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Abstract

The use of unmanned aerial vehicles (UAVs) for time critical tasks is
becoming increasingly popular. Operators are expected to use information
from these swarms to make real-time and informed decisions. Conse-
quently, detecting and recognizing targets from video is extremely pivotal
to the success of these systems. At greater altitudes or with more vehi-
cles, this process becomes increasingly difficult and requires significant
scrutiny from an operator. Hence, it is important to try and optimize the
information passed between a UAV and the operator. In this work, we
present a system that can be used to recreate high-fidelity environments
as well as simulate the behavior and data of a UAV swarm. This sim-
ulation extends AirSim, a flight simulator plugin for Unreal Engine, to
deploy fixedwing aircrafts and other vehicles for the use of conspicuity
measurement and other visual salience studies. Through the use of this
simulator, we showcase the effects that various factors can have on an
operator’s target recognition including altitude, velocity, and conspicuity.
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Chapter 1

Introduction

1.1 Multi-Agent Situation Awareness

The use of multi agent unmanned systems is becoming increasingly more popular for

time and situation critical tasks. During which, it is important that we are able to

effectively communicate with a human operator to have them absorb information

about a given scenario as quickly as possible. However, determining exactly which

pieces of information to pass an operator can prove to be challenging. When large

amounts of information, such as synchronous camera feeds from multiple vehicles, are

passed to a human operator, they may struggle to sift through the data to determine

what is relevant. On the other hand, if not enough information is given, the operator

may then have a difficult time grasping the overall scenario at hand.

These issues are only exacerbated depending on the context. With high speed

vehicles, information will be gathered and expected to be processed at a much quicker

rate. Similarly, different altitudes serve their own problems. For example, at higher

altitudes resolution of any key points of interest will decrease making it more difficult

to determine a point of interest. Comparatively, while at lower altitudes, the duration

of video for these targets may decrease giving an operator less time to determine the

relation between targets or the overall situation they are observing [15].

The piloting of these multi-agent scenarios also has a distinct impact on the

amount and quality of information gained by an operator. Specifically, if a group

of vehicles traverse paths that are closer together, an operator would gain more

1



1. Introduction

specific insights into a smaller subset of targets. On the other hand, if they were to

take very different paths with the intent to improve coverage, there would be much

more information about the scenario as a whole, but less involving individual targets

[6, 8, 14]. Furthermore, as the vehicles spread out more and more and/or increase in

number, the amount of raw information that the operator receives increases which

then later needs to be filtered. If at any time an operator is unable to process the

information at least as quickly as they are receiving it, they then need to either

ignore potentially relevant data to stay as updated as possible, or they will be using

outdated intelligence. Hence, it is important to have a variety of behaviors available

to a swarm. This way we can tailor our controls as we see fit.

1.2 Situation Awareness and Conspicuity

Situation awareness can be described as the understanding of a person about the

environment around them. This concept describes how well an individual recognizes

key actors in their environment, their relations to one another, and how this relation

will impact the environment in the future [12, 21].

Improving an operator’s situation awareness is extremely meaningful in any time

dependent task. One of the best ways to do this would be to improve how quickly

an operator can recognize a target. However, visual saliency can often be hard to

measure. Hence, a metric known as conspicuity helps to quantify a very qualitative

measurement. Conspicuity can be measured in one of two ways: either as an angle or

as a distance. As an angle, conspicuity refers to the difference in angle between a

person’s focus of view and an object in which that person is still able to recognize

that object. As a distance, conspicuity refers to the distance between a person’s focus

of view and an object in which that person is still able to recognize the object (see

figure 1.1) [16, 25, 34, 35, 38, 41]. This metric plays an especially important role in

target identification when an operator is surveying a large environment very quickly,

as the operator may not have the ability to focus on the details in an environment.

2



1. Introduction

Figure 1.1: Visual representation of conspicuity where θ represents conspicuity as an
angle and d represents conspicuity as a distance.
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1. Introduction

1.3 Motivation

This work was largely motivated by Professor Lewis’ lab at the University of Pittsburgh.

