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Abstract

Place Recognition is a key component for building a robust and reli-
able SLAM system that enables robot autonomy and global localization
in complex scenarios for disaster-response and search-and-rescue tasks.
Despite recent advances leveraging large-scale training and improved train-
ing techniques for visual,LIDAR and thermal place recognition, current
systems remain fragile in are heavily engineered towards specific environ-
ments, limiting in-the-wild deployment. At the same time, the recent
success of vision foundation models have shown impressive generalized
and open-vocabulary behaviour in diverse environments for visual tasks.

Building on these key insights, we first demonstrate AnyLoc - a universal
solution to Visual Place Recognition that works across diverse structured
and unstructured environments without any re-training or fine-tuning.
Despite being self-supervised and without any VPR-specific training, we
show that aggregating these features helps us achieve up to 4× significantly
higher performance than state-of-the-art VPR systems. Furthermore, this
features reveal distinct semantic domains corresponding to datasets from
similar environments, helping us further improve performance.

We further develop MultiLoc and show that these features can be distilled
into other modalities, namely LIDAR and thermal enabling cross-modal
place recognition even in challenging environments. We evaluate our ap-
proach by repurposing existing public datasets for visual-LIDAR-thermal
place recognition datasets. For the first time we show that we can achieve
zero-shot cross-modal place recognition between unseen modalities at test
time. The experiments and analysis in this thesis lays a foundation for
building VPR solutions that may be deployed anywhere, anytime,across
anyview and on any-sensor.

v



vi



Acknowledgments

At the outset, I would like to thank my advisor, Basti. Without his
continuous guidance and mentorship, my love for perception would not
have been kindled. When I joined the M.S. Robotics Program, I knew
little about perception and field robotics. In these 2 years, I have gained
an extra-ordinary amount of knowledge and diverse viewpoints through
my discussions with him, and learnt to identify problems that with a real-
world impact. I am grateful for the academic freedom he has nourished at
AirLab, and the resources that I’ve been provided with to carry out my
research. I admire his ability to look at the bigger picture as a researcher,
and I hope to continue learning this in the future. Basti - thanks for
taking a chance on me 2 years back!

I would like to express my gratitude towards my MSR thesis committee
members, Prof. Michael Kaess, Dr. Wenshan Wang and Shibo Zhao.
Their constant feedback on my research has been extremely constructive.
I have learnt some amazing perspectives from Michael on SLAM, and I
have looked up to his research even before joining CMU. I am incredibly
grateful for Wenshan for being an amazing mentor in the AirLab. Her
feedback on my thesis, as well as the countless research discussions I
have had with her have influenced my thoughts as a researcher. I would
also like to thank Shibo, who has been a great mentor, lab-mate and
friend. I have had incredible discussions with him on the kind of research
worth pursuing and I am inspired by his dedication, kindness and constant
support throughout my MSR studies.

This thesis is the culmination of the two years I have spent so far in the
AirLab, and it would have not been possible without the wonderful peers
I have met there. This thesis would be incomplete without mentioning
Nikhil - who has been a great friend over the past 2 years. His push on
research collaborations has been extremely helpful, and I’ve had some
amazing research discussions, late-night coding sessions with him. To
say that my academic networking is majorly attributed to working with
him would be an understatement, and I look forward to more research
collaborations in the coming years! (P.S. thanks for being a driver to some
nice places!) I would like to thank Yao He and Nayana for being awesome
lab-mates and friends and work together on some very fun projects! I
have had also some amazing interactions with other labmates including
Jay P. , Brady, Conner, Matt, Yifei and Yuheng both in and outside the
lab.

vii



I would like to express my gratitude towards Sourav Garg, K.M. and
Avneesh. AnyLoc and this thesis would not be possible without collab-
orating with them. I have learnt a lot from all of you and I hope to
continue collaborating with you all in the future. I am also fortunate to
have collaborated with Jonathan and Deva on SplaTAM - their opinions
have shaped my research opinions as I enter my doctoral studies.

In the last 2 years at the Robotics Institute, I have met some extremely
gifted people and have the privilege of calling them friends. Aman has
been the most awesome running, biking, kayaking and adventure buddy
and an extremely fun person throughout the program and I am so glad that
I met him early on in the program. (He ran his first half-marathon this
May!!). I am grateful to have met Bharath (GBhai) who has been a gem
of a person and also someone who has greatly shaped my academic and
personal outlook to life. I haven’t witnessed anyone with more patience,
understanding and kindness. He and Aman have been a constant partner
in mischief throughout. I am glad that I met Prachi and I have grown
to admire her dedication and thirst for research. I’ve had some amazing
late-night discussions with her over the past year and I cannot wait to see
what she does next at UIUC! Pittsburgh would not have been the same
without the three of you. I would also like to thank Adi and Andrew for
being awesome friends - the trip to Puerto Rico was amazing! I have had
the privilege of knowing some amazing folks from the MSCV and MRSD
programs. Achleshwar, Richa and Chris have been amazing friends since
the first semester and I’ve had a blast of a time with them. The entire
MSCV cohort has been extremely supportive - I would name all of you
if only there was enough space on this page! Shout-out to Bhuvan and
Roshan who have been great labmates, friends, and gym-bros.

I would like to also thank my past mentors - notably Prof. Rajesh Tripathy,
Prof. Marcelo Ang, and Dr. Zhu Haiyue for believing in me back then
and igniting in me the spark for computer vision and robotics, as well
as their continuous support during my Master’s and PhD applications. I
would not be here without them.

Finally, I would like to acknowledge the everlasting support of my Mom
and Dad. You guys are the most amazing parents anyone could ever have,
and I’m incredibly grateful to you both for all the sacrifices you have made.
Mom, thank you for always being there, and showing me tough love when
I needed it. Dad, thanks for being a constant pillar of our family. Finally,
I would like to mention my grandparents. Ajoba, thank you for all the

viii



life-lessons you’ve taught. Ajji, thank you for the everlasting love - I wish
you could have read this.

There are many more people who could not be named here who have
been an integral part of my journey. You know who you are - and I am
indebted to you for your support!

ix



x



Funding

This work was supported by ARL grant W911QX20D0008/W911QX22F0078(TO6).
Parts of this work used Bridges-2 at PSC through allocation cis220039p
from the ACCESS program, which is supported by NSF grants 2138259,
2138286, 2138307, 2137603, and 213296.

xi



xii



Contents

1 Introduction 1
1.1 Key Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Place Recognition for Multi-Robot SLAM 3
2.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Place Recognition with Overlap-Transformer Rotary Embedding . . . 6

2.2.1 Rotation and Permutation Invariance in Overlap Transformer 9
2.2.2 Rotary Position Encoding Enhanced Overlap Transformer . . 10
2.2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 AnyLoc 13
3.1 Problem Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Foundation Models . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 Visual Place Recognition . . . . . . . . . . . . . . . . . . . . . 17

3.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Choosing Foundation Models . . . . . . . . . . . . . . . . . . . . . . 18

3.4.1 DINO and DINOv2 . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.2 CLIP - Contrastive Language Image Pre-training . . . . . . . 19
3.4.3 MAE - Masked AutoEncoders . . . . . . . . . . . . . . . . . . 19
3.4.4 SAM - Segment Anything Model . . . . . . . . . . . . . . . . 19

3.5 Choosing Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . 20
3.6 Choosing Feature Aggregation . . . . . . . . . . . . . . . . . . . . . . 20
3.7 Choosing Vocabulary Design . . . . . . . . . . . . . . . . . . . . . . . 22
3.8 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.8.1 Structured Environments . . . . . . . . . . . . . . . . . . . . . 23
3.8.2 Unstructured Environments . . . . . . . . . . . . . . . . . . . 25

3.9 Baselines and Evaluation Metrics . . . . . . . . . . . . . . . . . . . . 26
3.10 Experiments and Analysis . . . . . . . . . . . . . . . . . . . . . . . . 27

3.10.1 State-of-the-art Comparison . . . . . . . . . . . . . . . . . . . 28
3.10.2 Vocabulary Analysis . . . . . . . . . . . . . . . . . . . . . . . 31
3.10.3 Insights into AnyLoc Design . . . . . . . . . . . . . . . . . . . 33
3.10.4 Self-supervised vs VPR-supervised ViT . . . . . . . . . . . . . 34

xiii



3.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.12 Acknowledgement and Contribution Statement . . . . . . . . . . . . . 35

4 MultiLoc 37
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 Non-visual Place Recognition . . . . . . . . . . . . . . . . . . 39
4.2.2 Multi-Modal Place Recognition . . . . . . . . . . . . . . . . . 39
4.2.3 Multi-Modal Foundation Models . . . . . . . . . . . . . . . . . 40

4.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4 Datasets and Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.5 Experiments and Analysis . . . . . . . . . . . . . . . . . . . . . . . . 42
4.6 Limitations and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 47

5 Conclusion and Future Work 49

Bibliography 51

When this dissertation is viewed as a PDF, the page header is a link to this Table of Contents.

xiv



List of Figures

2.1 Overview of map from our multi-robot SLAM system. . . . . . . . . . 3

2.2 An overview of the sensor pack used in SubT-MRS dataset. It is
equipped with a Xavier processing unit with hardware time synchro-
nization for multimodal sensors including LIDAR, fisheye cameras,
thermal cameras, depth cameras (option), and an IMU. . . . . . . . . 4

2.3 Each robot builds a local map using superodometry and maintains
LIDAR-IRIS/Scan-Context descriptors of keyframes. When another
robot is in proximity, the robots communicate their stored descrip-
tors and try to search for inter-robot loop closures through a 2-stage
verification protocol, after which the inter-robot transformations are
calculated. Information to the base-stations is relayed whenever possi-
ble and a globally-consistent map is displayed. . . . . . . . . . . . . 5

2.4 The figure demonstrates the largest set of pairwise consistent trans-
formations being used to close the inter-robot loop while the outlier
place-recognition matches are discarded after PCM. PCM leverages
the pairwise consistency between measurements of 2 different robots
to identify the largest self-consistent set of keypose transformations,
and are over a certain threshold. This makes PCM robust to false loop
closures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.5 Erroneous Loop Closure . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.6 Environment causing erroneous loop-closure: Long and feature-less cor-
ridors make it challenging for both Lidar and Visual Place Recognition
to reliably detect loop closures. . . . . . . . . . . . . . . . . . . . . . 7

