
Continual Personalization of Human

Actions To New Categories Over Time

Prachi Garg

CMU-RI-TR-24-27

May 30, 2024

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Prof. Fernando De La Torre, Chair

Prof. Deva Ramanan
Prof. Kris Kitani
Russell Mendonca

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Robotics.

Copyright © 2024 Prachi Garg. All rights reserved.

To my Mom, Dad, and Naniji.

iv

Abstract

As extended reality (XR) is redefining how users interact with comput-
ing devices, research in human action recognition is gaining prominence.
Typically, models deployed on immersive computing devices are static
and limited to their default set of classes. The goal of our research is
to provide users and developers with the capability to personalize their
experience by adding new action classes to their device models continu-
ally. Importantly, a user should be able to add new classes in a low-shot
and efficient manner, while this process should not require storing or
replaying any of user’s sensitive training data. We formalize this problem
as privacy aware few-shot continual action recognition. Towards this
end, we propose POET: Prompt-offset Tuning. While existing prompt
tuning approaches have shown great promise for continual learning of
image, text, and video modalities; they demand access to extensively
pretrained transformers. Breaking away from this assumption, POET
demonstrates the efficacy of prompt tuning a significantly lightweight
backbone, pretrained exclusively on the base class data. We propose a
novel spatio-temporal learnable prompt offset tuning approach, and are
the first to apply such prompt tuning to Graph Neural Networks. We
contribute two new benchmarks for our new problem setting in human
action recognition: (i) NTU RGB+D dataset for activity recognition,
and (ii) SHREC-2017 dataset for hand gesture recognition. We find that
POET consistently outperforms comprehensive benchmarks.

v

vi

Acknowledgments

First, I want to express my sincere gratitude to Prof. Fernando De La
Torre for being a great advisor and mentor to me in my two years at CMU.
He gave me the opportunity to work on my dream research project, provided
full freedom to define and lead my own research direction and entrusted me
with the best research collaboration I could have asked for, guiding me every
step of the way with kindness and transparency. For the first time, I learnt
to stress less and have more fun in research. My biggest takeaways working
with him have been effective communication, prioritization, and appreciating
complementary skill sets in others. I shall continue to imbibe his emphasis on
simplicity in idea, research, and writing going forward. I am also grateful to
him for always encouraging open discussion and giving me a platform where I
could confidently and uninhibitedly ask for and go after things I truly wanted.

My relatively exploratory thesis has been made possible solely by the hands-on
guidance and enthusiasm of my collaborators (/advisory mentors). I have
enjoyed defining, solving and writing this research so much that I decided to
pursue a Ph.D. I want to thank Prof. Vineeth N Balasubramanian for joining
us, for his creative research ideas, and the best architecture-level technical
discussions. I have been collaborating with him for the past 4 years and I am
most grateful to him for seeing the best in me, pushing me to be more ambitious,
and teaching me to think for myself. I also got the opportunity to work with
Joseph K J who is a visionary expert in continual learning. His relentlessly
optimistic ways and research organization have significantly influenced my
attitude towards research. I am very happy to have worked with Shugao Ma
who was always excited about the research directions we were proposing, taught
me how to design specific technical experiments to understand the model and
push the project ahead. Necati Cihan Camgoz always had the most interesting
questions about our inferences - I would come out of every Meta meeting
wondering what it would take to think like him. I’m grateful to Kenrick Kin for
his unique perspective and help with problem motivation and writing. Chengde
Wan and Weiguang Si always shared their insights into the product side of
things and helped me understand the actual use and application of our research.

I am truly grateful for the discussions, guidance, and feedback I received from
my thesis committee, Prof. Deva Ramanan and Prof. Kris Kitani. I really
look up to them and have enjoyed the discussions I had during their courses. I
am inspired by Russell Mendonca’s research and grateful for our discussions
since first semester. I am also grateful to Prof. Srinivasa Narsimhan who
taught me my favourite CMU course ‘Physics Based Vision’ and I will have
the opportunity to work with during this summer. I’d like to thank Prof. C
V Jawahar for giving me an opportunity to conduct research on open-ended

vii

problems that excited me during my Research Fellowship at IIIT-H before
CMU, and his backing and advice thereon. A very special thanks to Prof.
Frederic Jurie who at the end of a 3 month summer research internship (France,
2019) strongly encouraged me to pursue a Ph.D, told me “I am going to train
much bigger models”, and has been excited about my journey till date.

I would like to thank my labmates from the Human Sensing Lab - specially
Jianjin, Kevin, Jinqi, Chen, Cheng, Charles, Zoltan, Shubhra and Yehonathan.
I have learnt a lot from my buddies Oliver and Younjoon and I’ll particularly
miss our Monday lunches and Mala hotpots. I am incredibly grateful to seniors
Nikos, Anurag, Nupur, Zhiqiu, Mihir, Swami, Sriram, Tarasha, Rishi, Mononito,
Nikhil, Sally, Shivam, Heng, Simin, Vidhi and Unnat for being great mentors
and friends to me at CMU. They have really looked out for me and my research
and provided very honest, blunt and valuable suggestions in the right moments
when it mattered the most. Thanks for sharing your research outlook with me.

My favourite part about CMU is the peer group that I’ve had the privilege of
knowing. I am incredibly fortunate to have friends who are not only constantly
trying to improve themselves and grow everyday, but also want the absolute
best for others. Here I witnessed the best competition-collaboration equilibirum
I had always dreamt of. Bharath, Aman and Jay have really helped broaden my
horizon and helped me see my own power. I am amazed by our conversations.
Special thanks to Roshan and Yin for being there in very tough moments. I
would also like to thank my roommate Aishwarya for giving me a much needed
rejuvenated viewpoint on all aspects of life. I have cherished all conversations
and study sessions I had with my fellow MSR friends from first semester until
now. I’m sure I can tell you exactly what I have learnt from every single person.

I am lucky to have a rock solid support system from my 3 closest old friends:
Sakshi who has for 13 years helped me see through the unnecessary, grounded
me, constantly reminded me who I am and what I should be focusing on;
Vaibhav who I call before every impossible deadline - the most notable being
the ICLR one week submission run last year to hear, “I know you, you always
make it in the end moment”; and Shyam for always reminding me how far
I’ve come, and helping me see the brighter side of every situation. Finally, I
have to thank my parents and brother for their lifelong unwavering support,
encouragement and wisdom. My parents have turned into best friends and
confidantes to me, brainstorming and making a plan with me to tackle every
hurdle head-on. They have been encouraging me to take the road not (less)
taken, take all the chances on myself and take as many risks as possible because,
“Even if nothing works out, we will still have your back”. They take great
joy in learning more about research and taking them along personally and
professionally has been an amazingly fulfilling privilege. Thanks to my dad for
being my champion.

viii

ix

x

Funding

This work was in part supported by the Meta-Reality Labs “Open-Set
Gesture Recognition for Virtual Reality” Grant.

xi

xii

Contents

1 Introduction 1
1.0.1 Contributions . 3

2 Related Work 5
2.0.1 Prompt Tuning . 5
2.0.2 Prompt Tuning for Continual Learning 5
2.0.3 Few-Shot Class Incremental Learning 6

3 Approach 9
3.1 Preliminaries . 9

3.1.1 Skeleton Action Recognition Using Graph Representations . . 9
3.1.2 Problem Definition. 9

3.2 Methodology: POET . 11
3.2.1 Constructing Spatio-Temporal Prompt Offsets 11
3.2.2 Prompt Selection and Attachment Mechanism 12
3.2.3 Ordered Prompt Sequence Selection 14
3.2.4 Mitigating Prompt Pool Collapse 15
3.2.5 Prompt Pool Expansion . 16

4 Experiments 19
4.0.1 Benchmark Details . 19
4.0.2 Comparison with State-of-the-Art 21
4.0.3 Ablation Studies and Analysis 24

5 Discussion 27
5.0.1 Differences From Existing Continual Prompt Tuning Works . . 27
5.0.2 Interpreting Prompt Offset Tuning of GNNs 28

6 Conclusion and Future Works 29
6.1 Conclusion . 29
6.2 Broader Impact and Limitations . 30

A Additional Results and Discussion: Thesis Committee Suggestions 31
A.0.1 How Does POET Mitigate Catastrophic Forgetting? 31
A.0.2 Backward Forgetting Metric (BWF) 33

xiii

A.0.3 Role of Number of Few-Shots in Continual Learning 34
A.0.4 Robustness of Our Benchmarks: Reporting Mean Across 10

Unique Sets of Few-Shots . 34

B Additional Results 37
B.1 Analyzing Prompt Tuning Architectural Choices 37

B.1.1 Classifier Update Protocol in US(t), t > 0 37
B.1.2 Analyzing Where to Attach Prompts 39

B.2 Additional Results . 39
B.2.1 Impact of Prompts in POET 39
B.2.2 Stability-Plasticity Trade-offs via New/Old performance . . . 40
B.2.3 Robustness to class order in user sessions 41
B.2.4 Ordered Key Index Selection (si)

T
i=1: Qualitative Results . . . 43

C Implementation and Training Details 49
C.0.1 Training Details . 49
C.0.2 Base Session UB(0): Prompt Instantiation and Training 51
C.0.3 Additional Dataset Details . 52
C.0.4 Adaptation of Baselines to Problem Setting 53

Bibliography 55

When this dissertation is viewed as a PDF, the page header is a link to this Table of Contents.

xiv

List of Figures

1.1 Proposed POET method continually adapts skeleton-based human
action recognition models pretrained on a pre-defined set of categories
to new user categories with few training examples. Users
can thus expand the capabilities of XR systems with novel action
classes by providing a few examples of each new class. We discard
the user-sensitive data as soon as the model is updated on the new
categories. 2

3.1 POET: Prompt-offset Tuning proposes to offset the input feature
embedding xe of the main model by learnable prompt parameters PT

for privacy-aware few-shot continual action recognition. We explain
prompt selection mechanism in Fig. 3.2. 10

3.2 Construction of our prompts PT : Input-dependent query Q is
matched with keys K using sorted cosine similarity to get an ordered
index sequence (si)

T
i=1 of the top T keys. This ordered index sequence

is used to select the corresponding ordered prompt sequence PT from
prompt pool P . We add PT to xe from main model (Fig. 3.1),
thereby offsetting it. Our experimental evaluation confirms that such
an additive spatio-temporal prompt offsetting can balance the plasticity
to learn new classes from few-shot gestures, while maintaining the
stability on the previously learned classes. 13

3.3 Task-level Prompt Sequence Analysis. Here we visualize the
order (si)

T
i=1 in which the M = 64 prompts in the prompt pool are

selected at train time, with the addition of 5 new classes in each user
session US(t). X-axis: prompt index number, Y-axis: index position
in selected sequence. Bottom: Even though the same 64 prompts are
selected and updated, the ordered prompt selection helps POET learn
new knowledge better and renders temporal consistency. Top: The no
sorting case uses the default sequence, giving equal importance to all
prompts (diagonal matrices). 15

xv

3.4 M > T Case: Prompt Pool Collapse. When the pool size (M) is
greater than the required number of prompts (T), certain prompt
indices remain completely unused across all tasks. Our POET pool
expansion algorithm alleviates pool collapse. 16

A.1 Effect of variation in number of few-shot samples used for training
in user sessions US(1)-US(4) on stability-plasticity trade-offs in our
few-shot continual setting. 34

B.1 Empirical analysis to study the impact of the layer at which our prompt
is attached. Y-axis shows ‘Old’ and ‘New’ classes accuracy after Task 4
(after learning all 60 classes). We add a prompt of size PT ′ ∈ R64,25,64

to different layers {1, 2, 3, 4} of CTR-GCN, evaluated on the NTU
RGB+D validation set. We select layer L1 due to its high performance
on new classes. 39

B.2 Confusion matrices showing the impact of our prompt offsets across 4
user sessions in NTU RGB+D activity recognition benchmark .
We compare confusion across new and old actions in POET and POET
w/o prompts ablation. Starting from 40 default classes in UB(′), we
learn new classes {US(1): sneeze, stagger, fall, touch head, touch chest};
{US(2): touch back, touch neck, nausea, user fan, punch}; {US(3):
kick, push, pat back, point finger, hug}; {US(4): give, touch pocket,
handshake, walk towards, walk away}. Prompts enable retention of
the intermediate ‘New-Old’ classes very well, while FE gets heavily
biased towards the new classes (see last 5 columns in each matrix). . 40

B.3 Confusion matrices showing the impact of our prompt offsets across 3
user sessions in SHREC 2017 gesture recognition benchmark .
US(0) has hand gestures grab, tap, expand, pinch, rotate clockwise,
rotate counter-clockwise, swipe right, swipe left}. {US(1): swipe up,
swipe down}, {US(1): swipe-x, swipe-+}, {US(1): swipe-v, shake}.
Even though the classes are fine-grained, the prompts help retain old
class semantics well. 41

B.4 Scale of pretraining used for the prompt tuning backbones. For (Our)

benchmarks on NTU RGB+D and SHREC 2017, numbers represent the base

class training data used. Our POETs continually learn new actions mitigating

catastrophic forgetting, without massive pretraining, and only rely on prompts. . 42

B.5 Old and New class performance for NTU RGB+D. 42

B.6 Old and New class performance for SHREC 2017. Reporting Mean
and STD over 5-sets of user few-shots. 42

xvi

B.7 Here, we change the set of classes in each session from the default
order seen before. We report average accuracy of all classes learnt
by the model after adding each new session. New ordering: {US(0):
Swipe-R, Swipe-L, Swipe-U, Swipe-D, Swipe-x, Swipe-+, Swipe-v,
Shake} → {US(1): Grap, Tap} → {US(2): Expand, Pinch} → {US(3):
Rotate-CW, Rotate-CCW}. 43

B.8 Class-level Ordered Prompt Selection using POET, Task t is same

as US(t): Here, we analyse the ordered prompt selection statistics for

our method for different classes at test time. For each class shown in

column 1, we plot the prompt selection order at test time for each continual

model checkpoint (starting from when that class was first introduced to

the continual system and checking after updating the model on new classes

each time). We observe that class-wise selection statistics are retained

even after Task 4 (notice the plots for different classes in Task 4). Even

for classes introduced as part of the same task (class 47, Nausea and class

49, Punching both introduced in Task 2), their ordered prompt selection

is unique and consistent even after updating the model on new data in

subsequent continual sessions. 45
B.9 Instance-Level Ordered Prompt Selection using POET: Our pro-

posed method POET is an input instance-based prompt tuning approach

for FSCIL, as the prompts are selected conditioned on each input instance

itself. Hence, here we study instance-level prediction on the test set. The

sample of class Point Finger, class ID 53 is evaluated after US(3) and US(4)

as the class was added to the model in US(3). The sample of class Give

Something, class ID 55 is continually learnt and evaluated after US(4).
We point out the unique ordered key index sequence for the 2 instances,

which could have been easily confused by the model due to their semantic

similarity. The ordering matrix for Point Finger remains consistent across

tasks, even after adding 5 new classes in US(4). 46
B.10 Instance-Level Ordered Prompt Selection using POET: We also

show a failure case of our proposed approach. After learning the class

Falling in US(1), we evaluate it after every new continual task. Even though

it correctly predicts a test set instance in US(1) and US(2), it tends to get

confused by the class Wearing a Shoe at US(3) and US(4). Notice, this

coincides with a disruption in the ordering statistics. 47

xvii

List of Tables

4.1 Activity Recognition Results (%, ↑), Comparison with SOTA:
NTU RGB+D [39] dataset on CTR-GCN [7] backbone. After training
on each incremental task, we report Average of all classes seen so far
(‘Avg’). We also report (i) AHM , (ii) only old classes accuracy (‘Old’),
(iii) only new classes accuracy (‘New’) in the last session. Numbers
in brackets are wrt POET. POET achieves the best stability-plasticity
trade-off across all baselines indicated by the AHM = 58.3%. POET
also has the highest Avg across all user sessions outside of upper bound
baselines in orange. 23

