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Abstract

Generalist robots need to learn a wide variety of skills to perform diverse
tasks across multiple environments. Current robot training pipelines
rely on humans to either provide kinesthetic demonstrations or program
simulation environments with manually-designed reward functions for re-
inforcement learning. Such human involvement is an important bottleneck
towards scaling up robot learning across diverse tasks and environments.

In this thesis, we present Generation to Simulation (Gen2Sim), a method
for scaling up robot skill learning in simulation by automating generation
of 3D assets, task descriptions, task decompositions and reward functions
using large pre-trained generative models of language and vision. We
generate 3D assets for simulation by lifting open-world 2D object-centric
images to 3D using image diffusion models and querying LLMs to deter-
mine plausible physics parameters. Given URDF files of generated and
human-developed assets, we chain-of-thought prompt LLMs to map these
to relevant task descriptions, temporal decompositions, and corresponding
python reward functions for reinforcement learning. We show Gen2Sim
succeeds in learning policies for diverse long horizon tasks, where rein-
forcement learning with non temporally decomposed reward functions
fails.

Gen2Sim provides a viable path for scaling up robot skill learning in
simulation, both by diversifying and expanding task and environment
development, and by facilitating the discovery of reinforcement-learned
behaviors through temporal task decomposition in RL. Our work con-
tributes hundreds of simulated assets, tasks and demonstrations, taking a
step towards fully autonomous robotic manipulation skill acquisition in
simulation.
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Chapter 1

Introduction

Scaling up training data has been a driving force behind the recent revolutions

in language modeling [4], image understanding [57], speech recognition [58], image

generation [60], to name a few. This begs the question: can we scale up robot data to

enable a similar revolution in robotic skill learning? One way to scale robot data is in

the real world, by having multiple robots explore [38] or by having humans provide

kinesthetic demonstrations [2, 3, 65]. This is a promising direction; however, safety

concerns and wear and tear of the robots hinder robot exploration in the real-world,

and collecting kinesthetic demonstrations scales poorly as it is time-consuming and

labor-intensive [2]. Another way to scale robot data is in simulation, by developing

simulated environments, defining tasks and their reward functions, and training robot

policies with reinforcement learning, augmenting visuals and physics parameters to

facilitate transfer of policies to the real world [27]. Such sim2real paradigm has seen

recent successes in robot locomotion [16, 32, 36, 37], object re-orientation [9, 55], and

drone flight [34]. These examples, though very important and exciting, are still fairly

isolated.

A central bottleneck towards scaling up simulation environments and tasks is

the laborious manual effort needed for developing the visuals and physics of assets,

their spatial arrangement and configurations, the development of task definition and

reward functions, or the collection of programmatic demonstrations. Tremendous

resources have been invested in developing simulators for autonomous vehicles [14],

warehouse robots, articulated objects [81], home environments [19, 62, 66], etc.,
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1. Introduction

Figure 1.1: Gen2Sim is an automated generative pipeline of assets, tasks, task
decompositions, and rewards functions for autonomous robotic skill learning in
simulation. Here we show 32 generated tasks, concerning affordances of diverse types
of object assets and their combinations.

many of which are proprietary and not open-sourced. Given these considerations, an

important question naturally arises: How can we minimize manual effort in simulation

development for diverse robotic skill learning?

In this thesis, we explore automating the development of simulation environ-

ments, tasks and rewards for robot skill learning, by building upon latest advances

in large pre-trained generative models of images and language. Our system strives

to automate all stages of robot learning: from generating 3D assets, textures, and

physics parameters, to generating task descriptions and reward functions, leading to

automated skill learning in diverse scenarios, as shown in Figure 1.1. This generative

pipeline was first proposed in a recent position paper [78], described as a promising

pathway towards generating diverse data for generalist robot learning. In this thesis,

we present Gen2Sim, the first attempt and realization of such a generative paradigm.

We automate 3D object asset generation by combining image diffusion models for

3D mesh and texture generation, and LLMs for querying physical parameters in-

formation. We showcase how LLMs and image generative models can diversify the

2



1. Introduction

appearances and behaviors of assets by producing plausible ranges of textures, sizes

and physical parameters, achieving “intelligent” domain diversification. We automate

task description, task decomposition and reward function generation by few-shot

prompting of LLMs to generate language descriptions for semantically meaningful

tasks, concerning affordances of existing and generated 3D assets, articulated or not,

alongside their reward functions. Gen2Sim is able to generate numerous object assets

and task variations without any human involvement beyond few LLM prompt designs.