This lab aims to delve into human information processing specifically with robots and

robot swarms. To perform this research, the members of this lab needed a platform

that they could use to simulate and record data for later use when conducting

studies and uncovering different interactions between human and robot(s). Hence,

we worked to develop a simulator that matched the desired characteristics for these

tests. This took our work into a variety of different directions, such as simulation,

game development, and swarm control, to produce a simulator that matched their

needs and an interface to control it. Currently, this work is being adapted for use

with the Xprize Challenge [40], a competition to efficiently detect a wildfire scenario

in large environments. This will require simulating and coordinating swarms of

fixedwing UAVs to quickly survey an environment and effectively provide an operator

information such that they can identify a wildfire event.

1.4 Solution Proposition

In this paper, we present a system that can be used to test different methods of

relaying information about a scenario to an operator as well as some preliminary

results. This system largely makes use of Unreal Engine 5 (UE5) and AirSim (later

renamed to Colosseum during the transition from UE4 to UE5). UE5 is a game

development engine that simulates an environment. UE5 can be modified to make

a variety of different environments and scenarios, and can represent moving and/or

time dependent actors. Colosseum is an plugin for UE5 that includes models and API

controls for quadrotors and cars. We were able to craft the environments that matched

our needs in UE5 and used AirSim to control the UAVs and simulate our tests. From

there, we modified AirSim include three main components: heterogeneous vehicle

use, fixedwing aircraft simulation, and consensus behaviors for swarms. This allowed

us to have a wider and more fitting variety of vehicles and the means to control

them collectively. Through the use of this simulator, we were able to develop tests to

observe the effect that different variables have on an operator’s ability to recognize

and observe a target. This included factors such as velocity, altitude, conspicuity, etc.

4



1. Introduction

1.5 Contributions

This work saw a lot of collaboration to produce our results. Most notably, this work

is built off of the open source software AirSim [32]. AirSim offers a wide variety of

simulation tools including a way to interface with Unreal Engine and control vehicles

within it. Further, all of the studies that utilized this platform were undergone by

the students in Professor Lewis’ lab, while any necessary features of the simulator

needed for the studies were developed by us.

5
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Chapter 2

Related Works

2.1 Recreating High Fidelity Representations

There has been a great deal of work to represent environments and vehicles effectively

in simulation. This can be seen with AirSim [32] IsaacSim, and other simulators.

However, there is relatively little work focusing on situation awareness with high

fidelity visuals from the operator point of view. Human Factor research has focused

more on low fidelity simulations such as RESCHU [30] which show targets on a

map and use either uncalibrated, unrealistic, or no imagery. The closest work that

compares to ours is [17]. In this work, a different simulator, FlightGear, is used to

have a human operator control a UAV to find key targets within a given timeframe.

Due to its nature, it also focuses on trying to best relay information about a scenario

to the operator. However, this work tested different training techniques for the

operators of a single aircraft, rather than the effects of different autonomous controls

of a fleet of aircrafts on situation awareness.

There are also a few studies that focus on the operator experience for target

recognition in slightly different ways than our work [7, 23, 33]. Instead of checking

how to best relay information, [10] instead brings to light how boredom and distraction

can impact an operator of these systems. This paper discusses how requiring an

operator to perform actions can greatly benefit their performance by keeping them

engaged.

7



2. Related Works

2.2 Target Recognition and Tracking

Outside of the scope of a human operator, there has been significant work detailing

effective ways to identify and track targets using camera videos from UAVs. Under-

standably, if this can be done without the assistance of an operator in the loop, it

would effectively accelerate the process. [36] discusses how the use of neural networks

and precise models of the trajectory of a camera can be used to effectively locate

targets. From there, their motion can be estimated and can be effectively tracked.

[37] and [39] further discuss how the use of additional hardware such as a gimbal

can assist with this process further, stabilizing the image while also providing useful

analytics in terms of how to best control the quadrotor to track a target.

However, there are limitations in exclusively automating this process. For example,

there are some scenarios in which a human may be necessary to make a decision, so

their understanding of the situation is critical. Further, the tracking of these targets

can aid an operator in understanding the situation, but these autonomous systems

are often not able to understand a scenario by themselves.

