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Abstract

Global localization is essential for the smooth navigation of autonomous
vehicles. To obtain accurate vehicle states, on-board localization systems
typically rely on Global Navigation Satellite System (GNSS) modules
for consistent and reliable global positioning. However, in real-world
scenarios, GNSS signals can be obstructed by natural or artificial barriers,
leading to temporary system failures and degraded state estimation for
autonomous vehicles.

On the other hand, off-road driving presents unique challenges for unmanned
ground vehicles (UGVs) due to irregular terrain, leading to unstable sur-
faces for traversal that affect the accuracy of state estimation. Dense
forests or canyons can block GNSS signals, hindering precise absolute
positioning. Additionally, visual odometry performance may suffer due
to the lack of distinct and reliable features necessary for accurate state
estimation.

To address these challenges, we propose a novel learning-based method that
synthesizes a local bird’s-eye-view (BEV) image of vehicle’s surrounding
area by aggregating visual features from camera images. The proposed
model combines a deformable attention-structured network with an image
rendering head to generate a BEV image. The synthesized image is
then matched with an aerial map for cross-view vehicle registration in
GNSS-denied off-road environments.

Our method overcomes the limitations of visual inertial odometry (VIO)
systems and the substantial storage requirements of image-retrieval-based
localization strategies, which are susceptible to drift and scalability issues.

Extensive real-world experimentation validates our method’s advancement
over existing GNSS-denied visual localization methods, demonstrating
notable enhancements in both localization accuracy and registration
frequency. Furthermore, our method effectively reduces VIO drifts when
integrated with an on-board VIO system via factor graph optimization.
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Chapter 1

Introduction

1.1 GNSS-denied Vehicle Localization

Global localization is a crucial component of the smooth navigation of autonomous

vehicles. To obtain accurate vehicle states, on-board localization systems are typically

equipped with GNSS modules to provide consistent and reliable global positioning.

However, in real-world scenarios, GNSS signals can be obstructed by natural or

artificial barriers, leading to temporary system failures and degraded state estimation

for autonomous vehicles. Examples of GNSS-denied applications are shown in Fig. 1.2.

To achieve reliable localization in GNSS-denied environments, researchers have

explored methods to maintain the robustness and precision of relative position-

ing, which is typically achieved by the integration of multiple sensors, e.g. inertial

measurement unit (IMU) or inertial navigation system (INS), Light Detection and

Ranging (LiDAR) and imaging cameras. Another approach is to perform absolute

positioning, where vehicles are assumed to have prior knowledge about the envi-

ronment, such as georeferenced data for local-to-global scan matching. One way of

achieving this is to perform vision-based localization (VBL) with the help of visual

place recognition (VPR), where autonomous agents investigate the environment with

vision sensors such as an RGB camera, and continuously gather visual information

to build a local representation of the surroundings, followed by matching it with

prestored global representations, implicitly or explicitly. Various methods for VPR in

urban scenarios have shown considerable success [2, 37, 44].
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1. Introduction

1.2 Off-road Autonomous Driving

In the realm of self-driving, off-road driving poses special challenges to UGVs due

to several reasons: irregular terrain surfaces including mud, sand rocks, and water

leads to unstableness of traversing vehicles, perturbing state estimation accuracy;

natural obstacles such as trees, bushes can be difficult for vehicles to detect and

navigate around, as shown in Fig. 1.1; dense forest or canyons may block GNSS

signals for precise absolute positioning; furthermore, visual odometry performance

may be degraded due to lack of distinct and reliable features for matching in state

estimation.

1.3 Our Mission

In response to these challenges, we present a novel learning-based method that

synthesizes a local BEV image of the surrounding area by aggregating implicit visual

features from camera images. This approach integrates a modified BEVFormer [22]

framework with a novel rendering head, employing template matching for precise

cross-view registration between ground vehicles and aerial maps in GNSS-denied

off-road environments.

We concentrate on the 2D relocalization of UGVs for non-urban settings bounded

within defined areas. Equipped with trinocular RGB cameras and an Inertial Measure-

ment Unit (IMU), the vehicle employs stereo VIO for state estimation. Our goal is

to achieve accurate 2D positioning relative to a georeferenced aerial map, facilitating

pose correction in the absence of GNSS signals, temporarily or persistently.

