
Scaling up Robot Skill Learning with

Generative Simulation

Pushkal Katara

CMU-RI-TR-24-35

July 1, 2024

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Professor Katerina Fragkiadaki, chair

Professor David Held
Zhou Xian

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Robotics.

Copyright © 2024 Pushkal Katara. All rights reserved.

To my parents, Geetanjali and Ravindra Katara

iv

Abstract

Generalist robots need to learn a wide variety of skills to perform diverse
tasks across multiple environments. Current robot training pipelines
rely on humans to either provide kinesthetic demonstrations or program
simulation environments with manually-designed reward functions for re-
inforcement learning. Such human involvement is an important bottleneck
towards scaling up robot learning across diverse tasks and environments.

In this thesis, we present Generation to Simulation (Gen2Sim), a method
for scaling up robot skill learning in simulation by automating generation
of 3D assets, task descriptions, task decompositions and reward functions
using large pre-trained generative models of language and vision. We
generate 3D assets for simulation by lifting open-world 2D object-centric
images to 3D using image diffusion models and querying LLMs to deter-
mine plausible physics parameters. Given URDF files of generated and
human-developed assets, we chain-of-thought prompt LLMs to map these
to relevant task descriptions, temporal decompositions, and corresponding
python reward functions for reinforcement learning. We show Gen2Sim
succeeds in learning policies for diverse long horizon tasks, where rein-
forcement learning with non temporally decomposed reward functions
fails.

Gen2Sim provides a viable path for scaling up robot skill learning in
simulation, both by diversifying and expanding task and environment
development, and by facilitating the discovery of reinforcement-learned
behaviors through temporal task decomposition in RL. Our work con-
tributes hundreds of simulated assets, tasks and demonstrations, taking a
step towards fully autonomous robotic manipulation skill acquisition in
simulation.

v

vi

Acknowledgments

During my two years at CMU, I have experienced tremendous growth, both
professionally and personally. This journey would not have been possible
without the extraordinary support of my advisor, labmates, friends, and
the broader CMU community, to whom I am deeply grateful.

First and foremost, I wish to express my profound gratitude to my advisor,
Prof. Katerina Fragkiadaki, for her unwavering support and mentorship.
As a fledgling master’s student, she took me under her wing and guided me
toward becoming the researcher I am today. Prof. Fragkiadaki instilled
in me the importance of pursuing challenging and impactful questions.
Her mantra, “Research is all about finding the right problem to work on
and relentlessly work towards it,” has become my guiding principle. Her
positive energy, enthusiasm, and cheerful attitude have been a constant
source of motivation. I am immensely grateful to Prof. Fragkiadaki for
believing in me and allowing me to gain invaluable experience under her
guidance.

I also wish to sincerely thank Prof. David Held for serving on my thesis
committee, offering insightful feedback, and posing thought-provoking
questions during my defense.

I am deeply grateful to Xian for his unwavering support throughout my
time in the lab. Xian’s wisdom, calm demeanor, and friendly nature made
our collaboration both productive and enriching. His meticulous attention
to detail, commitment to research, and rigorous coding practices have
significantly enhanced my skills as a researcher. I will always cherish our
sessions debugging robot simulation and hardware together.

To Ayush, my heartfelt thanks for your steadfast support, friendship, and
mentorship throughout my academic journey. Collaborating with you
has been both productive and immensely enjoyable, and I truly value the
moments we’ve spent working together. Your encouragement, especially
during challenging times, has been a constant source of strength.

Engaging with my lab members during group meetings, reading sessions,
and spontaneous discussions has been instrumental in my development
as a researcher. I have gained valuable insights from the meticulous
attention to detail, strong work ethic, and impressive presentation skills

vii

of the senior lab members. I would like to extend my heartfelt gratitude
to Nikos, Tsung-Wei, and Gabe. Our countless hours of collaboration,
shared frustrations over the relentless pace of research, and moments of
lightheartedness have made the journey more manageable.

I also want to express my sincere gratitude to Theophile Gervet, Adam
Harley, Wen-Hsuan Chu, Lei Ke, Yufei Wang, Brian Yang, Mayank
Singh, and Mihir Prabhudesai. Your collaboration and support have been
instrumental in making this thesis possible.

My deepest thanks go to Utkarsha, whose unwavering support has been
the foundation of my journey through this master’s program. Your
encouragement has driven me to reach new heights, unlocking my potential
and fostering both personal and professional growth. I am truly grateful
for your unwavering belief in me and the continuous support you’ve
provided throughout our journey together.

To say that my friends helped me reach the finish line would be an
understatement. I am incredibly grateful for the amazing friends I made
at CMU—Pranay Gupta, Sarthak Bhagat, Shagun Uppal, Dvij Kalaria,
Shreya Sharma, Anish Madan, Poorvi Hebbar, Bharath Raj, and Sriram
Narayanan. You all made the intense grind far less stressful.

Lastly, I extend my deepest gratitude to my parents, Geetanjali and
Ravindra Katara, for their unconditional love and support. They shielded
me from life’s challenges, encouraged me to pursue my dreams, and
inspired me to persevere even in times of uncertainty. I am also deeply
thankful to my brother, Pranjal Katara, for being my constant pillar of
strength. Your encouragement during moments of doubt kept me from
settling for less. My heartfelt thanks go to my grandfather, Ramesh
Chandra Katara, whose support was instrumental in my pursuit of higher
studies. Though living far from my family has been difficult, their spirit
and brilliance continue to guide me. I dedicate this thesis to them with
great honor and love, as a tribute to their unwavering belief in me and
their lasting influence on my life.

viii

Contents

1 Introduction 1

2 Related Work 5
2.1 Large Language Models for task and motion planning in robotics . . . 5
2.2 Automating 3D asset creation with generative models 6
2.3 Procedural demonstration generation using symbolic planners 6
2.4 Simulation environments for robotic skill learning 7

3 Approach 9
3.1 3D Asset Generation . 9

3.1.1 Image diffusion models . 10
3.1.2 Image-to-3D Mesh using Score Distillation Sampling 11
3.1.3 Texture generation . 12
3.1.4 Generating plausible physical properties 12

3.2 Task Generation, Temporal Decomposition and Reward Function Pre-
diction . 12

3.3 Sequential Reinforcement Learning for Long Horizon Tasks 15

4 Experiments 17
4.1 Experiments . 17

4.1.1 Asset Generation . 17
4.1.2 Automated Skill Learning . 19
4.1.3 Twin environment construction and sim-to-real world transfer 20

5 Discussion 21
5.1 Limitations . 21
5.2 Conclusion . 22

Bibliography 23

ix

List of Figures

1.1 Gen2Sim is an automated generative pipeline of assets, tasks, task
decompositions, and rewards functions for autonomous robotic skill
learning in simulation. Here we show 32 generated tasks, concerning
affordances of diverse types of object assets and their combinations. . 2

3.1 Gen2Sim components. Gen2Sim generates 3D assets by lifting
object-centric 2D images to 3D. It then uses both generated assets and
assets obtained from other publicly available datasets to populate scene
environments. Afterwards, it queries LLMs to generate meaningful
task descriptions for the assembled scenes, as well as decompose the
generated task descriptions to sub-tasks and their reward functions. . 10

4.1 3D asset generation from Gen2Sim, RealFusion [50] and Make-It-3D [67].