4.2 Gesture Recognition Results (%, ↑), Comparison with SOTA:
SHREC 2017 [40] dataset on DG-STA [6] graph transformer backbone.
Reporting mean and standard deviation across 5 runs. Bracket accuracy
difference is wrt POET. POET achieves best AHM = 56.2%. . . . 24

4.3 Prompt Selection Mechanism Analysis (%, ↑): POET on NTU
RGB+D dataset. ‘w/o’ denotes removing that component from our
method POET, numbers in brackets are wrt POET (M = T) experi-
ment. ‘Avg’ accuracy metric is biased towards ‘Old’ classes accuracy,
AHM is a good indicator of trade-off between ‘New’ and ‘Old’. 25

4.4 Prompt Attachment Analysis (%, ↑): Adding #prompts same
as #input frames (T=64) is the best prompt attachment choice fp(.)
(results on NTU RGB+D). 26

A.1 POET Ablation Table: We exhaustively study the contribution
of various POET components towards mitigating forgetting of old
knowledge (Old) as well as learning new knowledge (New). C.U.P.
refers to our classifier update protocol (cosine normalization). . . 32

A.2 Backward Forgetting Metric (%, ↓): Here we present BWF after
user session US(4). POET significantly mitigates forgetting on old
classes. 33

xviii

A.3 Activity Recognition Results (%, ↑), Comparison with SOTA: NTU RGB+D [39] dataset

on CTR-GCN [7] backbone. After training on each incremental task, we report Average of

all classes seen so far (‘Avg’). We also report (i) AHM , (ii) old classes accuracy (‘Old’), (iii)

new classes accuracy (‘New’) in the last session. We report Mean and STD across 10 sets of

5-shots. POET achieves the best stability-plasticity trade-off across all baselines indicated by the

AHM = 56.3%. POET also has the highest Avg across all user sessions outside of upper bound

baselines in orange. 35

B.1 Experimenting with different classifiers for NTU RGB+D.
Here, we report the task-specific accuracy for each task the model has
learnt so far, after learning every new task. Notice the sharp forgetting
of the intermediate ‘New-Old’ tasks in regular classifier and our
improvement using a cosine normalized classifier. Note, we are using a
dynamically expanding parametric classifier in all experiments. 38

xix

xx

Chapter 1

Introduction

A key input modality to virtual, augmented and mixed reality (often together termed

as extended reality, XR) devices today is through recognizing human activity and

hand gestures based on body and hand pose estimates. Recognizing human actions1

facilitates seamless user interactions in head-mounted XR devices such as the Meta

Quest 3 and Apple Vision Pro. If the provided action recognition models are static,

then developers and users are limited to a predefined set of action categories. It is only

expected that these devices are usually shipped with action recognition models that

recognize a predefined set of action categories. With the growing use of such devices

in new contexts and the increasing demand for personalized technology delivery, there

is an impending need to enable the action recognition models in such systems to

adapt and learn new user actions over time. Defining their own action categories

allows users to customize their experience and expand the functionality of their XR

devices. Addressing this need is the primary objective of this work.

Adapting human action models to new user categories over time faces a few

challenges. Firstly, the model must be capable of learning new actions with minimal

amount of training data so users can add new classes by providing just a few training

examples per class. Secondly, due to the increasing use of XR devices for personal

assistance, there is a need for privacy preservation in user action recognition-based

pipelines [14]. Hence, the adaptation of such action recognition models to new user

1We use human action as an umbrella term for both hand gesture and body activity in this work for ease of
presentation.

1

1. Introduction

PROPRIETARY DATABASE

DEPLOY

USER A DEVICE TIME t0 t1 tN

Few user samples

USER B DEVICE TIME t0 t1

BASE ACTION CLASSES

Base model User device model at tN Discard data after update

USER A

USER B

U
SE

R
A’
s

AC
TI

O
N

S
U

SE
R

B’
s

AC
TI

O
N

S
Figure 1.1: Proposed POET method continually adapts skeleton-based human
action recognition models pretrained on a pre-defined set of categories to new user
categories with few training examples. Users can thus expand the capabilities
of XR systems with novel action classes by providing a few examples of each new
class. We discard the user-sensitive data as soon as the model is updated on the new
categories.

categories must also be ‘data-free’, i.e., it cannot store and replay previously seen

user training data in subsequent continual sessions. Considering these requirements,

we leverage the recent success of ‘data-free’ prompt-based learning and propose a new

spatio-temporal prompt offset tuning approach to eficiently adapt the default model

without finetuning.

Human action recognition systems are moving to skeleton-based approaches,

especially in applications that require low-shot action recognition capabilities such as

medical action recognition [27, 57]. Skeletons offer a robust and compact alternative

to videos in such low-shot regimes, due to their relatively low dimensionality and

lesser variance under background conditions. While there have been a wide variety of

efforts in skeleton-based human action recognition over the years [36, 53, 54], there

have been fewer efforts on adapting such models to newer user categories. Efforts like

[1, 22] attempted to continually learn new user categories over time in skeleton-based

human action recognition, but relied on fully-supervised data for the new classes. On

the other hand, few-shot learning works [27, 47, 57] adapt a pre-trained skeleton-based

2

1. Introduction

action recognition model to new data, but without explicitly retaining past categories.

In this work, we seek to learn new user categories in trained human action models with

very few labeled samples for the new classes, while being data-free (not storing samples

from previously trained categories). Fig 1.1 summarizes our overall objective. One

could view our setting as privacy-aware few-shot continual learning for skeleton-based

action recognition.

To this end, we propose a prompt offset tuning methodology that can be integrated

with existing backbone architectures for skeleton-based human action recognition.

Our learnable (soft) prompts are selected from a shared knowledge pool of prompts

based on an input instance dependent attention mechanism. In particular, we propose

prompt selection using an ordered query-key matching that enables a temporal

prompt frame order selection consistent with the input instance. We show that such

an approach allows us to learn new user categories without having to store data

from past classes, without overwriting the pre-existing categories. To the best of

our knowledge, this is the first effort on leveraging prompt tuning for skeleton-based

models, as well as on spatio-temporal prompt selection and tuning.

1.0.1 Contributions

Our key contributions are summarized below:

• We formalize a novel problem setting which continually adapts human action

models to new user categories over time, in a privacy aware manner.

• To address this problem, we propose a novel spatio-temporal Prompt Offset

Tuning methodology (POET). In particular, it is designed to seamlessly plug-

and-play with a pre-trained model’s input embedding, without any significant

architectural changes.

• Our comprehensive experimental evaluation on two benchmark datasets brings

out the efficacy of our proposed approach.

3

1. Introduction

4

Chapter 2

Related Work

2.0.1 Prompt Tuning

The idea of prompting, as it originated from Large Language Models (LLMs), is to

include additional information, known as a text prompt, to condition the model’s

input for generating an output relevant to the prompt. Instead of applying a discrete,

pre-defined ‘hard’ language prompt token, prompt and prefix tuning [20, 23] formalized

the concept of applying ‘soft prompts’ to the input. A set of learnable parameters are

prepended (concatenated) to the input text and trained along with the classifier while

keeping the backbone parameters frozen. Similar to prompt tuning of LLMs, recent

works have popularized prompt tuning of vision transformers [16] as an effective

way of adapting large pretrained models to downstream tasks [50, 58]. However, it

remains unexplored and undefined (to the best of our knowledge) for non-transformer

architectures such as GNNs.

2.0.2 Prompt Tuning for Continual Learning

Prompt tuning provides a simple and cost-effective way of learning task-specific signal

condensed into ‘soft prompts’. For continual learning, training a set of prompts

for each sequential task provides a natural alternative to storing privacy violating

exemplars and replaying them. Training task-specific prompts for each sequential

task is straightforward when authors assume access to task identity at both train

5

2. Related Work

and inference time, like in Progressive Prompts [34]. However, if task identity is

unavailable at inference, the model will not know which task’s prompts or classifier

to use for evaluating a test sample. In this respect, S-prompts [48] and A-la-carte

prompt tuning (APT) [3] learn an independent set of prompts for each domain/task

and employ a KNN-based search for domain/task identity at test time. Since these

methods learn stand-alone prompts for every task, the prompt feature space is task-

specific, and there is no forgetting of old knowledge when learning new tasks (by

design). At the same time however, these ‘no forgetting’ prompts cannot share

knowledge across tasks.

This leads to another ideology for continual prompt tuning, i.e., treat each prompt

unit as being a part of a larger shared (knowledge) pool of prompts. Then the

desired number of prompt units can be selected from the pool, conditioned on the

input instance itself [41, 49, 50]. Given the scarcity of new data in our setting, we

hypothesize that sharing of knowledge will benefit new tasks and draw inspiration

from this line of works. Most recently, Adaptive Prompt Generator (APG) [42]

challenges the intensive ImageNet21K pre-training assumption as it prompts a ViT

pretrained only on the continual benchmark’s base class data (similar to us). However,

they use replay and knowledge distillation-style ‘anti-forgetting learning’, in addition

to using prompts. Even though our backbone is trained only on the base classes, we

propose a simple prompt tuning-only strategy to counter forgetting. This implies

that a prompt strategy is all we need to continually add new action semantics in a

few-shot manner.

2.0.3 Few-Shot Class Incremental Learning

FSCIL is a challenging continual learning setting where a model overfits to new classes,

with the simultaneous heightened (often complete) forgetting of old knowledge as soon

as the base model is fine-tuned on few-shot data [9, 43]. Since the backbone feature

extractor is the only source of previously seen knowledge, if it is updated, knowledge

is lost forever. Typically, existing works decouple the learning of (backbone) feature

representations from the classifier by learning the model only on the base data and

relying on non-parametric class-mean classifiers for classification in subsequent steps

[13, 31, 56]. This leads to a feature-classifier misalignment issue [32, 52] because new

6

2. Related Work

class prototypes are extracted from a backbone representation trained only on the

base classes. We hypothesize that optimizing input prompt vectors along with a

dynamically expanding parametric classifier on top of a frozen backbone can alleviate

this misalignment issue. Our work not only provides a fresh perspective into FSCIL,

but to our best knowledge is also the only work not designed for and evaluated on

image benchmarks.

7

2. Related Work

8

Chapter 3

Approach

3.1 Preliminaries

3.1.1 Skeleton Action Recognition Using Graph

Representations

Our input x ∈ RT×J×3 is a video sequence of T frames, each frame containing J joints

of the human body (25 joints) or hand skeleton (22 joints), with joint coordinates

given in 3D Cartesian coordinate system. Such a skeleton action sequence is naturally

represented as a graph topology G = {V , E} with V vertices and E edges. Graphs are

modeled using Graph Neural Networks (GNNs) [12], which can either be sparse graph

convolutional networks (GCN) or fully connected graph transformers (GT). In Fig.

3.1, we define a GNN architecture as f(x) = fc ◦ fg ◦ fe(x); input x is first passed

through an input feature embedding layer fe, followed by a graph feature extractor fg

composed of a stack of convolutional layers (in GCNs) or attention layers (in GTs),

and finally a classifier fc which predicts the action class label y. The input feature

embedding is given by xe = fe(x), xe ∈ RT×J×Ce .

3.1.2 Problem Definition.

Given a base trained model M deployed on a user’s device, we would like to learn a

new set of classes in T subsequent user sessions (also called tasks) {US(1), ...,US(T)}

9

3. Approach

Input Layer 𝑓!

Feature Extractor
𝑓"

Classifier 𝑓#

ADD Prompt
Offsets

Main Model, f(x)

Action Prediction

𝑿𝒆 ∈ 𝑅 "	×	%	×	&!

𝐗 ∈ 	𝑅 "	×	%	×	'

𝑇	frames of
3D skeletons

𝑷𝑻 ∈ 𝑅 %	×	(×)!

Prompt Selection, Fig. 3

𝒚
Fine-tune

Freeze

Figure 3.1: POET: Prompt-offset Tuning proposes to offset the input feature
embedding xe of the main model by learnable prompt parameters PT for privacy-aware
few-shot continual action recognition. We explain prompt selection mechanism in
Fig. 3.2.

corresponding to training datasets {D(1), ...,D(T)}; where D(t) = (xt
i, y

t
i)

|D(t)|
i=1 are

skeleton action sequence and label pairs provided by the user, xt
i ∈ RT×J×3, yti ∈ RY(t)

.

In each session, the user typically provides a few training instances F (e.g. F ≤ 5)

for each of the N new classes being added, such that |D(t)| = NF . The base

model’s session UB(0) is assumed to have a large number of default action classes

Y(0) trained on sufficient data D(0), which is most often proprietary and cannot be

accessed in later user sessions. In each session, the user adds new action classes,

i.e. Y(t) ∩ Y(t′) = ∅,∀t ≠ t′1. Due to the aforementioned privacy constraints, in any

training session US(t), the model has access to only D(t); after training, this data is

1We make this assumption considering this is a first of such efforts; allowing for overlapping action classes and
users to ‘update’ older classes would be interesting extensions of our proposed work.

10

3. Approach

made inaccessible for use in subsequent sessions (no exemplar or prototypes stored).

After training on every new session US(t), the model is evaluated on the test set of

all classes seen so far ∪ti=0Y(i). The challenge is to alleviate forgetting of old classes

while not overfitting to the user-provided samples. One could view our setting as

privacy-aware few-shot class-incremental learning for human actions, a problem of

practical relevance – especially in human action recognition – which has not received

adequate attention yet, to the best of our knowledge.

3.2 Methodology: POET

Overview: In Sec 3.2.1, we first define our spatio-temporal prompt offsets (called

POET) to prompt tune a GNN (see Fig. 3.1), explaining why it is different from

prompt tuning transformers for text, images and videos. Next, in Sec. 3.2.2 we explain

our novel end-to-end optimization of the prompt codebook which enables prompt

selection across novel continual tasks even though our query function is pretrained

only on base task data (Fig. 3.2). Finally, our proposed prompt attachment adds the

same number of prompts as the number of temporal frames in the input, such that

the selected prompts are temporally consistent with the input (Sec 3.2.3).

3.2.1 Constructing Spatio-Temporal Prompt Offsets

Learnable (or soft [20]) prompts are parameter vectors in a continuous space which

are optimized to adapt the pretrained frozen backbone model to each continual task.

We define our spatio-temporal prompt offsets PT ′ as a set of T ′ prompts, each prompt

Pi having length equal to the #joints in a frame J and feature dimension same as

the input feature embedding xe, i.e., Pi ∈ RJ×Ce .