2.3 Simulating Aircrafts

Due to their rising popularity and use in surveillance, there has been a lot of work

that has gone into recreating fixedwing aircrafts in simulation. Many simulators even

exist solely to recreate the dynamics of a fixedwing aircraft [24, 26, 31]. However,

these simulators often are not well equipped to handle either multi-agent or purely

autonomous UAVs. Of the simulators that do offer this capacity, many still lack the

high-fidelity environment requirement that we are looking for [3, 5, 9, 11]. Hence, we

look to adapt AirSim to take advantage of the realistic appearance and physics of the

environments while also maintaining realistic fixedwing physics.

2.4 AirSim

A lot of this work is built on the existing AirSim platform. This is a simulator that

leverages Unreal Engine to create a high fidelity visual representations of a variety

8



2. Related Works

of environments [32]. Furthermore, AirSim offers simulation of two main vehicles:

cars and quadrotors. These vehicles come with a prebuilt API that handles low level

locomotion control (moving to a given position, with a desired velocity and yaw, etc.)

as well as an interface for any sensors on the agent. Furthermore, Unreal Engine

continues to receive updates and improvements, so the environments that can interact

with these vehicles continue to improve as well. However, for this work, a variety of

adjustments were necessary to simulate the desired vehicles, swarms, etc. and their

corresponding behaviors.

2.5 Consensus Algorithms

Consensus algorithms have already been heavily documented. There are many papers

that cover extensively how to get a fleet of agents to work together. The three

movements that we cared about most extensively were rendezvous, anti-rendezvous,

and biased flocking. [28] discusses in depth how to apply these different algorithms

to a swarm that consists of three degree of freedom robots that move according to

their heading. These techniques were then modified to match the scenario that we

are exploring.

There are many other coverage based algorithms that have been developed for

UAVs. Coverage Path Planning (CPP) has been a heavily researched topic due to

the capabilities it serves for surveillance, disaster relief, and more. [27] demonstrates

how using different formations can be an effective technique for navigating urban

environments and simplifying the planning problem while also utilizing multiple

aircrafts. [22] comparatively shows how a sampling based approach discretizes the

search space more effectively and how it is a useful technique for mapping in three

dimensions as opposed to two. Finally, [19] and [29] showcase different technqiues for

using quadrotors for CPP while minimizing overlap. Specifically, [29] performs this

in an earthquake setting, similar to that of a wildfire scenario that our work aims

to eventually tackle. However, these different techniques are largely focused around

complete documentation of the area without respect to real time decisions. Each of

these papers aims to minimize the time taken to get a complete map or coverage of

the area without respect to important points that may improve the overall awareness

of the scenario at hand.

9
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Chapter 3

Simulation

3.1 Environment Simulation

One of the major points of interest in this work was generating high fidelity represen-

tations of real world environments. This would allow us to create more realistic tests

and better learn about the impact that each of the respective factors would have on

an operator’s ability to learn and retain information. To develop this simulation, we

used UE5, an extremely high-fidelity game development platform. Due to the wide

variety of preexisting assets that are available for this simulator, we were able to

generate environments that matched our needs. Furthermore, with the use of Cesium

[20], we were able to match these environments to real world maps for more realistic

scenarios.

3.2 Using Hetergeneous Vehicles with AirSim

AirSim natively does not support heterogeneous simulation of vehicles i.e. swarms can

only consist of all quadrotors, cars, etc. One of our goals was to allow for the use of

different vehicles simultaneously to allow for more potential scenarios to be simulated.

Although not used for any studies, this functionality was created for a situation in

which coordination between UAVs and Unmanned Ground Vehicles (UGVs) would

be beneficial. For example, in the circumstance in which a wildfire limited access

11



3. Simulation

to certain areas, it would be useful to communicate between UAVs and UGVs to

simultaneously survey from above while driving to a destination.

To implement this, we leveraged the existing Multirotor and Car simulation

modes. Each simulation mode creates an API client for its respective vehicle type

that allows you to interface with vehicles of that type. This is done by establishing

a remote procedure call (RPC) socket connection that starts up the respective API

server and allows a user to connect to it through a client. By default, AirSim only

spawns and manages one server. By modifying the default AirSim methods, we

were able to change this behavior to allow for multiple servers to be spawned at the

same time. Largely, this consisted of modifying the way that the simulation mode

initialized the servers, such that we spawn multiple at once and track the running

servers through a list rather than just a single server object. The RPC connections

allowed us to communicate with the servers in the same way as if you were to run

the vehicle types independently. This can be visualized in figure 3.1.