Gen2Sim uses a view and camera pose conditioned image generative model

during score distillation, which helps generate more accurate 3D geometry

in comparison to the baselines. 18
4.2 Twin environments constructed and generated tasks for sim-to-real trans-

fer. Left: real-world. Right: simulated. 19

x

List of Tables

4.1 Size and physics parameter generated by LLMs for a number of

generated assets. 18

xi

xii

Chapter 1

Introduction

Scaling up training data has been a driving force behind the recent revolutions

in language modeling [4], image understanding [57], speech recognition [58], image

generation [60], to name a few. This begs the question: can we scale up robot data to

enable a similar revolution in robotic skill learning? One way to scale robot data is in

the real world, by having multiple robots explore [38] or by having humans provide

kinesthetic demonstrations [2, 3, 65]. This is a promising direction; however, safety

concerns and wear and tear of the robots hinder robot exploration in the real-world,

and collecting kinesthetic demonstrations scales poorly as it is time-consuming and

labor-intensive [2]. Another way to scale robot data is in simulation, by developing

simulated environments, defining tasks and their reward functions, and training robot

policies with reinforcement learning, augmenting visuals and physics parameters to

facilitate transfer of policies to the real world [27]. Such sim2real paradigm has seen

recent successes in robot locomotion [16, 32, 36, 37], object re-orientation [9, 55], and

drone flight [34]. These examples, though very important and exciting, are still fairly

isolated.

A central bottleneck towards scaling up simulation environments and tasks is

the laborious manual effort needed for developing the visuals and physics of assets,

their spatial arrangement and configurations, the development of task definition and

reward functions, or the collection of programmatic demonstrations. Tremendous

resources have been invested in developing simulators for autonomous vehicles [14],

warehouse robots, articulated objects [81], home environments [19, 62, 66], etc.,

1

1. Introduction

Figure 1.1: Gen2Sim is an automated generative pipeline of assets, tasks, task
decompositions, and rewards functions for autonomous robotic skill learning in
simulation. Here we show 32 generated tasks, concerning affordances of diverse types
of object assets and their combinations.

many of which are proprietary and not open-sourced. Given these considerations, an

important question naturally arises: How can we minimize manual effort in simulation

development for diverse robotic skill learning?

In this thesis, we explore automating the development of simulation environ-

ments, tasks and rewards for robot skill learning, by building upon latest advances

in large pre-trained generative models of images and language. Our system strives

to automate all stages of robot learning: from generating 3D assets, textures, and

physics parameters, to generating task descriptions and reward functions, leading to

automated skill learning in diverse scenarios, as shown in Figure 1.1. This generative

pipeline was first proposed in a recent position paper [78], described as a promising

pathway towards generating diverse data for generalist robot learning. In this thesis,

we present Gen2Sim, the first attempt and realization of such a generative paradigm.

We automate 3D object asset generation by combining image diffusion models for

3D mesh and texture generation, and LLMs for querying physical parameters in-

formation. We showcase how LLMs and image generative models can diversify the

2

1. Introduction

appearances and behaviors of assets by producing plausible ranges of textures, sizes

and physical parameters, achieving “intelligent” domain diversification. We automate

task description, task decomposition and reward function generation by few-shot

prompting of LLMs to generate language descriptions for semantically meaningful

tasks, concerning affordances of existing and generated 3D assets, articulated or not,

alongside their reward functions. Gen2Sim is able to generate numerous object assets

and task variations without any human involvement beyond few LLM prompt designs.

We successfully train RL policies using our auto-generated tasks and reward functions.

We also demonstrate the usefulness of our simulation-trained policies, by constructing

digital-twin environments from given real scenes, allowing a robot to practice skills in

the twin simulator and deploying it back to the real world to execute the task.

In summary, we make the following contributions:

• We show how pre-trained generative models of images and language can help

automate 3D asset generation and diversification, task description generation,

task decomposition and reward function generation that supports reinforcement

learning of long horizon tasks in simulation with minimal human involvement.

• We deploy our method to generate hundreds of assets, and hundreds of ma-

nipulation tasks, their decompositions and their reward functions, for both

human-developed and automatically generated object assets.

For code, videos and qualitative video results, please visit our project website:

https://gen2sim.github.io/.

3

https://gen2sim.github.io/

1. Introduction

4

Chapter 2

Related Work

2.1 Large Language Models for task and motion

planning in robotics

Large language models (LLMs) map instructions to language subgoals [28, 29, 82, 86]

or action programs [40] with appropriate plan-like or program-like prompts. LLMs

trained from Internet-scale text have shown impressive zero-shot reasoning capabilities

for a variety of downstream language tasks [4] when prompted appropriately, without

any weight fine-tuning [5, 7, 44, 76]. LLMs were used to generate task curricula and

predict skills to execute in Minecraft worlds [41, 72, 85] Following the seminal work

of Code as Policies, many works map language to programs over given skills [24]

or hand-designed motion planners [30]. Our work instead maps task descriptions

into task decompositions and reward functions, to guide reinforcement learning in

simulation, to discover behaviours that achieve the generated tasks. Work of [83]

also uses language for predicting reward functions for robot locomotion, but does not

consider task generation and decomposition or interaction with objects. Our work is

the first to use LLMs for task decomposition and reward generation, as well as asset

generation.

5

2. Related Work

2.2 Automating 3D asset creation with generative

models

The traditional process of creating 3D assets typically involves multiple labor-intensive

stages, including geometry modeling, shape baking, UV mapping, material creation,

texturing and physics parameter estimation, where different software tools and the

expertise of skilled artists are often required. It is thus desirable to automate 3D

asset generation to automatically generate high-quality assets that support realistic

rendering under arbitrary views and have plausible physical behaviours during force

application and contacts. The lack of available 3D data and the abundance of 2D

image data have stimulated interest in learning 3D models from 2D image generators

[6, 53]. The availability of strong 2D image generative models based on diffusion led to

high-quality 3D models from text descriptions [8, 42, 56] or single 2D images using the

diffusion model as a 2D prior [50, 64, 67]. In this work, instead of a text-conditioned

model, we use a view and relative pose conditioned image generative model, which

we found to provide better prior for score distillation. Some methods attempt to use

videos of assets and differentiable simulations to estimate their physics parameters

and/or adapt the simulation environment, in an attempt to close the simulation to

reality gap [25, 26, 74]. Our effort is complementary to these works.

