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Abstract

The era of vision-language models (VLMs) trained on large web-scale
datasets challenges conventional formulations of “open-world" perception.
In this work, we revisit the task of few-shot object detection (FSOD)
in the context of recent foundational VLMs. First, we point out that
zero-shot VLMs such as GroundingDINO significantly outperform state-of-
the-art few-shot detectors (48 vs. 33 AP) on COCO. Despite their strong
zero-shot performance, such foundational models may still be sub-optimal.
For example, trucks on the web may be defined differently from trucks
for a target application such as autonomous vehicle perception. We argue
that the task of few-shot recognition can be reformulated as aligning
foundation models to target concepts using a few examples. Interestingly,
such examples can be multi-modal, using both text and visual cues,
mimicking instructions that are often given to human annotators when
defining a target concept of interest. Concretely, we propose Foundational
FSOD, a new benchmark protocol that evaluates detectors pre-trained on
any external datasets and fine-tuned on multi-modal (text and visual) K-
shot examples per target class. We repurpose nulmages for Foundational
FSOD, benchmark several popular open-source VLMs, and provide an
empirical analysis of state-of-the-art methods. Lastly, we discuss our
recent CVPR 2024 Foundational FSOD competition and share insights
from the community. Notably, the winning team significantly outperforms
our baseline by 23.9 mAP!
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Chapter 1

Introduction

Vision-language models (VLMs) trained on (often proprietary) web-scale datasets have
disrupted traditional notions of the "open-world," particularly for few-shot recognition.
In this paper, we revisit few-shot object detection (FSOD) in the context of these
foundational models, propose a new benchmark protocol that allow foundational
models to “enter the conversation", and present several simple baselines.

First, we highlight that zero-shot VLMs like GroundingDINO demonstrate a
remarkable improvement over state-of-the-art few-shot detectors (48.3 vs. 33.1 AP)
on COCQO, as shown in Table 4.1. In hindsight, this is not surprising, as the former is
pre-trained on far more data (that may include visual examples of the target concept),
while the later is pre-trained on data that is explicitly curated to avoid target concepts
of interest. From this perspective, VLMs violate the current training protocol of
few-shot benchmarks, suggesting that such protocols need to be rethought in the
foundational era.

Concept Alignment. Despite their impressive performance, foundation models
used in a zero-shot fashion can still be sub-optimal. For example, trucks as defined
for a particular target application like perception for autonomous vehicles may differ
from trucks as found on the web (cf. Fig. 1.1). Indeed, this well-known observation
has created the ad-hoc practice of prompt engineering, where users actively search
for a textual prompt that elicits the desired zero-shot behaviour. Instead, we argue
that one can principally address the challenge of aligning foundation models to target

concepts through the lens of few-shot recognition, by presenting VLMs with a few



1. Introduction

I = Zero-Shot Prediction nulmages Bicycle
mm Ground Truth Annotation

- &= Human or electric powered 2-wheeled vehicle
designed to travel at lower speeds either on road
surface, sidewalks or bicycle paths.
If there is a rider, include the rider in the box
If there is a pedestrian standing next to the
bicycle, do NOT include in the annotation

Bicycle|

nulmages Trucks

Vehicles primarily designed to haul cargo
including pick-ups, lorries, trucks and
semi-tractors. Trailers hauled after a semi-tractor
should be labeled as trailer:.

A pickup truck is a light duty truck with an
enclosed cab and an open or closed cargo area.

Poor Concept Alignment between VLM and Dataset Annotations Multimodal Annotation Instructions

Figure 1.1: Poor Alignment Between Vision Language Models (VLMs) and
Target Concepts. Although VLMs show impressive zero-shot performance, they struggle
when the target class is different from concepts encountered in web-scale training. On the
left, we see that the nulmages dataset |2] defines the cab of the truck as a separate concept
from its trailer (shown in red). In contrast, the VLM predicts the entire vehicle as a
truck (shown in green). Similarly, nulmages annotations dictate that a person riding a
bicycle must also be labeled as part of bicycle (shown in red) unlike the VLM prediction
(in green). On the right, we present the actual class definitions given to the nulmages
annotators, provided as both textual descriptions and visual examples. Just as human
annotators learn concepts from few-shot multi-modal examples, we argue that VLMs should
be aligned to K vision-language examples.

examples of the target concept. Crucially, such examples can be multi-modal, using
both text and visual cues, mimicking the natural few-shot multi-modal instructions
that are often given to human annotators when defining a target concept of interest [3].
Before introducing our new protocol, we first review the conventional FSOD setup

below.

Conventional FSOD. Existing FSOD benchmarks partition object detection
datasets like PASCAL VOC [7] and COCO [30] into base and novel classes. Detectors
pre-train on base and then learn novel classes given K examples (or K-shots).
Current protocols enforce base and novel to be disjoint to prevent concept leakage,
allowing one to evaluate generalization to the “open-world". However, as most
detectors are pre-trained on ImageNet, we point out that concept leakage already
occurs in current FSOD protocols. For example, cat and person are deemed novel
for COCO-FSOD but are present in ImageNet data used to pre-train detectors [43].
Moreoever, car is deemed novel, but similar concepts like sports car and race

car are present in ImageNet, illustrating the difficulty of even defining leakage.

Foundational FSOD. We believe that concept leakage should be embraced. Our


https://github.com/nutonomy/nuscenes-devkit/blob/master/docs/instructions_nuimages.md
https://github.com/nutonomy/nuscenes-devkit/blob/master/docs/instructions_nuimages.md
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Existing Setup Proposed Setup

common classes (base) few-shot classes (novel)

data in open world (base) few-shot classes (novel)

Figure 1.2: Foundational Few-shot Object Detection (FSOD). Conventional FSOD
protocols (left) allow for pre-training on base classes (with many examples per class) and
then fine-tuning on K-shots of novel classes, where novel and base are designed to be
disjoint. However, we point out that pre-training datasets such as ImageNet often contain
classes similar to the novel classes, highlighting the issue of concept leakage. As preventing
concept leakage is difficult (if not impossible) and appears to be artificial in the foundational
era, we propose the setup of foundational FSOD (right). Our setup allows for pre-training on
massively-large (and potentially proprietary) datasets, typical for foundational VLM models.
Since these models can process both text and images, one can utilize such multi-modal
K-shot examples to align VLMs with the target concepts of interest.

Foundational FSOD protocol replaces the base pre-training stage with web-scale
pre-training, where such data may be proprietary and not fully disclosed [38]. We
argue that pre-training on large-scale data will be the key enabler for generalization to
the open-world. Note that this hypothesis is difficult to even evaluate under current
few-shot protocols, motivating our setup. Moreover, another key property is that K-
shots may include multi-modal examples spanning both images and text, motivating a
multi-modal adaptation stage that aligns the VLM to the target concepts (cf. Fig. 1.2).
We repurpose nulmages for our Foundational FSOD benchmark, a challenging dataset
due to open-world categories such as debris and pushable-pullable, which also
provides multi-modal annotation instructions.