2.7 Overlap-Transformer produces the same descriptor even if the point
cloud is permuted or a point-cloud with similar values but different
geometry is used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.8 Adding rotary positional encoding to the Overlap-Transformer pre-
serves rotational invariance and produces a different descriptor if the
point-cloud is different or permuted, even though it may have similar
values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

xv



3.1 AnyLoc enables universal visual place recognition (VPR) across a
massively diverse set of environments (anywhere), temporal changes
(anytime), and a wide range of viewpoint variations (anyview). AnyLoc
achieves this by aggregating per-pixel features extracted from large-
scale pretrained models (foundation models), without any training
or finetuning. In the PCA panels (middle), notice how the features
from MixVPR — a state-of-the-art method trained specifically for
VPR — concentrate to a small region of the feature space, losing
discriminative ability. On the other hand, AnyLoc uncovers distinct
domains encompassing datasets with similar properties, marked with
the same color. Using these domains to construct vocabularies for
unsupervised VLAD aggregation enables AnyLoc to achieve up to 4×
higher Recall@1, as seen in the polygonal areas in the radar chart
(right), across structured (urban outdoors, indoors) and unstructured
(underwater, aerial, subterranean, visually degraded) environments. . 13

3.2 Point correspondences (as markers) & similarity maps show the ro-
bustness of foundation model features to various VPR chal-
lenges: (top) text and scale change, (middle) perceptually aliased
features and viewpoint shift, and (bottom) low illumination combined
with opposing viewpoint. The value facet has the highest contrast
between the background and the matched points, which is vital for
discarding distractors within an image. . . . . . . . . . . . . . . . . . 21

3.3 Qualitative ablation comparing the absolute-scale similarity maps of
features from different DINOv2 ViT-G layers and facets. Layer 31
value facet has the sharpest contrast in the similarity map, which
is crucial for robustness against distractors within an image. 22

3.4 Hawkins Retrieval Visualizations . . . . . . . . . . . . . . . . . . . . 28

3.5 Laurel Caverns Retrieval Visualizations . . . . . . . . . . . . . . . . . 29

3.6 VLAD cluster assignment visualizations of the reference-query pairs
highlight the intra-domain consistency of the domain-specific vo-
cabulary. Similar colors across images of a specific domain indicate
matched clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.7 Design Choices for AnyLoc-VLAD : (a) Performance scales with
the model size but saturates at ViT-L. (b) Performance peaks at
intermediate layers instead of the final layer for both DINO & DINOv2.
(c) On average, key & value perform the best respectively for DINO
& DINOv2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 We show that binding LIDAR and thermal modalities to features to
vision foundation models is effective to achieve zero-shot cross-modal
place recognition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

xvi



4.2 We distill image features into other modalities through student-teacher
training where the teacher(vision foundation model) is frozen, and the
student(modality-specific model) is updated through an InfoNCE[61]
loss. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Qualitative Retrievals for Visual-Thermal Place Recognition on a
night-time MS2 sequence . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Qualitative Retrievals for Thermal-LIDAR Place Recognition on a
night-time MS2 sequence . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5 Qualitative Retrievals for Visual-LIDAR Place Recognition on a night-
time MS2 sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.6 Qualitative Retrievals for Visual-Thermal Place Recognition on the
Idyll-Wild Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.7 Qualitative Retrievals for Visual-Thermal Place Recognition on the
Big-Bear Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

xvii



List of Tables

3.1 Unstructured Environments used in Evaluation . . . . . . . . . . . . 25
3.2 State-of-the-art Baselines used for Comparison . . . . . . . . . . . . . 26
3.3 Performance comparison on Benchmark Structured Environments . . 27
3.4 Performance Comparison on Unstructured Environments . . . . . . . 27
3.5 Effect of vocabulary type on R@1 for AnyLoc-VLAD-DINOv2 . . . . 30
3.6 Analysing intra-domain transferability of AnyLoc-VLAD-DINOv2 vo-

cabularies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.7 Analysis comparing the Recall@1 & Descriptor Dimensionality across

varying aggregation methods . . . . . . . . . . . . . . . . . . . . . . . 34
3.8 Analysis comparing the Recall@1 of VPR-trained ViTs to Self-supervised

ViTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 Cross-Modal Place Recognition MS2 dataset - Rainy Sequences . . . 43
4.2 Cross-Modal Place Recognition on MS2 dataset - Night-time Sequences 43
4.3 Visual-Thermal Place Recognition CART dataset . . . . . . . . . . . 46

xviii



Chapter 1

Introduction

As robot-teams are increasingly deployed in unstructured and previously unseen

environments to carry out critical tasks such as search and rescue, disaster-response

etc, it becomes increasingly important to have a general and multi-modal perception

system to achieve resilient autonomy. This has been increasingly seen through recent

challenges such as the DARPA Subtarranean Challenge[21], which have propelled

the need for robots to operate in such environments. At the center-stage of such

robot-teams is building a robust SLAM(Simultaneous Localization and Mapping)

system that works across different perceptual aliasing and degradation. Recent

advances such as SuperOdometry[98] have laid the foundation for odometry and

mapping systems that utilize multiple sensors and are robust to various environmental

degradation commonly present in these environments such as smoke, lighting changes

and texture-less regions such as long-corridors. However such systems are still prone

to drift over long regions, which have prompted the need to incorporate systems that

perform place-recognition for loop-closure.

While Place Recognition is a fundamental and well-studied component in localiza-

tion systems for over 2 decades, most place recognition systems are uni-modal, and

trained for specific environments - hindering them from being deployed on multi-robot

platform in the wild. This naturally begs the need for a place-recognition system that

can work out-of-the-box anytime, anywhere, anyview and across any-sensor.

To this end, the work discussed in this thesis takes a step towards building such a

system. Specifically we leverage recent advances in large-scale pre-trained models

1



1. Introduction

(foundation models) and demonstrate that these models have learnt rich discriminative

features, which is highly desirable for the task of place-recognition.

1 introduces the theme of this thesis and provides a motivation of the problem. 2

provides an overview of the multi-robot SLAM system which we built, and the limi-

tations and challenges faced in place recognition, setting the context for the research

carried out in this thesis. Subsequently, 3 describes how foundation model features

are extremely effective towards providing state-of-the-art visual place recognition

performance across diverse environments without assuming VPR-specific training.

We further show that these features can be distilled into different modalities, enabling

zero-shot uni-modal and cross-modal place recognition in 4. Finally, we conclude

the thesis and talk about the future directions for place-recognition and localization

systems in 5.

1.1 Key Contributions

The key-contributions of this thesis can be summarized as follows:

• We build an real-time online multi-robot system with improved online lidar

place recognition, and demonstrate by deploying it in scenarios with perceptual

degradation.

• We then propose a new method AnyLoc, that demonstrates state-of-the-

art(SOTA) performance for visual place recognition in a zero-shot manner

across diverse environments.

• Finally, we show that features from visual foundation models can be distilled

into other modalities, enabling zero-shot cross-modal place-recognition, namely

Visual, LIDAR and Thermal sensors.
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Chapter 2

Place Recognition for Multi-Robot

SLAM

Figure 2.1: Overview of map from our multi-robot SLAM system.

In this section, we first describe the built multi-robot SLAM system that was scaled

to a group of 3 robots. The multi-robot SLAM system is distributed, performed online

LIDAR place recognition and works in communication-constrained environments. We

also discuss the subsequent improvements proposed to a learning-based LIDAR place

recognition system for robustness under perceptual degradation.

3



2. Place Recognition for Multi-Robot SLAM

2.1 System Overview

Let X = x1, x2, ..., xn be a group of n-robots collaboratively performing SLAM for an

environment. Each robot xi builds a local map consisting of m robot key frame poses

xi1, xi2, ..., xim. We wish to find all transformations Tij, i ≠ j between robots i and j,

such that we can fuse the obtained local-maps into a global map.

Figure 2.2: An overview of the sensor pack used in SubT-MRS dataset. It is equipped
with a Xavier processing unit with hardware time synchronization for multimodal
sensors including LIDAR, fisheye cameras, thermal cameras, depth cameras (option),
and an IMU.

Our system is visible in 2.3 and consists of payloads mounted on mobile-robots

which have been highlighted in 2.2. We adopt the pipeline from DCL-SLAM. In

particular, we use a distributed approach to multi-robot SLAM as illustrated in

¡Figure¿, where each robot maintains a local map of the environment, and calculates

it’s global transform w.r.t to a master robot.

4



2. Place Recognition for Multi-Robot SLAM

Figure 2.3: Each robot builds a local map using superodometry and maintains LIDAR-
IRIS/Scan-Context descriptors of keyframes. When another robot is in proximity,
the robots communicate their stored descriptors and try to search for inter-robot
loop closures through a 2-stage verification protocol, after which the inter-robot
transformations are calculated. Information to the base-stations is relayed whenever
possible and a globally-consistent map is displayed.

Specifically, this global alignment is achieved by performing inter-loop closures

through LIDAR Place Recognition(LPR). Furthermore, each robot also performs

intra-loop closures to prevent drift of local maps. To detect this loop-closures, the

well-established Scan-Context descriptor[39] is used. However, due to the perceptual

aliasing and sparsity of LIDAR-Scans, we emperically observe that this tends to

produce spurious loop-closures, necessitating the need for outlier-rejection. To this

end, we use the Pair-wise Consistency Maxmization [56]. 2.4 demonstrates the an

example of false loop-closures being rejected, while accepting consistent loop-closure

detections for calculating inter-robot transformation.

5



2. Place Recognition for Multi-Robot SLAM

Figure 2.4: The figure demonstrates the largest set of pairwise consistent transfor-
mations being used to close the inter-robot loop while the outlier place-recognition
matches are discarded after PCM. PCM leverages the pairwise consistency between
measurements of 2 different robots to identify the largest self-consistent set of keypose
transformations, and are over a certain threshold. This makes PCM robust to false
loop closures.

2.2 Place Recognition with Overlap-Transformer

Rotary Embedding

While classical global-descriptor methods like Scan-Context[39] and its variants

ranging from ScanContext++[40] to LIDAR-IRIS[86] have been popularly used

and adopted due to its simple aggregation method as well as ability to provide a

coarse alignment, these often fail in sparse-pointclouds and geometrically-aliased

environments as also indicated during our system’s deployment.

6



2. Place Recognition for Multi-Robot SLAM

Figure 2.5: Erroneous Loop Closure

Figure 2.6: Environment causing erroneous loop-closure: Long and feature-less
corridors make it challenging for both Lidar and Visual Place Recognition to reliably
detect loop closures.