3.3 UAV Simulation

AirSim does not have any native Group-2 aircrafts (such as fixedwings or other high

speed planes), rather it offers quadrotors and cars. Hence, we adapted the preexisting

properties of the quadrotors to match the expected values of a fixedwing. This was

comprised of three main components: speed, turning radius, and stalling speed.

The main motivation for this component of our work was the expected use of

fixedwings in the Xprize challenge. Due to the large environment size and time

constraint, high velocity aircrafts such as fixedwings would be a necessity for the

challenge. However, we did not need to simulate every behavior of a fixedwing.

Rather, we aimed to replicate specific behaviors of fixedwing aircrafts as defined by

the requirements for conspicuity experiments and data generation, as well as expected

behaviors for Xprize. For example, takeoff of our UAVs still consists of an aircraft

raising up into the air as a quadrotor would. For our purposes, we cared specifically

about the differences in maximum speed, turning radius, and stalling speed. These

properties are critical for control of UAVs as a swarm simulating their expected

behaviors.

Most notably, we wanted to represent an aircraft that could travel at least 200

12



3. Simulation

Figure 3.1: AirSim’s native API server setup (top) and with tolerance for heteroge-
neous swarms (bottom).
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Figure 3.2: Demo using a quadrotor to help a car navigate obstacles

knots, was limited to a turning radius of π
4
, and would stall out if traveling below

the stall speed of an Altius-700 [1] aircraft. We confirmed this behavior using

simGetVehiclePose and simGetGroundTruthKinematics to get the ground truth

pose and kinematics (linear velocity, etc.) of the aircraft during its operation and

comparing it to our requirements.

3.3.1 Speed

The maximum speed of the quadrotors was significantly less than the desired speed

of the fixedwings for our tests. This value was set and calculated according to the

dynamics of a quadrotor. Hence, by modifying the parameters associated with the

propeller diameter, max RPM, and thrust coefficient, we were able to achieve our

desired velocities. We used the equation 3.1 to find the necessary thrust to travel at

a given speed [4] (See table 3.1 for descriptors of the symbols).

CT =
T

ρn2D4

FT = CTρn
2D4

(3.1)

14



3. Simulation

Symbol Description
n Propeller Rotation Rate (revolutions per second)
D Propeller Diameter (m)
CT Thrust Coefficient
T Thrust, ambient temperature (N)

ρ Density of Air ( kg
m3 )

FT Max thrust
R Turning radius (m)
v Linear velocity (m/s)
g Gravity (m/s2)
θ Roll (rad)
L Lift (N)
S Wing Area of Aircraft (m2)
CL Lift Coefficient
W Weight (N)

Table 3.1: Description of symbols used to calculate the max dynamics of an aircraft.

The speed of the quadcopter was also able to be increased by adjusting the

simulation speed of the AirSim components, effectively causing them to either fly

faster or slower depending on the adjustment.

3.3.2 Turning Radius

The turning radius, and overall turning mechanism, of a quadrotor also did not match

our intended goals. A quadrotor has a much tighter turning radius and can utilize the

four points of lift to more accessibly get into certain positions. However, by limiting

the quadrotor’s drive train to only allow for forward movement, we can prohibit any

strafing movement that the quadrotor may have otherwise performed. Furthermore,

by setting a max roll amount as well as turning radius, we were able to simulate the

behavior of a fixedwing more closely. This was done by adhering to the equation 3.2

[42] (see table 3.1 for descriptors of symbols).

R =
v2

g tan θ
(3.2)

By limiting θ to π
4
, we were able to effectively recreate the fixedwing flight behavior.