Contributions. We present three major contributions. First, we modern-
ize FSOD benchmarks by embracing vision-language foundation models that are
pretrained on internet-scale data. We highlight the practical challenge of using
multi-modal few-shot examples to define the target semantic concept (as shown in
Fig. 1.1). Next, we adapt nulmages for Foundational FSOD, evaluate various popular
open-source VLMs, and present an empirical analysis of leading methods. Lastly,
we highlight the results from our recent CVPR 2024 challenge hosted in conjunction
with the Workshop on Visual Perception via Learning in An Open World.


https://eval.ai/web/challenges/challenge-page/2270/evaluation
https://vplow.github.io/vplow_4th.html
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Chapter 2

Related Work

2.1 Few-Shot Object Detection (FSOD)

FSOD aims to detect new categories with limited training data [25]. Recent work
explores two primary approaches: meta-learning and transfer learning. Meta-learning-
based methods focus on acquiring generalizable features from a set of base classes,
which can then be applied to identify novel classes. For example, [22] proposes
a technique that re-weights features from base classes to predict novel classes.
[50] proposes a framework addressing both few-shot object detection and few-shot
viewpoint estimation. [8] introduces a general FSOD network that learns a matching
metric between image pairs, while [47] enhances object features using a universal
prototype. More recently, [52| proposes a generative approach that is robust to noisy
object proposals for novel classes. In contrast, transfer learning involves partially
freezing network weights pretrained on a base dataset to improve a model’s ability
to generalize to novel classes with limited data. Transfer learning approaches often
follow a two-stage fine-tuning strategy: first train on base classes and then fine-tune
the box classifier and regressor with K-shots from novel classes. This strategy has
historically outperformed meta-learning approaches [43]. Recent work has primarily
focused on improving classification performance. [42] utilizes a contrastive proposal
encoding loss to encourage instance-level intra-class compactness and inter-class
variance. Similarly, [28] applies a class margin loss to balance inter and intra-class

margins. Our approach leverages transfer-learning by fine-tuning vision-language
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models (VLMs) pre-trained on large-scale datasets.

2.2 Vision-Language Models (VLMs)

VLMs are trained on a large-scale collection of weakly-supervised image-text pairs
collected from the web. These models embed images and text into a shared space,
enabling open-vocabulary detection. Early works adapt VLMs for object detection by
either distilling the model’s predictions for specific image regions [12, 13] or directly
incorporating detection components into frozen [26| or fine-tuned [6, 35, 36] encoders.
In contrast, RegionCLIP [58] employs a multi-stage training approach, which involves
generating pseudo-labels from captioning data, conducting region-text contrastive
pre-training, and fine-tuning on detection data. GLIP [29] uses a single text query
for the entire image and frames detection as a phrase grounding problem. Detic
[62] addresses long-tail detection performance by leveraging image-level supervision.
In the context of open-vocabulary detection, there may be some overlap between
categories seen during training and testing. We use the term “zero-shot inference” to

signify that a model has never been trained on the target dataset.

2.3 Foundation Model Fine-Tuning

Fine-Tuning Foundation Models is of significant interest across many application
areas [10, 19, 56]. Standard fine-tuning procedures employ both linear probing
[4, 16, 17| and full-finetuning [24, 44, 49] to adapt models to downstream tasks.
However, such methods may be suboptimal as they can be computationally expensive.
Instead, recent works like CLIP-Adapter [10] and Tip-Adapter [57] fine-tune CLIP
using parameter-efficient methods |18, 20, 55| which optimize lightweight MLPs while
keeping the encoder frozen. Similarly, inspired by the success of prefix-tuning in
language models [5, 11, 15, 21|, prompt adaptation [32, 51, 59, 63| replaces hand-
crafted prompts like "a photo of a {c1s}" with learned word embeddings. CoOp [60]
and other prompting methods [32, 59, 63] finetune CLIP via prefix-tuning. Different
from most prior work, we investigate fine-tuning strategies for VLM-based detectors

using few-shot multi-modal examples.



Chapter 3

Foundational FSOD Benchmark

As shown in Fig 1.2, our proposed Foundational FSOD benchmark utilizes vision-
language models (VLMs) pre-trained on diverse, large-scale datasets, which are then
aligned to K examples of each target class. We contrast our proposed setup with

standard benchmarks and present simple strategies for fine-tuning VLMs below.

3.1 Foundational FSOD Benchmark

Existing FSOD benchmarks repurpose well-established datasets like PASCAL VOC
[7] and COCO [30] by partitioning them into base and novel classes for pre-training
and fine-tuning, respectively. For COCO, the 60 categories disjoint with PASCAL
VOC are used as base classes and the remaining 20 are used as novel classes [43].
However, this setup is artificial and does not reflect how FSOD is deployed in practice.
First, the FSOD benchmarks construct novel classes by including common concepts
such as car and person, and require FSOD methods to detect these common classes
by assuming they have only few examples. Importantly, VLMs like GroundingDINO
[31] can already detect common categories with high accuracy on COCO without
fine-tuning (cf. Table 4.1). Therefore, we focus on benchmarking Foundational
FSOD on more realistic and challenging datasets like nulmages [2]. Second, existing
FSOD benchmarks require that datasets are partitioned into base and novel classes,
which is infeasible for large-scale (often private) foundational datasets. For example,

although CLIP’s [38] model weights are publicly available, its pre-training dataset is

7



3. Foundational FSOD Benchmark

not. Instead, FSOD methods should only fine-tune VLMs on K-shot annotations for
C target classes (or novel, as termed in the conventional FSOD benchmark), and

also evaluate performance on these C' classes.

3.2 Few-Shot Multi-Modal Concept Alignment

Although VLMs achieve strong zero-shot performance on common classes, they
struggle when the target class is different from concepts encountered on the web
(cf. Fig. 1.1). For example, nulmages [2] defines the cab of a truck as a separate
concept from its trailer. However, Detic detects the entire vehicle as truck. This
fine-grained distinction is provided to human annotators with visual examples and
textual descriptions. We explore seven methods for alignment (either explicitly by
updating model weights via fine-tuning or in context via prompting) VLMs below.

Prompt Engineering uses expressive descriptions in the text prompt, adding
attributes, synonyms or language context, to manually improve the alignment of
foundation model outputs to target concepts of interest. In our case, we prompt
VLMs with synonyms of the nulmages classes to improve detection accuracy. For
example, we augment the language query for pushable-pullable with synonyms
like cart and wheel barrow.

Standard Fine-Tuning updates the last few layers of a model to adapt to new
target classes. For two-stage object detectors, this typically requires training the
box regression and classifier head. However, we find that standard fine-tuning is
sub-optimal, motivating our proposed approach below.

Federated Fine-Tuning leverages a simple but evidently underappreciated
observation: few-shot object detection datasets are actually federated datasets [14].
A federated dataset is comprised of smaller mini-datasets, where each mini-dataset
is exhaustively annotated for only a single category. For example, cars may or
may not appear in the background of the K images annotated with motorcycles.
However, existing FSOD methods incorrectly assume that no cars are present in the
background of non-car images. We devise a simple loss that incorporates this insight,
discussed further in the supplement.

Language Prompt Tuning is an established parameter-efficient strategy (27, 41|

for updating text embeddings with few-shot examples via fine-tuning. Concretely, for
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a given language query (e.g. stroller), we first extract a text embedding P° and
only fine-tune the text embedding [29].

Visual Prompting uses images of target concepts that are difficult to describe
through text as prompts to learn novel concepts in-context. For example, although
debris is a difficult catchall category to define through text, we can use image
examples to improve concept alignment. Typically, visual prompts are tokenized and
fed as inputs to a frozen VLM.

Multi-Modal Prompting combines language and visual prompting to leverage
multi-modal features. Intuitively, multi-modal cues can yield better alignment than
uni-modal cues alone; in the above case, ambiguous concepts such as debris can
be clarified with both textual descriptions (e.g trash can and tree branch) and
visual examples (similar to the multi-modal annotator instructions in Fig. 1.1!). Here,
visual and language prompts are tokenized and separately fed as inputs to a frozen
VLM. Specifically, MQDet[53] introduces a lightweight module: Gated Class Scalable
Perceiver, that fuses visual cues and text descriptions in the text encoder via class-wise
cross attention layers.

Multi-Modal Chat Assistants can accomplish many of the same tasks as
multi-modal prompting through a multi-modal turn-by-turn conversational interface.
However, unlike multi-modal prompting, conversational interfaces allow users to
iteratively refine concept definitions, similar to how human annotators often require

several rounds of feedback to fully understand the target concept.
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Chapter 4

Experiments

We conduct extensive experiments to validate that zero-shot inference from VLMs
significantly improves over state-of-the-art FSOD approaches, suggesting that existing
benchmarks should be re-framed to allow foundation models to “enter the conversation”.
Moreover, we demonstrate that leveraging language cues, especially those available
for free (e.g. class names), are crucial to improving performance on data-constrained
tasks like FSOD.