More recently, learning based methods have become popular and provide better

descriptors. OverlapNet[19] proposes a learning-based method by learning to predict

the overlap between two pairs in the training process. OverlapTransformer[? ]

and SeqOT[50] further extend this by adopting an attention-scheme to enhance

discriminative features. Furthermore, by modifying the CNN from OverlapNet and

equivariance properties of transformers, OverlapTransformer and SeqOT also ensure

yaw-angle rotation invariance in their final descriptor generation.

However, Overlap-Transformer overlooks the problem of avoiding permutation-

invariance which results in the same output descriptor even if the input range-images

are different and performs a convolution approach, adding extra-computation to

avoid this. To this end, we propose a simple solution by using Rotary Positional

Encodings(RoPE)[77] and show that they preserve the yaw-angle invariance properties,

while simultaneously avoiding permutation-invariance and show the advantage of

these result.

7



2. Place Recognition for Multi-Robot SLAM

Figure 2.7: Overlap-Transformer produces the same descriptor even if the point
cloud is permuted or a point-cloud with similar values but different geometry is used.

Figure 2.8: Adding rotary positional encoding to the Overlap-Transformer preserves
rotational invariance and produces a different descriptor if the point-cloud is different
or permuted, even though it may have similar values.
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2. Place Recognition for Multi-Robot SLAM

2.2.1 Rotation and Permutation Invariance in Overlap

Transformer

Range-images and equi-rectangular projections are yaw-angle equivariant, i.e, a yaw-

rotation of the LIDAR will perform a circular shift of the columns. Denoting the

columns of the range image as C = {c1, c2, ...cn}, performing a rotation R on the

LIDAR will result in the following column order on the range-image.

R{c1, c2, ...cn} = {ci, ci+1, ..., cn, c1, ...ci−1} (2.1)

Overlap-Transformer uses range-images as input to get a feature-volume from a

modified form of OverlapNet wherein the convolution filters are only performing

convolution in the vertical dimension, and not the width dimension to avoid any

discretization error. For an input range image of size h×w× 1, the size of the output

feature volume is given by 1×w× c where c is the number of encoded channels from

the range image encoder.

The transformer module is then used to enhance the output volume features.

The transformer module preserves yaw-angle equivariance since transformers are

permutation-equivariant and any permutation will only change the order sequence

of the tokens, and not affect individual tokens. If we represent the input to the

transformer module as a set C = {c1, c2, ..., cn} and the obtained output set as thw

wdq O = {o1, o2, ..., on} performing any permutation P on the input does not change

the output set.

O′ = F (PC) = PO = O (2.2)

Performing a soft-NetVLAD operation on this set outputs an invariant descriptor.

Although OverlapTransformer can provide rotationally-equivariant and rotationally-

invariant descriptors from the transformer layer output and the NetVLAD layer output

respectively, the method is also permutationally-invariant, which is not desirable

as permuting the columns of a range-image corresponds to a different LIDAR-Scan.

This possesses a challenge especially in perceptually aliased environments and sparse-

LIDAR scans.
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2.2.2 Rotary Position Encoding Enhanced Overlap

Transformer

We now prove that a simple modification to the OverlapTransformer’s transformer

module by adding rotary positional encoding(RoPE) avoids the highlighted problem.

RoPE explicitly encodes relative position between two input tokens to a transformer.

Unlike Absolute(APE) or Learned Positional Encoding(LPE)[74] that concatenates

or adds a position embedding to the existing token and encodes absolute position

before passing it to the self-attention layers, RoPE uses a rotation matrix to calculate

the inner product between a query vector/token at position m qm and key vector kn,

as the following relation :

qTmkn = (Rd
Θ,mWqxm)

T (Rd
Θ,nWkxn) = xTWqRΘ,n−mWkxn (2.3)

where RΘ,m and RΘ,n are rotation matrices whose angle is defined by the token

location Θ = N−2(i−1)/d, i ∈ [1, 2, ...d/2].

Given the output feature volume of size 1× w × c from the OverlapNet leg, we

take the input to the transformer-encoder as w number of tokens with a dimension c.

Furthermore, since the LIDAR ranges in a sweep has uniform angular-spacing , we

set N = w in RoPE.

It can be shown that any rotation to the sequence will not affect the attention

mechanism between the query-key pair since all key-query pairs’ positions undergo the

rotation R, and the output sequence is simply a rotation-equivariant output sequence:

(Rsqm)
TRskn = (RsR

d
Θ,mWqxm)

T (RsR
d
Θ,nWkxn) (2.4)

(Rsqm)
TRskn = xTWqRΘ,n+s−m−sWkxn (2.5)

(Rsqm)
TRskn = xTWqRΘ,n−mWkxn = qTmkn (2.6)

At the same time, a permutation P to the columns of the LIDAR range image

produces a different output :

(Psqm)
TPskn = (PsR

d
Θ,mWqxm)

T (PsR
d
Θ,nWkxn) ̸= (qm)

Tkn (2.7)

10
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Since the output sequence set is different incase of a permutation,adding RoPE will

always produce different descriptors after the VLAD aggregation layer is obtained

even under high perceptual aliasing and similar values.

{z1, z2, z3...., zn} = {zr1, zr2, zr3...., zrn} ≠ {zp1 , z
p
2 , z

p
3 ...., z

p
n} (2.8)

In contrast, APE or LPE do not preserve rotational equivariance since a rotation

to the input scan changes the input tokens after concatenating with the APE/RPE.

Hence they have not been used in OverlapTranformer.

{z1, z2, z3...., zn} ≠ {zr1, zr2, zr3...., zrn} ≠ {zp1 , z
p
2 , z

p
3 ...., z

p
n} (2.9)

Furthermore, using token residual concatenation is suboptimal to avoid permu-

tation invariance. Given the input tokens from range-image C = {c1, c2, ..., cn}, the
residuals are R = {(c1 − c2), (c2 − c3), ..., (cn − c1)}. The modified input to the

OverlapTransformer can then be represented as E = {(c1 ⊕ (c1 − c2)), (c2 ⊕ (c2 −
c3)), ..., (cn ⊕ (cn − c1))}. This method while avoiding permutation invariance for

a single scan, results in different residual encoding for different scans and does not

capture relative attention, both of which are used when using RoPE.

2.2.3 Conclusion

We show that a simple modification to the OverlapTransformer by adding Rotary

Positional Encoding improves robustness of OverlapTransformer, especially under

perceptual-aliasing having similar patterns or semantic degradation by preserving

yaw-angle invariance, but avoiding permutation invariance. In the future, we aim to

evaluate the performance of our method and deploy on our robots for challenging

environments.
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Chapter 3

AnyLoc

Foundation Model 
Features

Large-Scale VPR Training

Supervised SOTA 
VPR Baselines

Query
Database

AnyLoc-GeM-DINOv2

MixVPR
NetVLAD
MixVPR
AnyLoc-VLAD-DINOv2

SubT Degraded UnderwaterIndoor Urban Aerial
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Figure 3.1: AnyLoc enables universal visual place recognition (VPR) across a
massively diverse set of environments (anywhere), temporal changes (anytime), and
a wide range of viewpoint variations (anyview). AnyLoc achieves this by aggregating
per-pixel features extracted from large-scale pretrained models (foundation models),
without any training or finetuning. In the PCA panels (middle), notice how the
features from MixVPR — a state-of-the-art method trained specifically for VPR
— concentrate to a small region of the feature space, losing discriminative ability.
On the other hand, AnyLoc uncovers distinct domains encompassing datasets with
similar properties, marked with the same color. Using these domains to construct
vocabularies for unsupervised VLAD aggregation enables AnyLoc to achieve up
to 4× higher Recall@1, as seen in the polygonal areas in the radar chart (right),
across structured (urban outdoors, indoors) and unstructured (underwater, aerial,
subterranean, visually degraded) environments.

From our multi-robot system, we observe that LiDAR alone in many cases is

insufficient to detect loop-closures, especially in environments like narrow and long

corridors, where perceptual aliasing and feature-less environments cause false loop-
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3. AnyLoc

closure detections. In these scenarios, performing Visual Place Recognition(VPR)

using onboard cameras emerges as a natural solution. In this chapter, we discuss our

proposed method AnyLoc that performs Visual Place Recognition out-of-the-box in

diverse unstructured environments without any VPR-specific training, serving as the

perfect substrate to build a universal place recognition system.

3.1 Problem Introduction

Place Recognition (VPR) is a fundamental capability for robot state estimation

and is widely applied in robotic systems such as autonomous cars, other uncrewed

(aerial, terrestrial, and underwater) vehicles, and wearable devices. Despite significant

advancements in VPR over the years, achieving out-of-the-box applicability across

a diverse set of scenarios remains challenging; this is critical to bootstrap a mobile

robot anywhere, anytime, and across anyview.

State-of-the-art (SOTA) approaches are specifically trained for VPR and exhibit

strong performance on environments similar to those found in the training dataset

(for instance, urban driving). However, when the same methods are deployed in

an environment where the extracted visual features differ substantially (such as

underwater or aerial), their performance drops sharply (??). In this context, we

address the question, “How can one design a universal VPR solution?” This

entails generating place representations from a general model, which is pre-trained in

an embodiment-, task- and environment-agnostic manner and can be readily adjusted

to its specific deployment environment. Specifically, a universal VPR solution must

be applicable anywhere (seamlessly operates across any environment, including aerial,

subterranean, and underwater), anytime (robust to temporal changes in the scene,

such as day-night or seasonal variations, or to transient objects), and across anyview

(robust to perspective viewpoint variations, including diametrically opposite views).

We rethink the VPR problem from the lens of (visual) feature representations

derived from large-scale pretrained models (coined foundation models [12]). We show

that, despite not being trained for VPR, these models encode rich visual features that

serve as the right substrate upon which a universal VPR solution may be built. Our

approach, termed AnyLoc, involves a careful selection of models and visual features

with the right invariance properties and blends them with prevailing local-aggregation

14
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approaches in the VPR literature [5, 8, 25, 75], resulting in all of the aforementioned

desirable characteristics of a universal VPR solution.

In this context, we address the question, “How can one design a universal VPR

solution?” This entails generating place representations from a general model, which

is pre-trained in an embodiment-, task- and environment-agnostic manner and can be

readily adjusted to its specific deployment environment. Specifically, a universal VPR

solution must be applicable anywhere (seamlessly operates across any environment,

including aerial, subterranean, and underwater), anytime (robust to temporal changes

in the scene, such as day-night or seasonal variations, or to transient objects), and

across anyview (robust to perspective viewpoint variations, including diametrically

opposite views).