15



3. Simulation

3.3.3 Stalling

The final key feature needed for this system is the capacity for the aircrafts to stall

when traveling at low speeds. Quadorotors have the capacity to hover whereas

fixedwing aircrafts do not. To replicate this behavior, we check the linear velocity

and roll angles of the aircrafts while they were flying and compare these values to

the minimum velocity needed to maintain lift. If at any point, the linear velocity

dropped lower than this value, the UAV begins to stall and pitch downward until it

begins rapidly descending.

In this paper, we specifically cared about straight and level stall speed. This can

be calculated according to equation 3.3 [2] (see table 3.1 for descriptors of symbols).

L =
1

2
ρv2SCL

W = mg

L =
W

cos(θ)

v =

√
2mg

ρSCL cos(θ)

(3.3)

We used the specifications of the Altius-700 [1] for the aircraft specific qualities,

and used [18] to find the coefficient of lift.

3.4 Handling Multiple UAVs

We also wanted to test the capabilities of UE5 and AirSim for controlling multiple

UAVs to see how the simulator could handle swarms for Xprize. As the number of

UAVs increases, there is an increase in potential maneuvers, area we can cover, and

information we can gather. However, due to high-fidelity simulation’s high cost, we

understood that there likely would be limitations and sought out finding them.

3.4.1 Limitations of UE5 and AirSim

Understandably, simulating a fixedwing UAV can be taxing on the performance of

a computer. As described above, each aircraft was not only modelled, but also had

16



3. Simulation

Number of UAVs Behavior
1-6 Behaves normally, each agent is able to move and be simulated

as expected
8-15 Jitter starts to be introduced to the system as AirSim begins to

lag causing the controls to fall behind compared to the simulation
of the agent

16-22 Agents are able to move but suffer from extreme lag and jitter
22+ Agents are effectively unable to move as the number of resources

used exceeds the available amount

Table 3.2: Number of UAVs and the resulting behavior.

controllers that frequently checked the dynamics of each aircraft. Hence, there is

a limit in terms of the number of aircrafts that we are able to effectively simulate.

Although we did not record metrics on the individual costs of simulating an aircraft,

we did find that CPU usage was the main limiting factor. We ran our simulation

primarily on a workstation that had a 12th Generation Intel® Core™ i9-12900HK

(24 MB cache, 14 cores, up to 5 GHz) CPU, NVIDIA® GeForce® RTX™ 3080 Ti,

16 GB GDDR6 GPU, and 64 GB of DDR5, 4800 MHz, dual-channel RAM.

AirSim also somewhat creates a bottleneck. AirSim operates with a single server

that one or more clients can connect to. This server then internally handles the

different physical dynamics of the vehicles being simulated, as well as the controls

for each agent. Consequently, as the number of agents increases, AirSim can begin

to struggle to maintain an effective simulation of each of them. Table 3.2 shows

a comparison between the number of UAVs and the behaviors demonstrated while

flocking (described below) on the default Blocks environment.

The number of UAVs that could be run concurrently varied with a variety of

different factors. Most notably, the complexity of the environment and the control

algorithm had the largest impacts. In an environment with many dynamic actors, the

number of UAVs that could be seamlessly simulated decreased. Similarly, algorithm

complexity negatively impacted performance. There was no quantitative measurement

taken for the visual inaccuracy of the aircrafts.

17



3. Simulation

3.4.2 JSBSim

We also tested one other simulator to try and replicate the flight dynamics of a

fixedwing aircraft. JSBSim [13] is an open source flight dynamics model that comes

equipped with fixedwing dynamics and controls. Hence, we wanted to try to translate

the movements and behaviors from JSBSim to AirSim in an attempt to try to

maximize the realness of the simulator. However, JSBSim was developed with the

intent to control a single aircraft, whereas our goal was to use multiple. Hence, when

we tested JSBSim’s capacity to work with multiple aircrafts, it did not perform well.

JSBSim has a single server-client pairing that it uses for controls and dynamics. The

server will track the location and kinematics of a given aircraft at each simulated

time step. When paired with AirSim for visual modelling, this caused discrepancies

in timing. JSBSim would often update at a slower rate than AirSim or UE5, resulting

in large jerking motions of the aircraft as they moved from location to location.

Furthermore, because there is a single client, the dynamics of each aircraft would be

updated serially. This resulted in much worse performance as you increased aircrafts.