Previous study [24] has explored the creation of orthographic view images by

accumulating geometric features over consecutive frames, coupled with Normalized

Cross-correlation (NCC) for relocalization in a Global Positioning System (GPS)-

denied situation. However, this approach is limited by the inherent drift of VIO

systems, which can distort the accumulated geometric data, leading to inaccuracies

in ground-to-air matching. Instead, we introduce a learning-based strategy for

generating BEV images, using a Vision Transformer (ViT) [10]-based network for

feature encoding. This method shows improved performance in generating local BEV

images and supporting vehicle localization with georeferenced aerial maps.

2



1. Introduction

Other research efforts [37, 42, 44] treat vision-based localization as an image

retrieval problem, requiring substantial storage for on-board localization systems. In

contrast, our approach generates local BEV images for direct template matching.

This significantly reduces the need for extensive data storage, relying instead on a

georeferenced map for real-time 2D localization.

1.4 Contribution

The proposed contains three main components: a feature encoder that maps visual

representation from camera to top-down view, a rendering head that decodes learned

features and renders top-down BEV images, and an image registration component

for localization. An overview of our system is shown in Fig. 9.1. Our contributions

can be summarized as follows.

• We propose a novel learning-based framework for ground vehicle localization that

combines BEV image generation with classical template matching, eliminating

the extensive dataset storage requirements of image-retrieval-based localization.

• We integrate the deformable attention module in [43] with the BEVFormer

network, improving the encoding of features using offset networks [22], followed

by an efficient image rendering head as a feature decoder capable of producing

detailed top-down views of the local terrain.

• Through comprehensive experiments with real-world datasets, we demonstrate

that our method exhibits more reliable localization accuracy and frequency

compared to existing GNSS-denied visual localization techniques and generalizes

to unseen trajectories.

• We integrate our map registration method with on-board VIO system and show

our system reduces VIO drifts by a large margin.

3



1. Introduction

Figure 1.1: An off-road driving scene

Figure 1.2: Applications of GNSS-denied localization (online sources)

4



Chapter 2

Background

2.1 Factor Graph for State Estimation

Estimation of an unknown robot pose X can be represented as a maximum a posteriori

(MAP) problem given a set of sensor observations Z. Applying Bayes’ theorem, the

posterior probability density can be represented with the product of the likelihood and

the prior probability over the marginal likelihood. Given specific sensor observations,

p(Z) can omitted due to its irrelevance to MAP:

XMAP = arg max
X

p(X|Z) (2.1)

= arg max
X

p(Z|X)p(X)

p(Z)
(2.2)

= arg max
X

p(Z|X)p(X) (2.3)

Using factor graph to represent the conditional probabilities and the relationship

among sensor measurements and poses, the posterior probability can be represented

with the product of factor potentials:

XMAP = arg max
X

ϕ(X) (2.4)

= arg max
X

∏
i

ϕ(Xi) (2.5)

5



2. Background

Suppose all the sensor noise is Gaussian, factors will follow the form of:

ϕ(Xi) ∝ exp

{
−1

2

∥∥hi(Xi) − zi
∥∥2

Σi

}
(2.6)

Taking the negative log and dropping term 1
2
, the problem can be converted to solving

for a non-linear least-square problem:

XMAP = arg min
X

∑
i

∥∥hi(Xi) − zi
∥∥2

Σi
(2.7)

By applying first-order Taylor Expansion to linearize target function, the problem

can be converted to minimizing the Mahalanobis distance on the state update vector:

hi(Xi) = hi(X
0
i + ∆i) ≈ hi(X

0
i ) + Hi∆i (2.8)

∆i = Xi −X0
i (2.9)

The state vector can be updated until convergence with non-linear optimization

methods, such as steepest descent, Gauss-Newton, Levenberg-Marquat, or Powell’s

Dogleg method:

Xi+1 = X + ∆ (2.10)

2.2 Visual Inertial Odometry with Absolute Pose

Correction

In robotic state estimation, IMU sensors provide acceleration and angular velocity

measurements, which help to improve the precision and robustness of visual odometry

(VO) when integrated with visual information, particularly in scenarios with high-

velocity motions or low-texture environments where visual features may be difficult

to track. However, VIO is prone to drift over time due to IMU sensors suffering from

accumulative noise, bias instability, temperature sensitivity, etc; as well as cameras

suffering from poor matching and inaccurate calibrations.

To mitigate drifts, VIO is usually used in combination with absolute pose cor-

6



2. Background

rections, which are incorporated into the factor graph as additional constraints in a

tightly coupled manner. These corrections can be derived from GPS measurements,

known landmarks, or scan-to-map matching with pre-built georeferenced maps.