We rethink the VPR problem from the lens of (visual) feature representations

derived from large-scale pretrained models (coined foundation models [12]). We show

that, despite not being trained for VPR, these models encode rich visual features that

serve as the right substrate upon which a universal VPR solution may be built. Our

approach, termed AnyLoc, involves a careful selection of models and visual features

with the right invariance properties and blends them with prevailing local-aggregation

approaches in the VPR literature [5, 8, 25, 75], resulting in all of the aforementioned

desirable characteristics of a universal VPR solution.

Our key takeaways are as follows:

• AnyLoc emerges as a new baseline VPR method that works universally across

12 datasets exhibiting massive diversity along the axes of place, time, and

perspective;

• Self-supervised features (such as DINOv2 [62]) and unsupervised aggregation

methods (like VLAD [36] & GeM [66]) are both crucial for strong VPR per-

formance. Applying these aggregation techniques on per-pixel features offers

substantial performance gains over the direct use of per-image features from

off-the-shelf models.

• Characterizing the semantic properties of the aggregated local features uncovers

distinct domains in the latent space, which can further be used to enhance

VLAD vocabulary construction; in turn boosting performance.
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We evaluate AnyLoc on an extensive and diverse range of datasets (urban, indoors,

aerial, underwater, subterranean) across challenging VPR conditions (day-night and

seasonal variations, opposing viewpoints), establishing a strong baseline for future

research towards universal VPR solutions.

3.2 Related Work

3.2.1 Foundation Models

Foundation models [12] perform a wide array of tasks without the need for finetuning or

additional re-training. This is mainly due to the way they are trained on a vast amount

of data, which can include multiple modalities. These models tend to vary based

on the type of supervision, where the primary categories are self-supervised [16, 62],

weakly-supervised using multiple modalities [30, 67], and supervised [41]. Amongst

self-supervised models [63, 75], there are primarily two broad categories, i.e., Joint-

Embedding or Contrastive learning based methods [16, 62] and Reconstruction or

Masked Image Modeling based methods [32].

Many recent approaches have explored the open-set properties of these foundation

models for robotics in the context of planning and control, where the models have

shown impressive open-set reasoning and interaction abilities [10, 13, 81? ]. Similarly,

there has been recent work exploring the properties of a self-supervised Vision

Transformer (ViT) (DINO [16]) for dense visual descriptor extraction [3]. It has been

showcased that these self-supervised ViT features encode rich semantic information

across different object categories with fine spatial granularity, allowing them to be used

as powerful dense visual descriptors for a wide range of applications, including part

co-segmentation and keypoint correspondences. More recently, ConceptFusion [35]

proposed a zero-shot approach to align features computed across regions without losing

the open-set properties of foundation models, enabling spatial reasoning applications.

Although there has been a wide variety of work exploring the use of foundation models

in various applications, to the best of our knowledge, no current work explores the

properties of these models in the context of “places”.
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3.2.2 Visual Place Recognition

VPR is often cast as an image retrieval problem [24] that comprises two phases.

In the indexing phase, a reference map is gathered from a robot’s onboard camera

when traversing through an environment. In the retrieval phase, given a query

image—captured during a future traverse—VPR entails retrieving the closest match

to this query image in the reference map. There exists a variety of VPR methods

and alternative problem formulations [8, 49, 64, 73, 95]. In this work, we focus on

global descriptors which offer the best tradeoff between accurate matching and search

efficiency [24, 36, 70]. This is in contrast to local descriptor methods, which are

computationally intensive to match, particularly over larger databases.

Researchers have explored various training objectives [7, 27, 47, 92], aggregation

techniques [5, 18, 66], and transfer learning [9, 31, 44] to improve global descriptor-

based VPR. High performance of most of these modern approaches can be attributed

to large-scale training on VPR-specific data.

Powered by deep learning and the Pitts-250k dataset [82], weakly-supervised

contrastive learning in NetVLAD [5] led to substantial improvements over classical

hand-crafted features. Following suit, the Google-Landmark V1 (1 million images)

and V2 datasets [90] (5 million images) enabled training DeLF [60] and DeLG [15] for

large-scale image retrieval. Likewise, the Mapillary Street-Level Sequences (MSLS)

dataset, containing 1.6 million street images, substantially boosted VPR performance

by tapping orders of magnitude larger data from urban and suburban settings [85,

88, 102]. More recently, CosPlace [7] coupled classification-based learning with the

San Francisco XL dataset comprising 40 million images having GPS & heading. The

current SOTA, MixVPR [2], proposed an MLP-based feature mixer, trained on the

GSV-Cities dataset [1] – a curated large-scale dataset with 530,000 images spanning

62,000 places worldwide.

This trend of scaling up VPR training is mostly driven by easily-available posi-

tioning data for outdoor environments, which leads to SOTA performance in urban

settings, but does not generalize to indoor and unstructured environments. As shown

in 3.1, the PCA projections of descriptors extracted by SOTA methods concentrate

to a narrow region in the feature space, diminishing their discriminative abilities in

environments outside the training distribution. Apart from environment-specificity,
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prior methods have tackled specific challenges in isolation, such as extreme temporal

variations in scene appearance [44, 80] and camera viewpoint [23, 26]. This data- and

task-specificity of current VPR approaches limits their out-of-the-box applicability,

which may be mitigated by task-agnostic learning. Hence, in this work, we analyze

the design space of VPR using web-scale self-supervised visual representations and

develop a universal solution that does not assume any VPR-specific training.

3.3 Method

Given a database of images represented by {Id1, Id2 . . . Idn} of the trajectory or map

that the agent traverses and a query image for a given place Iqi, our aim is to learn

holistic and compact representations of places that can be used for retrieval. We

observe that general general-purpose foundation model features exhibit excellent visual

and semantic consistency, which is extremely useful for image-retrieval. However

these features show sub-optimal performance when used as-is for place recognition.

Hence, we examine and notice that the performance of AnyLoc is greatly influenced

by the choice of :

• Foundation Model

• Feature Extraction

• Feature Aggregation

• Construction of Database Vocabularies

3.4 Choosing Foundation Models

We compare 5 foundation models in our experiments namely, DINO, DINOv2, MAE,

CLIP and SAM. Each of these models use a unique pre-training strategy for training

Vision Transformers, allowing us to investigate the effect this has in the learnt

representations of ViTs.
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3.4.1 DINO and DINOv2

DINO [16]and DINO-v2[62] are a family of foundation models that learn robust out-

of-the box visual features using joint-embedding prediction through self-distillation.

DINO is trained using global supervision, while DINOv2 also uses patch-wise super-

vision.

3.4.2 CLIP - Contrastive Language Image Pre-training

CLIP [67] learns to align visual and language embeddings by pre-training a language

encoder and a visual encoder to predict image-text pair representations over large

batch-sizes. We generate place representations using the image-encoder.

3.4.3 MAE - Masked AutoEncoders

Masked Auto-Encoders [32] are a scalable self-supervised method to pre-train vision

transformers by masking random patches of an input image, and using an asymmetric

encoder-decoder architecture to predict the masked input patches. These models

display visual features that give SOTA performance when completely fine-tuned. To

get place representations, we discard the decoder and use the encoder’s representation

only.

3.4.4 SAM - Segment Anything Model

Segment-Anything Model [41] is a ViT segmentation model composed of a heavy-

weight image encoder and a lightweight promptable decoder. The model is first

supervised with ground-truth segmentation annotations. The training is done through

a data engine with the model being trained with manual annotations, followed by

model-assisted annotation and finally model automated annotation. We use the

image-encoder’s representation to get place representations.

Our experiments indicated that DINO and DINOv2 provide the best feature

representation for VPR, followed by CLIP and SAM. These findings are corroborated

in [62, 63, 75], highlighting the benefits of learning long-range global patterns captured

by joint embedding methods. Furthermore, we observed that the performance of
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MAE was much lower than the above models - which can be explained since MAE

features are often interpreted as initialization to a full task-specific fine-tuning of the

model and do not have out-of-the box visual semantic representations unlike the other

foundation models. Hence we adopt DINO and DINOv2 as our backbone architecture

for AnyLoc.

3.5 Choosing Feature Extraction

Feature extraction from Vision-Transformers can be done in different ways. While

DINO and DINOv2 typically extract the CLS token for classification, we find that

CLS token features provide sub-optimal performance compared to extracting per-

patch intermediate features from the different layers of DINO. Furthermore, we

examine these per-patch features for different facets in a ViT layer, i.e, key-facet,

value-facet, query-facet and token-facet which corresponds to feature-maps taken

after the subsequent feature representations as well examine this effect for different

layers. We observe that:

• The token facet displays the clearest discrimination when comparing point-wise

features between 2 images, as compared to the key,value or query facet as visible

in ¡Fig¿.

• The early layers of DINO and DINO-v2 capture positional-information of points,

while later layers capture semantic information.

• DINOv2 suffers from artefacts, unlike DINO. This was corroborated and subse-

quently addressed in works like [20].

3.6 Choosing Feature Aggregation

We examine the effect of feature aggregation techniques to obtain a global place

descriptor. In addition to using the CLS token, e consider a comprehensive set of

aggregation techniques, namely, Global Average Pooling (GAP) [6], Global Max

Pooling (GMP) [68], Generalized Mean Pooling GeM) [66], and the soft & hard

assignment variants of VLAD [36].
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Figure 3.2: Point correspondences (as markers) & similarity maps show the robust-
ness of foundation model features to various VPR challenges: (top) text
and scale change, (middle) perceptually aliased features and viewpoint shift, and
(bottom) low illumination combined with opposing viewpoint. The value facet has
the highest contrast between the background and the matched points, which is vital
for discarding distractors within an image.

For an input image of size H ×W , and a per-pixel feature fi ∈ RD, we define a

global descriptor as:

FG =

(
H×W∑
i=1

fi
p

) 1
p

(3.1)

where p = 1, p = 3, and p → ∞ represent GAP, GeM, and GMP respectively.

For VLAD variants, we cluster all the features from the database images to obtain

N cluster centers. This forms our vocabulary. The global VLAD descriptor is then

calculated as the sum of residuals per cluster center k, as below:

FVk
=

N×H×W∑
i=1

αk(fi)(fi − ck) (3.2)

where αk(xi) is 1 if fi is assigned to cluster k and 0 otherwise. In the soft-assignment

variant of VLAD, αk(fi) indicates the assignment probability and lies between 0 and 1.

