
Propagative Distance Optimization for
Constrained Inverse Kinematics

Yu Chen

CMU-RI-TR-24-48

August 6th, 2024

School of Computer Science
The Robotics Institute

Carnegie Mellon University
Pittsburgh, Pennsylvania

Thesis Committee:
Howie Choset, chair

Guanya Shi
Chao Cao

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Robotics.

Copyright © 2024 Yu Chen. All rights reserved.

To all people and robots that are important to my life.

iv

Abstract

This work investigates a constrained inverse kinematic (IK) problem that
seeks a feasible configuration of an articulated robot under various con-
straints such as joint limits and obstacle collision avoidance. Due to
the high-dimensionality and complex constraints, this problem is often
solved numerically via iterative local optimization. Classic local opti-
mization methods take joint angles as the decision variable, which suffers
from non-linearity caused by the trigonometric constraints. Recently,
distance-based IK methods have been developed as an alternative ap-
proach that formulates IK as an optimization over the distances among
points attached to the robot and the obstacles. Although distance-based
methods have demonstrated unique advantages, they still suffer from
low computational efficiency, since these approaches usually ignore the
chain structure in the kinematics of serial robots. This work proposes
a new method called propagative distance optimization for constrained
inverse kinematics (PDO-IK), which captures and leverages the chain
structure in the distance-based formulation and expedites the optimization
by computing forward kinematics and the Jacobian propagatively along
the kinematic chain. Test results show that PDO-IK runs up to two orders
of magnitude faster than the existing distance-based methods under joint
limits constraints and obstacle avoidance constraints. It also achieves up
to three times higher success rates than the conventional joint-angle-based
optimization methods for IK problems. The high runtime efficiency of
PDO-IK allows the real-time computation (10−1500 Hz) and enables a
simulated humanoid robot with 19 degrees of freedom (DoFs) to avoid
moving obstacles, which is otherwise hard to achieve with the baselines.

v

vi

Acknowledgments

I would like to express my deepest gratitude to my family. Your unwavering
support, encouragement, and understanding have been the bedrock upon
which I have built my academic journey.

I am immensely grateful to my mentors and people who provided me
guidance: Dr. Howie Choset, Dr. Guanya Shi, Dr. Zhongqiang Ren,
Mr. Shuo Yang, Mr. Ben Brown, Mr. Lu Li, and Mrs. Yizhu Gu.
Your expertise, patience, and insightful feedback have been invaluable
throughout this process. Your dedication to me has been a source of
constant motivation and inspiration. Thank you for believing in me and
for your continuous support.

I would also like to extend my heartfelt thanks to my colleagues and
friends: Ms. Jinyun Xu, Mr. Yilin Cai, Mr. Fujun Ruan, Mr. Chao Cao,
etc. Your camaraderie, assistance, and moral support have made this
journey more enjoyable and manageable. I am fortunate to have you by
my side, and I cherish the moments we have shared together.

vii

viii

Contents

1 Introduction 1

2 Related Works 5
2.1 Angle-based Formulations for Inverse Kinematics 5
2.2 Distance-based Formulation for Inverse Kinematics 7

3 Preliminaries 11
3.1 Denavit–Hartenberg Parameters . 11
3.2 Quasi-Newton Method . 13
3.3 Augmented Lagrangian . 13

4 Kinematics Framework 15
4.1 Kinematic Chain . 15
4.2 Joint Limit Constraints . 17
4.3 Collision Avoidance Constraints . 19
4.4 End Effector Pose Objective . 21

5 Kinematics Algorithm 23
5.1 Forward Rollout . 24
5.2 Jacobian Computation . 26
5.3 Inverse Kinematics . 28
5.4 Complexity Analysis . 29

6 Experiments 31
6.1 Efficiency and Effectiveness Comparison 31
6.2 Solution Accuracy Comparison . 36
6.3 Humanoid Robot Avoiding Dynamic Obstacle 37

7 Conclusions 41

A DH Parameters in Experiments 43
A.1 KUKA . 44
A.2 Franka . 45
A.3 UR10 . 46
A.4 H1 . 47

ix

Bibliography 51

When this dissertation is viewed as a PDF, the page header is a link to this Table of Contents.

x

List of Figures

3.1 Link frame attachment on articulated robots. 12

4.1 Distance-based kinematic chain formulation. 16
4.2 Example of angle decomposition for joint limit formulation. 17
4.3 Collision avoidance constraints formulation visualization. 20
4.4 Example of end effector objective formulation. 21

5.1 Visualization of propagative computation in forward kinematics. . . . 24

6.1 Robot arm platforms (UR10, Franka, and KUKA) and their occupation
space visualized as translucent hulls. 32

6.2 An example of the scene generated. 33
6.3 Experimental results. 34
6.4 Convergence precision experiments results on KUKA robot. 35
6.5 Convergence precision experiments results on UR10 robot. 36
6.6 Convergence precision experiments results on Franka robot. 37
6.7 Key frames of dynamic obstacle avoidance demonstration for humanoid

robot. 38
6.8 Speed of the algorithm throughout dynamic obstacle avoidance. . . . 39
6.9 Trajectory of the CoM of the humanoid robot. 40

xi

List of Tables

A.1 DH convention for KUKA robot in PDO-IK formulation. 44
A.2 DH convention for Franka robot in PDO-IK formulation. 45
A.3 DH convention for UR10 robot in PDO-IK formulation. 46
A.4 DH convention for H1 robot in PDO-IK formulation from number 1 to

25. 47
A.5 DH convention for H1 robot in PDO-IK formulation from number 26

to 50. 48
A.6 DH convention for H1 robot in PDO-IK formulation from number 50

to 70. 49

xii

Chapter 1

Introduction

For an articulated robot consisting of rigid links and revolute joints, the inverse
kinematics (IK) problem seeks joint angles (i.e., a configuration) such that the end
effector(s) reach a given pose, which is a fundamental problem in robotics. This
work focuses on the constrained IK that requires finding a feasible configuration
under various constraints, including joint angle limits, and collision avoidance of
workspace obstacles. Constrained IK can only be solved analytically for some specific
robots. For the general case, constrained IK is usually formulated as constrained
optimization problems and solved numerically via iterative local optimization. This
local optimization often suffers from non-linearity due to the kinematic model of the
robot, i.e., the mapping from the joint space, commonly represented with angles,
to the task space, typically represented in the Euclidean space [19]. In particular,
the kinematic model leads to complicated trigonometric constraints, which can trap
the optimization in a local optimum that is highly sub-optimal or even infeasible,
especially in the presence of high degrees of freedom (DoF) and cluttered workspace
with many obstacles.

To address this challenge, an important class of methods in the literature is to
eliminate the trigonometric mapping in the kinematic model by using distance-based
optimization [10, 12, 17, 18, 19, 22, 23]. Instead of optimizing the joint angles,
distance-based methods attach points to the robot and the obstacles, and reformulate
the constrained IK as an optimization over the distances among these points. To
name a few, Josep et al. [22] formulated the kinematics of 6-DoF serial robots

1

1. Introduction

using a distance matrix [6] and solve the IK with matrix completion leveraging
Cayley-Menger determinant [24]. Marić and Giamou et al captures the sparsity of
the distance matrix [17] and use sparse bounded-degree sum of squares relaxations
[29] to solve IK for spherical joint robots without considering collisions. Marić et al.
proposed a distance-geometric framework called Riemannian Trust Region (R-TR)
[19] to solve the constrained IK by optimizing the distance matrix using Riemannian
optimization. Works of distance-based IK will be detailed in chapter 2.

Despite these advancements, distance-based methods still suffer from low com-
putational efficiency. This work is based on our previous conference submission [4],
which proposes a new distance-based IK method called PDO-IK. Our key insight
is that: Most existing distance-based methods for IK ignore the chain structure of
the kinematics of serial robots after the reformulation, and purely focus on optimiz-
ing the distances among the points. In contrast, PDO-IK derives a new kinematic
model based on the distance between points attached to the robot that captures
and leverages such chain structures. PDO-IK computes the forward kinematics and
Jacobian propagatively along the kinematic chain, which decomposes the kinematics
model into a set of serially connected units and iteratively solve for one unit after
another along the chain. In our formulation, such units are described using the points
attached on each frame of robot link. This introduces two advantages: First, the
computation of any unknown variable can re-use the variables that have already been
computed in its neighbouring unit. Second, the matrix of the distances between
points is sparse, which reduces the amount of variables to compute. These advantages
allow fast computation of the forward kinematics and Jacobians, and thus expedite
the overall optimization. In particular, our technical contributions include both (i)
a novel distance-based formulation of the constrained IK, and (ii) an optimization
algorithm using augmented Lagrangian based on the proposed formulation and the
analysis of its runtime complexity.

For verification, we compare our PDO-IK against both a joint angle-based opti-
mization method and some recent distance-based methods [19] as baselines in various
settings. The results show PDO-IK can often double or triple the success rates (i.e.,
finding a feasible solution within a runtime limit) of the joint angle method, and
run up to two orders of magnitude faster than the existing distance-based methods,
especially in cluttered workspace. In addition, PDO-IK demonstrates better numer-

2

1. Introduction

ical robustness than the baselines in the sense that PDO-IK can achieve a small
numerical error tolerance that is below 10−4, while the error tolerance of the baselines
is often larger than 10−3. Finally, we show the generalization capability of PDO-IK by
applying it on a humanoid robot (19 DoFs) with the additional position constraints
on the center of mass (CoM). The runtime efficiency of PDO-IK allows the real-time
computation (10−1500 Hz) and enables the robot to avoid dynamic obstacles, which
is otherwise hard to achieve with the baselines.