Even attempting to simulate three aircrafts would result in jagged and infrequent

movements of the aircrafts.

3.5 Consensus Algorithms

We also looked into implementing a variety of consensus algorithms to effectively

coordinate teams of UAVs.This was broken up into three main control schemes:

rendezvous, anti-rendezvous, and biased flocking.

This behavior is not native to AirSim and would allow for convenient control of

the UAVs when performing large scale surveillance or managing multiple swarms at

once. Although this was not necessary for the current studies, this feature will be

essential for the Xprize challenge.

3.5.1 Agent Model

Each UAV in the Unmanned Aerial System (UAS) has the following model. xi, yi, zi

are the positional components of an agent’s pose and θi, ϕi, and ψi are the rotational

18



3. Simulation

Symbol Description
ppp Pose
pppi Pose of aircraft i
pppg Goal pose
pppw Pose in world coordinates
pppr Pose in relative coordinates

N(i) Set of agents
s Speed of agent
ss Stall speed of agent
µ Rendezvous/Anti-Rendezvous coefficient
ks Speed coefficient
qqq Direction that the agents should flock toward

Table 3.3: Description of symbols used to perform consensus algorithms.

components. From there, the UAVs are controlled by giving a target position, (x, y, z)

to travel to and a speed to do so. This position is relative to the initial basis of

the UAV (xis, y
i
s, z

i
s, θ

i
s, ϕ

i
s, ψ

i
s). Hence, when controls were given in world coordinates,

they were transferred to relative coordinates according to equation 3.4 (see table 3.3

for descriptor of symbols).

xir,g = xig,w − xis
yir,g = yig,w − yis
zir,g = zig,w − zis

(3.4)

3.5.2 Swarm Behaviors

In this section we introduce the different behaviors available to the UAS. This is a

set of behaviors that the agents are capable of performing and utilizing for different

tasks.

Rendezvous

Rendezvous aims to consolidate the agents into one central location. The first part

of generating each of the designated sequences is getting the centroid of the swarm

and the relative difference in position of each UAV. From there, we can perform

rendezvous. The rate at which the system converges can be altered based on both µ
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as well as ks. This can be represented according to equation 3.5 (see table 3.3 for

descriptors of symbols).

pppcentroid =
1

|N(i)|
∑

j∈N(i)

pjwp
j
wp
j
w

pppig,w = µ
(
pppcentroid − pppiw

)
+ pppiw

si = max(ss, ks∥pppiw − pppcentroid∥)

(3.5)

Anti-Rendezvous

Comparatively, anti-rendezvous aims to spread the agents out as much as possible.

To perform anti-rendezvous, we instead set the goal position to be opposite of the

direction of the centroid by setting µ to a negative value. However, speed is calculated

in the opposite way, where the closer an agent is to the center, the faster it should fly.

si = max(ss, ks max(∥ppp∀j∈N(i)
w − pppcentroid∥)− ∥pppiw − pcentroid∥) (3.6)

Biased Flocking

Finally, biased flocking aims to have the agents consolidate and traverse in a general

direction as a group. This builds upon rendezvous to provide a direction to the UAS

as well. This can be seen according to equation 3.7 (see table 3.3 for descriptors of

symbols).

pppig,w = pppig,w,rendezvous + qqq

si = max(ss, ks∥pppiw − pppig,w∥)
(3.7)
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Algorithm 2 Converge all agents upon one point within a distance R to the center

1: procedure Rendezvous(N,µ, ks, R)
2: states, centroid, stallSpeeds ← GetSwarmData

3: dists ← dist(states, centroid)
4: while dists.any > R do
5: targets ← µ(centroid−states) + states
6: speeds ← max(ksdists, stallSpeeds)
7: MoveAgents(N, targets, speeds)
8: states, centroid, stallSpeeds ← GetSwarmData

9: dists ← dist(states, centroid)
10: end while
11: end procedure

Algorithm 3 Disperse all agents away from a center point until they are R far apart
from their center
1: procedure Anti-Rendezvous(N,µ, ks, R)
2: states, centroid, stallSpeeds ← GetSwarmData