We successfully train RL policies using our auto-generated tasks and reward functions.

We also demonstrate the usefulness of our simulation-trained policies, by constructing

digital-twin environments from given real scenes, allowing a robot to practice skills in

the twin simulator and deploying it back to the real world to execute the task.

In summary, we make the following contributions:

• We show how pre-trained generative models of images and language can help

automate 3D asset generation and diversification, task description generation,

task decomposition and reward function generation that supports reinforcement

learning of long horizon tasks in simulation with minimal human involvement.

• We deploy our method to generate hundreds of assets, and hundreds of ma-

nipulation tasks, their decompositions and their reward functions, for both

human-developed and automatically generated object assets.

For code, videos and qualitative video results, please visit our project website:

https://gen2sim.github.io/.

3
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Chapter 2

Related Work

2.1 Large Language Models for task and motion

planning in robotics

Large language models (LLMs) map instructions to language subgoals [28, 29, 82, 86]

or action programs [40] with appropriate plan-like or program-like prompts. LLMs

trained from Internet-scale text have shown impressive zero-shot reasoning capabilities

for a variety of downstream language tasks [4] when prompted appropriately, without

any weight fine-tuning [5, 7, 44, 76]. LLMs were used to generate task curricula and

predict skills to execute in Minecraft worlds [41, 72, 85] Following the seminal work

of Code as Policies, many works map language to programs over given skills [24]

or hand-designed motion planners [30]. Our work instead maps task descriptions

into task decompositions and reward functions, to guide reinforcement learning in

simulation, to discover behaviours that achieve the generated tasks. Work of [83]

also uses language for predicting reward functions for robot locomotion, but does not

consider task generation and decomposition or interaction with objects. Our work is

the first to use LLMs for task decomposition and reward generation, as well as asset

generation.
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2. Related Work

2.2 Automating 3D asset creation with generative

models

The traditional process of creating 3D assets typically involves multiple labor-intensive

stages, including geometry modeling, shape baking, UV mapping, material creation,

texturing and physics parameter estimation, where different software tools and the

expertise of skilled artists are often required. It is thus desirable to automate 3D

asset generation to automatically generate high-quality assets that support realistic

rendering under arbitrary views and have plausible physical behaviours during force

application and contacts. The lack of available 3D data and the abundance of 2D

image data have stimulated interest in learning 3D models from 2D image generators

[6, 53]. The availability of strong 2D image generative models based on diffusion led to

high-quality 3D models from text descriptions [8, 42, 56] or single 2D images using the

diffusion model as a 2D prior [50, 64, 67]. In this work, instead of a text-conditioned

model, we use a view and relative pose conditioned image generative model, which

we found to provide better prior for score distillation. Some methods attempt to use

videos of assets and differentiable simulations to estimate their physics parameters

and/or adapt the simulation environment, in an attempt to close the simulation to

reality gap [25, 26, 74]. Our effort is complementary to these works.

2.3 Procedural demonstration generation using

symbolic planners

Many recent works procedurally generate scenes and demonstration trajectories using

planners that have access to privileged information to solve the task, and distill

the demonstration solutions into learning-based policies that operate directly from

pixel or point-cloud input [13, 15, 49]. Task and motion planners [33, 46, 51, 70] use

predefined symbolic rules and known dynamics models, and infer discrete task plans

given instruction with lookahead logic search [20, 33, 33, 46, 51, 70]. These methods

predominantly rely on manually-specified symbolic transition rules, planning domains,

and grounding, which limits their applicability. Indeed, works of [13, 49] demonstrate

their results on relatively simple multi-object box stacking tasks. Scene procedural

6



2. Related Work

generation in the aforementioned works [13, 49, 52] entails randomizing locations and

number of given 3D models under weak supervision from a human that defines the

task and the possible location candidates. In contrast, we unleash the common sense

knowledge and reasoning capabilities provided by LLMs and use them to suggest task

descriptions, task decompositions, and reward functions. We then use reinforcement

learning to discover solution trajectories instead of TAMP-based search.