2.3 Procedural demonstration generation using

symbolic planners

Many recent works procedurally generate scenes and demonstration trajectories using

planners that have access to privileged information to solve the task, and distill

the demonstration solutions into learning-based policies that operate directly from

pixel or point-cloud input [13, 15, 49]. Task and motion planners [33, 46, 51, 70] use

predefined symbolic rules and known dynamics models, and infer discrete task plans

given instruction with lookahead logic search [20, 33, 33, 46, 51, 70]. These methods

predominantly rely on manually-specified symbolic transition rules, planning domains,

and grounding, which limits their applicability. Indeed, works of [13, 49] demonstrate

their results on relatively simple multi-object box stacking tasks. Scene procedural

6

2. Related Work

generation in the aforementioned works [13, 49, 52] entails randomizing locations and

number of given 3D models under weak supervision from a human that defines the

task and the possible location candidates. In contrast, we unleash the common sense

knowledge and reasoning capabilities provided by LLMs and use them to suggest task

descriptions, task decompositions, and reward functions. We then use reinforcement

learning to discover solution trajectories instead of TAMP-based search.

2.4 Simulation environments for robotic skill

learning

In recent years, improving simulators for robot manipulation has attracted increasingly

more attention. Many robotic manipulation environments and benchmarks [1, 35, 81]

are built on top of either PyBullet [12] or MuJoCo [69] as their underlying physics

engines, which mainly support rigid-body manipulation [22, 23, 71, 77, 79]. Recently,

environments supporting soft-body manipulation ([18, 43, 47, 75, 80, 81]) provide

capabilities for simulating deformable robots, objects and fluids. Our automated

asset and task generation are not tied to any specific simulation platforms and can

be used with any of them.

7

2. Related Work

8

Chapter 3

Approach

Gen2Sim generates 3D assets from object-centric images using image diffusion models

and predicts physical parameters for them using LLMs (Section 3.1). It then prompts

LLMs to generate language task descriptions and corresponding reward functions

for each generated or human-developed asset, suitable to their affordances (Section

3.2). Finally, we train RL policies in the generated environments using the generated

reward functions. We additionally show the applicability of the simulation-trained

policy by constructing digital twin environment in simulation, and deploy the trained

trajectory in the real world (Section 3.3). See Figure 3.1 for our method overview.

3.1 3D Asset Generation

Gen2Sim automates 3D asset generation by mapping 2D images of objects to textured

3D meshes with plausible physics parameters. The images can be 1) real images

taken in the robot’s environment, 2) real images provided by Google search under

relevant category names, e.g., “avocado”, or 3) images generated by pre-trained text-

conditioned diffusion models, such as stable diffusion [61], prompted appropriately to

generate uncluttered images of the relevant objects, e.g., “an image of an individual

avocado”. We query GPT-4 [54] for a list of object categories relevant for manipulation

tasks to search online for or to generate, instead of manually designing it. Please,

visit our project site for a detailed list of the objects we generated. Given a real or

generated 2D image of an object, we lift it to a 3D model by minimizing re-reprojection

9

3. Approach

Figure 3.1: Gen2Sim components. Gen2Sim generates 3D assets by lifting object-
centric 2D images to 3D. It then uses both generated assets and assets obtained
from other publicly available datasets to populate scene environments. Afterwards,
it queries LLMs to generate meaningful task descriptions for the assembled scenes,
as well as decompose the generated task descriptions to sub-tasks and their reward
functions.

error and maximizing likelihood of its image renderings using a diffusion model [8, 56].

We provide background on image diffusion models below, before we describe our 3D

model fitting approach.

3.1.1 Image diffusion models

A diffusion model learns to model a probability distribution p(x) by inverting a

process that gradually adds noise to the image x. The diffusion process is associated

with a variance schedule {βt ∈ (0, 1)}Tt=1, which defines how much noise is added

at each time step. The noisy version of sample x at time t can then be written

xt =
√
ᾱtx +

√
1− ᾱtϵ where ϵ ∼ N (,), is a sample from a Gaussian distribution

(with the same dimensionality as x), αt = 1− βt, and ᾱt =
∏t

i=1 αi. One then learns

a denoising neural network ϵ̂ = ϵϕ(xt; t) that takes as input the noisy image xt and

the noise level t and tries to predict the noise component ϵ. Diffusion models can be

easily extended to draw samples from a distribution p(x|) conditioned on a prompt

10

3. Approach

, where can be a text description, a camera pose, and image semantic map, etc

[39, 60, 84]. Conditioning on the prompt can be done by adding as an additional

input of the network ϵϕ. For 3D lifting, we build on Zero-1-to-3 [45], a diffusion model

for novel object view synthesis that conditions on an image view of an object and

a relative camera rotation around the object to generate plausible images for the

target object viewpoint, = [I1, π]. It is trained on a large collection D′ = {(xi,i)}Ni=1

of images paired with views and relative camera orientations as conditioning prompt

by minimizing the loss:

Ldiff(ϕ;D′) = 1
|D′|

∑
xi,i∈D′

||ϵϕ(
√
ᾱtx

i +
√
1− ᾱtϵ,

i , t)− ϵ||2.

3.1.2 Image-to-3D Mesh using Score Distillation Sampling

Given an image and relative camera pose 2D diffusion model p(I|[I0, π]), we extract

from it a 3D rendition of the input image I0, represented by a differential 3D

representation using Score Distillation Sampling (SDS) [56, 73]. We do so by randomly

sampling a camera pose π, rendering a corresponding view Iπ, assessing the likelihood

of the view based on a diffusion model p(Iπ|[I0, π]), and updating the differentiable

3D representation to increase the likelihood of the generated view based on the model.

Specifically, the diffusion model is frozen and the 3D model is updated as:

∇(θ)LSDS(θ; π, , t) = Et,ϵ[w(t) (ϵϕ(atI + σtϵ; t,)− ϵ) · ∇θI],

where I = R(θ, π) is the image rendered from a given viewpoint π. The loss we

use to backpropagate to the 3D model parameters θ includes an image re-projection

loss for the camera viewpoint of the input image, and score distillation for the other

views, using a pre-trained view and pose conditioned image diffusion model of [45]

to measure 2D image likelihood. We use a two-stage fitting, wherein the first stage

an instantNGP NeRF representation is used, similar to RealFusion [50], and in the

second stage a mesh-based representation is initialized from the NeRF and finetuned

differentiably, similar to Fantasia3D [8].

