
Leveraging Affordances for Accelerating

Online Reinforcement Learning

Aman Mehra

CMU-RI-TR-24-45

July 15, 2024

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Prof. Jeff Schneider (Chair)
Prof. Katerina Fragkiadaki
Swaminathan Gurumurthy

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Robotics.

Copyright © 2024 Aman Mehra. All rights reserved.

To my parents and grandparents.

iv

Abstract

A long-standing problem in online reinforcement learning (RL) is
that of ensuring sample efficiency. This stems from the inability of
a learning agent to explore environments efficiently. Most attempts
at efficient exploration tackle this problem in a setting where no prior
information is utilized to bootstrap learning, thus failing to leverage
additional affordances that may be cheaply available at the time of learning.
These could include expert demonstrations, simulators that can reset to
arbitrary states and domain specific inductive biases. Such affordances are
valuable resources that offer enormous potential to guide exploration and
speed up learning. As such their use in facilitating accelerated exploration
is under explored in existing literature.

Consequently, in this thesis, we study different ways to utilize such af-
fordances to facilitate faster online learning. We first incorporate af-
fordances into the output end of a policy by describing a method that
re-parameterizes the action space of driving policies through Bezier curves
to induce an inductive bias towards natural vehicular trajectories. This
enables us to learn challenging driving behaviour over 12× faster than
traditional instantaneous action spaces. Subsequently, we study how
affordances influencing the input end of a policy can improve learning
efficiency. When provided with an arbitrarily resettable simulator, we
find that training with a suitable choice of an auxiliary start state dis-
tribution that may differ from the true start state distribution of the
underlying Markov Decision Process can significantly improve sample
efficiency. Using a notion of safety to inform the choice of this auxiliary
distribution significantly accelerates learning. We empirical demonstrate
the effectiveness of this approach on the suite of MuJoCo continuous
control tasks and a hard-exploration sparse-reward navigation task.

v

vi

Acknowledgments

This work would not have been possible without the help and support
of a large number of people and I would like to take this opportunity to
thank them all for the invaluable part they have played in my journey.

Firstly, I am grateful to my advisor, Jeff Schneider, for giving me an
opportunity to explore a new field where I had little prior experience. I
really appreciate the freedom and flexibility I was given to find my feet
and discover for myself the problems I would most enjoy tackling in this
domain. His emphasis on zooming out and looking at the big picture has
helped me stay on track and it has improved my ability to ask the right
questions and define the scope of the research problem. This academic
atmosphere has helped me develop a taste for the kind of research I like
and I am incredibly grateful for his role in helping develop these skills
and perspectives.

I have also been very lucky to collaborate with Aditi Raghunathan. Work-
ing with her, I got first hand experience of what it takes to make a
meaningful contribution at the cutting edge of a rapidly evolving field.
I learnt to be comprehensive with experimentation and the importance
of conveying findings and research impact in an appropriate manner.
My biggest takeaway was from observing her derive deep insights from
seemingly disparate experimental results. This is something that I am yet
to fully develop but I have gotten a glimpse of what to strive for in this
regard and I am very grateful to have this north star to work towards.

I also want to give a big shout-out to all the labmates that I have had
the chance to interact with at Auton Lab and FORUM. I am incredibly
grateful for the numerous technical discussions we have got to have over
the past two years. These discussions have been very helpful and I have
often left with new questions, new insights and a burning desire to explore
a new topic that someone brought up! All of this has helped me progress
my work further. One of the biggest things that I will miss about CMU
is this fabulous intellectual environment that has been so instrumental in
my professional growth. A special shout-out to Vedant, Xintong and Alex
for not just being great labmates but even better friends. I will miss our
road trips, complete with deep philosophical discussions and our weekly
culinary escapades. I hope we continue to have more such adventures in
the future!

vii

Alongside all the professional growth that the last two years at CMU
brought about, I have gotten to meet some of the most amazing people
that I am lucky to call friends, starting off with the Machas - Bharath,
Prachi and Jay! First a big thank you to Bharath, with his questionable
taste in sweets, for being my partner in crime for all things food and
entertainment, for always being willing to make time, and for being
the calm and level-headed complement to my crazy! Prachi, with her
authoritarian views on what constitutes good chaat, for being my go to
person for deep conversations, for adding that bubbly energy that makes
the Machas Machao, for being an inspiration in standing for yourself and
for being the spontaneous complement to my plan-it-to-the-tee self. And
lastly Jay, with his foolproof remedy for tough times - lite be, for being the
fun-loving culinarily-challenged brother who has inspired me to be a fitter
and more well rounded person! Also, a big shout-out to my old friend
and roommate Saujas, for broadening my palette, surviving the daily
culinary shocks that living with me entails and for being a good sport
about everything from food, travel to random 3am chats before conference
deadlines! A big thank you to Peya, for being an amazing friend. Your
ability to plan and execute trips alongside the intense demands of work
has always inspired me to be more proactive in being more organized with
my work so that I can travel! Lastly, a massive shout out to Adi, Nikhil,
Christian, Ani, Ravi, Srujan and all my other RI buddies for the fond
memories. I will miss our weekend hikes, rafting adventure, road trips
and numerous parties. Each of you have made these two years at CMU
truly memorable and I leave Pittsburgh with a feeling that I am part of a
brand new family that will stay connected for life!

Finally, a huge thank you to my family. Words cannot express my
gratitude. Everything that I have achieved, not just at CMU, but from
day I was born is all because you have been there with me for the past
two and a half decades! A special mention to my family in Pittsburgh
who helped make the move to a new country feel completely seamless and
ensured that I never felt homesick these past two years!

viii

Funding

This material is based upon work supported by the U.S. Army Research
Office and the U.S. Army Futures Command under Contracts W519TC-
23-C-0031 and W519TC-23-C-0030 and by Stack AV.

ix

x

Contents

1 Introduction 1

2 Related Work 5
2.1 Exploration in purely online RL . 5
2.2 Learning policies efficiently offline . 6
2.3 Hybrid Reinforcement Learning . 7

3 Preliminaries 11
3.1 Reinforcement Learning . 11
3.2 Bezier Curves . 12

4 Temporal Action Abstractions via Bezier Curves 15
4.1 Introduction . 15
4.2 Temporal Re-parameterization of Action Space 16
4.3 Evaluations . 18

4.3.1 Setup . 18
4.3.2 Do Bezier Action Spaces learn more temporally accurate action

sequences? . 20
4.3.3 Do Bezier Action Spaces improve sample-efficiency? 21

4.4 Limitations and Discussion . 22

5 Accelerated Online RL via Auxiliary Start State Distributions 25
5.1 Introduction . 25
5.2 Constructing Auxiliary Start State Distributions 26
5.3 Evaluations . 28

5.3.1 Setup . 28
5.3.2 Do Auxiliary Start State Distributions accelerate learning of

robust policies? . 29
5.3.3 Influence of offline demonstration set size on performance and

sample-efficiency . 32
5.3.4 State safety inspired start state sampling for sample efficiency 33
5.3.5 Do start state distributions not deriving from state safety fail

to be sample efficient? . 35
5.3.6 Performance on MuJoCo Continuous Control Tasks 40

xi

5.4 Limitations and Discussion . 40

6 Conclusion 43

Bibliography 45

When this dissertation is viewed as a PDF, the page header is a link to this Table of Contents.

xii

List of Figures

4.1 Two examples of trajectories that can be generated by a policy that
predicts instantaneous steer. On the left is a jittery trajectory that is
unlikely to be seen in the wild, while on the right is a smooth trajectory
that resembles commonly seen real world trajectories. 16

4.2 The overtake scenario in CARLA comprising an ego vehicle and a
stationary vehicle parked in the path of the ego vehicle. 19

5.1 Task Completion Rate of Various methods on the Lava Bridge Envi-
ronment. Each method is evaluated on an In Distribution (ID) and
Out-of-Distribution (OOD) benchmark of starting states where the ID
start state distribution is the start state distribution of the MDP while
the OOD benchmark comprises a different distribution of start states. 30