Following [4], we perform intra-normalization, concatenation, and inter-normalization

to obtain the final VLAD descriptor FV .
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Figure 3.3: Qualitative ablation comparing the absolute-scale similarity maps of
features from different DINOv2 ViT-G layers and facets. Layer 31 value facet has
the sharpest contrast in the similarity map, which is crucial for robustness
against distractors within an image.

3.7 Choosing Vocabulary Design

When performing any vocabulary-based aggregation like VLAD on the model, we

are required to construct a vocabulary(cluster centers) that can capture the distinct

semantic properties from the database image features. In our study, we consider

different ways of forming the vocabulary, inspired from previous approaches as well

as taking into account the seperation of AnyLoc feature representations through

PCA that gives rise to certain ”domains”. Traditionally, the database vocabularies

are constructed by either using database images obtained from the robot trajectory,

or from a pre-built map. Recent methods have also explored the construction

of these vocabularies using multiple large-scale datasets. In AnyLoc, given the

diversity of datasets we also consider building a vocabulary using all datasets (global

vocabulary), using unstructured datasets(unstructured vocabulary) and structured

datasets(structured vocabulary).

Furthermore, from the PCA visualizations of AnyLoc features, we observe the

emergence of distinct domains in the latent space that share similar semantic features.

These include Urban, Indoor, Aerial, SubT, Degraded, and Underwater domains.
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Further demonstrating discriminative robustness, although the SubT and Degraded

domains have similar imagery types, they are dispersed to distinct regions, whereas

the visually degraded indoor domain is concentrated relatively close to the indoor

collection. Hence, we also construct domain-specific vocabularies based on these

emergent domains.

3.8 Datasets

To demonstrate AnyLoc’s robust performance anywhere, anyview and anytime, we

use a variety of datasets that capture unprecedent diversity in terms of environments,

appearance viewpoint, temporal and long-term changes. Broadly, we classify our

datasets into structured and unstructured datasets. Structured environments consist

of organized areas featuring human-made structures, which are often encountered in

autonomous driving and indoor robotics applications. In contrast, unstructured envi-

ronments are obtained from robots deployed in-the-wild such as forests, subterranean,

aerial and underwater environments.

3.8.1 Structured Environments

We evaluate our proposed approach on six benchmark indoor and outdoor datasets:

Baidu Mall [78], Gardens Point [29, 79], 17 Places [69], Pittsburgh-30k [5], St Lu-

cia [89], Oxford RobotCar [53]. These VPR datasets encompass a wide variety of

challenging situations, including drastic viewpoint shifts, perceptual aliasing, and

substantial visual appearance change, as follows:

Baidu Mall This visual localization dataset consists of images captured within a

mall with varying camera poses. The dataset provides groundtruth location and 3D

pose of an image, making it suited for both 6-Degrees of Freedom (DoF) Localization

and VPR testing. We use the entire dataset consisting of 2292 query images & 689

reference images for evaluation. This mall dataset presents interesting and challenging

properties, including perceptually aliased structures, distractors for VPR (such as

people), and semantically rich information, such as billboards and signs.
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Gardens Point This dataset contains two traverses through the Gardens Point

campus of Queensland University of Technology (QUT) captured at different times

of the day, i.e., day and night. Both the database and query traverses contain 200

images, respectively. The drastic lighting changes and transitions from indoor to

outdoor scenarios make it a difficult VPR dataset.

17 Places This indoor dataset consists of traverse collected within buildings at York

University (Canada) and Coast Capri Hotel (British Columbia). The reference and

query traverses consist of 406 images. The high clutter, change in lighting conditions,

and semantically rich information make this dataset interesting.

Pittsburgh-30k This benchmark VPR dataset consists of images collected at

various locations and poses throughout downtown Pittsburgh. We use the test

split consisting of 10, 000 database images and 6816 query images. This dataset is

challenging due to the presence of drastic viewpoint shifts, a large variety of geometric

structures such as buildings, and distractors such as cars and pedestrians.

St Lucia This dataset consists of daytime traverses collected using a stereo camera

pair on a car, where the traverses span a total distance of 9.5 km. The reference

traverse consists of 1549 images, while the query traverse consists of 1464 images. A

large number of loop closure events, reverse traverses, shadows, and vegetation make

this dataset challenging.

Oxford RobotCar This dataset consists of Oxford City traverses, which showcase

shifts in seasonal cycles and daylight. We use a subsampled version of the Overcast

Summer and Autumn Night traverses, similar to HEAPUtil [38]. The original traverses

are subsampled with an approximate spacing of 5 meters to obtain a total of 213

frames in the summer traverse and 251 frames in the autumn night traverse with a

total distance spanning 1.5 Km. This dataset presents a challenging shift in visual

appearance caused by the time of day and seasonal shifts.
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Table 3.1: Unstructured Environments used in Evaluation

Dataset NDb NQ Traj. Span Loc. Radius Type

Hawkins [99] 65 101 282 m 8 m

Laurel Caverns [99] 141 112 102 m 8 m

Nardo-Air 102 71 700 m / 1 km2 60 m

VP-Air [72] 12.7k 2.7k 100 km 3 frames

Mid-Atlantic Ridge [11] 65 101 18 m 0.3 m

3.8.2 Unstructured Environments

Hawkins This dataset is an indoor mapping of an abandoned multi-floor hospital

in Pittsburgh, where it is particularly challenging due to long corridors with visually-

degraded features [99]. In particular, we use a long corridor spanning 282 m with a

localization radius of 8 m, where the database and query images are collected from 2

opposing viewpoints (forward & backward direction). The database and query set

contain 65 and 101 images, respectively.

Laurel Caverns This subterranean dataset consists of images collected using a

handheld payload [99]. The low illumination scenarios and lack of rich visual features

make this dataset particularly challenging. The opposing viewpoint of the database

and query images adds additional complexity to the strong distribution shift. We use

a 102 m trajectory with a localization radius of 8 m, where the database and query

sets contain 141 and 112 images, respectively.

Nardo-Air This is a GNSS-denied localization dataset collected using a 100◦ FoV

downward-facing camera on board a hexacopter flying at 10 m/s and an altitude of

50 m across a grass-strip runway named Nardo. The reference database comprises

102 images obtained from a Google Maps TIF satellite image, while the query set

contains 71 drone-collected imagery. The perceptual aliasing at the end of the runway

and non-typical vegetative features combined with a long time shift make this dataset

challenging. The -R variant of this dataset indicates rotation where the drone imagery

is rotated to match the satellite image orientation. We use a 700 m trajectory
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Table 3.2: State-of-the-art Baselines used for Comparison

Method Backbone Training Dataset Supervision

NetVLAD [5, 8] ResNet-18 Pitts-30k VPR - Contrastive
CosPlace [7] ResNet-101 SF-XL VPR - Classification
MixVPR [2] ResNet-50 GSV-Cities VPR - Contrastive
1-4 CLIP [34, 67] ViT-bigG-14 Laion 2B Image-Caption Pairs
DINO [16] ViT-S8 ImageNet Self-Supervised
DINOv2 [62] ViT-G14 LVD-142M Self-Supervised

spanning across a square kilometer area, where the localization radius is 60 m.

VP-Air This aerial VPR dataset consists of 2, 706 database-query image pairs and

10, 000 distractors collected at 300 m altitude with a downward-facing camera on

an aircraft [72]. The dataset spans over 100 km, encompassing various challenging

landscapes such as urban regions, farmlands, and forests. We use a localization radius

of 3 frames.

Mid-Atlantic Ridge We construct this dataset using the overlapping sequences of

an underwater visual localization dataset [11]. It presents OOD challenges including

seabed objects, low illumination, and appearance shifts over a long time period (2015

vs. 2020). The dataset contains 65 database images and 101 query images, where the

trajectory spans 18 m and the localization radius is 0.3 m.

3.9 Baselines and Evaluation Metrics

As an evaluation metric, we adopt Recall@K for our quantitative analysis. Recall@K

is a widely adopted metric in VPR [95]. For a pre-defined localization radius,

Recall@K is the ratio of correctly retrieved queries to the total number of queries,

where the checked retrievals are within the top K predictions. Furthermore, all

experiments are seeded to 42 and done on the same platform (NVIDIA RTX 3090)

to ensure consistency and reproducibility of experiments.

We benchmark AnyLoc against SOTA VPR algorithms, namely, Cos-Place, Net-

VLAD and MixVPR since each of these baselines capture the broad spectrum of

training strategies, feature aggregation techniques as well as are representative of
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Table 3.3: Performance comparison on Benchmark Structured Environments

Baidu Mall Gardens Point 17 Places Pitts-30k St Lucia Oxford Average

Methods R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

NetVLAD [5] 53.1 70.5 58.5 85.0 61.6 77.8 86.1 92.7 57.9 73.0 57.6 79.1 62.5 79.7
CosPlace [7] 41.6 55.0 74.0 94.5 61.1 76.1 90.4 95.7 99.6 99.9 95.3 99.5 77.0 86.8
MixVPR [2] 64.4 80.3 91.5 96.0 63.8 78.8 91.5 95.5 99.7 100 92.7 99.5 83.9 91.7
1-15 CLIP-CLS [67] 56.0 71.6 42.5 74.5 59.4 77.6 55.0 77.2 62.7 80.7 46.6 60.7 53.7 73.7
DINO-CLS [16] 48.3 65.1 78.5 95.0 61.8 76.4 70.1 86.4 45.2 64.0 20.4 46.6 54.1 72.3
DINOv2-CLS [62] 49.2 64.6 71.5 96.0 61.8 78.8 78.3 91.1 78.6 89.7 47.1 58.1 64.4 79.7
AnyLoc-GeM-DINOv2 50.1 70.6 88.0 97.5 63.6 79.6 77.0 87.3 76.9 89.3 92.2 97.9 74.6 87.0
AnyLoc-VLAD-DINO 61.2 78.3 95.0 98.5 63.8 78.8 83.4 92.0 88.5 94.9 82.2 99.0 79.0 90.2
AnyLoc-VLAD-DINO-PCA 62.3 81.2 91.5 99.5 63.3 78.8 82.8 90.8 87.6 94.3 82.7 96.3 78.4 90.1
AnyLoc-VLAD-DINOv2 75.2 87.6 95.5 99.5 65.0 80.5 87.7 94.7 96.2 98.8 99.5 100 86.5 93.5
AnyLoc-VLAD-DINOv2-PCA 74.9 89.4 96.0 99.5 64.8 81.0 86.9 93.8 96.4 99.5 96.9 100 86.0 93.9