11

3. Approach

3.1.3 Texture generation

We augment the textures of our generated assets using the method of TEXTure

[59] which iteratively edits a mesh’s texture by rendering the mesh from different

viewpoints and updating the rendered 2D images. While domain randomization

[68] randomly re-textures simulated assets, TEXTure produces diverse yet plausible

texture augmentations.

3.1.4 Generating plausible physical properties

The visual and collision parameters of an asset are generated from the Image-to-Mesh

pipeline discussed above. To define 3D sizes and physics parameters for the generated

3D meshes, we query GPT-4 regarding the range of plausible width, height, and

depth for each object, and the range of its mass given its category. We then scale

the generated 3D mesh based on the generated size range. We feed the mass and

3D mesh information to MeshLab [11] to get the inertia matrix for the asset. Our

prompts for querying GPT for mass and 3D object size can be found on our website.

We wrap the generated mesh information, its semantic name, as well as the physical

parameters into URDF files to be loaded into our simulator.

3.2 Task Generation, Temporal Decomposition

and Reward Function Prediction

Given either generated assets or assets obtained from publically available datasets, we

prompt LLMs to generate meaningful manipulation tasks considering their affordances,

to decompose these tasks into subtasks when possible, and to generate reward functions

for each subtask. We train reinforcement learning policies for each (sub)task using

the generated reward functions, and then chain them together to solve long horizon

tasks. Our LLM prompts contain the following sections:

1. Asset descriptions. We use combinations of assets we generate using the method

of Section 3.1, as well as articulated assets from PartNet Mobility [81] and GAPartNet

dataset [21]. We populate our simulation environment with randomly sampled assets.

Then, we extract information from the URDF files including link names, joint types

12

3. Approach

and limits using automated scripts. For example, an asset microwave has parts [door,

handle, and body], and joint [door-joint] of type revolute with a joint position

range [0, 1]. We then describe the extracted configurations of the assets to the LLM,

as shown below:

The environment contains the following assets:

1. asset_name: "microwave"

part_cofiguration:

Part 1: "body"

Part 2: "door"

- link_name: "link_0"

- joint_name: "joint_0"

- joint_type: "revolute"

- limit: [0, 1]

Part 3: "handle"

- link_name: "handle_0"

- joint_name: "handlejoint_0"

- joint_type: "fixed"

2. asset_name: "cup"

part_cofiguration:

Part 1: cup

- link_name: "base"

- joint_name: "base_joint"

- joint_type: "fixed"

2. Instructions. These include function APIs that can be used by the LLM to query

the pose of the robot end-effector, as well as different assets in the given environment:

Available APIs from the simulator are:

returns the pose of the link

get_pose_by_link_name(asset_name , link_name)

returns the pose of the robot gripper

get_robot_gripper_pose(asset_name , link_name)

returns the state of the joint

get_state_by_joint_name(asset_name , joint_name)

returns the limit of the joint

get_limits_by_joint_name(asset_name , joint_name)

Note:

1. Only use the available APIs from the simulator.

2. Generate the reward function code snippets in Python.

3. Examples of task descriptions and decompositions. These are question-

answer pairs that demonstrate task descriptions and their temporal decompositions.

List meaningful manipulation tasks that can be performed

in this environment. Give subtask decomposition and the

order of execution to solve the task. Also , provide the

reward function for each subtask.

13

3. Approach

The following tasks can be performed in this environment:

1. Open the Microwave Door

2. Close the Microwave Door

3. Pick Cup

4. Place Cup

5. Put the Cup in the Microwave

This task needs to be decomposed into sub -tasks:

- Open the Microwave

- Pick Cup

- Place the Cup in the Microwave

4. Examples of reward functions. These are task to reward function pairs that

present demonstrations of how tasks can be translated to reward functions, as shown

below:

Task: OpenMicrowaveDoor

Task Description: open the door of the microwave

‘‘‘

def compute_reward(env):

reward function

door_handle_pose = env.get_pose_by_link_name("microwave", "handle_0")

gripper_pose = env.get_robot_gripper_pose ()

distance_gripper_to_handle = torch.norm(door_handle_pose - gripper_pose , dim=-1)

door_state = env.get_state_by_joint_name("microwave", "joint_0")

cost = distance_gripper_to_handle - door_state

reward = - cost

success condition

target_door_state = env.get_limits_by_joint_name("microwave", "joint_0")["upper"

]

success = torch.abs(door_state - target_door_state) < 0.1

return reward , success

‘‘‘

For the example above, the reward function is comprised of 1) distance between the

end-effector and the target part, and 2) distance between the current and the target

pose of an articulated asset, link, or joint.

We show in Section 4.1 that our method can generalize across assets, suggest

diverse and plausible tasks, decomposition and reward functions automatically, using

a single in-context example in the prompt, without any additional human involvement.

14

3. Approach

3.3 Sequential Reinforcement Learning for Long

Horizon Tasks

We train policies using Proximal Policy Optimization (PPO) [63] maximizing the

generated reward functions for each subtask. We train RL for each generated subtask

in temporal order. Once policy training for a subtask converges, we proceed to the next

subtask, by sampling the initial state of the end-effector and the environment close to

the terminal states of the previous subtask. This ensures policies can be temporally

chained upon training. Our policies are trained per environment using privileged

information of the simulation state to accelerate exploration. Such learned policies

can be used as demonstration data and distilled into vision-language transformer

policies, similar to [2, 10, 31]; we leave this for future work.

15

3. Approach

16

Chapter 4

Experiments

4.1 Experiments

Our experiments aim to answer the following questions:

1. Can Gen2Sim generate plausible geometry, appearance, and physics for diverse

types of objects and parts, without human expertise and with minimal human

involvement?

2. Can Gen2Sim generate task language goals and reward functions for novel

object categories, novel assets with different part configurations, and a combination

of multiple assets in an environment?

3. Can the generated environments and reward function lead to successful learning

of RL policies?

4.1.1 Asset Generation

We compare our image-to-3D lifting with two baselines:

1. RealFusion [50], which uses textual inversion of [17] to learn a word embedding

for the depicted object concept in an image, and uses text-conditioned diffusion with

this text embedding during score distillation.

2. Make-It-3D [67], which uses the same NeRF and textured mesh two-stage

fitting as Gen2Sim, but does not use a view and pose conditioned generative model,

rather a text-based image diffusion model, similar to [56].

17

4. Experiments

Figure 4.1: 3D asset generation from Gen2Sim, RealFusion [50] and Make-It-3D [67].
Gen2Sim uses a view and camera pose conditioned image generative model during score
distillation, which helps generate more accurate 3D geometry in comparison to the baselines.