4.1 Datasets and Metrics.

We repurpose nulmages [2] to support the study of Foundational FSOD. This dataset
annotates 18 classes, which are divided into groups with many, medium, and few exam-
ples [34, 37]. We report AP for each cohort. Although this dataset is not traditionally
used for FSOD, nulmages’ open-world categories like debris and pushable-pullable
make it particularly challenging (even for VLMs), and is a realistic benchmark for
Foundational FSOD. We follow the K-shot dataset creation process established by
[43], described below. To construct a K-shot dataset, we select a target class ¢ and
an image at random. If the total annotations for class ¢ in the image are less than or
equal to K, we add the image to our dataset. We repeat this process for all classes
until we have exactly K annotations per class. Since the specific K examples can
have a significant impact on the overall performance, we run each experiment over 3

random data splits and report the average.
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Table 4.1: VLM Zero-Shot Inference Is a Strong FSOD Baseline. Zero-shot
inference with VLMs like GroundingDINO resoundingly outperforms state-of-the-art FSOD
methods on the COCO FSOD benchmark, motivating the need to re-frame FSOD to embrace
foundation models.

Approach 30-shots
AP Base AP Novel AP

FRON-ft-full [54] 18.6 20.6 12,5
FRCN-BCE [54] 30.2 36.8 10.3
TFA w/ fc [43] 29.3 34.5 13.5
TFA w/cos [43] 29.9 35.3 13.6
MPSR [48] 17.1 18.1 14.1
Meta-RCNN [54] 7.8 7.1 9.1
FsDetView [50] 10.0 9.3 12.0
Retentive R-CNN 9] 32.9 39.3 13.8
DiCeo [33] 33.1 39.4 14.2
GroundingDINO (Zero-Shot) [31] 48.3 46.3 54.3

4.2 Zero-Shot Inference Is A Strong FSOD Baseline

We compare state-of-the-art FSOD methods with zero-shot inference from Ground-
ingDINO [31] on COCO in Table 4.1. Surprisingly, GroundingDINO outperforms
DiGeo [33] by 16.2% AP averaged across both base and novel categories despite
never being trained on COCO images. GroundingDINO’s impressive performance is
due to its large-scale multi-modal pre-training on Objects365 [39], GoldG [23]| and
CapdM [29]. Tt is worth noting that GroundingDINO achieves higher AP on novel
classes than base, suggesting that novel classes in existing benchmarks (e.g. car
and person) are actually not rare in the real world.

Therefore, FSOD benchmarks should be re-framed to reflect real-world applica-

tions, motivating our setup.

4.3 Foundational FSOD with nulmages

In the context of foundational models, we argue that partitioning datasets into base
and novel classes no longer makes sense. Instead, FSOD methods should only train
on K-shot annotations for C' target classes, and also evaluate performance on these
C classes. We pre-train TFA [43]| on diverse datasets and fine-tune on K examples
per class and highlight model performance in Table 4.2.

We train two variants of TFA trained on COCO-base and LVIS-base and fine-tune

12
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Table 4.2: Impact of Large-Scale Pre-Training and Language. We repurpose
nulmages for FSOD following the dataset creation process established by [43]. We group
categories by frequency into many, medium and few examples per class [34, 37]. We fine-tune
TFA on K examples, but find low performance, < 3AP. However, by simply pre-training
on more data (LVIS, COCO and ImageNet-21K) and leveraging language cues via a CLIP
classifier, 5-shot performance improves from 2.02 AP to 15.12 AP. However, rare (or few)
classes like strollers, pushable-pullable, and debris remain challenging, motivating
our task of VLM alignment.

Approach Average Precision (AP)

A1l Many Medium Few
5-shots
TFA [43] w/ COCO-base 1.33 2.78 1.43 0.23
TFA [43] w/ LVIS-base 2.02 1.69 4.08 0.58
EOFCI?J E%B]C;‘V{PLé{:S’ngeflK’ 15.12 22.74 18.99 4.25
10-shots
TFA [43] w/ COCO-base 1.21 2.55 1.19 0.31
TFA [43] w/ LVIS-base 2.27 2.05 451 0.58
g&% [i‘ﬂCVLVI/PLg:S’;nglK’ 16.09 25.46 20.00 3.73
30-shots
TFA [43] w/ COCO-base 1.14 2.81 0.84 0.23
TFA [43] w/ LVIS-base 2.23 1.48 1.98 0.45
TFA [43] w/ LVIS, IN-21K, 17.22 25.98 21.64 4.78

C0CO + CLIP Classifier

both models on K examples of the nulmages classes. Surprisingly, both variants of
TFA achieve less than 3 AP (cf. Table 4.2). We posit that this is largely due to poor
classification performance. Since both LVIS and COCO classes do not significantly
overlap with nulmages classes, learning a classifier from few examples is extremely
difficult. However, we find that simply re-training TFA with a frozen CLIP-based
classifier (similar to Detic) dramatically increases performance, reiterating the utility

of language and web-scale pre-training in data-constrained settings.

4.4 Empirical Analysis of Results

We evaluate several popular VLMs on the nulmages Foundational FSOD (10-shots)

benchmark and present salient insights from Table 4.3 below.
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Table 4.3: Empirical Analysis of Baselines (10-Shots) on our Benchmark. We
evaluate popular VLMs on the nulmages FSOD Benchmark and find that MQ-GLIP performs
the best among all baseline models. Notably, it achieves 17.0 mAP zero-shot language-only
performance, and achieves 21.4 mAP via zero-shot multi-modal prompting averaged over all
classes. Remarkably, our 2024 competition winners further improved performance to 45.4
mAP, beating our best baseline by 24.0%.

re-Train Data Average Precision (AP
Approach Backbone Pre-Train Data. Average Precision (AP)
A1l Many Med Few
Zero-Shot Detection
RegionCLIP [58] RN50 CC3M 2.50 3.20 3.80 0.40
Detic [62] SWIN-B LVIS, COCO, IN-21K 14.40 25.83 16.59 2.32
GroundingDINO [31] SWIN-T Objects365, GoldG, CapdM 12.05 17.29 15.45 3.72
GLIP [29] SWIN-L FourODs,GoldG,Cap24M 17.01 23.36 19.86 8.40
MQ-GLIP-Text [53] SWIN-L Objects365, FourODs, GoldG, Cap24M 17.01 23.36 19.85 8.41
Prompt Engineering
Detic [62] SWIN-B LVIS, COCO, IN-21K 14.92 26.48 17.29 2.53
GLIP [29] SWIN-L FourODs, GoldG, Cap24M 17.15 23.82 19.36 9.02
Standard Fine-Tuning
RegionCLIP [58] RN50 CC3M 3.86 6.08 5.13 0.54
Detic [62] SWIN-B LVIS, COCO, IN-21K 16.09 25.46 20 3.73

Federated Fine-Tuning (Ours)

Detic [62] SWIN-B S, COCO, IN-21K 17.24 28.07 20.71 4.18
Detic [62] w/ Prompt Engineering SWIN-B LVIS, COCO, IN-21K 17.711 28.46 21.14 4.75

Language Prompt Tuning
GLIP [29] SWIN-L FourODs,GoldG,Cap24M 19.41 22.18 25.16 10.39

Visual Prompting

MQ-GLIP-Image [53] SWIN-L Objects365,FourODs,GoldG,Cap24M 14.07 24.39 15.89 3.34

Multi-Modal Prompting
MQ-GLIP [53] SWIN-L Objects365,FourODs,GoldG,Cap24M 21.42 32.19 23.29 10.26
Multi-Modal Chat Assistants

GPT-40 Zero-Shot Classification [1] Private Private 9.95 16.81 12.11 1.71

CVPR 2024 Competition Results

PHP_hhh Private Private 45.35 64.25 53.43 20.19
- . - Objects365V2, OpenlmageV6, GoldG, V3Det, COCO2014, COCO2017, . i . i
NJUST KMG SWIN-L LVISV1, GRIT, RefCOCO, RefCOCO-, RefCOCOg, gReECOCO 32.56 50.21 .87 1516

VS, OO VIS, ColdCr VG
Jivd sy vision SWINL Objects365V2, COCO2017, LVIS, GoldG, VG, OpenlmagesVe - 1650 43 -~

V3Det, PhraseCut, RefCOCO, RefCOCO-+, RefCOCOg, gRef-COCO

Zero-Shot Detection. Somewhat unsurprisingly, we find that (i) greater pre-
training data scale and diversity, along with (ii) larger backbones result in better zero-
shot performance. Notably, GLIP achieves 17.01% zero-shot performance, surpassing

all other methods trained with less data and smaller backbones.