3

1. Introduction

4

Chapter 2

Related Works

In this chapter, we review previous work on IK solvers for articulated robots with
revolute joints. First, we introduce various types of IK solvers based on the widely
applied joint space formulation using angles. Then, we discuss recent developments
in distance-based solvers.

2.1 Angle-based Formulations for Inverse

Kinematics

The majority of IK solvers represent the joint space of articulated robots using joint
angles θ. This approach is inspired by the fact that revolute joints are directly driven
by motors, and their angles can be read from sensors.

The IK of a non-redundant robot can be solved using analytical techniques to
derive explicit equations for joint variables in terms of the end-effector’s desired
position and orientation. This involves formulating the kinematic equations based
on the robot’s Denavit– Hartenberg (DH) parameters. By systematically applying
trigonometric identities and algebraic manipulation, the kinematic equations can
be reduced to a set of solvable polynomial equations. Analytic solutions are highly
efficient and precise. They are particularly feasible for robots with simple kinematic
chains and a small number of DoFs, where the mathematical complexity remains
manageable.

5

2. Related Works

On the contrary, robots with redundant DoFs cannot be solved analytically. One
feasible approach for such cases is to search within the range of joint angle limits.
However, this can be computationally expensive when the dimension of the system is
considerably high. As a result, people tend to solve the IK for robots with redundant
DoFs using numerical optimization solvers.

The pseudo-inverse method [30] is a widely used technique for IK, which calculates
joint configurations to achieve a desired end-effector position and orientation. It is
a first-order optimization solver that only uses the Jacobian for optimization. The
method starts by linearizing the relationship between small changes in joint angles δθ
and small changes in the end-effector pose, mapping these changes with the Jacobian
matrix. Instead of directly solving the inverse of the Jacobian, which might not always
exist or be stable, the method computes its pseudo-inverse. Therefore, the pseudo-
inverse method handles arbitrary DoFs by finding a solution that minimizes the error
in a least-squares sense. By using the pseudo-inverse, the method mitigates problems
caused by singularities and unstable solutions. However, given the complexity of the
pseudo-inverse method, O(mn2) where m and n are the larger and smaller dimensions
of the Jacobian, respectively, such IK solvers can be computationally intensive,
especially for high-dimensional systems.

another option for first-order optimization IK solvers that use the transpose of
the Jacobian instead of its inverse or pseudo-inverse. The Jacobian transpose method
computes the change in joint angles ∆θ by multiplying a step size α, the transpose
of the Jacobian, and the end-effector pose error. When both α and the end-effector
error are sufficiently small, this method can rapidly converge. The choice of the step
size α is critical; if it is too large, the method may oscillate, and if it is too small, it
may converge slowly.

Although capable of handling various numbers of constraints and DoFs, the first-
order optimization solvers mentioned above are often ill-behaved near singularities
and are unable to converge to exact singular configurations. Therefore, second-order
optimization methods, which compute the direction of each step in optimization
iterations based on the Hessian or its approximations, are applied to IK solvers for
faster convergence and more precise solutions.

Gauss-Newton methods are popular second-order approaches to solve IK. Deo et
al. [8] model IK as a non-linear least squares problem and use the Gauss-Newton

6

2. Related Works

method and Levenberg-Marquardt iteration to solve it. The Hessian matrix is only
computed when the end-effector target is not reachable. When the target is reachable,
the Hessian matrix is approximated with J⊤J , where J is the Jacobian. Compared
to first-order models, this method is insensitive to the reachability of the desired
position. It converges to a joint configuration that places the end-effector at the
closest possible distance from the desired goal, irrespective of whether the goal is
within the manipulator workspace or not. Thus, convergence is ensured even if the
goal position corresponds to a singular configuration of the manipulator.

Second-order solvers can also be combined with first-order solvers. The damped
least squares method [21, 27] is a blend of the Gauss-Newton algorithm and gradient
descent. It uses a damping factor λ to control the step size and direction. If λ

is large, the algorithm behaves like gradient descent. If λ is small, it behaves like
Gauss-Newton. The damped least squares method requires careful tuning of the
damping factor λ. Wang et al. [28] use a combined optimization approach that first
finds a coarse solution with cyclic coordinate descent and then fine-tunes the solution
with the Broyden-Fletcher-Shanno solver. This method is capable of handling joint
limits, robots with arbitrary DoFs, and collision avoidance.

2.2 Distance-based Formulation for Inverse

Kinematics

Distance-based optimization is an important class of literature for IK formulation.
Instead of optimizing the joint angles, distance-based methods attach points to the
robot and the obstacles and formulate the constrained IK as an optimization over
the distances among these points. As a variant of the angle-based formulation, the
motivation for the distance-based formulation is to avoid the complex mapping from
joint space to task space caused by trigonometric constraints.

Josep et al. [23] proposed a distance-based strategy for IK aimed at applications
where a system of constraints on the relative positions of a set of objects must be
solved. This includes position analysis of serial and parallel robots, contact analysis
of polyhedral models, or the automatic generation of constraint-specified designs
or assemblies. This method involves searching for some of the a priori unknown

7

2. Related Works

distances by leveraging the Cayley-Menger determinant [24]. They use a branch-
and-prune technique to find these distances, iteratively eliminating regions from the
space of distances that cannot contain any solution. This elimination is accomplished
by applying redundant necessary conditions derived from the theory of distance
geometry.

Han et al. [12] parameterized the IK problem of serial robots. They focus on IK
for either a spatial chain with spherical joints or a planar chain with revolute joints.
This method introduces a new set of geometric parameters, which are combinations
of anchored diagonal lengths and triangle orientations rather than joint angles, and
uses an exact formulation to express the IK as a system of linear inequalities. Under
their formulation, the set of solutions for an IK problem specified by the positions
of the two end points of the last link, and more generally the set of solutions for all
IK problems, is essentially piecewise convex. However, their method ignores other
constraints such as joint limits and link collision-free constraints.

Marić and Giamou et al. proposed a distance formulation of optimization-based
IK as a nearest point problem with a fast sum of squares solver. They capture
the sparsity of the distance matrix [17] and use sparse bounded-degree sum of
squares relaxations [29] to solve IK. Their method focuses on robots with spherical
joints without considering collisions. This approach has the advantages of post-hoc
certification of global optimality and a runtime that scales polynomially with the
number of DoF. They prove that such convex relaxation leads to a globally optimal
solution when certain conditions, which are common and practical, are met.

Marić et al. also proposed a distance-geometric framework called R-TR [18, 19] to
solve constrained IK by optimizing the distance matrix using Riemannian optimization.
They formalize the equivalence of distance-based IK and the distance geometry
problem for a large class of articulated robots and task constraints. Furthermore,
they use the connection between distance geometry and low-rank matrix completion
to find IK solutions by completing a partial Euclidean distance matrix through
local optimization. They additionally parameterize the space of Euclidean distance
matrices with the Riemannian manifold of fixed-rank Gram matrices, allowing them
to leverage a variety of mature Riemannian optimization methods. They also use
bound smoothing to generate informed initializations and improve convergence. R-TR
achieves higher success rates than traditional angle-based techniques, especially on

8

2. Related Works

problems that involve many workspace constraints.
Giamou et al. [10] formulate IK problems with complex workspace constraints as

a convex feasibility problem whose low-rank feasible points provide exact solutions
based on distance. Their method solves IK with a sequence of semidefinite programs
whose objectives are designed to encourage low-rank minimizers. Their formulation
expresses the intrinsic robot geometry and obstacle avoidance as simple linear matrix
equations and inequalities.

Recent distance-based IK formulations demonstrate more effective performance
in constrained IK computations compared to angle-based algorithms, particularly in
managing joint limits and collision avoidance. However, these frameworks often fail
to consider the structure of the kinematic chain. As a result, they still suffer from
low computational efficiency.

9

2. Related Works

10

Chapter 3

Preliminaries

Robot kinematics describes the relationship between the configuration space C and
the task space T . The mapping F : C → T is the forward kinematics (FK), while
its inverse F−1 : T → C is the IK. In this paper, we focus on the end-effector pose
objective defined in T , joint limits as box constraints defined in C, and collision
avoidance constraints.

We consider a serial robot with M revolute joints 1. We use i as the index for
joints and links. For the robot bodies, i = 1, . . . ,M and we define link 0 as the fixed
base. Joint i lies between link i− 1 and link i. We use vector θ = [θ1, . . . , θM] ∈ RM

to represent the joint angles with θi being the revolute angle of joint i. We also define
unit vectors xi, yi, and zi to denote the x-, y-, and z-axes of frame Fi, which is the
coordinate frame attached to link i. The obstacles in the environment are considered
as clusters of points, with a total of N points. ⌈·⌉ denotes the ceiling function.

∑
(·)

denotes the sum of all elements within a vector or matrix.

3.1 Denavit–Hartenberg Parameters

The DH convention is a standardized methodology in robot kinematics for modeling
the relationship between adjacent links in a robotic arm. It involves assigning
coordinate frames to each link and defining four parameters: link length, link twist,

1Tree-structure robots and parallel robots can also be handled by adding extra constraints. An
example is tested in Sec. 6.3.

