
Learning for Perception and Strategy:

Adaptive Omnidirectional Stereo Vision

and Tactical Reinforcement Learning

Conner Pulling

CMU-RI-TR-24-56

August 5, 2024

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Professor Sebastian Scherer, chair

Professor Jeff Schneider
Cherie Ho

Submitted in partial fulfillment of the requirements
for the degree of Masters of Science in Robotics.

Copyright © 2024 Conner Pulling. All rights reserved.

To my dad for introducing me to robotics, look how far we’ve come,

iv

Abstract

Multi-view stereo omnidirectional distance estimation usually needs to
build a cost volume with many hypothetical distance candidates. The
cost volume building process is often computationally heavy considering
the limited resources a mobile robot has. We propose a new geometry-
informed way of distance candidates selection method which enables the
use of a very small number of candidates and reduces the computational
cost. We demonstrate the use of the geometry-informed candidates in a set
of model variants. We find that by adjusting the candidates during robot
deployment, our geometry-informed distance candidates also improve a
pre-trained model’s accuracy if the extrinsics or the number of cameras
changes. Without any re-training or fine-tuning, our models outperform
models trained with evenly distributed distance candidates. Models are
also released as hardware-accelerated versions with a new dedicated large-
scale dataset. The project page, code, and dataset can be found at
https://theairlab.org/gicandidates/.

Additionally, the field of reinforcement learning (RL) has transformed
strategic game play, enabling AI agents to achieve superhuman perfor-
mance in games like chess, Go, and StarCraft II. These advancements
underscore the potential of RL in handling complex, long-horizon plan-
ning tasks against intelligent adversaries with a large search space of
potential winning strategies. This project introduces a new competitive
multi-phasic strategy game with partial observability and specialized units,
demonstrating the use of RL to achieve winning performance. Addition-
ally, this project explores the dynamics of the new competitive strategy
game, how certain mechanics lead to different dominant strategies, and
how to properly incentivize RL agents to learn winning strategies in this
environment.

v

vi

Acknowledgments

To Basti, I want to thank you for your mentorship, tutelage in the art of
research, and for making my Master’s journey possible. From my junior
year at my undergraduate institution to the end of my MSR journey,
you have supported and advised my path. The resources and academic
discussions made available by you and the AirLab have facilitated my
learning and growth dramatically. I could not have completed this thesis
or degree without your support.

To Jeff Schneider, thank you for your mentorship and for taking me on.
You are a great mentor and I am thankful for all that I have learned from
you so far. Additionally, thank you for being on my thesis committee and
advising me during the production of this thesis.

To Yaoyu Hu, thank you for mentoring me throughout my undergraduate
research career and into the end of my MSR degree. You were the first
person I met from CMU, interviewing me for the Robotics Insitute Summer
Scholar (RISS) program, and the one who brought me into this wonderful
world of robotics research at CMU. Thank you, you have changed my life
immeasurably.

To Professor John Dolan and Rachel Burcin, thank you for supporting
my growth through RISS. RISS was the beginning, and through which
I have had the opportunity to be surrounding by peers and mentors at
the top of their fields and conduct high-level research. I am continually
astounded by the level of mentorship you provide to everyone throughout
and even after the RISS program, your compassion, kindness, your ability
to uplift your community around you is unmatched. RISS has felt like a
second family, even years later, and it would not be possible without your
involvement.

To Cherie Ho, thank you for all of your support throughout the process
of producing this thesis and for being a friend. You are an amazing
researcher, a brilliant mentor, and a kind person. I wish you the best of
luck in the future and to many more CostCo trips.

To Wenshan Wang and the TartanAir Project, thank you for providing the
compiled environments, this saved us a lot of time and enabled our dataset
to be varied and impactful to the omnidirectional depth community.

vii

To Siheng Teng, Je Hon Ton, and the folks at DSTA, thank you for
working with me on the omnidirectional depth estimation project. You
both are brilliant researchers and I am thankful for the chance we had to
work together. I wish you luck in all future endeavours

To my friends in MSR, thank you for keeping me sane. Your friendship
made the long nights more bearable and the lunch breaks more enjoyable.
Here’s to more boba and frozen yogurt little treats in the future.