We represent the 2D registration results as prior factors and correlate them with

the corresponding camera poses, shown as red dots in Fig. 2.1.

Figure 2.1: Factor graph for VIO with global constraints

2.3 Absolute Position Prediction with BEV

Feature Learning

In predicting global pose from cross-view images, we consider a scenario where a

vehicle, equipped with trinocular cameras and an IMU, is traversing flat natural

terrain. A pre-stored aerial map of the area aids in localization. The vehicle’s pose is

predicted by the VIO system in a local coordinate frame as follows:

Xt =
[
xt, yt, θt

]
∈ SE(2). (2.11)

We assume that the prediction for the azimuth angle θt from VIO is accurate, but the

position estimates (xt and yt) may drift over time. Our system aggregates consecutive

frames to construct a top-down representation of the environment for map registration.

7



2. Background

Our system seeks to find the optimal pose prediction that minimizes the difference

between camera feature representation and local aerial image:

X∗ = arg min
X

ψ
(
I

′

bev(X), Imap(X)
)
, (2.12)

where ψ is a function to find X∗ to achieve minimum distance between two repre-

sentations, and provided by template matching in our system. Imap is the subset of

aerial map with respect to vehicle pose, and I
′

bev is the rendered BEV image given

learned feature:

I
′

bev(X) = φrender

(
Ffeat(X)

)
, (2.13)

where φrender is a mapping from the encoded feature Ffeat to the resulting top-down

BEV image, and is given by the rendering head in our model.

8



Chapter 3

Related Work

3.1 GNSS-denied Vehicle Localization

Vehicle localization in GNSS-denied environments can be broadly categorized into

relative and absolute localization strategies. Relative localization aims to mitigate

odometry drifts by fusing data from multiple onboard sensors with motion models, or

by leveraging loop closures to correct drift relative to global frames [15]. Absolute

localization, in contrast, involves constructing local maps from the vehicle’s perspective

and aligning them with a global georeferenced map to determine precise vehicle

positions. Reference data for this process can vary, including High-definition (HD)

maps [32], aerial satellite imagery, Digital Elevation Models (DEM) [19, 41], and

OpenStreetMap (OSM) data [36]. While HD maps offer high accuracy, they are costly

and data intensive. DEMs, primarily used for UAVs [41], cater to non-planar terrains

and scale ambiguity, whereas OSM provides dense semantic and geometric details

suitable for urban navigation. Aerial satellite maps present strong visual cues with

detailed information for off-road localization.

Significant advancements have been made in aligning ground-level images with

aerial imagery for localization. Viswanathan et al. [40] demonstrate effective ground-

to-air image matching using satellite images by warping UGV panoramic images

to a bird’s eye view, comparing feature descriptors, and employing a particle filter

for accurate localization. Based on this, recent work [24] focuses on generating an

orthographic occupancy map by accumulation of local features and estimation of pose

9



3. Related Work

through NCC, and optimizing the prediction of global pose through a registration

graph [9]. In contrast, our approach adopts a Vision Transformer (ViT)-based [10]

learning network to generate BEV images for ground-to-air matching, emphasizing

frame-by-frame registration accuracy and reducing reliance on global trajectory

optimization.

3.2 Learning Vision-based Localization

The evolution of vision-based localization has seen it conceptualized as an image

retrieval task [42], employing contrastive learning to enhance the matching of onboard

camera and satellite images [37, 44]. Efforts to improve image alignment include

warping satellite imagery by polar transformation to match ground perspectives [44],

and constructing semantic neural maps from camera images [37]. Further innovations

leverage CNNs for feature extraction and BEV representation, enabling precise

localization through 3D structure inference and matching [4, 11, 36, 45].

The advent of foundation models offers promising directions for Visual Place Recog-

nition (VPR), demonstrating the adaptability of pre-trained models (e.g. DINO [6],

DINOv2 [28]) to diverse environments without fine-tuning [18]. Subsequent work [13]

integrates dense visual feature extraction with advanced filtering and global-local

pose estimation via Extended Kalman Filters (EKF) for refined localization accuracy.

Our methodology aligns with these advancements, utilizing a streamlined ViT archi-

tecture for efficient and accurate BEV image rendering and localization, minimizing

parameter overhead while maximizing performance.