11

3. Preliminaries

Joint i-1

Joint i

Link i-1

Link i

Figure 3.1: Link frame attachment on articulated robots.

link offset, and joint angle. These parameters systematically describe the spatial
relationships between the links, facilitating the transformation of coordinates from
one joint to another.

The kinematic chain formulation in this paper builds upon the proximal DH
convention [5]. The proximal-DH convention is a variation of the DH convention that
modifies the placement of the coordinate frames. In this convention, the frames are
placed at the proximal end of each link rather than the distal end, which can lead
to different parameter values and transformations. The choice between the DH and
proximal-DH conventions depends on specific application requirements and desired
computational efficiency in robotic system modeling and analysis.

As shown in Fig. 3.1, we attach the origin oi of frame Fi to the revolute axis
of joint i. The direction of the axis zi aligns with the revolute axis of joint i. xi is
perpendicular to and intersects zi and zi+1. yi is defined by the right-hand rule with
xi and zi. The transformation from frame Fi−1 to frame Fi is:

i−1Ti = f(θi;αi−1, ai−1, di) =

cθ −sθ 0 ai−1

sθcα cθcα −sα disα

sθsα cθsα cα dicα

0 0 0 1

 (3.1)

where i ≥ 1, cθ = cos θi, sθ = sin θi, cα = cosαi−1, sα = sinαi−1, ai−1 is the revolute
radius of Fi to axis zi−1, αi−1 is the angle from zi−1 to zi about common normal, di is
the offset of Fi to Fi−1 along zi, and θi is the revolute angle from xi−1 to xi about zi.

12

3. Preliminaries

3.2 Quasi-Newton Method

The quasi-Newton method [7] is a powerful iterative optimization technique used
to find the minimum of a function f(x) by finding the root of its Jacobian ∇f .
Unlike traditional Newton’s method, which requires the computation of second-order
derivatives, quasi-Newton methods approximate the Hessian matrix using updates
based on first-order derivatives. This approach enhances efficiency by avoiding the
computational cost of Hessian evaluations in each iteration. Instead, it refines an
approximation of the inverse Hessian matrix in each iteration k given f(xk) and
∇f(xk), adjusting the search direction to progressively hone in on the function’s
minimum. Widely employed in numerical optimization, quasi-Newton methods like
Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) [16] and Broyden’s
method [2] strike a balance between computational feasibility and convergence speed,
making them invaluable in solving complex optimization problems.

3.3 Augmented Lagrangian

The Augmented Lagrangian method is a strategy used for solving constrained op-
timization problems, particularly those with inequality constraints. It combines
elements of both penalty and Lagrangian methods to handle constraints effectively.
The method introduces an augmented Lagrangian function that penalizes violations
of constraints, incorporating a penalty parameter that increases as violations persist.
This augmented Lagrangian formulation transforms the constrained problem into a
sequence of unconstrained problems. The augmented Lagrangian Lρ(x) is defined as:

Lρ = f(x) + λ⊤g(x) +
ρ

2
g(x)⊤g(x) (3.2)

where x represents the optimization variables, λ denotes the Lagrange multipliers
associated with the constraints g(x). f(x) is the objective function to be minimized
subject to constraints g(x) ≤ 0, and ρ is a penalty parameter controlling the strength
of the penalty function. The method iteratively updates x, λ, and ρ to drive g(x)

towards zero and thereby satisfy the constraints while minimizing f(x). Such update
strategy effectively balances the trade-off between constraint satisfaction and the

13

3. Preliminaries

minimization of the objective function, offering robustness and convergence guarantees
for a wide range of optimization problems.

14

Chapter 4

Kinematics Framework

PDO-IK represents joint space, task space, and constraints with Euclidean distances
between points attached on the robot and obstacles. This section primarily discusses
our formulation of the robot kinematics chain (Sec. 4.1), joint limit constraints
(Sec. 4.2), collision avoidance constraints (Sec. 4.3), and end effector pose objective
(Sec. 4.4).

4.1 Kinematic Chain

We formulate the kinematic chain by modifying the proximal DH convention, replacing
the joint angles with Euclidean distances between points. As shown in Fig. 4.1, we
first attach points to the link frames Fi and then re-parameterize the proximal DH
matrix with the Euclidean distances among points.

We attach three points on Fi. The first point ui is attached to the origin oi to
represent the spatial position of joint i. The second point vi is of distance luvi away
from ui in the direction of xi−1. The third point wi is of distance luwi away from ui

in the direction of xi. The distance between vi and wi, denoted as lvwi , is determined
by θi using the Law of Cosines. The positions of these points and their confinements
describe the robot’s structure and motion:

ui = oi (4.1a)

15

4. Kinematics Framework

Joint i-1

Joint i+1

Joint i

Link i-1

Link i

Figure 4.1: Distance-based kinematic chain formulation.

vi − ui = luvi xi−1 (4.1b)

wi − ui = lwv
i xi (4.1c)

2luvi luwi cos θi = luvi
2 + luwi

2 − lvwi
2 (4.1d)

We define the squared distance Li = lvwi
2 so that cos θi ∝ Li. For simplicity, we let

luvi = luwi = 1/
√
2 such that

cos θi = 1− Li (4.2a)

sin θi =
(
1− cos θi

2
) 1

2 =
(
2Li − L2

i

) 1
2 (4.2b)

Notably, Eq. 4.2b assumes that θi lies in the range [0, π] [17], and accordingly, Li

lies in the range [0, 2]. This is because θi and π − θi correspond to the same value
of Li in our formulation, and we only consider the one that falls within [0, π]. This
introduces an additional challenge when the joint angle limit θi is not a subset of
[0, π], which will be addressed in Sec. 4.2.

After attaching points on Fi, we re-parameterize i−1Ti by substituting Eq. 4.2a
and Eq. 4.2b to Eq. 3.1:

16

4. Kinematics Framework

Joint i)

Figure 4.2: Example of angle decomposition for joint limit formulation.

i−1Ti = g(Li;αi−1, ai−1, di) =

1− Li −(2Li−L2

i)
1
2 0 ai−1

cα(2Li−L2
i)

1
2 cα(1− Li) −sα disα

sα(2Li−L2
i)

1
2 sα(1− Li) cα dicα

0 0 0 1

 (4.3)

The transformation of frame Fi with respect to the world frame, which is Ti, can
be computed by recursively multiplying from 0T1 to i−1Ti. Then, we can extract the
position of the joint ui from Ti:

Ti =
i∏

p=1

p−1Tp (4.4a)

ui =
[
T

(1,4)
i , T

(2,4)
i , T

(3,4)
i

]⊤
(4.4b)

4.2 Joint Limit Constraints

Joint limits refer to the restrictions on the range of motion for each joint. This paper
focuses on the maximum and minimum joint angle limitations, which are formulated
as box constraints θi ∈ [θmin

i , θmax
i]. Our method handles the joint angle constraints

by limiting the corresponding squared distance Li between Lmin
i and Lmax

i . Then,

17

4. Kinematics Framework

we convert the box constraints to equality constraints by introducing a squashing
function based on the sigmoid function [11].

The formulation of Li in Eq. 4.2b assumes that θi is within the range [0, π].
However, the joint angle limits in real-world robotic arms often exceed this range.
We address this issue with angle decomposition. Let θmin

i = 0 and k = θmax
i /π > 0 so

that θi ∈ [0, kπ]. We divide θi into ⌈k⌉ sub-angles θim so that all of the sub-angles lie
within the range of [0, π]:

θi =
∑⌈k⌉

m=1 θim, θim ∈
[
θmin
i /⌈k⌉, kπ/⌈k⌉

]
⊆ [0, π] (4.5)

Fig. 4.2 shows an example of angle decomposition when m = 3. By dividing joint
angles into sub-angles, we further attach additional points wim on the side of θim,
and use lm to describe the distance between wim and w′

i(m−1). Again, we take the
distance between wim and ui as 1/

√
2. Lim is the corresponding squared distance of

θim such that

cos θim = 1− Lim (4.6)

By substituting Eq. 4.5 into Eq. 4.6, the range of Lim is:

1− cos (θmin
i /⌈k⌉) ≤ Lim ≤ 1− cos (kπ/⌈k⌉) (4.7)

With the above decomposition process, we can compute i−1Ti using Lim:

i−1Ti =

⌈k⌉∏
m=1

g(Lim) (4.8)

So far, we have transformed the joint limit constraint to the box constraints on
Li or Lim. Box constraints are commonly handled by clamping the variables [14],
penalizing over constraint violation [15, 25], or converting to equality constraints
[1, 20]. In this work, we convert the box constraint to equality constraints using a
squashing function s(ω) with the following properties [20]:

s(ω) : R→ (smin, smax) (4.9a)

18

4. Kinematics Framework

d

dω
s(ω) ≥ 0 (4.9b)

smin = lim
ω→−∞

s(ω), smax = lim
ω→∞

s(ω) (4.9c)

where ω ∈ R is the additional decision variable. We build our squashing function for
Li upon the sigmoid function [11]

σ(ωi) =
1

1 + e−ωi
: R→ (0, 1) (4.10)

by linearly scaling σ(ωi) with (Lmax
i − Lmin

i) and adding a bias term Lmin
i :

Li = s(ωi) =
(
Lmax
i − Lmin

i

)
σ(ωi) + Lmin

i (4.11a)

s(ωi) : R→ (Lmin
i , Lmax

i) (4.11b)

Eq. 4.11a and Eq. 4.11b bounds the squared distance Li within (Lmin
i , Lmax

i), which
is a close approximation to [Lmin

i , Lmax
i]. The same constraint conversion can also be

applied to Lim.
We arrange the slack variables ωi or ωim into a vector ω ∈ RM ′ , where M ′ ≥M

due to the presence of angle decomposition. In our optimization algorithm, which
will be detailed in Sec. 5, we directly optimize over the slack variable ω. This brings
several advantages at the cost of additional non-linearity: First, the squashing function
is a smooth function that eliminates issues at box constraint boundaries where the
gradient might be zero, discontinuous, or undefined. Moreover, the squashing function
avoids the need for explicit checks and enforcement of box constraints during the
optimization process.