Mass (gram) Length (cm) Width Height

Papaya 500-1000 15-20 10-15 10-15
Cucumber 200-300 15-20 5-7 5-7
Watermelon 5000-7000 30-40 20-30 20-30
Raspberry 3-5 2-3 2-3 2-3
Coconut 600-800 10-15 8-12 8-12
Corn 50-100 10-15 8-12 8-12

Pumpkin 2000-5000 20-40 20-40 20-40
Avocado 150-250 10-12 6-8 4-5

Table 4.1: Size and physics parameter generated by LLMs for a number of generated
assets.

We show comparisons in Figure 4.1, with images rendered from 4 different views.

Our model generates more plausible 3D model as our image diffusion prior comes from

an image and pose-conditioned model in comparison to approaches like Fantasia3D

or RealFusion which uses text conditioning.

We show generated values for 3D sizes and mass for a number of example objects

in Table 4.1. We see that the common sense knowledge encoded in LLMs can produce

reasonable physical parameters.

18

4. Experiments

4.1.2 Automated Skill Learning

Gen2Sim generates diverse task descriptions, task decompositions and reward func-

tions automatically for hundreds of assets, with different category labels and number

of joints, given only a single in-context prompt example regarding the task

decomposition and reward function of the task “putting a cup in a Microwave” .

Then, the model can generalize to different scenes, asset articulated structures and

task temporal lengths. We show some examples of such generated task descriptions

in Figure 1.1 and more on our website. We show examples of task decompositions in

Figure 3.1. We provide our prompts in our project website, alongside examples of

the LLM’s responses.

We learn policies that optimize LLM generated rewards with PPO, an off-the-

shelf model-free RL algorithm [63]. We make use of GPU-parallel data sampling in

IsaacGym [48] for reinforcement learning. Our robotic setup uses a Franka Panda

arm with a mobile base. It is equipped with a parallel-jaw gripper. Our state

representation for PPO includes the robot’s joint position q ∈ R11, velocity q̇ ∈ R11

(7-DoF arm, x and y for the mobile base and 2 extra DoFs from the gripper jaws),

orientation of the gripper r ∈ SO(3), and poses and joint configurations of the assets

present in the scene. We use position control and at each timestep t our policy

produces target gripper pose and configurations which is converted to target robot

configurations through inverse kinematics. A low-level PID torque controller provided

by IsaacGym is used to produce low-level joint torque commands. We can successfully

learn useful manipulation policies, and the polices are able to solve the tasks upon

convergence. We show videos of such policies on our website.

Figure 4.2: Twin environments constructed and generated tasks for sim-to-real transfer.
Left: real-world. Right: simulated.

19

4. Experiments

4.1.3 Twin environment construction and sim-to-real world

transfer

In order to validate the usefulness of the policies trained in simulation, we construct

a twin simulated environment of our lab’s real-robot setup (Figure 4.2). We detect,

segment, and estimate the poses of the objects in the scene. For non-articulated

assets, we use our model to lift the detected object image to corresponding 3D models;

for articulated objects, we select the most similar asset from the [81], and populated

the simulated environment. We train RL policies in simulation and transfer the

joint space trajectory back to our real-world setup. Our method allows successful

execution of the generated tasks. For more videos of the trained policies and their

task executions in simulation, as well as the sim2real transfer, please refer to our

website.

20

Chapter 5

Discussion

5.1 Limitations

Gen2Sim has currently the following two important points to address towards ma-

terializing into a platform for large-scale robot skill learning that are deployable in

real-world:

1. Sim2real transfer of closed-loop policies: Our current real-world experi-

ments transfer open loop trajectories optimized in the constructed twin environment.

For closed-loop policies to transfer to the real world and consume realistic sensory

input, we would need to generate large-scale augmentations for both visual appear-

ances and dynamics for each task and sub-task, and then distil the state-based RL

policies to a foundational vision-language policy network. This is a direct avenue for

our future work.

2. Beyond rigid asset generation: The assets we can currently generate are

rigid or mostly rigid objects, which do not deform significantly under external forces.

For articulated assets, we are using existing manually designed and labelled datasets

([21, 81]). To generate articulated objects, deformable objects and liquids, accurate

fine-grained video perception is required in combination with generative priors to

model the temporal dynamics of their geometry and appearance. This is an exciting

and challenging direction for future work.

21

5. Discussion

5.2 Conclusion

We have presented Gen2Sim, a method for automating the development of simulation

environments, tasks and reward functions with pre-trained generative models of vision

and language. We presented methods that create and augment geometry, textures and

physics of object assets from single images, parse URDF files of assets, generate task

descriptions, decompositions and reward python functions, and train reinforcement

learning policies to solve the generated long horizon tasks. Addressing the limitations

including generating diverse assets with more complex physical properties, and

transfering trained policies to real world are direct avenues for our future work. We

believe generative models of images and language will play an important role in

automating and supersizing robot training data in simulation, and in crossing the

sim2real gap, necessary for delivering robot generalists in the real world. Gen2Sim

takes one first step in that direction.

22

Bibliography

[1] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint
arXiv:1606.01540, 2016. 2.4

[2] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph
Dabis, Chelsea Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog,
Jasmine Hsu, et al. Rt-1: Robotics transformer for real-world control at scale.
arXiv preprint arXiv:2212.06817, 2022. 1, 3.3

[3] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen,
Krzysztof Choromanski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea
Finn, et al. Rt-2: Vision-language-action models transfer web knowledge to
robotic control. arXiv preprint arXiv:2307.15818, 2023. 1

[4] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.
URL https://arxiv.org/abs/2005.14165. 1, 2.1

[5] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. 2.1

[6] Eric R Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu, and GordonWetzstein.
pi-gan: Periodic implicit generative adversarial networks for 3d-aware image
synthesis. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 5799–5809, 2021. 2.2

23

https://arxiv.org/abs/2005.14165

Bibliography

[7] Stephanie C. Y. Chan, Adam Santoro, Andrew K. Lampinen, Jane X. Wang,
Aaditya Singh, Pierre H. Richemond, Jay McClelland, and Felix Hill. Data
distributional properties drive emergent in-context learning in transformers, 2022.
2.1

[8] Rui Chen, Yongwei Chen, Ningxin Jiao, and Kui Jia. Fantasia3d: Disentangling
geometry and appearance for high-quality text-to-3d content creation. arXiv
preprint arXiv:2303.13873, 2023. 2.2, 3.1, 3.1.2

[9] Tao Chen, Jie Xu, and Pulkit Agrawal. A system for general in-hand object
re-orientation. In Conference on Robot Learning, pages 297–307. PMLR, 2022. 1

[10] Sammy Christen, Wei Yang, Claudia Pérez-D’Arpino, Otmar Hilliges, Dieter
Fox, and Yu-Wei Chao. Learning human-to-robot handovers from point clouds,
2023. 3.3