Prompt Engineering. We attempt to improve zero-shot performance using
synonyms for class names derived from the annotator textual instructions. We see
minor improvements (e.g. Detic improves from 14.40 mAP — 14.92 mAP), indicating
that leveraging rich textual descriptions beyond class names can improve concept

alignment.

Federated Fine-Tuning. Standard fine-tuning is sub-optimal for FSOD, as
all unannotated classes are treated as negatives. Therefore we use our zero-shot

predictions to generate pseudo-labels on training images. We extract pseudo-negatives
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based on these pseudo-labels by identifying classes not in each image (by using detector
confidence scores), and leverage pseudo-negatives in our fine-tuning. Notably, we
improve over Detic’s standard fine-tuning by 1.15 mAP (16.09 mAP — 17.24 mAP).

Multi-Modal Prompting. We observe that Multi-Modal Prompting (MQ-GLIP)
achieves the best performance (21.42 mAP) out of all open-source methods in Table
4.3. We attribute this to its large pre-trained dataset, bigger backbone (SWIN-L)
and multi-modal prompts used during inference. Notably, the benefit of multi-modal
prompts can be seen by comparing MQ-GLIP (21.42 mAP) against MQ-GLIP-Image
(14.07 mAP), which uses visual prompting and MQ-GLIP-Text (17.01 mAP), which
uses language prompting. Interestingly, MQ-GLIP does not require gradient-based
fine-tuning, which differs from all existing conventional few-shot methods. Therefore,
we posit that future few-shot methods should further explore in-context learning.
Just as multi-modal annotator instructions aid human annotator alignment, we find
that multi-modal prompting significantly improves VLM concept alignment.

Multi-Modal Chat Agents. Given the strong performance of GPT-40 for
general visual understanding, we repurpose it for our task by prompting the model to
re-classify image patches from Detic’s RPN. Specifically, we ask GPT-40 to predict
a class and confidence for each image crop. Surprisingly, we observe reasonable
performance (9.95 mAP) despite GPT-40 not being trained as an object detector,
emphasizing the importance of the scale of pre-training data. We explore iterative
prediction refinement in the supplement.

CVPR 2024 Challenge. Finally, we highlight our top three submissions (out
of six participants) from the inaugural Foundational FSOD challenge. Notably all
top performers beat our baselines, with the winning team achieving 45.35 AP! We

discuss more details in the supplement.

4.5 Analysis of Iconic Few-Shot Images

The specific examples used during few-shot fine-tuning significantly impacts target
class performance [43]. However, prior work constructs few-shot splits by randomly
sampling K examples per class. In contrast, when creating annotator instructions,
selecting the right examples to “align" human annotators [3| to subtle aspects of the

target concept is carefully considered. To more closely match VLM concept alignment
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Random Split

Best Split

Figure 4.1: Visualizing Random and Best Split. In the top row, we visualize the
5-shot training examples of strollers from a random split. Similarly, we visualize the
5-shot training examples from the best split in the bottom row. We observe that strollers
in the random split are often occluded, small in size and blurry, making few-shot learning
harder. On the other hand, the best split examples are larger, have better visual quality
and are relatively un-occluded. This visual difference directly translates into better few-shot
performance. We achieve 13.09 Stroller AP for the random split and 18.54 Stroller AP
for the best split. We show a more comprehensive evaluation in Table 4.4.

with human annotator alignment, we design a simple algorithm to construct the best
K-shot split for fine-tuning. This allows us to understand which examples are most

informative and measure an upper bound in performance.

We construct our best split by picking examples corresponding to the best class-
wise performance, based on the evaluation of each split on a held-out validation set.
For instance, out of 3 random splits for the 5-shot task, one may pick car examples

from split 1, bicycle from split 3 and debris from split 2. In Table 4.4, we observe

Table 4.4: Random Split vs “Best” Split. We construct the “best" split by selecting per-
class few-shot examples that lead to the highest performance on a held-out set. Unsurprisingly,
the best split performs better than any random split, especially for very limited data settings
(e.g. 5-shot detection). This evaluation setting closely mimics how human annotators are
“aligned” to target concepts, since annotator guides are constructed using hand-picked iconic
visual examples.

Average Precision (AP)

Approach ALl Many Medium Few
Detic (Zero-Shot) [62] 14.40 25.83 16.59 2.32
Detic w/ Federated Fine-Tuning (5-shots, Random Split) 16.58 27.12 19.71 4.13
Detic w/ Federated Fine-Tuning (5-shots, Best Split) 18.30 28.66 21.81 5.56
Detic w/ Federated Fine-Tuning (10-shots, Random Split) 17.24 28.07 20.71 4.18
Detic w/ Federated Fine-Tuning (10-shots, Best Split) 18.24 28.63 22.00 5.19
Detic w/ Federated Fine-Tuning (30-shots, Random Split) 18.64 29.13 22.44 5.46
Detic w/ Federated Fine-Tuning (80-shots, Best Split) 18.75 28.07 23.18 5.81
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that the best-split performance is always better than its random counterpart. As
expected, the choice of examples in 5-shot case is more important than the 30-shot case
(1.72 AP difference for 5-shot vs 0.11 AP for 30-shots). We visualize the difference in
the splits for strollers in nulmages (cf. Figure 4.1). Unsurprisingly, iconic examples

are large and unoccluded.

4.6 Limitations and Future Work

Despite using VLMs pre-trained on large-scale datasets, we find that performance
for rare categories (defined by the cardinality of each class in the original dataset) is
considerably lower than for common classes. We posit that VLMs are pre-trained
with imbalanced data which includes many examples of common categories like truck
but few examples of rare categories like stroller. Our work does not explicitly
improve detection performance on rare classes. Interestingly, since VLMs like Detic
[62], GLIP [29], and GroundingDINO [31] are trained with different data sources,
each model has dramatically different zero-shot performance on novel categories like
stroller. Ensembling predictions from different VLMs may yield better detection
accuracy for rare categories. In addition, although our work motivates the use of
rich textual descriptions found in instructions for multi-modal alignment, our current
results use only nouns (class names and synonyms) as text prompts.

Benchmarking in the Era of Foundation Models. Although we argue that
pre-training on large-scale data will be the key enabler for generalization to the
open-world, understanding how to appropriately benchmark such methods remains
challenging. It is readily accepted that in order to accurately evaluate generalization,
one should not train on test data. However, it is difficult to guarantee that foundation
models have never seen our specific test data. We address this in our challenge
by explicitly prohibiting participants from training on nulmages (and nuScenes).
However, should we allow participants to train on similar in-domain data (e.g., other
autonomous vehicle datasets such as Argoverse [46])? We argue ‘yes’! With enough
scale, novel test examples may still be similar to the training set.