4.3 Collision Avoidance Constraints

Collision avoidance constraints ensure that the robot does not overlap with obstacles.
Distance-based IK methods utilize points attached to the robot and use the minimum
distance between these points and obstacles for collision avoidance [19]. This models
the robot’s occupation space as a collection of spheres. Achieving an accurate
occupation space requires attaching many points to the robot, making the collision
avoidance constraints computationally expensive.

19

4. Kinematics Framework

joint i-1

link i-1

obstacle

joint i

occupation
space of
joint i

occupation space
of link i-1

Figure 4.3: Collision avoidance constraints formulation visualization.

We propose a novel formulation of collision avoidance that only requires the points
attached to joints to achieve full-body collision avoidance (Fig. 4.3). Moreover, to
better handle unstructured obstacles, our framework considers the obstacles as clusters
of points rather than as spheres. This is inspired by the common use of LiDAR or
depth cameras in robots, which detect and represent environmental obstacles as point
clouds. Consequently, clusters of points, or point clouds, are a natural modality for
obstacle representations. We separately consider the collision avoidance formulation
for robot joints and links.

The occupation space of the joint is considered as a sphere, whose center is at
ui and the radius is ri. For joint i, we require the distance between ui and each
obstacles point oj no smaller than a minimum distance ri:

cjointij = ri − ||ui − oj|| ≤ 0 (4.12)

We consider link i in a serial robot as a straight, thin, and long bar or similar
shapes that start from point ui and ends at ui+1. As the collision avoidance constraint
for link i, we enforce the half sum of ||ui−oj|| and ||ui+1−oj|| to be equal or greater
than a fixed distance ai:

clinkij = 2ai − (||ui − oj||+ ||ui+1 − oj||) ≤ 0 (4.13)

20

4. Kinematics Framework

end
effector

Figure 4.4: Example of end effector objective formulation.

Eq. 4.13 indicates that the occupation space of link i is bounded with a prolate
spheroid, whose foci are ui and ui+1 and semi-major axis is ai. Let c(ω) be the vector
containing cjointij and clinkij , the collision avoidance constraint is:

c(ω) ≤ 0 (4.14)

4.4 End Effector Pose Objective

The end effector pose objective describes the error between the transformation of the
end effector frame and the goal frame. We formulate this objective with the distance
between a set of distinct points attached on the end effector frame and the goal frame.
We attach ue on the origin of Fe. We then attach a set of distinct points wep and vep

on xe and ye, respectively. The position of these points could be computed from Te:

wep = kpxe + ue, vep = qpye + ue (4.15)

where xe and ye can be extracted from Te. kp, qp ∈ R and kp, qp ̸= 0. Similarly,
we attach u∗, w∗

i , and v∗
i on the goal frame F∗. Fig. 4.4 shows an example when

n1 = n2 = 2.

21

4. Kinematics Framework

We arrange the points attached on Fe into matrix Ue = [ue,we1, ...,wen1, ve1,
...,ven2]

⊤ ∈ R(n1+n2+1)×3 and goal points u∗
p into matrix U∗ = [u∗,w∗

1, ..., w∗
n1,

v∗
1, ...,v

∗
n2]

⊤ ∈ R(n1+n2+1)×3. The end effector pose objective can be formulated as:

J(ω) =
1

2

∑(
(Ue −U∗)⊤(Ue −U∗)

)
(4.16)

Besides the 6-DoF end effector pose objective, our method can also handle 5-DoF
objective by setting n2 = 0 or 3-DoF objective by setting n1 = n2 = 0.

22

Chapter 5

Kinematics Algorithm

So far, we have unified the formulation of kinematic chain, joint limit constraints,
collision avoidance constraints and end effector pose objective into Euclidean distance
representations. In this section, we introduce our method of solving the distance-based
constrained IK.

We formulate the constrained IK as a local optimization problem over the slack
variable ω introduced in Sec. 4.2:

min
ω

J(ω) =
1

2

∑
(Ue −U∗)⊤(Ue −U∗)

s.t. Ue = FK(ω)

c(ω) ≤ 0

(5.1)

where FK is the forward kinematics computation.

The equality constraint, projecting from ω to the end effector pose via the
kinematic chain, can be directly incorporated into J(ω) by replacing Ue with FK(ω).
Then, we convert the inequality constraint into penalty terms to form an augmented
Lagrangian function Lρ. Let c′(ω) = max(0, c(ω)), the augmented Lagrangian
function is:

Lρ(ω) = J(ω) + µ⊤c′(ω) +
ρ

2
c′(ω)⊤c′(ω) (5.2)

where λ is the Lagrangian multiplier and ρ is the adjust penalty parameter. The

23

5. Kinematics Algorithm

…
… …

…

…

Direction of propagation

Non-zero element that does
not need to be considered

collision penalty end effector objective

Figure 5.1: Visualization of propagative computation in forward kinematics.

constrained IK problem is formulated as finding ω∗ ∈ RM ′ such that

ω∗ = argminLρ(ω) (5.3)

5.1 Forward Rollout

The forward rollout procedure involves the computation of the forward kinematics FK

and objective Lρ. The forward kinematics computes the position of points attached
on joints U given motion variable ω.

24

5. Kinematics Algorithm

Algorithm 1 Forward Rollout
1: T0 ← Tworld

2: for i = 1, 2, ...,M do
3: Li ← s(ωi) ▷ Eq. 4.11a
4: i−1Ti ← g(Li) ▷ Eq. 4.3
5: Ti ← Ti−1 · i−1Ti ▷ Eq. 4.4a
6: Compute ui from Ti ▷ Eq. 4.4b
7: end for
8: ue ← uM

9: Compute wep1 and vep2 for p1 = 1, ..., n1 and p2 = 1, ..., n2.
10: Ue ← [ue,ue1, ...,uen]

⊤. ▷ Eq. 4.15
11: Compute J from Ue and U∗. ▷ Eq. 4.16
12: Lρ ← J
13: for j = 1, 2, ..., N do
14: for i = 1, 2, ...,M do
15: cjointij ← ri − ||ui − oj|| ▷ Eq. 4.12
16: clinkij ← 2ai − (||ui − oj||+ ||ui+1 − oj||) ▷ Eq. 4.13
17: Lρ ← Lρ + µijc

joint
ij + µijc

link
ij + ρ

2
cjointij

2
+ ρ

2
clinkij

2
▷ Eq. 5.2

18: end for
19: end for
20: return Lρ

As shown in Fig. 5.1 and Algorithm 1, the forward rollout is computed propaga-
tively along the direction of the kinematic chain from the base to the end effector.
Fig. 5.1 illustrates a diagonal matrix of distances between points attached on robot.
Each element represents the distance between points at the row and column indices.
The propagation starts from u0, w0, and v0, which are assumed to be pre-known
since they are typically stationary relative to the world frame. We can collect the set
of ui, wi, and vi as a unit, then the forward rollout solves for the ith unit and then
moves to the (i+ 1)th unit. Additionally, the computation of the variables in the ith
unit reuses the pre-computed variables in the (i− 1)th unit.

After FK computation, we compute the augmented Lagragian Lρ, which is com-
posed of end effector pose objective J(ω) and collision penalty c(ω). J(ω) is computed
with Ue(ω) obtained from FK. For collision penalties, we loop through every robot-
attached point ui and obstacle point oj to compute cjointij and clinkij .

