor:
building a lifelong, causal robot learning system.

145

Ch. 10 – Conclusion

10.2.1 Active Causal Learning of Robot Manipulation Skills
through Interactive Perception

How can interactive perception facilitate active causal learning of robot skills?
Modeling actions as interventions, the robot can conduct experiments to probe the
underlying data generating processes to identify and learn their structure. In the con-
text of learning manipulation skills, this thrust extends the work of SCALE (Ch. 5).
Instead of learning skills from batch data as in SCALE, such interventions can render
the discovery of skills that are present, yet statistically uncommon. This work would
frame interactive perception [96] through a causal lens, wherein the robot conducts
information-seeking actions to perceive and learn the structure of the data generating
processes.

10.2.2 TRACE: Structural Task Transfer
How can a new task be learned from the structure of a previously solved task?

For general-purpose robots to be useful, they must be equipped to quickly and
sample-efficiently transfer previous relevant experiences in order to solve a new task.
For example, the robot could transfer its previous knowledge for opening an oven
to a new task with a similar structure, such as opening a cabinet. This thrust,
TRACE,1generalizes our previous work in structural sim-to-real transfer for robot
control (Part III, CREST and SCALE) for structural sim-to-real transfer of task rep-
resentations using causal discovery. As shown in Fig. 10.1, TRACE would explore
structural task transfer : how the learning of a task can be bootstrapped from trans-
ferring the causal structure of a related task that the robot knows how to solve. This
thrust would consider the question of which tasks, out of a library of solved tasks,
would be the best starting point for transfer, with the important consideration that
relevant task structures could exist in either real-world or simulated experiences.

1TRACE simultaneously refers to two concepts. First, the verb “trace” means to find or discover,
much like this approach empowers the robot to find the structural causal model that relates a desired
task with a task it knows how to solve. The second concept is that of a “stack trace” of a computer
program. The knowledge learned by the robot is anchored with respect to some previous structural
causal model, similar to how a stack trace is referenced by the preceding stack frame. Moreover,
the original project name — Structural TAsk and Causal Knowledge TRAnsfer through Causal
discovEry (STACK TRACE) — is best shortened to TRACE for the sake of brevity. We thank
Prof. Kun Zhang, Prof. Oliver Kroemer, Prof. Chris Atkeson, and Prof. Wennie Tabib for their
insights and conversations related to this particular thrust of TRACE, which was initially proposed
for investigation as a part of this thesis.

146

Ch. 10 – Conclusion

Figure 10.1: Proposed overview of TRACE. The robot starts with a structural task
representation (Toven) for solving an oven opening task, shown in (a). The robot is
now asked to complete a different, but related, task — opening a cabinet. As shown in
(b), initially, the structural task representation of the cabinet task, Tcab, is not known.
To learn it, the robot collects in-scene data, Xcab, and then forms a dataset D that
also includes Xoven, data generated by solving the oven opening task (either real-
world data or synthetic data generated by an internal model). Using this dataset D,
structure learning discovers a structural model that relates the solution for opening a
cabinet to the solution for opening an oven. This model is ∆T oven

cab , where the notation
expresses that this is a relationship defined between these two task representations.
The task representation is then recovered: Tcab := Toven ⊕ ∆T oven

cab . The operator ⊕
represents the composition of these two task representations, analogous to how SE(3)
poses can be defined with respect to composition of other SE(3) poses.

147

Ch. 10 – Conclusion

10.2.3 RVS: Causal Visual Servoing for Robust Image-Based
Control

How can causality endow robustness to any distribution shift in irrelevant parts of
the image? An important capability for robot manipulation is visual servoing [314,
315]: sequential direct control from images. By extending recent work in causal in-
ference literature for learning counterfactually invariant predictors [316] and shortcut
removal [317], the image can be decomposed into either regions that are causal or spu-
rious to the image-based robot control task. Therefore, our goal for Robust Visual
Servoing (RVS)2is to achieve robustness to any distribution shift in irrelevant parts
of the image. The key insight is that the image itself is produced by the data gen-
eration process of camera projective geometry. Whereas our previous work in LBD
(Ch. 6) explored the similarities between control theory and causality for controlling
a system, this thrust would explore similarities for observing a system.

10.2.4 Causal Discovery and Implicit Causal Models
What are the implications for causal discovery with implicit representations of

causal models? Causal discovery, the process of learning causal structure from data,
emerged in the context of learning causal models with graphical structure [27, 28].
These models can be considered explicit causal models, as their structure is explic-
itly encoded by the graph. Yet, causal models known to humans may be encoded
implicitly: in a representation that does not require an obvious graph, where causal
reasoning and counterfactual queries can nonetheless still be conducted. With such
implicit representations of knowledge, what would be the role of causal discovery?3

Is the underlying structure discovered prior to the model being learned, or refined
afterward?

10.2.5 Causality and Human-Robot Interaction
How can causal reasoning augment learning from humans? The vision of a general-

purpose robot is to operate seamlessly alongside humans in open-world environments,
such as homes, restaurants, and hospitals. Given the presence of humans, approaches
from human-robot interaction [318] would benefit from integrating causality. For
example, if a human were to give a demonstration for completing a task, can the
robot use causal reasoning to determine the relevant features of the demonstration
for use in imitation learning [319]? Moreover, can the robot pose counterfactual
queries in the form of natural language to the human demonstrator to avoid spurious

2We thank Joseph Gleason and Eric Dixon (Lockheed Martin Corporation) for their discussions
and feedback for this particular thrust of RVS, which was briefly investigated during the course of
this thesis.

3We thank Sarvesh Patil for his insights and conversations for this thrust.

148

Ch. 10 – Conclusion

correlations and understand preferences? Specifically, for a demonstration of putting
pasta sauce away in a cabinet, the query “If the adjacent cabinet door was closed,
would the demonstration still be the same?” would allow the human to communicate
to the robot whether changes to that part of the environment would be causally
important.

10.2.6 Unifying Foundation Models with Causality
How can generative foundation models be unified with model-based causal reason-

ing? Despite the impressive capabilities of today’s foundation models [313], genera-
tive models trained on broad data, they are generally opaque mechanisms [320, 321].
For the case of large language models (LLMs), these generative natural language
models have shown state-of-the-art performance on multiple causal benchmarks in
causal discovery, counterfactual reasoning, and understanding necessary and suffi-
cient causes [322]. Yet, others suggest that LLMs may only be learning “correlations
between causal facts in natural language,” rendering such models nothing more than
“causal parrots” [323]. On the other hand, structural causal models are inherently
interpretable and offer model-based explanations [16]. Indeed, in the words of Pearl
and Mackenzie [22]:

“...if we ever want robots to answer “Why?” questions or even understand
what they mean, we must equip them with a causal model...” (Pearl and
Mackenzie [22])

This thrust would seek to unify foundation models with a causality model, where
each side complements the other. For example, a foundation model could generate
rich, counterfactual scenarios that are grounded by modeling assumptions and mech-
anisms provided by the causality model. In this way, such a unified learning system
would be akin to the lateralization of the human brain, which works harmoniously as
one system with the popular mythos of left-side propensity for logic and order and
right-side specialization for intuition and creativity [324, 325].

10.2.7 CASIE: The Lifelong, Causal Robot Learning System
What are the implications of causal learning over the operational lifetime of an

embodied system? There are important questions for embodied systems continuously
learning over their operational lifetime: What tasks are important to learn? When is
learning no longer needed? Which knowledge concepts would be important for learn-
ing, and where would they be found? Such questions are causal in nature, for they
concern reasoning over data generating processes (beyond just data). This systems
thrust would leverage all previous thrusts to develop CASIE (Causally Augmented

149

Ch. 10 – Conclusion

System In Embodiment),4 a robot that works alongside humans to learn a variety of
useful manipulation tasks over an extended operational lifetime. This thrust would
explore not only the integration of causal robot learning algorithms and capabilities
into one holistic system, but also their embodiment in hardware.

10.3 Limitations and Next Steps
In this thesis, we argue for causal robot learning: the integration of the principles

of causal inference and causal representation learning into robot learning. More-
over, we posit that the capabilities demonstrated by causal-based learning algorithms
would benefit robots in open-world settings, such as reasoning over which factors are
relevant and exhibiting robustness to distribution shifts. For the individual contri-
butions of this thesis, we focused on demonstrating capabilities for representative
tasks that could be tested within a laboratory setting, while making assumptions for
capabilities that could be available in the future. For example, in CREST (Ch. 4),
we demonstrated that policies learned and constructed from causal structure would
create networks that scale with only the relevant variables, and we assessed this ca-
pability for a block stacking task with many distractor blocks. Among some of the
assumptions for this work, we assumed a simulator was available that the robot could
use to perform causal interventions. Although the assumptions made throughout
our works may be strong, we believe these works offer compelling evidence towards
further research in this area and the relaxation of these assumptions.

To future researchers who wish to continue the ideas of this thesis, we recommend
pursuing experimentation in open-world environments, either in reality or in photo-
realistic simulation. Towards this end, we believe that the development of CASIE
(Sec. 10.2.7), the causal robot learning system, would serve as a “North Star” to-
wards this end. The construction and realization of such a system would address
autonomous structuring of learning problems in the open world and better identify
which assumptions must be addressed towards the realization of such a system in
practice.

10.4 Towards Causal Embodied Intelligence
In closing, we leave the reader with a vision that extends well past this thesis: a

vision for causal embodied intelligence. In this third age of artificial intelligence (AI),
it is remarkable that, as Roy et al. [15] state, many of the challenges facing robot
learning have not changed in 30 years. Indeed, as Brooks argues,

4CASIE’s name is gender inclusive, so that everyone, regardless of gender, may identify with
them.

150

Ch. 10 – Conclusion

“Just about every successful deployment of AI has either one of two ex-
pedients: It has a person somewhere in the loop, or the cost of failure,
should the system blunder, is very low.” (Brooks [1])

This “human-in-the-loop” aspect is fundamental towards unlocking the next age
of AI. In this age of deep representation learning, impressive progress has been made.
However, as Schölkopf et al. [25] argue, this progress has mostly been a consequence of
engineering away nuisance factors until the particular problem can be mostly solved
via modern statistical learning algorithms on suitably independent and identically
distributed data.

In this sense, we have made little progress towards removing the human from the
autonomy loop. Whereas in the second age of AI, where humans imbued systems
with domain expertise in the form of rule-based models, humans now imbue systems
with domain expertise through neural network architectural choices and training data.
Moreover, when the agent performs inconsistently with the human designer’s intent,
the human intervenes, updates the autonomy (model or data), and tries again. This
closes the autonomy feedback loop for imbuing agents with domain expertise until
the particular problem can be solved by the agent, without human intervention.

We posit that the key towards the next age of AI is addressing this “human-
in-the-loop” problem. Instead of humans performing interventions upon the robot,
the robot must perform self-interventions in order to achieve causal self-learning.
Doing so requires some notion of the robot assessing what it knows, what it needs to
learn, testing hypotheses through real-world experiments, and integrating knowledge
gained from causal discovery. Without such principles of causal learning, it is not
immediately clear how a robot’s knowledge base could ever exceed what a human
domain expert knows. It is the vision of this thesis that robots can ultimately learn
from experiments for any task. Yet, these ideas have broader implications for not
only robot manipulators, but for any embodied agent. In fact, a fully realized causal,
self-learning embodied intelligence many in fact behave in a manner that could be
commonly described as having Artificial General Intelligence (AGI).

To be clear: it will take a concerted, herculean effort across many decades of re-
searchers across many fields — computer science, machine and robot learning, causal
inference, statistics, cognitive psychology and neuroscience, human-robot interaction,
vision, sensing, planning, control, mechanical and electrical engineering, natural lan-
guage and linguistics, philosophy, AI ethics, and many more — to solve the “human-
in-the-loop” problem once and for all. That being said, even if this thesis is a small
step towards this lofty goal, the thesis author will be forever grateful for the con-
tributions that arose because of the collaborators of these thesis works and other
researchers in this field.

151

VII
Appendices

152

A Appendix for FormNet

A.1 Algorithm for Computing Articulation from
Motion Residual Flow

Algorithm A.1: Compute Articulation Type and Parameters from Pre-
dicted Motion Residual Flow

Input: Depth image ID ∈ RW ×H , binary part segmentation mask IS ∈ ZW ×H
2 ,

motion residual flow IF ∈ RW ×H×3, small thresholds ϵ0, ϵ1.
Output: Articulation Type (AT) ∈ {FIXED, PRISM, REV} and articulation

parameters if PRISM or REV.
if ∥If∥2 < ϵ0 then

return FIXED
end if
Set original point cloud P ← DEPROJECT(ID[IS])
Set estimated displaced point cloud P ′ ← P + IF [IS]
Set pre-motion plane and normals π, n̂← RANSAC(P)
Set post-motion plane π′, n̂′ ← RANSAC(P ′)
if n̂⊤n̂′ > 1− ϵ1 then

Find mean flow d← 1∑
w,h

IS [w,h]
∑

w,h IF [w, h]

Normalize into direction d̂← d
∥d∥2

return PRISM, d̂
else

Find intersecting line l← INTERSECT(π, π′)
return REV, l

end if

153

App. A – Appendix for FormNet

A.2 Summary of Public Datasets of Meshes

Dataset Categories Objects Info
RBO [120] 14 14 Y

ShapeNet [121] 3315 220K N
PartNet [122] 24 26.6K N

Shape2Motion [110] 45 2.4K Y
PartNet-Mobility [109] 46 2.3K Y

Table A.1: This table summarizes the different public datasets of meshes on their
number of object categories, number of object models, and whether it contains ar-
ticulation information between object parts. Column info represents articulation
information (y/n).

154

App. A – Appendix for FormNet

A.3 Extension of FormNet Performance on Object
Categories

See Figure A.1 for an extension of Figure 3.4 with all the object categories.

Figure A.1: Extension of Figure 3.4 with all object categories.

155

B Appendix for CREST

B.1 Summary of CREST
Which state features are important for learning a control policy? Our approach,

CREST, addresses this question through causal feature selection. CREST selects
the relevant state variables for a given control policy, which apply over the policy’s
preconditions. The assumptions for CREST are that an internal model (i.e., an ap-
proximate task simulation) exists, the context space representation of the internal
model facilitates causal interventions (e.g., disentangled variables), and the (param-
eterized) control policy and its preconditions are known. Through structure and
transfer learning, CREST enables learning of policies that are compact, avoiding un-
necessary state features. By construction, policies built using CREST are robust to
distribution shifts in irrelevant variables, whereas baseline methods may yield poli-
cies with spurious correlations that are brittle. Such distribution shifts could arise
from transfer between the internal model and reality, due to variations in dynamics
or context distributions not encountered during pretraining with the internal model.

B.2 CREST Analysis on Math Environment
We now provide a greater description of the manipulation environment described

in Sec. 4.5.3. The toy environment, MathManipEnv, approximates the mathematics of
a controller for goal-based manipulation. For simplicity, the low-level control policy
simply perturbs the state s ∈ R|S| by an input of θ = a ∈ R|A| in a manner specific
to whether the system is linear or non-linear. Additionally, we consider the context
c ∈ R|S| to be the initial state, s0. For this evaluation, we considered cases where
|S| = |A| (“Dim.” in Table 4.1).

156

App. B – Appendix for CREST

The reward for this task is

r = −∥ga − gd∥
= −∥Gsa − gd∥
= −∥G(s0 + A(θ))− gd∥

where ga ∈ R|g| is the goal vector that was obtained after execution of the controller to
yield achieved state sa, and gd ∈ R|g| is the desired goal. The goal vector is calculated
from a goal selection matrix G ∈ R|g|×|S|, which is a one-hot encoding matrix where
the columns indicate the elements of the state vector that are used. In practice, G is
formed by first randomly selecting Nτ relevant context variables from the total set of
c to form τ . Then, each τ is randomly allocated to a separate dimension of the goal
vector, i.e., row of G. Here, G represents that, in some goal-based problems, the goal
is calculated from only a subset of the state vector (e.g., relative to the position of a
particular object).

The process of the system is either linear or non-linear, where A(θ) = ∆s+wa and
wa ∼ N (0, σ2

a) is the action noise. In the linear case, the controller A ∈ R|S|×|S| is a
matrix with randomly selected coefficients, so ∆s = Aθ. The non-zero coefficients of
A indicate mappings of τj to θj. In the non-linear case, the controller A is a list of size
|A|, where each element of the list specifies randomly selected functions (exponential,
sigmoid, sine, cosine) that transform input aj into the resulting ∆sj.

Each trial of this environment randomly selects different τ , gd, s0, G, and A. The
goal vector dimensionality |g| is fixed for each run and is typically equal to |S|.

B.3 Task Representation: Block Stacking
We now provide additional detail for the block stacking task described in Sec. 4.7.1.

Figure B.1 illustrates some context variables and the policy trajectory. In this task,
the robot must stack the source block (block 0) upon the target block (block 1) using
a sequential straight-line skill with control policy π(a|s, θb) and known preconditions.

Policy. The policy parameters θb = [θ∆x, θ∆y, θ∆z]T ∈ R3 define three waypoints
that the robot is sequentially commanded to via impedance control. Specifically, let
yp represent a vertical position above the table and blocks. After the block is grasped,
the executed policy is therefore:

1. Vertically lift to yp.

2. Move (θ∆x, θ∆z) at fixed yp.

3. Vertically move θ∆y − yp.

157

App. B – Appendix for CREST

Figure B.1: Diagram of the block stacking task. The world coordinate frame {W} is
defined at the base link of the robot. Each block coordinate frame {B} is defined at
the block’s centroid.

158

App. B – Appendix for CREST

The vertical lift to yp avoids obstructions to moving the block, so the preconditions
of this skill are always satisfied.

Reward. The reward function for this task is

r = −α∥pw
0,a − pw

g ∥

where α = 1 is the reward weight, pw
g = [xw

g , y
w
g , z

w
g]T is the goal position of block

0, and pw
0,a = [xw

0,a, y
w
0,a, z

w
0,a]T is the final (i.e., achieved) position of block 0 at the

end of the policy execution. In this task, the goal is to stack block 0 upon block 1.
Therefore, xw

g = xw
1 , yw

g = 1
2h0 + 1

2h1 + yw
1 , and zw

g = zw
1 .

Expressing the reward function in terms of the task context variables elucidates
which variables are considered relevant to the task policy. The optimal low-level
policy parameters θ∗

b = [θ∗
∆x, θ

∗
∆y, θ

∗
∆z]T ∈ R3 are

θ∗
∆x = xw

g − xw
0

= xw
1 − xw

0

θ∗
∆y = yw

g − yw
0

= 1
2h0 + 1

2h1 + yw
1 − yw

0

= 1
2h0 + 1

2h1 + 1
2h1 − 1

2h0

= h1

θ∗
∆z = zw

g − zw
0

= zw
1 − zw

0

where the reduction of the block y-position variables arise from the blocks being
initially constrained to the table.

The above derivation demonstrates that only certain variables are needed to gen-
eralize the policy across different contexts where the preconditions also hold true.
Moreover, certain variables are only influential in certain policy parameters. We
express this more concretely by formalizing what variables are needed for each pa-
rameter, which is where the ground truth mappings for CREST (Sec. 4.7.1) arise:

θ∗
∆x = f(xw

0 , x
w
1)→ τ ∗

∆x = [xw
0 , x

w
1]T

θ∗
∆y = f(h1)→ τ ∗

∆y = [h1]
θ∗

∆z = f(zw
0 , z

w
1)→ τ ∗

∆z = [zw
0 , z

w
1]T

θ∗
b = f(xw

0 , x
w
1 , h1, z

w
0 , z

w
1)→ τ ∗ = [xw

0 , x
w
1 , h1, z

w
0 , z

w
1]T

Here, f is the model, which for our work we characterize using a neural network
(although for this specific task, a linear model would also suffice). In causality terms,
this is equivalent to modeling each individual policy parameter (θj) as a structural
causal model, where f is a function with parent variables given by τj.

159

App. B – Appendix for CREST

B.4 Sim-to-Real Block Stacking Experiment
The sim-to-real block stacking experiment (Sec. 4.7.1) demonstrates that our pro-

posed approach works in practice on a real robot system (Fig. 4.2c). As it is experi-
mentally difficult to realize all possible values within the context distributions (e.g.,
creating blocks of precise height and color for each sample), we instead conduct the
experiment on a slightly reduced distribution range. Specifically, we conduct this
experiment using 10 blocks, where each block has a different color and two possi-
ble heights (5.7 cm or 7.6 cm). Before each trial, all block positions and rotations
are shuffled by hand. Additionally, a random number generator selects the height of
each block, as well as the enumeration of the blocks (and therefore which blocks are
the source and target). The length and width of each block is 4.2 cm, which does
not change during the experiment and is known from manual measurement (i.e., not
perception).

Perception. We use a Microsoft Azure Kinect RGB-D camera to estimate each
block’s position, rotation, and color through a model-based perception algorithm uti-
lizing the Open3D library [326]. Figure B.2 shows an example of the block perception.
The perception algorithm is as follows:

1. Crop to region bounded by the table blue tape (Fig. 4.2c).

2. Removal of hidden points via Katz [327], i.e., points expected to be occluded
from the camera viewpoint.

3. Fit plane to table via random sample consensus (RANSAC) and remove any
points below this plane.

4. Detect remaining clusters with DBSCAN [328], a density-based clustering al-
gorithm. Proceed only if the numbers of clusters is NB = 10, or reject the
perception sample and try again.

5. For each cluster (block), determine the best position and angle that fits a cube
of known dimensions to the cluster via least-squares optimization. This step
yields an estimate of each block’s position and rotation.

6. Estimate block color by averaging the colors of all points within a cluster (block).

Due to difficulties with accurately estimating block height from depth, the block
height is provided by manual input instead. Manual checks are also completed prior
to executing the control policy to ensure block perception results are reasonable. For
example, if one cluster was not a block, but part of the blue tape, the perception
sample would be rejected and attempted again. Prior to running the perception sys-
tem, we obtain the extrinsics of the camera via a target-based calibration procedure,
and we use the intrinsics as reported directly from the camera.

160

App. B – Appendix for CREST

Figure B.2: Block state estimation used for the sim-to-real experiments using RGB-
D perception. The perception algorithm takes as input a colored point cloud, and
outputs a position, rotation, and color for 10 blocks. The red point in each block
represents the block centroid, and the dashed lines indicate the block length and
width (known a priori). The best-fit position and rotation angle for each point cloud
cluster yields a pose estimate for each block.

161

App. B – Appendix for CREST

Control. We use the FrankaPy library [329] that implements impedance control
for the Franka Emika Panda robot.

B.5 Task Representation: Crate Opening
This section provides more detail of the crate opening task (Sec. 4.7.2), where the

objective is to open a crate in the presence of distractor objects using a circular arc
skill with control policy π(a|s, θa) and known preconditions. Figure B.3 shows some
context variables and the policy trajectory, which emerges from the crate grasp point.

This task has a larger modeling difference between the internal model and the
target domain, which could also contribute to why our partitioned networks (PMLP,
PMLP-R) were less successful than our non-partitioned network (RMLP). In addition
to the dynamics domain difference discussed in Sec. 4.7.2, the y-position of the grasp
point, yC

g , is also slightly different. For the internal model, yC
g exists in the same

plane as the crate, but for the target, yC
g is slightly above the crate because of the

protruding grasp point.
Policy. The policy parameters θa = [θpw

a

T, θ∆γ, θ∆ϕ]T ∈ R5 define a circular
arc that is composed of NT waypoints. The robot is commanded to the crate grasp
point, then the robot executes the policy by sequentially following each waypoint via
impedance control. The crate cannot open into the blocks below, so the preconditions
are always satisfied.

Reward. The reward function for this task is

r = −∥[αa∆Θ, αkek]T∥

In this function, ∆Θ = Θa−Θo is the difference between the achieved (Θa) and goal
(Θo) crate angles, and αa and αk are reward weights. The term ek is the kinematic
error in the policy trajectory, which is intended to induce robot trajectories that
are safe (physically realizable and low force) in the target domain given articulated
motion of the crate. For this work, αa = 1 and αk is 5 for the internal model and 0 for
the target domain (because the robot realizes the trajectory it can actually achieve
on the target due to the crate’s articulated motion).

Specifically, ek = 1
NT

∑NT
t=1 ∥pw

a,t − pw
d,t∥, where pw

d,t is the desired position of a
waypoint in the trajectory and pw

a,t is the kinematically realizable position of that
same waypoint, both at timestep t. This is determined by projecting the desired
waypoint onto the plane formed by rotating the grasp point about the crate hinge,
obtaining the resulting crate angle, and using this angle to compute the realized grasp
point.