Prompt tuning of GNNs? There exist prior works which generalize transformers

to graphs [6, 11, 29]. Then why is it non-trivial to attach prompts to a GNN? NLP

transformers [45] treat sentences as a fully connected graph with every word attending

to every other word in the sentence as there are no explicit word interactions or

edge information in sentences [12]. It is the same case with vision transformers [10]

which compute attention among all image patches. This lack of pre-defined edge

information makes it straightforward to prepend an arbitrary number of tokens for the

11

3. Approach

MHSA mechanism. However, our spatio-temporal input is a natural graph skeleton

of the human joint-bone structure and has a well defined edge connectivity. This edge

information is exploited as inductive bias in GNNs. If we treat joints as tokens and

concatenate prompts along spatial or temporal dimensions, not only does the graph

topology lose semantic meaning, but the forward pass operation becomes undefined

(especially in GCNs). Hence, we denote our unknown prompt attachment function as

fp. The logit distribution can then be obtained as:

y = f(x, PT ′) = fc ◦ fg ◦ fp(fe(x), PT ′). (3.1)

In every subsequent session t > 0, the classifier output dimension expands by N to

accommodate for the new classes. Importantly, disparate from most existing continual

prompt tuning works, our feature extractor backbone fg is trained only on the base

class data D(0) and will never itself be fine-tuned on action semantics from any of the

continual sessions US(t), t > 0. After the base session training, parameters of fg, fe

are frozen, and only the prompt-associated parameters and classifier fc are updated,

refer to Fig. 3.1.

3.2.2 Prompt Selection and Attachment Mechanism

Prompt Codebook Design.

As mentioned in Sec. 2.0.2, to encourage knowledge sharing in our few-shot continual

setting, we choose to construct a single prompt pool P , sharing encoded knowledge

across all tasks:

P = {P1, ..Pi, ..., PM}, Pi ∈ RJ×Ce ;M = #prompts at time t. (3.2)

For the prompt selection process (Fig. 3.2), we construct a bijective key-value

codebook, treating prompts in the pool P as values and defining learnable key vectors

as K = {K1, .., Ki, .., KM}, Ki ∈ RCe . A query Q and keys K matching process

is used to find and fetch the T ′ closest values (prompts in the pool). This vector

quantization process is enabled by a query function fq(x). The query function is an

encoder which maps an input instance x to a query Q as:

12

3. Approach

𝐗	 ∈ 	𝑅 !	×	$	×	%

Fine-tune

3 4 6 15 7 8 2

Freeze

𝑲

𝑠! !"#
$

𝑷

Prompt Selection Mechanism

𝑓!"

Query Function 𝑓#
Selected prompts

𝑇	frames of
3D skeletons

Key Parameters

𝐴𝑟𝑔𝑠𝑜𝑟𝑡

Cosine Similarity

Prompt Pool Memory

𝑅𝑒𝑎𝑑 Pool Memory

𝒒

Embedding

𝐶% 𝐶%
𝐽

Select prompts
in order 𝑠$ $%&

'

Input Feature Embedding
from Main Model, Fig. 2

𝑿𝒆 ∈ 𝑅 "	×	%	×	&(

ADD Prompt Offsets

𝑷𝑻

𝑓)′𝑓*′

Figure 3.2: Construction of our prompts PT : Input-dependent query Q is matched
with keys K using sorted cosine similarity to get an ordered index sequence (si)

T
i=1

of the top T keys. This ordered index sequence is used to select the corresponding
ordered prompt sequence PT from prompt pool P . We add PT to xe from main
model (Fig. 3.1), thereby offsetting it. Our experimental evaluation confirms that
such an additive spatio-temporal prompt offsetting can balance the plasticity to learn
new classes from few-shot gestures, while maintaining the stability on the previously
learned classes.

Q = fq(x) = fQA ◦ f ′
g ◦ f ′

e(x), x ∈ RT×J×3 → Q ∈ RCe . (3.3)

where the query adaptor fQA is a fully connected layer mapping the f ′
g output

dimension to the desired prompt embedding dimension Ce. The most relevant T ′

prompt indices are then selected using cosine similarity γ(.) as:

argmax
T ′

γ(fq(x),K). (3.4)

Coupled Optimization in incremental steps, t > 0. To move queries closer to

their aligned T ′ keys during training, we use a vector quantization clustering loss

inspired from VQ-VAE [44] and similar to Learning to Prompt (L2P) [50]:

max
θQA,θKT ′

λΣT ′

i=1γ(fq(x), Ki). (3.5)

Even though L2P [50] and Dual-P [49] serve as strong starting points for our continual

prompt selection mechanism, they decouple the optimization of prompt pool from the

keys. This implies that the cross entropy loss for every new task (t > 0) only updates

13

3. Approach

the classifier and prompts, but not the keys and query function, as the argmax

operator in Eq. 3.5 prevents backpropagation of gradients to the keys. However,

this would be a fatal flaw in our setting: We assume no large-scale pretraining on a

superset of semantic knowledge the model could potentially see during its lifetime.

Thus, for all practical purposes, our query function fq is pretrained only on the base

class data D(0). For it to discern all old and new class samples, it must be updated

as the model learns new classes. As shown in Fig 3.2, we propose to couple this

optimization process such that the cross entropy loss for new tasks updates (i) the

classifier fc, (ii) selected prompts PT ′ , (iii) keys KT ′ , as well as (iv) query adaptor fQA.

We freeze the query feature extractor layers f ′
g, f

′
e in t > 0 to prevent catastrophic

forgetting of base knowledge. We approximate the gradient by the straight-through

estimator reparameterization trick as in [2, 44]. Our proposed coupled cross entropy

loss:

min
θQA,θKT ′ ,θPT ′ ,θfc

L(f(x, PT ′), y). (3.6)

This coupled mechanism establishes a prompt optimization framework which is impera-

tive to prompt tuning without pretraining. It enabled us to design our spatio-temporal

prompt offsets described next.

Additive Prompt Attachment. We achieve best results when the number of

selected prompts T ′ in PT ′ is same as the number of temporal frames in the input

skeleton, T . We find a naive addition operation yields best results empirically:

fp(xe, PT ′) = xe + PT ′ , T ′ = T. (3.7)

Note, we use T instead of T ′ in the following sections, and in Figures 3.1 and 3.2.

3.2.3 Ordered Prompt Sequence Selection

Since the number of selected prompts corresponds with the number of temporal

frames in the input skeleton sequence, we make the prompt selection mechanism

temporally consistent with respect to the input. We achieve this by simply sorting

the top T keys based on their the query-key cosine similarity to get an ordered key

index sequence (si)
T
i=1, replacing a naive top T ′ index selection in Eq. 3.5 as:

14

3. Approach

𝑈𝑆(")

PO
ET

 (N
O

 S
or

tin
g)

PO
ET

 (O
ur

s)

𝑈𝑆($) 𝑈𝑆(%) 𝑈𝑆(&)

Figure 3.3: Task-level Prompt Sequence Analysis. Here we visualize the order
(si)

T
i=1 in which the M = 64 prompts in the prompt pool are selected at train time,

with the addition of 5 new classes in each user session US(t). X-axis: prompt index
number, Y-axis: index position in selected sequence. Bottom: Even though the same
64 prompts are selected and updated, the ordered prompt selection helps POET learn
new knowledge better and renders temporal consistency. Top: The no sorting case
uses the default sequence, giving equal importance to all prompts (diagonal matrices).

(si)Ti=1⊆[1,M]γ(fq(x),K). (3.8)

We use this order (si)
T
i=1 to read the prompt pool memory and select final prompts

PT .

3.2.4 Mitigating Prompt Pool Collapse

After coupling the prompt pool and keys, we observed in our initial experiments

with pool size M > T that the same set of prompts are getting selected across

training iterations and incremental steps (Figure 3.4, A). More concretely, as the

vector quantization loss (Equation 3.6) brings the query close to the selected keys, the

same set of active prompts get selected and optimized in each iteration, not using the

other prompts at all. This is similar to the well known issue of “codebook collapse”

in VQ-VAE [8, 51, 55]. Based on this observation, we design two prompt pool update

mechanisms for the 2 cases:

1. M = T,∀t. No pool expansion, Algorithm 1. All the prompts are selected

in all tasks. But, the order of their selection (si)
T
i=1 varies with each input

15

3. Approach

(A) Prompt Pool Collapse

(B) POET, Expand Pool with R prompts

𝑈𝑆 ! , 𝑀 = 72 𝑈𝑆 " , 𝑀 = 72

Prompt Index Prompt Index

𝑈𝑆 ! , 𝑀 = 70, 𝑅 = 6 𝑈𝑆 " , 𝑀 = 88, 𝑅 = 6

Prompt Index Prompt Index

Figure 3.4: M > T Case: Prompt Pool Collapse. When the pool size (M) is greater
than the required number of prompts (T), certain prompt indices remain completely
unused across all tasks. Our POET pool expansion algorithm alleviates pool collapse.

instance and is discriminative such that certain prompts tend to appear before

others in (si)
T
i=1 for different input semantics. In Figure 3.3, we visualize the

position occupied by prompt indices in the ordered sequence (si)
T
i=1. Entropy

increase across tasks t = 1 to t = 4 shows that our selection mechanism learns

to select a unique temporal code for all inputs.

2. M = T + (R ∗ t), t > 0. Expand pool with R prompts. We also propose

an order-aware prompt pool expansion algorithm (supplementary) that selects

prompts from an expanded pool in a temporally coherent manner, for t > 0.

This alleviates prompt pool collapse as shown in Figure 3.4, B.

3.2.5 Prompt Pool Expansion

We further present the order-preserving prompt pool expansion Algorithm 2 that

(A) expands pool to learn new knowledge, (B) freezes previous prompts to prevent

forgetting, and (C) forces usage of new prompts at the end of the sequence, hence

alleviating the prompt pool collapse issue while preserving already existing temporal

order statistics Figure 3.4 of main paper. We find R = 6 new prompts to be the best

empirically for NTU RGB+D and R = 2 for SHREC 2017 using our 30% validation

16

3. Approach

Algorithm 1 POET (No pool expansion case) at Train Time, t ≥ 1

Input: Query function fq, prompt keys K = {Kj}Mj=1, prompt pool P = {Pj}Mj=1; main model
input embedding layer fe, graph feature extractor fg, classifier fc pretrained from time t − 1.
Note, M=T
Initialize: P ,K from t− 1; Expand fc by N new classes. Initialize fc as: (i) copy fold

c weights,
(ii) fnew

c ←Mean(fold
c)

Freeze: query layers f ′
g, f

′
e; main model layers fe, fg

for epochs and batch (xt
i, y

t
i)

NK
i=1 do

1. Compute query feature Q = fq(x)
2. Compute cosine similarity γ(.) b/w query Q and keys K
3. Sort γ(.); Get ordered key index sequence KT = (si)

T
i=1 (Equation 3.8)

4. Index prompt pool P in order (si)
T
i=1 → Get final prompt PT

5. Compute input embedding xe = fe(x)
6. Attach/Add prompt as per Equation 3.7, use prompted input to get prediction.
7. Use clustering loss (Equation 3.5) to update query adaptor QA, keys KT

8. Use cross entropy loss (Equation 3.6) to update QA,KT , PT , fc
9. Classifier fc is (i) cosine classifier for NTU RGB+D;
(ii) regular FC layer, but freeze fold

c by zeroed gradients for SHREC 2017,
end // See t = 0 training protocol in Supplementary Algorithm 2.

set of incremental sessions. Algorithm 2 presents our algorithm for prompt pool

expansion.

17

3. Approach

Algorithm 2 Prompt Pool Expansion at Train Time, t ≥ 1

Input: Query function fq, keys K = {kj}Tj=1, prompt pool P = {Pj}Tj=1; main model
fe, fg, fc
Expand:
Pool and keys by R new prompts as: PM → PM+R;KM →KM+R

Where PM+R = {PM ;PR} (attach new prompts at the end of existing tensor)
Initialize: New prompts Pi ← U(0, 1); new keys Ki ←Mean(KM)
Construct PT as:
1. Find T − R key indices KT−R using Eq. 3.7. Use this sequence to read previous

prompts in the pool PM and form PT−R.
2. Concatenate PR new prompts at the end of the sequence: PT = {PT−R;PR} (i.e.

explicitly use R new prompts).
Freeze: Previous task prompts in the pool PM .
Train: New prompts PR, all keys KM+R (to learn global inter-task selection), query
adaptor fQA, and classifier fc.

18

Chapter 4

Experiments

4.0.1 Benchmark Details

Datasets. We evaluated our method on well-known action recognition datasets:

(i) activity recognition on the NTU RGB+D dataset [39]; and (ii) hand gesture

recognition on the SHREC-2017 dataset [40]. As we introduce a new problem setting

in human action recognition, we contribute two new benchmarks to the community

for this setting, on the NTU RGB+D and SHREC-2017 datasets.

For the NTU RGB+D dataset, we divide the 60 daily action categories into 40

base classes, learning the remaining 20 classes in subsequent user sessions. In few-shot

learning parlance, our protocol is 4-task 5-way 5-shot, i.e. 5 novel classes using 5

user training instances in 4 user sessions. Each input 3D skeleton sequence has 64

temporal frames, each consisting of 25 body keypoints, such that x ∈ R64×25×3. We

use the spatio-temporal GCN, CTR-GCN [7], as the architecture for NTU RGB+D,

where we choose the joint input modality for better interpretability of prompt tuning.

For SHREC-2017, we divide the 14 fine-grained hand gesture classes into 8 base

classes and 6 classes learned in subsequent user sessions. This is done in a 3-task

2-way 5-shot protocol, i.e. 2 novel classes using 5 user training instances in 3 user

sessions. For each input instance of SHREC-2017, we use 8 temporal frames each

having 22 hand keypoints, such that input x ∈ R8×22×3. We use a fully-connected

graph transformer backbone, DG-STA [6] for SHREC-2017. We select DG-STA due

to easily reproducible code and to check if our method POET works equally well

19

4. Experiments

across graph convolutional networks and graph transformers. The base model in

NTU RGB+D is trained on 26,731 samples. However, the base model for SHREC

2017 is a relatively lightweight backbone trained on only 1146 samples (which could

be sensitive to the training samples provided in user sessions). Hence, we conduct

experiments on 5 sets of the 5 user samples, and report mean and standard deviation

across all 5-shot runs for this benchmark.

Evaluation Metrics. Following earlier work in similar settings [31], we report:

(i) Average accuracy ‘Avg ’ of all classes seen so far, and (ii) Harmonic Mean AHM

between ‘accuracy only on old classes’ and ‘accuracy only on new classes’ after

learning each new user session. Note that the average accuracy tends to be biased

towards the base session T (0) performance due to more number of base classes. A

higher AHM implies better stability-plasticity trade-off between new task performance

and old tasks’ retention. A lower ‘Avg’ and higher AHM may indicate better plasticity

to a new task. Unlike many earlier CIL efforts, we report accuracies for both old and

new classes in each user session for transparency.

Implementation Details. We observe that a key source of forgetting in our

setting is from the classifier as the logits tend to become heavily biased towards the

few-shot samples of new classes. We use a cosine classifier for activity recognition

experiments on CTR-GCN. For gesture recognition on the lightweight DG-STA, we

use a standard fully-connected layer as classifier, but freeze old class parameters

in the classifier by zeroing their gradients. We attach prompts after the 1st layer

of DG-STA and 1st CTR-GC block of CTR-GCN. For both datasets, we have

equal or higher learning rates in user sessions when compared to the base model’s

training in order to accommodate new knowledge in the model (for better plasticity).