2.4 Simulation environments for robotic skill

learning

In recent years, improving simulators for robot manipulation has attracted increasingly

more attention. Many robotic manipulation environments and benchmarks [1, 35, 81]

are built on top of either PyBullet [12] or MuJoCo [69] as their underlying physics

engines, which mainly support rigid-body manipulation [22, 23, 71, 77, 79]. Recently,

environments supporting soft-body manipulation ([18, 43, 47, 75, 80, 81]) provide

capabilities for simulating deformable robots, objects and fluids. Our automated

asset and task generation are not tied to any specific simulation platforms and can

be used with any of them.
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Chapter 3

Approach

Gen2Sim generates 3D assets from object-centric images using image diffusion models

and predicts physical parameters for them using LLMs (Section 3.1). It then prompts

LLMs to generate language task descriptions and corresponding reward functions

for each generated or human-developed asset, suitable to their affordances (Section

3.2). Finally, we train RL policies in the generated environments using the generated

reward functions. We additionally show the applicability of the simulation-trained

policy by constructing digital twin environment in simulation, and deploy the trained

trajectory in the real world (Section 3.3). See Figure 3.1 for our method overview.

3.1 3D Asset Generation

Gen2Sim automates 3D asset generation by mapping 2D images of objects to textured

3D meshes with plausible physics parameters. The images can be 1) real images

taken in the robot’s environment, 2) real images provided by Google search under

relevant category names, e.g., “avocado”, or 3) images generated by pre-trained text-

conditioned diffusion models, such as stable diffusion [61], prompted appropriately to

generate uncluttered images of the relevant objects, e.g., “an image of an individual

avocado”. We query GPT-4 [54] for a list of object categories relevant for manipulation

tasks to search online for or to generate, instead of manually designing it. Please,

visit our project site for a detailed list of the objects we generated. Given a real or

generated 2D image of an object, we lift it to a 3D model by minimizing re-reprojection

9



3. Approach

Figure 3.1: Gen2Sim components. Gen2Sim generates 3D assets by lifting object-
centric 2D images to 3D. It then uses both generated assets and assets obtained
from other publicly available datasets to populate scene environments. Afterwards,
it queries LLMs to generate meaningful task descriptions for the assembled scenes,
as well as decompose the generated task descriptions to sub-tasks and their reward
functions.

error and maximizing likelihood of its image renderings using a diffusion model [8, 56].

We provide background on image diffusion models below, before we describe our 3D

model fitting approach.

3.1.1 Image diffusion models

A diffusion model learns to model a probability distribution p(x) by inverting a

process that gradually adds noise to the image x. The diffusion process is associated

with a variance schedule {βt ∈ (0, 1)}Tt=1, which defines how much noise is added

at each time step. The noisy version of sample x at time t can then be written

xt =
√
ᾱtx +

√
1− ᾱtϵ where ϵ ∼ N (, ), is a sample from a Gaussian distribution

(with the same dimensionality as x), αt = 1− βt, and ᾱt =
∏t

i=1 αi. One then learns

a denoising neural network ϵ̂ = ϵϕ(xt; t) that takes as input the noisy image xt and

the noise level t and tries to predict the noise component ϵ. Diffusion models can be

easily extended to draw samples from a distribution p(x|) conditioned on a prompt

10



3. Approach

, where can be a text description, a camera pose, and image semantic map, etc

[39, 60, 84]. Conditioning on the prompt can be done by adding as an additional

input of the network ϵϕ. For 3D lifting, we build on Zero-1-to-3 [45], a diffusion model

for novel object view synthesis that conditions on an image view of an object and

a relative camera rotation around the object to generate plausible images for the

target object viewpoint, = [I1, π]. It is trained on a large collection D′ = {(xi,i )}Ni=1

of images paired with views and relative camera orientations as conditioning prompt

by minimizing the loss:

Ldiff(ϕ;D′) = 1
|D′|

∑
xi,i∈D′

||ϵϕ(
√
ᾱtx

i +
√
1− ᾱtϵ,

i , t)− ϵ||2.