162

App. B – Appendix for CREST

Figure B.3: Diagram of the crate opening task. The world coordinate frame {W}
(not shown) is defined at the base link of the robot, similar to the block stacking task
(Fig. B.1). The z-axis of the crate coordinate frame {C} is coincident with the crate
hinge. There are 10 distractor blocks, each with coordinate frame {B}.

163

App. B – Appendix for CREST

Table B.1: Transfer results for a distribution shift in 33 context variables that are
irrelevant for the crate opening policy. Variables are 3-tuple RGB colors of the crate
and 10 blocks in the scene. Light crate stiffness.

Network IM Updates
(k-Samples)

Target Updates
(k-Samples), no shift

Target Updates
(k-Samples), shift

MLP 36.10 ± 3.11
(18.48 ± 1.59)

11.10 ± 2.30
(5.68 ± 1.18)

17.30 ± 4.22
(8.86 ± 2.16)

RMLP
(ours)

36.20 ± 5.23
(18.53 ± 2.68)

3.40 ± 0.66
(1.74 ± 0.34)

3.50 ± 0.67
(1.80 ± 0.34)

PMLP
(ours)

48.50 ± 7.88
(24.80 ± 4.03)

8.50 ± 2.06
(4.35 ± 1.06)

8.30 ± 1.10
(4.25 ± 0.56)

PMLP-R
(ours)

53.00 ± 7.80
(27.14 ± 3.99)

9.50 ± 1.91
(4.86 ± 0.98)

9.60 ± 2.01
(4.92 ± 1.03)

B.6 Crate Opening Distribution Shift in Irrelevant
Contexts

As mentioned in Sec. 4.7.2, we also conducted a crate opening experiment with
distribution shifts in irrelevant parts of the context space, similar to the experiment
in the block stacking task (Table 4.3). As before, we pretrain on the entire context
space, except for color of the crate and blocks, where only half of the color space is
used. For testing, we transfer to two cases: 1) the same color space seen in training
(no shift), and 2) the opposite color space (complete shift with no overlap). This
experiment uses the “light” crate stiffness.

Table B.1 shows the results of this experiment. As expected, our policies are robust
to distribution shifts of this type, whereas the baseline MLP incurs approximately
55% more target updates to overcome these irrelevant distribution shifts. Unlike the
version of this experiment for block stacking, no policies achieved zero-shot transfer.
However, this is because of the previously described domain shift in dynamics between
the internal model and target domain.

164

C Appendix for SCALE

C.1 SCALE and Appendices Overview
Fundamentally, SCALE is a causal learning algorithm for discovering compact,

diverse skills through interventions in simulation. Figure C.1 provides an overview of
the approach.

Structure of appendices. These appendices are structured as follows. Ap-
pendix C.2 describes how SCALE connects to related work in intuitive physics. Ap-
pendix C.3 provides greater details into the formalization of the simulator and its
role as a causal reasoning engine. Appendix C.5 formalizes the SCALE algorithm
using nomenclature introduced in App. C.4. A discussion of higher-dimensional con-
text spaces and SCALE is then provided in App. C.6. Next, App. C.7 provides a toy
experiment that is designed to convey greater intuition and visualization of the mech-
anisms that underlie SCALE. Appendix C.8 presents additional experimental details
of the block stacking experiment presented in Sec. 5.7.1. Following this, Apps. C.9
and C.10 provides two additional experiments in the block stacking domain: a sim-to-
real transfer experiment and a downstream task evaluation experiment, respectively.
The next two appendices concern the peg-in-hole insertion domain. Appendix C.11
details additional experimental details first presented in Sec. 5.7.2, and App. C.12
presents an additional experiment that shows the robustness of SCALE under a task
domain shift. Lastly, Appendix C.13 contains a primer on causality for readers who
are new to this area of research.

C.2 Related Work for Intuitive Physics
This appendix describes the connections between SCALE and the intuitive physics

literature. Intuitive physics is the ability to approximately predict and model the
physical world without explicit understanding of the underlying dynamics [330]. Lit-

165

App. C – Appendix for SCALE

Figure C.1: In SCALE, the robot discovers skills in simulation using causal learning.
(a) The simulation is used to solve task instances and conduct interventions to de-
termine causally relevant context variables. (b) Simulation data are used to train a
library of skills, (c) which are suitable for sim-to-real transfer learning. (d) Each skill
that is learned is parameterized by the relevant variables selected in simulation. Here,
red context variables are unnecessary for the skill policy and can be safely ignored.
The boundary encircling the policy represents the skill DGR and precondition, which
are also learned.

166

App. C – Appendix for SCALE

(a)

(b)

Figure C.2: Illustrations of the scene structural causal model used in the simulator
W . (a) From context space C and robot interventions I, the scene SCM CS generates
a context vector c that represents a particular scene that defines objects and their
properties. (b) In this block example, CS is defined using scene variables Ψ := C∪ zb

and context variables C := {xb, hb, hπ}, where xb is block x-position, hb is block
height, hπ is table height upon which the block rests, and zb := 1

2hb + hπ is block
z-position. Normally, values of C are sampled from context space C, but the robot
performs an intervention I = {do(hb = 0.6)} to force the value of hb to be 0.6. As
a result, the dependent variable zb is determined as 0.7 using this intervened value.
Lastly, the scene is constructed and represented as context vector c = [0.1, 0.6, 0.4]T.

erature in cognitive psychology has suggested that humans develop mental intuitive
physics models to support fast prediction and understanding of complex physical
scenes which enables physical reasoning [150]. Computational learning of intuitive
physics have been successful, enabling reinforcement learning and planning applica-
tions owing to the models ability for forward prediction [331–333]. In our work, our
causal reasoning engine can be viewed as an internal model that uses interventions
to elicit the physical mechanisms by which the data arise.

167

App. C – Appendix for SCALE

C.3 Simulation as a Causal Reasoning Engine
This appendix provides greater discussion of the simulator formalization used by

SCALE. The simulator model, W := (CS, T), is formalized as follows:

1. a scene structural causal model CS (Fig. C.2) that, given context space C and
interventions I, instantiates a scene that can be represented as a context vector,
c ∈ C;

2. the transition model T that captures the domain forward dynamics as the robot
interacts with the world through θ starting from the scene initialized from CS.

A structural causal model (SCM) [16, 17] can be represented as a directed acyclic
graph that is driven by exogenous variables (functional inputs of the graph) that
produces the solution for all variables within the graph. These two components of
the simulator capture the spatial structure inherent to the scene itself (CS), and the
spatiotemporal structure of the robot interacting with the world (T). The simula-
tor model W , including the scene SCM and transition function, is provided for the
robot to use. In principle, the scene SCM could be learned via causal representation
learning [25], e.g., a world models approach that admits causal interventions.

The scene SCM CS is defined by structural equations with scene variables Ψ, where
C ⊆ Ψ. In the graph induced by CS, the scene variables are the nodes, and context
variables C are the root nodes and exogenous variables (functional inputs) of the
SCM. The value of the context variables is given by interventions I = {do(Ci = ci)}
if specified, or otherwise sampled from the context space C. The robot only conducts
interventions with respect to C that would yield a steady-state solution and are
physically realizable, excluding physically invalid scenes (e.g., object penetration).

The transition model T is the same as typical simulators. The forward dynamics
are simulated through the initial state s0, obtained from the scene created by CS, and
θ, the inputs to the low-level controller πl. With these inputs, the system tempo-
rally evolves as usual until the end of the episode, where reward Rf is obtained and
compared to a threshold RS to determine if the task was solved.

C.4 Nomenclature
Table C.1 summarizes the nomenclature used in this paper and, in particular,

the SCALE algorithm (c.f., App. C.5). Note the use of italics and bold type to
disambiguate certain symbols. For example, X is a set of random variables, but X
refers to a dataset matrix. The notation for a variable and its instantiation as a scalar
may also be overloaded depending on the context.

168

App. C – Appendix for SCALE

Table C.1: Table of nomenclature.

Symbol Meaning
X set of d random variables,

i.e., X := {X1, . . . , Xd}
X space of X,

i.e., X := [X1, . . . ,Xd]T
x vector instantiation of X

i.e., x := [x1 ∈ X1 ⊆ X1, . . . , xd ∈ Xd ⊆ Xd]T
K set of k robot skills,

i.e., K := {K1, . . . ,Kk}
D dataset containing AX ∈ Rm×n samples from set A with size n

and BY ∈ Rm×p labels from set B with size p

C.5 SCALE Algorithm
As explained in Sec. 5.6, the SCALE algorithm (Alg. C.1) describes how the skills

are learned through batch dataset collection and skill training. The procedure for
batch dataset collection used by SCALE (SkillTrainData) is described in Alg. C.2.

Note that the number of skills is not a hyperparameter of the SCALE algorithm.
Rather, the skill quantity emerges from SplitIntoSkillDatasets from groups of
highly-occurring CREST results, where each group becomes the dataset for a partic-
ular skill.

C.6 SCALE and Higher-Dimensional
Context Spaces

The SCALE algorithm scales linearly with the dimensionality of the context space,
i.e., O(|C|), due to the necessity of performing interventions on each context variable.
In the experiments examined in this work, the dimensionality of the context space
was 36 and 8 for the block stacking and peg insertion domains, respectively. For other
applications where the context space is very large, heuristics can be incorporated to
first downselect the context space into a smaller candidate space that can be provided
to SCALE. Example heuristics could include a distance metric (objects closer to
the goal may be more likely to be relevant than those further away) or using other
approaches such as meta-level priors [334].

169

App. C – Appendix for SCALE

Algorithm C.1: SCALE: Skills from Causal Learning
Input: causal reasoning engine W , context space C, controller πl, reward

solved threshold RS, number of samples n, skill policy function fπ,
number of evaluations m, skill timestep Tf

Initialize: skills K← ∅

// Collect training data
(D1, . . . ,Dk)← SkillTrainData(W , C, πl, n)
// Train skills
for j = 1 to k do

(CX, θY,A,D)← Dj

// Train DGR
DX← ReduceDims(CX,D)
D ← TrainDGR(DX)
// Train Policy
AX← ReduceDims(CX,A)
(AX+, θY+)← DGRInliers(D , AX,DX, θY)
πu ← TrainPolicy(fπ,

AX+, θY+)
π ← πlπu

// Train Preconditions
(CXe,

RY e)← EvaluatePolicy(W , C, π,m)
Pre← TrainPrecondition(CXe,

RY e, RS)
// Set Termination Conditions
β ← Tf

// Construct Skill
K +← (π,Pre, β,D)

end

Result: learned skills K

170

App. C – Appendix for SCALE

Algorithm C.2: SkillTrainData
Input: causal reasoning engine W , context space C, controller πl, reward

solved threshold RS, number of samples n, local region fraction f ,
minimum dataset size d

Initialize: batch dataset DB ← ∅

// Collect training data
for i = 1 to n do

c← SampleValidScene(W , C)
(θ, Rf)← TryToSolveTask(W , c, πl)
TaskSolved← Rf > RS

if TaskSolved then
A← CREST(W , c, πl, θ, Rf , fC)
D← CREST(W , c, πl, θ, Rf , C)
DB

+← (c, θ,A,D)
end

end
// Separate into k skill datasets
(D1, . . . ,Dk)← SplitIntoSkillDatasets(DB, d)

Result: skill training data (D1, . . . ,Dk)

171

App. C – Appendix for SCALE

Figure C.3: The Height-Height experiment is an intuitive example for SCALE in the
block stacking domain. In this experiment, only two context variables can vary: the
height (z-dimension) of the obstructing block (ho) and the height of the target block
(ht). All others variables (e.g., features of the source block) do not change throughout
this experiment.

C.7 Block Stacking Intuitive Example
To provide greater intuition for SCALE and the causal skill learning problem,

we present the Height-Height experiment (Fig. C.3): a simple example in the block
stacking domain that can be easily visualized.

Task and policy description. The Height-Height experiment contains 3 blocks:
1) a source block; 2) a target block; and 3) an obstructing block between the source
and target block. As in Sec. 5.7.1, the task is to place the source block on top of the
target block. The same controller is used as in Sec. 5.7.1, which is parameterized by
θ ∈ R4. Specifically, each parameter of the controller is defined as follows:

1. θ∆x: the distance the source block is moved along the world coordinate frame’s
+x-axis once it is picked up.

2. θ∆y: the distance the source block is moved along the world coordinate frame’s
+y-axis once it is picked up.

172

App. C – Appendix for SCALE

3. θ∆zu : the distance the source block is lifted (moved along the world coordinate
frame’s +z-axis) during the pick-up motion.

4. θ∆zd
: the distance the source block descends (moved along the world coordinate

frame’s −z-axis) during the set-down motion.

The controller behaves as follows:

1. Move robot end-effector to source block and grasp it.

2. Lift up the source block according to θ∆zu .

3. Move the source block in the x-y plane according policy parameters θ∆x and
θ∆y.

4. Set down the source block according to θ∆zd
.

5. Ungrasp the source block.

The context space of this experiment is just 2 variables, ht and ho, facilitating 2-
dimensional visualizations. For greater clarity, we refer to block properties by whether
they belong to the target block (t) or the obstructing block (o), instead of their index
(as in Sec. 5.7.1). For this experiment, only linear approaches are considered.

Skill learning results. The SCALE results for the Height-Height experiment
are shown in Tab. C.2 and Fig. C.4. The dataset size for skill learning was 569
samples, from an original size of 581. The remaining 12 samples consisted of CREST
results that occurred rarely (2.07%), and thus they were not used for skill learning.
Additionally, Fig. C.5 visualizes the policy parameters of the dataset. Two primary
behaviors were learned: free motion (Kfree), and obstructed motion (Kobstr). These
behaviors emerge because of the causal relationships between context variables.

When the obstructing block is shorter than the target block (i.e., ht > ho), then
the obstructing block height can safely be ignored in the robot action (thus, ho ⊈ A
for Kfree). This is reflected by the values of θ∆zu and θ∆zd

in Fig. C.5. In the region
corresponding to Kfree, θ∆zu varies linearly with respect to the target block height,
but not with the obstructing block height. Thus, θ∆zd

is generally 0. The result is
that the robot tends to lift the block to a value that depends on the target block
height, and no set-down motion (θ∆zd

) is needed.
However, when the obstructing block is taller than the target block (i.e., ht < ho),

the obstructing block’s geometry interferes with the robot’s motion, and the robot
must take this into account when taking action. Specifically, the robot must first
lift the source block over the obstructing block. After it moves laterally, the robot
must descend to set the source block down; dropping the block would typically lead
to inadequate reward to solve the task. Because both the heights of these blocks
are needed to perform this action, {ht, ho} ⊆ A for Kobstr. In Fig. C.5, the effect
of ho appears in the θ∆zu parameter values, where the variation in the Kobstr region

173

App. C – Appendix for SCALE

Table C.2: Skills KHH that were discovered for the Height-Height experiment. A
and D are the variables used for the skill’s policy and DGR, respectively. Data is the
quantity of data used for each skill (from a batch dataset of 581 samples, 569 samples
were used to train skills). These samples are used to train a linear policy (Bayesian
ridge regression) using the features from variables in A. Task Solve % is the rate of
task solves over the entire context space using only that skill.

Skill A D Data Task Solve %
Kfree {ht} {ht, ho} 253 (43.55%) 55.63% (178)
Kobstr {ht, ho} {ht, ho} 316 (54.39%) 57.50% (184)

arises because of needing to lift above the obstructing block height, ho (and thus, this
parameter no longer depends on ht). However, for θ∆zd

, both ht and ho are needed,
as the distances the robot descends through θ∆zd

arises from the difference between
ht and ho. Thus, the gradient here shows components for both ht and ho.

These two skills encode the two distinct data generating processes within this
context space. These processes — the reason why the data are generated a certain
way — fundamentally depend on whether the obstructing block is shorter or taller
than the target block. Whether a condition holds for a given context requires the
value of both of the blocks heights, so both block heights are needed to define each
skill’s data generating region (i.e., {ht, ho} ⊆ D).

Note that neither skill can robustly solve the entire task space (55.63% for Kfree

and 57.50% for Kobstr). However, when using the entire library KHH = {Kfree,Kobstr}
(Tab. C.3), the success rate becomes 100.00%, with each skill being selected at ap-
proximately 50% chance (49.38% for Kfree, and 50.62% for Kobstr). This is expected
because the relationship ht > ho holds for half of the context space and Kfree should
be used, whereas ht < ho (Kobstr) holds for the other half.

Baseline comparisons. In addition to scale-lin, Tab. C.3 shows comparisons
against several baselines. The “monopolicy” baselines are monolithic policies (with-
out skills). The “-sk” and “-all” suffixes denote whether the monolithic policy uses
the same data as the SCALE library (“-sk”, 569 samples) or the entire batch dataset
(“-all”, 581 samples). Given the similar amount of data, it is unsurprising that
monopolicy-lin-sk and monopolicy-lin-all are essentially the same up to the stochas-
ticity of the simulator (±2%). Note that, unlike in Sec. 5.7.1 and Sec. 5.7.2, CREST
monopolicy baselines are not examined in this experiment; they are functionally
equivalent to the monopolicy approaches because the most common CREST result
is {ht, ho}, which is the same as the entire context space used for the monopolicy
baselines.

As shown in Tab. C.3, the skill library obtained by SCALE vastly outperforms

174

App. C – Appendix for SCALE

(a) (b)

(c) (d)

Figure C.4: SCALE results for the Height-Height experiment. Two skills were found:
Kfree (free block motion), stylized in blue with rectangular markers, and Kobstr (ob-
structed block motion), stylized in orange with diamond markers. (a) Learned data
generating regions. Each datapoint is a result from CREST. Datapoints that are
crossed out are considered outliers and not used for training the policy for that skill.
(b–c) Preconditions for Kfree and Kobstr, respectively. The black line is the decision
boundary for the prediction of whether the task would or would not be solved with
that skill. Note that each skill’s DGR generally falls within the positive precondition
boundary. Training and test data for learning the preconditions are indicated by circle
and thin diamond markers, respectively. Datapoints that result in a different predic-
tion than observed are crossed out. (d) Task evaluation when using the skill library
{Kfree,Kobstr} to solve the task. The marker and color of each datapoint indicate
which skill was selected for completing the task based on the skill preconditions (i.e.,
the skill with the highest probability of success). Note that the separation between
selecting Kfree and Kobstr is consistent with each skills’ underlying precondition and
DGR. Datapoints that were not solved by the chosen skill are crossed out.

175

App. C – Appendix for SCALE

(a) (b)

(c) (d)

Figure C.5: Policy parameters for the Height-Height experiment (shown as interpo-
lated across the 569 dataset samples to better visualize the gradients). The units
of the parameters are in meters. The parameters θ∆x (a) and θ∆y (b) are generally
constant as they are unaffected by the variation in context variables. The notable vari-
ations occur in θ∆zu (c) and θ∆zd

(d). Specifically, the relationship changes whether
the obstructing block is taller or shorter than the target block (above or below the
ht − ho = 0 line, respectively).

176

App. C – Appendix for SCALE

Table C.3: Task evaluation results for using the skill library KHH for the block
stacking task. Ctrl. is the approach control (skills or one monolithic policy). Fn. Cl. is
the approach’s function class. Linear approaches use Bayesian ridge regression. Task
Solve % is the rate of task solves over the entire context space using the approach.
Methods within ±2% (the stochasticity of the simulator) of the best approach are
bold. |A| is the quantity of input variables used for the approach’s policy. Data is the
amount of training data used for the approach. A ground truth policy is also shown,
using all context variables and additional domain knowledge.

Approach Ctrl. Fn. Cl. Task Solve % |A| Data
scale-lin (ours) 2 skills Linear 100.00% (320) 1/1 569
monopolicy-lin-sk 1 policy Linear 64.06% (205) 2 569
monopolicy-lin-all 1 policy Linear 62.19% (199) 2 581
ground-truth-policy 1 policy Nonlin. 100.00% (320) * –

the baselines, providing task evaluation performance similar to that of a ground truth
policy. This outcome is possible because SCALE learns underlying regions of similar
causal structure within the data, whereas monolithic policies ignore such structure.
As shown in Fig. C.5c–C.5d, this domain is nonlinear, but can be represented by two
smaller linear regions (ht > ho and ht < ho). Learning to regress to both regions with
a monolithic linear policy is not possible, but SCALE can solve this domain with
separate linear skills, one per region.

Summary. Our approach for SCALE — learning skills that encode distinct
causal processes — empowers the robot with a diversity of specialized behaviors to
use, depending on the context. Generalization of the context space can be achieved
then through the composition of these behaviors, rather than attempting to learn a
monolithic skill or policy that can capture the entire variation. In this example, two
skills each with a linear policy is sufficient for generalization with SCALE, whereas a
monolithic approach would require a nonlinear policy.

C.8 Additional Details for Block Stacking Exper-
iment

This appendix provides greater information for the block stacking experiment first
presented in Sec. 5.7.1.

Context. Note that the block vertical position zw
b ∈ Ψ is not part of the con-

text, as we only consider cases where the scene can be initialized into a steady state
condition. Thus, zw

b := 1
2hb + hπ.

Reward function. The reward function for the task is R = RB−αLL−αee−αdd,
where RB = 10 is a bonus term obtained when the block is successfully stacked, L is

177

App. C – Appendix for SCALE

Figure C.6: Skill selection for the scale-lin approach for the block stacking task. Skill
K1 is generally selected when h2 is short, whereas taller h2 values perform better with
K2 because h2 ⊆ A. Skill K3 is dominated by the other two skills and is not selected.
Datapoints that were not solved are crossed out.

the total end-effector path of the robot (αL = 1), e is the L2 norm error between the
source block at the time of release and the goal (αe = 1), and d is the distance the
source block travels between the point it was ungrasped to its final position (αd = 1).
The task is considered solved if the final reward Rf exceeds solved threshold RS = 5.

SCALE skill selection. In all SCALE approaches, the skills were complemen-
tary; using the entire skill library afforded greater coverage (greater task solve rate)
than any single skill alone. For scale-lin, the skill selection distribution was almost
even between K1 (43.28%) and K2 (56.72%), with K3 never being chosen. The skill K3
is dominated by the other two skills for this task, but K3 could nonetheless be useful
for a different downstream task. Empirically, it was observed that K1 was chosen for
shorter target block heights, whereas K2 was used elsewhere (see Fig. C.6). In the
nonlinear case, only K2 was selected.

Policy and training data ablations. We provide additional experiments to
investigate the effect of different policy functions and training data usage. The results
are shown in Tab. C.4, which expands Tab. 5.2. For the linear function class, we
conduct experiments with Bayesian ridge regression (B. ridge reg.) and ordinary least
squares linear regression (OLS lin. reg.). Both linear policy functions used an intercept
term and were trained using unnormalized data. For the nonlinear function class, we

178

App. C – Appendix for SCALE

conduct experiments with a multilayer perceptron (MLP, 16x16x16 architecture using
ReLU activations) and support vector regression with a radial basis function (RBF)
kernel (SVR (RBF)). The nonlinear policy functions were trained with normalized
data. Additionally, we present ablations in terms of training data usage. Methods
ending in “-all” use the entire batch dataset. For the full-dimensional monopolicy
approaches, the “-sk” ablation uses same training data as used by the SCALE skills
(340 samples). For the CREST baselines, the “-subs” ablation randomly downselects
the batch dataset to the same number of samples used by SCALE (340 samples).

In general, we see that SCALE generally outperforms the full-dimensional monop-
olicy methods and matches the performance of the CREST baselines in most (but not
all) cases. We see that increasing the amount of training data available for the base-
lines usually improves performance. For the linear function class, both Bayesian ridge
regression and ordinary least squares linear regression produced capable approaches.
For ordinary least squares linear regression, SCALE (scale-lin-ols) outperforms the
full-dimensional monopolicy on a sample-adjusted basis. For the nonlinear function
class, the performance of approaches was lower overall. The similarity in perfor-
mance of scale-nonlin to the full-data CREST baseline is strictly due to sample size;
on a sample-adjusted basis, scale-nonlin is slightly more performant. However, for
support vector regression with a RBF kernel, although SCALE (scale-nonlin-svr-rbf)
exceeds the performance of the full-dimensional monopolicy approaches, the CREST
approaches perform more strongly (although modestly overall). Thus, we see some
sensitivity for the nonlinear function class to the selection of policy function used for
this task.

C.9 Sim-to-Real Block Stacking Experiment
In this appendix, we demonstrate that the skills learned by SCALE are suitable for

sim-to-real transfer. As skills are constructed using only the relevant causal variables,
this is a form of structural sim-to-real transfer. For this experiment, we evaluate
the skill library Kblocks for a real block stacking domain with a Franka Emika Panda
robot manipulator (Fig. 5.2c). This experiment is generally similar to task evaluation
in simulation, except with a smaller subset of the context space. We assess the
SCALE approaches, scale-lin and scale-nonlin, against their monopolicy counterparts.
We only consider the “-all” monopolicy approaches, as they were generally better
performing.