For exact implementation details (including learning rates, epochs, hyperparameter

analysis), see Appendix A. In earlier efforts that more generally tune prompts for

class-incremental learning [41, 46, 48, 49, 50], it is common to rely on an ImageNet21K

pretrained ViT [37] or CLIP [33] as the backbone. However, such backbones do not

exist for skeleton-based human action recognition. Our base feature extractor is hence

trained on the base session dataset itself without any pretraining, making this one of

the first efforts of prompt tuning without extensive pretraining (scale difference of

3-5 times lower order of magnitude).

Results. Since there are no existing baselines for our proposed setting in skeletal

20

4. Experiments

action recognition, we compare our method by adapting continual learning (CL)

baselines to skeletal data in Sec 4.0.2, Tables ??, 4.2. We first compare POET

with prompt tuning based class-incremental learning (CIL) approaches originally

designed for images (L2P [50], CODA-P [41], APT [3]) and find that it has very

low performance on new classes as they do not update their query function. We

find any fine-tuning or knowledge distillation based approaches (LWF [25], EWC[17],

LUCIR [15]) lead to rapid forgetting of base knowledge as the model overfits to user’s

few-shots. We also compare with multiple variants of Feature Extraction (FE) to

check if prompts truly have merit (POET=FE+Prompts) and provide upper bound

baselines. In Sec 4.0.3, we first show the importance of prompts in POET by removing

the prompts. We discuss the value of our coupled optimization, query function update

and ordered key index selection in our prompt selection ablation Tab 4.3. We also

study the impact of proposed additive prompt tuning as compared to other possible

prompt attachments fp in Tab 4.4.

4.0.2 Comparison with State-of-the-Art

POET sets the SOTA on existing prompt tuning works (Tab ??,4.2). We

adapt three standard CIL works that prompt tune ViTs for images - L2P [50], CODA-

P [41] and APT [3] to our setting. L2P and CODA-P share prompt pool across

tasks (similar to us), whereas APT learns task-specific prompts. L2P decouples the

optimization of keys from the prompt pool and concatenates the selected prompts.

Since concatenation is not defined for our modality and GNN backbone, we show

results with two adaptations (i) concatenation along temporal dimension (L2P*,

CODA-P*), and (ii) concatenation along a rolled out spatio-temporal dimension in

L2P**, CODA-P** followed by a linear layer remapping to the required original

dimensionality. CODA-P [41] couples keys with the prompt pool by using a cosine

similarity weighing over all prompts in the pool, forming a ‘soft prompt selection’,

different from our ‘ordered hard prompt selection’. In APT, we train prompt-classifier

pairs for each continual task separately (ˆ denotes task-specific), and use task identity

at test time. See adaptation details in Appendix A. These methods by design rely on

a strongly pretrained query function (ImageNet 1k or 21k) which does not require

updates, perhaps explaining the poor ‘New’ class performance in our setting.

21

4. Experiments

Standard Continual learning Baselines. We compared with two well established

knowledge-distillation approaches, learning without forgetting (LWF) and LUCIR.

Both of them perform poorly on both old and new classes. EWC [17] learns better

on new but does not retain old knowledge. We conclude that any CL method that

fine-tunes the backbone feature representation in subsequent sessions t > 0 will not

be able to retain base/old class knowledge (a finding consistent with existing FSCIL

literature for images [9, 43]). We also adapt and compare with one of the latest FSCIL

baselines ALICE [31], originally developed for image classification benchmarks on

our gesture recognition benchmark in Table 4.2. Note the high retention of base task

performance (due to non-parametric classifier on top of frozen base model). However,

it suffers from poor plasticity and adaptation to new classes. This is the issue of

feature-classifier misalignment that we hoped to alleviate through prompt tuning.

Fine-tuning (FE) and Feature Extraction (FE) Baselines. We implement

standard continual learning baselines to understand stability-plasticity trade-offs

in our new benchmarks. In all these baselines, we expand the classifier output

dimension by N new classes. In ‘FT (Fine-Tuning)’, we tune all model parameters

on cross entropy loss of new task. FSCIL is challenging for this modality as old task

performance sharply reduces to zero starting from US(1) as model overfits to user’s

few-shots. ‘FE (Feature Extraction)’1 differs from FT as we freeze the feature

extractor to preserve base knowledge. This serves as a competitive baseline in our

findings. In ‘FE, frozen’, we zero out the gradients of previous class weights in

classifier fc to prevent forgetting from the classifier. ‘FE’ and ‘FE, Frozen’ exhibit

different New-Old trade-offs in Tables ??, 4.2 because the scale of pretraining is

different (gesture more lightweight than activity).

Upper-bound baselines, top section Tables ??, 4.2. In ‘Joint (oracle)’

experiment, we train on all task data at the same time in a multi-task (non-sequential)

manner. Training POET in a multi-task manner (Joint POET) outperforms Joint

oracle by 3.7% demonstrating the strength of our approach. In addition to these

generalist upper bounds, we point out that ‘FE, Task-specificˆ’ is a competitive

specialist upper bound. In this, we perform feature extraction from base model to

each task individually, storing separate task-specific models (US(0) → US(i), i > 0).

POET outperforms ‘New’ accuracy compared with this baseline, achieving a forward

1‘FE’ is the same as ‘w/o prompts’ in Table 4.3. We highlight key baselines in gray color.

22

4. Experiments

Table 4.1: Activity Recognition Results (%, ↑), Comparison with SOTA:
NTU RGB+D [39] dataset on CTR-GCN [7] backbone. After training on each
incremental task, we report Average of all classes seen so far (‘Avg’). We also report
(i) AHM , (ii) only old classes accuracy (‘Old’), (iii) only new classes accuracy (‘New’)
in the last session. Numbers in brackets are wrt POET. POET achieves the best
stability-plasticity trade-off across all baselines indicated by the AHM = 58.3%. POET
also has the highest Avg across all user sessions outside of upper bound baselines in
orange.

UB(0) US(1) US(2) US(3) US(4)

Method Base Avg Avg Avg Old New Avg AHM

Upper Bound Baselines

Joint (Oracle) 88.4 79.0 71.0 66.8 63.5 (+4.3)

Joint POET (Oracle) 67.2 (+8.0)

FE, Task-Specificˆ 88.4 59.1ˆ 39.4ˆ 45.5ˆ 72.1 (+12.8) 38.8 (-18.6) NA NA

FE+Replay 88.4 81.0 74.9 71.9 29.7 (-29.6) 72.8 (+15.4) 69.2 (+10.0) 42.2 (-16.1)

Linear Probing Baselines

(Stability-plasticity trade-offs of backbone)

FE 88.4 74.5 66.3 49.5 39.2 (-20.1) 46.8 (-10.6) 39.9 42.7 (-15.6)

FE, Frozen 88.4 78.1 62.3 41.7 29.5 25.5 29.2 27.4

FE+Replay† 88.4 73.1 60.4 61.6 60.3 28.8 57.7 39.0

FT 88.4 6.8 6.0 3.8 0.0 25.1 2.1 0.0

Standard Continual Learning Baselines

LWF [25] 88.4 8.7 3.2 2.9 0.0 (-59.3) 23.1 1.9 0.0

EWC [17] 88.4 6.4 6.2 3.1 0.0 (-59.3) 28.9 2.4 0.0

Experience Replay 88.4 34.1 46.4 46.3 50.3 (-9.0) 25.4 48.3 33.8

Experience Replay† 88.4 7.0 6.0 10.0 10.1 32.2 12.0 15.4

LUCIR [15] 87.9 2.2 2.0 2.7 1.3 (-58.0) 2.5 1.4 0.0

Continual Prompt Tuning Baselines

(Adapted from Image Classification)

CODA-P [41]* 87.4 76.3 68.4 59.7 60.9 (+1.6) 0.7 (-56.7) 55.7 (-3.5) 1.3

CODA-P [41]** 87.6 4.5 28.8 0.6 35.4 0.7 31.1 1.3

L2P [50]* 88.6 78.5 70.7 63.7 61.2 (+1.9) 0.0 (-57.4) 56.2 (-3.0) 0.0

L2P [50]** 84.7 2.7 2.8 2.6 2.4 0.4 2.2 0.6

APT [3]ˆ 86.6 29.2ˆ 30.6ˆ 35.9ˆ NA 35.0 (-22.4) NA NA

POET (Ours) 87.9 82.8 76.8 68.6 59.3 57.4 59.2 58.3

transfer on each t > 0. This indicates that prompt tuning benefits New performance

due to the pre-existing knowledge in the shared knowledge pool. Avg in sessions

0 < t < 4 indicates New for task-specificˆ .

Experience Replay Baselines, Tab ??. Even though our privacy-aware setting

prohibits previous data replay, we compare with ‘Experience Replay’ (store and

replay 5-samples of base and incremental sessions) and ‘Experience Replay†’ (store

only 5-shots of incremental sessions) for completeness. ‘FE+Replay’ serves as the

best upper bound (even better than Experience Replay as we are freezing backbone

in addition to replay). It is noteworthy that POET (which is FE+prompts) learns

an implicit ‘data-free’ form of prompt pool memory, and yet has a better AHM

23

4. Experiments

Table 4.2: Gesture Recognition Results (%, ↑), Comparison with SOTA:
SHREC 2017 [40] dataset on DG-STA [6] graph transformer backbone. Reporting
mean and standard deviation across 5 runs. Bracket accuracy difference is wrt POET.
POET achieves best AHM = 56.2%.

UB(0) US(1) US(2) US(3)

Method Base Avg Avg Old New Avg AHM

Joint (Oracle) 88.8 79.4 ± 0.7 77.3 ± 2.1 70.9 ± 1.2 62.4 ± 0.4

FT 88.8 20.3 ± 0.8 12.4 ± 2.1 0.0 85.8 ± 9.4 13.4 ± 1.5 0.0

FE 88.8 62.7 ± 2.4 41.9 ± 6.9 17.5 ± 5.1 77.3 ± 8.8 26.8 ± 3.4 28.5 ± 6.4

FE, Frozen 88.8 71.3 ± 1.9 61.4 ± 2.7 44.7 ± 3.2 (-1.2) 54.5 ± 6.7 (-17.9) 46.2 ± 2.7 49.1 ± 4.3

LWF [25] 88.8 20.2 ± 1.4 12.5 ± 1.0 0.0 88.4 ± 13.7 13.8 ± 2.1 0.0

L2P [50] 88.8 20.3 ± 5.9 10.5 ± 4.8 8.2 ± 4.0 6.9 ± 8.5 7.9 ± 3.9 7.5 ± 5.5

CODA-P [41]** 87.7 15.6 ± 4.5 11.6 ± 1.9 7.9 ± 1.8 14.1 ± 21.4 8.8 ± 2.4 10.1 ± 3.2

ALICE [31] 92.1 72.4 ± 5.7 63.3 ± 7.6 62.5 ± 6.8 (+16.6) 11.9 ± 9.9 (-60.5) 54.6 ± 6.9 20.0 ± 8.1 (-36.2)

POET (Ours) 91.9 73.2 ± 3.7 61.9 ± 1.8 45.9 ± 2.6 72.4 ± 7.1 50.0 ± 1.6 56.2 ± 1.6

trade-off as compared to explicitly stored and replayed samples from previous classes

in FE+replay.

4.0.3 Ablation Studies and Analysis

Importance of prompts in POET. First, we consider the contribution of prompt

offsets in POET. Since we only attach prompts to address continual learning in

POET, removing prompts gives the Feature Extraction (FE) baseline (‘w/o prompts’,

Table 4.3) where the backbone is frozen after base training and only the classifier is

expanded and updated on classification loss of new classes. POET improves both,

‘Old’ (↑ 20.1%) and ‘New’ (↑ 10.6%) marked in blue.

Prompt Selection Mechanism. In Table 4.3, we investigate our prompt selection

mechanism and optimization choices. The ‘w/o coupled optim.’ experiment is a

direct comparison of our additive prompt attachment with the de-coupled optimization

in L2P [50]. Updating key parameters but keeping only query adaptor QA frozen

after base session training (‘w/o QA update’) reduces ‘New’ only performance of

Task 4 by 4.6% as the query function stays fixed at base session learning and is not

discriminative towards new classes. ‘W/o clustering loss’ from Eq. 3.6, performance

drops starting from UB(0) itself. The only difference between the experiment ‘w/o

sorting’ and ‘POET (M=T)’ is that we do not sort the cosine similarity before

selecting top T indices (same as Fig 3.3). The 10.8% ↑ in ‘New’ performance validates

that our prompt selection mechanism is learning to chose a distinct temporal ordering

for prompt tuning of new input samples. With pool expansion (‘POET, M > T ’),

24

4. Experiments

Table 4.3: Prompt Selection Mechanism Analysis (%, ↑): POET on NTU
RGB+D dataset. ‘w/o’ denotes removing that component from our method POET,
numbers in brackets are wrt POET (M = T) experiment. ‘Avg’ accuracy metric is
biased towards ‘Old’ classes accuracy, AHM is a good indicator of trade-off between
‘New’ and ‘Old’.

UB(0) US(1) US(2) US(3) US(4)

Method Base Avg Avg Avg Old New Avg AHM

w/o prompts 88.4 74.5 66.3 49.5 39.2 (-20.1) 46.8 (-10.6) 39.9 42.7

w/o coupled optimization 88.0 82.8 75.3 65.8 56.5 (-2.8) 51.3 (-6.1) 56.1 53.8

w/o clustering loss 85.5 (-2.4) 81.6 74.3 64.5 62.0 18.2 (-39.2) 57.0 28.1

w/o QA update 87.9 82.8 77.4 69.1 59.4 52.8 (-4.6) 58.7 55.9

w/o sorting 88.2 82.2 75.2 68.8 59.9 46.6 (-10.8) 58.8 52.4

POET (M > T) 87.9 82.7 77.2 68.8 60.3 (+1.0) 54.4 (-3.0) 59.8 57.2

POET (M = T) 87.9 82.8 76.8 68.6 59.3 57.4 59.2 58.3

we get more flexibility in the stability-plasticity trade-offs depending on how many

new prompts we attach. For R = 6, ‘Old’ retention is improved. In Table 4.3, we add

T prompts, keeping prompt attachment constant and only vary prompt selection.

Prompt Attachment Mechanism. In Table 4.4, we keep our end-to-end optimization

and ordered prompt selection as a constant and ablate prompt shape and attachment

operator fp(.). Drawing a parallel with transformers which concatenate prompts

along the token dimension, we conduct experiments concatenating prompts along

the (i) temporal dimension of the skeleton input feature embedding Xe (‘CONCAT

temporal’) and (ii) feature dimension Ce (‘CONCAT feature’). We find that addition

works better than concatenation and cross attention. We also verify our hypothesis

that selecting the same number of prompts as the input temporal dimension (T = 64

for NTU RGB+D and T = 8 for SHREC-2017) yields better results as compared

to adding a single prompt frame to each input embedding frame (‘Addition T ′ = 1’

experiment).

25

4. Experiments

Table 4.4: Prompt Attachment Analysis (%, ↑): Adding #prompts same as
#input frames (T=64) is the best prompt attachment choice fp(.) (results on NTU
RGB+D).