To my father, my mother, my grandmother, and my sister; thank you for
letting me talk about fisheye images and omnidirectional depth estimation
during dinner. Your support allowed me to grow into the researcher and
person I am today.

To my late granderfather who was unable to see me graduate, we made it.
I know you would be so proud of me and give me a big bear hug. Thank
you for believing in me and for all of the Pokemon cards. And in the end,
I too will seek you out amongst the stars.

viii

Funding

I. Omndirectional Stereo Vision

This work was funded by the Defence Science and Technology Agency, Sin-
gapore. This work used Bridges-2 at PSC through allocation cis220039p
from the Advanced Cyberinfrastructure Coordination Ecosystem: Ser-
vices & Support (ACCESS) program which is supported by NSF grants
#2138259, #2138286, #2138307, #2137603, and #213296.

II. Tactical Reinforcement Learning

This material is based upon work supported by the U.S. Army Research
Office and the U.S. Army Futures Command under Contract No. W519TC-
23-C-0030.

ix

x

Contents

1 Thesis Introduction 1

I Adaptive Omnidirectional Stereo Vision 3

2 Introduction 5

3 Background 9
3.1 Overview of Range-Sensing Methods for UAVs 9
3.2 Multi-view Stereo Vision . 10
3.3 Omnidirectional Distance Estimation 11
3.4 Current Challenges for Omnidirectional Depth Estimation 12

4 Methodology 13
4.1 Target and Evaluation Configurations 13
4.2 Model Overview . 14
4.3 Spherical Sweeping . 15
4.4 Standard Deviation Cost Volume Aggregation 16
4.5 Geometry-Informed Distance Candidates 16
4.6 Volume Loss . 18
4.7 Synthetic Data Pipeline . 19
4.8 Synthetic Dataset Characteristics . 20

5 Experimental Procedures & Results 21
5.1 Model Training . 21

5.1.1 Procedures & Data Augmentation 21
5.1.2 Preprocessing . 21
5.1.3 Data Augmentation . 22
5.1.4 Convergence Results . 23

5.2 Model Variants and Camera Layouts 25
5.2.1 Evaluation with the Same Camera Layout 28
5.2.2 Evaluation with Different Camera Layout 28

5.3 Deployment & Hardware Acceleration 30

6 Conclusions 33

xi

6.1 Released Materials . 33
6.2 Limitations . 33
6.3 Future Work . 35

II Tactical Reinforcement Learning 37

7 Introduction 39

8 Background 41
8.1 Reinforcement Learning . 41

8.1.1 The Framework . 41
8.1.2 Policy Gradient Methods . 43
8.1.3 Proximal Policy Optimization 45

8.2 Strategic Games . 47
8.2.1 Characteristics of Strategic Games 47
8.2.2 Multiphasic Games . 47
8.2.3 Variable Action Spaces . 48

8.3 Prior Works . 49
8.3.1 AlphaStar . 49
8.3.2 CivRealms . 50

9 Methodology 51
9.1 Game Rules and Environment . 51

9.1.1 Grid World and Simpler Rules 52
9.2 Training Loop Overview . 53

10 Experimental Procedure & Results 55
10.1 Hyperparameter Study . 55
10.2 Training Results . 58
10.3 Example of Learned Strategies . 61

11 Conclusions 63
11.1 Limitations . 63
11.2 Future Work . 64

Bibliography 65

When this dissertation is viewed as a PDF, the page header is a link to this Table of Contents.

xii

List of Figures

2.1 After training, using our geometry-informed (GI) distance candidate
distribution, the baseline distance between cameras can be changed
and the model’s performance can be restored without fine-tuning. . . 6

4.1 Camera Configuration for the evaluation board. Three fisheye cameras
are mounted pointing upwards in a triangular formation. A LiDAR,
unused for this study, introduces self-occlusions. 13