C.9.1 Experimental Setup
For this experiment, a smaller subset of the context space is varied, as compared

to the variation across the entire context space as tested in Tab. 5.2. From a pool
of 20 blocks, 5 were randomly chosen to be used for each experimental trial. The 20

179

App. C – Appendix for SCALE

Ta
bl

e
C

.4
:

Ta
sk

ev
al

ua
tio

n
re

su
lts

fo
r

us
in

g
th

e
sk

ill
lib

ra
ry

K
bl

o
ck

s
fo

r
th

e
bl

oc
k

st
ac

ki
ng

ta
sk

fo
r

a
va

rie
ty

of
po

lic
y

fu
nc

tio
ns

an
d

tr
ai

ni
ng

da
ta

ab
la

tio
ns

.
T

hi
s

ta
bl

e
ex

pa
nd

s
up

on
Ta

b.
5.

2.
C

tr
l.

is
th

e
ap

pr
oa

ch
co

nt
ro

l(
sk

ill
s

or
on

e
m

on
ol

ith
ic

po
lic

y)
.

Fn
.C

l.
is

th
e

ap
pr

oa
ch

’s
fu

nc
tio

n
cl

as
s.

P.
Fn

.i
s

th
e

po
lic

y
fu

nc
tio

n.
Ta

sk
So

lv
e

%
is

th
e

ra
te

of
ta

sk
so

lv
es

ov
er

th
e

en
tir

e
co

nt
ex

t
sp

ac
e

us
in

g
th

e
ap

pr
oa

ch
.

M
et

ho
ds

w
ith

in
±

2%
(t

he
st

oc
ha

st
ic

ity
of

th
e

sim
ul

at
or

)
of

th
e

be
st

ap
pr

oa
ch

ar
e

bo
ld

.
|A
|i

s
th

e
qu

an
tit

y
of

in
pu

t
va

ria
bl

es
us

ed
fo

r
th

e
ap

pr
oa

ch
’s

po
lic

y.
D

at
a

is
th

e
am

ou
nt

of
tr

ai
ni

ng
da

ta
us

ed
fo

r
th

e
ap

pr
oa

ch
.

A
gr

ou
nd

tr
ut

h
po

lic
y

is
al

so
sh

ow
n,

us
in

g
al

l
co

nt
ex

tv
ar

ia
bl

es
an

d
ad

di
tio

na
ld

om
ai

n
kn

ow
le

dg
e.

T
he

ab
br

ev
ia

tio
n

“m
p”

st
an

ds
fo

rm
on

op
ol

ic
y.

A
pp

ro
ac

h
C

tr
l.

Fn
.C

l.
P.

Fn
.

Ta
sk

So
lv

e
%

|A
|

D
at

a
sc

al
e-

lin
(o

ur
s)

3
sk

ill
s

Li
ne

ar
B.

rid
ge

re
g.

90
.4

9%
(2

76
)

4/
5/

6
34

0
m

on
op

ol
ic

y-
lin

-s
k

1
po

lic
y

Li
ne

ar
B.

rid
ge

re
g.

80
.7

2%
(2

47
)

36
34

0
m

on
op

ol
ic

y-
lin

-a
ll

1
po

lic
y

Li
ne

ar
B.

rid
ge

re
g.

85
.9

5%
(2

63
)

36
58

5
cr

es
t-

m
on

op
ol

ic
y-

lin
-s

ub
s

1
po

lic
y

Li
ne

ar
B.

rid
ge

re
g.

89
.8

7%
(2

75
)

5
34

0
cr

es
t-

m
on

op
ol

ic
y-

lin
-a

ll
1

po
lic

y
Li

ne
ar

B.
rid

ge
re

g.
89

.8
7%

(2
75

)
5

58
5

sc
al

e-
lin

-o
ls

(o
ur

s)
3

sk
ill

s
Li

ne
ar

O
LS

lin
.r

eg
.

90
.8

5%
(2

78
)

4/
5/

6
34

0
m

on
op

ol
ic

y-
lin

-o
ls-

sk
1

po
lic

y
Li

ne
ar

O
LS

lin
.r

eg
.

83
.3

3%
(2

55
)

36
34

0
m

on
op

ol
ic

y-
lin

-o
ls-

al
l

1
po

lic
y

Li
ne

ar
O

LS
lin

.r
eg

.
90

.1
6%

(2
75

)
36

58
5

cr
es

t-
m

on
op

ol
ic

y-
lin

-o
ls-

su
bs

1
po

lic
y

Li
ne

ar
O

LS
lin

.r
eg

.
90

.5
2%

(2
77

)
5

34
0

cr
es

t-
m

on
op

ol
ic

y-
lin

-o
ls-

al
l

1
po

lic
y

Li
ne

ar
O

LS
lin

.r
eg

.
90

.2
0%

(2
76

)
5

58
5

sc
al

e-
no

nl
in

(o
ur

s)
3

sk
ill

s
N

on
lin

.
M

LP
63

.4
0%

(1
94

)
4/

5/
6

34
0

m
on

op
ol

ic
y-

no
nl

in
-s

k
1

po
lic

y
N

on
lin

.
M

LP
1.

31
%

(4
)

36
34

0
m

on
op

ol
ic

y-
no

nl
in

-a
ll

1
po

lic
y

N
on

lin
.

M
LP

10
.1

3%
(3

1)
36

58
5

cr
es

t-
m

on
op

ol
ic

y-
no

nl
in

-s
ub

s
1

po
lic

y
N

on
lin

.
M

LP
58

.1
7%

(1
78

)
5

34
0

cr
es

t-
m

on
op

ol
ic

y-
no

nl
in

-a
ll

1
po

lic
y

N
on

lin
.

M
LP

60
.7

8%
(1

86
)

5
58

5
sc

al
e-

no
nl

in
-s

vr
-r

bf
(o

ur
s)

3
sk

ill
s

N
on

lin
.

SV
R

(R
BF

)
19

.6
1%

(6
0)

4/
5/

6
34

0
m

on
op

ol
ic

y-
no

nl
in

-s
vr

-r
bf

-s
k

1
po

lic
y

N
on

lin
.

SV
R

(R
BF

)
1.

63
%

(5
)

36
34

0
m

on
op

ol
ic

y-
no

nl
in

-s
vr

-r
bf

-a
ll

1
po

lic
y

N
on

lin
.

SV
R

(R
BF

)
7.

19
%

(2
2)

36
58

5
cr

es
t-

m
p-

no
nl

in
-s

vr
-r

bf
-s

ub
s

1
po

lic
y

N
on

lin
.

SV
R

(R
BF

)
41

.6
4%

(1
27

)
5

34
0

cr
es

t-
m

p-
no

nl
in

-s
vr

-r
bf

-a
ll

1
po

lic
y

N
on

lin
.

SV
R

(R
BF

)
56

.8
6%

(1
74

)
5

58
5

gr
ou

nd
-t

ru
th

-p
ol

ic
y

1
po

lic
y

N
on

lin
.

–
95

.7
5%

(2
93

)
*

–

180

App. C – Appendix for SCALE

blocks consisted of variations of 10 different colors and 2 different heights (5.7 cm or
7.6 cm). The length and width of the blocks were 4.2 cm. The 5 randomly chosen
blocks were placed into the Panda robot workspace and randomly shuffled, producing
variation in block x-position, y-position, and orientation. The table height hπ was
determined from manual measurement and was not varied for this experiment.

Perception. An Intel RealSense camera mounted to the robot wrist provided
RGB-D perception of the x-position, y-position, and orientation of the blocks in the
workspace. A depth observation was collected by commanding the robot above the
workspace. This point cloud was then processed to yield five clusters via hidden point
removal [327], RANSAC-based table plane fitting, and density-based clustering using
DBSCAN [328]. Averaging the colors within each cluster yielded the block color.
A least-squares optimization procedure fit a cuboid of known length and width to
each cluster, yielding the position and orientation of the blocks. Block height was
provided by manual input because of inaccuracies with estimation from depth alone.
The camera extrinsics were obtained via computer-aided design models of the Panda
robot and wrist mount, which were confirmed via manual measurement. The camera
intrinsics were used as directly reported by the camera.

Control. The FrankaPy library [329] is used to provide impedance-based control
of the Panda robot.

C.9.2 Experimental Results
Table C.5 presents the results. For each function class, the skill library learned

by SCALE outperforms the full-dimensional monopolicy baseline and is generally
comparable to or slightly outcompetes the CREST monopolicy baseline. The ground
truth policy matched the linear SCALE approach and is only slightly better than the
nonlinear SCALE approach. Compared to the task solve rate in simulation (Tab. 5.2),
scale-lin performed consistently, and scale-nonlin had slightly better performance.
All baseline approaches generally matched their evaluation in simulation, except for
monopolicy-lin-all, which had a marked degradation. This may arise from domain
differences between simulation and reality. Full-dimensional approaches are more
susceptible to domain shifts due to their reliance on the entire context space (all 36
variables), whereas SCALE approaches are compressed, using only a minimal subset.
Error was only loosely correlated with task solve rate, and likely explains the poor
performance of monopolicy-nonlin-all. Even though their errors were similar, it was
observed that monopolicy-lin-all tended to underpredict the height needed to clear
the target block as compared to scale-lin. This caused the target block to be pushed
away from where it should have been for the goal position, leading to block stacking
failures.

For both scale-lin and scale-nonlin, skill K2 was always chosen, as its precondition
was on average greater than that of the other skills. Specifically, for scale-lin, the
average preconditions were 58.88% for K1, 75.77% for K2, and 36.99% for K3. As the

181

App. C – Appendix for SCALE

Table C.5: Sim-to-real evaluation results for using the skill library Kblocks for a real
block stacking domain. Table columns are as described in Tab. 5.2. Task Solve % is
the rate of successful block stacks. Error is the mean error (±1 standard deviation) in
meters between the block position when the block is ungrasped and the goal position
determined at the beginning of the trial.

Approach Ctrl. Fn. Cl. Task Solve % Error |A|
scale-lin (ours) 3 skills Linear 90.00% (9) 0.010 ± 0.003 4/5/6
monopolicy-lin-all 1 policy Linear 50.00% (5) 0.008 ± 0.003 36
crest-monopolicy-lin-all 1 policy Linear 90.00% (9) 0.004 ± 0.001 5
scale-nonlin (ours) 3 skills N.L. 80.00% (8) 0.007 ± 0.002 4/5/6
monopolicy-nonlin-all 1 policy N.L. 10.00% (1) 0.093 ± 0.040 36
crest-monopolicy-nonlin-all 1 policy N.L. 70.00% (7) 0.013 ± 0.012 5
ground-truth-policy 1 policy N.L. 90.00% (9) 0.002 ± 0.003 *

block heights used were only 5.7 cm and 7.6 cm, it is reasonable to expect that skill
K1 would have been chosen more for shorter target block heights (per Fig. C.6). For
scale-nonlin, the average preconditions were K1: 20.17%, K2: 51.84%, K3: 1.21%.

C.10 Skill Library Use in a Downstream Task:
Stacking a Block Tower

To demonstrate the utility of re-using skills learned by SCALE, a follow-up experi-
ment is conducted wherein the skill library Kblocks is used for a task in which it was not
specifically trained: stacking a block tower (Fig. C.7). This long-horizon task can be
decomposed into a number of sequential actions that must be performed correctly, so
an approach that can capture the essence of a large problem and re-use smaller, mod-
ular components should perform best. Moreover, we do not perform any additional
training or fine-tuning; we intentionally use the skills off-training data to test their
generalization capability. This is a challenging task: in addition to the long-horizon
precision involved, the skills are being evaluated increasingly out-of-distribution at
each step, as the effective block heights increase beyond what is seen in training.

Experimental setup. For this experiment, we assume that the robot has access
to a planner and additional domain knowledge as a part of this downstream task.
We assume that the robot understands that at any step, the target block should be
adjusted in the following manner. First, the target block’s x- and y-position should be
substituted with the bottom-most block’s x- and y-position. Then, the target block’s
height should be substituted with the sum of all heights of the previous blocks, plus
a small offset (1.5 cm). Effectively, this can be seen as treating each new step as
stacking upon one, increasingly taller block. We leave the development of such a

182

App. C – Appendix for SCALE

(a) (b) (c) (d) (e)

Figure C.7: The block tower task. As previously, five blocks are initially available
to the robot. However, after each stack attempt, the task does not reset. Instead,
the block enumeration changes, so that the previous source block becomes the new
target block. This happens four times, after which the task resets. The robot must
complete each of the four individual steps successfully, as failure in any step renders
the entire block tower task a failure. (a) Initial task scene. (b – d) Successful block
stacks for intermediate attempts. (e) A successfully stacked block tower.

planner that can provide this additional information for future work, but it suffices
for this experiment that this information is available.

Block tower results. Table C.6 shows the results for stacking the block tower.
For this experiment, we use the same linear and nonlinear approaches and baselines
from Sec. 5.7.1, including the training data ablations. Included is a ground truth
policy with access to oracle information.

Overall, we see that the scale-lin approach does best for stacking a tower with five
blocks, although a notable gap exists between the ground truth policy. However, a
block tower success rate of 48.29% is not unreasonable, given that even the ground
truth policy fails almost 30% of the time. The linear approaches are all comparable
for the first stacking step, and for the second step with a NB = 3 tall tower, three
baseline methods slightly outperform scale-lin. However, for the last two steps, base-
line approaches become markedly less performant, leading to scale-lin emerging as the
best overall approach despite modest performance in an absolute sense. Each step
requires successively greater extrapolation out of the training data, so an approach
that can capture the smaller process well should perform best, assuming that this
process also holds outside the training data. For the case of the block tower, this is
generally true, so the skills learned by scale-lin are best suited for this downstream
task despite the challenge of generalization to yet-unseen data.

For the nonlinear function class, performance across all approaches suffers beyond
the first stacking step, where the CREST baselines outperform scale-nonlin. The
challenge of extrapolation for nonlinear functions is evident here; the best linear
approach for each step was better performing than any nonlinear approach (and

183

App. C – Appendix for SCALE

markedly so for taller towers). Thus, out-of-distribution generalization is not observed
for any nonlinear approach, whereas scale-lin exhibits modest performance in this
area.

For SCALE approaches, the skill selection rate is intriguing. The skill K1 does
not contain the target block height, which is likely why it was only selected during
the first block stack attempts. However, K2 continues to demonstrate its robustness,
as it was used for all remaining block stack attempts in the linear case and for all
attempts in the nonlinear case. Its inclusion of target block height in AK2 is in fact
the reason this skill can extrapolate to taller towers. Like K2, K3 also contains the
block height, but this skill was generally dominated, and thus it is not surprising it
was not selected.

In summary, in addition to the benefits of SCALE described previously for task
learning, the capability for SCALE to learn smaller, modular skills is evident in this
experiment. Although out-of-distribution generalization was not observed in the non-
linear function class, we see that in principle SCALE does offer these benefits under
certain conditions, such as in the linear case. We suggest that this aspect of causal
learning is often overlooked for experiments that only concern single-task learning.
However, the benefits of modularity become advantageous for re-using behaviors for
downstream tasks at a later time in the robot’s operational lifetime.

C.11 Additional Details for Sensorless Peg-in-Hole
Insertion Experiment

This appendix serves to provide greater detail for the peg insertion experiment
that was described in Sec. 5.7.2.

Reward function. Our reward function consists of two terms: 1) a penalty
based on the Euclidean distance of the peg from the hole, and 2) a bonus of 10
for successful insertion. We also add a regularization term based on the norm of the
policy parameters. The task is considered solved if the final reward Rf exceeds solved
threshold RS = 8.

SCALE skill K1. Unlike the other skills in Kpeg that were discovered by SCALE,
skill K1 has an empty set of relevant variables. This is surprising as it is difficult to
solve this task reliably without taking the help of one of the walls, in which case the
wall should show up as a relevant variable. However, we observed that K1 actually
localizes against 2 walls instead of just 1. Hence, when SCALE intervenes on any one
of the two walls, the skill is still able to complete the assembly by taking advantage of
the other wall. In other words, our assumption that the context space is disentangled
does not hold in this case which leads to this erroneous relevant variable set. However,
the precondition would limit where this skill would be applied, as skills K2−5 are
generally more performant.

184

App. C – Appendix for SCALE

Ta
bl

e
C

.6
:

R
es

ul
ts

fo
r

re
-u

sin
g

le
ar

ne
d

be
ha

vi
or

s
in

a
re

pr
es

en
ta

tiv
e

do
w

ns
tr

ea
m

ta
sk

:
st

ac
ki

ng
a

bl
oc

k
to

we
r.

T
he

ta
sk

so
lv

e
pe

rc
en

ta
ge

is
sh

ow
n

fo
rs

ta
ck

in
g

a
to

we
ro

fa
tl

ea
st
N

B
bl

oc
ks

ta
ll.

T
he

se
qu

en
ce

is
ex

ec
ut

ed
in

on
e

at
te

m
pt

,s
o

a
fu

lly
st

ac
ke

d
to

we
r(
N

B
=

5)
re

qu
ire

s4
su

cc
es

sfu
l

bl
oc

k
st

ac
ki

ng
at

te
m

pt
s.

M
et

ho
ds

w
ith

in
±

2%
(t

he
st

oc
ha

st
ic

ity
of

th
e

sim
ul

at
or

)
of

th
e

be
st

ap
pr

oa
ch

at
ea

ch
st

ep
ar

e
bo

ld
.F

or
SC

A
LE

ap
pr

oa
ch

es
,t

he
sk

ill
se

le
ct

io
n

ra
te

at
ea

ch
st

ep
(n

ot
cu

m
ul

at
iv

e)
is

al
so

sh
ow

n.
T

he
ab

br
ev

ia
tio

n
“m

p”
st

an
ds

fo
r

m
on

op
ol

ic
y.

A
pp

ro
ac

h
N

B
=

2
N

B
=

3
N

B
=

4
N

B
=

5
sc

al
e-

lin
(o

ur
s)

92
.2

0%
(2

72
)

80
.7

3%
(2

22
)

65
.2

3%
(1

67
)

48
.2

9%
(1

13
)

K
1
K

2
K

3

15
.5

9%
(4

6)
84

.0
7%

(2
48

)
0.

34
%

(1
)

0.
00

%
(0

)
10

0.
00

%
(2

75
)

0.
00

%
(0

)

0.
00

%
(0

)
10

0.
00

%
(2

56
)

0.
00

%
(0

)

0.
00

%
(0

)
10

0.
00

%
(2

34
)

0.
00

%
(0

)
m

on
op

ol
ic

y-
lin

-s
k

93
.2

2%
(2

75
)

87
.2

3%
(2

39
)

55
.0

8%
(1

41
)

1.
27

%
(3

)
m

on
op

ol
ic

y-
lin

-a
ll

93
.5

6%
(2

76
)

76
.3

6%
(2

10
)

2.
33

%
(6

)
0.

00
%

(0
)

cr
es

t-
m

p-
lin

-s
ub

s
93

.2
0%

(2
74

)
85

.4
0%

(2
34

)
5.

84
%

(1
5)

0.
00

%
(0

)
cr

es
t-

m
p-

lin
-a

ll
93

.9
2%

(2
78

)
85

.5
1%

(2
36

)
5.

84
%

(1
5)

0.
00

%
(0

)
sc

al
e-

no
nl

in
(o

ur
s)

67
.4

6%
(1

99
)

2.
55

%
(7

)
0.

00
%

(0
)

0.
00

%
(0

)
K

1
K

2
K

3

0.
00

%
(0

)
10

0.
00

%
(2

95
)

0.
00

%
(0

)

0.
00

%
(0

)
10

0.
00

%
(2

75
)

0.
00

%
(0

)

0.
00

%
(0

)
10

0.
00

%
(2

56
)

0.
00

%
(0

)

0.
00

%
(0

)
10

0.
00

%
(2

35
)

0.
00

%
(0

)
m

on
op

ol
ic

y-
no

nl
in

-s
k

2.
72

%
(8

)
0.

00
%

(0
)

0.
00

%
(0

)
0.

00
%

(0
)

m
on

op
ol

ic
y-

no
nl

in
-a

ll
11

.8
6%

(3
5)

0.
00

%
(0

)
0.

00
%

(0
)

0.
00

%
(0

)
cr

es
t-

m
p-

no
nl

in
-s

ub
s

84
.7

5%
(2

50
)

27
.3

7%
(7

5)
0.

78
%

(2
)

0.
00

%
(0

)
cr

es
t-

m
p-

no
nl

in
-a

ll
75

.5
9%

(2
23

)
11

.3
1%

(3
1)

0.
00

%
(0

)
0.

00
%

(0
)

gr
ou

nd
-t

ru
th

-p
ol

ic
y

96
.2

5%
(2

82
)

90
.4

8%
(2

47
)

83
.1

4%
(2

12
)

69
.9

6%
(1

63
)

185

App. C – Appendix for SCALE

SCALE skill selection. For scale-lin, skills K2 (48.44%) and K5 (51.56%) were
chosen nearly equally. Conversely, the skill selection was more distributed for the non-
linear case: K2: 46.48%, K3: 35.16%, K4: 3.91%, K5: 14.45%. For both approaches,
K1 was not chosen as it was dominated by the other skills.

Policy and training data ablations. As with the block stacking domain,
we conducted experiments with several policy functions and training data ablations.
Table C.7 details the experimental results, which expand upon Tab. 5.4. In the lin-
ear function class, two policy functions were investigated: Bayesian ridge regression
(B. ridge reg.) and ordinary least squares linear regression (OLS lin. reg.). An inter-
cept term was used for both approaches, and the training data were unnormalized.
In the nonlinear function class, experiments were conducted with a multilayer per-
ceptron (MLP, 16x16x16 architecture using ReLU activations) and support vector
regression with a radial basis function (RBF) kernel (SVR (RBF)). For the nonlinear
policy functions, the training data were normalized. Methods with the “-all” suffix use
the entire batch dataset. For the full-dimensional monopolicy approaches, the “-sk”
suffix indicates that the same training data as SCALE was used (168 samples). The
“-subs” suffix for the CREST baselines denotes that the batch dataset was randomly
downselected to the same number of samples used by SCALE (168 samples).

Overall, we observe that the SCALE skills are highly performant across function
class and policy function type. Moreover, SCALE significantly outperforms both the
full-dimensional monopolicy approaches and the CREST baselines. Indeed, SCALE
exceeds the performance of the baselines by around 30% for each policy function
type. The success of SCALE is attributed to capturing the four modes in the data —
localizing against each of the four walls — found by exploiting the underlying causal
structure. The baselines, which are agnostic to such structure, do not leverage this
property and are therefore limited. Unlike in the block stacking domain, we see that
the effect of training data size does not necessarily yield an increase in performance
for the baseline approaches.

C.12 Sensorless Peg-in-Hole Insertion:
Domain Shift Experiment

We evaluate the generalization capability of SCALE by evaluating it under a
domain shift. All tasks are generated by uniformly sampling the relative position of
the center of each wall with respect to the hole from a given range. The ranges used
to generate the training and test tasks are specified in Tab. C.8. We transfer all the
policies zero-shot to the test distribution. However, we do re-learn the preconditions
of the scale-lin policies for the test distribution.

The evaluation results are summarized in Tab. C.9. All approaches witness a
sharp drop in performance. This is expected as (a) the test tasks are not guaranteed

186

App. C – Appendix for SCALE

Ta
bl

e
C

.7
:T

as
k

ev
al

ua
tio

n
re

su
lts

fo
ru

sin
g

th
e

sk
ill

lib
ra

ry
K

p
eg

fo
rp

eg
in

se
rt

io
n

fo
ra

va
rie

ty
of

po
lic

y
fu

nc
tio

ns
an

d
tr

ai
ni

ng
da

ta
ab

la
tio

ns
.

T
hi

s
ta

bl
e

ex
pa

nd
s

up
on

Ta
b.

5.
4.

C
tr

l.
is

th
e

ap
pr

oa
ch

co
nt

ro
l

(s
ki

lls
or

on
e

m
on

ol
ith

ic
po

lic
y)

.
Fn

.C
l.

is
th

e
ap

pr
oa

ch
’s

fu
nc

tio
n

cl
as

s.
P.

Fn
.i

s
th

e
po

lic
y

fu
nc

tio
n.