3.3 BEV for Autonomous Navigation

In the realm of self-driving applications, BEV related research has attract people’s

attention as a result of it’s capability in representing top-down local environment from

cross-view visual signals, such as data from Radio Detection and Ranging (Radar),

LiDAR, monocular or multi-camera. Researchers have investigated BEV for 3D object

detection [12, 17, 23, 38], semantic segmentation [29, 31, 35, 46], planning [26, 27],

and mapping [5, 7, 8].

10



3. Related Work

Recently, BEV representations [5, 20] have been enriched by encoding temporal

and spatial features, as demonstrated by BEVFormer [22], which leverages attention

mechanisms [21, 39, 43] for 3D object detection. Our work extends this concept

by incorporating BEVFormer’s feature propagation approach, ensuring our BEV

representations integrate temporal information from successive frames. This strat-

egy is complemented by recent explorations in temporal information encoding for

BEV representation, highlighting the continuous evolution and application of these

techniques in autonomous navigation [1, 3, 16, 33, 34].

11
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Chapter 4

Learning Position Prediction

4.1 BEV Space and Reference Points

We define a 3D BEV space centered on the vehicle with a length of L, a width of

W , and a height of H. The space is divided into l × w × h grid cells, so that each

cell represents a cubic size of L
l
× W

w
× H

h
in the real world. For each BEV grid,

we sample one point in the center of the cubic and use the sampled points as 3D

reference points, as shown in Fig. 4.1. 3D reference points are subsequently projected

onto the camera frame given extrinsic information as a 2D reference point set. A

visualization of 2D reference points is shown in Fig. 4.2. The 2D reference points are

later used in extracting tokens for attention module.

The BEV query for attention module is a 3D trainable embedding with a dimension

of l × w × h representing the BEV space and serving as the query for deformable

attention modules in the encoder. All intermediate BEV features in the network also

follow the same spatial dimension. The specific range and dimension chosen for our

experiment are described in Sec. 6.1.

4.2 Learning BEV Generation

Our proposed model aims at generating a top-down BEV map covering the 3D BEV

space, centered around the vehicle at each time stamp. A diagram of our system is

13



4. Learning Position Prediction

Figure 4.1: 3D reference points distribution
The left figure shows the side view and the right figure shows the front view

shown in Fig. 9.1.

During the training phase, camera images are patch projected and sent to the

feature encoder (in blue) and rendering head (in orange) to generate BEV images

(highlighted in yellow boxes). The aerial map image is rotated and cropped according

to the GPS information provided, ensuring that the final label image accurately

represents the BEV space surrounding the vehicle.

We utilize Mean Square Error (MSE) as the loss function to represent the difference

between the ground truth aerial map and the learned BEV representation.

LMSE(ŷ, I
′

bev(x)) =
1

N

N∑
x=0

(
ŷ − I

′

bev(x)
)

(4.1)

4.3 2D Localization with Template Matching

During the testing phase, the rendered BEV image is rotated according to the azimuth

angle provided by the GPS, and matched against a local search region surrounding

the vehicle position by NCC:

R(x, y) =

∑
x′,y′(T (x, y) · I(x+ x′, y + y′))√∑

x′,y′ T (x, y)2 ·
∑

x′,y′ I(x+ x′, y + y′)2
(4.2)

14



4. Learning Position Prediction

Figure 4.2: 2D reference points distribution on a camera frame
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Chapter 5

BEVRender Architecture

5.1 Feature Encoding with BEVFormer

Adopting BEVFormer’s framework [22], we propagate consecutive frame features to

capture temporal information. Within a temporal window of T seconds, n frames

(3 × n images in a trinocular setup) are sampled. A detailed setting can be found in

Sec. 6.1. Starting with the earliest frames, camera images Icamt are processed through

patch projection, which is a convolutional layer in our implementation, to obtain

camera feature F cam
t and sent to the encoder together with the BEV query Q and

previous BEV feature Bt−1 to obtain the encoded BEV feature for current timestamp

Bt. The encoding process consists of two stages: a temporal attention stage that

takes in query Q and previous timestamp BEV feature Bt−1 for deformable attention:

Btemp
t = DeformableAttn

(
Bt−1, Q

)
, (5.1)

followed by a spatial attention stage that takes in temporal output and camera feature

Ft for deformable attention:

Bspatial
t = DeformableAttn

(
F cam
t , Btemp

t

)
, (5.2)