[11] Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Matteo Dellepiane, Fabio
Ganovelli, and Guido Ranzuglia. MeshLab: an Open-Source Mesh Processing
Tool. In Vittorio Scarano, Rosario De Chiara, and Ugo Erra, editors, Eurographics
Italian Chapter Conference. The Eurographics Association, 2008. ISBN 978-3-
905673-68-5. doi: 10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/
129-136. 3.1.4

[12] Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation
for games, robotics and machine learning. http://pybullet.org, 2016. 2.4

[13] Murtaza Dalal, Ajay Mandlekar, Caelan Garrett, Ankur Handa, Ruslan Salakhut-
dinov, and Dieter Fox. Imitating task and motion planning with visuomotor
transformers, 2023. 2.3

[14] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. Carla: An open urban driving simulator, 2017. 1

[15] Adam Fishman, Adithyavairan Murali, Clemens Eppner, Bryan Peele, Byron
Boots, and Dieter Fox. Motion policy networks, 2022. 2.3

[16] Zipeng Fu, Ashish Kumar, Ananye Agarwal, Haozhi Qi, Jitendra Malik, and
Deepak Pathak. Coupling vision and proprioception for navigation of legged
robots. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 17273–17283, 2022. 1

[17] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H. Bermano, Gal
Chechik, and Daniel Cohen-Or. An image is worth one word: Personalizing
text-to-image generation using textual inversion, 2022. 4.1.1

[18] Chuang Gan, Jeremy Schwartz, Seth Alter, Martin Schrimpf, James Traer, Julian
De Freitas, Jonas Kubilius, Abhishek Bhandwaldar, Nick Haber, Megumi Sano,
et al. Threedworld: A platform for interactive multi-modal physical simulation.

24

http://pybullet.org

Bibliography

arXiv preprint arXiv:2007.04954, 2020. 2.4

[19] Chuang Gan, Jeremy Schwartz, Seth Alter, Damian Mrowca, Martin Schrimpf,
James Traer, Julian De Freitas, Jonas Kubilius, Abhishek Bhandwaldar, Nick
Haber, Megumi Sano, Kuno Kim, Elias Wang, Michael Lingelbach, Aidan Curtis,
Kevin Feigelis, Daniel M. Bear, Dan Gutfreund, David Cox, Antonio Torralba,
James J. DiCarlo, Joshua B. Tenenbaum, Josh H. McDermott, and Daniel
L. K. Yamins. Threedworld: A platform for interactive multi-modal physical
simulation, 2021. 1

[20] Caelan Reed Garrett, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. Strip-
stream: Integrating symbolic planners and blackbox samplers. CoRR,
abs/1802.08705, 2018. URL http://arxiv.org/abs/1802.08705. 2.3

[21] Haoran Geng, Helin Xu, Chengyang Zhao, Chao Xu, Li Yi, Siyuan Huang, and
He Wang. Gapartnet: Cross-category domain-generalizable object perception
and manipulation via generalizable and actionable parts, 2023. 3.2, 5.1

[22] Theophile Gervet, Zhou Xian, Nikolaos Gkanatsios, and Katerina Fragkiadaki.
Act3d: Infinite resolution action detection transformer for robotic manipulation.
arXiv preprint arXiv:2306.17817, 2023. 2.4

[23] Nikolaos Gkanatsios, Ayush Jain, Zhou Xian, Yunchu Zhang, Christopher Atke-
son, and Katerina Fragkiadaki. Energy-based models as zero-shot planners for
compositional scene rearrangement. arXiv preprint arXiv:2304.14391, 2023. 2.4

[24] Huy Ha, Pete Florence, and Shuran Song. Scaling up and distilling down:
Language-guided robot skill acquisition. arXiv preprint arXiv:2307.14535, 2023.
2.1

[25] Eric Heiden, Christopher E. Denniston, David Millard, Fabio Ramos, and Gau-
rav S. Sukhatme. Probabilistic inference of simulation parameters via parallel
differentiable simulation, 2022. 2.2

[26] Eric Heiden, Miles Macklin, Yashraj Narang, Dieter Fox, Animesh Garg, and
Fabio Ramos. Disect: A differentiable simulator for parameter inference and
control in robotic cutting, 2022. 2.2

[27] Sebastian Höfer, Kostas E. Bekris, Ankur Handa, Juan Camilo Gamboa, Melissa
Mozifian, Florian Golemo, Christopher G. Atkeson, Dieter Fox, Ken Goldberg,
John Leonard, C. Karen Liu, Jan Peters, Shuran Song, Peter Welinder, and
Martha White. Sim2real in robotics and automation: Applications and challenges.
IEEE Trans Autom. Sci. Eng., 18(2):398–400, 2021. doi: 10.1109/TASE.2021.
3064065. URL https://doi.org/10.1109/TASE.2021.3064065. 1

[28] Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language
models as zero-shot planners: Extracting actionable knowledge for embodied
agents. arXiv preprint arXiv:2201.07207, 2022. 2.1

25

http://arxiv.org/abs/1802.08705
https://doi.org/10.1109/TASE.2021.3064065

Bibliography

[29] Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence,
Andy Zeng, Jonathan Tompson, Igor Mordatch, Yevgen Chebotar, Pierre Ser-
manet, Noah Brown, Tomas Jackson, Linda Luu, Sergey Levine, Karol Hausman,
and Brian Ichter. Inner monologue: Embodied reasoning through planning with
language models, 2022. URL https://arxiv.org/abs/2207.05608. 2.1

[30] Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li, Jiajun Wu, and
Li Fei-Fei. Voxposer: Composable 3d value maps for robotic manipulation with
language models. arXiv preprint arXiv:2307.05973, 2023. 2.1

[31] Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch,
Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock,
Evan Shelhamer, et al. Perceiver io: A general architecture for structured inputs
& outputs. arXiv preprint arXiv:2107.14795, 2021. 3.3

[32] Yandong Ji, Gabriel B. Margolis, and Pulkit Agrawal. Dribblebot: Dynamic
legged manipulation in the wild, 2023. 1

[33] Leslie Pack Kaelbling and Tomás Lozano-Pérez. Hierarchical task and motion
planning in the now. In 2011 IEEE International Conference on Robotics and
Automation, pages 1470–1477, 2011. doi: 10.1109/ICRA.2011.5980391. 2.3

[34] Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Mueller,
Vladlen Koltun, and Davide Scaramuzza. Champion-level drone racing using
deep reinforcement learning. Nature, 620:982–987, 08 2023. doi: 10.1038/
s41586-023-06419-4. 1