Ta
sk

So
lv

e
%

is
th

e
ra

te
of

ta
sk

so
lv

es
ov

er
th

e
en

tir
e

co
nt

ex
ts

pa
ce

us
in

g
th

e
ap

pr
oa

ch
.M

et
ho

ds
w

ith
in

±
2%

(t
he

st
oc

ha
st

ic
ity

of
th

e
sim

ul
at

or
)

of
th

e
be

st
ap

pr
oa

ch
ar

e
bo

ld
.
|A
|i

s
th

e
qu

an
tit

y
of

in
pu

t
va

ria
bl

es
us

ed
fo

r
th

e
ap

pr
oa

ch
’s

po
lic

y.
D

at
a

is
th

e
am

ou
nt

of
tr

ai
ni

ng
da

ta
us

ed
fo

r
th

e
ap

pr
oa

ch
.

T
he

ab
br

ev
ia

tio
n

“m
p”

st
an

ds
fo

r
m

on
op

ol
ic

y.

A
pp

ro
ac

h
C

tr
l.

Fn
.C

l.
P.

Fn
.

Ta
sk

So
lv

e
%

|A
|

D
at

a
sc

al
e-

lin
(o

ur
s)

5
sk

ill
s

Li
ne

ar
B.

rid
ge

re
g.

96
.4

8%
(2

47
)

0/
1/

1/
1/

1
16

8
m

on
op

ol
ic

y-
lin

-s
k

1
po

lic
y

Li
ne

ar
B.

rid
ge

re
g.

67
.1

9%
(1

72
)

8
16

8
m

on
op

ol
ic

y-
lin

-a
ll

1
po

lic
y

Li
ne

ar
B.

rid
ge

re
g.

62
.5

0%
(1

60
)

8
21

0
cr

es
t-

m
on

op
ol

ic
y-

lin
-s

ub
s

1
po

lic
y

Li
ne

ar
B.

rid
ge

re
g.

66
.8

0%
(1

71
)

1
16

8
cr

es
t-

m
on

op
ol

ic
y-

lin
-a

ll
1

po
lic

y
Li

ne
ar

B.
rid

ge
re

g.
62

.8
9%

(1
61

)
1

21
0

sc
al

e-
lin

-o
ls

(o
ur

s)
5

sk
ill

s
Li

ne
ar

O
LS

lin
.r

eg
.

96
.8

8%
(2

48
)

0/
1/

1/
1/

1
16

8
m

on
op

ol
ic

y-
lin

-o
ls-

sk
1

po
lic

y
Li

ne
ar

O
LS

lin
.r

eg
.

50
.7

8%
(1

30
)

8
16

8
m

on
op

ol
ic

y-
lin

-o
ls-

al
l

1
po

lic
y

Li
ne

ar
O

LS
lin

.r
eg

.
67

.1
9%

(1
72

)
8

21
0

cr
es

t-
m

on
op

ol
ic

y-
lin

-o
ls-

su
bs

1
po

lic
y

Li
ne

ar
O

LS
lin

.r
eg

.
63

.6
7%

(1
63

)
1

16
8

cr
es

t-
m

on
op

ol
ic

y-
lin

-o
ls-

al
l

1
po

lic
y

Li
ne

ar
O

LS
lin

.r
eg

.
60

.5
5%

(1
55

)
1

21
0

sc
al

e-
no

nl
in

(o
ur

s)
5

sk
ill

s
N

on
lin

.
M

LP
88

.6
7%

(2
27

)
0/

1/
1/

1/
1

16
8

m
on

op
ol

ic
y-

no
nl

in
-s

k
1

po
lic

y
N

on
lin

.
M

LP
18

.3
6%

(4
7)

8
16

8
m

on
op

ol
ic

y-
no

nl
in

-a
ll

1
po

lic
y

N
on

lin
.

M
LP

12
.8

9%
(3

3)
8

21
0

cr
es

t-
m

on
op

ol
ic

y-
no

nl
in

-s
ub

s
1

po
lic

y
N

on
lin

.
M

LP
56

.6
4%

(1
45

)
1

16
8

cr
es

t-
m

on
op

ol
ic

y-
no

nl
in

-a
ll

1
po

lic
y

N
on

lin
.

M
LP

55
.4

7%
(1

42
)

1
21

0
sc

al
e-

no
nl

in
-s

vr
-r

bf
(o

ur
s)

5
sk

ill
s

N
on

lin
.

SV
R

(R
BF

)
94

.5
3%

(2
42

)
0/

1/
1/

1/
1

16
8

m
on

op
ol

ic
y-

no
nl

in
-s

vr
-r

bf
-s

k
1

po
lic

y
N

on
lin

.
SV

R
(R

BF
)

53
.5

2%
(1

37
)

8
16

8
m

on
op

ol
ic

y-
no

nl
in

-s
vr

-r
bf

-a
ll

1
po

lic
y

N
on

lin
.

SV
R

(R
BF

)
58

.2
0%

(1
49

)
8

21
0

cr
es

t-
m

p-
no

nl
in

-s
vr

-r
bf

-s
ub

s
1

po
lic

y
N

on
lin

.
SV

R
(R

BF
)

57
.8

1%
(1

48
)

1
16

8
cr

es
t-

m
p-

no
nl

in
-s

vr
-r

bf
-a

ll
1

po
lic

y
N

on
lin

.
SV

R
(R

BF
)

60
.9

4%
(1

56
)

1
21

0

187

App. C – Appendix for SCALE

Table C.8: Training and test distributions of the domain shift experiment in the
sensorless peg-in-hole domain. The relative position of the center of each of the 4
walls is uniformly sampled from the given (min,max) range. The ranges used to
generate test tasks are more than double the ranges used to generate training tasks
in the domain shift experiment. All values are in meters.

Train Test
x-min x-max y-min y-max x-min x-max y-min y-max

Wall 1 0.01 0.05 -0.02 0.02 -0.04 0.10 -0.07 0.07
Wall 2 -0.02 0.02 -0.05 -0.01 -0.07 0.07 -0.10 0.07
Wall 3 -0.02 0.02 0.01 0.05 -0.07 0.07 -0.04 0.10
Wall 4 -0.05 -0.01 -0.02 0.02 -0.10 -0.04 -0.07 0.07

Table C.9: Task evaluation results under domain shift for sensorless peg-in-hole in-
sertion. We evaluate only linear policies as nonlinear policies perform worse in this
domain. Table columns are as described in Tab. 5.4.

Approach Ctrl. Fn. Cl. Task Solve % |A|
scale-lin (ours) 5 skills Linear 64.84% 0/1/1/1/1
monopolicy-lin-all 1 policy Linear 44.92% 8
crest-monopolicy-lin-all 1 policy Linear 39.83% 1

to be feasible and (b) the ranges used to generate the test task are more than double
those used in training. However, our multi-skill approach scale-lin performs much
better than the baselines. This highlights a key benefit of learning multiple skills. A
skill may perform well on the training distribution, but it can be rendered invalid due
to an unforeseen domain shift. Having a repertoire of different skills allows the robot
to still complete the task by switching to a different skill. This makes our multi-skill
approach more robust than single-skill approaches.

C.13 A Primer on Causality
For readers who are unfamiliar with causality, this appendix serves as a gentle

“on-ramp” for understanding SCALE.
What’s a data generating process? A data generating process (DGP) is a dynami-

cal process that generates data in a physical system. The process is usually described
by variables that characterize the system. Consider the following examples: turn-
ing a light switch on a lamp to illuminate the lightbulb; inserting a car key into
an ignition and turning the starter to start a vehicle; rain showers causing rainfall.
These examples can be considered data generating processes if system variables were

188

App. C – Appendix for SCALE

instrumented, such as instrumenting a rain gauge to measure rainfall.
What’s a Structural Causal Model? A Structural Causal Model (SCM) [16, 17]

is a representation of a data generating process. Usually, the SCM consists of vari-
ables of a system, a graph (which is usually directed with no cycles) that describes
how the variables depend on each other, and functions that describe how each vari-
able is characterized based on that variable’s causes. These functions are also called
structural equations or functional equations, and each function will have its own noise
variable. Noise variables (also referred to as exogenous variables) are generally jointly
independent.

What’s an example of an SCM, and how can it be used? Consider the following
example of SCM C1:

• X := NX

• Y := 2X +NY

Here, X and Y are variables of our SCM, and NX and NY are the noise terms. This
SCM can also be characterized by its underlying graph, where X → Y because X is a
cause of Y . For this example, consider that NX and NY are (independently) sampled
from the uniform distribution from -10 to +10. Then, if NX = 2 and NY = −3, then
by the mechanics of the SCM, X = 2 and therefore Y = 1.

We now introduce the concept of an intervention, where we set the value of a
variable to be a particular value (usually regardless of its causes or noise variables),
holding all other variables equal. We can formalize this using the do operator [16].
Thus, an intervention do(Y = 5) means that no matter what value NX , X, or NY

take, Y = 5. In the previous example, under this intervention, if NX = 2, then X = 2,
but Y = 5 (and not 1). This type of intervention is called “hard” since it induces a
structural change; other intervention types are possible, such as “soft” interventions
where the functional equation of a variable changes (but not its parents).

What’s the difference between a DGP and an SCM? In the case where the SCM
captures the DGP exactly, there is no difference. However, often times we wish
to learn the data generating process, and the SCM encodes the knowledge of the
DGP that is currently known. In these cases, the SCM is an approximation of the
underlying DGP in the physical world.

In SCALE, what’s the Data Generating Region and how does it differ from a
DGP? The Data Generating Region (DGR) introduced by SCALE provides locality
to the data generating process. Consider a physical system where SCM C1 co-exists
with the following new SCM, C2:

• X := 3NX

• Z := −X +NZ

However, it is also noticed that according to a fourth variable A, when A < 0, C1
applies, whereas when A > 0, C2 applies. The condition where these causal models

189

App. C – Appendix for SCALE

apply is equivalent to how the DGR specifies where particular skills are defined in
the context space. Note that X, Y , and Z are not needed to define where the models
apply (only A). A learning algorithm could use all four variables to specify where the
models apply, but a minimal, compressed representation only requires one (A).

Moreover, Z and A are not needed to specify the mechanics of C1 (similarly, Y
and A for C2). This is similar to how SCALE learns which variables of the context
space to use for modeling the skill policy. Even though a learner could potentially
use all four variables it knows about, irrelevant variables are not needed in a minimal
representation.

I’m interested in learning more about causality. Where should I start? There are
many important and useful textbooks in this area. We use Pearlian causality and
SCMs as the basis of our formalism, so we recommend the reader reviewing Causality
(Pearl 2009, 2nd edition) [16], in particular, chapters 1–3. Then, we recommend
the reader reviewing Elements of Causal Inference (Peters, Janzing, and Schölkopf,
2017) [17], in particular, chapters 1, 3, and 6.

190

D Appendix for Learning
By Doing

D.1 More Details on Track CHEM
The following provides additional details on Track CHEM of the competition.

Background on chemical reactions Parts of the following text are taken from
Peters et al. [193]. A general reaction (as given in Wilkinson [335], for example) takes
the form

m1R1 +m2R2 + . . .+mrRr → n1P1 + n2P2 + . . .+ npPp,

where r is the number of reactants and p the number of products. Both Ri and Pj

can be thought of as molecules and are often called species. The coefficients mi and
nj are positive integers, called stoichiometries.

In mass-action kinetics [201], one usually considers the concentration [X] of a
species X, the square parentheses indicating that one refers to the concentration
rather than to the integer amount of a given species. The concentration [X] changes
over time (but to simplify notation, we sometimes omit the notational dependence on
t). The law of mass-action allows one to convert the above equations into a system of
ODEs over the concentrations of species. Formally, it states: The instantaneous rate
of each reaction is proportional to the product of each of its reactants raised to the
power of its stoichiometry. To better understand how this can be applied to transform
reaction equations into a system of ODEs, it may help to consider an example. The
Lotka-Volterra predator-pray model [336] can be expressed in terms of reactions of
the form

A
k1−→ 2A (D.1)

A+B
k2−→ 2B (D.2)

B
k3−→ ∅, (D.3)

where A and B describe abundance of prey and predators, respectively. In this model,
the prey reproduce by themselves (D.1), but the predators require abundance of prey

191

App. D – Appendix for Learning By Doing

for reproduction, see (D.2). After some time, also the predators die (D.3). The
coefficients k1, k2, and k3 indicate the rates, with which the reactions happen (the
larger the rates, the faster the reactions). Applying the law of mass-action yields the
following system of ordinary differential equations (ODEs)

d
dt

[A] = k1[A]− k2[A][B] (D.4)
d
dt

[B] = k2[A][B]− k3[B]. (D.5)

Chemical reactions of the data-generating process The data-generating pro-
cess is illustrated in Figure 6.1. The corresponding chemical reactions are given by

Z1 + Z2
k1−→ Z9 Z10

k5−→ Y Z13
k9−→ Z1 + Z2

Z3 + Z4
k2−→ Z10 Z11

k6−→ Y Z14
k10−→ Z5 + Z6.

Z5 + Z6
k3−→ Z11 Z9 + Y

k7−→ Z13

Z7 + Z8
k4−→ Z12 Z12 + Y

k8−→ Z14

This system can be converted using the law of mass action resulting in the following
ODE system.
d
dt [Z1] = −k1[Z1][Z2] + k9[Z13]
d
dt [Z2] = −k1[Z1][Z2] + k9[Z13]
d
dt [Z3] = −k2[Z3][Z4]
d
dt [Z4] = −k2[Z3][Z4]
d
dt [Z5] = −k3[Z5][Z6] + k10[Z14]
d
dt [Z6] = −k3[Z5][Z6] + k10[Z14]
d
dt [Z7] = −k4[Z7][Z8]
d
dt [Z8] = −k4[Z7][Z8]

d
dt [Z9] = k1[Z1][Z2]− k7[Z9][Y]
d
dt [Z10] = k2[Z3][Z4]− k5[Z10]
d
dt [Z11] = k3[Z5][Z6]− k6[Z11]
d
dt [Z12] = k4[Z7][Z8]− k8[Z12][Y]
d
dt [Z13] = k7[Z9][Y]− k9[Z13]
d
dt [Z14] = k8[Z12][Y]− k10[Z14]
d
dt [Y] = k5[Z10] + k6[Z11]− k7[Z9][Y]− k8[Z12][Y]

Evaluation For each of the systems, i = 1, . . . , 12, partipants were asked to provide
control input for 50 initial values. Participants’ control inputs were evaluated by
running the data-generating process for each of the provided controls to compute the
following loss for each system1

Ji := 1
50

50∑
k=1

√
1
40

∫ 80

40

(
Zi,k

15 (t)− yi,k
∗

)2
dt+ c ·

√
||ui,k||22

8

 , (D.6)

where c = 1
20 and ui,k ∈ Rp is the control input provided by the participant corre-

sponding to the kth initial condition in the ith system. The process Y i,k of course
1 The integrals are approximated numerically.

192

App. D – Appendix for Learning By Doing

depends on the provided input, ui,k, even though this is not made explicit in the
notation.

D.1.1 CHEM results
The following table summarizes the results from Track CHEM. The keywords

describing participants’ solutions were chosen by the organizers based on participants’
summaries of their solutions. Oracle corresponds to a solution using access to the true
data generating process. Oraclee corresponds to a solution generated with access to
the true data generating process, but using only the expensive controls (see Section
6.4). Zero corresponds to a solution choosing U ≡ 0 for every system and initial
condition.

Team name Score Place Keywords
Oracle 0.0872

Ajoo 0.0890 1st Sparse estimation of graph
Direct estimation of a function in F

Oraclee 0.1450
TeamQ 0.3385 2nd Neural network prediction of target

GuineaPig 0.3386 3rd Neural network prediction of target
Zero 0.9686

D.2 More Details on Track ROBO

Evaluation For each evaluated system (F i, θi, Ai), i ∈ {1, . . . , 24} and repetition
k ∈ {1, . . . , 10}, running the system using the participants’ controller and comparing
the realized end-effector trajectory against a target process zi,k

∗ : [0, 2] → R2 the
following loss is computed1

Ji,k := bi,k ·
∫ 2

0
||Zi,k(t)− zi,k

∗ (t)||22dt+ ci,k ·
∫ 2

0
U i,k(t)⊤U i,k(t)dt, (D.7)

where bi,k and ci,k are scaling constants which are selected such that Ji,k = 100 when
no controls are applied and Ji,k = 1 if an oracle LQR-controller is used, that is,
an LQR-controller using the true robot dynamics and interface function. If Ji,k is
smaller than 1, it is improving on the oracle LQR-controller; if it is larger than 100
the performance is worse than when doing nothing. We clip all scores at 100 before
averaging them. The scaling is meant to ensure that losses are comparable across
each repetition.

For the (preliminary) leaderboard, which was updated during the competition,
only 12 systems were evaluated, and the mean loss across those systems (and all
corresponding repetitions) was shown on the leaderboard. For the final ranking, the

193

App. D – Appendix for Learning By Doing

robot dynamics (F) specification (θ) interface (A)
great-devious-beetle

Rotational2

θgr-be Ade = 12×2
great-vivacious-beetle θgr-be Avi ∈ R2×2

great-mauve-beetle θgr-be Ama ∈ R2×3

great-wine-beetle θgr-be Awi ∈ R2×4

rebel-devious-beetle θre-be Ade = 12×2
rebel-vivacious-beetle θre-be Avi ∈ R2×2

rebel-mauve-beetle θre-be Ama ∈ R2×3

rebel-wine-beetle θre-be Awi ∈ R2×4

talented-ruddy-butterfly

Rotational3

θta-bu Aru = 13×3
talented-steel-butterfly θta-bu Ast ∈ R3×3

talented-zippy-butterfly θta-bu Azi ∈ R3×4

talented-antique-butterfly θta-bu Aan ∈ R3×6

thoughtful-ruddy-butterfly θth-bu Aru = 13×3
thoughtful-steel-butterfly θth-bu Ast ∈ R3×3

thoughtful-zippy-butterfly θth-bu Azi ∈ R3×4

thoughtful-antique-butterfly θth-bu Aan ∈ R3×6

great-piquant-bumblebee

Prismatic

θgr-bu Api = 12×2
great-bipedal-bumblebee θgr-bu Abi ∈ R2×2

great-impartial-bumblebee θgr-bu Aim ∈ R2×3

great-proficient-bumblebee θgr-bu Apr ∈ R2×4

lush-piquant-bumblebee θlu-bu Api = 12×2
lush-bipedal-bumblebee θlu-bu Abi ∈ R2×2

lush-impartial-bumblebee θlu-bu Aim ∈ R2×3

lush-proficient-bumblebee θlu-bu Apr ∈ R2×4

Table D.1: Overview of the 24 robot systems used in Track ROBO. Here, θ∗ refers to
the robot specification (link lengths and masses, moments of inertia, friction coeffi-
cients, and locations of link center of masses) and A∗ ∈ Rq×p parametrizes the linear
interface function; values are chosen at random, while the above table indicates which
properties where shared across which robot systems. We refer to Appendix D.2.1 for
details on the 2- and 3-link rotational robots’ dynamics and to Appendix D.2.2 for
details on the 2-link prismatic robots’ dynamics.

194

App. D – Appendix for Learning By Doing

Figure D.1: Diagram of a 3-link rotational robotic arm.

average loss across the 12 held-out systems (and all corresponding repetitions) was
used.

D.2.1 Rotational robots
We consider two types of rotational robotic manipulators: open chain planar

manipulators with three (cf. Figure D.1) and two revolute joints. Joints can be
controlled by applying a voltage signal to a DC motor located in the joint, which
creates a torque.

We begin with discussing the 3-link manipulator and then show the simplified
version for the 2-link variant. Let Z(t) = [θ1(t), θ2(t), θ3(t), ω1(t), ω2(t), ω3(t)]T ∈ R6

be the state of the robotic arm, consisting of joint angles (θ1, θ2, θ3) and corresponding
angular velocities (ω1, ω2, ω3). Let U(t) = [τ1(t), τ2(t), τ3(t)]T ∈ R3 be the input joint
torques (τ1, τ2, τ3).

The robotic arm is characterized by the following properties for the links, i ∈
{1, .., 3}:

• mi is the link mass,

• Ji is the link rotational moment of inertia,

• Li is the link length,

• ℓi is the location of the link center of mass, and

• ci is the joint rotational friction coefficient.

195

App. D – Appendix for Learning By Doing

The second-order dynamic system of the robotic arm is expressed through the
following set of first-order equations [337]:

d
dt [θ1] = ω1
d
dt [θ2] = ω2
d
dt [θ3] = ω3
d
dt [ω1] = α1
d
dt [ω2] = α2
d
dt [ω3] = α3

The joint acceleration terms α = [α1, α2, α3]T are determined via:

α = M−1 (τ − Cω −N) (D.8)

where the inertia matrix M , Coriolis matrix C, and external force vector N are:

M =

M11 M12 cos(θ2 − θ1) M13 cos(θ3 − θ1)

M12 cos(θ2 − θ1) M22 M23 cos(θ3 − θ2)
M13 cos(θ3 − θ1) M23 cos(θ3 − θ2) M33

 ,

C =

0 C12 sin(θ2 − θ1)ω2 C13 sin(θ3 − θ1)ω3

C21 sin(θ2 − θ1)ω1 0 C23 sin(θ3 − θ2)ω3

−C13 sin(θ3 − θ1)ω1 C32 sin(θ3 − θ2)ω2 0

 , and

N =

N1 sin(θ1) + c1ω1

N2 sin(θ2) + c2ω2

N3 sin(θ3) + c3ω3

196

App. D – Appendix for Learning By Doing

with coefficients

M11 = m1ℓ
2
1 + J1 + (m2 +m3)L2

1

M12 = (m2ℓ2 +m3L2)L1

M13 = m3ℓ3L1

M22 = m2ℓ
2
2 + J2 +m3L

2
2

M23 = m3ℓ3L2

M33 = m3ℓ
2
3 + J3

C12 = −(m2ℓ2 +m3L2)L1

C13 = −m3ℓ3L1

C21 = (m2ℓ2 +m3L2)L1

C23 = −m3ℓ3L2

C32 = m3ℓ3L2

N1 = −(m1ℓ1 + (m2 +m3)L1)g
N2 = −(m2ℓ2 +m3L2)g
N3 = −m3ℓ3g

and g is gravitational acceleration.
For the 2-link robot, we omit all terms that correspond to the third joint. That

is, the acceleration α = [α1, α2]T is still given by (D.8), but we now need to adapt M ,
C, and N . When only considering two joints, we have

M =
[

M11 M12 cos(θ2 − θ1)
M12 cos(θ2 − θ1) M22

]

C =
[

0 C12 sin(θ2 − θ1)ω2

C21 sin(θ2 − θ1)ω1 0

]

N =
[
N1 sin(θ1) + c1ω1

N2 sin(θ2) + c2ω2

]

with coefficients

M11 = m1ℓ
2
1 + J1 +m2L

2
1

M12 = m2ℓ2L1

M22 = m2ℓ
2
2 + J2

C12 = −m2ℓ
2
2L1

C21 = m2ℓ2L1

N1 = −(m1ℓ1 +m2L1)g
N2 = −m2ℓ2g.

197

App. D – Appendix for Learning By Doing

Figure D.2: Diagram of the 2-link prismatic robot arm.

Remark. Note that in the open source code, we define the joint angles of the 2-link
manipulator with respect to each other instead of with respect to the vertical axis
(Murray et al. [338]). Hence, the equations slightly differ from the ones presented
above. However, the dynamics are the same as described herein.

D.2.2 Prismatic robot
Besides the two versions of rotational robots, we also consider a 2-link prismatic

robot arm (Figure D.2). This idealized prismatic robot is actuated by prismatic joints
that change the link lengths, such that Li = qi +θi, where qi represents the link length
at zero joint input. Although the link length changes, we assume the link mass mi

remains constant.
Due to the lateral instead of rotational movements, the dynamics of this robot are

considerably simpler. The joint acceleration terms α = [α1, α2]T are given by

α = M−1 (τ −N) . (D.9)

The equation is similar to (D.8), but without the Coriolis term since there are only

lateral movements. Mass matrix and external force vector are M =
[
m1 +m2 0

0 m2

]

and N =
[
g(m1 +m2)

0

]
, respectively.

198

App. D – Appendix for Learning By Doing

D.2.3 ROBO results
The results from Track ROBO are summarized below. The keywords were chosen

by the organizers based on the participants’ descriptions of their approaches. The
score function is standardized such that a value of 1 corresponds to the performance
of an oracle LQR-controller using the true system (optimizing only the trajectory,
not the cost). A score of 100 corresponds to the zero solution, U ≡ 0.