Bt is then projected to the location of the subsequent frame as B
′
t according to the

movement of the vehicle given by the GPS information, using affine transformations

17



5. BEVRender Architecture

in SE(2) and bilinear interpolation:

∆X =
[
∆x,∆y,∆θ

]
= Xt −Xt−1, (5.3)

xtyt
1

 =

cos ∆θ − sin ∆θ ∆x

sin ∆θ cos ∆θ ∆y

0 0 1


xt−1

yt−1

1

 , (5.4)

B
′

t(xt, yt) = BilinearInterp(Bt(xt, yt)). (5.5)

Subsequently, B
′
t serves as a query to the encoder together with the next camera

feature Ft+1 to obtain Bt+1. The propagation continues in the temporal window until

we obtain the latest timestamp feature BT . A diagram of temporal propagation is

shown in Fig. 5.1. For each timestamp, we sample n frames from past T seconds,

composing a training sample of n+1 camera frames together with current timestamp

frame. Staring with the earliest timestamp in the window, BEV query Q is used to

query camera feature F to obtain BEV feature B, which is subsequently projected

to next timestamp vehicle position given GPS outputs, to obtain new feature B′.

Propagation continues until the latest frame is processed. It should be noted that

Bt−1 is the same as query Q for the first frame in the temporal window:

Bt−1 = Q if t = 0. (5.6)

Unlike BEVFormer, our encoder simplifies to a single layer, totaling 1.44 million

parameters, while supporting effective feature learning for downstream localization

tasks. The architecture of the encoding layer is shown in Fig. 9.2, and the ablation

study of the number of layers can be found in Table 6.3.

5.2 Deformable Attention Vision Transformer

The model architecture for our BEV feature encoder is shown in Fig. 9.2.

In contrast to BEVFormer that employs Deformable DETR [47], our approach
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5. BEVRender Architecture

Figure 5.1: Temporal feature propagation and dataset organization.

utilizes the deformable attention [43], which uses offset networks to calculate adjust-

ments to each reference point. The offsets are processed by an additional convolution

layer θoffset, as shown in Fig. 9.2, and its output modifies the original reference point

to generate deformed reference points.

For spatial attention, offsets θioffset are added to the reference points unique to

each camera view i, acting as adjustments to the pixel locations of reference points.

Consequently, we employ three distinct convolution layers dedicated to learning offsets

as an adaptation to the trinocular system setting. The final output of the spatial

attention layer is a stacking of features from three camera views, undergoing another

convolutional layer to maintain the same spatial dimension as the BEV query and

BEV features.

The output of deformable attention heads is formulated as

z(m) = σ
(q(m)k(m)⊤

√
d

+ ϕ(B;R)
)
v(m), (5.7)

where q, k, v constructs the standard transformer attention [39] with softmax activation

σ and scale normalization
√
d, enhanced by relative positional bias [25] in ϕ(B;R).

A more detailed description of deformable attention formulation can be found in [43].
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5. BEVRender Architecture

5.3 BEV Image Rendering Head

The BEV image rendering head is designed to translate encoded features into in-

terpretable top-down views of the vehicle’s surroundings. It is a straightforward

convolutional neural network (CNN) architecture that takes as input the encoded

BEV features with dimensions of d× l × w, where d is the model embedding dimen-

sion. Through a series of convolutional and upsampling layers, the BEV features are

processed to generate a colored image of certain size, which serves as a top-down

visual representation of the BEV space around the vehicle. The rendering head

ensures that the resulting BEV image retains critical spatial information required

for ground-to-aerial vehicle localization in GNSS-denied environments. The detailed

structure of the rendering head is illustrated in Table 5.1.

Table 5.1: BEV rendering head architecture

block layer

Decoder block 0 Conv2d + BN + ReLU
Decoder block 1 (Conv2d + BN)×4 + ReLU
Decoder block 2 (Conv2d + BN)×4 + ReLU
Decoder block 3 (Conv2d + BN)×4 + ReLU

Upsample block 0 Upsample + (Conv2d + BN)×2 + ReLU
Upsample block 1 Upsample + (Conv2d + BN)×2 + ReLU
Upsample block 2 Upsample + (Conv2d + BN)×2 + ReLU
Upsample block 3 Upsample + (Conv2d + BN)×2 + Sigmoid
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Chapter 6

Experiments

6.1 Experiment Setting

Since the satellite image has a resolution of 0.229 meters per pixel, we define the

length and width of the BEV space as 25.648 meters centered on vehicle position,

equivalent to a size of 112 × 112 pixels on the aerial map. We also define the height

of the BEV space as 2 meters. The space is divided into 28×28×5 3D grid cells, so

that each cell represents a voxel of 0.916×0.916×0.4m3 in the real world. We utilize

a temporal window of 5 seconds and randomly sample 5 frames in the window to

compose a training sample.