5.2 A study of how sample-efficiency and robustness vary for hybrid RL
methods when provided with different amounts of demonstration data. 31

5.3 Sample-efficiency and robustness trends when simulator resets are
selected using different start state distributions. 33

5.4 Sample-efficiency and robustness trends when simulator resets are
selected using different start state distributions. An illustration of
the Lava Bridge environment. The red regions are the lava pits, the
green blobs denote p0 and the blue spots correspond to the distribution
µOOD. The red target marks the goal location. 34

5.5 Performance comparison of various online and hybrid RL methods on
the MuJoCo Ant-v4 continuous control task. 36

5.6 Performance comparison of various online and hybrid RL methods on
the MuJoCo HalfChetaah-v4 continuous control task. 37

5.7 Performance comparison of various online and hybrid RL methods on
the MuJoCo Walker2D-v4 continuous control task. 38

5.8 Performance comparison of various online and hybrid RL methods on
the MuJoCo Hopper-v4 continuous control task. 39

xiii

List of Tables

4.1 Influence of Action Horizon on policy performance for different action
parameterizations. All policies are trained for 1.5 million iterations . 20

4.2 Sample efficiency and final performance for different action parameter-
izations when trained to convergence 21

xiv

Chapter 1

Introduction

Online reinforcement learning algorithms facilitate learning general behaviors without

inductive biases and domain expertise through trial and error. By learning from

environmental interaction such methods hold the potential to exceed the performance

of supervised learning alternatives, reaching superhuman levels of performance on

tasks such as Atari [23], Chess [33] and Go [32]. Despite such successes, these

algorithms find it challenging to explore environments efficiently, resulting in long

training times [8, 26, 35].

There has been a considerable amount of work on making online RL more efficient

by promoting exploratory behaviors that are novelty-seeking [26] and state space-

covering [10, 14, 31]. Although such approaches have the potential to learn robust

policies, the lack of task-informed exploratory cues [22] and a tendency to forget how

to revisit promising exploration frontiers [8] make them inefficient at learning to solve

hard-exploration tasks. Moreover, these methods have been designed to improve

exploration efficiency in the absence of any other prior information. Consequently,

when affordances such as expert demonstrations, simulators with arbitrary reset

conditions and domain specific inductive biases are available, these approaches fail to

adequately leverage these additional resources to accelerate exploration.

On the other extreme, methods like imitation learning [9, 12] and offline RL

[18, 19] can learn task-specific behavior from purely offline data. These methods

perform well within the distribution of the training data but fail to be robust in an

out-of-distribution (OOD) setting, making them unsuitable for use in the real world.

1

1. Introduction

Hybrid Reinforcement Learning approaches mix offline data with online interac-

tions to bridge this gap and learn robust policies efficiently. Bootstrapping online

training with offline data isn’t straightforward and naively finetuning a policy learned

offline leads to sub-optimal performance [37]. In particular, offline experience can

be quickly forgotten during online training if not handled appropriately [35, 37].

Successful hybrid methods ensure the persistence of information acquired offline

during online training through various methods. Broadly they fall into two categories.

The first category of methods utilize offline data to alter the output of a policy

by learning action abstractions [34] to constrain the action space of the policy and

thereby reduce the complexity of the search problem. Another line of approaches

devise interventions at the input stage by either freezing a part of the replay buffer or

learning fixed reference policies using the offline data to serve as manner of generating

a curriculum online.

In this thesis, we revisit this hybrid RL setup and conduct two studies. In

Chapter 4 we study interventions at the output end of policies by investigating action

space abstractions to facilitate efficient learning of driving policies. We observe that

navigation problems possess natural inductive biases with regards to what feasible

trajectories look like and these inductive biases can be modelled without needing

any offline data. Consequently, we show that reparameterizing an instantaneous

control action space with a hand crafted temporally abstract trajectory representation

improves the sample efficiency of learning. We empirically demonstrate this on the

CARLA [7] simulator through a challenging overtaking scenario, where using Bezier

curves to achieve such a reparameterization brings about a 12× improvement in

sample efficiency.

In Chapter 5 we investigate hybrid interventions at the input end of a policy.

We show that we can considerably accelerate online learning in a setting where the

environment can be reset to arbitrary states by using expert offline data to construct

auxiliary start state distributions. We find that using a notion of safety, approximated

via episode length information is crucial for forming auxiliary start state distributions

that accelerate training. Unlike other hybrid approaches, the proposed approach

requires access to just the states from expert demonstration data. Access to an

arbitrarily resetable simulator enables relaxing the need to access expert rewards

and actions. This makes it much easier to collect data offline. We demonstrate

2

1. Introduction

the efficacy of this approach by presenting empirical results on continuous control

robotic tasks from MuJoCo [36] where the improved explorations allows us to obtain

reward that matches or exceeds state-of-the-art performance. Additionally, we use

a hard-exploration sparse-reward navigation task to showcase that training with a

suitable choice of auxiliary start state distribution enables learning policies that are

more robust to distribution shifts induced by evaluating at out-of-distribution (OOD)

start states.

3

1. Introduction

4

Chapter 2

Related Work

We explore related literature in this space through three broad category of methods:

i) purely online RL, ii) purely offline learning and iii) hybrid RL methods.

2.1 Exploration in purely online RL

Exploration is an age-old problem in reinforcement learning that is crucial to building

efficient and effective algorithms. In order to effectively explore, an algorithm must be

adept at doing four kinds of tasks - i) choosing where to explore from, i.e., choosing an

exploration frontier, ii) efficiently navigating to an exploration frontier, iii) choosing

an exploration target to explore towards after arriving at an exploration frontier and

iv) navigating efficiently to an exploration target.

In current literature, there exist many methods that aim to incentivize exploration

but do not explicitly optimize for these properties. Several methods treat exploration

as incidental to the central goal of reward maximization. These include methods

that inject additive noise to the actions [30] or network parameters [4] to perform

incidental exploration and are not very efficient at exploring the state space [35].

Many approaches incentivize exploratory behaviour through exploration bonuses

such as surprise-maximizing intrinsic motivation [26], surprise-minimizing intrinsic

motivation [3], and action [10], state [31] and trajectory [15] entropy maximizing

rewards. Entropy maximization approaches fail to distinguish exploration in unseen

regions (navigating to exploration targets) from exploration in regions of the state

5

2. Related Work

space where the policy is already proficient (navigating to exploration frontiers). This

makes them inefficient. Intrinsic motivation based methods use the notion of surprise

as a mechanism to choose exploration targets, however, their inability to reason about

navigation makes them struggle in hard-exploration sparse-reward environments [8].

Moreover, all these methods are unable to leverage affordances like offline data and

resetable simulators when available.

Go-explore [8] is a conceptual framework that disentangles the question of selecting

and reaching an exploration frontier. It is reminiscent of classical planners that first

choose an exploration frontier, navigate to it quickly without exploring (or by resetting

the simulator to that frontier state) and then initiate exploration after arriving at the

frontier. Go-explore maintains an archive of visited states and chooses an exploration

frontier from this archive either uniformly at random or using a domain specific

heuristic. In Chapter 5 we expand on this theme by investigating what is a good way

of picking an exploration frontier. We present generic properties that are desirable to

have in this selection procedure alongside a broadly applicable mechanism to select

exploration frontiers. Furthermore, in Chapter 4 we study how to efficiently navigate

after reaching an exploration frontier.

BARL [22] is an information theoretic exploration method that uses a classical

planner and a learnt posterior model to sample transitions that are maximally

informative for the policy to learn a given task. This enables it to solve tasks very

efficiently. The setting used by its authors bears close resembles to ours since they

assume access to a simulator that supports arbitrary resets. Moreover, their use

of a Gaussian process (GP) to model the posterior is amenable to utilizing expert

demonstrations during training. While very effective on small scale problems with

dense reward functions, BARL unfortunately does not scale to higher dimensions and

sparse-reward settings. This is confirmed by us in our experiments.