Table 3.4: Performance Comparison on Unstructured Environments

Hawkins Laurel Caverns Nardo-Air Nardo-Air R VP-Air Mid-Atlantic Ridge Average

Methods R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

NetVLAD [5] 34.8 71.2 39.3 71.4 19.7 39.4 60.6 85.9 6.4 17.7 25.7 53.5 31.1 56.5
CosPlace [7] 31.4 59.3 24.1 47.3 0 1.4 91.6 100 8.1 14.2 20.8 40.6 29.3 43.8
MixVPR [2] 25.4 60.2 29.5 67.0 32.4 42.2 76.1 98.6 10.3 18.3 25.7 60.4 33.2 57.8
1-15 CLIP-CLS [67] 33.0 67.0 36.6 66.1 42.2 70.4 62.0 97.2 36.6 52.8 25.7 51.5 39.4 67.5
DINO-CLS [16] 46.6 84.8 41.1 57.1 57.8 90.1 84.5 100 24.0 38.4 27.7 49.5 47.0 70.0
DINOv2-CLS [62] 28.0 62.7 40.2 65.2 73.2 88.7 71.8 91.6 45.2 59.9 24.8 48.5 47.2 69.4
AnyLoc-GeM-DINOv2 53.4 83.9 58.9 86.6 76.1 83.1 57.8 97.2 38.3 53.8 14.8 49.5 49.9 75.7
AnyLoc-VLAD-DINO 48.3 84.8 57.1 79.5 43.7 54.9 94.4 100 17.8 28.7 41.6 66.3 50.5 69.0
AnyLoc-VLAD-DINOv2 65.2 94.1 61.6 90.2 76.1 94.4 85.9 100 66.7 79.2 34.6 61.4 65.0 86.5

the current large-scale training trend. Furthermore, we introduce 3 newer baselines,

which use the CLS token from CLIP, DINO and DINO-v2 as the feature descriptor.

A comprehensive summary of these baselines can be found in 3.2.

3.10 Experiments and Analysis

We first evaluate AnyLoc against SOTA VPR techniques and report results across

structured & unstructured environments, viewpoint shifts, and temporal appearance

variations. We further present a comparative analysis of the specialized baselines and

variants directly using the CLS token (i.e., per-image features). We then present a

detailed vocabulary analysis followed by insights into the design of AnyLoc. Lastly,

we demonstrate the benefits of self-supervised ViTs by contrasting them with existing

VPR-trained ViTs.
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3.10.1 State-of-the-art Comparison

Structured Environments

3.3 highlights the general applicability of the AnyLoc methods on structured envi-

ronments, in particular, the Indoor and Urban domains. AnyLoc-VLAD-DINOv2

achieves the highest recall across all the Indoor datasets while outperforming MixVPR

(the second best) and CosPlace by 5% and 20% on average (R@1). Interestingly,

foundation models’ CLS descriptors (while being inferior to our method) are competi-

tive with baselines such as CosPlace and NetVLAD, e.g., CLIP outperforms them

respectively by 15% and 3% on Baidu Mall. Through our proposed use of feature

aggregation for foundation models, we observe that simply using GeM pooling over

DINOv2 features (i.e., AnyLoc-GeM-DINOv2) significantly improves performance

over the DINOv2 CLS token. This is further improved by AnyLoc-VLAD, which beats

all prior approaches on these datasets. In the Urban case – which well aligns with the

training distribution of the baselines supervised specifically for VPR on urban data –

we observe that AnyLoc-VLAD is inferior by 3-4% on daytime conditions of Pitts30k

and St Lucia, but it achieves state-of-the-art for day-night variations on Oxford. We

further showcase that a PCA-Whitening of the AnyLoc-VLAD descriptors using the

domain-specific database enables similar SOTA performance while having a 100×
smaller embedding size (49k to 512).

Figure 3.4: Hawkins Retrieval Visualizations
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Figure 3.5: Laurel Caverns Retrieval Visualizations

Unstructured Environments

3.4 highlights the fragility of the specialized baselines and shows that AnyLoc out-

performs all the baselines by a large margin in these challenging unstructured en-

vironments. Even the CLS methods outperform VPR-specialized baselines, e.g.,

DINOv2-CLS exceeds MixVPR by 41% on Nardo-Air and 35% on VP-Air under

strong viewpoint variations. The AnyLoc methods consistently outperform both

the specialized and the CLS baselines, where the best performers in the respective

categories, i.e., MixVPR and DINOv2-CLS, lag behind AnyLoc-VLAD by 32% and

18% on average (R@1). We visualize example retrievals in unstructured environments

in 3.4 and 3.5.

Temporal & Viewpoint Changes

We further demonstrate the robustness of AnyLoc for anytime and anyview VPR. We

evaluate multiple datasets where revisiting a place at different time intervals leads to

variations in scene appearance (anytime). In comparison to the SOTA VPR baselines,

MixVPR/CosPlace, we observe the following gains using AnyLoc-VLAD on different

temporal changes: 5/11% on day-night cycles affecting outdoors (Oxford), indoors (17

Places), and mixture (Gardens Point); 9/8% on seasonal shifts (Oxford); 21/28% on

long period jumps (2022 vs. 2023 for Nardo-Air, 2015 Vs. 2020 for the Mid-Atlantic

29



3. AnyLoc

Table 3.5: Effect of vocabulary type on R@1 for AnyLoc-VLAD-DINOv2

Vocabulary Type Indoor Urban Aerial

Global 77.0 93.9 57.1
Structured 77.0 93.3 56.4
Unstructured 74.8 89.0 75.8
Map-Specific 78.0 92.3 62.9
Domain-Specific 78.6 94.4 76.2

Ridge). A similar trend is observed for viewpoint shifts (anyview), where we test

on datasets that vary both in terms of the view-type, e.g., street vs aerial, and the

shift-type. AnyLoc-VLAD outperforms MixVPR/CosPlace on orientation-based shifts

by 21/30% and extreme 90◦/180◦ shifts by 39/49%.

Specialized Baselines

The average recall of NetVLAD, CosPlace, and MixVPR confirms the general trend of

better performance in task-specific baselines with an increasing scale of urban training

data, combined with innovations in learning objective (CosPlace) and learnable

aggregation (MixVPR). Additionally, we observe one peculiar failure case of CosPlace

on the Nardo-Air dataset. No correct matches were found under the combined effect

of out-of-distribution (aerial) and extreme viewpoint (90 degrees) shifts. Visual

inspection revealed that all queries incorrectly matched to a handful of reference

images having similar orientation of fields and roads.

CLS vs. Aggregation (AnyLoc)

When the foundation models are used with local feature aggregation instead of the

CLS token, we observe significant performance jumps: DINOv2-based AnyLoc-GeM

and AnyLoc-VLAD outperform DINOv2-CLS by 9%/2% and 23%/18% respectively

on structured/unstructured environments. Furthermore, the average recall of the CLS

token-based global descriptors (CLIP, DINO & DINOv2) indicates their superiority

to specialized baselines on unstructured environments.

30



3. AnyLoc

Table 3.6: Analysing intra-domain transferability of AnyLoc-VLAD-DINOv2 vocabu-
laries

Vocabulary Evaluation Map-Specific Vocab-Transfer
Dataset Dataset Recall@1 Recall@1

Baidu Mall (0.7k) 17 Places (0.4k) 64.5 63.8
Gardens Point (0.2k) 98.0 94.5

VP-Air (2.7k) Nardo-Air (0.1k) 57.8 64.8
Nardo-Air R (0.1k) 70.4 88.7

Pitts-30k (10k) Oxford (0.2k) 94.8 99.0

3.10.2 Vocabulary Analysis

Vocabulary Source

3.5 shows how the vocabulary source used for VLAD influences recall, where domain-

specific vocabulary leads to the best recall. We construct multiple VLAD vocabularies

using different subsets of the 12 datasets used in this work and report average recall

per domain. As described in 3.10.2, the subsets for different domains are obtained

through a qualitative PCA visualization (see 3.1), which is quantitatively justified

through the results presented here. The other vocabulary sources that we compare

against are: Global using all 12 datasets; Structured using 3 indoor and 3 urban

datasets; Unstructured using the complement set of structured; and Map-specific

using only the reference database of a particular dataset. In the aerial domain,

domain-specific achieves 13% over map-specific and 19% over global vocabulary.

Consistency

3.6 showcases the robust intra-domain consistency of the domain-specific vocabulary,

further justifying the high performance of AnyLoc-VLAD. Specifically, we visualize

the cluster assignments (with K = 8) for the local features using the domain-specific

vocabulary. In the Urban domain, the roads, pavements, buildings, and vegetation

are consistently assigned to the same cluster across changing conditions and places.

For the Indoor domain, we can observe intra-domain consistency for the floor &

ceiling, while there is intra-place consistency for the text signs and furniture. For the

Aerial domain, it can be observed that roads, vegetation, and buildings are assigned
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VP-AirNardo-Air

St LuciaPitts-30k

Baidu Mall 17 Places

Reference ReferenceQuery Query

Figure 3.6: VLAD cluster assignment visualizations of the reference-query pairs
highlight the intra-domain consistency of the domain-specific vocabulary. Similar
colors across images of a specific domain indicate matched clusters.
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Figure 3.7: Design Choices for AnyLoc-VLAD : (a) Performance scales with
the model size but saturates at ViT-L. (b) Performance peaks at intermediate layers
instead of the final layer for both DINO & DINOv2. (c) On average, key & value

perform the best respectively for DINO & DINOv2.

to unique clusters across both the rural and urban images.

We further demonstrate that this robust consistency within a domain enables

us to deploy AnyLoc-VLAD in target environments with small reference databases

(maps) that lack information richness. For datasets belonging to a given domain, we
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pick the largest reference database to form the vocabulary and evaluate on other

datasets from that domain. In 3.6, for Aerial and Urban domains, we can observe

that 7-18% higher R@1 can be achieved when using a larger source of vocabulary as

compared to just using the target dataset’s own smaller map, thus demonstrating the

transferability of vocabularies within the same domain. For the Indoor domain, the

drop in performance is either due to a relatively limited size of the largest reference

database or the large diversity across datasets, e.g., shops in Baidu Mall compared

to offices in the other two datasets. Nevertheless, when using this unified diverse

vocabulary from all the datasets in the indoor domain, the overall recall is better

than using map-specific vocabularies, as shown in 3.5.