Team name Score Place Keywords
Ajoo 0.918 1st Estimation of robot dynamics

TeamQ 16.121 2nd Neural network prediction

jmunozb 29.539 3rd Linear system approximation
Regression with polynomial features

199

E Appendix for ACL

E.1 Related Works
Our work relates to prior work in cognitive science, curriculum learning, and active

causal learning.
Automated Learning in Children Related work in cognitive science suggests

that child learning resonates with the Goldilocks principle: children opt for infor-
mation that is neither too easy nor too complex, but “just right” and moderately
predictable [339–341]. Furthermore, children as learners seem capable of monitor-
ing the ”zone of proximity” between their current capabilities and the goal at hand;
enabling them to progress from what they cannot do to what they can learn to do
with the interventions of an adult or a teacher [342]. Infants allocate their visual
attention based on surprise, predictability and learning progress of the environmental
structure [250]. 4- to 6-year-old children use their improvement over time to decide
whether to persist on a challenging goal on their own [343]. And by age 7, children
ask questions that yield high information gain and more constraint-seeking questions
when the problems are difficult [344]. However, there are no systematic studies show-
ing that young children can indeed construct an appropriate curriculum in order to
master complex goal-directed tasks, nor studies that would allow a comparison be-
tween children and artificial agents.

Curriculum Learning [253] introduced the concept of curriculum learning and
proposed that an effective approach to learning involves the provision of examples
that strike a balance between being neither overly simple nor excessively challeng-
ing. This concept is further supported by theoretical proofs in reinforcement learn-
ing [272]. Various metrics have been proposed to measure task difficulty, including the
transferability of models trained on other tasks to the current task [345], complexity-
driven progress, and loss-driven progress [267]. [252, 254] proposed a framework for
automatic curriculum learning through self-play, while [255] proposed a framework
utilizing automatic goal generation. [300] introduced the Unsupervised Environment
Design paradigm, formalizing variation in environments by parameters, along with

200

App. E – Appendix for ACL

Figure E.1: An illustration of all Procgen environments

the PAIRED algorithm that produced an implicit curriculum. Prioritized Level Re-
play [307] also implicitly learns a curriculum for training an RL agent not through
environment adaptation, but through judicious selection of past levels to replay based
on learning potential. Later, [307] unified these two concepts under the Dual Cur-
riculum Design framework with Robust PLR as a representative algorithm, and [306]
introduced ACCEL, an evolutionary-based approach for editing environments to form
a curriculum. Instead of proposing a new automatic curriculum learning framework,
we draw inspiration from child development studies. We use level competence as
an auxiliary reward within a curriculum inspired by [270]. Our results show that
employing auxiliary rewards mitigates RL agent catastrophic forgetting, leading to
faster and improved convergence.

Active Causal Learning In RL curriculum development, we perform environ-
mental interventions to enable swift achievement of learning objectives, resembling
active causal learning [346–356]. However, curriculum learning in RL differs from
active causal learning in that it dispenses with explicit causal structure learning and
prioritizes targeted causal interventions, disregarding non-essential variables or edges.

E.2 Procgen Environments
There are 12 different Procgen environments. Figure E.1 taken from 243 showing

all available Procgen environments.

201

App. E – Appendix for ACL

(a) Leaper Log (b) Climber Platform (c) Heist Key

(d) Leaper Car (e) Climber Enemy (f) Heist Size

Figure E.2: We selected 3 Procgen environments with 2 different axes each and varied
the level of difficulty across the axes within a game. (a)-(f) show the goal levels for
the selected Procgen games.

E.2.1 Our Adapted Procgen Environments
The goal of each game is provided in Table E.2. Each game includes three levels:

Level 1 is the easiest level, whereas Level 3 is the most difficult level. Participants
were given the goal to win Level 3. In addition, a level more difficult than Level 3,
Level 4, was presented to a random subset of the participants. Participants did not
need to learn Level 4 to achieve their goal of winning Level 3. Table E.1 describes
the levels of the different games. We also include visual examples of the levels in
Figure E.3 for the game Leaper across its two different axes, log lanes and car lanes.

202

App. E – Appendix for ACL

Table E.1: Description of levels used in selected Procgen games of Leaper, Climber,
and Heist. These games were chosen to vary certain aspects of each game based on
a particular axis. The levels increase in difficulty from Level 1 through Level 4. The
goal level to complete is Level 3; Level 4 is the most challenging level, which is not
necessarily needed to be solved to complete Level 3.

Game Axis Level 1 Level 2 Level 3 (Goal level) Level 4

Leaper Log 1 log lane 3 log lanes 5 log lanes 7 log lanes
Leaper Car 1 car lane 3 car lanes 5 car lanes 7 car lanes
Climber Enemy 0 enemies 1 enemy 2 enemies 3 enemies
Climber Platform 1 platform 2 platforms 3 platforms 4 platforms
Heist Size small medium large extra large
Heist Key 1 key/lock 2 keys/locks 3 keys/locks 4 keys/locks

(a) Level 1 (b) Level 2 (c) Level 3 (Goal level) (d) Level 4

(e) Level 1 (f) Level 2 (g) Level 3 (Goal level) (h) Level 4

Figure E.3: (a)-(d) Levels of difficulty for the game Leaper with the number of log
lanes as the difficulty axis. (e)-(f) Levels of difficulty for the Procgen game Leaper
with the number of car lanes as the difficulty axis.

203

App. E – Appendix for ACL

Game Goal
Leaper Log Cross the finish line and avoid going in the water as log

lanes increase.
Leaper Car Cross the finish line and avoid getting hit by a car as car

lanes increase.
Climber Enemy Reach the jewel and avoid enemies as number of enemies

increase.
Climber Platform Reach the jewel and avoid a single enemy as number of

platforms increase.
Heist Size Reach the final jewel by getting key and unlocking a lock

as size of maze increases.
Heist Key Reach the final jewel by getting key and unlocking locks

as number of locks and keys increase.

Table E.2: We provide the goals for each of the Procgen games. Participants were
never told the rules of the game and had to learn how to win the game through their
own learning.

E.3 Automated Curriculum Learning in Children

E.3.1 Procgen Difficulty Levels
We provide the levels that were shown to participants in the different Procgen

games (Fig. E.4). There were four levels in varying difficulty, with Level 3 being the
goal level.

E.3.2 Experimental Procedure
The study was performed on a computer. Participants were randomly assigned

to play one of the four Procgen games. Participants first underwent a familiarization
trial where they practiced exploring an empty environment of the game with a video-
game controller (e.g., they explored Leaper without any lanes or obstacles between
the starting point and the finishing line).

Next, participants were told to play the goal level of the game in which they
would be rewarded a sticker if they won. The rules of the game were not revealed
to the participants. Since the experiment aimed to measure curriculum learning in
a case where the goal was too challenging to be attained outright, participants must
fail the goal level to continue with the experiment. If a participant passed the goal
level, experimenters reassigned them to play a different Procgen game. After the
participant failed the goal level, the experimenter restated to them that the goal

204

App. E – Appendix for ACL

(a) Levels 1-4 for Leaper Log

(b) Levels 1-4 for Leaper Car

(c) Levels 1-4 for Climber Platform

(d) Levels 1-4 for Climber Enemy

(e) Levels 1-4 for Heist Size

Figure E.4: Procgen levels that were shown to participants.

205

App. E – Appendix for ACL

was to win that particular level, and once they did, they would get a sticker. The
experimenter asked if the participant could tell them how the game worked and what
the participant would have to do to get the sticker.

Then, participants were asked which level of the game they wanted to play next
and why. They were shown images of varying difficulty levels that quantitatively
varied along a single game axis on a tablet, similarly to the ones in Figure E.3.
Specifically, they were told the increasing variable of the axis along the levels but were
not explicitly told the relative difficulty of each level. Participants were presented with
a total of three levels of difficulty: the goal level and two levels that were incrementally
easier than the goal level. A subset of 7 participants were further presented with an
additional level that was unnecessarily more difficult than the goal level.

Participants received verbal and visual feedback about their performance after
playing their selected levels each time. After every other trial, they were reminded to
focus on the goal level in order to win a sticker.

This procedure continued until the participant passed the goal sticker level or
up to a total of 10 trials, whichever was earlier. Participants who did not pass the
goal level by the tenth trial were invited to play the goal level again and then the
experiment concluded.

E.3.3 Results
Figures E.5 and E.6 show the level adjustments children made when selections of

a level that is unnecessarily challenging beyond the goal level are not or are included.
In the latter case, since there is a total of 4 difficulty levels in this case, the maximum
possible absolute level change is 3. Whereas one participant made a level adjustment
from Level 4 to Level 1, no participant made a level adjustment from Level 1 to Level
4. Figure E.7 shows the level adjustments made within each level based on children’s
current level competence.

E.4 Hand-Designed Curriculum Learning in Rein-
forcement Learning Agents

E.4.1 Additional Method Details
Motivated by recent work that suggests tasks should be solved in an easiest-

to-hardest fashion for better sample difficulty [272], our hand-designed curriculum
function ϕ starts at 1 water lane (easiest) and trains the agent until a mean episode
reward of 9 (out of possible 10) is achieved. Leaper is a sparse rewards problem,

206

App. E – Appendix for ACL

Figure E.5: Level adjustments based on children’s level competence on the current
level. The x-axis measures current level competence as a percentage; the y-axis shows
subsequent level adjustment frequency. A level change of 1 implies choosing a game
one level harder, while -1 means opting for one level easier. This figure includes
participants’ selections of levels easier than or equivalent to the goal level. Overall,
children tend to remain on the current level when their level competence is less than
75%. However, upon reaching a 76% completion rate, children often transition to
more challenging levels. Conversely, when children demonstrate less than 50% level
competence, they are more inclined to return to easier levels. Thus, children adapt
their learning trajectory based on their performance.

Figure E.6: Level adjustments based on children’s percentage of competence on the
current level with the inclusion of the extra challenging Level 4.

207

App. E – Appendix for ACL

(a) Level 1 (b) Level 2

(c) Level 3 (Target) (d) Level 4 (Extra Challenging)

Figure E.7: Children made level adjustments based on competence within each level.
Note that only 2 participants selected Level 4 at any point of the curriculum.

Figure E.8: There was no significant correlation between children’s percentage of
advancement within their current level and children’s level adjustment. Most of the
time children were making -24% to 0% level advancement, and yet many of them still
opted to remain on the same level or select a more challenging level

208

App. E – Appendix for ACL

where a reward of 10 is only provided when an episode is solved (and 0 otherwise).
Specifically, we run w = 16 parallel tasks, initially starting all 16 at 1 water lane.
Then, the curriculum function ϕ increments Θ by 1/w (e.g., 1/16) to advance to a
harder distribution of tasks. After each PPO update, the agent is evaluated against
the target task Mt. If the agent successfully solves Mt, training concludes. Otherwise,
training continues until a maximum number of frames fm = 10× 106.

E.4.2 Results
This section contains more analysis of the experiments conducted in Sec. 8.4.3

and Sec. 8.4.4.

E.4.3 Random Level Baseline
In this experiment, we evaluate a baseline using a random curriculum: where the

level is randomly selected from the possible distribution of levels. We conduct this
experiment six times. We consistently saw poor learning performance, and the reward
obtained on the goal level was generally zero. This baseline is quite challenging as it
is difficult to obtain a consistent learning signal from the extrinsic reward alone.

209

App. E – Appendix for ACL

(a)

(b)

(c)

Figure E.9: Representative results for baseline curriculum learning with an RL agent.
(a) Time history of mean episode reward obtained by the agent in both the training
levels and the goal level. Training divergence from catastrophic forgetting results in
a regression of reward to zero, which occurs around 5.18 million frames. (b) Time
history of mean level competence in the training tasks. (c) Time history of the training
task difficulty, as measured by number of water lanes.

210

App. E – Appendix for ACL

(a) Reward by level competence, colored by divergence.

(b) Reward by level competence, colored by difficulty.

Figure E.10: Level competence is a proxy for reward. (a) Prior to training divergence,
mean episode training reward is proportional to mean episode level competence. After
training divergence, this relationship no longer holds: the reward remains at zero
regardless of level competence. (b) Before training divergence, the exact relationship
of reward and level competence depends on the task difficulty. The easiest task (1
water lane, dark blue) has the greatest slope, since changes in level competence yield
relatively greater mean training reward. The slope decreases as difficulty increases
because tasks have increasingly more vertical lanes before the goal.

211

App. E – Appendix for ACL

(a)

(b)

(c)

Figure E.11: Representative results for curriculum learning with an RL agent while
training on level competence as an auxiliary reward. (a) Time history of mean episode
reward obtained by the agent in both the training tasks and the target task. The
intrisic reward used for training is also shown, which is derived from the agent’s level
competence. The agent begins to generalize to the target task around 2.8 million
frames, eventually leading to solving the target task in 2.806 million frames. (b)
Time history of mean level competence in the training tasks. (c) Time history of the
training task difficulty, as measured by number of water lanes.

212

App. E – Appendix for ACL

Figure E.12: Training using level competence as an intrinsic reward can recover from
catastrophic forgetting that would have otherwise led to training divergence. The
vertical red line marks the increase in task difficulty from 4 to 4.0625 water lanes,
precipitating (recoverable) catastrophic forgetting.

213

Bibliography

[1] R. Brooks, “A Human in the Loop: AI Won’t Surpass Human Intelligence
Anytime Soon,” IEEE Spectrum, vol. 58, no. 10, pp. 48–49, 2021.

[2] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanc-
tot, L. Sifre, D. Kumaran, T. Graepel, et al., “A General Reinforcement Learn-
ing Algorithm that Masters Chess, Shogi, and Go through Self-Play,” Science,
vol. 362, no. 6419, pp. 1140–1144, 2018.

[3] A. W. Senior, R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T. Green, C. Qin,
A. Ž́ıdek, A. W. Nelson, A. Bridgland, et al., “Improved Protein Structure
Prediction using Potentials from Deep Learning,” Nature, vol. 577, no. 7792,
pp. 706–710, 2020.

[4] OpenAI, “GPT-4 Technical Report,” arXiv preprint arXiv:2303.08774, 2023.

[5] W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min, B. Zhang,
J. Zhang, Z. Dong, et al., “A Survey of Large Language Models,” arXiv preprint
arXiv:2303.18223, 2023.

[6] M. Anderson, “The Road Ahead for Self-Driving Cars,” IEEE Spectrum, vol. 57,
no. 5, pp. 8–9, 2020.

[7] E. Ackerman, “With New Roomba j7, iRobot Wants to Understand Our
Homes,” IEEE Spectrum, 9 Sep 2021.

[8] L. Sanneman, C. Fourie, and J. A. Shah, “The State of Industrial Robotics:
Emerging Technologies, Challenges, and Key Research Directions,” Foundations
and Trends in Robotics, vol. 8, no. 3, pp. 225–306, 2021.

[9] National Institute of Standards and Technology (NIST), “AI for Man-
ufacturing Robotics Initiative.” https://sites.google.com/view/
ai4manufacturingrobotics/, 29 Oct 2021.

[10] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron,
A. Paino, M. Plappert, G. Powell, R. Ribas, et al., “Solving Rubik’s Cube with
a Robot Hand,” arXiv preprint arXiv:1910.07113, 2019.

214

https://sites.google.com/view/ai4manufacturingrobotics/
https://sites.google.com/view/ai4manufacturingrobotics/

Bibliography

[11] J. Bohren, R. B. Rusu, E. G. Jones, E. Marder-Eppstein, C. Pantofaru, M. Wise,
L. Mösenlechner, W. Meeussen, and S. Holzer, “Towards Autonomous Robotic
Butlers: Lessons Learned with the PR2,” 2011 IEEE International Conference
on Robotics and Automation (ICRA), 2011.

[12] A. Bendale and T. Boult, “Towards Open World Recognition,” Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 1893–1902, 2015.

[13] S. Kong and D. Ramanan, “OpenGAN: Open-Set Recognition via Open Data
Generation,” Proceedings of the IEEE/CVF International Conference on Com-
puter Vision (ICCV), pp. 813–822, 2021.

[14] S. Kong, D. Ramanan, T. Boult, A. Owens, C. Vondrick, Y.-X. Wang, and
A. Shrivastava, “Open World Vision,” 2021 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR) Workshop, 2021.

[15] N. Roy, I. Posner, T. Barfoot, P. Beaudoin, Y. Bengio, J. Bohg, O. Brock,
I. Depatie, D. Fox, D. Koditschek, et al., “From Machine Learning to Robotics:
Challenges and Opportunities for Embodied Intelligence,” arXiv preprint
arXiv:2110.15245, 2021.

[16] J. Pearl, Causality: Models, Reasoning, and Inference. New York, NY: Cam-
bridge University Press, 2nd ed., 2009.

[17] J. Peters, D. Janzing, and B. Schölkopf, Elements of Causal Inference: Foun-
dations and Learning Algorithms. Cambridge, MA: MIT Press, 2017.

[18] J. Pearl, “Causal Inference in Statistics: An Overview,” Statistics Surveys,
vol. 3, pp. 96–146, 2009.

[19] P. Spirtes, C. Glymour, and R. Scheines, Causation, Prediction, and Search.
MIT Press, 2nd ed., 2001.

[20] G. W. Imbens and D. B. Rubin, Causal Inference in Statistics, Social, and
Biomedical Sciences: An Introduction. Cambridge University Press, 2015.

[21] J. Pearl, M. Glymour, and N. P. Jewell, Causal Inference in Statistics: A
Primer. John Wiley & Sons, 2016.

[22] J. Pearl and D. Mackenzie, The Book of Why: The New Science of Cause and
Effect. Basic Books, 2018.

[23] J. Splawa-Neyman, D. M. Dabrowska, and T. P. Speed, “On the Application of
Probability Theory to Agricultural Experiments. Essay on Principles. Section
9.,” Statistical Science, pp. 465–472, 1990.

215

Bibliography

[24] D. B. Rubin, “Estimating Causal Effects of Treatments in Randomized and
Nonrandomized Studies,” Journal of Educational Psychology, vol. 66, no. 5,
p. 688, 1974.

[25] B. Schölkopf, F. Locatello, S. Bauer, N. R. Ke, N. Kalchbrenner, A. Goyal, and
Y. Bengio, “Toward Causal Representation Learning,” Proceedings of the IEEE,
vol. 109, no. 5, pp. 612–634, 2021.

[26] S. Bakas, M. Reyes, A. Jakab, S. Bauer, M. Rempfler, A. Crimi, R. T. Shi-
nohara, C. Berger, S. M. Ha, M. Rozycki, et al., “Identifying the Best Ma-
chine Learning Algorithms for Brain Tumor Segmentation, Progression Assess-
ment, and Overall Survival Prediction in the BRATS Challenge,” arXiv preprint
arXiv:1811.02629, 2018.

[27] P. Spirtes and K. Zhang, “Causal Discovery and Inference: Concepts and Recent
Methodological Advances,” Applied Informatics, vol. 3, no. 1, pp. 1–28, 2016.

[28] C. Glymour, K. Zhang, and P. Spirtes, “Review of Causal Discovery Methods
Based on Graphical Models,” Frontiers in Genetics, vol. 10, p. 524, 2019.

[29] T. E. Lee, J. Tremblay, T. To, J. Cheng, T. Mosier, O. Kroemer, D. Fox, and
S. Birchfield, “Camera-to-Robot Pose Estimation from a Single Image,” 2020
IEEE International Conference on Robotics and Automation (ICRA), 2020.

[30] V. Zeng, T. E. Lee, J. Liang, and O. Kroemer, “Visual Identification of Artic-
ulated Object Parts,” 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2021.

[31] T. E. Lee, J. A. Zhao, A. S. Sawhney, S. Girdhar, and O. Kroemer, “Causal
Reasoning in Simulation for Structure and Transfer Learning of Robot Manipu-
lation Policies,” 2021 IEEE International Conference on Robotics and Automa-
tion (ICRA), 2021.

[32] T. E. Lee*, S. Vats*, S. Girdhar, and O. Kroemer, “SCALE: Causal Learning
and Discovery of Robot Manipulation Skills using Simulation,” Proceedings of
The 7th Conference on Robot Learning (CoRL), 2023. *Equal contribution.

[33] S. Weichwald, S. W. Mogensen, T. E. Lee, D. Baumann, O. Kroemer, I. Guyon,
S. Trimpe, J. Peters, and N. Pfister, “Learning by Doing: Controlling a Dy-
namical System using Causality, Control, and Reinforcement Learning,” Pro-
ceedings of the NeurIPS 2021 Competitions and Demonstrations Track, vol. 176,
pp. 246–258, 06–14 Dec 2022.

[34] A. Dahmani*, E. Yiu*, N. R. Ke, T. E. Lee, O. Kroemer, and A. Gopnik, “To-
ward Understanding Automated Causal Curriculum Learning in Humans and

216

Bibliography

Reinforcement Learning Agents,” The 6th International Workshop on Intrinsi-
cally Motivated Open-ended Learning (IMOL), 2023. *Equal contribution.

[35] A. Dahmani*, E. Yiu*, N. R. Ke, T. E. Lee, O. Kroemer, and A. Gopnik, “To-
ward Understanding Automated Causal Curriculum Learning in Humans and
Reinforcement Learning Agents,” 2023 Interactive Causal Learning Conference
(ICLC), 2023. *Equal contribution.

[36] A. Dahmani*, E. Yiu*, T. E. Lee, N. R. Ke, O. Kroemer, and A. Gopnik,
“From Child’s Play to AI: Insights into Automated Causal Curriculum Learn-
ing,” Intrinsically Motivated Open-ended Learning Workshop, Thirty-seventh
Conference on Neural Information Processing Systems (IMOL@NeurIPS), 2023.
*Equal contribution.

[37] J. Kaddour, A. Lynch, Q. Liu, M. J. Kusner, and R. Silva, “Causal Machine
Learning: A Survey and Open Problems,” arXiv preprint arXiv:2206.15475,
2022.

[38] Z. Wang, X. Xiao, Z. Xu, Y. Zhu, and P. Stone, “Causal Dynamics Learning
for Task-Independent State Abstraction,” International Conference on Machine
Learning (ICML), 2022.

[39] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J. Maŕın-
Jiménez, “Automatic Generation and Detection of Highly Reliable Fiducial
Markers under Occlusion,” Pattern Recognition, vol. 47, no. 6, pp. 2280–2292,
2014.

[40] M. Fiala, “ARTag, a Fiducial Marker System using Digital Techniques,” 2005
IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion (CVPR), vol. 2, pp. 590–596, 2005.

[41] E. Olson, “AprilTag: A Robust and Flexible Visual Fiducial System,” 2011
IEEE International Conference on Robotics and Automation (ICRA), pp. 3400–
3407, 2011.

[42] I. Fassi and G. Legnani, “Hand to Sensor Calibration: A Geometrical Interpre-
tation of the Matrix Equation AX=XB,” Journal of Robotic Systems, vol. 22,
no. 9, pp. 497–506, 2005.

[43] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel, “Domain
Randomization for Transferring Deep Neural Networks from Simulation to the
Real World,” 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 23–30, 2017.

217

Bibliography

[44] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, “Learning Hand-
Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale
Data Collection,” The International Journal of Robotics Research, vol. 37, no. 4-
5, pp. 421–436, 2018.

[45] V. Lepetit, F. Moreno-Noguer, and P. Fua, “EPnP: An Accurate O(n) Solution
to the PnP Problem,” International Journal of Computer Vision, vol. 81, no. 2,
pp. 155–166, 2009.

[46] T. To, J. Tremblay, D. McKay, Y. Yamaguchi, K. Leung, A. Balanon, J. Cheng,
and S. Birchfield, “NDDS: NVIDIA Deep Learning Dataset Synthesizer.”
https://github.com/NVIDIA/Dataset_Synthesizer, 2018.

[47] S. Zakharov, I. Shugurov, and S. Ilic, “DPOD: Dense 6D Pose Object Detector
in RGB Images,” arXiv preprint arXiv:1902.11020, vol. 1, no. 2, 2019.

[48] S. Peng, Y. Liu, Q. Huang, X. Zhou, and H. Bao, “PVNet: Pixel-wise Voting
Network for 6DoF Pose Estimation,” Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 4561–4570, 2019.

[49] Y. Hu, J. Hugonot, P. Fua, and M. Salzmann, “Segmentation-driven 6D Ob-
ject Pose Estimation,” Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 3385–3394, 2019.

[50] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-
Scale Image Recognition,” International Conference on Learning Representa-
tions (ICLR), 2015.

[51] B. Xiao, H. Wu, and Y. Wei, “Simple Baselines for Human Pose Estimation
and Tracking,” Proceedings of the European Conference on Computer Vision
(ECCV), pp. 466–481, 2018.

[52] J. Tremblay, T. To, B. Sundaralingam, Y. Xiang, D. Fox, and S. Birchfield,
“Deep Object Pose Estimation for Semantic Robotic Grasping of Household
Objects,” Proceedings of The 2nd Conference on Robot Learning (CoRL), 2018.