2.2 Learning policies efficiently offline

Another way to efficiently learn policies is by training on a purely offline dataset of

experiences. This sidesteps the issue of online exploration and efficiently recovers a

policy based on the offline dataset. Methods such as behaviour cloning, GAIL [12]

and AIRL [9] (an inverse RL method) fall under the broad class of imitation learning

6

2. Related Work

algorithms that model policy learning as a supervised learning problem and learn

a mapping from states to actions. A key issue with imitation learning methods is

that they are highly brittle and require access to large amounts of high quality expert

data to succeed [29].

Offline reinforcement learning [21] is another offline learning paradigm capable of

efficiently learning policies from demonstration data of mixed quality while requiring

good state coverage in the offline dataset [20, 29]. Consequently, a key challenge with

this approach is that the lack of online interactions leaves offline RL susceptible to

distribution shift. Wrongly estimating values for actions beyond the support of the

dataset can hamper training [21]. Conservative Q-learning (CQL) [19] is a recent

offline RL method that attempts to tackle this problem by maintaining pessimism

within the Q-value function towards actions that are absent from the offline dataset.

Implicit Q-learning (IQL) [18] completely avoids predicting value estimates for unseen

actions by learning a distributional state-value function and computing an upper

expectile over it to obtain the value estimate of the best action in that state. Real

world deployment of these algorithms invariably lead to encounters with OOD states

and actions making online finetuning a necessity for practical deployment of such

algorithms.

2.3 Hybrid Reinforcement Learning

Hybrid reinforcement learning leverages a combination of offline data with online

interaction to learn policies. The main challenge in hybrid reinforcement learning

is to devise methods that effectively bootstrap online learning from offline data.

Several approaches [11, 28] do this by using imitation to learn a policy from offline

demonstrations before finetuning it with RL. However, most modern state-of-the-art

online RL algorithms are value based [10, 30]. Naively finetuning an offline acquired

policy with value based RL can cause significant performance degradation as a value

function of similar quality to the pretrained policy is not available at the start of

online finetuning [37]. Though Monte Carlo return estimate based algorithms exist,

their online finetuning is known to be less efficient [25].

Offline RL presents a transferable paradigm to train a policy and value function

with identical objectives in both offline and online setups. However, not all offline RL

7

2. Related Work

methods are well suited for online finetuning due to their inherent pessimism towards

distribution shift [25]. Even better suited offline RL methods like IQL [18] result in

weaker policies after finetuning especially when limited offline data is available [37].

An alternative line of work [24, 35, 38] avoids finetuning a pretrained policy all

together by pre-filling replay buffers at the start of training with transitions from the

offline dataset. These transitions persist through training and policy learning happens

from scratch. JSRL [37] presents an alternative approach to the finetuning-free idea of

hybrid RL. It learns a guide policy from offline data and uses it to impart a curriculum

for a freshly initialized policy by rolling out a part of the online episode before handing

over control to the freshly initialized policy for completing the roll-out. The handover

point is altered over the course of training and all the captured experience is used to

train the freshly initialized policy.

Hierarchical RL [2, 6] is another formulation that has been used in the hybrid

setup. In hierarchical RL, there exist two policies - a manager and a worker. The

manager policy conveys intents that encapsulate higher level behaviours that serve

as an abstract representation for a set of action sequences. These intents are passed

to the worker policy that translate high level intents to low level action sequences.

Parrot [34] is a method that leverages large scale offline data to learn a worker

policy conditioned on the input observation. This serves as a behavioural prior

that facilitates exploration via realistic trajectories from the start of training. This

reduces the complexity of the search problem facilitating efficient online learning. One

drawback of such a method is the need for large-scaling pre-training of behavioural

priors on tasks with similar behaviour patterns. This may not always be feasible.

The work presented in this thesis delves into three of the four aspects of building

an effective exploration algorithm. Chapter 4 tackles the question of efficiently getting

to an exploration frontier or exploration target. It is akin to Parrot [34] in this

regard, however, unlike Parrot we show that for tasks such as driving, effective

behavioural priors can be encoded through simple reparameterizations. These priors

are unconditional on the input observation and do not require any data or learning

to induce good inductive biases on the manner of exploration. The work proposed

in Chapter 5 lies in the finetuning-free hybrid setting and shares similarities with

both Go-explore [8] and JSRL [37]. All these methods choose an exploration frontier

and reach them efficiently. The proposed work and Go-explore use environmental

8

2. Related Work

resets to reach the desired frontier while JSRL uses a learnt policy to navigate there.

The proposed work and JSRL go one step further and induce a specific kind of reset

distribution. JSRL does this through its gradual hastening of the handover point over

the course of training. In contrast we choose the reset distribution with more care

and through our experiments show that this is an important choice that influences

the sample-efficiency and performance of the learnt policy.

9

2. Related Work

10

Chapter 3

Preliminaries

3.1 Reinforcement Learning

We model the reinforcement learning problem by defining a finite-horizon discrete-time

MDPM to be a (S,A, r, p0, H, T , γ) tuple where S is the state space, A is the action

space, r : S × A × S → R is the reward function, p0 is a probability distribution

defined over S corresponding to the start state distribution ofM, H ∈ N is the finite

time horizon, γ is the discount factor and T : S ×A → P (S) describes a transition

function capturing the distribution of next states when an action a ∈ A is taken at a

state s ∈ S.
The goal is to obtain a policy π(a|s) that maximizes the expected sum of future

discounted rewards from p0. Concretely, the objective is to maximize -

Jp0(π) = Es0∼p0,st+1∼T (st,at),at∼π(st)[Σ
H
t=0γ

tr(st, at, st+1)] (3.1)

Equation 3.1 presents the commonly desired metric to be maximized during

reinforcement learning. The quality of this metric is contingent upon the state

visitation distribution induced by the choice of p0. The real world may often present

situations that are not well covered by the induced state distribution arising from p0

[27], resulting the policy having to navigate novel situations that it may not have

encountered often enough while training. Consequently, for real world deployment,

it is desirable for a policy to be robust in addition to maximizing Jp0 . While there

11

3. Preliminaries

are many to benchmark robustness, we formulate it as desiring a policy learnt to

maximize Jp0 to also do well on a broader start state distribution which we call µOOD,

i.e., maximize JµOOD
(OOD refers to Out-Of-Distribution). The state distribution

induced by a policy starting from µOOD may be different from the induced distribution

of states when starting from p0. As a result proficiency starting from p0 does not imply

proficiency starting from µOOD. For policies designed for real world deployment, it is

important for them to generalize beyond the training distribution making evaluation

from µOOD a useful benchmark to consider.

In Chapter 5, we investigate how sample-efficiency of online RL can be enhanced

through a suitable choice of µ by leveraging a small amount of expert data and a

simulator permitting arbitrary state resets. Through a sparse-reward navigation

task we show how this not only enables accelerated learning on the MDP start

state distribution, p0, but also on a broader set of start states µOOD through the

construction of robustness benchmark.

3.2 Bezier Curves

In Chapter 4 we reparameterize the action space using a family of parameterizable

curves known as Bezier curves. Bezier curves have been used in a variety of domains,

particularly graphics, to compactly represent smooth curves. More formally, an order

n Bezier curve B(t) is defined over the domain t ∈ [0, 1] as -

B(t) =
(
n

0

)
(1− t)nP0+

(
n

1

)
(1− t)n−1tP1+ ...+

(
n

x

)
(1− t)n−xtxPx+ ...+

(
n

n

)
tnPn

(3.2)

Here, P0, ...Pn are a set of points in the d dimensional space that the bezier

curve resides in. Points P0 and Pn are the start and end point of the bezier curve

respectively. The remaining points reweigh the curve and help obtain curves in a

variety of shapes. The higher the order of a bezier curve, the more complex a curve

that can be represented and the order n of the curve ensures the curve is n times

differentiable over the closed interval t ∈ [0, 1]. These characteristics allow Bezier

curves to represent a large variety of naturally occurring curves. Vehicular trajectories

is one such type of naturally occurring curve. These trajectories are fairly simple and

12

3. Preliminaries

as we will show in Chapter 4 can be represented by cubic (order 3) bezier curves.