We conduct two main experiments, one to compare against state-of-the-art VBL

methods in GNSS-denied setting [24, 44], where we use 4 sequences and split them

into 80% training, 20% testing data; and another to show our model’s ability to

generalize across different scenes given limited training data, where we use 2 sequences

for training and 4 sequences for testing. The trajectory plots for sequences used in

the cross-sequence testing experiment are shown in Fig. 6.1. In the figure, sequence 3

and 8 are used in training, sequence 4 to 7 are used in testing.

Training is distributed on 8 NVIDIA A100 GPUs for a total of 2500 epochs and

with a learning rate of 4e−5. The configuration of the testing computer is described

in Sec. 6.3.3 in system runtime.

During the testing phase, we crop and rotate the aerial map based on the GPS

ground truth position as the center of the image with a size of 874×874 pixels, which
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6. Experiments

Figure 6.1: Trajectory plot for cross-sequence testing.

corresponds to a real-world coverage of approximately 200×200 square meters. This

search region is sufficient to accommodate VIO drift for more than 10 minutes without

a registration. For cross-sequence testing, we loosen the assumption of drifting range

and use a search region of 100×100 square meters. Our camera system captures 3

frames per second and predicts registration consistent with camera frame; therefore,

sufficient to prevent failure within the 100×100 square meter search range.

For template matching, NCC identifies the best match within the search area,

maximizing similarity between the generated BEV image and the aerial map, thus

predicting the vehicle’s position relative to the aerial map. We observe failure cases

where rendered BEV images are of moderate visual quality, where NCC fails in

prediction. An example of failure cases is shown in Fig. 8.3.

6.2 Dataset Organization

We collect our real-world data set in the Pittsburgh area, with a VIO system on

board. Detailed information on the sequences can be found in Table 6.1. For each

training sample, we use the information of timestamp, trinocular RGB images, and

GPS ground truth including x, y, and azimuth angle in the UTM coordinate system

for training. The preprocessing process for cropping the aerial map can be found in

Fig. 9.1.
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Table 6.1: Statistics of GNSS-denied real-world dataset

# images traj. length (m) coverage (m2)

Seq 1 1634 1059.42 349.34×159.70
Seq 2 1563 1067.08 349.34×159.67
Seq 3 1427 1415.72 353.07×164.65
Seq 4 1210 1228.61 350.99×161.92
Seq 5 1707 1179.64 462.53×359.25
Seq 6 838 495.64 340.13×239.08
Seq 7 815 439.67 410.86×74.74
Seq 8 1395 1425.88 368.51×166.06

aerial map - - 1278.20×1646.46

6.3 Quantitative Comparison

We compare our method with GPS denied registration via occupancy mapping

proposed in [24], and GeoDTR proposed in [44]. The comparison result is shown in

Table 9.1.

Since GeoDTR is an image-retrieval-based method and relies on cultivating the

corresponding information between camera inputs and polar transformation of aerial

map images, it is required to preserve a database of candidate polar transformed

images for real-world vehicle localization. We randomly sample 5000 particles within

the search region at each timestamp and apply polar transformation according to

the particle location on the map together with the azimuth angle of GPS ground

truth. After obtaining the candidate polar images, for each timestamp, we pass in the

camera images and polar images to the model, and calculate the distance between

camera descriptors and polar descriptors, we choose candidate with closest descriptor

distance as the top 1 prediction, and its corresponding real-world location as top 1

location, and we average the top 5 predicted locations as top 5 prediction.

6.3.1 Registration Accuracy

To evaluate the accuracy of vehicle registration, we calculate the mean and standard

deviation (STD) of absolute position error (APE) between predicted position and

the ground truth vehicle location provided by on-board GPS.
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6.3.2 Registration Frequency

In the real-world localization scenario, the update frequency is another important

factor that determines the stability of the registration system. We report the matching

frequency by counting the total successful matches when the APE is within a threshold

of 10 meters (the range we deem tolerable for our VIO system) and calculate the

match rate as total successful matches divided by total camera frames for a sequence:

pi = (xi, yi), (6.1)

di
Euclidean = ∥pi

gt − pi
pred∥2, (6.2)

pmatch =
1

N

N∑
i=1

1 · (di
Euclidean < dthreshold), (6.3)

where N is the number of images for a sequence per camera module.