UB(0) US(1) US(2) US(3) US(4)

Method Base Avg Avg Avg Old New Avg AHM

CONCAT temporal dim., T ′ = 64 88.6 70.3 62.4 49.8 33.6 50.5 35.1 40.3

CONCAT feature dim., T ′ = 64 87.7 82.4 75.5 66.9 57.1 41.5 56.0 48.1

Cross Attention, T ′ = 64 88.1 2.2 2.0 1.8 0.0 19.8 1.65 0.0

ADD, T ′ = 1 88.7 73.3 62.7 45.5 33.7 47.0 34.8 39.3

ADD, T ′ = 64 (Ours) 87.9 82.8 76.8 68.6 59.3 57.4 59.2 58.3

26

Chapter 5

Discussion

5.0.1 Differences From Existing Continual Prompt Tuning

Works

1. Enable prompt tuning w/o extensive pretraining As explained in Section

3.2.2, we optimize prompts, keys, and query adaptor in an end-to-end coupled

optimization in order to update the query on unseen classes. Before us, CODA-P

[41] also coupled their keys with the prompt pool. However, their coupling was

done by using the cosine similarity to weigh all prompts in the pool, forming

a ‘soft prompt selection’ instead of our ‘ordered hard prompt selection’. Most

importantly, these methods use a well pretrained query function which does not

require updates. Finally, due to our lightweight backbone, there is significant

forgetting from the classifier and we follow Algorithm 1 line 9 to mitigate the

same.

2. Spatio-temporal prompt offsets for GNNs: Before us, PIVOT [46] trains

separate spatial and temporal prompts on a pretrained CLIP for video continual

learning. However, our additive spatio-temporal prompt offsets are a simple

plug-and-play for prompt tuning of any GNN architecture, making it invariant

to datasets, backbones and input sizes. POET is also a prompt-only strategy

that does not require additional replay or regularization for continual learning.

27

5. Discussion

5.0.2 Interpreting Prompt Offset Tuning of GNNs

Even though our inspiration for POET came from existing continual prompt tuning

works [3, 41, 49, 50], our additive prompt offsets are open to interpretation. (i) Adding

our selected prompts PT to input feature embedding xe acts like an input-dependent

transformation for spatio-temporal joints. (ii) As our prompts have same size as xe, it

can also be thought of as a learned prompt encoding, bearing similarity with learnable

position encoding works [12, 24, 26]. Our work is different as the purpose of prompt

offsets is to dynamically condition the input for adapting the backbone continually,

instead of learning positions. (iii) It also bears similarity with auto-decoders like

DeepSDF [30] which learn latent codes for each data point (or style, shape) and use

relevant codes along with a frozen decoder at inference.

Moreover, prompt tuning can also be thought of as a parameter isolation technique

for continual learning [28, 34, 35, 38]. In these works, isolated sets of network

parameters are learnt for each continual task, freezing the rest and task-ID is used

to select the relevant set of parameters at inference. Prompts isolate parameters

implicitly since the backbone is frozen and our learnable prompt selection mechasnism

is trained to select the input dependent parameters that are relevant. In this context,

POET’s ordered prompt selection as seen in Fig. 3.3 learns to isolate the relevant

sequence of prompts for each input action sequence.

28

Chapter 6

Conclusion and Future Works

6.1 Conclusion

The problem of continually adapting human action models to new user categories

over time has gained prominence with the rising availability of XR devices. However,

this setting poses unique challenges: (i) the user may be able to provide only a few

samples for training, and (ii) accessing data from earlier sessions may violate privacy

considerations. We hence propose a method based on prompt offset tuning to address

this problem in this work. Prompt tuning to address learning over newer tasks has been

attempted in recent years. However, these works have: (1) typically been designed

for image-based tasks, (2) relied on strongly pre-trained transformer backbones, (3)

required full supervision for new tasks, and (4) exclusively applied prompt tuning to

transformer architectures. This work departs from these four characteristics. Our

work demonstrates that prompt offset tuning is a promising option to evolve and

adapt skeleton-based human action models to new user classes. The careful design

of each component of the proposed methodology finds validation in the promising

results across well-known skeleton-based action recognition benchmarks. Our ablation

studies and analysis corroborate our design choices in our implementation. Looking

ahead, it will be interesting to explore how our approach and its design choices

adapt when a “generalist backbone” trained on a large corpus of action recognition

data becomes accessible. Extending our method for differential privacy is another

interesting direction of future work.

29

6. Conclusion and Future Works

6.2 Broader Impact and Limitations

Privacy-aware human action recognition in extended reality devices: In

order to protect users’ privacy and security in head mounted devices, we incorporate

privacy awareness in our continual learning setup: (i) By not storing any old class

exemplar data or prototypes for replay in continual user sessions. All data is trained in

a session and discarded henceforth. (ii) By using only 3D skeleton joint input modality

for action recognition, we circumvent the visual privacy violation and user identity

revelation in video-based HAR [14, 18, 21]. While we are a privacy-aware continual

learning setting, we do not claim differential privacy and studying differential privacy

in our prompts will be an interesting future work direction.

Data-free adaptation of action models for new user categories: Our key

motivation for a data-free prompt tuning-based action recognition model adaptation

to new categories over time is to maintain privacy of past sessions’ data. However,

this also has other advantages. Firstly, a data-free solution does not require a memory

budget on the edge device for replay of old class data. Secondly, it has become

commonplace to have access to large pre-trained backbones, but there is limited

knowledge and often lack of access to such a dataset for such pre-training. Finally,

prompts via a vector-quantized prompt pool memory offer a compact, learnable

and automatically retrievable bottleneck of task-specific information (like in auto-

decoders). Even if businesses can store and retrain their model on all previous data

to continually adapt to new data, training large models incurs high carbon footprints

[19]. Prompts offer a cost-efficient and low carbon footprint solution to retraining

large models from scratch every time new data of value becomes available. Evaluating

our design choices to large pre-trained models for skeletal data, as and when they

become available, is another direction of future work.

30

Appendix A

Additional Results and Discussion:

Thesis Committee Suggestions

Based on the thesis committee’s suggestions, this section discusses primarily discusses

how our approach POET mitigates catastrophic forgetting in our continual learning

setting, robustness of our benchmarks, and limitations of our proposed approach.

A.0.1 How Does POET Mitigate Catastrophic Forgetting?

In this section we dive deeper into understanding how our proposed Prompt Offset

Tuning methodology mitigates catastrophic forgetting in our few-shot class incremental

setting for action recognition. We report mean and standard deviation across 10

experimental runs (10 sets of few-shots) for robustness ablation. The ‘Old’ only

accuracy gives a direct comparison of the forgetting.

Our classifier expands in each continual session and fine-tuning the entire classifier

on cross entropy loss of new classes leads to erosion of previous class weights in

the classifier. ‘C.U.P.’ refers to our classifier update protocol used to prevent

forgetting from the classifier. We use a cosine normalized classifier for NTU RGB+D

dataset (see Sec. B) which helps mitigate forgetting from the classifier as shown by

the 11.7% ↓ in ‘Old’ class performance of ‘POET w/o C.U.P.’, w.r.t. POET.

In ‘POET w/o Prompts’, we simply remove our prompts altogether, keeping the

cosine normalized classifier to observe the prompt only affect. While ‘Old’ performance

31

A. Additional Results and Discussion: Thesis Committee Suggestions

Table A.1: POET Ablation Table: We exhaustively study the contribution of
various POET components towards mitigating forgetting of old knowledge (Old) as
well as learning new knowledge (New). C.U.P. refers to our classifier update
protocol (cosine normalization).

Prompt Prompt
Selection

Prompt Integration UB(0) US(4)

Ablation (Operator, #Prompts) Base (↑) Old (↑) New (↑) Avg (↑) AHM (↑)

POET (Ours) ✓ ✓ ADD T 87.9 57.2 ± 1.0 55.8 ± 5.9 57.1 ± 1.1 56.3 ± 3.2

Importance of prompts in POET

POET w/o Prompts 87.9 60.8 ± 0.5 (+3.6) 18.4 ± 1.0 (-37.4) 57.3 ± 0.4 28.3 ± 1.1

POET w/o C.U.P. ✓ ✓ ADD T 89.2 45.5 ± 1.4 (-11.7) 53.6 ± 3.7 (-2.2) 46.2 ± 1.2 49.1 ± 1.5

POET w/o {Prompts, C.U.P.} 88.4 40.0 ± 1.6 (-17.2) 51.0 ± 2.3 (-4.8) 44.8 ± 1.1 40.9 ± 1.4

POET w/o {Prompts, C.U.P.,
Freezing}

88.4 0.2 ± 0.5 (-57.0) 36.0 ± 10.1 (-19.8) 3.2 ± 0.8 0.3 ± 1.0

Impact of Ordered Selection

POET w/o Ordered Selection ✓ ✓ ADD T 88.2 59.9 ± 1.1 (+2.7) 52.5 ± 4.2 (-3.2) 59.3 ± 0.9 55.9 ± 2.2

Relative importance of our Prompt
Selection versus Prompt Integra-
tion

POET Selection w/o Addition ✓ ✓ Cross-Attend T 82.9 57.0 ± 2.0 (-0.2) 31.0 ± 4.8 (-24.8) 54.9 ± 1.8 39.9 ± 4.0

POET Addition w/o Selection ✓ Standalone ADD T 88.6 58.8 ± 3.2 (+1.6) 54.0 ± 3.4 (-1.8) 58.4 ± 1.2 56.2 ± 2.2

POET Addition w/o Selection ✓ Standalone ADD 1 88.2 56.9 ± 1.1 (-0.3) 54.7 ± 5.3 (-1.1) 56.7 ± 1.2 55.7 ± 3.1

POET w/o {Selection, Addi-
tion}

✓ Standalone Cross-Attend T 43.3 25.6 ± 1.3 (-31.6) 5.0 ± 4.1 (-50.8) 23.9 ± 1.2 7.8 ± 4.9

is slightly better, the backbone doesn’t learn new knowledge as shown by 37.4% ↓ in

‘New’ class performance. If we remove both prompts and classifier update protocol

‘POET w/o Prompts, C.U.P.’, we get vanilla Feature Extraction without any

freezing or regularizing of classifier weights. It suffers in both ‘Old’ and ‘New’ classes.

Further, as highlighted in the main paper as well, freezing our backbone during

the continual user sessions t > 0 is of prime importance given our few-shot setting

where the overfitting to few training samples exacerbates the overwriting of existing

knowledge, leading to a complete washout of previous knowledge as seen by the 0.2%

‘Old’ performance accuracy.

Notice, in the absence of our ordered prompt selection, ‘New’ performance

suffers by 3.3% as the same prompts are selected and updated every time. In POET,

we ensure the prompts get selected in the right temporal sequence, learning new

temporal semantics for new classes hence enabling better adaptation to new classes.

Finally, within prompts, we replace our prompt selection mechanism completely

by standalone T prompts or a single prompt. This shows how POET’s spatio-

temporal temporally consistent selection mechanism helps learn new orderings of T

prompts as compared to attaching prompts without selecting them using an input

dependent query. We also use cross attention along the temporal dimension

32

A. Additional Results and Discussion: Thesis Committee Suggestions

as attachment operator fp(.) and find addition consistently outperforms. ‘POET

w/o Selection, Addition’ experiment shows the importance of our design choices

as unsuitable selection and integration mechanisms can be catastrophic to continual

learning performance.

A.0.2 Backward Forgetting Metric (BWF)

Table A.2: Backward Forgetting Metric (%, ↓): Here we present BWF after
user session US(4). POET significantly mitigates forgetting on old classes.

US(4)

Method Forgetting (↓)

FE+Replay -0.90 ± 0.65

FE 52.83 ± 2.09

FT 54.08 ± 9.17

FE, Freeze 34.02 ± 0.83

POET (Ours) 29.91 ± 0.34

In addition to these results, we report the average forgetting metric Fk based on

existing works in continual learning [4, 5] after the model has been trained continually

on all user sessions (after US(4)) as:

Fk =
1

k − 1

k−1∑
j=1

fk
j (A.1)

where fk
j is the forgetting on previous task ‘j’ after the model is trained with all

the new classes up till task k:

fk
j = max

l∈{1,...,k−1}
al,Bl,j

− ak,Bk,j
(A.2)

In effect, this is the same as difference in performance of each previous task ‘j’ at the

end of US(4) from when the task was first introduced (‘New’ in US(j)).

33

A. Additional Results and Discussion: Thesis Committee Suggestions

5 10 15 20 40

Few Shots per Class to Train in Continual Sessions

10

20

30

40

50

60

A
ve

ra
ge

 C
la

ss
 A

cc
ur

ac
y

(A
V

G
),U

S(4
)

Effect of # Training Few Shots on Average Accuracy
POET
Feature Extraction

(a) Average Accuracy (AVG)

5 10 15 20 40

Few Shots per Class to Train in Continual Sessions

0

10

20

30

40

50

60

H
ar

m
on

ic
 M

ea
n

A
cc

ur
ac

y,
U

S(4
)

Effect of # Training Few Shots on AHM
POET
Feature Extraction

(b) AHM

Figure A.1: Effect of variation in number of few-shot samples used for training in
user sessions US(1)-US(4) on stability-plasticity trade-offs in our few-shot continual
setting.

A.0.3 Role of Number of Few-Shots in Continual Learning

We also vary the number of few shots used for training per new class in continual

sessions in Fig A.1. The Feature Extraction baseline reduces to zero AHM because

the ‘Old’ class performance reduces to zero. We find our prompt offsets in POET

(=FE+Prompts) significantly help retain old class performance as compared to

Feature Extraction, without any explicit forgetting measure due to our ordered

prompt selection and clustering loss.

It can be noted that our method is particularly well suited for very few training

samples per user (< 15) and may require additional explicit regularization or freezing

of prompt pool to mitigate forgetting for large number of training samples (> 20).

A.0.4 Robustness of Our Benchmarks: Reporting Mean

Across 10 Unique Sets of Few-Shots

In this section, we evaluate the robustness of our main results on NTU RGB+D

activity recognition benchmark 4.1 to the choice of few-shots used for training each

new class. In Table 4.1, we had reported results for a specific set of few-shots used

across experiments. In Table A.3, we report mean and standard deviation across

10 unique sets of few-shots used for training. We find consistent performance and

34

A. Additional Results and Discussion: Thesis Committee Suggestions

trends in both the tables. We note high standard deviation only in the ‘New’ accuracy

as these classes are trained using only 25 unique samples (5 classes, 5 shots each)

and ‘New’ performance depends on the choice of few-shots used. We had already

reported mean and standard deviation across 5 runs for the hand gesture recognition

benchmark in Table 4.2.

Table A.3: Activity Recognition Results (%, ↑), Comparison with SOTA: NTU RGB+D [39] dataset
on CTR-GCN [7] backbone. After training on each incremental task, we report Average of all classes seen so far
(‘Avg’). We also report (i) AHM , (ii) old classes accuracy (‘Old’), (iii) new classes accuracy (‘New’) in the last session.
We report Mean and STD across 10 sets of 5-shots. POET achieves the best stability-plasticity trade-off across all
baselines indicated by the AHM = 56.3%. POET also has the highest Avg across all user sessions outside of upper
bound baselines in orange.