3.1.2 Image-to-3D Mesh using Score Distillation Sampling

Given an image and relative camera pose 2D diffusion model p(I|[I0, π]), we extract

from it a 3D rendition of the input image I0, represented by a differential 3D

representation using Score Distillation Sampling (SDS) [56, 73]. We do so by randomly

sampling a camera pose π, rendering a corresponding view Iπ, assessing the likelihood

of the view based on a diffusion model p(Iπ|[I0, π]), and updating the differentiable

3D representation to increase the likelihood of the generated view based on the model.

Specifically, the diffusion model is frozen and the 3D model is updated as:

∇(θ)LSDS(θ; π, , t) = Et,ϵ[w(t) (ϵϕ(atI + σtϵ; t, )− ϵ) · ∇θI],

where I = R(θ, π) is the image rendered from a given viewpoint π. The loss we

use to backpropagate to the 3D model parameters θ includes an image re-projection

loss for the camera viewpoint of the input image, and score distillation for the other

views, using a pre-trained view and pose conditioned image diffusion model of [45]

to measure 2D image likelihood. We use a two-stage fitting, wherein the first stage

an instantNGP NeRF representation is used, similar to RealFusion [50], and in the

second stage a mesh-based representation is initialized from the NeRF and finetuned

differentiably, similar to Fantasia3D [8].

11



3. Approach

3.1.3 Texture generation

We augment the textures of our generated assets using the method of TEXTure

[59] which iteratively edits a mesh’s texture by rendering the mesh from different

viewpoints and updating the rendered 2D images. While domain randomization

[68] randomly re-textures simulated assets, TEXTure produces diverse yet plausible

texture augmentations.

3.1.4 Generating plausible physical properties

The visual and collision parameters of an asset are generated from the Image-to-Mesh

pipeline discussed above. To define 3D sizes and physics parameters for the generated

3D meshes, we query GPT-4 regarding the range of plausible width, height, and

depth for each object, and the range of its mass given its category. We then scale

the generated 3D mesh based on the generated size range. We feed the mass and

3D mesh information to MeshLab [11] to get the inertia matrix for the asset. Our

prompts for querying GPT for mass and 3D object size can be found on our website.

We wrap the generated mesh information, its semantic name, as well as the physical

parameters into URDF files to be loaded into our simulator.

3.2 Task Generation, Temporal Decomposition

and Reward Function Prediction

Given either generated assets or assets obtained from publically available datasets, we

prompt LLMs to generate meaningful manipulation tasks considering their affordances,

to decompose these tasks into subtasks when possible, and to generate reward functions

for each subtask. We train reinforcement learning policies for each (sub)task using

the generated reward functions, and then chain them together to solve long horizon

tasks. Our LLM prompts contain the following sections:

1. Asset descriptions. We use combinations of assets we generate using the method

of Section 3.1, as well as articulated assets from PartNet Mobility [81] and GAPartNet

dataset [21]. We populate our simulation environment with randomly sampled assets.

Then, we extract information from the URDF files including link names, joint types

12



3. Approach

and limits using automated scripts. For example, an asset microwave has parts [door,

handle, and body], and joint [door-joint] of type revolute with a joint position

range [0, 1]. We then describe the extracted configurations of the assets to the LLM,

as shown below:

The environment contains the following assets:

1. asset_name: "microwave"

part_cofiguration:

Part 1: "body"

Part 2: "door"

- link_name: "link_0"

- joint_name: "joint_0"

- joint_type: "revolute"

- limit: [0, 1]

Part 3: "handle"

- link_name: "handle_0"

- joint_name: "handlejoint_0"

- joint_type: "fixed"

2. asset_name: "cup"

part_cofiguration:

Part 1: cup

- link_name: "base"

- joint_name: "base_joint"

- joint_type: "fixed"

2. Instructions. These include function APIs that can be used by the LLM to query

the pose of the robot end-effector, as well as different assets in the given environment:

Available APIs from the simulator are:

# returns the pose of the link

get_pose_by_link_name(asset_name , link_name)

# returns the pose of the robot gripper

get_robot_gripper_pose(asset_name , link_name)

# returns the state of the joint

get_state_by_joint_name(asset_name , joint_name)

# returns the limit of the joint

get_limits_by_joint_name(asset_name , joint_name)

Note:

1. Only use the available APIs from the simulator.

2. Generate the reward function code snippets in Python.

3. Examples of task descriptions and decompositions. These are question-

answer pairs that demonstrate task descriptions and their temporal decompositions.