25

5. Kinematics Algorithm

5.2 Jacobian Computation

The Jacobian ∇ωLρ is the derivatives of augmented Lagrangian Lρ to the variables ω,
which can be decomposed into the derivatives of end effector pose objective ∇ωJ(ω)

and collision penalties ∇ωc(ω):

∇ωLρ = ∇ωJ(ω) + µ∇ωc(ω) + ρc(ω)⊙∇ωc(ω) (5.4a)

∇ωJ(ω) =
dJ

dTe

dTe

dω
(5.4b)

∇ωc(ω) =
M∑
i=1

∂c

∂ui

dui

dω
(5.4c)

The key idea of Jacobian computation in our method is to propagate along the
backward direction of the kinematic chain leveraging reverse accumulation. Notably,
the Jacobian computation follows the forward rollout, allowing it to reuse the results
from the forward rollout. As shown in Algorithm 2, we first compute the derivatives
of collision penalties with respect to the position of points attached to the robot
(∂c/∂ui). Then, we compute the derivative of the end effector pose objective to the
end frame (∂J/∂Te), and finally compute the derivatives of the position of the points
to the variables (∂ui/∂ω). ∂c/∂ui in Eq. 5.4c is computed with

∂c

∂ui

=
N∑
j=1

(
d

dui

cjointij +
∂

∂ui

clinkij +
∂

∂ui

clink(i+1)j

)
(5.5a)

d

dui

cjointij = (µij + ρcjointij)
ui − oj

||ui − oj||
· 1

(
cjointij ≥ 0

)
(5.5b)

d

dui

clinkij = (µij + ρclinkij)
ui − oj

||ui − oj||
· 1

(
clinkij ≥ 0

)
(5.5c)

where the term ∂clink(i+1)j/∂ui is dropped when i = M . The term ui− oj and ||ui− oj||
are already pre-computed in the forward rollout by Eq. 4.12. The term 1(·) is the
indicator function, which equals to 1 when (·) is true otherwise 0. The term ∂J/∂Te

26

5. Kinematics Algorithm

Algorithm 2 Jacobian Computation
1: for j = N,N − 1, ..., 1 do
2: for i = M,M − 1, ..., 1 do
3: if cjointij > 0 then
4: s1 ← (µij + ρcjointij)(ui − oj)/||ui − oj|| ▷ Eq. 5.5b
5: Add [s⊤1 , 0]

⊤ to the last column of ∂Lρ/∂Ti. ▷ Eq. 5.5a
6: end if
7: if clinkij > 0 then
8: s2 ← (µij + ρclinkij)(ui − oj)/||ui − oj||
9: Add [s⊤2 , 0]

⊤ to the last column of ∂Lρ/∂Ti. ▷ Eq. 5.5c
10: s3 ← (µ(ij + ρclink(i−1)j)(ui−1 − oj)/||ui−1 − oj|| ▷ Eq. 5.5c
11: Add [s⊤3 , 0]

⊤ to the last column of ∂Lρ/∂Ti−1. ▷ Eq. 5.5a
12: end if
13: end for
14: end for
15: ∂Lρ/∂TM ← ∂J/∂Te ▷ Eq. 5.6
16: for i = M,M − 1, ..., 1 do
17: ∂Lρ/∂

i−1Ti ← T⊤
i−1 · (∂Lρ/∂Ti) ▷ Eq. 5.7b

18: ∂i−1Ti/∂Li ← g′(Li) ▷ Eq. 5.7c
19: ∂Li/∂ωi ← (Lmax

i − Lmin
i)σ(ωi)(1− σ(ωi)) ▷ Eq. 5.7d

20: ∂Lρ/∂ωi ← (
∑

(∂L/∂i−1Ti) · (∂i−1Ti/∂Li)) (∂Li/∂ωi) ▷ Eq. 5.7a
21: ∂Lρ/∂Ti−1 ← ∂Lρ/∂Ti−1 + (∂Lρ/∂Ti) ·i−1 T⊤

i ▷ Eq. 5.8
22: end for
23: ∇ωLρ ← [∂Lρ/∂ω1, ∂Lρ/∂ω2, ..., ∂Lρ/∂ωi, ..., ∂Lρ/∂ωM]⊤

24: return ∇ωLρ

in Eq. 5.4b is computed with:

∂

∂Te

J =

[∑n1

p=1 kp(wep −w∗)
∑n2

p=1 qp(vep − v∗) 0 ue − u∗

0 0 0 1

]
(5.6)

where all the elements are already computed in Eq. 4.15 and Eq. 4.16. By computing
the derivatives of Lρ to the position of points attached on the robot, we can now
solve for ∂Lρ/∂ωi with:

∂

∂ωi

Lρ =

(∑ ∂Lρ

∂i−1Ti

· ∂
i−1Ti

∂Li

)
∂Li

∂ωi

(5.7a)

27

5. Kinematics Algorithm

∂Lρ

∂i−1Ti

= T⊤
i−1 ·

∂Lρ

∂Ti

(5.7b)

∂i−1Ti

∂Li

=
dg(Li)

Li

=

−1 − (1− Li) (2Li − L2

i)
− 1

2 0 0

cα (1− Li) (2Li − L2
i)

− 1
2 −cα 0 0

sα (1− Li) (2Li − L2
i)

− 1
2 −sα 0 0

0 0 0 0

(5.7c)

∂Li

∂ωi

= (Lmax
i − Lmin

i)
d

dωi

σ(ωi) = (Lmax
i − Lmin

i)σ(ωi)(1− σ(ωi)) (5.7d)

where Ti−1 is already computed in Eq. 4.4a, σ(ωi) is already computed in Eq. 4.10,
and ∂Lρ/∂Ti can be recursively computed from joint i+ 1, collision penalty, and end
effector pose objectives:

∂Lρ

∂Ti

=

{
∂c
∂Ti

+ ∂Lρ

∂Ti+1
·i T⊤

i+1 , i < M
∂c
∂Ti

+ ∂J
∂Te

, i = M
(5.8)

5.3 Inverse Kinematics

We first solve Eq. 5.2 for a local optimal solution ω∗, and then compute θ∗ from ω∗. As
shown in Algorithm 3, our method iteratively minimize Lρ and update the Lagrangian
multiplier µ and ρ. Within each loop k, we use quasi-Newton method to solve for
argminLρ. The forward rollout and Jacobian computation are implemented following
Algorithm 1 and Algorithm 2, respectively. The Hessian matrix are approximated
with the Jacobian in quasi-Newton convention. In our framework, we use L-BFGS
as our quasi-Newton-based solver. After solving for ω∗

k = argminLρ, we update
Lagrangian multipliers µ and ρ. Our method checks max(c(ω∗

k)) in every iteration
and will terminate if max(c(ω∗

k)) < ctol or max(c(ω∗
k)) ≥ βclast, where β < 1 and

clast = max(c(ω∗
k−1)).

By obtaining ω∗, we solve θ∗ from ω∗. We first compute L∗
i using Eq. 4.11a, and

then compute θ∗i from L∗
i :

θ∗i =

⌈k⌉∑
m=1

arccos (1− L∗
im) + min (0, θmin

i) (5.9)

28

5. Kinematics Algorithm

Algorithm 3 Inverse Kinematics
1: ω∗

0 ← 0, µ← 0, ρ← 1, α← 10, clast ←∞.
2: for iteration k = 1, 2, ..., kmax do
3: ω∗

k ← L−BFGS(ω∗
k−1), where Lρ is computed with Algorithm 1 and ∇ωk

Lρ

is computed with Algorithm 2.
4: if max(c(ω∗

k)) < ctol or max(c(ω∗
k)) ≥ βclast then

5: ω∗ ← ω∗
k

6: break
7: end if
8: clast ← max(c(ω∗

k))
9: µ← µ+ ρc(ω∗

k)
10: ρ← αρ
11: end for
12: Compute θ∗ with ω∗ ▷ Eq. 4.11a and Eq. 5.9
13: return θ∗

5.4 Complexity Analysis

Our optimization framework is a combination of augmented Lagrangian optimization
and a quasi-Newton optimizer. It’s complexity is determined by the complexity of a
single iteration, which involves forward rollout (Algorithm 1), Jacobian computation
(Algorithm 2), Hessian approximation, and variable update. The forward rollout and
Jacobian computation propagate through all of the points attached on the robot and
the points of the obstacles, with a complexity of O(M ′N). The complexity of Hessian
approximation process in quasi-Newton solver is O(M ′2). The complexity of variable
update is O(M ′). In summary, the complexity of the algorithm is O(M ′N +M ′2).
Notably, M ′ is only determined by the DoF of the robot and joint limit, which is
commonly small (less than 20). On the other hand, N depends on the environment
and could reach hundreds. Given a robot, the complexity of our algorithm is O(N),
which is linear to the number of cluttered points in the environment.

On the contrary, the complexity of previous distance-based methods is quadratic
or cubic relative to the number of environment points. For instance, a previous
distance-based method, R-TR, introduced by Marić [19], has a complexity of O(N3).
There are two reasons for the higher complexity of R-TR compared to our method.
First, R-TR forms a dense graph of points attached to the robot, resulting in a

29

5. Kinematics Algorithm

much denser distance matrix compared to ours. Second, R-TR requires a bound
smoothing process [13] with a complexity of O(N3) to improve performance at the
cost of speed. The bound smoothing technique can find all-pairs shortest paths as
informed initializations that improve the convergence of the algorithm. R-TR utilizes
the Floyd–Warshall algorithm [9], which is of O(N3) complexity, to solve the all-pairs
shortest path problem. The runtime of bound smoothing significantly increases when
the number of environment points N is considerable.

30

Chapter 6

Experiments

In this section, we conduct experiments to demonstrate the efficiency, effectiveness,
and generalization capability of our algorithm.

6.1 Efficiency and Effectiveness Comparison

We conduct simulation experiments to benchmark the efficiency of our algorithm in
runtime, as well as its effectiveness in handling end effector pose objective, collision
avoidance constraints, and joint limit constraints.

We compare our method with three baselines, two of which are recent distance-
based IK algorithms. The first baseline is R-TR [19], a distance-geometric-based
IK algorithm that optimizes the distance matrix on the Riemannian manifold using
the Trust Region method. The second baseline is Riemannian Conjugate Gradient
(R-CG), also introduced in [19], which uses the Conjugate Gradient method to solve
for the distance matrix. Since the baselines can only handle 3- or 5-DoF end effector
poses, we focus on 5-DoF end effector pose objectives throughout the experiments.
We further build a third baseline: a variant of PDO-IK, which employs the same
collision avoidance constraints, end effector pose objectives, and optimization method
as PDO-IK, but represents robot kinematics using joint angles and uses Limited-
memory Broyden–Fletcher– Goldfarb–Shanno-Bounded (L-BFGS-B) [31] to directly
handle joint limits as box constraints. We name this third baseline “Angle-LBFGS-B”.
For both PDO-IK and Angle-LBFGS-B, we set β = 0.99.