4.2 Model Overview. The model takes three fisheye images as input during
training and performs learned feature extraction with a shared feature
extractor, builds a cost volume with spherical sweeping, and regularizes
the distance with a 3D U-Net [31]. 14

4.3 GI and EV candidates for different camera spacings. EV candidates
approximate constant feature displacement steps for small spacings
(baselines), but result in highly uneven steps in large spacings. GI
candidates generate constant displacement steps as a function of camera
spacing. 17

4.4 Sphere-sweeping geometry. We pick distance candidates that result in
constant steps in ray angle corresponding to constant displacements in
the projected feature. 18

4.5 Our omni-directional stereo vision with fisheye images dataset consists
of about 95K samples from over 60 Unreal Engine 4 high-fidelity
simulation environments, manifested in various scene styles. 19

5.1 (a) Original fisheye image without augmentation. (b) Fisheye image
after color jittering. (c) Fisheye image after color jittering and Gaussian
noise. 22

5.2 Convergence Results for L1 Loss and Volumetric Loss. 23
5.3 Performance Metrics for RMSE Error, MAE Error, and SSIM. 24
5.4 Comparison with synthetically-generated images from the unseen envi-

ronments. a, b: second and third views. c: equirectangular projected
reference (first) view. d, e: outputs of RTSS [15] and G16VV (ours). f:
ground truth distance aligned with the reference view. In scenes with
low light, high-frequency features such as patterns and trees, and thin
objects, G16VV is more accurate and it can resolve fine details. . . . 26

xiii

5.5 Camera layouts in experiments. From left to right: training, testing 1
(same as training), testing 2 (larger spacing, new reference location),
testing 3 (larger spacing, new reference location, and more cameras). 26

5.6 Sample results on real-world data. Model G16VV. Row a-d: distance
estimation, three camera views. Columns: A - Original input image,
B - Input image warped using the predicted distance (Raw a). Purple
lines: vertical guidelines. If the distance prediction is good, then the
pixels on the purple line across Column B should align among Row
b-d. Our model trained only on synthetic data evaluated on real
images. The model can be optimized with NVIDIA TensorRT for
better inference speed on real robots. 27

5.7 Sample results of four-camera layout. a: first view. b: second view.
c: camera layout. d: RTSS, e: G16VV w/ training candidates. f:
G16VV w/ adjusted GI candidates calculated w.r.t. camera layout. g:
ground truth distance map. h: ground truth equirectangular image
view. When adjusted GI candidates are used, G16VV is more accurate
and resolves more details. 29

9.1 a) Example of Grid World Map, b) Diagram of Avenues-of-attack
(AOA) between hex and grid map types, c) Example of Hex World Map 52

10.1 Cumulative Success Probability CDF. The probability of an agent
winning across the entire hyperparameter study was 70.73%. 55

10.2 Hyperparameter Optimization Over Trials. 286 Trials were conducted. 56

10.3 Left: Objective values for different batch sizes. Middle: Impact of
layer sizes on performance. Right: Effectiveness of different numbers
of steps. 57

10.4 Left: Learning rate optimization results. Middle: Performance across
different layer counts. Right: Gamma parameter adjustments and
outcomes. 57

10.5 Y-axis: Mean Reward Value, X-axis: Training timesteps. Mean reward
over time for different hyperparameter configurations. The yellow
series represents the three best models, the blue series represents the
three worst models, and the green series represents the three models
closest to the average objective value. 59

10.6 Left: Average health over training timesteps for the red team. Right:
Average health over training timesteps for the blue team. 60

xiv

10.7 Mean win rates over training timesteps for different hyperparameter
configurations. Agents are evaluated across 100 episodes. Left) Rate
at which the agent draws, Center) Rate at which blue successfully wins
the episode, Right) Rate at which the red heuristic agent wins the
episode. 60

10.8 Examples of learned strategies: (a) Surrounding strategy where units
surround the enemy from multiple directions, (b) Flanking strategy
exploiting heuristic vulnerabilities, (c) Kiting strategy where units
attack from a distance and then retreat to avoid retaliation. 61

xv

List of Tables

5.1 Comparison using the same camera layout 28
5.2 Comparison using new camera layouts 30
5.3 Inference memory and time of accelerated models. 31

10.1 Hyperparameter Choices for Tuning 57
10.2 Common Hyperparameter Settings for Different Model Performances 59

xvi

Chapter 1

Thesis Introduction

When intelligent robotic agents operate in the world, the execution process of their

actions can be broadly divided into two main processes: perception and planning.