[53] B. Tekin, S. N. Sinha, and P. Fua, “Real-Time Seamless Single Shot 6D Object
Pose Prediction,” Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 292–301, 2018.

[54] A. Buslaev, A. Parinov, E. Khvedchenya, V. I. Iglovikov, and A. A. Kalinin,
“Albumentations: Fast and Flexible Image Augmentations,” arXiv preprint
arXiv:1809.06839, 2018.

[55] T.-Y. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,
and C. L. Zitnick, “Microsoft COCO: Common Objects in Context,” Proceedings
of the European Conference on Computer Vision (ECCV), pp. 740–755, 2014.

218

https://github.com/NVIDIA/Dataset_Synthesizer

Bibliography

[56] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M. Dollar,
“The YCB Object and Model Set: Towards Common Benchmarks for Manipu-
lation Research,” 2015 International Conference on Advanced Robotics (ICAR),
pp. 510–517, 2015.

[57] J. Tremblay, A. Prakash, D. Acuna, M. Brophy, V. Jampani, C. Anil, T. To,
E. Cameracci, S. Boochoon, and S. Birchfield, “Training Deep Networks with
Synthetic Data: Bridging the Reality Gap by Domain Randomization,” Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, pp. 969–977, 2018.

[58] T. Schmidt, R. A. Newcombe, and D. Fox, “DART: Dense Articulated Real-
Time Tracking,” Robotics: Science and Systems (RSS), 2014.

[59] N. D. Ratliff, J. Issac, D. Kappler, S. Birchfield, and D. Fox, “Riemannian
Motion Policies,” arXiv preprint arXiv:1801.02854, 2018.

[60] C.-A. Cheng, M. Mukadam, J. Issac, S. Birchfield, D. Fox, B. Boots, and
N. Ratliff, “RMPflow: A Computational Graph for Automatic Motion Pol-
icy Generation,” International Workshop on the Algorithmic Foundations of
Robotics (WAFR), pp. 441–457, 2018.

[61] J. Tremblay, T. To, A. Molchanov, S. Tyree, J. Kautz, and S. Birchfield, “Syn-
thetically Trained Neural Networks for Learning Human-Readable Plans from
Real-World Demonstrations,” 2018 IEEE International Conference on Robotics
and Automation (ICRA), pp. 5659–5666, 2018.

[62] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K. Konolige, and
N. Navab, “Model Based Training, Detection and Pose Estimation of Texture-
Less 3D Objects in Heavily Cluttered Scenes,” Asian Conference on Computer
Vision (ACCV), pp. 548–562, 2012.

[63] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “PoseCNN: A Convolutional
Neural Network for 6D Object Pose Estimation in Cluttered Scenes,” Robotics:
Science and Systems (RSS), 2018.

[64] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
International Conference on Learning Representations (ICLR), 2015.

[65] C. Liu and M. Tomizuka, “Robot Safe Interaction System for Intelligent Indus-
trial Co-Robots,” arXiv preprint arXiv:1808.03983, 2018.

[66] C. H. Kim and J. Seo, “Shallow-Depth Insertion: Peg in Shallow Hole Through
Robotic In-Hand Manipulation,” 2019 International Conference on Robotics
and Automation (ICRA), vol. 4, no. 2, pp. 383–390, 2019.

219

Bibliography

[67] N. Tian, A. K. Tanwani, J. Chen, M. Ma, R. Zhang, B. Huang, K. Goldberg,
and S. Sojoudi, “A Fog Robotic System for Dynamic Visual Servoing,” 2019
International Conference on Robotics and Automation (ICRA), pp. 1982–1988,
2019.

[68] T. Hodan, P. Haluza, Š. Obdržálek, J. Matas, M. Lourakis, and X. Zabulis, “T-
LESS: An RGB-D Dataset for 6D Pose Estimation of Texture-less Objects,”
2017 IEEE Winter Conference on Applications of Computer Vision (WACV),
pp. 880–888, 2017.

[69] M. Sundermeyer, Z.-C. Marton, M. Durner, M. Brucker, and R. Triebel, “Im-
plicit 3D Orientation Learning for 6D Object Detection from RGB Images,”
Proceedings of the European Conference on Computer Vision (ECCV), pp. 699–
715, 2018.

[70] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh, “Convolutional Pose
Machines,” Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pp. 4724–4732, 2016.

[71] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime Multi-Person 2D Pose
Estimation using Part Affinity Fields,” Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 7291–7299, 2017.

[72] W. Li, Z. Wang, B. Yin, Q. Peng, Y. Du, T. Xiao, G. Yu, H. Lu, Y. Wei, and
J. Sun, “Rethinking on Multi-Stage Networks for Human Pose Estimation,”
arXiv preprint arXiv:1901.00148, 2019.

[73] K. Sun, B. Xiao, D. Liu, and J. Wang, “Deep High-Resolution Representation
Learning for Human Pose Estimation,” Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 5693–5703,
2019.

[74] D. J. Tan, N. Navab, and F. Tombari, “6D Object Pose Estimation with Depth
Images: A Seamless Approach for Robotic Interaction and Augmented Reality,”
arXiv preprint arXiv 1709.01459, 2017.

[75] A. Dhall, D. Dai, and L. Van Gool, “Real-time 3D Traffic Cone Detection
for Autonomous Driving,” 2019 IEEE Intelligent Vehicles Symposium (IV),
pp. 494–501, 2019.

[76] G. Pavlakos, X. Zhou, A. Chan, K. G. Derpanis, and K. Daniilidis, “6-DoF
Object Pose from Semantic Keypoints,” 2017 IEEE International Conference
on Robotics and Automation (ICRA), pp. 2011–2018, 2017.

220

Bibliography

[77] F. C. Park and B. J. Martin, “Robot Sensor Calibration: Solving AX=XB on
the Euclidean Group,” IEEE Transactions on Robotics and Automation, vol. 10,
no. 5, pp. 717–721, 1994.

[78] J. Ilonen and V. Kyrki, “Robust Robot-Camera Calibration,” 2011 15th Inter-
national Conference on Advanced Robotics (ICAR), pp. 67–74, 2011.

[79] D. Yang and J. Illingworth, “Calibrating a Robot Camera,” BMVC, pp. 1–10,
1994.

[80] K. Pauwels and D. Kragic, “Integrated On-line Robot-camera Calibration and
Object Pose Estimation,” 2016 IEEE International Conference on Robotics and
Automation (ICRA), pp. 2332–2339, 2016.

[81] D. Park, Y. Seo, and S. Y. Chun, “Real-Time, Highly Accurate Robotic Grasp
Detection using Fully Convolutional Neural Networks with High-Resolution Im-
ages,” arXiv preprint arXiv:1809.05828, 2018.

[82] A. Aalerud, J. Dybedal, and G. Hovland, “Automatic Calibration of an Indus-
trial RGB-D Camera Network Using Retroreflective Fiducial Markers,” Sensors,
vol. 19, no. 7, p. 1561, 2019.

[83] D. Morrison, P. Corke, and J. Leitner, “Closing the Loop for Robotic Grasping:
A Real-time, Generative Grasp Synthesis Approach,” Robotics: Science and
Systems (RSS), 2018.

[84] A. Feniello, H. Dang, and S. Birchfield, “Program Synthesis by Examples for
Object Repositioning Tasks,” 2014 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), pp. 4428–4435, 2014.

[85] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea, and
K. Goldberg, “Dex-Net 2.0: Deep Learning to Plan Robust Grasps with Syn-
thetic Point Clouds and Analytic Grasp Metrics,” Robotics: Science and Sys-
tems (RSS), 2017.

[86] J. Bohg, J. Romero, A. Herzog, and S. Schaal, “Robot Arm Pose Estimation
through Pixel-Wise Part Classification,” 2014 IEEE International Conference
on Robotics and Automation (ICRA), pp. 3143–3150, 2014.

[87] F. Widmaier, D. Kappler, S. Schaal, and J. Bohg, “Robot Arm Pose Estimation
by Pixel-Wise Regression of Joint Angles,” 2016 IEEE International Conference
on Robotics and Automation (ICRA), pp. 616–623, 2016.

[88] J. Lambrecht and L. Kästner, “Towards the Usage of Synthetic Data for Marker-
Less Pose Estimation of Articulated Robots in RGB Images,” 2019 19th Inter-
national Conference on Advanced Robotics (ICAR), pp. 240–247, 2019.

221

Bibliography

[89] J. Lambrecht, “Robust Few-Shot Pose Estimation of Articulated Robots us-
ing Monocular Cameras and Deep-Learning-based Keypoint Detection,” 2019
7th International Conference on Robot Intelligence Technology and Applications
(RiTA), pp. 136–141, 2019.

[90] Y. Zuo, W. Qiu, L. Xie, F. Zhong, Y. Wang, and A. L. Yuille, “CRAVES:
Controlling Robotic Arm With a Vision-Based Economic System,” Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 4214–4223, 2019.

[91] G. Bekey and J. Yuh, “The Status of Robotics,” IEEE Robotics & Automation
Magazine, vol. 15, no. 1, pp. 80–86, 2008.

[92] K. Doelling, J. Shin, and D. O. Popa, “Service Robotics for the Home: A
State of the Art Review,” in Proceedings of the 7th International Conference on
PErvasive Technologies Related to Assistive Environments (PETRA), pp. 1–8,
2014.

[93] P. Dario, E. Guglielmelli, B. Allotta, and M. C. Carrozza, “Robotics for Medical
Applications,” IEEE Robotics & Automation Magazine, vol. 3, no. 3, pp. 44–56,
1996.

[94] L. D. Riek, “Healthcare Robotics,” Communications of the ACM, vol. 60, no. 11,
pp. 68–78, 2017.

[95] G.-Z. Yang, B. J. Nelson, R. R. Murphy, H. Choset, H. Christensen,
S. H. Collins, P. Dario, K. Goldberg, K. Ikuta, N. Jacobstein, et al., “Combating
COVID-19 – The Role of Robotics in Managing Public Health and Infectious
Diseases,” Science Robotics, vol. 5, no. 40, p. eabb5589, 2020.

[96] J. Bohg, K. Hausman, B. Sankaran, O. Brock, D. Kragic, S. Schaal, and G. S.
Sukhatme, “Interactive Perception: Leveraging Action in Perception and Per-
ception in Action,” IEEE Transactions on Robotics, vol. 33, no. 6, pp. 1273–
1291, 2017.

[97] J. Sturm, A. Jain, C. Stachniss, C. C. Kemp, and W. Burgard, “Operating
Articulated Objects based on Experience,” in 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 2739–2744, IEEE,
2010.

[98] J. Sturm, C. Stachniss, and W. Burgard, “A Probabilistic Framework for Learn-
ing Kinematic Models of Articulated Objects,” Journal of Artificial Intelligence
Research, vol. 41, pp. 477–526, 2011.

222

Bibliography

[99] S. Höfer, T. Lang, and O. Brock, “Extracting Kinematic Background Knowl-
edge from Interactions using Task-Sensitive Relational Learning,” 2014 IEEE
International Conference on Robotics and Automation (ICRA), pp. 4342–4347,
2014.

[100] P. R. Barragän, L. P. Kaelbling, and T. Lozano-Pérez, “Interactive Bayesian
Identification of Kinematic Mechanisms,” 2014 IEEE International Conference
on Robotics and Automation (ICRA), pp. 2013–2020, 2014.

[101] C. Moses, M. Noseworthy, L. P. Kaelbling, T. Lozano-Pérez, and N. Roy, “Vi-
sual Prediction of Priors for Articulated Object Interaction,” 2020 IEEE In-
ternational Conference on Robotics and Automation (ICRA), pp. 10480–10486,
2020.

[102] R. M. Martin and O. Brock, “Online Interactive Perception of Articulated Ob-
jects with Multi-Level Recursive Estimation Based on Task-Specific Priors,”
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 2494–2501, 2014.

[103] D. Katz, A. Orthey, and O. Brock, “Interactive Perception of Articulated Ob-
jects,” Experimental Robotics, pp. 301–315, 2014.

[104] K. Hausman, S. Niekum, S. Osentoski, and G. S. Sukhatme, “Active Articu-
lation Model Estimation through Interactive Perception,” 2015 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pp. 3305–3312, 2015.

[105] R. Mart́ın-Mart́ın, S. Höfer, and O. Brock, “An Integrated Approach to Visual
Perception of Articulated Objects,” 2016 IEEE International Conference on
Robotics and Automation (ICRA), pp. 5091–5097, 2016.

[106] R. Mart́ın-Mart́ın and O. Brock, “Building Kinematic and Dynamic Models
of Articulated Objects with Multi-Modal Interactive Perception,” AAAI Sym-
posium on Interactive Multi-Sensory Object Perception for Embodied Agents,
2017.

[107] M. Baum, M. Bernstein, R. Martin-Martin, S. Höfer, J. Kulick, M. Toussaint,
A. Kacelnik, and O. Brock, “Opening a Lockbox through Physical Exploration,”
2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Hu-
manoids), pp. 461–467, 2017.

[108] C. Eppner, R. Mart́ın-Mart́ın, and O. Brock, “Physics-Based Selection of Infor-
mative Actions for Interactive Perception,” 2018 IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 7427–7432, 2018.

223

Bibliography

[109] F. Xiang, Y. Qin, K. Mo, Y. Xia, H. Zhu, F. Liu, M. Liu, H. Jiang, Y. Yuan,
H. Wang, et al., “SAPIEN: A SimulAted Part-based Interactive ENvironment,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 11097–11107, 2020.

[110] X. Wang, B. Zhou, Y. Shi, X. Chen, Q. Zhao, and K. Xu, “Shape2Motion: Joint
Analysis of Motion Parts and Attributes from 3D Shapes,” Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 8876–8884, 2019.

[111] B. Abbatematteo, S. Tellex, and G. Konidaris, “Learning to Generalize Kine-
matic Models to Novel Objects,” Proceedings of the Conference on Robot Learn-
ing (CoRL), 2019.

[112] X. Li, H. Wang, L. Yi, L. J. Guibas, A. L. Abbott, and S. Song, “Category-Level
Articulated Object Pose Estimation,” Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 3706–3715, 2020.

[113] A. Jain, R. Lioutikov, C. Chuck, and S. Niekum, “ScrewNet: Category-
Independent Articulation Model Estimation From Depth Images Using Screw
Theory,” 2021 IEEE International Conference on Robotics and Automation
(ICRA), pp. 13670–13677, 2021.

[114] X. Huang, I. Walker, and S. Birchfield, “Occlusion-Aware Reconstruction and
Manipulation of 3D Articulated Objects,” 2012 IEEE International Conference
on Robotics and Automation (ICRA), pp. 1365–1371, 2012.

[115] X. Huang, I. Walker, and S. Birchfield, “Occlusion-Aware Multi-View Recon-
struction of Articulated Objects for Manipulation,” Robotics and Autonomous
Systems, vol. 62, no. 4, pp. 497–505, 2014.

[116] P. R. Florence, L. Manuelli, and R. Tedrake, “Dense Object Nets: Learning
Dense Visual Object Descriptors By and For Robotic Manipulation,” Proceed-
ings of The 2nd Conference on Robot Learning (CoRL), 2018.

[117] J. Lu, F. Richter, and M. Yip, “Robust Keypoint Detection and Pose Estimation
of Robot Manipulators with Self-Occlusions via Sim-to-Real Transfer,” arXiv
preprint arXiv:2010.08054, 2020.

[118] J. Tremblay, S. Tyree, T. Mosier, and S. Birchfield, “Indirect Object-to-Robot
Pose Estimation from an External Monocular RGB Camera,” 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 4227–
4234, 2020.

224

Bibliography

[119] Z. Wang and F. Lu, “VoxSegNet: Volumetric CNNs for Semantic Part Seg-
mentation of 3D Shapes,” IEEE Transactions on Visualization and Computer
Graphics, vol. 26, no. 9, pp. 2919–2930, 2019.

[120] R. Mart́ın-Mart́ın, C. Eppner, and O. Brock, “The RBO Dataset of Artic-
ulated Objects and Interactions,” The International Journal of Robotics Re-
search, vol. 38, no. 9, pp. 1013–1019, 2019.

[121] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li,
S. Savarese, M. Savva, S. Song, H. Su, et al., “ShapeNet: An Information-Rich
3D Model Repository,” arXiv preprint arXiv:1512.03012, 2015.

[122] K. Mo, S. Zhu, A. X. Chang, L. Yi, S. Tripathi, L. J. Guibas, and H. Su,
“PartNet: A Large-scale Benchmark for Fine-grained and Hierarchical Part-
level 3D Object Understanding,” Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 909–918, 2019.

[123] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-
Scale Image Recognition,” International Conference on Learning Representa-
tions (ICLR), 2014.

[124] M. A. Fischler and R. C. Bolles, “Random Sample Consensus: A Paradigm for
Model Fitting with Applications to Image Analysis and Automated Cartogra-
phy,” Communications of the ACM, vol. 24, no. 6, pp. 381–395, 1981.

[125] K.-K. Maninis, S. Caelles, J. Pont-Tuset, and L. Van Gool, “Deep Extreme Cut:
From Extreme Points to Object Segmentation,” Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 616–625,
2018.

[126] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-Real Trans-
fer of Robotic Control with Dynamics Randomization,” 2018 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2018.

[127] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakrishnan,
L. Downs, J. Ibarz, P. Pastor, K. Konolige, et al., “Using Simulation and Do-
main Adaptation to Improve Efficiency of Deep Robotic Grasping,” 2018 IEEE
International Conference on Robotics and Automation (ICRA), 2018.

[128] O. Kroemer, S. Niekum, and G. Konidaris, “A Review of Robot Learning for
Manipulation: Challenges, Representations, and Algorithms,” arXiv preprint
arXiv:1907.03146, 2019.

[129] W. Zhao, J. P. Queralta, and T. Westerlund, “Sim-to-Real Transfer in Deep
Reinforcement Learning for Robotics: a Survey,” IEEE Symposium Series on
Computational Intelligence (SSCI), 2020.

225

Bibliography

[130] J. Liang, V. Makoviychuk, A. Handa, N. Chentanez, M. Macklin, and D. Fox,
“GPU-Accelerated Robotic Simulation for Distributed Reinforcement Learn-
ing,” Proceedings of The 2nd Conference on Robot Learning (CoRL), 2018.

[131] K. Zhang, B. Schölkopf, P. Spirtes, and C. Glymour, “Learning Causality and
Causality-Related Learning: Some Recent Progress,” National Science Review,
vol. 5, no. 1, pp. 26–29, 2018.

[132] B. Schölkopf, “Causality for Machine Learning,” arXiv preprint
arXiv:1911.10500, 2019.

[133] J. Zhang and E. Bareinboim, “Transfer Learning in Multi-Armed Bandits: A
Causal Approach,” International Joint Conference on Artificial Intelligence (IJ-
CAI), 2017.

[134] P. de Haan, D. Jayaraman, and S. Levine, “Causal Confusion in Imitation
Learning,” Advances in Neural Information Processing Systems 32 (NeurIPS),
vol. 32, 2019.

[135] Y. Li, A. Torralba, A. Anandkumar, D. Fox, and A. Garg, “Causal Discovery
in Physical Systems from Videos,” Advances in Neural Information Processing
Systems 33 (NeurIPS), vol. 33, pp. 9180–9192, 2020.

[136] S. A. Sontakke, A. Mehrjou, L. Itti, and B. Schölkopf, “Causal Curiosity:
RL Agents Discovering Self-supervised Experiments for Causal Representation
Learning,” arXiv preprint arXiv:2010.03110, 2020.

[137] O. Ahmed, F. Träuble, A. Goyal, A. Neitz, M. Wüthrich, Y. Bengio,
B. Schölkopf, and S. Bauer, “CausalWorld: A Robotic Manipulation Benchmark
for Causal Structure and Transfer Learning,” arXiv preprint arXiv:2010.04296,
2020.

[138] C. Devin, P. Abbeel, T. Darrell, and S. Levine, “Deep Object-Centric Represen-
tations for Generalizable Robot Learning,” 2018 IEEE International Conference
on Robotics and Automation (ICRA), 2018.

[139] W. Yu, J. Tan, C. K. Liu, and G. Turk, “Preparing for the Unknown: Learning
a Universal Policy with Online System Identification,” Robotics: Science and
Systems (RSS), 2017.

[140] A. Nouri and M. L. Littman, “Dimension Reduction and its Application to
Model-Based Exploration in Continuous Spaces,” Machine Learning, vol. 81,
no. 1, pp. 85–98, 2010.

[141] J. Z. Kolter and A. Y. Ng, “Regularization and Feature Selection in Least-
Squares Temporal Difference Learning,” International Conference on Machine
Learning (ICML), 2009.

226

Bibliography

[142] R. Parr, L. Li, G. Taylor, C. Painter-Wakefield, and M. L. Littman, “An Analy-
sis of Linear Models, Linear Value-Function Approximation, and Feature Selec-
tion for Reinforcement Learning,” International Conference on Machine Learn-
ing (ICML), 2008.

[143] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bohez,
and V. Vanhoucke, “Sim-to-Real: Learning Agile Locomotion for Quadruped
Robots,” Robotics: Science and Systems (RSS), 2018.

[144] A. Molchanov, T. Chen, W. Hönig, J. A. Preiss, N. Ayanian, and G. S.
Sukhatme, “Sim-to-(Multi)-Real: Transfer of Low-Level Robust Control Poli-
cies to Multiple Quadrotors,” 2019 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), 2019.

[145] Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac, N. Ratliff, and
D. Fox, “Closing the Sim-to-Real Loop: Adapting Simulation Randomization
with Real World Experience,” 2019 International Conference on Robotics and
Automation (ICRA), 2019.

[146] W. Masson, P. Ranchod, and G. Konidaris, “Reinforcement Learning with Pa-
rameterized Actions,” Proceedings of the AAAI Conference on Artificial Intel-
ligence, 2016.

[147] M. Hausknecht and P. Stone, “Deep Reinforcement Learning in Parameterized
Action Space,” International Conference on Learning Representations (ICLR),
2016.

[148] Z. Fan, R. Su, W. Zhang, and Y. Yu, “Hybrid Actor-Critic Reinforcement
Learning in Parameterized Action Space,” International Joint Conference on
Artificial Intelligence (IJCAI), 2019.

[149] M. P. Deisenroth, G. Neumann, J. Peters, et al., “A Survey on Policy Search
for Robotics,” Foundations and Trends in Robotics, vol. 2, no. 1–2, pp. 1–142,
2013.

[150] P. W. Battaglia, J. B. Hamrick, and J. B. Tenenbaum, “Simulation as an En-
gine of Physical Scene Understanding,” Proceedings of the National Academy of
Sciences, vol. 110, no. 45, pp. 18327–18332, 2013.

[151] D. Ha and J. Schmidhuber, “Recurrent World Models Facilitate Policy Evo-
lution,” Advances in Neural Information Processing Systems 31 (NeurIPS),
vol. 31, 2018.

[152] J. Peters, K. Mülling, and Y. Altun, “Relative Entropy Policy Search,” Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 2010.

227

Bibliography

[153] V. R. Konda and J. N. Tsitsiklis, “Actor-Critic Algorithms,” Advances in Neural
Information Processing Systems 12 (NIPS), vol. 12, 2000.

[154] Z. Lu, H. Pu, F. Wang, Z. Hu, and L. Wang, “The Expressive Power of Neural
Networks: A View from the Width,” Advances in Neural Information Processing
Systems 30 (NIPS), vol. 30, 2017.

[155] A. M. Saxe, J. L. Mcclelland, and S. Ganguli, “Exact Solutions to the Non-
linear Dynamics of Learning in Deep Linear Neural Networks,” International
Conference on Learning Representations (ICLR), 2014.

[156] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
Policy Optimization Algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[157] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore, P. Dhari-
wal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schul-
man, S. Sidor, and Y. Wu, “Stable Baselines.” https://github.com/hill-a/
stable-baselines, 2018.

[158] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick,
K. Kavukcuoglu, R. Pascanu, and R. Hadsell, “Progressive Neural Networks,”
arXiv preprint arXiv:1606.04671, 2016.

[159] R. Desimone and J. Duncan, “Neural Mechanisms of Selective Visual Atten-
tion,” Annual Review of Neuroscience, vol. 18, no. 1, pp. 193–222, 1995.

[160] G. Konidaris, S. Kuindersma, R. Grupen, and A. Barto, “Robot Learning
from Demonstration by Constructing Skill Trees,” The International Journal
of Robotics Research, vol. 31, no. 3, pp. 360–375, 2012.

[161] Z. Su, O. Kroemer, G. E. Loeb, G. S. Sukhatme, and S. Schaal, “Learning Ma-
nipulation Graphs from Demonstrations Using Multimodal Sensory Signals,”
2018 IEEE International Conference on Robotics and Automation (ICRA),
2018.