[35] Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro
Herrasti, Daniel Gordon, Yuke Zhu, Abhinav Gupta, and Ali Farhadi. Ai2-thor:
An interactive 3d environment for visual ai. arXiv preprint arXiv:1712.05474,
2017. 2.4

[36] Ashish Kumar, Zipeng Fu, Deepak Pathak, and Jitendra Malik. Rma: Rapid
motor adaptation for legged robots, 2021. 1

[37] Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco
Hutter. Learning quadrupedal locomotion over challenging terrain. CoRR,
abs/2010.11251, 2020. URL https://arxiv.org/abs/2010.11251. 1

[38] Sergey Levine, Peter Pastor, Alex Krizhevsky, and Deirdre Quillen. Learning
hand-eye coordination for robotic grasping with deep learning and large-scale
data collection, 2016. 1

[39] Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu, Jianwei Yang, Jianfeng
Gao, Chunyuan Li, and Yong Jae Lee. Gligen: Open-set grounded text-to-image
generation. arXiv preprint arXiv:2301.07093, 2023. 3.1.1

[40] Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter,

26

https://arxiv.org/abs/2207.05608
https://arxiv.org/abs/2010.11251

Bibliography

Pete Florence, and Andy Zeng. Code as policies: Language model programs for
embodied control, 2022. URL https://arxiv.org/abs/2209.07753. 2.1

[41] Shalev Lifshitz, Keiran Paster, Harris Chan, Jimmy Ba, and Sheila McIlraith.
Steve-1: A generative model for text-to-behavior in minecraft, 2023. 2.1

[42] Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa, Xiaohui Zeng, Xun
Huang, Karsten Kreis, Sanja Fidler, Ming-Yu Liu, and Tsung-Yi Lin. Magic3d:
High-resolution text-to-3d content creation. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2023. 2.2

[43] Xingyu Lin, Yufei Wang, Jake Olkin, and David Held. Softgym: Benchmarking
deep reinforcement learning for deformable object manipulation. arXiv preprint
arXiv:2011.07215, 2020. 2.4

[44] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and
Graham Neubig. Pre-train, prompt, and predict: A systematic survey of prompt-
ing methods in natural language processing. CoRR, abs/2107.13586, 2021. URL
https://arxiv.org/abs/2107.13586. 2.1

[45] Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Zakharov,
and Carl Vondrick. Zero-1-to-3: Zero-shot one image to 3d object, 2023. 3.1.1,
3.1.2

[46] Daoming Lyu, Fangkai Yang, Bo Liu, and Steven Gustafson. SDRL: interpretable
and data-efficient deep reinforcement learning leveraging symbolic planning.
CoRR, abs/1811.00090, 2018. URL http://arxiv.org/abs/1811.00090. 2.3

[47] Miles Macklin, Matthias Müller, Nuttapong Chentanez, and Tae-Yong Kim.
Unified particle physics for real-time applications. ACM Transactions on Graphics
(TOG), 33(4):1–12, 2014. 2.4

[48] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier
Storey, Miles Macklin, David Hoeller, Nikita Rudin, Arthur Allshire, Ankur
Handa, and Gavriel State. Isaac gym: High performance gpu-based physics
simulation for robot learning, 2021. 4.1.2

[49] Michael James McDonald and Dylan Hadfield-Menell. Guided imitation of task
and motion planning, 2021. 2.3

[50] Luke Melas-Kyriazi, Christian Rupprecht, Iro Laina, and Andrea Vedaldi. Real-
fusion: 360 reconstruction of any object from a single image. In CVPR, 2023.
URL https://arxiv.org/abs/2302.10663. (document), 2.2, 3.1.2, 4.1.1, 4.1

[51] Toki Migimatsu and Jeannette Bohg. Object-centric task and motion planning
in dynamic environments. CoRR, abs/1911.04679, 2019. URL http://arxiv.

org/abs/1911.04679. 2.3

[52] Adithyavairavan Murali, Arsalan Mousavian, Clemens Eppner, Adam Fishman,

27

https://arxiv.org/abs/2209.07753
https://arxiv.org/abs/2107.13586
http://arxiv.org/abs/1811.00090
https://arxiv.org/abs/2302.10663
http://arxiv.org/abs/1911.04679
http://arxiv.org/abs/1911.04679

Bibliography

and Dieter Fox. Cabinet: Scaling neural collision detection for object rearrange-
ment with procedural scene generation, 2023. 2.3

[53] Thu Nguyen-Phuoc, Chuan Li, Lucas Theis, Christian Richardt, and Yong-Liang
Yang. Hologan: Unsupervised learning of 3d representations from natural images,
2019. 2.2

[54] OpenAI. Gpt-4 technical report, 2023. 3.1

[55] OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin,
Bob McGrew, Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell,
Raphael Ribas, Jonas Schneider, Nikolas Tezak, Jerry Tworek, Peter Welinder,
Lilian Weng, Qiming Yuan, Wojciech Zaremba, and Lei Zhang. Solving rubik’s
cube with a robot hand, 2019. 1

[56] Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Mildenhall. Dreamfusion:
Text-to-3d using 2d diffusion. arXiv, 2022. 2.2, 3.1, 3.1.2, 4.1.1

[57] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. Learning transferable visual models
from natural language supervision. CoRR, abs/2103.00020, 2021. URL https:

//arxiv.org/abs/2103.00020. 1

[58] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey,
and Ilya Sutskever. Robust speech recognition via large-scale weak supervision,
2022. 1

[59] Elad Richardson, Gal Metzer, Yuval Alaluf, Raja Giryes, and Daniel Cohen-Or.
Texture: Text-guided texturing of 3d shapes, 2023. 3.1.3

[60] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and
Björn Ommer. High-resolution image synthesis with latent diffusion models.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10684–10695, 2022. 1, 3.1.1

[61] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn
Ommer. High-resolution image synthesis with latent diffusion models, 2022. 3.1

[62] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wij-
mans, Bhavana Jain, Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik,
Devi Parikh, and Dhruv Batra. Habitat: A platform for embodied ai research,
2019. 1

[63] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms, 2017. 3.3, 4.1.2

[64] Bokui Shen, Xinchen Yan, Charles R. Qi, Mahyar Najibi, Boyang Deng, Leonidas
Guibas, Yin Zhou, and Dragomir Anguelov. Gina-3d: Learning to generate

28

https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020

Bibliography

implicit neural assets in the wild, 2023. 2.2

[65] Maximilian Sieb, Zhou Xian, Audrey Huang, Oliver Kroemer, and Katerina
Fragkiadaki. Graph-structured visual imitation. In Conference on Robot Learning,
pages 979–989. PMLR, 2020. 1