13

3. Preliminaries

14

Chapter 4

Temporal Action Abstractions via

Bezier Curves

4.1 Introduction

Finding good policies for solving robotic tasks such as manipulation and navigation

entails learning in continuous action spaces to learn effective trajectories of actuators.

Performing exploration for doing reinforcement learning in such action spaces can

be challenging especially in safety critical domains such as autonomous driving. It

has been shown that using online RL to learn simple driving policies that predict

instantaneous steer and throttle can take extremely long to train (over 10 million

iterations [13]) on simple benchmark like NoCrash [5] in CARLA [7].

The exploration challenges of such continuous action spaces can get further exac-

erbated in robotic domains since effective policies must take feasible and temporally

consistent actions over a time horizon. Random exploration through instantaneous

control can generate a vast amount of unrealistic trajectories that would not take

place in the real world. Figure 4.1 illustrates this by showing two possible trajectories

that instantaneous steer can generate. One of these is jittery and unlike real world

trajectories observed on the road. The other is a much more probable trajectory that

can be encountered in the wild.

By allowing a policy to apply an instantaneous steer at each timestep over a time

15

4. Temporal Action Abstractions via Bezier Curves

Figure 4.1: Two examples of trajectories that can be generated by a policy that
predicts instantaneous steer. On the left is a jittery trajectory that is unlikely to be
seen in the wild, while on the right is a smooth trajectory that resembles commonly
seen real world trajectories.

horizon H, our search problem over the space of possible trajectories spans the entirety

of the RH space. However, realistic trajectories as shown in Figure 4.1 can potentially

be expressed in a much lower dimensional action space. Thus the use of instantaneous

steer causes an unnecessary increase in the amount of exploration needed resulting

in policies that are slower to train. This motivates the need for compact temporal

abstractions of actions that can reduce the search space and facilitate accelerated

learning.

In this chapter, we dive deeper in the pathology of inefficient exploration in safety

critical domains, specifically onroad autonomous driving, and demonstrate how using

general inductive biases to constrain the set of actions can dramatically shrink the

exploration problem and lead to accelerated learning,

4.2 Temporal Re-parameterization of Action

Space

Real world trajectories are known to exist in low dimensional manifolds of the RH

space spanned by a sequence of steering angles or waypoints [16]. Moreover, real

16

4. Temporal Action Abstractions via Bezier Curves

world motion is generally smooth. Such properties make it feasible to compactly

capture sequences of instantaneous control through parameterized curves without

sacrificing the diversity of feasible trajectories attainable by the policy. As described

in Chapter 3.2, Bezier curves are a form of smooth parameterized curves that can

represent a diverse set of trajectories compactly. The complexity of curves (represent-

ing the degree of a polynomial that produces the curve) can be controlled via the

degree of the Bezier curve. By altering the control points of the curve, it is possible

to obtain trajectories of different shapes. Thus predicting these control points as part

of the action allows the policy to directly reason in the trajectory space while at the

same time restricting the search space to smooth trajectories of some bounded degree

of complexity.

We find that using cubic Bezier curves as an action representation provides us

with sufficient diversity to capture a large variety of potential curves that can appear

in the real world. Specifically, a cubic Bezier curve B3(t) is described via a start point

P0 = (x0, y0), an end point P3 = (x3, y3) and two control points P1 = (x1, x1) and

P2 = (x2, y2). To use these curves as an action representation, we have the policy

π(s) learn to predict the following parameter values in stead of steering angle.

π(s) = [x1(s), y1(s), x2(s), y2(s), y3(s)] (4.1)

Note that we don’t predict all parameters of this curve since (x0, y0) is the origin

of the policy’s frame of reference and hence always (0, 0) and x3 is set to be a fixed

constant distance away.

By predicting the parameters of a Bezier curve, we enable the policy to additionally

reason in time. This would not be possible to do with instantaneous steer unless a

history of states is passed as input to the policy. Using a history of states would not

only increase the size of the observation space but also fail to constrain the search

space in actions thereby not contributing to sample-efficiency.

Once a policy predicts the parameters of the Bezier curve, we discretize the curve

into H uniformly spaced waypoints. We pick a contiguous set of k waypoints and use

these waypoints to provide the next waypoint orientation to the policy’s observation

for the next k time-steps. This k is referred to as the action horizon. As we will show

subsequently, in order to gains training speedups and improved performance, it is

17

4. Temporal Action Abstractions via Bezier Curves

crucial to utilize k > 1 while training with Bezier curves as k = 1 is equivalent to

predicting the next target waypoint and prevents the policy from learning non-trivial

curves.

4.3 Evaluations

We focus on navigation as a testbed for understanding the impact of temporal

action abstractions through Bezier curves. Specifically we study the problem in

the context of onroad autonomous driving. In this problem, safety is of paramount

importance. Consequently, a good policy must thoroughly explore the set of achievable

trajectories and learn to only generate the small subset that ensure the task is safely

and successfully completed.

4.3.1 Setup

We perform evaluations of the proposed method in CARLA[7] which is a photorealistic

simulator for autonomous driving research. Specifically, we use Town 1 from CARLA

version 9.10 to create an overtaking scenario as shown in Figure 4.2. In this scenario,

we have a stationary vehicle in the path of the ego vehicle. In order to complete the

task, the ego vehicle must exit its lane, get around the stationary vehicle and re-enter

the lane to progress towards the target waypoint. The position of the stationary

vehicle is randomly chosen along the episode trajectory. We train all our policies

using PPO [30].

For each experiment we use a 24 dimensional observation space which is as follows

18

4. Temporal Action Abstractions via Bezier Curves

Figure 4.2: The overtake scenario in CARLA comprising an ego vehicle and a
stationary vehicle parked in the path of the ego vehicle.

19

4. Temporal Action Abstractions via Bezier Curves

Table 4.1: Influence of Action Horizon on policy performance for different action
parameterizations. All policies are trained for 1.5 million iterations

Action Space Action Horizon Success Rate (%)

Steer 1 60

Bezier 1 60

Steer 4 2

Bezier 4 75

next waypoint orientation

ego vehicle speed

ego vehicle steering angle

distance to waypoint trajectory

front obstacle displacement and relative velocity× 4 dims

front right obstacle displacement and relative velocity× 4 dims

front left obstacle displacement and relative velocity× 4 dims

back right obstacle displacement and relative velocity× 4 dims

back left obstacle displacement and relative velocity× 4 dims

, (4.2)

For control, we predict a trajectory representation which is the control points of

a cubic Bezier curve if using a temporally abstracted action representation or the

steering angle when using instantaneous control. Simultaneously a speed value is also

predicted.

4.3.2 Do Bezier Action Spaces learn more temporally

accurate action sequences?

We evaluate both instantaneous control and Bezier action spaces at two granularities

of action horizons - 1 and 4. As described above, action horizons of k > 1 are achieved

through the usage of frame skipping where the policy is used to predict an action

every k frames. We train all policies for 1.5 million iterations. In order to avoid

confounders, we fix the speed to a constant value (20 km/h) and ask the policy to

20

4. Temporal Action Abstractions via Bezier Curves

Table 4.2: Sample efficiency and final performance for different action parameteriza-
tions when trained to convergence

Action Space Training Steps (millions) Success Rate (%) Top Speed (km/h)

Steer 10 85 20

Steer + Speed 10 0 -

Bezier 2.5 90 20

Bezier + Speed 0.8 90 40

only predict the trajectory component of the action space.

The results of this study are summarized in Table 4.1. We find that for an action

horizon of 1, policies trained via instantaneous steer and Bezier reparameterized

actions both achieve the same performance. This intuitively makes sense since at an

action horizon of 1, only a single waypoint is being chosen on the Bezier curve for

each policy prediction. This is equivalent to a policy that learns to predict the next

waypoint at a fixed distance away from the ego agent, which in turn is equivalent to

predicting the steering angle.