3: dists ← dist(states, centroid)
4: while dists.any < R do
5: targets ← µ(centroid−states) + states
6: speeds ← max(ks(dists-max(dists), stallSpeeds)
7: MoveAgents(N, targets, speeds)
8: states, centroid, stallSpeeds ← GetSwarmData

9: dists ← dist(states, centroid)
10: end while
11: end procedure

Algorithms

Algorithm 1 Get the states, centroid, and stall speeds of all agents

1: procedure GetSwarmData(N)

2: states ← GetStates

3: centroid ← mean(states)

4: stallSpeeds ← stallConstant√
cos(θ)

return states, centroid, stallSpeeds

5: end procedure
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Algorithm 4 Converge all agents within radius R and have them move as a flock in
a given direction q

1: procedure Biased Flocking(N,µ, ks, R, q)
2: states, centroid, stallSpeeds ← GetSwarmData

3: dists ← dist(states, centroid)
4: while do
5: needConvergence ← dists > R
6: targets ← (µ(centroid−states) · needConvergence) + states + q
7: speeds ← max(ksdist(targets, states), stallSpeeds)
8: MoveAgents(N, targets, speeds)
9: states, centroid, stallSpeeds ← GetSwarmData

10: dists ← dist(states, centroid)
11: end while
12: end procedure
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Chapter 4

Experimentation Using Simulator

This work was adapted to create a tool for testing for different visual saliency and

conspicuity trials. The experimentation was was undergone by Professor Lewis and

the students of his lab (most notably Xuehang Guo) who used this platform for

their experiments. The work done to develop the flight simulator for use in these

studies was handled by us, and the studies were performed by the students of the lab.

Specifically, this can be seen in [15, 16]. This section showcases how this work was

and can be used for the purpose of conspicuity testing as well as for future use in the

Xprize challenge.

4.1 Target Conspicuity

The first study that utilized this simulator ([16]) aimed to showcase the effect that

viewing angle, distance, and size of target can have on overall conspicuity of that

target. Specifically, it highlights a phenomenon known as the Critical Gap. The

Critical Gap is an empirical finding that states that the conspicuity of a target, when

measured as a distance, remains the same when viewed from any distance beyond a

given threshold distance. This can then be expanded to show the relation between

conspicuity angle and viewing distance of a target according to equation 4.1.

CG = tanα× d = tan β × h (4.1)
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By demonstrating this, fewer conspicuity measurements need to be taken as you

would not need to record a new measurement for every distance.

4.1.1 Methods

This experiment utilized the AirSim environment to measure conspicuity of a target

at different sizes. Thirty trials were performed for each of the sizes of targets, and

different viewing distances were used for each of the trials. Data was collected in

two different ways, each providing a different interface to the user. The first utilized

a camera mounted on a quadrotor to observe a target. The quadrotor moved over

the target in one of the different four-linked directions (up, down, left, and right),

and when the quadrotor was directly above the target the view camera view would

become full screen. The user was instructed to continue looking in the center of the

screen and to press any key when the target was no longer visible. This was repeated

for each of the four-linked directions per trial. This process was also performed using

a UE5 blueprint that would display a top down image similar to the quadrotor, but

with additional on screen prompts and without the camera moving. Here, the user

was asked to visually track an arrow rather than focus on the center of the screen.

Furthermore, they were able to press a key to begin the subtrial in a given direction.

The two different prompts can be seen in figure 4.1.

4.1.2 Results and Conclusions

This study confirmed the existence of the Critical Gap phenomenon. The changes in

altitude and target size matched the expected results, where a larger and more visible

target would result in a larger Critical Gap measurement, but also one with more

variability. Comparatively, a smaller target resulted in a smaller Critical Gap value,

but stayed relatively consistent past a certain threshold. By confirming these findings,

conspicuity measurements beyond a certain distance threshold were proven to be

relative to one another according to the relation 4.1. Hence, fewer measurements

would need to be taken as you can calculate the critical distance of any distance

beyond the threshold with just one measurement.
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4. Experimentation Using Simulator

Figure 4.1: Conspicuity test for UAV (top) and UE5 Viewport Blueprint (bottom)
[16]
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Velocity Altitude