Remark 1 (Testing with Litman [24]): It should be noted that the method proposed in [24]

accumulates geometric features on a certain number of consecutive camera frames (50 by

default), leading to a limited number of registration try-outs throughout a sequence. For

comparison sake, we calculate the match rate as the total number of successful matches

divided by the total number of occupancy maps synthesized in a sequence.

Remark 2 (Testing with GeoDTR): It takes up to 21 hours to sample polar images for

5000 particles for 320 testing samples; therefore, we cannot further increase the density of

particles. To apply image-retrieval-based method for on-board localization, it is required to

have a pre-stored dataset, specifically in our case, of polar images sampled from all candidate

positions on local aerial map enumerating all possible rotations, which is prohibitively

expensive storage for on-board system in real-world localization.

6.3.3 System Runtime

Testing is performed on a machine equipped with an AMD Ryzen 9 5900X 12-Core

processor and a NVIDIA GeForce RTX 4090. The total time to localize 280 testing

samples is 33.32 seconds, equivalent to 0.12 seconds to localize per camera frame.

The camera frame rate for our system is 3 per second; therefore, our system is able

to support online localization in a real world scenario.
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6.4 Qualitative Comparison

Visualizations of the rendering and registration result can be found in Fig. 6.2. In

this figure, the top row shows the rendering and registration result of our method,

where the BEV images are highlighted in yellow boxes, the red dots indicate the

NCC predictions from our system, and the blue dots indicate the GPS ground truth

position. Our approach produces a coherent rendering to the aerial image. The

bottom row shows the predictions from Litman [24]. Similarly, the red and blue

dots indicate the predictions and ground truth, while the yellow boxes indicate the

generated occupancy image overlayed on the ground truth. Only semi-dense rendering

is available for Litman [24] (see the saturated white and green points around the red

dots), resulting in compromised registration accuracy. The image rendering head

Seq 1 Seq 2 Seq 3 Seq 4

Figure 6.2: Qualitative comparison of our method and Litman [24]
Top row : predictions from our method, where the BEV images are highlighted in

yellow boxes, the red dots indicate the NCC predictions, and the blue dots indicate
ground truth positions. Bottom row : top-down view generated by Litman [24].

processes the encoded BEV feature with a spatial dimension of 64 × 28 × 28 through

a set of convolutional layers and 4 upsample layers, as shown in Table 5.1. The

final BEV image is an RGB image with a size of 224 × 224 pixels, representing an
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area of 51.296 × 51.296m2. The occupancy map reconstructed from [24] aggregates

geometric features from 50 consecutive frames, of which the coverage may vary for

each prediction.

6.5 Model Generalization

To test the generalizability of the proposed system, we perform cross-sequence tests.

Specifically, training with sequences 3 and 8 while testing with sequences 4-7. The

trajectory plots for the sequences used in Fig. 6.1. The cross-sequence testing

experiment is shown in in Table 6.2, we report search regions of 100 × 100m2.

6.6 Ablation Study

In this section we explore the influence of choosing different hyperparameters and

BEV space resolutions on the final registration result. Since the aerial map resolution

is 0.229 meters, we experiment with the BEV grid resolutions of 0.458 meters and

0.916 meters, corresponding to 2 pixels and 4 pixels on the map, respectively. We also

experiment with an increased number of layers and report the results in Table 6.3.

Taking into account the result of the ablation study, we choose the resolution of the

BEV grid as 0.916 meters, and the number of encoder layers as 1 for Table 9.1 and

Table 6.2.