Out-of-Domain Benchmarks. Another way to address benchmarking is to
collect test scenarios that are designed to be dissimilar from internet images. For

example, out-of-domain images may include medical data (though foundational
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performance is still surprisingly effective [45]). We admittedly did not take this route,
since urban imagery is similar to images found online and arguably many applications
of interest fall under this category. Moreover, there exist ample opportunity for
technical innovation in this setting (as suggested by our CVPR 2024 challenge
results!). Alternatively, one can manually collect and sequester images that will never
be released on the internet. Since ensuring privacy may itself be challenging, yet
another approach is to leverage the continual learning paradigm, where new test sets
are continually constructed over time.

Comparing Models. Fairly comparing foundation models requires careful
consideration. Although accuracy is a valuable metric, it is intrinsically tied to the
scale of pre-training data and model architecture. Notably, the LLM community
already ranks models via a Pareto frontier of accuracy vs. parameter count. We
advocate for a similar approach for Foundational FSOD that considers backbone
architecture (e.g. ResNet-50 vs. Swin-B) and pre-training datasets (e.g. CC4M,
GoldG, LVIS).
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Chapter 5

Conclusion

We revisit few-shot object detection (FSOD) with vision-language models (VLMs) and
find that zero-shot inference from web-scale VLMs significantly outperforms leading
FSOD methods. However, such foundational models do not fully address few shot
recognition because of the concept alignment problem; particular concepts in target
applications may be different than their use on web-scale datasets. Just as human
annotators require concept alignment via multi-modal text and visual examples, we
argue that VLMs should be aligned with such few-shot data, formalizing the problem
of Foundational FSOD.
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Appendix A

Appendix

A.1 Baseline Implementation Details

We repurpose nulmages (CC BY-NC-SA 4.0) for all few-shot experiments in the main
paper. We evaluate detection performance using 1600 x 900 images across 18 classes
for all models tested. We create three random splits for each of K = {5, 10, 30}-shots
following the data creation process from [43] and report results averaged across these
three seeds. Our test-set is a subset of the (densely annotated) nulmages val-set.
We construct our test-set to only include validation images which have at least one
annotation from the Few or Medium cohorts (cf. Fig A.1). We train all baselines with
one RTX 3090 GPU. Our baseline code is available on GitHub and dataset splits are

available on HuggingFace.

Prompt Engineering: We leverage rich text descriptions provided by the
annotator instructions to select synonyms for each nulmages class. We manually
identify the best performing synonyms in Table A.1. At test time, we compute the
average text embedding of all synonyms to improve classification accuracy.

Language Prompt Tuning We train GLIP (SWIN-L backbone) for our prompt
tuning experiments for 60 epochs with a learning rate of 0.025, batch size of 4, and
weight decay of 0.25.

Federated Fine-tuning. We use Detic (Swin-B backbone) pre-trained on LVIS
+ CO0CO and ImageNet-21k data for our federated fine-tuning experiments (described
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Figure A.1: We visualize the distribution of classes in out test-set compared to the
cardinalities of classes in the full nulmages val-set. Notably, our sub-sampling strategy
of selecting validation images that have at least one annotation from medium or few
classes does not significantly alter the true distribution.

in detail in the next section). We use a batch size of 8 and an AdamW optimizer with
learning rate of 3.75e¢ — 6. We fine-tune this model for 8000 iterations on nulmages.
We sample 6 categories for each training image, i.e |S| = 6 for the FedLoss and
InvFedLoss experiments. We derive negatives from pseudolabels with atleast 20%
confidence for the Psuedo-Negative experiment.

Multi-Modal Prompting. We use MQDet (text-only, vision-only, text
+ vision for our in-context learning baselines. Unlike the original code base, we
tokenize our few shot examples instead of using random queries. Note that zero-shot
results for MQ-GLIP-Text and GLIP-L are the same since these models are identical.

A.2 CVPR 2024 Competition Details.

Our inaugural Foundational FSOD competition (hosted on Eval AI) received submis-
sions from eight teams (some submissions are private) around the world. We present
a ranked list of participants at the close of our competition on June 7th AOE in Table
A.2. Notably, three teams were able to beat our MQ-GLIP baseline. Unfortunately,
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Table A.1: Synonyms used for Prompt Engineering. We manually inspect the
nulmages annotator instructions to derive a set of synonyms to improve classification
accuracy.

Original Classes

Class Names with Synonyms

car

car

truck

truck, pick-up, lorry, semi-tractor

construction_vehicle

construction_vehicle, crane

bus bus, bendy_bus, rigid_bus

trailer trailer

emergency emergency, ambulance, police_car, police_motorcycle
motorcycle motorcycle

bicycle bicycle

adult adult, person

child child

police_officer

police_officer

construction_worker

construction_worker

personal _mobility

personal_mobility, skateboard, segway, scooter

stroller

stroller

pushable_pullable

pushable_pullable, wheel_barrow, garbage_bin, cart

barrier

barrier, K-rail, fence, bollard, guard_rail

traffic_cone

traffic_cone

debris

debris, trash_bag

the top performing team wasn’t willing to publicly share details about their method.
We summarize contributions from the other two top teams below.

NJUST KMG presents a method leveraging a vision-language model (VLM)
enhanced with a multimodal large language model (MM-LLM) to improve Few-Shot
Object Detection (FSOD). To address the challenge of misalignment between VLMs
and target concepts, authors propose generating descriptive referential expressions
for each category using MM-LLM. This involves annotating images with bounding
boxes, prompting ChatGPT to provide descriptive terms for each object, and then
creating multiple referential expressions by randomly combining these terms. The
VLMs then select the best referential expression for each category by matching the
maximum Intersection over Union (IoU) in the training set, and these expressions
are used to generate pseudo-labels for all training images, which are combined with

original labeled data to fine-tune the VLM. This iterative process of pseudo-label
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generation and optimization significantly enhances the VLM’s performance.

ZJYD CXY Vision proposes Instruction DINO (ISD), a DETR-based detector
architecture and incorporates early fusion of image and text information, using a
Swin-L visual backbone and EVA02-CLIP-L text encoder. Pre-training involves
two stages using various datasets, transforming grounding data into single-object
descriptions with QWen Max. For few-shot fine-tuning, the model adopts a flexible
training format and uses VLMs like CLIP, TAP, and LLava for negative sample
generation, finding that prompt tuning and text encoder fine-tuning generalize better
than visual encoder fine-tuning. The final fine-tuning method combines prompt tuning
and negative sampling, significantly improving mAP. To address sparse annotations,
the visual encoder is initially fine-tuned to generate pseudo-label annotations, which

are then used to complete training with prompt tuning.

A.3 Iterative Prompting with Multi-Modal Chat

Assistants

Typically, clients provide human annotators with a set of multi-modal instructions
and a corpus of unlabeled data for annotation. Annotators start by first labeling
a small subset of the data for review by the client, who acts as a domain expert
and provides feedback on erroneous annotations (highlighting concept misalignment).
Annotators use this feedback to annotate another subset of the data. This iterative
process continues until the client is satisfied with the annotators’ ability to accurately

label the entire dataset.

Table A.2: CVPR 2024 Foundational FSOD Competition Results.

Team Name Average Precision (AP)

A1l Many Medium Few
PHP hhh 45.35 64.25 53.43 20.19
NJUST KMG 32.56 50.21 34.87 15.16
zjyd cxy vision 31.57 46.59 33.32 17.03
Baseline (MQ-GLIP) 21.51 32.25 23.35 10.41
team anon 17.36 25.29 21.93 5.42
youyouqiu 13.16 11.29 19.20 7.68
zhao 11.38 11.16 16.76 5.30
zjdexy 7.80 5.44 13.43 3.20
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Given the list of nulmages classes [car, truck,...,], classify the given images and - Few-Shot
also output confidence score. °n Training Set
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Figure A.2: Iteratively Prompting ChatGPT. Despite its large-scale pre-training,
multi-modal models like ChatGPT-40 also suffers from concept alignment. Specifically,
GPT-40 makes highly confident but incorrect predictions for debris. We propose an
iterative prompting strategy to better align the model to a target concept. Given a
few visual examples per-class from the training-set, we query ChatGPT to use its
“web-scale knowledge” to generate text descriptions. We then augment the input to
MQDet to incorporate this additional context for zero-shot evaluation.