31

6. Experiments

UR10 Franka KUKA

Figure 6.1: Robot arm platforms (UR10, Franka, and KUKA) and their occupation
space visualized as translucent hulls.

We test all the methods on 3 popular commercial robot arms: UR10 1, KUKA-
IIWA 2, and Franka 3. UR10 has 6 DoFs and every joint can rotate from −360◦

to 360◦. KUKA-IIWA and Franka have 7 DoFs and have tighter joint limits. As
mentioned in Sec. 4.3, our collision constraint formulation takes the occupation space
of joints and links as sphere and spheroid, respectively. The occupation space of these
robots is shown in Fig.6.1. Their DH parameters used in the experiments are shown
in Appendix A.1∼ A.3.

We set up various scenarios with 1 to 9 random obstacles. For each number of
obstacles and each robot, we generate 200 scenarios for experiments. We sample
different objects form YCB dataset as obstacles [3], with their corresponding point
clouds also provided. An example of an experiment scenario is shown in Fig.6.2. The
environment generation and method implementation for each scenario follow these
steps:

1. Place the robot on the origin of the world frame, randomly sample a configuration

1UR10: https://www.universal-robots.com/.
2KUKA-IIWA: https://www.kuka.com/.
3Franka: https://franka.de/.

32

https://www.universal-robots.com/
https://www.kuka.com/
https://franka.de/

6. Experiments

Figure 6.2: An example of the scene generated.

θrand from joint space C from a uniform distribution over the joint angle limits.
Record the end effector pose as the target.

2. Randomly generate obstacles that are collision free to θrand. The position of the
obstacles are randomly sampled from a uniform distribution within a specific
range. The range of the x-, y-, and z-coordinates of the center of the objects
are [−0.6, 0.6], [−0.6, 0.6], and [0, 1.2] meters, respectively. The objects are
randomly scaled with ratio of [1, 3]. We use Moveit! collision checker 4 to check
for collision. The point cloud of the obstacle is downsampled with the Voxel
Grid filter from the Point Cloud Library (PCL) 5 with voxel grid leaf size equals
to 0.1m. Examples of obstacles and their point cloud are shown in Fig. 6.2.
The average amount of points in scenarios of 1 to 9 obstacles are 24, 47, 68, 87,
101, 110, 122, 130, and 136, respectively.

3. Run each IK method given the target end effector pose and clusters of points.
We use θ0 = 0 as initialization. We set time limits of 60 seconds for each
algorithm. All IK algorithms are implemented in Python on a desktop computer
with Intel Core i9 CPU with 128 GB RAM.

4Moveit!: https://moveit.ros.org/.
5Point Cloud Library: https://pointclouds.org/.

33

https://moveit.ros.org/
https://pointclouds.org/

6. Experiments

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

100

50

0

2

0

-2
100

50

0

100

50

0

100

50

0

x axis: number of obstacles

P
sc

s
(%

)
T

P
jo

in
t(

%
)

P
co

l(
%

)
P

ee
(%

)

UR10 KUKA Franka

Ours R-TR R-CGAngle-LBFGS-B

Figure 6.3: Experimental results.

We report the success rate Pscs, which is the is the percentage of experiments that
satisfies the following criteria: (1) The solution is reported within the time limit. (2)
The solution is collision-free to the obstacles detected by Moveit! collision checker.
(3) The end effector position error ϵd and rotation error ϵθ are less than 0.01 m and
0.01 rad, respectively. (4) The joint limit violation is within 1% of the joint angle
limit range. In addition, we also report joint limit failure rate Pjoint, collision rate
Pcol, and end effector pose failure rate Pee, which are the proportion of the number of

34

6. Experiments

-4 -3 -2 -1
-4

-3

-2

-1

x axis: , y axis: .
All plots share the same x and y axis.

0 100%

1
ob

st
2

ob
st

3
ob

st
4

ob
st

5
ob

st

6
ob

st
7

ob
st

8
ob

st
9

ob
st

Ours R-TR R-CG Ours R-TR R-CG

Figure 6.4: Convergence precision experiments results on KUKA robot.

solutions that fails to satisfy criteria (2), (3), and (4), respectively, to the number of
total solutions generated. The logarithm of runtime log10 T where T is in seconds, is
also reported for all IK methods.

The experiment results are shown in Fig.6.3. For all scenarios and robot platforms,
our method achieves a comparable or higher success rate than the baselines, especially
when the amount of obstacles in the environment gets higher. Moreover, our method
runs up to two orders of magnitude faster than the previous distance-based methods.
Our method also achieves lower or comparable Pee compared to previous distance-
based methods. The collision rate Pcol of our method and the baselines are similar.
Our method has 0 joint limit failure rate since our joint angle is strictly bounded with
the squashing function. Although Angle-LBFGS-B has comparable or slightly faster
speed than PDO-IK due to their similar approaches, it can only achieve a comparable
success rate to PDO-IK on the UR10, which has 6 DoFs, with wide joint limits, and

35

6. Experiments

-4 -3 -2 -1
-4

-3

-2

-1

x axis: , y axis: .
All plots share the same x and y axis.

0 100%

1
ob

st
2

ob
st

3
ob

st
4

ob
st

5
ob

st

6
ob

st
7

ob
st

8
ob

st
9

ob
st

Ours R-TR R-CG Ours R-TR R-CG

Figure 6.5: Convergence precision experiments results on UR10 robot.

a simple kinematic chain. On robots with 7 DoFs with tight joint limits and more
complex kinematic chains, such as the Franka, Angle-LBFGS-B performs much worse
than PDO-IK. This comparison shows the advantage of distance-based representation
over conventional angle-based representation.

6.2 Solution Accuracy Comparison

We check the solution accuracy with the optimal solution achieved among PDO-IK,
R-TR, and R-CG. The solution accuracy measures how close the algorithm’s final
solution is to the true optimal solution. In this section, we compare the solution
accuracy of PDO-IK, R-TR, and R-CG by counting the proportion of end effector
objectives that satisfies different tolerance levels of ϵd and ϵθ.

Fig. 6.4, Fig. 6.5, and Fig. 6.6 illustrate the success rate under different tolerance

36

6. Experiments

-4 -3 -2 -1
-4

-3

-2

-1

x axis: , y axis: .
All plots share the same x and y axis.

0 100%

1
ob

st
2

ob
st

3
ob

st
4

ob
st

5
ob

st

6
ob

st
7

ob
st

8
ob

st
9

ob
st

Ours R-TR R-CG Ours R-TR R-CG

Figure 6.6: Convergence precision experiments results on Franka robot.

levels of ϵd and ϵθ on KUKA, UR10, and Franka when the number of obstacles is
from 1 to 9. Our method remains a high and relative consistent success rate when the
tolerance varies from 10−4 to 10−1. The success rate of R-TR and R-CG, however,
significantly drop when the tolerance is is below 10−3 and 10−2, respectively. This
experiment shows that PDO-IK achieves higher solution accuracy than the baselines.

6.3 Humanoid Robot Avoiding Dynamic Obstacle

We further apply our algorithm on humanoid robot. In this experiment, we let a can
(002_master_chef_can from YCB dataset, its downsampled point cloud contains 168
points) fly to the H1 robot 6 in a pre-defined trajectory. The H1 robot is a humanoid
robot that contains 19 DoFs (5 on each leg, 4 on each arm, 1 on the torso). The

6Unitree Robotics: https://www.unitree.com/h1/

37

https://www.unitree.com/h1/

6. Experiments

frame 1 frame 2 frame 4frame 3

Figure 6.7: Key frames of dynamic obstacle avoidance demonstration for humanoid
robot.

H1 robot needs to avoid the can in real time and remains its feet in a fixed position.
Moreover, the CoM needs to maintain within a feasible region to ensure the stability
of the robot. In this experiment, the left ankle of the robot is considered as the base
link, which is fixed at [0.2, 0, 0]⊤ and the right ankle is considered as the end effector.
We fix the right ankle by setting its objective position at u∗ = [−0.2, 0, 0]⊤. The DH
parameters used in the experiments are shown in Appendix A.4.

For the robot stability, we add constraints to robot CoM position c ∈ R3:

[−0.16,−0.07, 0.8]⊤ < c < [0.16, 0.075, 0.94]⊤ (6.1)

where c is the weighted combination of every links’ center position:

38

6. Experiments

500

2000

1500

1000

50

0

10
20

40

30

sp
ee

d
(H

z)

time (s)

0 244 8 12 16 20

Figure 6.8: Speed of the algorithm throughout dynamic obstacle avoidance.

c =
M∑
i=1

mici =
M∑
i=1

mi[Tmass,i(1, 4), Tmass,i(2, 4), Tmass,i(3, 4)]
⊤ (6.2a)

Tmass,i = Ti ·i Tmass,i (6.2b)

where mi is the weight of link i and iTmass,i is the transformation matrix of the CoM
of link i with respect to its own reference frame. After PDO-IK solves for a feasible
solution θ∗, we use a PD controller to control the motors to reach θ∗.