Table 6.2: Cross-sequence testing for model generalization

sequence mean ↓ std ↓ match(%) ↑
Seq 4 11.24 6.64 45.38
Seq 5 13.77 6.74 31.16
Seq 6 12.72 6.38 36.63
Seq 7 16.30 6.92 21.81
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Table 6.3: Ablation study on sequence 4

effects of architecture choice and hyper parameters
# layers grid reso. (m) # params mean ↓ std ↓ match(%) ↑

1 0.458 1.71M 27.47 27.83 48.75
2 0.458 2.09M 27.75 27.32 45.42

1 0.916 1.44M 21.17 25.49 57.50

2 0.916 1.72M 36.40 25.66 20.42
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Chapter 7

Integration with Visual Inertial

Odometry

7.1 Registration Factor Graph Formulation

To integrate the map registration module with a VIO system, a factor graph is

constructed and optimized, as in Fig. 7.1. Since VIO produces estimation at the

camera frame rate, and the map registration module aggregates consecutive frames

within a temporal window, as well as produces a registration result every n seconds,

which is less frequent comparex to the VIO module. Instead of integrating all sensor

measurements into one factor graph, we split VIO and map registration into two

separate factor graphs.

The VIO graph handles measuremnts from IMU, stereo visual odometry at a

higher frequency; the registration graph takes in optimized VIO poses and adds them

as between factors; the registration graph simplifies to Fig. 7.1.

7.2 Odometry Integration Test on Real-world

Robot

To demonstrate the performance of the map registration module in the state estimation

system, we train BEVRender with Seq 4, and perform state estimation on another log,
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7. Integration with Visual Inertial Odometry

Figure 7.1: Simplified factor graph for map registration

we report the APE metric between VIO only and the registration integrated result

in Fig. 7.3. The corresponding statistics and histogram are shown in Fig. 7.2 and

Fig. 7.4. We also report a visualization of VIO and registration integrated trajectories

Figure 7.2: Statistics of APE on VIO and registration integrated VIO
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Figure 7.3: APE on VIO and registration integrated VIO

Figure 7.4: Histogram of APE on VIO and registration integrated VIO
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this work, we present a learning-based system to generate local BEV images com-

bined with NCC for ground vehicle localization in GNSS-denied off-road environments.

Our system incorporates the deformable attention module with BEVFormer for a

multiview camera sensor setting, followed by a novel rendering head to generate high-

precision BEV images to enable downstream localization task. Through experiments

with real-world data, we show that BEVRender, despite its lightweight structure, is

capable of learning local BEV representation and effectively reduce VIO drift when

integrated into state estimation system.

8.2 Future Work

8.2.1 Cross-season Map Registration

To enhance our ground vehicle localization system for operation across different

seasons, future research will focus on improving the ability of the network to learn and

generalize features from diverse seasonal landscapes. This is essential for deploying our

system in real-world scenarios where environmental conditions fluctuate significantly

over the year. Furthermore, our goal is to advance the fidelity of BEV image generation

by incorporating techniques such as the diffusion module, inspired by the diffusion
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transformer [30]. This enhancement is expected to refine the detail and precision of the

BEV images, thus enriching contextual data for more accurate vehicle localizations.

8.2.2 Epipolar Transformer for Improved Feature Encoding

BEVRender extracts token from ground camera image and aggregates visual infor-

mation from consecutive frames to construct BEV representation. In essence, our

approach encodes 2D visual information given VIO pose prediction and lacks the

ability to encode 3D geometric clues in the model.

To effectively learn geometric information in the BEV space from ground camera

images, an alternative way is to utilize stereo information and find ways to encode

the epipolar constraint (see Fig. 8.1) in model propagation as in the Epipolar Trans-

former [14]. After constructing a 3D volume for a single frame, aggregating volumes

over consecutive frames to reference local BEV space to utilize 3D clues in the model,

and further using local aerial map as supervision for BEV generation, as shown in

Fig. 8.2,

Figure 8.1: Epipolar geometry

8.2.3 Other Future Directions

Further improvements will also explore the integration of temporal features to ac-

cumulate historical data more effectively, addressing current limitations caused by

34



8. Conclusions and Future Work

Figure 8.2: Aggregation of Volume

projection adjustments and changes in vehicle pose. Moreover, explorations can be

made on removing dependence on GPS information for training by leveraging local

state estimates from VIO.

In addition, a transition from classic template matching to learnable template

matching for vehicle positioning is anticipated to overcome the limitation of NCC’s

uniform pixel weighting, as shown in Fig. 8.3, and to enable the system to prioritize

strategically significant areas, potentially elevating the accuracy of vehicle registration

in challenging environments.

Figure 8.3: Examples of failure cases due to the uniform weighting of NCC
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Appendix: Supplement of Figures

and Tables
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9. Appendix: Supplement of Figures and Tables
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Figure 9.4: Visualization of VIO trajectory and registration integrated trajectory
red - VIO, blue - GPS, yellow - registration integrated trajectory
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