30m 100m 200m 250m 300m
50 kt 1.4s 4.6s 9s 11s 13.6s
100 kt 0.7s 2.3s 4.6s 5.7s 6.8s
200 kt 0.3s 1.1s 2.3s 2.8s 3.4s

Table 4.1: Duration of target visibility for a given speed and altitude [15]

4.2 Effects of Altitude and Speed on Conspicuity

This simulator also was used for a study that focused on the effects of speed and

altitude on conspicuity [15]. This experiment was designed to test the effect different

factors on conspicuity for the Xprize [40] challenge. At very high speeds and altitudes,

it is difficult to observe certain targets from the fixedwing cameras. Hence, this

experiment tests how these different parameters modify conspicuity of a target so we

can optimize the flight parameters to maximize conspicuity and situation awareness.

4.2.1 Methods

In this study, a fixedwing aircraft traveled at a fixed velocity and altitude across a

given environment. In the environment, a target was placed that the observer needed

to identify. Due to the nature of the different altitudes and speeds, the duration of

time that the target was visible varied. The duration that target was visible for varied

from 0.3 at the minimum all the way to 13.6 seconds at the maximum (see table 4.1).

Different targets and levels of conspicuity (target background combinations, visual

angles of deviation, etc.) were used for a broader test that incorporated different

scenarios. In the circumstance where a target was visible for an extremely short

duration, static scenarios were recorded in which the videos were reduced in duration

and entry time of the target was more uniform.

4.2.2 Results and Conclusions

This study showcased the impact that several factors had on an operator’s ability

to recognize a target: velocity, altitude, and conspicuity conditions. After testing,
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Figure 4.2: Truck at varying altitudes
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altitude and conspicuity conditions were shown to have the largest impact on an oper-

ator’s recognition of a specific target. Lower altitudes, despite the decreased exposure

time, showed overall improved performance due to increased detail. Furthermore,

increased conspicuity conditions saw a clear increase in recognition accuracy. Finally,

velocity seemed to have little impact as a whole (see 4.3).

One important takeaway from this, however, is that as the overall conspicuity of a

target increases, even performance at a high altitude, recognition will as well. In the

testing setup, a firetruck, which is much more visually distinct compared to the other

stimuli, was used for the 250m tests. Consequently, the 250m tests demonstrated a

high level of recognition. This is an important distinction as it showcases how we

could want to augment our approach to guiding UAVs based on the expectation of

the conspicuity of a target. For example, if we have a visually conspicuous target, we

could maneuver the aircrafts at a higher altitude to observe more of the landscape at

once.
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Figure 4.3: Relation between velocity, altitude, conspicuity, and recognition [15]
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Chapter 5

Future Work

This simulator will eventually be used for the Xprize challenge, which will utilize

the different functionalities that we have developed. This task will require a swarm

of fixedwing UAVs to navigate a 1000 km2 environment in a ten minute window.

During this time, an operator will be collecting data on the environment with the

intent to recognize if there is a wildfire event happening. Due to the nature of the

task, this will require not only smart routing and maneuvering of the aircrafts, but

also meaningful data that is sent to an operator. According to Xprize, there is a

high number of false positives amongst wildfire detection which can lead to wasteful

deployments and uses of resources. Furthermore, the fastest methods of detection

currently sit in around the 40 minute time-frame [40], so a ten minute detection

would be four times faster. Although many additions will be added to this work,

such as interfaces for operators, specific coverage plans using UASs, etc., this work

should stand as a basis for simulation and control such that others can develop the

surrounding features more conveniently.
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Chapter 6

Conclusions

We present a high-fidelity simulator that is able to effectively model real world

scenarios and can be used for a variety of conspicuity testing. It has the capacity to

model a variety of vehicles, notably cars, quadrotors, and fixedwing aircrafts, and

provides the functionality to control each vehicle as a user would see fit. This system

also provides functional consensus algorithms for a swarm of vehicles, which can be

used for coverage and control. Finally, this simulator was utilized for conspicuity

testing to help gain key insights into the factors that may impact a user’s ability to

recognize a target. Overall, the system is well equipped to handle testing use cases

such as the ones defined above, but will need slightly more development for larger

testing requirements, such as Xprize.
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