As shown in Figure A.2, we explore the idea of iteratively prompting multi-
modal chat assistants like ChatGPT to mimic the real-world workflow of human
annotators. We start by asking GPT-4o to classify image crops of debris (derived
from the few-shot training split). Notably, GPT-40 incorrectly classifies these training
examples with high confidence. Therefore, we prompt GPT-40 to generate its own
text descriptions of the few-shot examples according to its “web-scale knowledge”.
Finally, we use the class names, generated text descriptions for debris, and few-shot

visual examples to MQDet to predict instances of debris in the test-set.

We find that prompting MQDet with class names, ChatGPT generated text de-
scriptions, and few-shot visual examples improves performance by 0.67% (21.42 mAP
— 22.09 mAP) over the baseline. Interestingly, although debris does not change
when prompted with generated text descriptions, pushable pullable (3.6 AP —
15.29 AP) and barrier (11.6 AP — 15.31 AP) accuracy improve significantly. We

posit that this improvement is due to the reduction in confusion (or the over-confident
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incorrect predictions) between debris and pushable-pullable (and barrier). Sur-
prisingly, one of the top submissions to our CVPR challenge also use ChatGPT to

generate meaningful text descriptions to improve detection concept alignment.

A.4 Analysis of Federated Fine-Tuning

Prior works follow the K-shot dataset creation process established by [43]. Importantly,
each image in the dataset is exhaustively annotated for a subset of all classes. Recall,
a federated dataset is also comprised of images that are exhaustively annotated for a
specific category. This suggests that we can leverage existing insights about federated
datasets [14, 61] to train better few-shot object detectors.

Fine-Tuning with FedLoss. We fine-tune Detic with Federated Loss (FedLoss)
[61] using a subset S of classes C for each training image. Specifically, we use a binary
cross-entropy loss on all classes in S and ignore classes outside of S during training.
S is comprised of the ground-truth annotation class along with randomly sampled
negative classes for each image. We sample these negative classes in proportion
to their square-root frequency in the training set. We find that probablistically
sampling negatives rather than labeling all unannotated classes as negatives improves
fine-tuning results, reliably beating zero-shot performance. Importantly, although
FedLoss has been explored in the context of long-tailed detection, applying it to FSOD
provides considerable performance improvements, reaffirming that FSOD benchmarks
are actually federated datasets.

Fine-Tuning with Pseudo-Negative Federated Loss (Ours). Despite
the effectiveness of FedLoss, probablistically sampling negatives using dataset-wide
statistics is sub-optimal because it does not consider the content of each image. We
can improve the accuracy of sampled negatives with pseudo-labels to determine
which classes are likely not in a particular image. If the maximal score for any class
prediction is less than a threshold, we consider this class to be a negative. Using
zero-shot model predictions to identify pseudo-negatives yields better results than
simply using dataset-wide statistics. We find that this strategy works the best. We
present pseudo-code in Alg. A.1. All federated fine-tuning results in the main paper

are trained with psuedo-negative federated loss.

26



A. Appendix

Code Listing A.1: Psuedo-Negative Federated Loss

# Inputs

img: Randomly Sampled Image
all_classes: All Classes in Dataset

gt: Ground Truth Annotations for img

H R R R

gt_classes: List of Classes in gt

Outputs

loss: Psuedo-Negative Federated Loss

Functions
filter: Returns All Predictions w/ Confidence > Threshold
get_neg: Returns List of (Classes Not In Pseudo-Positives

or: Set Union Operation

H O OH OB OB W

BCE: Binary Cross Entropy Loss

#Step 1: Compute Predictions and Filter by Confidence
pred = Detector(img) # predictions
pseudo_pos = filter(pred, thresh=0.2)

#Step 2: Get Pseudo-Negatives for Image
neg_classes = get_neg(pseudo_pos, all_classes)

select_classes = or(neg_classes, gt_classes)

#Step 3: Compute Deterministic Federated Loss w/ Pseudo-Negatives
loss = 0
for cls in select_classes:

pred_cls = predl[cls] #predictions for cls

gt_cls = gtlcls] #ground-truth for cls

loss += BCE(pred_cls, gt_cls)

return loss

Oracle Performance Analysis. We empirically validate the effectiveness of our
pseudo-negative federated loss by computing the upper bound performance when given
access to ground-truth negatives and exhaustive annotations for the few-shot data

split. Recall, nulmages is exhaustively annotated, but is repurposed for Foundational
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Table A.3: Analysis of nulmages Upper Bound Performance. We compare the
accuracy of our proposed approach against upper bounds computed for the FSOD task.
Our pseudo-negatives strategy approaches the performance of using ground-truth negatives,
demonstrating that pesudo-labels can provide a reliable signal about negatives, especially
across classes with many and medium examples. The performance gap between our best
method and exhaustive annotations can be attributed to the large number of additional
annotations, particularly for classes with many and medium examples. Compared to the
baseline (14.3 AP), our approach (16.7 AP) closes the gap to the (18.5 AP) upper-bound by
over 50%.

10 Shots: Average Precision (AP)

Approach All Many Medium Few
Detic (Zero-Shot) [62] 14.26 27.28 15.15 2.36
+ Standard Fine-Tuning 15.53 26.01 18.02 3.88
w/ FedLoss 15.57 27.20 18.13 2.89
w/ Pseudo-Negatives 16.67 29.15 18.71 3.90
w/ True Negatives (Oracle) 16.99 29.60 18.94 4.21
w/ Exhaustive Annotations (Oracle) 18.51 33.51 20.30 3.93
FSOD.

To compute the set of ground-truth negatives for each image, we use exhaustive
ground-truth annotations to determine which categories are not present. Training with
ground-truth negatives provides an upper bound on our pseudo-negatives experiment.
Next, we train using exhaustive ground-truth annotations to provide an upper bound
for the specific set of images used during training. In addition, this experiment
highlights the performance gap between having exhaustive negatives and exhaustive
annotations.

Table A.3 shows that using pseudo-negatives nearly matches the true negative
upper bound (16.67 AP vs 16.99 AP). This demonstrates that we are able to reliably
estimate negatives in an image, alleviating the problem of learning with sparse
annotations. Training with exhaustive annotations yields significantly better results for
many and medium classes. This is unsurprising because the 10-shot FSOD benchmark
includes 10 car annotations, while the exhaustively annotated set includes over 550
car annotations!

Despite strong performance on classes with many and medium, the upper bound for
classes with few examples remains low (4.21 AP and 3.93 AP). Given the success of
training with pseudo-negatives, a natural next-step is to train with pseudo-positives.
Our preliminary results suggest that incorporating pseudo-positives does not provide

significant improvement over simply training with pseudo-negatives. We posit that
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training with incorrect pseudo-positives may incur a higher penalty than training

with incorrect pseudo-negatives. This is a promising direction for future work.

A.5 Impact of Box-Level Supervision for
Foundational FSOD

We evaluate the importance of using bounding-box supervised data in pre-training.
Unlike Detic, which trains on box-supervised data from LVIS, COCO and image-text
data from ImageNet21k, RegionCLIP|[58| only pre-trains on image-text pairs from
the Conceptual Captions (CC3M) dataset [40].

We report RegionCLIP’s zero-shot and fine-tuning performance on nulmages
averaged over 3 random splits in Table A.4. Detic zero-shot outperforms RegionCLIP
zero-shot by ~ 12 AP (14.26 vs 2.34). While fine-tuning RegionCLIP improves overall
performance, Detic achieves higher accuracy for K = {5,10,30} shots. This highlights
the importance of supervision type (e.g. box-supervised data) and data scale used for
pre-training.