[66] Sanjana Srivastava, Chengshu Li, Michael Lingelbach, Roberto Mart́ın-Mart́ın,
Fei Xia, Kent Vainio, Zheng Lian, Cem Gokmen, Shyamal Buch, C. Karen
Liu, Silvio Savarese, Hyowon Gweon, Jiajun Wu, and Li Fei-Fei. Behavior:
Benchmark for everyday household activities in virtual, interactive, and ecological
environments, 2021. 1

[67] Junshu Tang, Tengfei Wang, Bo Zhang, Ting Zhang, Ran Yi, Lizhuang Ma,
and Dong Chen. Make-it-3d: High-fidelity 3d creation from a single image with
diffusion prior, 2023. (document), 2.2, 4.1.1, 4.1

[68] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and
Pieter Abbeel. Domain randomization for transferring deep neural networks
from simulation to the real world, 2017. 3.1.3

[69] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for
model-based control. In 2012 IEEE/RSJ international conference on intelligent
robots and systems, pages 5026–5033. IEEE, 2012. 2.4

[70] Marc Toussaint. Logic-geometric programming: An optimization-based approach
to combined task and motion planning. In Proceedings of the 24th International
Conference on Artificial Intelligence, IJCAI’15, page 1930–1936. AAAI Press,
2015. ISBN 9781577357384. 2.3

[71] Hsiao-Yu Fish Tung, Zhou Xian, Mihir Prabhudesai, Shamit Lal, and Kate-
rina Fragkiadaki. 3d-oes: Viewpoint-invariant object-factorized environment
simulators. arXiv preprint arXiv:2011.06464, 2020. 2.4

[72] Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke
Zhu, Linxi Fan, and Anima Anandkumar. Voyager: An open-ended embodied
agent with large language models, 2023. 2.1

[73] Haochen Wang, Xiaodan Du, Jiahao Li, Raymond A. Yeh, and Greg
Shakhnarovich. Score jacobian chaining: Lifting pretrained 2d diffusion models
for 3d generation, 2022. 3.1.2

[74] Kun Wang, William R. Johnson III au2, Shiyang Lu, Xiaonan Huang, Jo-
ran Booth, Rebecca Kramer-Bottiglio, Mridul Aanjaneya, and Kostas Bekris.
Real2sim2real transfer for control of cable-driven robots via a differentiable
physics engine, 2023. 2.2

[75] Tsun-Hsuan Wang, Andrew Everett Spielberg, Pingchuan Ma, Zhou Xian, Hao
Zhang, Joshua B. Tenenbaum, and Chuang Gan. Softzoo: A soft robot co-design

29

Bibliography

benchmark for locomotion in diverse environments. In International Conference
on Learning Representations, 2023. 2.4

[76] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed H. Chi, Quoc
Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large
language models. CoRR, abs/2201.11903, 2022. URL https://arxiv.org/abs/

2201.11903. 2.1

[77] Zhou Xian, Shamit Lal, Hsiao-Yu Tung, Emmanouil Antonios Platanios, and
Katerina Fragkiadaki. Hyperdynamics: Meta-learning object and agent dynamics
with hypernetworks. arXiv preprint arXiv:2103.09439, 2021. 2.4

[78] Zhou Xian, Theophile Gervet, Zhenjia Xu, Yi-Ling Qiao, and Tsun-Hsuan Wang.
Towards a foundation model for generalist robots: Diverse skill learning at scale
via automated task and scene generation. arXiv preprint arXiv:2305.10455, 2023.
1

[79] Zhou Xian, Nikolaos Gkanatsios, Theophile Gervet, Tsung-wei Ke, and Kate-
rina Fragkiadaki. Chaineddiffuser: Unifying trajectory diffusion and keypose
prediction for robotic manipulation. Conference on Robot Learning, 2023. 2.4

[80] Zhou Xian, Bo Zhu, Zhenjia Xu, Hsiao-Yu Tung, Antonio Torralba, Katerina
Fragkiadaki, and Chuang Gan. Fluidlab: A differentiable environment for
benchmarking complex fluid manipulation. In International Conference on
Learning Representations, 2023. 2.4

[81] Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu,
Minghua Liu, Hanxiao Jiang, Yifu Yuan, He Wang, Li Yi, Angel X. Chang,
Leonidas J. Guibas, and Hao Su. Sapien: A simulated part-based interactive
environment, 2020. 1, 2.4, 3.2, 4.1.3, 5.1

[82] Danfei Xu, Roberto Mart́ın-Mart́ın, De-An Huang, Yuke Zhu, Silvio Savarese,
and Li Fei-Fei. Regression planning networks. CoRR, abs/1909.13072, 2019.
URL http://arxiv.org/abs/1909.13072. 2.1

[83] Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee,
Montse Gonzalez Arenas, Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasen-
clever, Jan Humplik, et al. Language to rewards for robotic skill synthesis. arXiv
preprint arXiv:2306.08647, 2023. 2.1

[84] Lvmin Zhang and Maneesh Agrawala. Adding conditional control to text-to-
image diffusion models. arXiv preprint arXiv:2302.05543, 2023. 3.1.1

[85] Xizhou Zhu, Yuntao Chen, Hao Tian, Chenxin Tao, Weijie Su, Chenyu Yang,
Gao Huang, Bin Li, Lewei Lu, Xiaogang Wang, Yu Qiao, Zhaoxiang Zhang, and
Jifeng Dai. Ghost in the minecraft: Generally capable agents for open-world
environments via large language models with text-based knowledge and memory,
2023. 2.1

30

https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
http://arxiv.org/abs/1909.13072

Bibliography

[86] Yifeng Zhu, Jonathan Tremblay, Stan Birchfield, and Yuke Zhu. Hierarchical
planning for long-horizon manipulation with geometric and symbolic scene graphs.
CoRR, abs/2012.07277, 2020. URL https://arxiv.org/abs/2012.07277. 2.1

31

https://arxiv.org/abs/2012.07277

	1 Introduction
	2 Related Work
	2.1 Large Language Models for task and motion planning in robotics
	2.2 Automating 3D asset creation with generative models
	2.3 Procedural demonstration generation using symbolic planners
	2.4 Simulation environments for robotic skill learning

	3 Approach
	3.1 3D Asset Generation
	3.1.1 Image diffusion models
	3.1.2 Image-to-3D Mesh using Score Distillation Sampling
	3.1.3 Texture generation
	3.1.4 Generating plausible physical properties

	3.2 Task Generation, Temporal Decomposition and Reward Function Prediction
	3.3 Sequential Reinforcement Learning for Long Horizon Tasks

	4 Experiments
	4.1 Experiments
	4.1.1 Asset Generation
	4.1.2 Automated Skill Learning
	4.1.3 Twin environment construction and sim-to-real world transfer

	5 Discussion
	5.1 Limitations
	5.2 Conclusion

	Bibliography