List meaningful manipulation tasks that can be performed

in this environment. Give subtask decomposition and the

order of execution to solve the task. Also , provide the

reward function for each subtask.

13



3. Approach

The following tasks can be performed in this environment:

1. Open the Microwave Door

2. Close the Microwave Door

3. Pick Cup

4. Place Cup

5. Put the Cup in the Microwave

This task needs to be decomposed into sub -tasks:

- Open the Microwave

- Pick Cup

- Place the Cup in the Microwave

4. Examples of reward functions. These are task to reward function pairs that

present demonstrations of how tasks can be translated to reward functions, as shown

below:

Task: OpenMicrowaveDoor

Task Description: open the door of the microwave

‘‘‘

def compute_reward(env):

# reward function

door_handle_pose = env.get_pose_by_link_name("microwave", "handle_0")

gripper_pose = env.get_robot_gripper_pose ()

distance_gripper_to_handle = torch.norm(door_handle_pose - gripper_pose , dim=-1)

door_state = env.get_state_by_joint_name("microwave", "joint_0")

cost = distance_gripper_to_handle - door_state

reward = - cost

# success condition

target_door_state = env.get_limits_by_joint_name("microwave", "joint_0")["upper"

]

success = torch.abs(door_state - target_door_state) < 0.1

return reward , success

‘‘‘

For the example above, the reward function is comprised of 1) distance between the

end-effector and the target part, and 2) distance between the current and the target

pose of an articulated asset, link, or joint.

We show in Section 4.1 that our method can generalize across assets, suggest

diverse and plausible tasks, decomposition and reward functions automatically, using

a single in-context example in the prompt, without any additional human involvement.

14



3. Approach

3.3 Sequential Reinforcement Learning for Long

Horizon Tasks

We train policies using Proximal Policy Optimization (PPO) [63] maximizing the

generated reward functions for each subtask. We train RL for each generated subtask

in temporal order. Once policy training for a subtask converges, we proceed to the next

subtask, by sampling the initial state of the end-effector and the environment close to

the terminal states of the previous subtask. This ensures policies can be temporally

chained upon training. Our policies are trained per environment using privileged

information of the simulation state to accelerate exploration. Such learned policies

can be used as demonstration data and distilled into vision-language transformer

policies, similar to [2, 10, 31]; we leave this for future work.
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Chapter 4

Experiments

4.1 Experiments

Our experiments aim to answer the following questions:

1. Can Gen2Sim generate plausible geometry, appearance, and physics for diverse

types of objects and parts, without human expertise and with minimal human

involvement?

2. Can Gen2Sim generate task language goals and reward functions for novel

object categories, novel assets with different part configurations, and a combination

of multiple assets in an environment?

3. Can the generated environments and reward function lead to successful learning

of RL policies?

4.1.1 Asset Generation

We compare our image-to-3D lifting with two baselines:

1. RealFusion [50], which uses textual inversion of [17] to learn a word embedding

for the depicted object concept in an image, and uses text-conditioned diffusion with

this text embedding during score distillation.

2. Make-It-3D [67], which uses the same NeRF and textured mesh two-stage

fitting as Gen2Sim, but does not use a view and pose conditioned generative model,

rather a text-based image diffusion model, similar to [56].

17
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Figure 4.1: 3D asset generation from Gen2Sim, RealFusion [50] and Make-It-3D [67].
Gen2Sim uses a view and camera pose conditioned image generative model during score
distillation, which helps generate more accurate 3D geometry in comparison to the baselines.

Mass (gram) Length (cm) Width Height

Papaya 500-1000 15-20 10-15 10-15
Cucumber 200-300 15-20 5-7 5-7
Watermelon 5000-7000 30-40 20-30 20-30
Raspberry 3-5 2-3 2-3 2-3
Coconut 600-800 10-15 8-12 8-12
Corn 50-100 10-15 8-12 8-12

Pumpkin 2000-5000 20-40 20-40 20-40
Avocado 150-250 10-12 6-8 4-5

Table 4.1: Size and physics parameter generated by LLMs for a number of generated
assets.

We show comparisons in Figure 4.1, with images rendered from 4 different views.

Our model generates more plausible 3D model as our image diffusion prior comes from

an image and pose-conditioned model in comparison to approaches like Fantasia3D

or RealFusion which uses text conditioning.