Perception deals with the gathering of information from an agent’s environment.

This includes tasks such as utilizing sensors, mitigating environmental factors that

introduce noise, and preprocessing data into formats that are useful for computational

processes. Perception systems straddle the line between the real world and the

computational world, using observations of physical processes to deduce intermediate

facts that cannot be directly observed. Conversely, planning involves the processing

of this information to determine the actions that an agent should execute. Within the

vast landscape of potential actions, planning systems evaluate and prioritize choices

based on set objectives and experiences learned from past interactions.

Perception systems serve as the critical gateway for deploying robotic agents to

perform complex tasks. These systems are indispensable when precise information

is required to inform an agent about the next action to take. Adhering to the old

adage ”Garbage in, garbage out,” the quality of input data significantly impacts

the accuracy and effectiveness of the agent. While an agent can be designed to be

robust against noise and changes in the domain, cleaner and more reliable data that

align with known assumptions can greatly enhance system performance. Moreover,

some tasks demand the extraction of intricate information from sources that are

increasingly noisy, unorganized, and simplistic. On the other hand, planning systems

are tasked with narrowing down these inputs to ultimately select the correct action

1

1. Thesis Introduction

based on the observed state.

In recent years, learning-based systems have dramatically transformed the domains

of perception and planning. Advances in machine learning, particularly in deep

learning, have enabled perception systems to achieve unprecedented accuracy in

object detection, scene interpretation, and real-time response to dynamic environments.

These improvements have allowed robotic agents to understand and interact with their

surroundings with greater precision and reliability. Simultaneously, in the domain

of planning, innovations in reinforcement learning and decision-making algorithms

have revolutionized how agents decide and act. These technologies allow agents to

learn optimal strategies through iterative processes and adapt their actions based

on continuous feedback from their environment, enhancing both the efficiency and

adaptability of planning systems.

This thesis represents a dual exploration and contribution to these crucial domains.

The first project contributes to the field of learning-based omnidirectional depth

estimation, enhancing how robotic agents perceive depth in various settings, thereby

improving their interaction with complex environments. The second project inves-

tigates the application of reinforcement learning in strategic games involving large

and variable action spaces, showcasing how planning systems can evolve to handle

highly dynamic and unpredictable scenarios. The thesis is structured into parts, each

dedicated to discussing these advancements in depth, their implications for future

technologies, and the integration of learning systems into practical applications.

Through detailed exploration of these projects, this thesis aims to highlight the

significant potential of integrating advanced learning algorithms in both perception

and planning. The goal is to provide a comprehensive understanding of how these

technologies can be further developed and effectively applied, paving the way for

more sophisticated and autonomous robotic systems in the future.

2

Part I

Adaptive Omnidirectional Stereo

Vision

3

Chapter 2

Introduction

Distance perception is a key requirement in mobile robots that need to navigate

and avoid obstacles. A larger field-of-view (FoV) and faster distance perception

enable a robot to more effectively gather information about its surroundings, with

omnidirectional sensing being most desirable. Presently, LiDAR devices are the go-to

sensors for distance perception due to their accuracy and high update speed. However,

LiDARs are mechanically complex, and this complexity increases with an increased

number of sampling points. It is technically difficult and prohibitively expensive to

achieve both large FoV and high resolution with LiDARs.