3.10.3 Insights into AnyLoc Design

We present insights on varying parameters within AnyLoc, using two datasets, Baidu

Mall & Oxford, which are representative of the typical VPR challenges:

ViT Architecture

Fig. 3.7 a showcases that larger DINOv2 ViT backbones lead to better performance,

where the performance tends to saturate at ViT-L (300 million parameters). Since, on

average, ViT-G performs better than ViT-L, we use ViT-G for DINOv2. For DINO,

we use ViT-S, which is the only available architecture.

ViT Layers & Facets

Fig. 3.7 b shows that peak performance is achieved through deeper layers, somewhere

between the middle and the last layer. For a smaller ViT architecture (DINO ViT-

S on the left), it can be observed that middle layers have higher performance on

Oxford. This can be attributed to their higher positional encoding bias, which is

helpful under no viewpoint shift across reference-query pairs. Hence, aligning with

the findings presented, we choose 9 and 31 as our operating layers for DINO and

DINOv2, respectively.

In Fig. 3.7 c, the key & value facets consistently achieve high recall for DINO &

DINOv2 respectively. Although query and key facets perform better on Oxford when

using DINO (left), this gap diminishes when using DINOv2 (right). The performance
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Table 3.7: Analysis comparing the Recall@1 & Descriptor Dimensionality across
varying aggregation methods

DINO DINOv2

Aggregation Methods Baidu ↑ Oxford ↑ Dim ↓ Baidu ↑ Oxford ↑ Dim ↓
Global Average Pool (GAP) 29.6 28.8 384 41.6 78.5 1536
Global Max Pool (GMP) 34.9 38.2 384 64.4 74.9 1536
Generalized Mean Pool (GeM) 34.7 47.6 384 50.1 92.2 1536
Soft Assignment VLAD 33.8 28.3 49152 40.3 82.2 49152
Hard Assignment VLAD 60.9 64.9 49152 71.5 94.8 49152

Table 3.8: Analysis comparing the Recall@1 of VPR-trained ViTs to Self-supervised
ViTs

Method Indoor Urban Aerial SubT & D Underwater

ViT-B CosPlace 62.9 80.7 26.3 26.5 18.8
ViT-B CosPlace-VLAD 68.5 82.9 38.4 37.5 23.8
ViT-S AnyLoc-VLAD-DINO 72.9 79.6 47.8 52.7 41.6
ViT-B AnyLoc-VLAD-DINOv2 77.0 82.6 53.6 60.2 35.6
ViT-G AnyLoc-VLAD-DINOv2 78.0 92.3 62.9 63.4 34.6

difference between the query & value gets inverted from Baidu to Oxford; indicating

a high positional bias in the query & key, leading to poor performance under the

significant viewpoint shift in Baidu.

Aggregation Methods

In 3.7, we compare the various unsupervised local feature aggregation techniques

and observe that hard assignment-based VLAD works the best. We can further see

that the vocabulary-free methods provide an optimal trade-off between performance

and storage, where GeM pooling tends to do the best. Also, we observed that hard

assignment is typically 1.4 times faster than soft assignment.

3.10.4 Self-supervised vs VPR-supervised ViT

3.8 shows that the high performance of AnyLoc-VLAD is not a consequence of simply

using a large ViT but an outcome of self-supervised training on large-scale curated

data, which leads to generality in the underlying features [62]. In particular, we

compare a ViT trained specifically for VPR (i.e., CosPlace [7]) against those based
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on self-supervision (i.e., DINO & DINOv2). For the VPR-supervised CosPlace, we

include the authors’ GeM pooling-based ViT-B model along with its adapted version

that uses a VLAD layer (K = 128) on top of ViT-B’s 6th layer (which performed

better than other layers). For self-supervised methods, we include AnyLoc-VLAD

variants: DINO ViT-S, DINOv2 ViT-B and ViT-G. All VLAD-based methods in

these comparisons use map-specific vocabulary. Comparing ViT-B-based methods, we

can observe that even though CosPlace’s overall performance improves with VLAD,

AnyLoc-VLAD-DINOv2 outperforms it by 8-13%. Interestingly, even ViT-S based

AnyLoc-VLAD-DINO outperforms ViT-B-based CosPlace-VLAD by 4-18% while

using 4× fewer parameters. The only exception to these trends is in the urban

domain, where CosPlace-VLAD outperforms ViT-S and ViT-B based AnyLoc-VLAD,

which is justified by CosPlace’s VPR-specific training on urban data. Despite this,

AnyLoc-VLAD-DINOv2 ViT-G surpasses all other methods.

3.11 Conclusion

This paper introduces AnyLoc – a significant step towards universal VPR. Driven by

the limitations of environment- and task-specific VPR techniques, and the fragility

of per-image features extracted from foundation models, we propose to blend the

per-pixel features computed by these models with unsupervised feature aggregation

techniques like VLAD and GeM. Through our benchmarking and analyses on a diverse

suite of datasets, we shed light on the brittleness of current large-scale urban-trained

VPR approaches and show that AnyLoc outperforms the previous state-of-the-art

by up to 4×. This work stretches the applicability scope of VPR and, in turn,

robot localization to anytime, anywhere & under anyview, which is crucial to enable

downstream capabilities, such as robot navigation in the wild.
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Chapter 4

MultiLoc

Figure 4.1: We show that binding LIDAR and thermal modalities to features to vision
foundation models is effective to achieve zero-shot cross-modal place recognition.

Continuing the paradigm of a universal place recognition method, we introduce

Multi-Loc, a method that enables zero-shot cross-modal place recognition the per-

formance of foundation models(DINO and DINO-v2) by binding modality-specific

encoders through knowledge distillation.

4.1 Introduction

In AnyLoc, we observed that using visual features from foundation models ( DINO

and DINO-v2) provide SOTA performance over even supervised methods without

receiving any VPR-specific training. While AnyLoc offers robust performance in
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diverse domains, it is limited to the visual modality. Unfortunately, performance of

visual modalities degrades under conditions such as darkness, illumination and smoke.

Other modalities, namely LIDAR and thermal modalities are robust to these

changes. Currently, place-recognition for these modalities is limited due to lack of

training data, and multi-modal/cross-modal place recognition techniques require

paired triplet datasets. While LIDAR and thermal modalities often contain paired

images, paired data among other non-visual modalities is scarce, limiting generalization

for these modalities.

To this end, we propose a new paradigm to enable uni-modal and cross-modal

place recognition by distilling foundation model features. Similar to Image-Bind, we

bind encoders of different modalities to DINO and DINO-v2 features. Our approach,

named Multi-Loc enables a simple and scalable approach towards general place

recognition that transfers across modalities. We represent these modalities such that

they can utilize vision transformers, followed by alignment of the modality-specific

representations with image representations generated from DINO. Since all modalities

are aligned to a common image-representation that produces robust semantic features,

we observe robust uni-modal and cross-modal performance even across modalities

that do not have paired data. Our contributions can be summarized as follows:

• We align LIDAR-image data and thermal-image data and show that these

distilled feature representations are strong uni-modal and cross-modal place

descriptors, without requiring place-recognition specific training.

• Because these modalities are distilled with a common representation, we show

that our method enables zero-shot LIDAR-thermal place recognition, without

requiring any paired thermal-LIDAR data.

• We observe that these fine-tuned models are scalable and generalize to unseen

and unstructured environments,enabling any-place, any-view, any-time and

any-sensor place recognition.

4.2 Related Work

A number of recent works have made advances towards place recognition in different

modalities. We broadly group and discuss them in 3 subsections as below, particularly
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for thermal and LIDAR modalities.

4.2.1 Non-visual Place Recognition

A number of methods have been proposed for LIDAR place recognition ranging from

classical to learning based pipelines. [39] introduced a simple yet highly effective scan-

based LIDAR place recognition algorithm, which was subsequently extended in [22, 40,

84]. [83] extended the hugely popular NetVLAD paradigm to point-clouds through the

clever use of the point-net architecture. [86] proposes an elegant ring-based descriptor

for LIDAR place recognition. More recently, learning based methods have been

proposed that train descriptors based on point-cloud overlap[19, 50, 51, 52]. Other

methods such as [96] propose a localization pipeline based on instance segmentation

and learning. While a number of thermal-slam and odometry methods [59, 87, 97]

have been developed, fewer works target thermal place recognition, [54] demonstrated

thermal sensors are effective for day-night changes compared to visual sensors. More

recently [46] proposed a GAN-based approach for thermal place recognition using

image translation techniques. Despite impressive performance, this methods are often

limited by the scale of LIDAR and thermal data, and cannot leverage priors from

visual encoders that produce strong image descriptors.

4.2.2 Multi-Modal Place Recognition

Multi-modal and cross-modal place recognition between images and LIDAR has been

widely studied. [17, 58] propose a fine localization of image queries in a pre-built

LIDAR map. Following a retrieval paradgim, [94, 100, 101] propose cross-modal place

recognition techniques between pinhole/360 images to LIDAR scans from LIDAR

maps. To fully utilize the advantage of multi-modal inputs, [42, 43] propose fusion-

strategies between point-clouds and images. [54] also proposes a multi-modal approach

to use both visual and thermal images for place recognition. More recently [91, 93]

propose visual-thermal geo-localization pipelines by generating fake thermal images

and domain adaptation techniques to boost visual-thermal satellite localization.
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4.2.3 Multi-Modal Foundation Models

Building on the success of vision foundation models, multi-modal foundation models

have shown impressive performance by binding other modalities through knowledge

distillation with image encoders. [33, 48, 55, 65, 71] show that effective LIDAR

pre-training can be achieved by distilling vision foundation models into LIDAR

backbones and demonstrate improved performance on LIDAR segmentation and

classification tasks. More recently, [28] first showed that zero-shot retrieval across

over 6 modalities can be achieved by aligning modality-specific representations to

visual representations. We follow the footsteps of Image-Bind’s paradigm for zero-shot

alignment of thermal-LIDAR place recognition.

4.3 Method

Figure 4.2: We distill image features into other modalities through student-
teacher training where the teacher(vision foundation model) is frozen, and the
student(modality-specific model) is updated through an InfoNCE[61] loss.

We now describe our proposed method to enable zero-shot cross-modal place

recognition. While we discuss the case for visual-thermal-LIDAR place recognition,

this can be trivially extended to additional modalities as well. Specifically, given
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paired image-LIDAR and paired image-thermal data, we use knowledge distillation

techniques to align LIDAR encoders fL and thermal encoders fT with pre-trained

image encodersfI .