The algorithm is implemented in C++ on a laptop computer with AMD Ryzen 7
CPU with 16GB RAM. The upper row of Fig. 6.7 shows a series of key frames of the
simulation experiment on Mujoco [26]. The lower row shows some additional demon-
strations of the humanoid avoiding dynamic obstacles (048_hammer and 011_banana

from the YCB dataset). The speed of the algorithm varies from 10 to 1500 Hz
(Fig. 6.8), indicating that the algorithm is capable for real-time collision avoidance in
dynamic environments.

The trajectory of the CoM is shown in Fig. 6.9. The blue box is the feasible region
defined by Eq. 6.1. The CoM occasionally violates the CoM constraints of no more

39

6. Experiments

xy

z

CoM trajectory

start

end

feasible region

trajectory projection

0.76

0.94

-0.08

0.08 0.15

-0.15

Figure 6.9: Trajectory of the CoM of the humanoid robot.

than 0.01m but will quickly return to the feasible region thereafter.

40

Chapter 7

Conclusions

We present PDO-IK, a distance-based algorithm for constrained IK problems. It
addresses inefficiencies in previous distance-based methods by leveraging the kinematic
chain and new formulations for joint limit constraints, collision avoidance constraints,
and end effector objectives. Experiments show that our method runs faster, can
handle various constraints, and provide more accurate solutions than recent distance-
based methods. Finally, experiments on the H1 humanoid robot demonstrate the
generalization ability of our method and its usage for collision avoidance in dynamic
environments.

Our method has several limitations to be addressed in our future work. First,
this thesis does not provide a theoretical guarantee or analysis of why distance-based
methods outperform angle-based methods, which remains a valuable open problem.
Second, the angle decomposition process introduces extra DoFs and reduces the speed
of the algorithm. Additionally, the collision avoidance constraints assume joints are
spherical and links are spheroidal, which might poorly approximate complex robot
shapes. Better approximations could be achieved by attaching more points to the
robot at the cost of potentially higher computational burden. Moreover, this paper
doesn’t consider robot self-collision but we believe such constraints can be achieved by
constraining the distances between points attached on the robot. Furthermore, tests
on different types of robots, including robots with floating bases, can be conducted
to further broaden the application of the algorithm. Finally, the constrained IK
problem focuses on finding a feasible configuration of the robot for a given task, but

41

7. Conclusions

it cannot provide a path to the computed configuration. An exciting direction for
future research is to utilize the distance-based formulation of PDO-IK in motion
planning tasks.

42

Appendix A

DH Parameters in Experiments

This chapter includes the DH conventions we used in the experiments for PDO-
IKacross robot platforms of KUKA (Tab. A.1), Franka (Tab. A.2), UR10 (Tab. A.3),
and H1 (Tab. A.4 to A.6). In this chapter, we use Li, ai−1, αi−1, and di to denote
the DH parameters described in Sec. 3.1 of the ith frame.

43

A. DH Parameters in Experiments

A.1 KUKA

i Li ai−1 αi−1 di
1 0.0038 ∼ 1.9962 0 0 0.36
2 0.0038 ∼ 1.9962 0 0 0
3 2 ∼ 2 0 0 0
4 0.1340 ∼ 1.8660 0 -π

2
0

5 0.1340 ∼ 1.8660 0 0 0
6 2 ∼ 2 0 0 0
7 0.0038 ∼ 1.9962 0 π

2
0.42

8 0.0038 ∼ 1.9962 0 0 0
9 2 ∼ 2 0 0 0
10 0.1340 ∼ 1.8660 0 π

2
0

11 0.1340 ∼ 1.8660 0 0 0
12 2 ∼ 2 0 0 0
13 0.0038 ∼ 1.9962 0 -π

2
0.4

14 0.0038 ∼ 1.9962 0 0 0
15 2 ∼ 2 0 0 0
16 0.1340 ∼ 1.8660 0 -π

2
0

17 0.1340 ∼ 1.8660 0 0 0
18 2 ∼ 2 0 0 0
19 0.0010 ∼ 1.9990 0 π

2
0

20 0.0010 ∼ 1.9990 0 0 0
21 2 ∼ 2 0 0 0
22 0 ∼ 0 0 0 0.126

Table A.1: DH convention for KUKA robot in PDO-IK formulation.

44

A. DH Parameters in Experiments

A.2 Franka

i Li ai−1 αi−1 di
1 0.0075 ∼ 1.9926 0 0 0.333
2 0.0075 ∼ 1.9926 0 0 0
3 2 ∼ 2 0 0 0
4 0.2284 ∼ 1.7716 0 -π

2
0

5 0.2284 ∼ 1.7716 0 0 0
6 2 ∼ 2 0 0 0
7 0.0075 ∼ 1.9926 0 π

2
0.316

8 0.0075 ∼ 1.9926 0 0 0
9 2 ∼ 2 0 0 0
10 1.0349 ∼ 1.9994 0.1 π

2
0

11 1.0349 ∼ 1.9994 0 0 0
12 0 ∼ 0 0 0 0
13 0.0075 ∼ 1.9926 -0.1 -π

2
0.384

14 0.0075 ∼ 1.9926 0 0 0
15 2 ∼ 2 0 0 0
16 0.2868 ∼ 1.8870 0 π

2
0

17 0.2868 ∼ 1.8870 0 0 0
18 1.0001 ∼ 1.0001 0 0 0
19 0.0075 ∼ 1.9926 0.1 π

2
0

20 0.0075 ∼ 1.9926 0 0 0
21 2 ∼ 2 0 0 0
22 0 ∼ 0 0 0 0.107

Table A.2: DH convention for Franka robot in PDO-IK formulation.

45

A. DH Parameters in Experiments

A.3 UR10

i Li ai−1 αi−1 di
1 0 ∼ 2 0 0 0.127
2 0 ∼ 2 0 0 0
3 0 ∼ 2 0 0 0
4 0 ∼ 2 0 0 0
5 0 ∼ 2 0 -π

2
0

6 0 ∼ 2 0 0 0
7 0 ∼ 2 0 0 0
8 0 ∼ 2 0 0 0
9 0 ∼ 2 0.6 0 0
10 0 ∼ 2 0 0 0
11 0 ∼ 2 0 0 0
12 0 ∼ 2 0 0 0
13 0 ∼ 2 0.6 0 0.164
14 0 ∼ 2 0 0 0
15 0 ∼ 2 0 0 0
16 0 ∼ 2 0 0 0
17 0 ∼ 2 0 -π

2
0.116

18 0 ∼ 2 0 0 0
19 0 ∼ 2 0 0 0
20 0 ∼ 2 0 0 0
21 0 ∼ 2 0 π

2
0.092

22 0 ∼ 2 0 0 0
23 0 ∼ 2 0 0 0
24 0 ∼ 2 0 0 0

Table A.3: DH convention for UR10 robot in PDO-IK formulation.

46

A. DH Parameters in Experiments

A.4 H1

i Li ai−1 αi−1 di
1 1 ∼ 1 0 -π

2
0

2 0.3596 ∼ 1.6404 0 -π
2

0
3 1.1741 ∼ 1.1741 0 0 0
4 0.0852 ∼ 1.9148 0.4 0 0
5 0.2198 ∼ 0.2198 0 0 0
6 0 ∼ 2 0.4 0 0
7 0.9992 ∼ 0.9992 0 0 0
8 1 ∼ 1 0 -π

2
0

9 0.5831 ∼ 1.4169 0.1 0 0
10 1 ∼ 1 0 0 0
11 1 ∼ 1 0 π

2
0

12 1 ∼ 1 -0 0 0
13 0.5831 ∼ 1.4169 0 0 0
14 1 ∼ 1 0 0 0
15 2 ∼ 2 0.1 0 -0.174
16 0 ∼ 0 0 π 0
17 1 ∼ 1 -0.1 0 -0.174
18 0.5831 ∼ 1.4169 0 0 0
19 1 ∼ 1 0 0 0
20 0.0773 ∼ 1.9227 0 0 0
21 0.0773 ∼ 1.9227 0 0 0
22 2 ∼ 2 0 0 0
23 1 ∼ 1 0 0 0
24 0.5831 ∼ 1.4169 0 π

2
0

25 1 ∼ 1 0 0 0

Table A.4: DH convention for H1 robot in PDO-IK formulation from number 1 to 25.

47

A. DH Parameters in Experiments

i Li ai−1 αi−1 di
26 1 ∼ 1 0.2 0 0.430
27 0.0092 ∼ 1.9908 0 -1.134 0
28 0.0092 ∼ 1.9908 0 0 0
29 2 ∼ 2 0 0 0
30 1 ∼ 1 -0.2 0 0.430
31 0.0092 ∼ 1.9908 0 -2.007 0
32 0.0092 ∼ 1.9908 0 0 0
33 2 ∼ 2 0 0 0
34 1 ∼ 1 -0.1 0 0
35 0 ∼ 2 0 -π

2
0

36 0.9992 ∼ 0.9992 0 0 0
37 0 ∼ 0 0 0 0.057
38 0 ∼ 0 0 0 -0.057
39 1 ∼ 1 0 -0.436 0
40 1 ∼ 1 0 0.436 0
41 0.2405 ∼ 1.7595 0 π

2
0

42 0.2405 ∼ 1.7595 0 π
2

0
43 0.2405 ∼ 1.7595 0 0 0
44 0.2405 ∼ 1.7595 0 0 0
45 1.1847 ∼ 1.1847 0 0 0
46 1.1847 ∼ 1.1847 0 0 0
47 0.0852 ∼ 1.9148 0.4 0 0
48 0.2198 ∼ 0.2198 0 0 0
49 1 ∼ 1 0.1 0 0
50 1 ∼ 1 0.1 0 0

Table A.5: DH convention for H1 robot in PDO-IK formulation from number 26 to
50.