Next, we conduct further analysis to diagnose why RegionCLIP zero-shot infer-
ence performs so poorly on nulmages (Table A.5). RegionCLIP relies on an RPN
pre-trained on box-supervised data like LVIS-base to extract regions for pre-training.
Notably, RegionCLIP (w/ LVIS-RPN: 2.34 AP) suffers from poor foreground-vs-
background classification compared to Detic. We validate this hypothesis by evaluat-
ing RegionCLIP (w/ GT-RPN) to measure classification performance. Surprisingly,
RegionCLIP achieves significantly higher accuracy (26.44 AP), confirming that Re-
gionCLIP struggles to distinguish between foreground and background in nulmages.
This observation highlights the challenge of working with nulmages categories, further
motivating our Foundational FSOD benchmark.

Lastly, we evaluate RegionCLIP’s performance with Detic-RPN. Notably, we
observe that the performance improves over RegionCLIP w/ LVIS-RPN demonstrating
that reducing the number of false positive proposals yields better performance.
Furthermore, we filter out low confidence Detic proposals , i.e < 0.5 objectness score
(w/ Detic-RPN, 0.5) and find that this doubles RegionCLIP’s zero-shot performance
to 7.64 AP.
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Table A.4: RegionCLIP Experiments. RegionCLIP zero-shot inference performs much
worse than Detic. While fine-tuning improves RegionCLIP’s performance, it still lags far
behind Detic. We posit that this performance difference can be attributed to Detic’s box-
supervised pre-training and use of language cues from CLIP embeddings.

Average Precision (AP)

Approach ALl Many Medium Few
RegionCLIP (Zero-Shot) (58] 2.34 3.33 3.45 0.22
Detic (Zero-Shot) [62] 14.26 27.28 15.15 2.36
RegionCLIP (Fine-Tuning, 5 shots) [58] 3.61 6.20 4.63 0.26
Detic (Fine-Tuning, 5 shots) |62] 14.50 24.09 16.90 3.70
RegionCLIP (Fine-Tuning, 10 shots) [58] 3.58 6.10 4.65 0.24
Detic (Fine-Tuning, 10 shots) [62] 15.28 26.93 18.00 3.27
RegionCLIP (Fine-Tuning, 30 shots) [58] 3.57 6.13 4.61 0.22
Detic (Fine-Tuning, 30 shots) [62] 16.65 27.45 19.46 4.02

Table A.5: Diagnosing RegionCLIP’s Poor Zero-Shot Performance. RegionCLIP’s
zero-shot performance lags far behind Detic. Using RegionCLIP’s classifier on ground-truth
region proposals yields high performance, suggesting that RegionCLIP struggles to accurately
distinguish between foreground-vs-background.

Approach Average Precision (AP)

A1l Many Medium Few
Detic (Zero-Shot) [62] 14.26 27.28 15.15 2.36
GroundingDINO (Zero-Shot) [31] 11.44 17.42 14.08 3.38
RegionCLIP (Zero-Shot) w/ LVIS-RPN [58| 2.34 3.33 3.45 0.22
RegionCLIP (Zero-Shot) w/ Detic-RPN [58] 3.79 6.68 4.01 1.12
RegionCLIP (Zero-Shot) w/ Detic-RPN, 0.5 |58] 7.64 12.81 8.88 1.88
RegionCLIP (Zero-Shot) w/ GT-RPN [58] 26.44 45.33 32.25 3.92

A.6 Nulmages Annotator Instructions

We present an example of the nulmages annotator instructions below. Notably, such
annotator instructons are naturally few-shot (e.g. providing a few visual and textual
examples describing the target concept), multi-modal, and contain both positive
and negative examples. Our proposed Foundational FSOD benchmark, and pseudo-
negative federated loss facilitate future work in leveraging rich annotator descriptions,
allowing us to “align” VLMs much like how annotators must be “aligned” to subtle

aspects of the target class.
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Barrier
=>  Any metal, concrete or water barrier temporarily placed in the scene in order to re-direct vehicle or
pedestrian traffic. In particular, includes barriers used at construction zones.
=>  [fthere are multiple barriers either connected or just placed next to each other; they should be
annotated separately.
= Ifbarriers are installed permanently, then do NOT include them.

Figure A.3: Nulmages Annotator Instructions. We include the multi-modal
annotator instructions barrier. Our proposed setup allows FSOD methods to learn
such multi-modal examples, similar to how human annotators are taught the labeling
policy. Importantly, annotators can also be provided with negative examples (in
red) for classes, i.e what NOT to label for a certain class. Crucially, our proposed
fine-tuning with pseudo-negatives can easily accommodate such negative examples
within the proposed setup.

A.7 Empirical Analysis of Baselines (5-Shots and
30-Shots)

We evaluate all baselines for the nulmages experiments with 5-shots and 30-shots
in Tables A.6 and 4.3 respectively. We find that trends from the main paper hold.
Notably, MQ-GLIP with-multi-modal prompting performs the best. However, we find
that adding more examples (e.g. MQ-GLIP 5-shot vs. MQ-GLIP 30-shot) doesn’t
seem to help in-context learning based methods nearly as much as gradient-based

fine-tuning approaches.
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Table A.6: Empirical Analysis of Baselines (5-Shots) on nulmages.

Pre-Train Average Precision (AP)

Approach Backbone Data A1l Many Med Few
Zero-Shot Detection

RegionCLIP [58] RN50 CC3M 2.50 3.20 3.80 0.40

Detic [62] SWIN-B LVIS, COCO, IN-21K 14.40 25.83 16.59 2.32

GroundingDINO |[31] SWIN-T Objects365,GoldG,Cap4M 12.05 17.29 15.45 3.72

GLIP [29] SWIN-L FourODs,GoldG,Cap24M 17.01 23.36 19.86 8.40

MQ-GLIP-Text [53] SWIN-L Objects365,FourODs,GoldG,Cap24M 17.01 23.36 19.85 8.41
Prompt Engineering

Detic [62] SWIN-B LVIS, COCO, IN-21K 14.92 26.48 17.29 2.53

GLIP [29] SWIN-L FourODs,GoldG,Cap24M 17.15 23.82 19.36 9.02
Standard Fine-Tuning

RegionCLIP [58] RN50 CC3M 3.84 6.13 5.07 0.49

Detic [62] SWIN-B LVIS, COCO, IN-21K 15.12 22.74 18.99 4.25
Federated Fine-Tuning (Ours)

Detic [62] SWIN-B LVIS, COCO, IN-21K 16.58 27.12 19.71 4.13

Detic [62] w/ Prompt Engineering SWIN-B LVIS, COCO, IN-21K 16.96 27.89 19.94 4.37
Language Prompt Tuning

GLIP [29] SWIN-L FourODs,GoldG,Cap24M 17.79 21.07 22.87 9.12
Visual Prompting

MQ-GLIP-Image [53| SWIN-L Objects365,FourODs,GoldG,Cap24M 13.42 23.05 15.00 3.54
Multi-Modal Prompting

MQ-GLIP [53] SWIN-L Objects365,FourODs,GoldG,Cap24M 21.45 32.23 23.31 10.30
Multi-Modal Chat Assistants

GPT-40 Zero-Shot Classification [1] Private Private 9.95 16.81 12.11 1.71

A.8 Foundational FSOD with LVIS

Although we use nulmages for Foundational FSOD for benchmarking in the main paper
and in our competition, other datasets can still be evaluated under this framework.
We include benchmarking results for LVIS below. LVIS [14] re-annotates COCO
images using 1,230 fine-grained classes, which are divided into frequent, common
and rare based on the cardinality of each class. Frequent and common classes are
combined to form LVIS-base and is used for pre-training. Rare classes are used for
LVIS-novel. Following |33, 43|, we benchmark with LVIS v0.5 on publicly released
data splits and report performance averaged across 3 splits for frequent, common,
and rare groups (AP, AP., AP,) on the LVIS val-set.