When the action horizon is raised to 4 we begin to see significant differences in

the performance of the two policies. The instantaneous control policies performance

deteriorated catastrophically down to 2%, indicating that steering angle by itself is a

poor representation of trajectory over longer time horizons. Meanwhile the Bezier

reparameterized policy sees its performance improve to 75% indicating its effectiveness

at modeling temporally accurate action sequences.

4.3.3 Do Bezier Action Spaces improve sample-efficiency?

To evaluate sample-efficiency, we train four policies to convergence - two instantaneous

steer policies (with and without learnable speed) and two Bezier reparameterized

policies (with and without learnable speed). We report the success rate of each

policy at convergence as well as the number of training steps taken to attain that

performance.

Table 4.2 presents the results of this evaluation. We see that when learning with

fixed speed, the reduced search space of the Bezier action space enables learning a

better policy than instantaneous control based policy 4× faster. More surprisingly,

21

4. Temporal Action Abstractions via Bezier Curves

we find that learning both speed and trajectory actions with an instantaneous control

policy ends up failing to learn the task as the policy learns to get the ego agent to a

complete stop rather than risk a collision. On the other hand the Bezier action spaces

facilitate learning both speed and trajectory control achieving even larger sample

efficiency gains (12.5×) in addition to learning a policy with 2× higher max achieved

velocity.

4.4 Limitations and Discussion

We have seen that temporally reparameterized action spaces facilitate accelerated

learning online. In this work we used Bezier curves as a parameterization roughly

capturing curves that constitute real world trajectories. However, Bezier Curves

are not the only class of parameterized curves that can be used and it would be

interesting to see how other smooth parameterizations of curves, such as common

splines used in computer graphics, can be utilized for robotic tasks.

While the results of this re-parameterization are promising, we have observed that

training with larger action horizons such as k ∈ 8, 12, 16 is still very challenging. We

find that as larger action horizons are used, training times increase owing to larger

frame-skips and higher amounts of simulator interaction needed to collect the same

quantity of training data. In addition, training becomes more unstable since there

are a larger set of next states that can be achieved by rolling out a policy for more

time steps. This makes learning accurate action value functions harder and results

in diverging training runs. In the overtake scenario, this results in agents exploring

limited regions of the state space. For example, when training with larger action

horizons, the agent will spend most of its time attempting to exit its lane in order to

get around the stationary vehicle, while spending almost no time in returning to its

lane after passing the stationary vehicle. This indicates that the original start state

distribution is perhaps not the best at ensuring good coverage of the state space. In

the next chapter we will explore this observation further and present a method to

tackle this issue.

Lastly, we find that in challenging variants of larger scale driving benchmarks such

as NoCrash [5], the presence of dynamic actors makes learning harder and results in

instabilities that aren’t fully resolved by this re-parameterization. Improving sample

22

4. Temporal Action Abstractions via Bezier Curves

efficiency in such setups with other dynamic actors is a key unsolved problem that

would greatly enhance the applicability of online reinforcement learning in large scale

multi-agent robotic tasks such as autonomous driving.

23

4. Temporal Action Abstractions via Bezier Curves

24

Chapter 5

Accelerated Online RL via

Auxiliary Start State Distributions

5.1 Introduction

In Chapter 3.1, we introduced the standard reward maximization objective (Jp0(π))

in RL. Jp0(π) is maximized with respect to a pre-specified start state distribution p0.

While p0 is part of the maximization objective in Equation 3.1, it is not necessary to

train with this start state distribution in order to maximize the objective function. As

discussed in [17], a narrow p0 can down-weight the influence of unlikely but important

states during policy improvement by having the induced state visitation distribution

visit such states infrequently. The presence of such unlikely but important states

along the optimal trajectory, which we refer to as task critical states (C), can result in

slow learning progress. It would instead be beneficial to have a start state distribution

(µ) that is distributed more uniformly across some subset Ssub of the state space (i.e.,

Ssub ⊆ S) emphasizing visitation of task critical states while asymptotically obtaining

comparable performance to the optimal policy as measured by Jp0(π).

25

5. Accelerated Online RL via Auxiliary Start State Distributions

5.2 Constructing Auxiliary Start State

Distributions

Emphasizing visitation of task critical states (C) is an appealing concept but requires

us to address the challenge of efficiently identifying such task critical states and

subsequently determining a suitable distribution to implement this emphasis in a

tractable manner.

Directly computing the visitation distribution over task critical states (C) is

challenging in continuous state spaces owing to the associated computational in-

feasibility of calculating this quantity. Moreover, this is a policy dependant quantity

and will need to be continuously recomputed over the course of training. As a result,

a suitable µ should be an easily computable dynamic distribution that accounts for

the changing visitation distribution of the policy over time.

We observe that episode termination is a powerful and ubiquitous signal available

in a variety of RL tasks. It is especially prevalent in robotic tasks such as autonomous

driving and robot locomotion where eventual real world deployment is the end goal

and safety of the agent and its surroundings are of paramount importance.

Intuitively, for a state s, if the proportion of actions that cause the agent to land

in a terminal state is high, then a larger exploratory budget is required to learn

a feasible action for this state by the policy. Moreover, the chance of navigating

through this state likely hinges on the repeated selection of a small set of safe and

feasible actions in the neighbouring regions of the state space. Therefore, there is a

high likelihood that such states belong to C and sampling them more frequently can

accelerate learning. More formally, we define the notion of state safety for any state

s ∈ S as -

Ωπ(s) =

∫
a0:k−1

P (a0:k−1|s, π)
∫
sk

P (sk|s, a0:k−1, T , π)Z(sk) dsk da0:k−1 (5.1)

Here, Z(s) ∈ {0, 1} ∀s ∈ S and denotes whether or not state s causes episode

termination. Z(s) = 0 if episode termination is caused by being in state s and 1

otherwise. a0:k−1 is the sequence of k actions induced by the policy π from state s

26

5. Accelerated Online RL via Auxiliary Start State Distributions

Algorithm 1 Online RL with Auxiliary Start States

1: Inputs: Task Horizon H, Offline Demonstration States Sdemo, Algorithm A,
Training Timesteps Tmax, Environment E , replay buffer B

2: Sampling distribution W ←
len(Sdemo)︷ ︸︸ ︷
[1, 1 ... 1] ▷ Initialization incentivizes visiting states

atleast once
3: Sampling distribution norm N ← sum(W)
4: t← 0
5: while t ≤ Tmax do
6: i← SampleStartState(WN)
7: s0 ← Sdemo[i]
8: Lep ← TrainForOneEpisode(A,B, E , s0)) ▷ Return value is episode

length
9: t← t+ Lep

10: W ,N ← UpdateSampler(W ,N , Lep, i, H,Sdemo) ▷ See Algorithm 2
11: end while

under the transition model given by T . sk is the state that is reached when policy π

takes action sequence a0:k−1 starting from state s in an environment with transition

model T .

Exactly computing Ωπ(s) is still computationally expensive. Instead we leverage

the time to termination or episode length from a given start state, which is a freely

available metric at training time, as a Monte Carlo approximation of the true state

safety for a given policy at that state. By maintaining a parameterized distribution

over a set of desirable start states (candidate task critical states or C̃) we can exploit

local smoothness in the majority of the state space to quickly propagate these

approximations across the start state distribution (see Algorithm 2 for details)

Since we are taking a hybrid approach to RL, we have access to a limited amount of

expert demonstration data. Since this data comprises successful demonstrations of the

task, the demonstration trajectories will likely contain task critical states if they exist.

As a result, we can simply set C̃ to be the states from the demonstration data and

identify C from amongst these states over the course of training. Putting everything

together we get our proposed method AuxSS that we describe in Algorithm 1.