48

A. DH Parameters in Experiments

i Li ai−1 αi−1 di
51 0.0089 ∼ 1.9911 0 π

2
0

52 0.0089 ∼ 1.9911 0 π
2

0
53 0.0089 ∼ 1.9911 0 0 0
54 0 ∼ 0 0 0 0
55 0.0089 ∼ 1.9911 0 0 0
56 2 ∼ 2 0 0 0
57 0.3596 ∼ 1.6404 0.4 0 0
58 1.1741 ∼ 1.1741 0 0 0
59 0 ∼ 0 0 0 -0.198
60 0 ∼ 0 0 0 -0.198
61 0.1780 ∼ 1.8220 0 -π

2
0

62 0.1780 ∼ 1.8220 0 -π
2

0
63 0.1780 ∼ 1.8220 0 0 0
64 0.1780 ∼ 1.8220 0 0 0
65 1.7776 ∼ 1.7776 0 0 0
66 1.7776 ∼ 1.7776 0 0 0
67 0 ∼ 0 0.3 0 0
68 0 ∼ 0 0.3 0 0
69 0 ∼ 0 0 π

2
0.200

70 0 ∼ 0 0 0 0.700

Table A.6: DH convention for H1 robot in PDO-IK formulation from number 50 to
70.

49

A. DH Parameters in Experiments

50

Bibliography

[1] Katrin Baumgärtner, Yizhen Wang, Andrea Zanelli, and Moritz Diehl. Fast
nonlinear model predictive control using barrier formulations and squashing with
a generalized gauss-newton hessian. In 2022 IEEE 61st Conference on Decision
and Control (CDC), pages 558–563. IEEE, 2022. 4.2

[2] Charles G Broyden. A class of methods for solving nonlinear simultaneous
equations. Mathematics of computation, 19(92):577–593, 1965. 3.2

[3] Berk Calli, Arjun Singh, Aaron Walsman, Siddhartha Srinivasa, Pieter Abbeel,
and Aaron M Dollar. The ycb object and model set: Towards common bench-
marks for manipulation research. In 2015 international conference on advanced
robotics (ICAR), pages 510–517. IEEE, 2015. 6.1

[4] Yu Chen, Yilin Cai, Jinyun Xu, Zhongqiang Ren, Guanya Shi, and Howie Choset.
Propagative distance optimization for constrained inverse kinematics. arXiv
preprint arXiv:2406.11572, 2024. 1

[5] John J Craig. Introduction to robotics. Pearson Educacion, 2006. 3.1
[6] Gordon M Crippen, Timothy F Havel, et al. Distance geometry and molecular

conformation, volume 74. Research Studies Press Taunton, 1988. 1
[7] John E Dennis, Jr and Jorge J Moré. Quasi-newton methods, motivation and

theory. SIAM review, 19(1):46–89, 1977. 3.2
[8] Arati S Deo and Ian D Walker. Adaptive non-linear least squares for inverse

kinematics. In [1993] Proceedings IEEE International Conference on Robotics
and Automation, pages 186–193. IEEE, 1993. 2.1

[9] Robert W Floyd. Algorithm 97: shortest path. Communications of the ACM, 5
(6):345–345, 1962. 5.4

[10] Matthew Giamou, Filip Marić, David M Rosen, Valentin Peretroukhin, Nicholas
Roy, Ivan Petrović, and Jonathan Kelly. Convex iteration for distance-geometric
inverse kinematics. IEEE Robotics and Automation Letters, 7(2):1952–1959,
2022. 1, 2.2

[11] Jun Han and Claudio Moraga. The influence of the sigmoid function parameters

51

Bibliography

on the speed of backpropagation learning. In International workshop on artificial
neural networks, pages 195–201. Springer, 1995. 4.2, 4.2

[12] Li Han and Lee Rudolph. Inverse kinematics for a serial chain with joints under
distance constraints. In Robotics: Science and systems, 2006. 1, 2.2

[13] Timothy F Havel. Distance geometry: Theory, algorithms, and chemical applica-
tions. Encyclopedia of Computational Chemistry, 120:723–742, 1998. 5.4

[14] Karan Khokar, Patrick Beeson, and Rob Burridge. Implementation of kdl inverse
kinematics routine on the atlas humanoid robot. Procedia Computer Science, 46:
1441–1448, 2015. 4.2

[15] Gregory Lantoine and Ryan Russell. A hybrid differential dynamic programming
algorithm for robust low-thrust optimization. In AIAA/AAS Astrodynamics
Specialist Conference and Exhibit, page 6615, 2008. 4.2

[16] Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large
scale optimization. Mathematical programming, 45(1-3):503–528, 1989. 3.2

[17] Filip Marić, Matthew Giamou, Soroush Khoubyarian, Ivan Petrović, and
Jonathan Kelly. Inverse kinematics for serial kinematic chains via sum of
squares optimization. In 2020 IEEE International Conference on Robotics and
Automation (ICRA), pages 7101–7107. IEEE, 2020. 1, 2.2, 4.1

[18] Filip Marić, Matthew Giamou, Ivan Petrović, and Jonathan Kelly. Inverse
kinematics as low-rank euclidean distance matrix completion. arXiv preprint
arXiv:2011.04850, 2020. 1, 2.2

[19] Filip Marić, Matthew Giamou, Adam W Hall, Soroush Khoubyarian, Ivan
Petrović, and Jonathan Kelly. Riemannian optimization for distance-geometric
inverse kinematics. IEEE Transactions on Robotics, 38(3):1703–1722, 2021. 1,
2.2, 4.3, 5.4, 6.1

[20] Josep Marti-Saumell, Joan Solà, Carlos Mastalli, and Angel Santamaria-Navarro.
Squash-box feasibility driven differential dynamic programming. In 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 7637–7644. IEEE, 2020. 4.2

[21] Yoshihiko Nakamura and Hideo Hanafusa. Inverse kinematic solutions with
singularity robustness for robot manipulator control. 1986. 2.1

[22] Josep M Porta, Lluís Ros, and Federico Thomas. Inverse kinematics by distance
matrix completion. 2005. 1

[23] Josep M Porta, Lluís Ros, Federico Thomas, and Carme Torras. A branch-and-
prune solver for distance constraints. IEEE Transactions on Robotics, 21(2):
176–187, 2005. 1, 2.2

[24] Manfred J Sippl and Harold A Scheraga. Cayley-menger coordinates. Proceedings

52

Bibliography

of the National Academy of Sciences, 83(8):2283–2287, 1986. 1, 2.2
[25] Yuval Tassa, Nicolas Mansard, and Emo Todorov. Control-limited differential

dynamic programming. In 2014 IEEE International Conference on Robotics and
Automation (ICRA), pages 1168–1175. IEEE, 2014. 4.2

[26] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for
model-based control. In 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 5026–5033. IEEE, 2012. doi: 10.1109/IROS.2012.
6386109. 6.3

[27] Charles W Wampler. Manipulator inverse kinematic solutions based on vector
formulations and damped least-squares methods. IEEE Transactions on Systems,
Man, and Cybernetics, 16(1):93–101, 1986. 2.1

[28] L-CT Wang and Chih-Cheng Chen. A combined optimization method for solving
the inverse kinematics problems of mechanical manipulators. IEEE Transactions
on Robotics and Automation, 7(4):489–499, 1991. 2.1

[29] Tillmann Weisser, Jean B Lasserre, and Kim-Chuan Toh. Sparse-bsos: a bounded
degree sos hierarchy for large scale polynomial optimization with sparsity. Math-
ematical Programming Computation, 10:1–32, 2018. 1, 2.2

[30] Daniel E Whitney. Resolved motion rate control of manipulators and human
prostheses. IEEE Transactions on man-machine systems, 10(2):47–53, 1969. 2.1

[31] Ciyou Zhu, Richard H Byrd, Peihuang Lu, and Jorge Nocedal. Algorithm 778:
L-bfgs-b: Fortran subroutines for large-scale bound-constrained optimization.
ACM Transactions on mathematical software (TOMS), 23(4):550–560, 1997. 6.1

53

	1 Introduction
	2 Related Works
	2.1 Angle-based Formulations for Inverse Kinematics
	2.2 Distance-based Formulation for Inverse Kinematics

	3 Preliminaries
	3.1 Denavit–Hartenberg Parameters
	3.2 Quasi-Newton Method
	3.3 Augmented Lagrangian

	4 Kinematics Framework
	4.1 Kinematic Chain
	4.2 Joint Limit Constraints
	4.3 Collision Avoidance Constraints
	4.4 End Effector Pose Objective

	5 Kinematics Algorithm
	5.1 Forward Rollout
	5.2 Jacobian Computation
	5.3 Inverse Kinematics
	5.4 Complexity Analysis

	6 Experiments
	6.1 Efficiency and Effectiveness Comparison
	6.2 Solution Accuracy Comparison
	6.3 Humanoid Robot Avoiding Dynamic Obstacle

	7 Conclusions
	A DH Parameters in Experiments
	A.1 KUKA
	A.2 Franka
	A.3 UR10
	A.4 H1

	Bibliography