We choose to represent LIDAR scans as projected range images in the camera

frame, enabling scalability using simple Vision-Transformer(ViT) encoders without

bells and whistles. Furthermore, we emperically find that densification of LIDAR

projections through morphological operations scans better results.

We keep the image ViT encoder frozen and update the LIDAR/thermal encoder

modalities through knowledge distillation. To perform knowledge distillation, we

experiment with two loss functions - batched MSE and batched contrastive Info-NCE

loss.

L(I,M) = Σi=1,...,N(qi − ki)
2 (4.1)

where qi = f(Ii) and ki = fM(Mi)

L(I,M) = Σi=1,...,N − log
exp(qTi ki/τ)

exp(qTi ki/τ) +
∑

i ̸=j exp(q
T
i kj/τ)

(4.2)

where M represents a specific modality - LIDAR or thermal. In our experiments,

we observe that the batched contrastive the InfoNCE loss provides better performance

and is subsequently used for all training.

4.4 Datasets and Metrics

To demonstrate MultiLoc’s performance, we require datasets that are representative

of diverse environments, and contain synchronized LIDAR-Visual, LIDAR-thermal

and LIDAR-Visual-Thermal data for ease of comparison. Unfortunately, no such

place-recognition datasets are publicly available. Hence, we re-purpose 2 publicly

datasets for place recognition - the MS2 dataset[76] and CART dataset[45].

MS2 Dataset The Multi-Spectral Stereo (MS2) dataset[76] at locations near

KAIST and captures over 195k synchronized visual-LIDAR-thermal data pairs across

residential, university, and other urban and suburban environments. Furthermore,
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this data has been collected across different weather conditions including clear, cloudy

and rainy weather conditions.

CART Dataset The Caltech Aerial RGB-Thermal (CART) dataset[45] contains

paired RGB-Thermal data captured in-the-wild across California. These locations are

spread across diverse terrain including lakes, mountains, forests, deserts and streams

and the coast-line, and the trajectories are obtained from aerial-mounted, hand-held

and still payloads. In particular, we subsample and use the image-thermal data from

”Idyll-Wild”, ”Big-bear” and ”Duck Ocean” as test sequences.

Similar to AnyLoc and other place recognition papers, we adopt Recall@K for

our quantitative analysis. For a pre-defined localization radius, Recall@K is the

ratio of correctly retrieved queries to the total number of queries, where the checked

retrievals are within the top K predictions. To ensure consistency and reproducibility,

all experiments are carried out on the same platform (NVIDIA A-100 GPU) and

same random seed.

4.5 Experiments and Analysis

For our pre-trained encoder, we distill different ViT versions of DINO, DINO-v2,

and CLIP models. Due to changes in thermal and LIDAR sensor properties between

datasets, we distill dataset specific-models. Particularly, we use a pre-trained ViTS-16

for CLIP, ViT-B16 for DINO and ViTS-14 for DINOv2 as our encoders, and keep

the same architecture across modality-specific encoders.

We first evaluate MultiLoc’s performance on the MS-2 dataset. We train our

thermal and LIDAR encoders only on day-time sequences. For evaluation, we use

previously unseen sequences with rainy conditions and night-time sequences.

A breakdown of the data sequences can be found in ¡table¿.

From 4.1 and 4.2 We observe that DINOv2 features are much more robust

compared to CLIP feature descriptors. Across all sequences, we observe that distilled

DINOv2 features consistently outperform distilled CLIP features. Across both

rainy sequences, we observe that DINOv2 descriptors improve average Recall1 by

approximately 30% compared to CLIP descriptors. In Night-time sequences, we

observe over 35% improvements for Visual-Thermal place recognition, indicating that
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Table 4.1: Cross-Modal Place Recognition MS2 dataset - Rainy Sequences

Road-3(Clear-Sky) Residential(Clear-Sky) Road-2(Rainy) Residential(Rainy)
Methods R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

Visual-Thermal
CLIP 0.7451 0.93333 0.68277 0.89496 0.43019 0.58639 0.43862 0.69162
DINOv2 0.93333 1 0.87685 0.98522 0.69895 0.86824 0.83533 0.95509
Visual-LIDAR
CLIP 0.47059 0.76863 0.25945 0.39916 0.18237 0.28883 0.14371 0.41018
DINOv2 0.81961 0.98824 0.5021 0.74475 0.27923 0.45637 0.51198 0.74701
Thermal-LIDAR
CLIP 0.55294 0.85098 0.22269 0.45693 0.13613 0.28185 0.27695 0.54341
DINOv2 0.9098 0.98824 0.66912 0.85819 0.28185 0.49127 0.67665 0.88174

Table 4.2: Cross-Modal Place Recognition on MS2 dataset - Night-time Sequences

Road-3(Night) Residential(Night)
Methods R@1 R@5 R@1 R@5

Visual-Thermal
CLIP 0.15608 0.36376 0.25591 0.53937
DINOv2 0.55159 0.81349 0.53937 0.77165
Visual-LIDAR
CLIP 0.09524 0.25529 0.2126 0.50787
DINOv2 0.37831 0.6455 0.42126 0.71654
Thermal-LIDAR
CLIP 0.2619 0.50265 0.23228 0.6063
DINOv2 0.59524 0.83862 0.52756 0.82677

DINOv2 features transfer well to thermal encoders, and do not merely overfit to the

trajectory sequences.

A similar trend is seen in Visual-LIDAR place recognition on these sequences,

showing that DINOv2 descriptors transfer to both modalities. However, we observe

significantly lower Visual-LIDAR recalls as compared to visual-thermal place recogni-

tion. We believe this is because of the sparse nature of the LIDAR scans, compared

to dense thermal images that have been taken from a VLP-16 LIDAR scan, and this

is further evident from the LIDAR densification ablation study.

Finally, for the first time we show that 2 modalities(LIDAR and thermal) can

be aligned at test-time through a bridge-modality(RGB). It is interesting to note

that this zero-shot place recognition performance is in-fact, higher than RGB-LIDAR

place recognition. We believe this is because similar features get highlighted in the
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input LIDAR and thermal thermal modalities, compared to RGB features which

can suffer from visual distractors and other sensor aliasing that LIDAR and thermal

sensors are robust to.

Figure 4.3: Qualitative Retrievals for Visual-Thermal Place Recognition on a night-
time MS2 sequence

Figure 4.4: Qualitative Retrievals for Thermal-LIDAR Place Recognition on a night-
time MS2 sequence
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Figure 4.5: Qualitative Retrievals for Visual-LIDAR Place Recognition on a night-
time MS2 sequence

This is further evidenced from the night-time sequence recalls, where we see that

LIDAR-thermal recalls have slightly-higher/similar recalls compared to visual-thermal

recalls and significantly higher recalls than visual-LIDAR recalls. Since LIDAR and

thermal images do not suffer from illumination changes, they achieve higher recalls

compared to cross-modal place recognition involving the visual modality.

We further test the effective-ness of MultiLoc on challenging unstructured in

the wild environments by re purposing UAV and hand-held sequences of the CART

dataset. We train the thermal-LIDAR backbone by using sub sampled synchronized

pairs from trajectories in environments, namely Joshua Tree (desert), Duck Ocean,

Kentucky River(river-side environment), Colorado-River sequences. For evaluation,

we use Idyll-Wild and Big-Bear Lake as our test sequence. We observe that DINOv2

features are much more robust compared to CLIP feature descriptors. On the Idyll-

wild sequence, DINOv2 features improve Recall1 and Recall5 performance by over

16% and 23% for visual-thermal place recognition. This is similar on the Big-bear

Lake where we observe over 25% and close to 30% improvement on Recall1 and

Recall5. These retrievals are also visualized in 4.6 and 4.7.

45



4. MultiLoc

Table 4.3: Visual-Thermal Place Recognition CART dataset

Idyll Wild Big-Bear Lake
Methods R@1 R@5 R@1 R@5

Visual-Thermal
CLIP 0.32093 0.57674 0.25854 0.49756
DINOv2 0.51628 0.84186 0.5122 0.78537
Thermal-Visual
CLIP 0.30233 0.54884 0.2878 0.57561
DINOv2 0.46977 0.77209 0.56098 0.90732

Figure 4.6: Qualitative Retrievals for Visual-Thermal Place Recognition on the Idyll-
Wild Sequence
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Figure 4.7: Qualitative Retrievals for Visual-Thermal Place Recognition on the Big-
Bear Sequence

4.6 Limitations and Conclusions

In this chapter, we presented MultiLoc, a simple way of extending image foundation

model features to other modalities and showing that zero-shot cross modal performance

can be achieved through such aligment. However, MultiLoc has several limitations

- since it is distilled with DINOv2-CLS features, it is sub-optimal compared to the

extremely robust performance like AnyLoc. Furthermore, there is a noticeable drop

in LIDAR-based place recognition. Furthermore, this approach still requires training

for ”similar” environments and similar sensor configurations. We hope that future

work can address these limitations.
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Chapter 5

Conclusion and Future Work

In this thesis, we take a step towards place recognition pipelines that are generalized

across sensors and environmental conditions. We identify exciting future directions

to enable robust real-time in-the-wild place recognition for robots:

Uncertainty for Place Recognition While our approach demonstrates SOTA

Place-Recognition, it fails to capture uncertainties in the retrieval process. Current

mechanisms often employ heuristics to reject uncertain retrievals or typically rely on

robust back-end solvers [56, 57]. Developing uncertainty quantification mechanisms

that are both agnostic and tightly-coupled with place recognition remain a valuable

future direction.

Multi-Modal Place Recognition While our approach shows applicability in

cross-modal place recognition, the knowledge distillation inherently prevents the

advantages of different sensory modalities, and it would be very interesting to develop

ways that improve robustness through fusion of multiple modalities such that one

modality does not dominate the other modality.

Real-time performance Our proposed techniques require significant computa-

tional resources. While we demonstrate that the AnyLoc descriptor sizes can be

reduced, saving memory, replacing large ViT backbones with more efficient backbones

such as [14] can enable deployment on compute-constrained devices.
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Svensson. Lidarclip or: How i learned to talk to point clouds. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision, pages
7438–7447, 2024. 4.2.3

[34] Gabriel Ilharco, Mitchell Wortsman, et al. Openclip. In Zenodo, 2021. doi:
10.5281/zenodo.5143773. 3.2

[35] Krishna Murthy Jatavallabhula, Alihusein Kuwajerwala, Qiao Gu, et al. Con-
ceptfusion: Open-set multimodal 3d mapping. RSS, 2023. 3.2.1
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