We show generated values for 3D sizes and mass for a number of example objects

in Table 4.1. We see that the common sense knowledge encoded in LLMs can produce

reasonable physical parameters.
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4. Experiments

4.1.2 Automated Skill Learning

Gen2Sim generates diverse task descriptions, task decompositions and reward func-

tions automatically for hundreds of assets, with different category labels and number

of joints, given only a single in-context prompt example regarding the task

decomposition and reward function of the task “putting a cup in a Microwave” .

Then, the model can generalize to different scenes, asset articulated structures and

task temporal lengths. We show some examples of such generated task descriptions

in Figure 1.1 and more on our website. We show examples of task decompositions in

Figure 3.1. We provide our prompts in our project website, alongside examples of

the LLM’s responses.

We learn policies that optimize LLM generated rewards with PPO, an off-the-

shelf model-free RL algorithm [63]. We make use of GPU-parallel data sampling in

IsaacGym [48] for reinforcement learning. Our robotic setup uses a Franka Panda

arm with a mobile base. It is equipped with a parallel-jaw gripper. Our state

representation for PPO includes the robot’s joint position q ∈ R11, velocity q̇ ∈ R11

(7-DoF arm, x and y for the mobile base and 2 extra DoFs from the gripper jaws),

orientation of the gripper r ∈ SO(3), and poses and joint configurations of the assets

present in the scene. We use position control and at each timestep t our policy

produces target gripper pose and configurations which is converted to target robot

configurations through inverse kinematics. A low-level PID torque controller provided

by IsaacGym is used to produce low-level joint torque commands. We can successfully

learn useful manipulation policies, and the polices are able to solve the tasks upon

convergence. We show videos of such policies on our website.

Figure 4.2: Twin environments constructed and generated tasks for sim-to-real transfer.
Left: real-world. Right: simulated.
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4. Experiments

4.1.3 Twin environment construction and sim-to-real world

transfer

In order to validate the usefulness of the policies trained in simulation, we construct

a twin simulated environment of our lab’s real-robot setup (Figure 4.2). We detect,

segment, and estimate the poses of the objects in the scene. For non-articulated

assets, we use our model to lift the detected object image to corresponding 3D models;

for articulated objects, we select the most similar asset from the [81], and populated

the simulated environment. We train RL policies in simulation and transfer the

joint space trajectory back to our real-world setup. Our method allows successful

execution of the generated tasks. For more videos of the trained policies and their

task executions in simulation, as well as the sim2real transfer, please refer to our

website.
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Chapter 5

Discussion

5.1 Limitations

Gen2Sim has currently the following two important points to address towards ma-

terializing into a platform for large-scale robot skill learning that are deployable in

real-world:

1. Sim2real transfer of closed-loop policies: Our current real-world experi-

ments transfer open loop trajectories optimized in the constructed twin environment.

For closed-loop policies to transfer to the real world and consume realistic sensory

input, we would need to generate large-scale augmentations for both visual appear-

ances and dynamics for each task and sub-task, and then distil the state-based RL

policies to a foundational vision-language policy network. This is a direct avenue for

our future work.

2. Beyond rigid asset generation: The assets we can currently generate are

rigid or mostly rigid objects, which do not deform significantly under external forces.

For articulated assets, we are using existing manually designed and labelled datasets

([21, 81]). To generate articulated objects, deformable objects and liquids, accurate

fine-grained video perception is required in combination with generative priors to

model the temporal dynamics of their geometry and appearance. This is an exciting

and challenging direction for future work.
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5. Discussion

5.2 Conclusion

We have presented Gen2Sim, a method for automating the development of simulation

environments, tasks and reward functions with pre-trained generative models of vision

and language. We presented methods that create and augment geometry, textures and

physics of object assets from single images, parse URDF files of assets, generate task

descriptions, decompositions and reward python functions, and train reinforcement

learning policies to solve the generated long horizon tasks. Addressing the limitations

including generating diverse assets with more complex physical properties, and

transfering trained policies to real world are direct avenues for our future work. We

believe generative models of images and language will play an important role in

automating and supersizing robot training data in simulation, and in crossing the

sim2real gap, necessary for delivering robot generalists in the real world. Gen2Sim

takes one first step in that direction.
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