27

5. Accelerated Online RL via Auxiliary Start State Distributions

Algorithm 2 Updating Auxiliary Start State Distribution via Episode Length
(AuxSS)

1: Inputs: Sampling distribution W, Sampling distribution norm N , Episode
Length Lep, Update index i, Task Horizon H, Offline Demonstration States Sdemo,
Weight Threshold δ, Smoothing Variance σ2

2: Outputs: Sampling distribution W , Sampling distribution norm N
3: W [i]←Max(H−Lep

H
, δ) ▷ δ ensures probability of sampling ≥ 0

4: λ← 1√
2πσ

exp((Sdemo−Sdemo[i])
2

2σ2) ▷ λ is used for smoothing updates to W
5: W ← (1− λ)W + λW [i]
6: N ← sum(W)

5.3 Evaluations

In this section we first highlight the affinity of using auxiliary start state distributions

with the hybrid RL setup by demonstrating state-of-the-art sample-efficiency on

a sparse-reward hard-exploration task. We show that AuxSS is better suited at

assimilating information from limited amounts of expert offline data by demonstrating

better sample-efficiency than competing approaches that have access to 15× more

offline expert data available to them. We simultaneously show AuxSS also facilitates

learning more robust policies. Finally, we empirically demonstrate that approximating

a more uniform visitation distribution over C through Ω facilitates accelerated learning.

We showcase how AuxSS is a good way to approximate Ω while other distributions

not motivated in the same way are not.

5.3.1 Setup

Environments: We conduct our experiments on two testbeds. The first is a suite

of four continuous control robotic tasks from MuJoCo [36] and the second is a 2D

maze setup shown in Figure 5.4. The maze consists of two large regions connected

by a narrow traversable passage with obstacles on either side (shown in blue). The

obstacles are pits of of lava and the episode terminates if an agent encroaches this

area. We refer to this environment as Lava Bridge. It has a continuous 4D state space

comprising 2 dimensions of position and 2 dimensions of velocity. The action space is

a continuous 2D force vector. All evaluations are performed in a sparse-reward setup

28

5. Accelerated Online RL via Auxiliary Start State Distributions

where the agent only gets a non-zero reward on reaching the goal state or entering a

terminal state.

Evaluations: On the both the MuJoCo tasks and Maze navigation task, we track

the episodic returns and present plots showing the evolution of these returns over

the course of training. On the maze environment, we in addition track the success of

the learning policy on two start state state distributions. The first is the MDP start

state distribution (p0) and the second is an out-of-distribution start state distribution

(µOOD) to serve as a robustness benchmark. Both these distributions are shown in

Figure 5.4.

Affordances: In all our evaluations, we assume access to two affordances - a

small quantity of offline demonstration data and a simulator that supports arbitrary

resets. For MuJoCo tasks, we assume access to a 1000 transitions of demonstration

data from a medium policy trained to a third of the performance of a converged SAC

policy. This is equivalent to 1 demonstration trajectory worth of data. On the maze

navigation task, unless otherwise specified, we use 500 transitions of offline data,

which is equivalent to the maximum episode length allowed for the task.

Note: Since the distribution of offline data µoff is generated via an expert starting

from the distribution p0, the state distribution of µoff will be similar to the induced

state distribution of a well performing policy starting from p0. As a result, resetting

the simulator to a µ derived from µoff will not compromise the robustness benchmark.

At the start of training, novel states emerging from changing reset distributions from

p0 to µOOD will remain novel when changing reset distributions from µ to µOOD. Over

the course of training, resetting to µ may simply alter the likelihood of visiting some

novel states. The impact of this altered likelihood will be observable through the

robustness evaluations.

5.3.2 Do Auxiliary Start State Distributions accelerate

learning of robust policies?

In this section we study the efficacy of AuxSS at improving the sample efficiency

of online learning by making use of affordances such as arbitrary resetting of the

environment and access to a limited quantity of expert demonstration data. We

compare AuxSS with a variety of offline, online and hybrid methods. In addition

29

5. Accelerated Online RL via Auxiliary Start State Distributions

Figure 5.1: Task Completion Rate of Various methods on the Lava Bridge Environ-
ment. Each method is evaluated on an In Distribution (ID) and Out-of-Distribution
(OOD) benchmark of starting states where the ID start state distribution is the
start state distribution of the MDP while the OOD benchmark comprises a different
distribution of start states.

to tracking sample-efficiency we also track the robustness of the learnt policy. The

choice of the MDP start state distribution (p0) and robustness benchmark start state

distribution (µOOD), are shown in Figure 5.3.

Figure 5.1 presents the findings of this study on the Lava Bridge environment. A

standardized training setup has been used across methods (except BARL [22]) where

the number of offline demonstration transitions is set to 10 million, number of online

learning steps is 300000, replay buffer size is 10000, max episode length is 500 and

experiments are evaluated across 25 seeds. All hybrid methods and offline methods

have access to 500 transitions of expert demonstration data.

We use the example of SAC [10], a purely online RL method, to highlight the

exploration challenges that the Lava Bridge environment poses to standard online

RL. SAC uses an undirected entropy based bonuses to promote exploration but

struggles to efficiently explore in our environment. Its failure to reach the goal within

the stipulated training budget and learn a robust policy highlights the exploration

challenges posed by the Lava Bridge environment. In addition we evaluate BARL

[22], an information theoretic method for sample-efficient online exploration. We

evaluated BARL both with and without access to the demonstration data and found

30

5. Accelerated Online RL via Auxiliary Start State Distributions

Figure 5.2: A study of how sample-efficiency and robustness vary for hybrid RL
methods when provided with different amounts of demonstration data.

it unable to solve our task. BARL is reliant on a classical planner which is designed

to work with dense rewards. Therfore the sparse-reward nature of our task prevents

the BARL planner from finding solutions in a feasible amount of time, resulting in

the method’s failure.

We compare our proposed approach with two hybrid RL approaches - HySAC (an

adaptation of HyQ [35] where a DQN is replaced with SAC) and JSRL [37]. It can

be seen that across training reward and success rates, using a good auxiliary start

state distribution yields state-of-the-art sample efficiency and performance as both

HySAC and JSRL struggle to make full use of the limited offline demonstration data.

Moreover, the proposed approach is complementary to HySAC’s persistent storage of

offline demonstration in the replay buffer throughout training and as a result the two

approaches can be coupled (HySAC+AuxSS) to obtain better robustness in fewer

training steps.

It can be noted that the approach taken by JSRL of handing over episode rollout

from a guide policy to the learning policy is conceptually similar to having an auxiliary

start state distribution that monotonically recedes towards p0 over the course of

training. Unlike our proposed auxiliary distribution, JSRL cannot reemphasize

visiting previously learnt regions of the state space that may have been forgotten

over the course of training. Even accounting for some sample-efficiency gains that

31

5. Accelerated Online RL via Auxiliary Start State Distributions

JSRL may obtain by directly resetting to the handover point (rather than using the

guide policy to get there) withing an episode, its inability to reemphasize visitation

of previously learnt regions prevent it from learning very robust policies as can be

seen in Figure 5.1.

We also compare against purely offline methods such as imitation learning and

offline RL. We find that imitation learning methods like behaviour cloning (BC),

GAIL [12] and AIRL [9] fail to succeed on both p0 and µOOD. This stems from their

inability to learn meaningful policies from just 500 transitions. Infact, we provide

these methods with 7.5K transitions to learn from in Figure 5.1 and they still fail to

learn a reasonable policy as measured by both start state distributions. Offline RL

fairs a lot better. IQL [18] is a popular offline RL method that we compare against.

We find that IQL performs well on p0 but suffers a large drop in performance when

evaluated on µOOD. This arises from the fact that offline RL methods are incentivized

to learn a good policy only within the distribution of their training data which in

this case is µoff . For a policy that performs well starting from p0, the induced state

distribution of this policy will be close to µoff and as a result a policy learnt using

IQL does well on p0. On the other hand, the induced state distribution of the policy

learnt via IQL when starting from µOOD would present a distribution shift with

respect to µoff resulting the in the poor robust performance of IQL.