[162] O. Kroemer, C. Daniel, G. Neumann, H. Van Hoof, and J. Peters, “Towards
Learning Hierarchical Skills for Multi-Phase Manipulation Tasks,” 2015 IEEE
International Conference on Robotics and Automation (ICRA), 2015.

[163] A. Chenu, N. Perrin-Gilbert, and O. Sigaud, “Divide & Conquer Imitation
Learning,” 2022 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2022.

[164] J. Achterhold, M. Krimmel, and J. Stueckler, “Learning Temporally Extended
Skills in Continuous Domains as Symbolic Actions for Planning,” arXiv preprint
arXiv:2207.05018, 2022.

228

https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines

Bibliography

[165] N. Jiang, A. Kulesza, and S. Singh, “Abstraction Selection in Model-Based Re-
inforcement Learning,” International Conference on Machine Learning (ICML),
2015.

[166] G. Konidaris and A. Barto, “Efficient Skill Learning using Abstraction Selec-
tion,” International Joint Conference on Artificial Intelligence (IJCAI), 2009.

[167] B. C. Da Silva, G. Konidaris, and A. G. Barto, “Learning Parameterized Skills,”
International Conference on Machine Learning (ICML), p. 1443–1450, 2012.

[168] B. C. Da Silva, G. Baldassarre, G. Konidaris, and A. Barto, “Learning Pa-
rameterized Motor Skills on a Humanoid Robot,” 2014 IEEE International
Conference on Robotics and Automation (ICRA), pp. 5239–5244, 2014.

[169] J. B. Tenenbaum, V. De Silva, and J. C. Langford, “A Global Geometric Frame-
work for Nonlinear Dimensionality Reduction,” Science, vol. 290, no. 5500,
pp. 2319–2323, 2000.

[170] L. P. Kaelbling and T. Lozano-Pérez, “Learning Composable Models of Param-
eterized Skills,” 2017 IEEE International Conference on Robotics and Automa-
tion (ICRA), pp. 886–893, 2017.

[171] Z. Wang, C. R. Garrett, L. P. Kaelbling, and T. Lozano-Pérez, “Learning Com-
positional Models of Robot Skills for Task and Motion Planning,” The Inter-
national Journal of Robotics Research, vol. 40, no. 6-7, pp. 866–894, 2021.

[172] J. Peters, J. Kober, K. Mülling, O. Krämer, and G. Neumann, “Towards Robot
Skill Learning: From Simple Skills to Table Tennis,” Joint European Confer-
ence on Machine Learning and Knowledge Discovery in Databases, pp. 627–631,
2013.

[173] R. Pahič, Z. Lončarević, A. Gams, and A. Ude, “Robot Skill Learning in La-
tent Space of a Deep Autoencoder Neural Network,” Robotics and Autonomous
Systems, vol. 135, p. 103690, 2021.

[174] K. Khetarpal, M. Klissarov, M. Chevalier-Boisvert, P.-L. Bacon, and D. Precup,
“Options of Interest: Temporal Abstraction with Interest Functions,” Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 4, pp. 4444–
4451, 2020.

[175] M. Abdulhai, D.-K. Kim, M. Riemer, M. Liu, G. Tesauro, and J. P. How,
“Context-Specific Representation Abstraction for Deep Option Learning,”
arXiv preprint arXiv:2109.09876, 2021.

[176] A. Bagaria and G. Konidaris, “Option Discovery using Deep Skill Chaining,”
International Conference on Learning Representations (ICLR), 2020.

229

Bibliography

[177] A. Bagaria, J. K. Senthil, and G. Konidaris, “Skill Discovery for Exploration
and Planning using Deep Skill Graphs,” International Conference on Machine
Learning (ICML), 2021.

[178] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine, “Diversity is All You Need:
Learning Skills without a Reward Function,” International Conference on
Learning Representations (ICLR), 2018.

[179] A. Sharma, S. S. Gu, S. Levine, V. Kumar, and K. Hausman, “Dynamics-
Aware Unsupervised Discovery of Skills,” International Conference on Learning
Representations (ICLR), 2020.

[180] K. C. Stocking, A. Gopnik, and C. Tomlin, “From Robot Learning to Robot
Understanding: Leveraging Causal Graphical Models for Robotics,” Proceedings
of the 5th Conference on Robot Learning (CoRL), 2022.

[181] M. Diehl and K. Ramirez-Amaro, “Why Did I Fail? A Causal-Based Method to
Find Explanations for Robot Failures,” IEEE Robotics and Automation Letters,
vol. 7, no. 4, pp. 8925–8932, 2022.

[182] N. R. Ke, A. Didolkar, S. Mittal, A. Goyal, G. Lajoie, S. Bauer, D. Rezende,
Y. Bengio, M. Mozer, and C. Pal, “Systematic Evaluation of Causal Discovery
in Visual Model Based Reinforcement Learning,” Proceedings of the NeurIPS
2021 Datasets and Benchmarks Track, 2021. arXiv preprint arXiv:2107.00848.

[183] S. A. Sontakke, A. Mehrjou, L. Itti, and B. Schölkopf, “Causal Curiosity:
RL Agents Discovering Self-supervised Experiments for Causal Representation
Learning,” International Conference on Machine Learning (ICML), 2021.

[184] A. Sonar, V. Pacelli, and A. Majumdar, “Invariant Policy Optimization: To-
wards Stronger Generalization in Reinforcement Learning,” Learning for Dy-
namics and Control, 2021.

[185] O. Kroemer, S. Niekum, and G. D. Konidaris, “A Review of Robot Learning
for Manipulation: Challenges, Representations, and Algorithms,” Journal of
Machine Learning Research, vol. 22, no. 30, 2021.

[186] R. S. Sutton, D. Precup, and S. Singh, “Between MDPs and Semi-MDPs: A
Framework for Temporal Abstraction in Reinforcement Learning,” Artificial
Intelligence, vol. 112, no. 1-2, pp. 181–211, 1999.

[187] G. Konidaris, L. Kaelbling, and T. Lozano-Perez, “Symbol Acquisition for Prob-
abilistic High-Level Planning,” International Joint Conference on Artificial In-
telligence (IJCAI), 2015.

230

Bibliography

[188] J. Luo, E. Solowjow, C. Wen, J. A. Ojea, A. M. Agogino, A. Tamar, and
P. Abbeel, “Reinforcement Learning on Variable Impedance Controller for High-
Precision Robotic Assembly,” 2019 International Conference on Robotics and
Automation (ICRA), pp. 3080–3087, 2019.

[189] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin,
D. Hoeller, N. Rudin, A. Allshire, A. Handa, et al., “Isaac Gym: High Per-
formance GPU-Based Physics Simulation For Robot Learning,” arXiv preprint
arXiv:2108.10470, 2021.

[190] R. Brost, “Automatic Grasp Planning in the Presence of Uncertainty,” 1986
IEEE International Conference on Robotics and Automation (ICRA), vol. 3,
pp. 1575–1581, 1986.

[191] T. Haavelmo, “The Probability Approach in Econometrics,” Econometrica,
vol. 12, pp. S1–S115 (supplement), 1944.

[192] J. Aldrich, “Autonomy,” Oxford Economic Papers, vol. 41, pp. 15–34, 1989.

[193] J. Peters, S. Bauer, and N. Pfister, “Causal Models for Dynamical Systems,”
in Probabilistic and Causal Inference: The Works of Judea Pearl (to appear);
ArXiv e-prints (2001.06208), ACM, 2022.

[194] L. Ljung, System Identification: Theory for the User. Pearson Education, 1998.

[195] K. J. Åström and R. M. Murray, Feedback Systems: An Introduction for Scien-
tists and Engineers. Princeton, NJ: Princeton University Press, 2nd ed., 2008.

[196] F. Allgöwer and A. Zheng, Nonlinear Model Predictive Control. Basel, Switzer-
land: Birkhäuser, 2012.

[197] F. Borrelli, A. Bemporad, and M. Morari, Predictive Control for Linear and
Hybrid Systems. New York, NY: Cambridge University Press, 2017.

[198] K. J. Åström and B. Wittenmark, Adaptive Control. Courier Corporation, 2013.

[199] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. Cam-
bridge, MA: MIT Press, 1998.

[200] D. Bell, J. Kay, and J. Malley, “A Non-Parametric Approach to Non-Linear
Causality Testing,” Economics Letters, vol. 51, no. 1, pp. 7–18, 1996.

[201] P. Waage and C. M. Guldberg, “Studier over Affiniteten (in Danish),” Forhan-
dlinger i Videnskabs-selskabet i Christiania, pp. 35–45, 1864.

[202] D. P. Bertsekas, Dynamic Programming and Optimal Control: Volume 1. Bel-
mont, MA: Athena Scientific, 2000.

231

Bibliography

[203] B. D. O. Anderson and J. B. Moore, Optimal Control: Linear Quadratic Meth-
ods. Courier Corporation, 2007.

[204] S. Lange, T. Gabel, and M. Riedmiller, “Batch Reinforcement Learning,” in Re-
inforcement Learning: State-of-the-Art (M. Wiering and M. van Otterlo, eds.),
(Berlin, Heidelberg), pp. 45–73, Springer Berlin Heidelberg, 2012.

[205] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline Reinforcement Learn-
ing: Tutorial, Review, and Perspectives on Open Problems,” ArXiv e-prints
(2005.01643), 2020.

[206] J. Bravo, “Learning By Doing NeurIPS 2021 Competition Solution Code.”
https://doi.org/10.5281/zenodo.5895099, Jan. 2022.

[207] B. Bussmann, “A Neural Network Approach to Controlling Chemical Reac-
tions.” https://doi.org/10.5281/zenodo.6006496, Feb. 2022.

[208] C. M. Patiño, E. Lopez, and J. Rodriguez, “factoredai/learn-by-doing-neurips-
2021: v1.0.0.” https://doi.org/10.5281/zenodo.5888574, Jan. 2022.

[209] A. Lei, B. Schölkopf, and I. Posner, “Variational Causal Dynamics: Discovering
Modular World Models from Interventions,” arXiv preprint arXiv:2206.11131,
2022.

[210] Y. Liu, B. Huang, Z. Zhu, H. Tian, M. Gong, Y. Yu, and K. Zhang, “Learning
World Models with Identifiable Factorization,” Advances in Neural Information
Processing Systems 36 (NeurIPS), vol. 36, 2024.

[211] W. Yao, Y. Sun, A. Ho, C. Sun, and K. Zhang, “Learning Temporally Causal
Latent Processes from General Temporal Data,” International Conference on
Learning Representations (ICLR), 2022.

[212] W. Yao, G. Chen, and K. Zhang, “Temporally Disentangled Representation
Learning,” Advances in Neural Information Processing Systems 35 (NeurIPS),
vol. 35, pp. 26492–26503, 2022.

[213] B. Huang, C. Lu, L. Leqi, J. M. Hernández-Lobato, C. Glymour, B. Schölkopf,
and K. Zhang, “Action-Sufficient State Representation Learning for Control
with Structural Constraints,” International Conference on Machine Learning
(ICML), pp. 9260–9279, 2022.

[214] P. Lippe, S. Magliacane, S. Löwe, Y. M. Asano, T. Cohen, and S. Gavves, “CIT-
RIS: Causal Identifiability from Temporal Intervened Sequences,” International
Conference on Machine Learning (ICML), pp. 13557–13603, 2022.

232

https://doi.org/10.5281/zenodo.5895099
https://doi.org/10.5281/zenodo.6006496
https://doi.org/10.5281/zenodo.5888574

Bibliography

[215] P. Lippe, S. Magliacane, S. Löwe, Y. M. Asano, T. Cohen, and E. Gavves,
“Causal Representation Learning for Instantaneous and Temporal Effects in
Interactive Systems,” International Conference on Learning Representations
(ICLR), 2023.

[216] P. N. Johnson-Laird, “Mental Models and Human Reasoning,” Proceedings of
the National Academy of Sciences, vol. 107, no. 43, pp. 18243–18250, 2010.

[217] A. S. Polydoros and L. Nalpantidis, “Survey of Model-Based Reinforcement
Learning: Applications on Robotics,” Journal of Intelligent & Robotic Systems,
vol. 86, no. 2, pp. 153–173, 2017.

[218] T. M. Moerland, J. Broekens, A. Plaat, and C. M. Jonker, “Model-based Rein-
forcement Learning: A Survey,” Foundations and Trends in Machine Learning,
vol. 16, no. 1, pp. 1–118, 2023.

[219] F.-M. Luo, T. Xu, H. Lai, X.-H. Chen, W. Zhang, and Y. Yu, “A Survey on
Model-Based Reinforcement Learning,” Science China Information Sciences,
vol. 67, no. 2, p. 121101, 2024.

[220] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson,
“Learning Latent Dynamics for Planning from Pixels,” International Conference
on Machine Learning (ICML), 2019.

[221] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi, “Dream to Control: Learn-
ing Behaviors by Latent Imagination,” International Conference on Learning
Representations (ICLR), 2020.

[222] D. Hafner, T. Lillicrap, M. Norouzi, and J. Ba, “Mastering Atari with Discrete
World Models,” International Conference on Learning Representations (ICLR),
2021.

[223] D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap, “Mastering Diverse Domains
through World Models,” arXiv preprint arXiv:2301.04104, 2023.

[224] M. Watter, J. Springenberg, J. Boedecker, and M. Riedmiller, “Embed to Con-
trol: A Locally Linear Latent Dynamics Model for Control from Raw Images,”
Advances in Neural Information Processing Systems 28 (NIPS), vol. 28, 2015.

[225] E. Banijamali, R. Shu, M. Ghavamzadeh, H. Bui, and A. Ghodsi, “Robust
Locally-Linear Controllable Embedding,” International Conference on Artificial
Intelligence and Statistics, pp. 1751–1759, 2018.

[226] M. Zhang, S. Vikram, L. Smith, P. Abbeel, M. Johnson, and S. Levine, “SO-
LAR: Deep Structured Representations for Model-Based Reinforcement Learn-
ing,” International Conference on Machine Learning (ICML), 2019.

233

Bibliography

[227] Z.-M. Zhu, X.-H. Chen, H.-L. Tian, K. Zhang, and Y. Yu, “Offline Rein-
forcement Learning with Causal Structured World Models,” arXiv preprint
arXiv:2206.01474, 2022.

[228] R. P. Poudel, H. Pandya, and R. Cipolla, “Contrastive Unsupervised
Learning of World Model with Invariant Causal Features,” arXiv preprint
arXiv:2209.14932, 2022.

[229] R. Moraffah, M. Karami, R. Guo, A. Raglin, and H. Liu, “Causal Interpretabil-
ity for Machine Learning - Problems, Methods and Evaluation,” ACM SIGKDD
Explorations Newsletter, vol. 22, no. 1, pp. 18–33, 2020.

[230] F. Doshi-Velez and B. Kim, “Towards a Rigorous Science of Interpretable Ma-
chine Learning,” arXiv preprint arXiv:1702.08608, 2017.

[231] L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal, “Ex-
plaining Explanations: An Overview of Interpretability of Machine Learning,”
2018 IEEE 5th International Conference on Data Science and Advanced Ana-
lytics (DSAA), 2018.

[232] D. V. Carvalho, E. M. Pereira, and J. S. Cardoso, “Machine Learning Inter-
pretability: A Survey on Methods and Metrics,” Electronics, vol. 8, no. 8, p. 832,
2019.

[233] P. Linardatos, V. Papastefanopoulos, and S. Kotsiantis, “Explainable AI: A
Review of Machine Learning Interpretability Methods,” Entropy, vol. 23, no. 1,
p. 18, 2020.

[234] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning Phrase Representations using
RNN Encoder-Decoder for Statistical Machine Translation,” arXiv preprint
arXiv:1406.1078, 2014.

[235] Y. Bengio, T. Deleu, N. Rahaman, R. Ke, S. Lachapelle, O. Bilaniuk, A. Goyal,
and C. Pal, “A Meta-Transfer Objective for Learning to Disentangle Causal
Mechanisms,” arXiv preprint arXiv:1901.10912, 2019.

[236] P. Brouillard, S. Lachapelle, A. Lacoste, S. Lacoste-Julien, and A. Drouin,
“Differentiable Causal Discovery from Interventional Data,” Advances in Neural
Information Processing Systems 33 (NeurIPS), vol. 33, 2020.

[237] R. Y. Rohekar, S. Nisimov, Y. Gurwicz, and G. Novik, “From Temporal to
Contemporaneous Iterative Causal Discovery in the Presence of Latent Con-
founders,” International Conference on Machine Learning (ICML), 2023.

234

Bibliography

[238] A. Gopnik, C. Glymour, D. M. Sobel, L. E. Schulz, T. Kushnir, and D. Danks,
“A Theory of Causal Learning in Children: Causal Maps and Bayes Nets,”
Psychological Review, vol. 111, no. 1, 2004.

[239] T. L. Griffiths and J. B. Tenenbaum, “Structure and Strength in Causal Induc-
tion,” Cognitive Psychology, vol. 51, no. 4, pp. 334–384, 2005.

[240] T. L. Griffiths and J. B. Tenenbaum, “Theory-Based Causal Induction,” Psy-
chological Review, vol. 116, no. 4, pp. 661–716, 2009.

[241] D. C. Penn and D. J. Povinelli, “Causal Cognition in Human and Nonhu-
man Animals: A Comparative, Critical Review,” Annual Review of Psychology,
vol. 58, pp. 97–118, 2007.

[242] D. A. Braun, C. Mehring, and D. M. Wolpert, “Structure Learning in Action,”
Behavioural Brain Research, vol. 206, no. 2, pp. 157–165, 2010.

[243] K. Cobbe, C. Hesse, J. Hilton, and J. Schulman, “Leveraging Procedural Gen-
eration to Benchmark Reinforcement Learning,” International Conference on
Machine Learning (ICML), 2020.

[244] A. Gopnik, A. N. Meltzoff, and P. K. Kuhl, The Scientist in the Crib: Minds,
Brains, and How Children Learn. William Morrow & Co, 1999.

[245] L. Schulz, “The Origins of Inquiry: Inductive Inference and Exploration in Early
Childhood,” Trends in Cognitive Sciences, vol. 16, no. 7, pp. 382–389, 2012.

[246] H. G. Schmidt, S. M. Loyens, T. Van Gog, and F. Paas, “Problem-Based
Learning is Compatible with Human Cognitive Architecture: Commentary on
Kirschner, Sweller, and Clark (2006),” Educational Psychologist, vol. 42, no. 2,
pp. 91–97, 2007.

[247] S. M. Loyens, J. Magda, and R. M. Rikers, “Self-Directed Learning in Problem-
Based Learning and its Relationships with Self-Regulated Learning,” Educa-
tional Psychology Review, vol. 20, no. 4, pp. 411–427, 2008.

[248] L. Alfieri, P. J. Brooks, N. J. Aldrich, and H. R. Tenenbaum, “Does Discovery-
Based Instruction Enhance Learning?,” Journal of Educational Psychology,
vol. 103, no. 1, p. 1, 2011.

[249] F. Khan, B. Mutlu, and J. Zhu, “How Do Humans Teach: On Curriculum
Learning and Teaching Dimension,” Advances in Neural Information Processing
Systems 24 (NIPS), vol. 24, 2011.

[250] F. Poli, G. Serino, R. Mars, and S. Hunnius, “Infants Tailor Their Attention to
Maximize Learning,” Science Advances, vol. 6, no. 39, p. eabb5053, 2020.

235

Bibliography

[251] A. Ten, P. Kaushik, P.-Y. Oudeyer, and J. Gottlieb, “Humans Monitor Learning
Progress in Curiosity-Driven Exploration,” Nature Communications, vol. 12,
no. 1, p. 5972, 2021.

[252] A. F. Baranes, P.-Y. Oudeyer, and J. Gottlieb, “The Effects of Task Difficulty,
Novelty and the Size of the Search Space on Intrinsically Motivated Explo-
ration,” Frontiers in Neuroscience, vol. 8, p. 317, 2014.

[253] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum Learning,”
International Conference on Machine Learning (ICML), pp. 41–48, 2009.

[254] S. Sukhbaatar, Z. Lin, I. Kostrikov, G. Synnaeve, A. Szlam, and R. Fergus, “In-
trinsic Motivation and Automatic Curricula via Asymmetric Self-Play,” arXiv
preprint arXiv:1703.05407, 2017.

[255] C. Florensa, D. Held, X. Geng, and P. Abbeel, “Automatic Goal Generation for
Reinforcement Learning Agents,” International Conference on Machine Learn-
ing (ICML), pp. 1515–1528, 2018.

[256] A. Jabri, K. Hsu, A. Gupta, B. Eysenbach, S. Levine, and C. Finn, “Unsuper-
vised Curricula for Visual Meta-Reinforcement Learning,” Advances in Neural
Information Processing Systems 32 (NeurIPS), vol. 32, 2019.

[257] S. Narvekar, B. Peng, M. Leonetti, J. Sinapov, M. E. Taylor, and P. Stone,
“Curriculum Learning for Reinforcement Learning Domains: A Framework and
Survey,” Journal of Machine Learning Research, vol. 21, pp. 1–50, 2020.

[258] E. Kosoy, D. M. Chan, A. Liu, J. Collins, B. Kaufmann, S. H. Huang, J. B. Ham-
rick, J. Canny, N. R. Ke, and A. Gopnik, “Towards Understanding How Ma-
chines Can Learn Causal Overhypotheses,” arXiv preprint arXiv:2206.08353,
2022.

[259] E. Sumner, A. X. Li, A. Perfors, B. Hayes, D. Navarro, and B. W. Sarnecka,
“The Exploration Advantage: Children’s Instinct to Explore Allows Them to
Find Information that Adults Miss,” PsyArXiv preprint, 2019.

[260] E. S. Sumner, M. Steyvers, and B. W. Sarnecka, “It’s Not the Treasure, It’s
the Hunt: Children Are More Explorative on an Explore/Exploit Task than
Adults,” CogSci, pp. 2891–2897, 2019.

[261] E. G. Liquin and A. Gopnik, “Children are More Exploratory and Learn More
than Adults in an Approach-Avoid Task,” Cognition, vol. 218, p. 104940, 2022.

[262] J. X. Wang, M. King, N. Porcel, Z. Kurth-Nelson, T. Zhu, C. Deck, P. Choy,
M. Cassin, M. Reynolds, F. Song, et al., “Alchemy: A Benchmark and Analysis
Toolkit for Meta-Reinforcement Learning Agents,” Proceedings of the NeurIPS
2021 Datasets and Benchmarks Track, 2021. arXiv preprint arXiv:2102.02926.

236

Bibliography

[263] C. Jiang, N. R. Ke, and H. van Hasselt, “Learning How to Infer Partial MDPs
for In-Context Adaptation and Exploration,” arXiv preprint arXiv:2302.04250,
2023.

[264] J. Pearl, “Causal Inference without Counterfactuals: Comment,” Journal of the
American Statistical Association, vol. 95, no. 450, pp. 428–431, 2000.

[265] C. Glymour, P. Spirtes, and R. Scheines, “Causal Inference,” Erkenntnis,
vol. 35, no. 1-3, pp. 151–189, 1991.

[266] P. Soviany, R. T. Ionescu, P. Rota, and N. Sebe, “Curriculum Learning: A
Survey,” International Journal of Computer Vision, vol. 130, no. 6, pp. 1526–
1565, 2022.

[267] A. Graves, M. G. Bellemare, J. Menick, R. Munos, and K. Kavukcuoglu, “Au-
tomated Curriculum Learning for Neural Networks,” International Conference
on Machine Learning (ICML), pp. 1311–1320, 2017.

[268] M. Shi and V. Ferrari, “Weakly Supervised Object Localization using Size Esti-
mates,” European Conference on Computer Vision (ECCV), pp. 105–121, 2016.

[269] P. Soviany, R. T. Ionescu, P. Rota, and N. Sebe, “Curriculum Learning: A
Survey,” arXiv preprint arXiv:2101.10382, 2021.

[270] C. Li, M. Zhang, and Y. He, “Curriculum Learning: A Regularization Method
for Efficient and Stable Billion-Scale GPT Model Pre-Training,” OpenReview
preprint, 2021.

[271] S. Arora and A. Goyal, “A Theory for Emergence of Complex Skills in Language
Models,” arXiv preprint arXiv:2307.15936, 2023.

[272] Q. Li, Y. Zhai, Y. Ma, and S. Levine, “Understanding the Complexity Gains
of Single-Task RL with a Curriculum,” International Conference on Machine
Learning (ICML), 2023.

[273] J. L. Elman, “Learning and Development in Neural Networks: The Importance
of Starting Small,” Cognition, vol. 48, no. 1, pp. 71–99, 1993.