UB(0) US(1) US(2) US(3) US(4)

Method Base (↑) Avg (↑) Avg (↑) Avg (↑) Old (↑) New (↑) Avg (↑) AHM (↑)
Upper Bounds

Joint (Oracle) 88.4 79.0 71.0 66.8 63.5

Joint POET (Oracle) 67.2

FE, Task-Specificˆ 88.4 70.1 ± 2.6 52.5 ± 5.8 44.8 ± 5.0 70.3 ± 2.1 46.7 ± 2.0 NA NA

FE+Replay 88.4 82.4 ± 1.1 78.2 ± 1.2 74.5 ± 1.2 73.1 ± 1.0 43.3 ± 3.3 70.6 ± 1.2 54.3 ± 2.6

Continual Linear Probing

FE 88.4 72.0 ± 1.1 60.4 ± 2.4 47.7 ± 2.1 40.0 ± 1.6 51.0 ± 2.3 40.9 ± 1.4 44.8 ± 1.1

FE, Frozen 88.4 76.1 ± 1.0 52.4 ± 4.1 38.3 ± 2.7 28.4 ± 1.6 22.4 ± 4.5 27.9 ± 1.4 24.8 ± 3.0

FE+Replay† 88.4 72.0 ± 1.5 59.5 ± 4.0 58.7 ± 2.8 56.7 ± 2.5 34.7 ± 5.6 54.9 ± 2.7 42.8 ± 4.4

FT 88.4 6.2 ± 1.4 4.3 ± 1.5 2.8 ± 1.0 0.2 ± 0.5 36.0 ± 10.1 3.2 ± 0.8 0.3 ± 1.0

Standard Continual Learning

LWF [25] 88.4 6.2 ± 1.5 2.8 ± 0.7 3.7 ± 1.3 0.0 ± 0.0 38.9 ± 8.8 3.2 ± 0.7 0.0 ± 0.0

EWC [17] 88.4 6.6 ± 1.5 4.1 ± 1.4 3.1 ± 0.9 0.0 ± 0.0 42.1 ± 9.5 3.5 ± 0.8 0.0 ± 0.0

Experience Replay 88.4 35.1 ± 8.3 50.6 ± 5.0 60.6 ± 5.4 54.6 ± 6.5 43.7 ± 14.6 53.7 ± 7.1 47.8 ± 11.2

Experience Replay† 88.4 6.2 ± 1.5 9.0 ± 2.6 11.2 ± 3.0 10.9 ± 2.6 34.6 ± 7.9 12.9 ± 3.0 16.3 ± 3.5

LUCIR [15] 87.9 4.3 ± 2.1 4.1 ± 1.3 2.7 ± 0.8 0.2 ± 0.4 26.0 ± 9.2 2.3 ± 0.9 0.4 ± 0.8

Continual Prompt Tuning

CODA-P [41]* 87.4 76.1 ± 1.0 66.7 ± 1.3 58.6 ± 2.7 56.5 ± 2.9 0.5 ± 0.4 51.8 ± 2.7 1.1 ± 0.7

L2P [50]* 88.6 78.9 ± 0.1 71.0 ± 1.0 64.2 ± 0.1 62.0 ± 0.7 0.0 ± 0.0 56.8 ± 0.6 0.0 ± 0.0

APT [3]ˆ 86.6 27.3 ± 1.6 30.8 ± 3.4 37.6 ± 2.3 NA 33.4 ± 2.0 NA NA

POET (Ours) 87.9 82.3 ± 0.6 76.8 ± 0.9 68.4 ± 0.7 57.2 ± 1.0 55.8 ± 5.9 57.1 ± 1.1 56.3 ± 3.2

35

A. Additional Results and Discussion: Thesis Committee Suggestions

36

Appendix B

Additional Results

B.1 Analyzing Prompt Tuning Architectural

Choices

B.1.1 Classifier Update Protocol in US(t), t > 0

Existing related work such as in few-shot class-incremental learning learn non-

parametric classifiers by extracting class-mean prototypes, and do not expand the

classifier with any new weights. However, we need to expand and train the classifier

in order to obtain the error gradients for updating the prompts. We observe that

a key source of forgetting is from the classifier as the logits tend to become biased

towards the few-training samples of new classes. For SHREC/DG-STA, we observe

that fine-tuning the entire classifier leads to a significant drop in performance of old

classes (experiment ‘FE’ in Table 4.2 of main paper). This is because the frozen

backbone is trained only on 1146 training samples from the 8 base session classes.

Hence, the SHREC backbone exhibits low stability for retaining old knowledge, when

updated on new data in subsequent sessions t > 0. To alleviate this, we use a simple

classifier update trick wherein after expanding the classifier in every continual session

t > 0, we turn the gradients of the old parameters in the classifier to zero before the

error backpropagation. This trick has also been shown to work in prior continual

prompt tuning works L2P [50], CODA-P [41].

37

B. Additional Results

Table B.1: Experimenting with different classifiers for NTU RGB+D. Here,
we report the task-specific accuracy for each task the model has learnt so far, after
learning every new task. Notice the sharp forgetting of the intermediate ‘New-
Old’ tasks in regular classifier and our improvement using a cosine normalized
classifier. Note, we are using a dynamically expanding parametric classifier in all
experiments.

US(0) US(1) US(2) US(3) US(4)

Activity Base US(0) US(1) US(0) US(1) US(2) US(0) US(1) US(2) US(3) US(0) US(1) US(2) US(3) US(4) Avg

Regular, Freeze 89.2 73.5 72.5 71.3 2.1 63.8 65.3 0.0 0.0 52.9 58.7 0.0 0.0 0.0 48.9 43.1 (-16.1)

Regular, Tune 89.2 80.9 64.9 67.4 22.1 34.4 57.2 6.32 24.3 26.9 45.0 4.6 20.9 13.3 21.4 35.2 (-24.0)

Cosine (Ours) 87.9 84.9 65.3 83.2 56.0 45.8 78.2 36.3 34.5 60.0 71.3 18.5 19.8 46.2 57.4 59.2

We observe that this trick proves sub-optimal in the NTU RGB+D (CTR-GCN)

dataset. In Table B.1, we evaluate performance on each usr session individually after

learning every new user session. We observe that both, freezing (‘Regular, Freeze’)

or finetuning (‘Regular, Tune’) of old class parameters in classifier suffers from

poor stability-plasticity trade-offs. We observe that the intermediate tasks (US(1),

US(2), US(3)) learnt using few shot data particularly suffer severe forgetting as soon

as the next task is learnt. This is not the case for US(0) performance in incremental

sessions t > 0 because the base feature extractor is trained on sufficient data in the

activity benchmark (26,731 samples) and frozen henceforth, retaining performance

on the base task US(0) even in t > 0. We call this the ‘New-old forgetting’. To

address the biasing of logits towards new classes, we replace the main model’s linear

classification layer fc with a cosine normalization classifier θTc as:

p(x) =
exp(η < θTcifg(x) >)

Σjexp(η < θTcjfg(x) >)
(B.1)

where η is a learnable scale parameter we learn in the base session and freeze

in subsequent sessions. Also, in incremental sessions, we initialize the new-class

parameters in the classifier as mean of previous class parameters. Notice the significant

boost in performance across all tasks US(i) in the cosine normalized classifier in Table

B.1.

38

B. Additional Results

B.1.2 Analyzing Where to Attach Prompts

We study the impact of attaching our prompt offsets at different main model layers in

CTR-GCN in Figure B.1. As mentioned in Sec C.0.2, output feature dimensionality

(number of channels) of the first four layers in CTR-GCN is the same, Ce = 64.

We desire that the feature dimension size of the (i) prompt parameters, (ii) key

parameters, and (iii) query adaptor be consistent with the main model feature

embedding dimension at the layer being prompted. Hence, we only prompt the

first four layers for a fair comparison as results may vary with variation in size of

feature dimension being prompted. We created a separate 30% validation set from

the training data of t ≥ 1 classes for this analysis. Our findings in Figure B.1 indicate

that the highest ‘New’ task performance at the end of all four user sessions is achieved

by prompting layer L1. We select layer L1 across all experiments in the paper.

1 2 3 4
Layer

56

58

60

62

64

66

A
cc

ur
ac

y

Old Accuracy
New Accuracy

Figure B.1: Empirical analysis to study the impact of the layer at which our prompt
is attached. Y-axis shows ‘Old’ and ‘New’ classes accuracy after Task 4 (after learning
all 60 classes). We add a prompt of size PT ′ ∈ R64,25,64 to different layers {1, 2, 3, 4}
of CTR-GCN, evaluated on the NTU RGB+D validation set. We select layer L1 due
to its high performance on new classes.

B.2 Additional Results

B.2.1 Impact of Prompts in POET

In Figures B.2 and B.3, we qualitatively study the impact of prompts by remov-

ing prompts from POET (the corresponding feature extraction baselines ‘FE’ for

NTU RGB+D and ‘FE++’ for SHREC). Prior continual learning works rely on

39

B. Additional Results

ImageNet21K pretrained ViT [37] (L2P [50], Dual-P [49], CODA-P [41]) or WebIm-

ageText pretrained CLIP model [33] (S-Prompts [48], PIVOT [46]) for prompt tuning.

In Fig. B.4, we show the significant disparity in scale of pretraining dataset as we use

only base class dataset from the benchmark itself for pretraining and every new user

session sees a non-overlapping set of classes. Despite of this, POET shows promising

results.

𝑈𝑆(")

PO
ET

 (O
ur

s)
FE

 (P
O

ET
 w

/o
 p

ro
m

pt
s)

𝑈𝑆($) 𝑈𝑆(%) 𝑈𝑆(&)𝑈𝐵(')

Figure B.2: Confusion matrices showing the impact of our prompt offsets across 4
user sessions in NTU RGB+D activity recognition benchmark. We compare
confusion across new and old actions in POET and POET w/o prompts ablation.
Starting from 40 default classes in UB(′), we learn new classes {US(1): sneeze, stagger,
fall, touch head, touch chest}; {US(2): touch back, touch neck, nausea, user fan,
punch}; {US(3): kick, push, pat back, point finger, hug}; {US(4): give, touch pocket,
handshake, walk towards, walk away}. Prompts enable retention of the intermediate
‘New-Old’ classes very well, while FE gets heavily biased towards the new classes
(see last 5 columns in each matrix).

B.2.2 Stability-Plasticity Trade-offs via New/Old

performance

In Fig. B.5, we study the average accuracy of only new classes (New) and only old

classes (Old) after every user session in activity recognition benchmark. As stated

in Sec ?? of main paper, we observe that (i) any method that does not freeze the

backbone such as knowledge distillation (LWF and LUCIR), prior-based regularization

methods (like EWC), or vanilla Fine-tuning baselines (FT) completely forget old

40

B. Additional Results

performance from US(1) itself. POET is short of only FE+Replay which is an upper

bound. (ii) Any existing prompt tuning work which does not update their query

function such as L2P, CODA-P, APT in graph (B), is unable to learn new classes

well.

In Fig. B.6, we observe similar trends. Additionally, (i) ALICE retains old

knowledge very well as it does not use a parametric classifier for incremental sessions.

However, ALICE is unable to learn new classes well. We also observe that (ii) DG-STA

backbone has very high plasticity when fine-tuned on new tasks (see New performance

of FT and LWF in graph B). But these baselines while plastic, completely forget old

classes. POET achieves the best stability-plasticity trade-offs (indicated by AHM in

main paper).

B.2.3 Robustness to class order in user sessions

The default continual order in which different gesture classes appear till now was:

{US(0): Grab, Tap, Expand, Pinch, Rotate-CW, Rotate-CCW, Swipe-R, Swipe-L}
→ {US(1): Swipe-U, Swipe-D} → {US(2): Swipe-x, Swipe-+} → {US(3): Swipe-v,

𝑈𝑆(")

PO
ET

 (O
ur

s)
FE

++
 (P

O
ET

 w
/o

 p
ro

m
pt

s)

𝑈𝑆($) 𝑈𝑆(%)𝑈𝐵(&)

Figure B.3: Confusion matrices showing the impact of our prompt offsets across
3 user sessions in SHREC 2017 gesture recognition benchmark. US(0) has
hand gestures grab, tap, expand, pinch, rotate clockwise, rotate counter-clockwise,
swipe right, swipe left}. {US(1): swipe up, swipe down}, {US(1): swipe-x, swipe-+},
{US(1): swipe-v, shake}. Even though the classes are fine-grained, the prompts help
retain old class semantics well.

41

B. Additional Results

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Scale of Pretraining (log scale)

SHREC 20
17

 (O
urs

)

NTU R
GB+D

 (O
urs

)

Im
ag

eN
et2

1K
 (L

2P
)

CLIP
 (P

IV
OT)P

re
tra

in
in

g
D

at
as

et 1.1e+03

2.7e+04

1.4e+07

4.0e+08

Scale of Pretrained Backbone Dataset

Figure B.4: Scale of pretraining used for the prompt tuning backbones. For (Our)
benchmarks on NTU RGB+D and SHREC 2017, numbers represent the base class training data
used. Our POETs continually learn new actions mitigating catastrophic forgetting, without massive
pretraining, and only rely on prompts.

[t]0.5
UB(0) US(1) US(2) US(3) US(4)

Continual User Sessions Over Time

0

20

40

60

80

Ac
cu

ra
cy

(A)
Performance of Old Classes Across Time

Experiment
POET (OURS)
FE+REPLAY
REPLAY
FE
FE, Freeze
FT
LWF
EWC
LUCIR
CODA-P-ST
L2P-ST

[t]0.5
UB(0) US(1) US(2) US(3) US(4)

Continual User Sessions Over Time

0

20

40

60

80

Ac
cu

ra
cy

(B)
Performance of New Classes Across Time

Experiment
POET (OURS)
FE+REPLAY
REPLAY
FE
FE, Freeze
FT
LWF
EWC
LUCIR
CODA-P-ST
L2P-ST
APT

Figure B.5: Old and New class performance for NTU RGB+D.

[t]0.5
UB(0) US(1) US(2) US(3)

Continual User Sessions Over Time

0

20

40

60

80

Ac
cu

ra
cy

 (M
ea

n)

(A)
Performance of Old Classes Across Time

Experiment
POET (OURS)
FT
FE
FE, Freeze
LWF
L2P-ST
CODA-P-ST
ALICE

[t]0.5
UB(0) US(1) US(2) US(3)

Continual User Sessions Over Time

0

20

40

60

80

100

Ac
cu

ra
cy

 (M
ea

n)

(B)
Performance of New Classes Across Time

Experiment
POET (OURS)
FT
FE
FE, Freeze
LWF
L2P-ST
CODA-P-ST
ALICE

Figure B.6: Old and New class performance for SHREC 2017. Reporting Mean and
STD over 5-sets of user few-shots.

Shake}. In Fig B.7, we swap the base and incremental classes in SHREC benchmark

to a new ordering: {US(0): Swipe-R, Swipe-L, Swipe-U, Swipe-D, Swipe-x, Swipe-+,

Swipe-v, Shake} → {US(1): Grap, Tap} → {US(2): Expand, Pinch} → {US(3):

Rotate-CW, Rotate-CCW}. We find ‘POET’ gives an AV G = 57.3 as compared

to ‘ALICE’, AV G = 55.9 and ‘FE, Freeze’, AV G = 55.3 at the end of 3 user

sessions even though our backbone is now trained on a different set of classes and we

42

B. Additional Results

completely reversed the semantic order in which prompts learn different fine-grained

gesture classes. This demonstrates robustness to variation in continual class order

across tasks.