5.3.3 Influence of offline demonstration set size on

performance and sample-efficiency

In Figure 5.2 we plot the training reward and evaluate robustness when different

quantities of expert demonstration data (0.5K and 7.5K expert samples) are available

prior to the online learning phase. We find that by accessing 15× fewer expert

samples AuxSS and HySAC+AuxSS can match and exceed the robustness and sample

efficiency of policies learnt via other hybrid RL methods. When provided access to a

resetable simulator, this demonstrates that a good auxiliary start state distribution

can more effectively assimilate data to guide exploration and accelerate learning than

other approaches to hybrid RL. Unlike other methods, having a good start state

distribution prevents the need to collect large quantities of expert data through ability

to bootstrap online learning off of very limited demonstration trajectories (the 500

32

5. Accelerated Online RL via Auxiliary Start State Distributions

Figure 5.3: Sample-efficiency and robustness trends when simulator resets are selected
using different start state distributions.

expert transitions come from 3 demonstration trajectories. Reported AuxSS trends

sample from a random subset of 150 transitions. This is approximately one trajectory

worth of expert data).

5.3.4 State safety inspired start state sampling for sample

efficiency

In Chapter 5.2, we connect the notion of state safety Ω with task critical states (C)
and discuss how this can influence sample-efficiency. In this section, we empirically

validate our claims. We modify AuxSS by constructing a static distribution (Ω-SS)

that sample start states with respect to a random policy. Concretely, we sample

start states inversely proportional to Ωπrand
(s) where πrand(.|s) ∼ U |A|. In practice,

we use Monte Carlo sampling of actions for a fixed time horizon (= 4 time steps)

to approximate this quantity for each state. Since the policy at the start of online

training is initialized randomly, this mimics the state safety distribution with respect

to the policy at the start of training. Therefore if our claims hold we expect to see

matching sample-efficiency trends to AuxSS in the early stages of training.

Figure 5.3 presents the findings of this study. We see that as expected, Ω-SS

demonstrates matching sample-efficiency and robustness trends as AuxSS early in

33

5. Accelerated Online RL via Auxiliary Start State Distributions

Figure 5.4: Sample-efficiency and robustness trends when simulator resets are selected
using different start state distributions. An illustration of the Lava Bridge environment.
The red regions are the lava pits, the green blobs denote p0 and the blue spots
correspond to the distribution µOOD. The red target marks the goal location.

34

5. Accelerated Online RL via Auxiliary Start State Distributions

training. In fact, since Ω-SS is the correct state safety distribution with respect to

the initialized policy from the start of training it learns even faster than AuxSS, since

AuxSS must gradually approximate this state safety distribution over the course of

multiple training episodes.

We note here the divergence in robustness trends seen later in training. This is

caused by the static nature of Ω-SS which fails to adapt to the morphing C induced

by the policy as it trains. This causes the resulting loss of robustness. The dynamic

nature of AuxSS helps prevent this degradation as its able to adapt its start state

distribution based on changes in the policy.

5.3.5 Do start state distributions not deriving from state

safety fail to be sample efficient?

To study this inverse logical question, we construct two start state distributions, U -SS
and GoalDist-SS, that do not try to incentivize visitation of task critical states. U -SS is

a static distribution that uniformly samples states from the provided demonstrations.

GoalDist-SS is a dynamic distribution that exponentially weights states based on

their distance from the task goal. States closer to the goal are assigned a higher

probability to be sampled. The time varying component of this distribution arises from

temperature scaling of the distribution with the temperature gradually rising over

the course of training. This promotes sampling near goal states early on in training

and sampling more uniformly from the demonstration data later on in training.

Figure 5.3 contains the findings of this study. It can be seen that both U-
SS and GoalDist-SS are far slower to train than state safety inspired distribution

demonstrating that not all start state distributions will accelerate learning. As a

consequence of the poor choice of their state visitation, these methods fail to learn

good policies in the stipulated training budget and thus also have much lower robust

performance than AuxSS and Ω-SS (before its static nature causes robustness to

degrade).

35

5. Accelerated Online RL via Auxiliary Start State Distributions

Figure 5.5: Performance comparison of various online and hybrid RL methods on the
MuJoCo Ant-v4 continuous control task.

36

5. Accelerated Online RL via Auxiliary Start State Distributions

Figure 5.6: Performance comparison of various online and hybrid RL methods on the
MuJoCo HalfChetaah-v4 continuous control task.

37

5. Accelerated Online RL via Auxiliary Start State Distributions

Figure 5.7: Performance comparison of various online and hybrid RL methods on the
MuJoCo Walker2D-v4 continuous control task.

38

5. Accelerated Online RL via Auxiliary Start State Distributions

Figure 5.8: Performance comparison of various online and hybrid RL methods on the
MuJoCo Hopper-v4 continuous control task.

39

5. Accelerated Online RL via Auxiliary Start State Distributions

5.3.6 Performance on MuJoCo Continuous Control Tasks

In this section we compare the performance of the proposed approach with existing

methods on a suite of three MuJoCo continuous continuous tasks - Ant, Walker2D and

HalfCheetah. We train each policy for 6 million timesteps (Walker2D has been trained

for 3 million and will be updated in the final version of the thesis. In addition a fourth

task, Hopper, will be added). As seen in Figures 5.5 - 5.8, both HySAC and AuxSS

consistently achieve higher reward than JSRL and SAC across these tasks indicating

that both methods enhance exploration and enable learning more performant policies.

It should be noted that while HySAC and AuxSS perform similarly, AuxSS only

requires access to an unordered set of demonstration states while HyAC requires an

ordered set of state, action and reward tuples as it needs to populate a replay buffer.

Despite this mismatch, AuxSS closely matches the performance of HySAC.

5.4 Limitations and Discussion

In this chapter, we demonstrate the importance of auxiliary start state distributions,

constructed by utilizing small quantities of expert demonstration comprising only

state information, in facilitating sample-efficient learning of robust policies. We find

that this is a crucial design choice in environments that allow arbitrary state resetting

and we observe that deriving start state distributions from notions of state safety

can dramatically accelerate policy learning online.

Naturally, the need for a simulator that supports arbitrary state resets is also a

limitation. As shown by JSRL, it is possible to use guide policies learnt offline to

reach exploration frontiers. However, learning such policies require having access

to expert actions and rewards in addition to state information. Consequently, an

interesting future direction would be to explore how goal conditioned policies can

be learnt efficiently from expert data comprising only state information and thereby

facilitating the use of auxiliary start states in broader set of tasks.

Finally, it can be noted that the manner in which safety cues have been in-

corporated into the proposed method solely utilize variable episode length, which

is a consequence of episode terminations within the environment. Not all safety

constraints need to be modelled through hard terminations and instead they can be

40

5. Accelerated Online RL via Auxiliary Start State Distributions

incorporated as costs that need to be minimized or constrained to remain below a

certain value [1]. Generalizing the notion of safety to account for such formulations

would be a natural extension to the proposed idea.

41

5. Accelerated Online RL via Auxiliary Start State Distributions

42

Chapter 6

Conclusion

In this thesis, we leverage commonly available affordances such as domain specific

inductive biases, simulator resets and expert data to help shrink the search space

while performing RL online. Designing algorithms that seamlessly incorporate these

affordances, help guide online exploration and learn performant policies efficiently. To

this end, we present to contrasting approaches to leverage such affordances. First, we

highlight the efficacy of re-parameterizing the action space of navigation policies from

instantaneous steer to a temporally abstract trajectory representation. This reduces

the space of trajectories to reason over and results in learning better policies over

an order of magnitude faster. Subsequently, we show how small quantities of expert

demonstration comprising only state information, can facilitating sample-efficient

learning of robust policies when presented with ability to reset environments to arbi-

trary states. We extensively evaluate these methods and demonstrate some promising

results on a variety of environments spanning autonomous driving, navigation and

robotic control task. Simultaneously, we identify the limitations of current methods

and present promising future directions to take this work forwards.