[274] P.-Y. Oudeyer, F. Kaplan, and V. V. Hafner, “Intrinsic Motivation Systems
for Autonomous Mental Development,” IEEE Transactions on Evolutionary
Computation, vol. 11, no. 2, pp. 265–286, 2007.

[275] C. Romac, R. Portelas, K. Hofmann, and P.-Y. Oudeyer, “TeachMyAgent: a
Benchmark for Automatic Curriculum Learning in Deep RL,” International
Conference on Machine Learning (ICML), pp. 9052–9063, 2021.

237

Bibliography

[276] R. Bellman, “A Markovian Decision Process,” Journal of Mathematics and Me-
chanics, pp. 679–684, 1957.

[277] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. Cam-
bridge, MA: MIT Press, 2nd ed., 2018.

[278] M. Jiang, E. Grefenstette, and T. Rocktäschel, “Prioritized Level Replay,” In-
ternational Conference on Machine Learning (ICML), 2021.

[279] M. McCloskey and N. J. Cohen, “Catastrophic Interference in Connectionist
Networks: The Sequential Learning Problem,” Psychology of Learning and Mo-
tivation, vol. 24, pp. 109–165, 1989.

[280] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A.
Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, et al., “Over-
coming Catastrophic Forgetting in Neural Networks,” Proceedings of the Na-
tional Academy of Sciences, vol. 114, no. 13, pp. 3521–3526, 2017.

[281] M. Toneva, A. Sordoni, R. T. d. Combes, A. Trischler, Y. Bengio, and G. J. Gor-
don, “An Empirical Study of Example Forgetting During Deep Neural Network
Learning,” arXiv preprint arXiv:1812.05159, 2018.

[282] C. V. Nguyen, A. Achille, M. Lam, T. Hassner, V. Mahadevan, and S. Soatto,
“Toward Understanding Catastrophic Forgetting in Continual Learning,” arXiv
preprint arXiv:1908.01091, 2019.

[283] R. C. Atkinson, “Optimizing the Learning of a Second-Language Vocabulary,”
Journal of Experimental Psychology, vol. 96, no. 1, p. 124, 1972.

[284] N. Kornell and J. Metcalfe, “Study Efficacy and the Region of Proximal Learn-
ing Framework,” Journal of Experimental Psychology: Learning, Memory, and
Cognition, vol. 32, no. 3, p. 609, 2006.

[285] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement Learning: A
Survey,” Journal of Artificial Intelligence Research, vol. 4, pp. 237–285, 1996.

[286] Y. Li, “Deep Reinforcement Learning,” arXiv preprint arXiv:1810.06339, 2018.

[287] S. E. Li, “Deep Reinforcement Learning,” Reinforcement Learning for Sequen-
tial Decision and Optimal Control, pp. 365–402, 2023.

[288] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,
and M. Riedmiller, “Playing Atari with Deep Reinforcement Learning,” arXiv
preprint arXiv:1312.5602, 2013.

238

Bibliography

[289] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-Level
Control through Deep Reinforcement Learning,” Nature, vol. 518, no. 7540,
pp. 529–533, 2015.

[290] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung,
D. H. Choi, R. Powell, T. Ewalds, P. Georgiev, et al., “Grandmaster Level
in StarCraft II using Multi-Agent Reinforcement Learning,” Nature, vol. 575,
no. 7782, pp. 350–354, 2019.

[291] OpenAI, M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew,
J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray, et al., “Learning Dex-
terous In-Hand Manipulation,” The International Journal of Robotics Research,
vol. 39, no. 1, pp. 3–20, 2020.

[292] D. L. Rohde and D. C. Plaut, “Language Acquisition in the Absence of Explicit
Negative Evidence: How Important is Starting Small?,” Cognition, vol. 72,
no. 1, pp. 67–109, 1999.

[293] X. Wang, Y. Chen, and W. Zhu, “A Survey on Curriculum Learning,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2021.

[294] R. Portelas, C. Colas, L. Weng, K. Hofmann, and P.-Y. Oudeyer, “Automatic
Curriculum Learning For Deep RL: A Short Survey,” International Joint Con-
ference on Artificial Intelligence (IJCAI), 2021.

[295] R. Wang, J. Lehman, J. Clune, and K. O. Stanley, “Paired Open-Ended Trail-
blazer (POET): Endlessly Generating Increasingly Complex and Diverse Learn-
ing Environments and Their Solutions,” arXiv preprint arXiv:1901.01753, 2019.

[296] R. Wang, J. Lehman, A. Rawal, J. Zhi, Y. Li, J. Clune, and K. Stanley, “En-
hanced POET: Open-Ended Reinforcement Learning through Unbounded In-
vention of Learning Challenges and their Solutions,” International Conference
on Machine Learning (ICML), pp. 9940–9951, 2020.

[297] J. Z. Leibo, E. Hughes, M. Lanctot, and T. Graepel, “Autocurricula and the
Emergence of Innovation from Social Interaction: A Manifesto for Multi-Agent
Intelligence Research,” arXiv preprint arXiv:1903.00742, 2019.

[298] M. Chevalier-Boisvert, L. Willems, and S. Pal, “Minimalistic Gridworld
Environment for Gymnasium.” https://github.com/Farama-Foundation/
Minigrid, 2018.

[299] B. Tang, M. A. Lin, I. Akinola, A. Handa, G. S. Sukhatme, F. Ramos, D. Fox,
and Y. Narang, “IndustReal: Transferring Contact-Rich Assembly Tasks from
Simulation to Reality,” Robotics: Science and Systems (RSS), 2023.

239

https://github.com/Farama-Foundation/Minigrid
https://github.com/Farama-Foundation/Minigrid

Bibliography

[300] M. Dennis, N. Jaques, E. Vinitsky, A. Bayen, S. Russell, A. Critch, and
S. Levine, “Emergent Complexity and Zero-Shot Transfer via Unsupervised
Environment Design,” Advances in Neural Information Processing Systems 33
(NeurIPS), vol. 33, pp. 13049–13061, 2020.

[301] K. J. Åström, “Optimal Control of Markov Processes with Incomplete State
Information,” Journal of Mathematical Analysis and Applications, vol. 10, no. 1,
pp. 174–205, 1965.

[302] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and Acting
in Partially Observable Stochastic Domains,” Artificial Intelligence, vol. 101,
no. 1-2, pp. 99–134, 1998.

[303] Y. Abbasi-Yadkori and G. Neu, “Online Learning in MDPs with Side Informa-
tion,” arXiv preprint arXiv:1406.6812, 2014.

[304] A. Hallak, D. Di Castro, and S. Mannor, “Contextual Markov Decision Pro-
cesses,” arXiv preprint arXiv:1502.02259, 2015.

[305] A. Modi, N. Jiang, S. Singh, and A. Tewari, “Markov Decision Processes with
Continuous Side Information,” Algorithmic Learning Theory, vol. 83, pp. 597–
618, 2018.

[306] J. Parker-Holder, M. Jiang, M. Dennis, M. Samvelyan, J. Foerster, E. Grefen-
stette, and T. Rocktäschel, “Evolving Curricula with Regret-Based Envi-
ronment Design,” International Conference on Machine Learning (ICML),
pp. 17473–17498, 2022.

[307] M. Jiang, M. Dennis, J. Parker-Holder, J. Foerster, E. Grefenstette, and
T. Rocktäschel, “Replay-Guided Adversarial Environment Design,” Advances
in Neural Information Processing Systems 34 (NeurIPS), vol. 34, pp. 1884–
1897, 2021.

[308] R. Portelas, C. Colas, K. Hofmann, and P.-Y. Oudeyer, “Teacher Algorithms
for Curriculum Learning of Deep RL in Continuously Parameterized Environ-
ments,” Proceedings of the Conference on Robot Learning (CoRL), 2020.

[309] M. Samvelyan, A. Khan, M. Dennis, M. Jiang, J. Parker-Holder, J. Foerster,
R. Raileanu, and T. Rocktäschel, “MAESTRO: Open-Ended Environment De-
sign for Multi-Agent Reinforcement Learning,” International Conference on
Learning Representations (ICLR), 2023.

[310] I. Mediratta, M. Jiang, J. Parker-Holder, M. Dennis, E. Vinitsky, and
T. Rocktäschel, “Stabilizing Unsupervised Environment Design with a Learned
Adversary,” Conference on Lifelong Learning Agents (CoLLAs), pp. 270–291,
2023.

240

Bibliography

[311] M. Beukman, S. Coward, M. Matthews, M. Fellows, M. Jiang, M. Dennis, and
J. Foerster, “Refining Minimax Regret for Unsupervised Environment Design,”
arXiv preprint arXiv:2402.12284, 2024.

[312] J. Bruce, A. Anand, B. Mazoure, and R. Fergus, “Learning about Progress from
Experts,” International Conference on Learning Representations (ICLR), 2023.

[313] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S.
Bernstein, J. Bohg, A. Bosselut, E. Brunskill, et al., “On the Opportunities and
Risks of Foundation Models,” arXiv preprint arXiv:2108.07258, 2021.

[314] J. Hill, “Real Time Control of a Robot with a Mobile Camera,” Proceedings of
the 9th International Symposium on Industrial Robots, pp. 233–245, 1979.

[315] S. Hutchinson, G. D. Hager, and P. I. Corke, “A Tutorial on Visual Servo Con-
trol,” IEEE Transactions on Robotics and Automation, vol. 12, no. 5, pp. 651–
670, 1996.

[316] V. Veitch, A. D’Amour, S. Yadlowsky, and J. Eisenstein, “Counterfactual In-
variance to Spurious Correlations: Why and How to Pass Stress Tests,” arXiv
preprint arXiv:2106.00545, 2021.

[317] M. Makar, B. Packer, D. Moldovan, D. Blalock, Y. Halpern, and A. D’Amour,
“Causally Motivated Shortcut Removal Using Auxiliary Labels,” arXiv preprint
arXiv:2105.06422, 2021.

[318] M. A. Goodrich and A. C. Schultz, “Human-Robot Interaction: A Survey,”
Foundations and Trends in Human–Computer Interaction, vol. 1, no. 3, pp. 203–
275, 2008.

[319] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne, “Imitation Learning: A
Survey of Learning Methods,” ACM Computing Surveys (CSUR), vol. 50, no. 2,
pp. 1–35, 2017.

[320] H. Zhao, H. Chen, F. Yang, N. Liu, H. Deng, H. Cai, S. Wang, D. Yin, and
M. Du, “Explainability for Large Language Models: A Survey,” ACM Transac-
tions on Intelligent Systems and Technology, vol. 15, no. 2, pp. 1–38, 2024.

[321] R. Kashefi, L. Barekatain, M. Sabokrou, and F. Aghaeipoor, “Explainability of
Vision Transformers: A Comprehensive Review and New Perspectives,” arXiv
preprint arXiv:2311.06786, 2023.

[322] E. Kıcıman, R. Ness, A. Sharma, and C. Tan, “Causal Reasoning and Large
Language Models: Opening a New Frontier for Causality,” arXiv preprint
arXiv:2305.00050, 2023.

241

Bibliography

[323] M. Zečević, M. Willig, D. S. Dhami, and K. Kersting, “Causal Parrots: Large
Language Models May Talk Causality But Are Not Causal,” Transactions on
Machine Learning Research, 2023.

[324] S. J. Gotts, H. J. Jo, G. L. Wallace, Z. S. Saad, R. W. Cox, and A. Martin, “Two
Distinct Forms of Functional Lateralization in the Human Brain,” Proceedings
of the National Academy of Sciences, vol. 110, no. 36, pp. E3435–E3444, 2013.

[325] M. C. Corballis, “Left Brain, Right Brain: Facts and Fantasies,” PLoS Biology,
vol. 12, no. 1, p. e1001767, 2014.

[326] Q.-Y. Zhou, J. Park, and V. Koltun, “Open3D: A Modern Library for 3D Data
Processing,” arXiv preprint arXiv:1801.09847, 2018.

[327] S. Katz, A. Tal, and R. Basri, “Direct Visibility of Point Sets,” in ACM SIG-
GRAPH 2007 papers, pp. 24–es, ACM, 2007.

[328] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A Density-based Algorithm
for Discovering Clusters in Large Spatial Databases with Noise,” Proceedings of
the Second International Conference on Knowledge Discovery and Data Mining
(KDD), vol. 96, no. 34, pp. 226–231, 1996.

[329] K. Zhang, M. Sharma, J. Liang, and O. Kroemer, “A Modular Robotic Arm
Control Stack for Research: Franka-Interface and FrankaPy,” arXiv preprint
arXiv:2011.02398, 2020.

[330] J. R. Kubricht, K. J. Holyoak, and H. Lu, “Intuitive Physics: Current Research
and Controversies,” Trends in Cognitive Sciences, vol. 21, pp. 749–759, 2017.

[331] D. Ha and J. Schmidhuber, “World Models,” CoRR, vol. abs/1803.10122, 2018.

[332] D. Hafner, T. P. Lillicrap, M. Norouzi, and J. Ba, “Mastering Atari with Dis-
crete World Models,” CoRR, vol. abs/2010.02193, 2020.

[333] J. Wang, C. Hu, Y. Wang, and Y. Zhu, “Dynamics Learning With Object-
Centric Interaction Networks for Robot Manipulation,” IEEE Access, vol. 9,
pp. 68277–68288, 2021.

[334] O. Kroemer and G. Sukhatme, “Meta-level Priors for Learning Manipulation
Skills with Sparse Features,” 2016 International Symposium on Experimental
Robotics (ISER), 2017.

[335] D. J. Wilkinson, Stochastic Modelling for Systems Biology. Chapman and
Hall/CRC Mathematical and Computational Biology Series, New York, NY:
Chapman & Hall/CRC, 2006.

242

Bibliography

[336] A. J. Lotka, “Contribution to the Theory of Periodic Reactions,” The Journal
of Physical Chemistry, vol. 14, no. 3, pp. 271–274, 1909.

[337] X. Jian and L. Zushu, “Dynamic Model and Motion Control Analysis of
Three-link Gymnastic Robot on Horizontal Bar,” International Conference on
Robotics, Intelligent Systems and Signal Processing, vol. 1, pp. 83–87, 2003.

[338] R. M. Murray, Z. Li, and S. S. Sastry, A Mathematical Introduction to Robotic
Manipulation. CRC Press, 2017.

[339] L. S. Cubit, R. Canale, R. Handsman, C. Kidd, and L. Bennetto, “Visual
Attention Preference for Intermediate Predictability in Young Children,” Child
Development, vol. 92, no. 2, pp. 691–703, 2021.

[340] C. Kidd, S. T. Piantadosi, and R. N. Aslin, “The Goldilocks Effect: Human
Infants Allocate Attention to Visual Sequences that are Neither Too Simple nor
Too Complex,” PloS One, vol. 7, no. 5, p. e36399, 2012.

[341] C. Kidd, S. T. Piantadosi, and R. N. Aslin, “The Goldilocks Effect in Infant
Auditory Attention,” Child Development, vol. 85, no. 5, pp. 1795–1804, 2014.

[342] L. S. Vgotsky, Mind in Society: The Development of Higher Psychological Pro-
cesses. Harvard University Press, 1978.

[343] J. A. Leonard, S. R. Cordrey, H. Z. Liu, and A. P. Mackey, “Young Children
Calibrate Effort Based on the Trajectory of Their Performance,” Developmental
Psychology, vol. 59, no. 3, p. 609, 2023.

[344] A. Ruggeri and T. Lombrozo, “Children Adapt Their Questions to Achieve
Efficient Search,” Cognition, vol. 143, pp. 203–216, 2015.

[345] D. Weinshall, G. Cohen, and D. Amir, “Curriculum Learning by Transfer Learn-
ing: Theory and Experiments with Deep Networks,” International Conference
on Machine Learning (ICML), pp. 5238–5246, 2018.

[346] K. P. Murphy, “Active Learning of Causal Bayes Net Structure,” University of
California, Berkeley Technical Report, 2001.

[347] S. Tong and D. Koller, “Active Learning for Structure in Bayesian Networks,”
International Joint Conference on Artificial Intelligence (IJCAI), vol. 17, no. 1,
pp. 863–869, 2001.

[348] Y.-B. He and Z. Geng, “Active Learning of Causal Networks with Intervention
Experiments and Optimal Designs,” Journal of Machine Learning Research,
vol. 9, no. Nov, pp. 2523–2547, 2008.

243

Bibliography

[349] F. Eberhardt, “Almost Optimal Intervention Sets for Causal Discovery,” arXiv
preprint arXiv:1206.3250, 2012.

[350] C. Squires, S. Magliacane, K. Greenewald, D. Katz, M. Kocaoglu, and K. Shan-
mugam, “Active Structure Learning of Causal DAGs via Directed Clique Tree,”
arXiv preprint arXiv:2011.00641, 2020.

[351] A. Ghassami, S. Salehkaleybar, N. Kiyavash, and E. Bareinboim, “Budgeted
Experiment Design for Causal Structure Learning,” International Conference
on Machine Learning (ICML), pp. 1724–1733, 2018.

[352] A. Ghassami, S. Salehkaleybar, and N. Kiyavash, “Interventional Experiment
Design for Causal Structure Learning,” arXiv preprint arXiv:1910.05651, 2019.

[353] A. Hyttinen, F. Eberhardt, and P. O. Hoyer, “Experiment Selection for Causal
Discovery,” Journal of Machine Learning Research, vol. 14, pp. 3041–3071,
2013.

[354] M. Kocaoglu, A. Dimakis, and S. Vishwanath, “Cost-Optimal Learning of
Causal Graphs,” International Conference on Machine Learning (ICML),
pp. 1875–1884, 2017.

[355] E. M. Lindgren, M. Kocaoglu, A. G. Dimakis, and S. Vishwanath, “Exper-
imental Design for Cost-Aware Learning of Causal Graphs,” arXiv preprint
arXiv:1810.11867, 2018.

[356] N. Scherrer, O. Bilaniuk, Y. Annadani, A. Goyal, P. Schwab, B. Schölkopf,
M. C. Mozer, Y. Bengio, S. Bauer, and N. R. Ke, “Learning Neural Causal
Models with Active Interventions,” arXiv preprint arXiv:2109.02429, 2021.

244

	Contents
	List of Tables
	List of Figures
	I Introduction
	Introduction
	Motivation
	Two Realities of Deep Learning
	In an Open World, There Are No Unstructured Environments
	Causality: The Structure of Data
	From Correlational Learning to Causal Learning

	Thesis Statement: Learning and Leveraging Structure within the Open World
	Thesis Research Questions
	Thesis Contributions
	Thesis Conclusions and Takeaways
	Thesis Outline
	A Note on Terminology

	II Correlation-Based Transfer Learning for Perception
	DREAM: Camera-to-Robot Pose Estimation from a Single Image through Synthetic Sim-to-Real Transfer
	Summary
	Introduction
	Approach
	Network Architecture
	Pose Estimation
	Data Generation

	Experimental Results
	Datasets
	Metrics
	Training and Simulation Experiments
	Real-world Experiments
	Comparison with Hand-Eye Calibration
	Measuring Workspace Accuracy

	Previous Work
	Conclusion
	Acknowledgments

	FormNet: Visual Identification of Articulated Objects from a Single Image Observation through Synthetic Sim-to-Real Transfer
	Summary
	Introduction
	Related Work
	Method
	Overview
	Dataset of Articulated Objects
	Dataset of Scene Images with Articulated Objects
	Network Architecture
	Articulation Prediction from Motion Residual Flows

	Experiments
	Network Training
	Network Accuracy (All Object Categories)
	Generalization to Novel Object Categories
	Generalization from Training on One Category
	Real-world Experiments

	Conclusion
	Acknowledgments

	III Structural Sim-to-Real Transfer
	CREST: Causal Feature Selection for Policies
	Summary
	Introduction
	Related Works
	Problem Formulation
	Causal Structure Learning
	Internal Model for Causal Reasoning
	Causal Reasoning to Determine Relevant Contexts
	CREST Evaluation

	Policy Learning and Transfer
	Policy Architectures
	Network Training and Transfer

	Experimental Results
	Block Stacking
	Crate Opening

	Conclusion
	Acknowledgments

	SCALE: Causal Learning of Skills
	Summary
	Introduction
	Related Work
	Preliminaries
	Skill Formulation
	Regional Compressed Option
	Data Generating Region

	Skill Discovery through Causal Reasoning in Simulation
	Batch Data Generation
	Skill Training

	Experimental Results
	Block Stacking
	Sensorless Peg-in-Hole Insertion

	Conclusion
	Acknowledgments

	IV Causality and Dynamical Systems
	Learning By Doing: Controlling a Dynamical System using Causality, Control, and Reinforcement Learning
	Summary
	Introduction
	Causality, Control, and Reinforcement Learning
	Track CHEM: Optimally controlling a chemical reaction
	Track ROBO: Controlling a robotic arm in a dynamical environment
	Results and lessons learned
	Acknowledgments

	Hybrid Causal World Models: Integrating Latent and Semantic Information
	Summary
	Introduction
	Related Works
	Preliminaries
	World Models
	Causal World Models: Variational Causal Dynamics

	Hybridization of World Models
	Semantic World Model
	Synchronizing the Latent and Semantic Spaces
	Causal Discovery of Shared Latent/Semantic Dimensions
	Training the Hybrid World Model

	Experiments
	Multi-Body Dynamics Domain
	Experimental Setup
	Experimental Results

	Conclusion
	Acknowledgments

	V Curriculum Learning
	Automated Curriculum Learning: Humans and Agents
	Summary
	Introduction
	Automated Curriculum Learning in Children
	Methods
	Automated Curriculum Learning Results

	Hand-Designed Curriculum Learning in Reinforcement Learning Agents
	Formulation
	Methods
	Baseline Curriculum Learning Results
	Curriculum Learning with Auxiliary Rewards
	Additional Baselines and Comparisons

	General Discussion

	CURATE: Learning to Train Reinforcement Learning Policies through Curriculum Learning
	Summary
	Introduction
	Preliminaries
	Learning with UPOMDPs
	Curriculum Learning within UPOMDPs

	Methodology
	Training RL Policies with Curriculum Learning
	Updating the Curriculum with Sample-Based Evaluations
	Description of Hyperparameters

	Experimental Results
	Experimental Procedure
	MiniGrid Corridor Navigation: MultiRoom-N4-Random

	Related Works
	Conclusion
	Extensions

	Acknowledgments

	VI Conclusion
	Conclusion
	Discussion
	The Generality of Causality
	The Power of Causal Interventions and Counterfactuals
	Causal Robot Learning: A Timely Need

	Future Work
	Active Causal Learning of Robot Manipulation Skills through Interactive Perception
	TRACE: Structural Task Transfer
	RVS: Causal Visual Servoing for Robust Image-Based Control
	Causal Discovery and Implicit Causal Models
	Causality and Human-Robot Interaction
	Unifying Foundation Models with Causality
	CASIE: The Lifelong, Causal Robot Learning System

	Limitations and Next Steps
	Towards Causal Embodied Intelligence

	VII Appendices
	Appendix for FormNet
	Algorithm for Computing Articulation from Motion Residual Flow
	Summary of Public Datasets of Meshes
	Extension of FormNet Performance on Object Categories

	Appendix for CREST
	Summary of CREST
	CREST Analysis on Math Environment
	Task Representation: Block Stacking
	Sim-to-Real Block Stacking Experiment
	Task Representation: Crate Opening
	Crate Opening Distribution Shift in Irrelevant Contexts

	Appendix for SCALE
	SCALE and Appendices Overview
	Related Work for Intuitive Physics
	Simulation as a Causal Reasoning Engine
	Nomenclature
	SCALE Algorithm
	SCALE and Higher-Dimensional Context Spaces
	Block Stacking Intuitive Example
	Additional Details for Block Stacking Experiment
	Sim-to-Real Block Stacking Experiment
	Experimental Setup
	Experimental Results

	Skill Library Use in a Downstream Task: Stacking a Block Tower
	Additional Details for Sensorless Peg-in-Hole Insertion Experiment
	Sensorless Peg-in-Hole Insertion: Domain Shift Experiment
	A Primer on Causality

	Appendix for Learning By Doing
	More Details on Track CHEM
	CHEM results

	More Details on Track ROBO
	Rotational robots
	Prismatic robot
	ROBO results

	Appendix for ACL
	Related Works
	Procgen Environments
	Our Adapted Procgen Environments

	Automated Curriculum Learning in Children
	Procgen Difficulty Levels
	Experimental Procedure
	Results

	Hand-Designed Curriculum Learning in Reinforcement Learning Agents
	Additional Method Details
	Results
	Random Level Baseline

	Bibliography