UB(0) US(1) US(2) US(3)
Continual User Sessions Over Time

20

40

60

80

100

Ac
cu

ra
cy

 (M
ea

n)
57.3

Average (AVG) Across Time
Experiment

POET (OURS)
FT
FE
FE, Freeze
ALICE

Figure B.7: Here, we change the set of classes in each session from the default order
seen before. We report average accuracy of all classes learnt by the model after adding
each new session. New ordering: {US(0): Swipe-R, Swipe-L, Swipe-U, Swipe-D,
Swipe-x, Swipe-+, Swipe-v, Shake} → {US(1): Grap, Tap} → {US(2): Expand,
Pinch} → {US(3): Rotate-CW, Rotate-CCW}.

B.2.4 Ordered Key Index Selection (si)
T
i=1: Qualitative

Results

In Section ?? of main paper, we explained our sorted ordered key index selection

for selecting temporally consistent prompts from the pool. In Figure 3.2 of main

paper, we visualized (si)
T
i=1 ordering statistics at the task-level. In Figure B.8, we

investigate class-wise ordering statistics at inference time, performing inference after

each continual task. We find that the ordering statistics are not only disparate for

different classes, the statistics for a class remain consistent across continual tasks.

The temporal discriminability in these studies further establishes that our learnable

prompt selection mechanism is temporally with the 4D input skeleton. Finally, we

also demonstrate instance-level statistics in Figure B.9 and Figure B.10 as our prompt

mechanism is designed to select relevant (temporal ordered) prompts conditioned on

every input instance. This means that our method does not depend on disparate

43

B. Additional Results

task-wise or class-wise dataset splits and can even be used for online continual learning

settings that do not have clear task boundaries.

44

B. Additional Results

Base, Task 0 Task 1 Task 2 Task 3 Task 4

(8
) S

ta
nd

in
g

U
p

(1
4)

 T
ak

e
O

ff
Ja

ck
et

(4
1)

 S
ta

gg
er

in
g

(4
7)

 N
au

se
a

(5
2)

 P
at

 O
n

Ba
ck

(5
8)

 W
al

k
To

w
ar

ds
An

ot
he

r
(4

9)
 P

un
ch

in
g

Figure B.8: Class-level Ordered Prompt Selection using POET, Task t is same as
US(t): Here, we analyse the ordered prompt selection statistics for our method for different
classes at test time. For each class shown in column 1, we plot the prompt selection order
at test time for each continual model checkpoint (starting from when that class was first
introduced to the continual system and checking after updating the model on new classes
each time). We observe that class-wise selection statistics are retained even after Task
4 (notice the plots for different classes in Task 4). Even for classes introduced as part of
the same task (class 47, Nausea and class 49, Punching both introduced in Task 2), their
ordered prompt selection is unique and consistent even after updating the model on new
data in subsequent continual sessions.

45

B. Additional Results

Ground Truth:
(53) Point Finger at Other Person

Task 4

Ground Truth:
(55) Give Something to Other Person

Task 3

Task 4

Figure B.9: Instance-Level Ordered Prompt Selection using POET: Our proposed
method POET is an input instance-based prompt tuning approach for FSCIL, as the
prompts are selected conditioned on each input instance itself. Hence, here we study
instance-level prediction on the test set. The sample of class Point Finger, class ID 53 is
evaluated after US(3) and US(4) as the class was added to the model in US(3). The sample
of class Give Something, class ID 55 is continually learnt and evaluated after US(4). We
point out the unique ordered key index sequence for the 2 instances, which could have been
easily confused by the model due to their semantic similarity. The ordering matrix for
Point Finger remains consistent across tasks, even after adding 5 new classes in US(4).

46

B. Additional Results

Ground Truth:
(42) Falling

Task 1 Task 2 Task 3 Task 4

Wear a Shoe 3.09

Falling 3.08

Hug 2.92

Wear a Shoe 2.86

Falling 2.76

Walk Towards 2.67

Figure B.10: Instance-Level Ordered Prompt Selection using POET: We also
show a failure case of our proposed approach. After learning the class Falling in US(1),
we evaluate it after every new continual task. Even though it correctly predicts a test set
instance in US(1) and US(2), it tends to get confused by the class Wearing a Shoe at US(3)
and US(4). Notice, this coincides with a disruption in the ordering statistics.

47

B. Additional Results

48

Appendix C

Implementation and Training

Details

C.0.1 Training Details

We use the same hyperparameters across all experiments for the NTU RGB+D activity

recognition benchmark (in Tables ??, 4.3, 4.4 of the main paper, and Supplementary

Table B.1 and Figure B.5). In the SHREC 2017 gesture benchmark also, all our

experiments follow the exact same hyperparameter combination and learning strategy

in Table 4.2 and Figure B.6.

Activity recognition on NTU RGB+D benchmark. In the base session UB(0), we train

the CTR-GCN [7] backbone for 50 epochs with initial LR=0.1. We use a batch size of

64 as in the original paper. Every continual user session US(t) is trained for 5 epochs

with an initial LR=0.1.

Gesture recognition on SHREC 2017. We train DG-STA [6] model in the base session

UB(0) for 300 epochs and initial LR=0.001, using batch size 32 and dropout set to

0.2 (default hyperparameters from the DG-STA paper). It is updated for 30 epochs

in each user session US(t), starting with initial LR=0.01.

We select higher initial LRs in continual sessions t > 0 because starting with a

lower learning rate as compared to base session (as is standard practice in continual

learning to prevent catastrophic forgetting) renders limited plasticity and the model

49

C. Implementation and Training Details

is completely unable to learn new knowledge. Our choice enables learning of new

knowledge from the few user samples, and we can study the model’s stability-plasticity

trade-offs, optimizing for a balance between the two. The continual session learning

rates given above are used to update the (i) the classifier fc, (ii) selected prompts

in P, and (iii) selected keys in K. But for updating query adaptor fQA, we use a

learning rate of 0.01, in t > 0 for both benchmarks. At the same time, we freeze all

other layers in the query model. We find this adapts query adaptor to new tasks

without overwriting existing base knowledge. In each continual session t > 0, we use

a batch size of 25 for NTU RGB+D, as there are 5 new classes each having 5 training

samples (single batch per epoch). Similarly, batch size is 10 for SHREC 2017 with 2

new classes with 5 training samples each. For the clustering loss coefficient in Eq.

3.6, we use λ = 0.1 for all experiments.

Algorithm 3 Initialization & Training of Prompts, t = 0

Input: Model fP (.) = fP
c ◦ fP

g ◦ fP
e (.), pretrained only on base UB(0) data.

Initialize:
1. Main model f as: fe ← fP

e , fg ← fP
g , fc ← fP

c .
2. Prompt pool P = {Pj}Tj=1, Keys K = {kj}Tj=1 from U(0, 1).
2. Query function model fq as: f ′

e ← fP
e , f

′
g ← fP

g . fQA is randomly initialized.
Freeze: Query function layers f ′

g, f
′
e.

for epochs and batch in base dataset (X0
i ,y

0
i)

|D(0)|
i=1 do

1. Get query feature q (Eq. 3.4) ; Compute γ(.) b/w query q and keys K
2. Sort γ(.); Get ordered key index sequence (si)

T
i=1 (Eq. 3.7)

3. Read pool memory P in order (si)
T
i=1 → Get prompt offsets PT

4. Get Xe; Add PT to it (Eq. 3.8); get prediction y from prompted input (Eq.
3.1)

5. Use cross entropy loss (Equation 3.5) to update prompt associated parameters
fQA,K,P and all main model parameters fg, fc, fe.

6. Use clustering loss (Equation 3.6) to update fQA, K.
end
Freeze: Main model feature extractor fg, input embedding layer fe for time t > 0.

50

C. Implementation and Training Details

C.0.2 Base Session UB(0): Prompt Instantiation and

Training

Prompt instantiation, CTR-GCN: CTR-GCN is a spatio-temporal graph convo-

lutional network architecture with 10 multi-scale temporal convolutional (TCN-GCN)

layers followed by an average pool over the spatial and temporal dimensions, and a

final linear classification layer. The output feature dimensionality of the first four

layers (L1-L4) is 64 channels, next four (L5-L8) is 128 and final two layers (L9 and

L10) have 256 channels. An input skeleton sequence has 64 temporal frames, each

consisting of 25 body joints, such that x ∈ R64×25×3.

The input embedding after layer L1 is xe ∈ R64×25×64, such that Ce = 64. We

start from a prompt pool P = {Pj}Tj=1 of size M = T = 64. Each prompt in the pool

Pj ∈ R25×64 is designed to match the spatial and feature dimensions of the input

embedding xe. There are M = 64 keys, each having feature dimension kj ∈ R64.

Query adaptor fQA maps a feature embedding of size 256 (from the last layer of query

model f ′
g) to Ce = 64 for feature dimension compatibility with the keys and prompts.

We select T = 64 prompts from the pool. After instantiating the prompt and key

parameters, we train the prompt pool P, keys K, query adaptor fQA, along with all

main model parameters fg, fc, fe on the base session data D(0) as per Algorithm 3.

Prompt instantiation, DG-STA: DG-STA is a fully connected graph transformer

architecture with multi-head spatial and temporal attention layers. For every input

skeleton hand gesture sequence, we use 8 temporal frames, each having 22 hand

joint coordinates such that input is x ∈ R8×22×3. Output of the transformer’s input

embedding layer fe is xe ∈ R8×22×128. As DG-STA expects a fully connected spatio-

temporal graph across all joints in all frames, this is reshaped to a size xe ∈ R176×128

before passing it to the first attention layer of the transformer. We add our prompt to

this reshaped embedding. We start from a pool of size M = 8 prompts. As DG-STA

is a transformer architecture, the output feature dimensionality remains constant (at

128) and the query adaptor input and output dimensions are the same (Ce = 128).

The base session here is also trained using Algorithm 3.

51

C. Implementation and Training Details

C.0.3 Additional Dataset Details

The NTU RGB+D dataset has been collected from Microsoft Kinect V2 sensors

from three different camera viewpoints by annotating 40 human users. The 60

classes consist of 40 daily action categories (drinking water, reading, writing, etc.), 9

health-related actions (coughing, sneezing, headache, etc.), and 11 mutual actions

(handshaking, pushing another person, walking towards another person, etc.). NTU

RGB+D has 40,320 training and 16,560 testing samples across 60 classes. We use

the first 40 daily action classes as the base model data, and update on 5× 5 = 25

training samples in each of the 4 incremental session. The base model is trained on

26731 training samples from the 40 base classes.

The SHREC 2017 dataset has 14 fine-grained hand gestures captured using the

short-range Intel Real Sense Depth, from 28 human subjects in second-person view.

There are 1980 training and 840 testing samples. The base model for this benchmark

is trained on 1146 training samples from 8 classes, and updated on 2×5 = 10 training

samples in each of the 3 incremental session.

Given the relatively small sizes of both datasets, we follow a class-incremental

setting in our work, viz., our user sessions include new classes over time, not necessarily

new users. Evaluating our work on user-specific continual streams is left as future

work for larger datasets where this is feasible.

Class splits in user sessions. There are two existing continual benchmarks for

3D skeleton-based action recognition: The experimental protocol of NTU RGB+D

based class incremental benchmark [22] involves a single continual session, learning

50 classes in the base session, and 10 new classes in a single-incremental session.

We consider this to be limiting and too simplistic to study our problem setting on.

Moreover, their code is not publicly available. On the other hand, the more recent

data-free class incremental learning for hand gesture benchmark [1] learns 8 classes in

base session and updates the model on a single class over 6 incremental sessions. We

believe that this too does not lend itself to our setting, when there are only 5-shots

for training each continual class and the base model is trained on small-scale data.

52

C. Implementation and Training Details

C.0.4 Adaptation of Baselines to Problem Setting

Adapting Learning to Prompt (L2P): We experiment with selecting T ′ = 4

and T ′ = 64 (same as POET) for this comparison on CTR-GCN backbone. We find

the results with 4 prompts marginally better, hence we report those in Table 3 of

main paper. We experiment with both temporal concatenation and spatio-temporal

concatenation followed by remapping. For DG-STA, we select 8 prompts from a pool

of size M = 10, each prompt (22, 128); and concatenate this prompt of size (8, 22,

128) along the spatio-temporal dimension 176 of the input embedding (176, 128). We

map this back to (176, 128) using a fully connected layer. In experiments where we

remap using FC layer, we update this layer as well in future incremental sessions. To

update the expanded classifier, we make logits of previous classes -inf, same as the

classifier training protocol used in L2P, Dual-P and CODA-P.

Adapting CODA-P: For activity recognition on CTR-GCN backbone, we construct

a 4 dimensional CODA-prompt of size (100, T’, 25, 64), such that the prompt

component dimension of 100 gets collapsed after weighing and we can concatenate

prompt of size (T’, 25, 64) along the temporal or rolled out spatio-temporal dimension

(same as L2P). The size of memory buffer (T’) is kept consistent with L2P experiments.

For gesture recognition on DG-STA backbone, [41] tunes a ViT-B/16 pre-trained

on ImageNet-1K architecture instead of prompt tuning. This refers to concatenating

half of the prompt to K and V of the MSA layer instead of concatenating along the

token dimension. However, we don’t have the luxury to modify the input embedding

size or assume that the backbone is a transformer. Also for a fair comparison with

L2P, we concatenate a fixed sized prompt to the input embedding and use a fully

connected layer to map the feature dimension back to default input embedding size

of (176, 128). Hence, sizes are as follows: initial prompt size (100, 5, 128), Attention

(100, 128), Key (100, 128), each have 100 prompt components. After alpha weighting,

fixed sized prompt P (5, 128) gets concatenated along joint dimension. We don’t

update query adaptor in this experiment. We implement all loss functions, including

the orthogonality loss as is. Also, note that we attach prompts only at the input

embedding layer for fair comparison of the prompting strategy.

Adapting ALICE [31]: For training the base session, we add a projection head

to the feature extractor before the classification layer. Like the paper, we use two

53

C. Implementation and Training Details

augmentations of every input and losses from the two augmentations are averaged

before backpropagation. We use angular penalty for training the classifier. After

base session learning, the projection head and classification layer are discarded, only

learning feature extractor. Next, we use cosine distance and class-wise mean to

generate class-prototypical feature vectors from the feature extractor’s output. These

prototypes are used for nearest mean classification. For incremental steps, no training

is done. Only new class means are computed and evaluation is performed.

Adapting LUCIR [15] and EWC [17]: We initialize model from previous check-

point, such that classifier has random weights for new classes and previous classifier

weights are copied over to previous class parameters in the classifier. Cross entropy

loss is computed between logits from all the classes and current task ground truth

labels. All regularization loss terms are implemented as proposed in their respective

papers. For LwF [25], we use a λ = 1.0.