43

6. Conclusion

44

Bibliography

[1] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy
optimization. In Proceedings of the 34th International Conference on Machine
Learning, 2017. 5.4

[2] Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture.
2017. 2.3

[3] Glen Berseth, Daniel Geng, Coline Manon Devin, Nicholas Rhinehart, Chelsea
Finn, Dinesh Jayaraman, and Sergey Levine. {SM}irl: Surprise minimizing
reinforcement learning in unstable environments. In International Conference
on Learning Representations, 2021. 2.1

[4] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by
random network distillation. In International Conference on Learning Represen-
tations, 2019. 2.1

[5] Felipe Codevilla, Eder Santana, Antonio M. L´opez, and Adrien Gaidon. Ex-
ploring the limitations of behavior cloning for autonomous driving. 2019. 4.1,
4.4

[6] Peter Dayan and Geoffrey E. Hinton. Feudal reinforcement learning. 1992. 2.3

[7] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. CARLA: An open urban driving simulator. In Proceedings of the 1st
Annual Conference on Robot Learning, 2017. 1, 4.1, 4.3.1

[8] Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O. Stanley, and Jeff
Clune. First return, then explore. Nature, 2021. 1, 2.1, 2.3

[9] Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adverse-
rial inverse reinforcement learning. In International Conference on Learning
Representations, 2018. 1, 2.2, 5.3.2

[10] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-
critic: Off-policy maximum entropy deep reinforcement learning with a stochastic
actor. In Proceedings of the 35th International Conference on Machine Learning,
2018. 1, 2.1, 2.3, 5.3.2

45

Bibliography

[11] Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal
Piot, Dan Horgan, John Quan, Andrew Sendonaris, Ian Osband, Gabriel Dulac-
Arnold, John Agapiou, Joel Leibo, and Audrunas Gruslys. Deep q-learning from
demonstrations. Proceedings of the AAAI Conference on Artificial Intelligence,
2018. 2.3

[12] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In
Advances in Neural Information Processing Systems, 2016. 1, 2.2, 5.3.2

[13] Zhe Huang. Distributed reinforcement learning for autonomous driving. 2022.
4.1

[14] Arnav Kumar Jain, Lucas Lehnert, Irina Rish, and Glen Berseth. Maximum
state entropy exploration using predecessor and successor representations. In
Advances in Neural Information Processing Systems, 2023. 1

[15] Arnav Kumar Jain, Lucas Lehnert, Irina Rish, and Glen Berseth. Maximum
state entropy exploration using predecessor and successor representations. In
Neural Information Processing Systems, 2023. 2.1

[16] Chiyu Max Jiang, Andre Cornman, Cheolho Park, Ben Sapp, Yin Zhou, and
Dragomir Anguelov. Motiondiffuser: Controllable multi-agent motion prediction
using diffusion, 2023. 4.2

[17] Sham Kakade and John Langford. Approximately optimal approximate rein-
forcement learning. In International Conference on Machine Learning, 2002.
5.1

[18] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning
with implicit q-learning. In International Conference on Learning Representations,
2022. 1, 2.2, 2.3, 5.3.2

[19] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative
q-learning for offline reinforcement learning. In Advances in Neural Information
Processing Systems, 2020. 1, 2.2

[20] Aviral Kumar, Joey Hong, Anikait Singh, and Sergey Levine. Should i run offline
reinforcement learning or behavioral cloning? In International Conference on
Learning Representations, 2022. 2.2

[21] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement
learning: Tutorial, review, and perspectives on open problems. arXiv preprint
arXiv:2005.01643, 2020. 2.2

[22] Viraj Mehta, Biswajit Paria, Jeff Schneider, Willie Neiswanger, and Stefano
Ermon. An experimental design perspective on model-based reinforcement
learning. In International Conference on Learning Representations, 2022. 1, 2.1,
5.3.2

46

Bibliography

[23] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep reinforcement learning.
nature, 2015. 1

[24] Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter
Abbeel. Overcoming exploration in reinforcement learning with demonstrations.
In IEEE international conference on robotics and automation, 2018. 2.3

[25] Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Ac-
celerating online reinforcement learning with offline datasets. arXiv preprint
arXiv:2006.09359, 2020. 2.3

[26] Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-
driven exploration by self-supervised prediction. In International Conference on
Machine Learning, 2017. 1, 2.1

[27] Aravind Rajeswaran, Kendall Lowrey, Emanuel Todorov, and Sham Kakade.
Towards Generalization and Simplicity in Continuous Control. In Neural Infor-
mation Processing Systems, 2017. 3.1

[28] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep
reinforcement learning and demonstrations. Proceedings of Robotics: Science
and Systems, 2018. 2.3

[29] Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stuart Rus-
sell. Bridging offline reinforcement learning and imitation learning: A tale of
pessimism. In Advances in Neural Information Processing Systems, 2021. 2.2

[30] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.
2.1, 2.3, 4.3.1

[31] Younggyo Seo, Lili Chen, Jinwoo Shin, Honglak Lee, Pieter Abbeel, and Kimin
Lee. State entropy maximization with random encoders for efficient exploration.
In International Conference on Machine Learning, 2021. 1, 2.1

[32] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. Mastering the game of go with deep neural networks
and tree search. nature, 2016. 1

[33] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore
Graepel, et al. Mastering chess and shogi by self-play with a general reinforcement
learning algorithm. arXiv preprint arXiv:1712.01815, 2017. 1

47

Bibliography

[34] Avi Singh, Huihan Liu, Gaoyue Zhou, Albert Yu, Nicholas Rhinehart, and Sergey
Levine. Parrot: Data-driven behavioral priors for reinforcement learning. In
International Conference on Learning Representations, 2021. 1, 2.3

[35] Yuda Song, Yifei Zhou, Ayush Sekhari, Drew Bagnell, Akshay Krishnamurthy,
and Wen Sun. Hybrid RL: Using both offline and online data can make RL
efficient. In The Eleventh International Conference on Learning Representations,
2023. 1, 2.1, 2.3, 5.3.2

[36] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine
for model-based control. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2012. 1, 5.3.1

[37] Ikechukwu Uchendu, Ted Xiao, Yao Lu, Banghua Zhu, Mengyuan Yan, Joséphine
Simon, Matthew Bennice, Chuyuan Fu, Cong Ma, Jiantao Jiao, Sergey Levine,
and Karol Hausman. Jump-start reinforcement learning. In Proceedings of the
40th International Conference on Machine Learning, 2023. 1, 2.3, 5.3.2

[38] Mel Vecerik, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bilal
Piot, Nicolas Heess, Thomas Rothörl, Thomas Lampe, and Martin Riedmiller.
Leveraging demonstrations for deep reinforcement learning on robotics problems
with sparse rewards. arXiv preprint arXiv:1707.08817, 2017. 2.3

48

	1 Introduction
	2 Related Work
	2.1 Exploration in purely online RL
	2.2 Learning policies efficiently offline
	2.3 Hybrid Reinforcement Learning

	3 Preliminaries
	3.1 Reinforcement Learning
	3.2 Bezier Curves

	4 Temporal Action Abstractions via Bezier Curves
	4.1 Introduction
	4.2 Temporal Re-parameterization of Action Space
	4.3 Evaluations
	4.3.1 Setup
	4.3.2 Do Bezier Action Spaces learn more temporally accurate action sequences?
	4.3.3 Do Bezier Action Spaces improve sample-efficiency?

	4.4 Limitations and Discussion

	5 Accelerated Online RL via Auxiliary Start State Distributions
	5.1 Introduction
	5.2 Constructing Auxiliary Start State Distributions
	5.3 Evaluations
	5.3.1 Setup
	5.3.2 Do Auxiliary Start State Distributions accelerate learning of robust policies?
	5.3.3 Influence of offline demonstration set size on performance and sample-efficiency
	5.3.4 State safety inspired start state sampling for sample efficiency
	5.3.5 Do start state distributions not deriving from state safety fail to be sample efficient?
	5.3.6 Performance on MuJoCo Continuous Control Tasks

	5.4 Limitations and Discussion

	6 Conclusion
	Bibliography