As shown in Table A.8, Detic outperforms all recent FSOD baselines including
DiGeo [33] by about ~6 points on AP, and APy and achieves 16.3 AP, without ever
seeing any rare class data (e.g by prompting Detic (Base Only) with the rare class
names). Importantly, these performance improvements can be attributed to Detic’s
CLIP-based classifier, which uses CLIP text embeddings corresponding to class names.

Such embeddings are a result of large-scale pre-training, which we can effectively
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Table A.7: Empirical Analysis of Baselines (30-Shots) on nulmages.

Pre-Train Average Precision (AP)

Approach Backbone Data All Many Med Few
Zero-Shot Detection

RegionCLIP [58| RN50 CC3M 2.50 3.20 3.80 0.40

Detic [62] SWIN-B LVIS, COCO, IN-21K 14.40 25.83 16.59 2.32

GroundingDINO |31] SWIN-T Objects365,GoldG,Cap4M 12.05 17.29 15.45 3.72

GLIP [29] SWIN-L FourODs,GoldG,Cap24M 17.01 23.36 19.86 8.40

MQ-GLIP-Text [53] SWIN-L Objects365,FourODs,GoldG,Cap24M 17.01 23.36 19.85 8.41
Prompt Engineering

Detic [62] SWIN-B LVIS, COCO, IN-21K 14.92 26.48 17.29 2.53

GLIP [29] SWIN-L FourODs,GoldG,Cap24M 17.15 23.82 19.36 9.02
Standard Fine-Tuning

RegionCLIP [58] RN50 CC3M 3.87 6.05 5.14 0.57

Detic [62] SWIN-B LVIS, COCO, IN-21K 17.22 25.98 21.64 4.78
Federated Fine-Tuning (Ours)

Detic [62] SWIN-B LVIS, COCO, IN-21K 18.64 29.13 22.44 5.46

Detic [62] w/ Prompt Engineering SWIN-B LVIS, COCO, IN-21K 18.67 29.13 2243 5.57
Language Prompt Tuning

GLIP [29] SWIN-L FourODs,GoldG,Cap24M 20.73 24.95 25.60 11.54
Visual Prompting

MQ-GLIP-Image [53| SWIN-L Objects365,FourODs,GoldG,Cap24M 14.26 24.55 16.73 2.79
Multi-Modal Prompting

MQ-GLIP [53] SWIN-L Objects365,FourODs,GoldG,Cap24M 21.40 32.08 23.31 10.27
Multi-Modal Chat Assistants

GPT-40 Zero-Shot Classification [1] Private Private 9.95 16.81 12.11 1.71

leverage for the few-shot task. This highlights the role of language in data-constrained

settings.

Further, fine-tuning Detic with pseudo-negatives improves overall performance
by 1.6 AP (30.0 vs 31.6) over naive fine-tuning. To contextualize the improvement
in performance, we note that between TFA (ICML 2020) and DiGeo (CVPR 2023),
the community improved on LVIS FSOD by only 0.5 AP (cf. Table A.8). Finally, we
note that simply replacing the ResNet-50 backbone with a Swin-B transformer yields

a sizeable 12.8 AP improvement for rare classes (19.8 vs. 32.6).

We present fine-tuning results for different variants of Detic on the LVIS 10-shot
dataset. Following the standard FSOD protocol, we pre-train Detic on LVIS-base (e.g.
frequent and common classes) and fine-tune on 10-shots from each class in LVIS-base
and LVIS-novel. Importantly, this means that only results for AP, are indicative
of true few-shot performance. First, we find that naively fine-tuning Detic on Base
+ Novel yields lower performance for AP; and AP,. Intuitively, this suggests that
ignoring the federated nature of FSOD datasets (e.g. by following the standard
practice of assuming common classes are negatives for rare class federated datasets)

hurts common class performance (cf. Table A.8). Importantly, simply training with
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FedLoss significantly improves over naive fine-tuning, increasing AP, by 1.9% (15.5
vs. 17.4) and 3.7% (26.7 vs. 30.4) for the ResNet-50 and Swin backbones respectively.
Further, leveraging our proposed negative pseudo-labeling strategy provides further
improvements over the naive federated loss, increasing AP, by another 2.4% (17.4 vs.
19.8) and 3.7% (30.4 vs. 32.6) for the ResNet-50 and Swin backbones respectively.
Similar to nulmages, we find that multi-modal prompting with MQ-GLIP performs
the best of all baselines tested, significantly improving over MQ-GLIP-Text and MQ-
GLIP-Image. We attribute MQ-GLIP’s strong performance to its bigger backbone
and significantly larger pre-training dataset.

LVIS v0.5 Detic Experiment Details. We select Detic with a Resnet-50
backbone for fair comparison with prior work. We pre-train Detic on LVIS-base for
90k iterations with a batch size of 32 using an AdamW optimizer and a learning
rate of 2e — 3. All images are resized to 640 x 640 and we also enable Repeat
Factor Sampling [14]. Following [43|, we sample up to 10 shots for each class in LVIS
(since all classes may not have 10 examples). We use a batch size of 32, learning
rate of 2.5e — 5 for 46k iterations. We do not use Repeat Factor Sampling for fine-
tuning. We sample 50 categories for each training image, i.e |S| = 50 for the FedLoss
experiments. We derive negatives from pseudolabels with atleast 20% confidence for

the Psuedo-Negative experiment.
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Table A.8: LVIS Foundational FSOD Performance. We present fine-tuning results
for different variants of Detic on the LVIS 10-shot dataset. We follow the standard FSOD
setup and pre-train Detic on LVIS-base for fair comparison with prior work. Detic pre-
trained only on LVIS-base outperforms specialized methods like TFA and DiGeo by ~6
AP, without fine-tuning on rare classes. Since we keep the model backbone (ResNet-50) and
pre-training data same for all methods, these performance improvements can be attributed
to Detic’s CLIP-based classifier. This demonstrates that concept leakage through language
significantly improve FSOD, and leveraging language cues should be embraced in data
constrained settings. Naively fine-tuning Detic yields a performance drop of APy and AP,
because treating common classes as negatives in rare category federated datasets hurts
performance. Instead, we find that embracing the federated nature of FSOD datasets
provides consistent improvements in fine-tuning (30.0 vs. 30.8 for ResNet-50). Further,
pseudo-labeling negatives in each image provides a modest improvement (30.8 vs. 31.6 for
ResNet-50). Similar trends hold for the Swin backbone.

A | 10-shots
pproach AP AP; AP, AP,
ResNet-50 Backbone
TFA w/ fe [43] 24.1 27.9 23.9 14.9
TFA w/ cos [43)] 24.4 27.7 24.3 16.9
DiGeo [33] 24.9 28.5 24.6 17.3
Detic (Base Only) [62] 30.0 34.4 30.8 16.3
t Fine-Tuning (Base + Novel) 30.0 33.2 31.9 15.5
w/ FedLoss 30.8 33.9 32.7 174
w/ Pseudo-Negatives 31.6 34.8 32.8 19.8
Swin Backbone
Detic (Base Only, SWIN-B) [62] 35.2 38.7 36.8 21.4
+ Fine-Tuning (Base + Novel) 35.9 37.1 37.8 26.7
w/ FedLoss 36.5 36.7 38.3 30.4
w/ Pseudo-Negatives 37.2 37.7 38.2 32.6
MQ-GLIP-Text (SWIN-L) 35.8 40.2 33.1 33.0
MQ-GLIP-Image (SWIN-L) 28.8 33.0 26.6 25.1
MQ-GLIP (SWIN-L) 43.4 46.4 41.8 40.1
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