54

Bibliography

[1] Shubhra Aich, Jesus Ruiz-Santaquiteria, Zhenyu Lu, Prachi Garg, K J Joseph,
Alvaro Fernandez, Vineeth N Balasubramanian, Kenrick Kin, Chengde Wan,
Nicati Cihan Camgoz, Shugao Ma, and Fernando De la Torre. Data-free class-
incremental hand gesture recognition. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, 2023. 1, C.0.3

[2] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propa-
gating gradients through stochastic neurons for conditional computation. arXiv
preprint arXiv:1308.3432, 2013. 3.2.2

[3] Benjamin Bowman, Alessandro Achille, Luca Zancato, Matthew Trager, Pramu-
ditha Perera, Giovanni Paolini, and Stefano Soatto. a-la-carte prompt tuning
(apt): Combining distinct data via composable prompting. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
14984–14993, 2023. 2.0.2, 4.0.1, 4.0.2, 4.1, 5.0.2, A.3

[4] Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS
Torr. Riemannian walk for incremental learning: Understanding forgetting and
intransigence. In Proceedings of the European conference on computer vision
(ECCV), pages 532–547, 2018. A.0.2

[5] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed
Elhoseiny. Efficient lifelong learning with a-gem. arXiv preprint arXiv:1812.00420,
2018. A.0.2

[6] Yuxiao Chen, Long Zhao, Xi Peng, Jianbo Yuan, and Dimitris N Metaxas.
Construct dynamic graphs for hand gesture recognition via spatial-temporal
attention. In Proceedings of the British Machine Vision Conference (BMVC),
2019. (document), 3.2.1, 4.0.1, 4.2, C.0.1

[7] Yuxin Chen, Ziqi Zhang, Chunfeng Yuan, Bing Li, Ying Deng, and Weiming
Hu. Channel-wise topology refinement graph convolution for skeleton-based
action recognition. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 13359–13368, 2021. (document), 4.0.1, 4.1, A.3, C.0.1

[8] Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford,

55

Bibliography

and Ilya Sutskever. Jukebox: A generative model for music. arXiv preprint
arXiv:2005.00341, 2020. 3.2.4

[9] Songlin Dong, Xiaopeng Hong, Xiaoyu Tao, Xinyuan Chang, Xing Wei, and
Yihong Gong. Few-shot class-incremental learning via relation knowledge distilla-
tion. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pages 1255–1263, 2021. 2.0.3, 4.0.2

[10] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020. 3.2.1

[11] Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer
networks to graphs. arXiv preprint arXiv:2012.09699, 2020. 3.2.1

[12] Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Graph neural networks with learnable structural and positional
representations. In International Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=wTTjnvGphYj. 3.1.1, 3.2.1, 5.0.2

[13] Michael Hersche, Geethan Karunaratne, Giovanni Cherubini, Luca Benini, Abu
Sebastian, and Abbas Rahimi. Constrained few-shot class-incremental learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9057–9067, 2022. 2.0.3

[14] Carlos Hinojosa, Miguel Marquez, Henry Arguello, Ehsan Adeli, Li Fei-Fei,
and Juan Carlos Niebles. Privhar: Recognizing human actions from privacy-
preserving lens. In European Conference on Computer Vision, pages 314–332.
Springer, 2022. 1, 6.2

[15] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a
unified classifier incrementally via rebalancing. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 831–839, 2019.
4.0.1, 4.1, A.3, C.0.4

[16] Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie,
Bharath Hariharan, and Ser-Nam Lim. Visual prompt tuning. In European
Conference on Computer Vision, pages 709–727. Springer, 2022. 2.0.1

[17] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume
Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka
Grabska-Barwinska, et al. Overcoming catastrophic forgetting in neural networks.
Proceedings of the national academy of sciences, 114(13):3521–3526, 2017. 4.0.1,
4.0.2, 4.1, A.3, C.0.4

[18] Sudhakar Kumawat and Hajime Nagahara. Privacy-preserving action recognition
via motion difference quantization. In European Conference on Computer Vision,

56

https://openreview.net/forum?id=wTTjnvGphYj

Bibliography

pages 518–534. Springer, 2022. 6.2

[19] Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dan-
dres. Quantifying the carbon emissions of machine learning. arXiv preprint
arXiv:1910.09700, 2019. 6.2

[20] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for
parameter-efficient prompt tuning. arXiv preprint arXiv:2104.08691, 2021. 2.0.1,
3.2.1

[21] Ming Li, Xiangyu Xu, Hehe Fan, Pan Zhou, Jun Liu, Jia-Wei Liu, Jiahe Li,
Jussi Keppo, Mike Zheng Shou, and Shuicheng Yan. Stprivacy: Spatio-temporal
privacy-preserving action recognition. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 5106–5115, 2023. 6.2

[22] Tianjiao Li, Qiuhong Ke, Hossein Rahmani, Rui En Ho, Henghui Ding, and Jun
Liu. Else-net: Elastic semantic network for continual action recognition from
skeleton data. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 13434–13443, 2021. 1, C.0.3

[23] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts
for generation. arXiv preprint arXiv:2101.00190, 2021. 2.0.1

[24] Yang Li, Si Si, Gang Li, Cho-Jui Hsieh, and Samy Bengio. Learnable fourier
features for multi-dimensional spatial positional encoding. Advances in Neural
Information Processing Systems, 34:15816–15829, 2021. 5.0.2

[25] Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions
on pattern analysis and machine intelligence, 40(12):2935–2947, 2017. 4.0.1, 4.1,
4.2, A.3, C.0.4

[26] Xuanqing Liu, Hsiang-Fu Yu, Inderjit Dhillon, and Cho-Jui Hsieh. Learning to en-
code position for transformer with continuous dynamical model. In International
conference on machine learning, pages 6327–6335. PMLR, 2020. 5.0.2

[27] Ning Ma, Hongyi Zhang, Xuhui Li, Sheng Zhou, Zhen Zhang, Jun Wen, Haifeng
Li, Jingjun Gu, and Jiajun Bu. Learning spatial-preserved skeleton represen-
tations for few-shot action recognition. In European Conference on Computer
Vision, pages 174–191. Springer, 2022. 1

[28] Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a
single network by iterative pruning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pages 7765–7773, 2018. 5.0.2

[29] Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien Mairal. Graphit:
Encoding graph structure in transformers. arXiv preprint arXiv:2106.05667,
2021. 3.2.1

[30] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven

57

Bibliography

Lovegrove. Deepsdf: Learning continuous signed distance functions for shape
representation. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 165–174, 2019. 5.0.2

[31] Can Peng, Kun Zhao, Tianren Wang, Meng Li, and Brian C Lovell. Few-shot
class-incremental learning from an open-set perspective. In European Conference
on Computer Vision, pages 382–397. Springer, 2022. 2.0.3, 4.0.1, 4.0.2, 4.2, C.0.4

[32] Federico Pernici, Matteo Bruni, Claudio Baecchi, Francesco Turchini, and Alberto
Del Bimbo. Class-incremental learning with pre-allocated fixed classifiers. In 2020
25th International Conference on Pattern Recognition (ICPR), pages 6259–6266.
IEEE, 2021. 2.0.3

[33] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. Learning transferable visual models from natural language supervision. In
International conference on machine learning, pages 8748–8763. PMLR, 2021.
4.0.1, B.2.1

[34] Anastasia Razdaibiedina, Yuning Mao, Rui Hou, Madian Khabsa, Mike Lewis,
and Amjad Almahairi. Progressive prompts: Continual learning for language
models. arXiv preprint arXiv:2301.12314, 2023. 2.0.2, 5.0.2

[35] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Efficient parametriza-
tion of multi-domain deep neural networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 8119–8127, 2018. 5.0.2

[36] Bin Ren, Mengyuan Liu, Runwei Ding, and Hong Liu. A survey on 3d skeleton-
based action recognition using learning method. Cyborg and Bionic Systems,
2020. 1

[37] Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, and Lihi Zelnik-Manor. Imagenet-
21k pretraining for the masses. arXiv preprint arXiv:2104.10972, 2021. 4.0.1,
B.2.1

[38] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James
Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive
neural networks. arXiv preprint arXiv:1606.04671, 2016. 5.0.2

[39] Amir Shahroudy, Jun Liu, Tian-Tsong Ng, and Gang Wang. Ntu rgb+ d: A
large scale dataset for 3d human activity analysis. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1010–1019, 2016.
(document), 4.0.1, 4.1, A.3

[40] Quentin De Smedt, Hazem Wannous, Jean-Philippe Vandeborre, J. Guerry, B. Le
Saux, and D. Filliat. 3D Hand Gesture Recognition Using a Depth and Skeletal
Dataset. In Ioannis Pratikakis, Florent Dupont, and Maks Ovsjanikov, editors,
Eurographics Workshop on 3D Object Retrieval. The Eurographics Association,

58

Bibliography

2017. ISBN 978-3-03868-030-7. doi: 10.2312/3dor.20171049. (document), 4.0.1,
4.2

[41] James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla,
Donghyun Kim, Assaf Arbelle, Rameswar Panda, Rogerio Feris, and Zsolt Kira.
Coda-prompt: Continual decomposed attention-based prompting for rehearsal-
free continual learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 11909–11919, 2023. 2.0.2, 4.0.1, 4.0.2, 4.1,
4.2, 1, 5.0.2, A.3, B.1.1, B.2.1, C.0.4

[42] Yu-Ming Tang, Yi-Xing Peng, and Wei-Shi Zheng. When prompt-based incremen-
tal learning does not meet strong pretraining. arXiv preprint arXiv:2308.10445,
2023. 2.0.2

[43] Xiaoyu Tao, Xiaopeng Hong, Xinyuan Chang, Songlin Dong, Xing Wei, and Yi-
hong Gong. Few-shot class-incremental learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 12183–12192,
2020. 2.0.3, 4.0.2

[44] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning.
Advances in neural information processing systems, 30, 2017. 3.2.2, 3.2.2

[45] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
Advances in neural information processing systems, 30, 2017. 3.2.1

[46] Andrés Villa, Juan León Alcázar, Motasem Alfarra, Kumail Alhamoud, Julio
Hurtado, Fabian Caba Heilbron, Alvaro Soto, and Bernard Ghanem. Pivot:
Prompting for video continual learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 24214–24223,
2023. 4.0.1, 2, B.2.1

[47] Xiang Wang, Shiwei Zhang, Zhiwu Qing, Changxin Gao, Yingya Zhang, Deli
Zhao, and Nong Sang. Molo: Motion-augmented long-short contrastive learning
for few-shot action recognition. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 18011–18021, 2023. 1

[48] Yabin Wang, Zhiwu Huang, and Xiaopeng Hong. S-prompts learning with
pre-trained transformers: An occam’s razor for domain incremental learning.
Advances in Neural Information Processing Systems, 35:5682–5695, 2022. 2.0.2,
4.0.1, B.2.1

[49] Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu
Lee, Xiaoqi Ren, Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt:
Complementary prompting for rehearsal-free continual learning. In European
Conference on Computer Vision, pages 631–648. Springer, 2022. 2.0.2, 3.2.2,
4.0.1, 5.0.2, B.2.1

59

Bibliography

[50] Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren,
Guolong Su, Vincent Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt
for continual learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 139–149, 2022. 2.0.1, 2.0.2, 3.2.2, 3.2.2,
4.0.1, 4.0.2, 4.1, 4.2, 4.0.3, 5.0.2, A.3, B.1.1, B.2.1

[51] Will Williams, Sam Ringer, Tom Ash, David MacLeod, Jamie Dougherty, and
John Hughes. Hierarchical quantized autoencoders. Advances in Neural Infor-
mation Processing Systems, 33:4524–4535, 2020. 3.2.4

[52] Yibo Yang, Haobo Yuan, Xiangtai Li, Zhouchen Lin, Philip Torr, and Dacheng
Tao. Neural collapse inspired feature-classifier alignment for few-shot class-
incremental learning. In The Eleventh International Conference on Learning Rep-
resentations, 2023. URL https://openreview.net/forum?id=y5W8tpojhtJ.
2.0.3

[53] Rujing Yue, Zhiqiang Tian, and Shaoyi Du. Action recognition based on rgb
and skeleton data sets: A survey. Neurocomputing, 2022. 1

[54] Hong-Bo Zhang, Yi-Xiang Zhang, Bineng Zhong, Qing Lei, Lijie Yang, Ji-Xiang
Du, and Duan-Sheng Chen. A comprehensive survey of vision-based human
action recognition methods. Sensors, 19(5):1005, 2019. 1

[55] Chuanxia Zheng and Andrea Vedaldi. Online clustered codebook. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 22798–
22807, 2023. 3.2.4

[56] Da-Wei Zhou, Fu-Yun Wang, Han-Jia Ye, Liang Ma, Shiliang Pu, and De-Chuan
Zhan. Forward compatible few-shot class-incremental learning. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages
9046–9056, 2022. 2.0.3

[57] Anqi Zhu, Qiuhong Ke, Mingming Gong, and James Bailey. Adaptive local-
component-aware graph convolutional network for one-shot skeleton-based action
recognition. In Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision, pages 6038–6047, 2023. 1

[58] Beier Zhu, Yulei Niu, Yucheng Han, Yue Wu, and Hanwang Zhang. Prompt-
aligned gradient for prompt tuning. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 15659–15669, 2023. 2.0.1

60

https://openreview.net/forum?id=y5W8tpojhtJ

	1 Introduction
	1.0.1 Contributions

	2 Related Work
	2.0.1 Prompt Tuning
	2.0.2 Prompt Tuning for Continual Learning
	2.0.3 Few-Shot Class Incremental Learning

	3 Approach
	3.1 Preliminaries
	3.1.1 Skeleton Action Recognition Using Graph Representations
	3.1.2 Problem Definition.

	3.2 Methodology: POET
	3.2.1 Constructing Spatio-Temporal Prompt Offsets
	3.2.2 Prompt Selection and Attachment Mechanism
	3.2.3 Ordered Prompt Sequence Selection
	3.2.4 Mitigating Prompt Pool Collapse
	3.2.5 Prompt Pool Expansion

	4 Experiments
	4.0.1 Benchmark Details
	4.0.2 Comparison with State-of-the-Art
	4.0.3 Ablation Studies and Analysis

	5 Discussion
	5.0.1 Differences From Existing Continual Prompt Tuning Works
	5.0.2 Interpreting Prompt Offset Tuning of GNNs

	6 Conclusion and Future Works
	6.1 Conclusion
	6.2 Broader Impact and Limitations

	A Additional Results and Discussion: Thesis Committee Suggestions
	A.0.1 How Does POET Mitigate Catastrophic Forgetting?
	A.0.2 Backward Forgetting Metric (BWF)
	A.0.3 Role of Number of Few-Shots in Continual Learning
	A.0.4 Robustness of Our Benchmarks: Reporting Mean Across 10 Unique Sets of Few-Shots

	B Additional Results
	B.1 Analyzing Prompt Tuning Architectural Choices
	B.1.1 Classifier Update Protocol in US(t), t>0
	B.1.2 Analyzing Where to Attach Prompts

	B.2 Additional Results
	B.2.1 Impact of Prompts in POET
	B.2.2 Stability-Plasticity Trade-offs via New/Old performance
	B.2.3 Robustness to class order in user sessions
	B.2.4 Ordered Key Index Selection (si)i=1T: Qualitative Results

	C Implementation and Training Details
	C.0.1 Training Details
	C.0.2 Base Session UB(0): Prompt Instantiation and Training
	C.0.3 Additional Dataset Details
	C.0.4 Adaptation of Baselines to Problem Setting

	Bibliography