Using multiple cameras as a multi-view stereo (MVS) camera set can provide

high-resolution omni-directional distance perception with much lower mechanical

complexity and cost. Recent research has demonstrated that using multiple cameras

with large FoV lenses (e.g., fisheye lens) can achieve omni-directional distance esti-

mation [15, 31, 34]. Compared to LiDAR devices, vision-based distance estimation

typically provides larger FoV and denser measurements. However, two challenges

prevent MVS-omni-directional solutions from being the go-to sensor choice: 1) they

are computationally expensive and; 2) they are difficult to deploy.

The majority of the MVS-omni-directional models, both learning-based and non-

learning, utilize a cost volume structure that aggregates visual features by using

virtual distance candidates along a viewing direction. The model compares the

features at all candidates that are present in the cost volume and picks the best

weights for a linear combination of the given candidates. This cost volume approach

5

2. Introduction

Figure 2.1: After training, using our geometry-informed (GI) distance candidate
distribution, the baseline distance between cameras can be changed and the model’s
performance can be restored without fine-tuning.

consumes a significant amount of computing resources, which grows depending on

the number of cameras and the number of distance candidates.

For deployment, cameras in an MVS-omni-directional system typically need to

be placed such that maximum FoV can be achieved with minimum occlusions from

the robot (self-occlusion). For learning-based methods, if the location or number of

cameras is changed to mitigate occlusions, the method typically suffers significant

performance degradation as the position of corresponding features in the camera

images is changed, hence for the same distance candidates the patterns of accumulated

features in the cost volume that differ greatly from training data.

To resolve the above issues related to learning-based visual omni-directional

distance estimation, our insight is that we can train a model to utilize a small number

of virtual distance candidates by picking distance candidates in a way that is informed

by the geometry of the camera configuration. For a known set of camera extrinsics, we

can select the candidates such that the positional displacement for the same feature

sampled at two consecutive distance candidates are similar across all consecutive

pairs of candidates. This ensures a similar pattern of feature accumulation in the

cost volume, allowing the model to more effectively determine the best interpolation

6

2. Introduction

weights between a pair of consecutive candidates. This enables us to create models

with a much lower number of candidates (16 or 8) compared to previous methods,

significantly reducing computational cost. We are also able to compute such distance

candidates for new camera configurations during deployment, allowing a trained

model to be used and maintain its performance even if the camera extrinsics or the

number of cameras is changed. In this work, our contributions are:

• A geometry-informed (GI) distance candidates selection method that enables

the use of fewer candidates and change of extrinsics for deployment.

• Demonstration of a relaxed version of camera layout that can generate omni-

directional distance estimation with self-occlusion explicitly handled and variable

translations among the cameras.

After training on our dedicated new dataset, our model can efficiently generate

omni-directional distance from multiple cameras with self-occlusion explicitly handled,

even if the number and position of the cameras change during physical deployment.

The code, pre-trained model, and the dedicated dataset are available through the

project webpage.

7

2. Introduction

8

Chapter 3

Background

Estimating distance from more than one camera is a common and fundamental

capability of robot systems. There is a vast body of work that covers various topics

within depth estimation as well as a myriad of methods to measure depth. This section

will start with a high-level overview will cover current range-sensing methods. Next,

an overview of projective geometry and camera models will provide an understanding

of how images serve as two-dimensional projections of our three-dimensional world.

Finally, an overview of pinhole cameras, plane-sweeping, and multi-view stereo vision

will give a current understanding of how multiple camera images can be processed

into a cost-volume to produce a depth image. Additionally, the exploration into

current multi-view depth estimation methods will motivate the need for configurable

and omnidirectional depth estimation With these background sections, the reader

will be primed well-informed to appreciate the contributions that this work has made.

3.1 Overview of Range-Sensing Methods for

UAVs

Unmanned Aerial Vehicles (UAVs), commonly referred to as drones, employ various

range-sensing technologies to navigate and interact with their environment effectively.

Each sensing technology comes with its advantages and trade-offs, particularly con-

cerning size, weight, power, and cost (SWAP) constraints, which are critical in UAV

9

3. Background

applications.

Light Detection and Ranging (LiDAR) systems are known for their precision in

generating detailed 3D maps by emitting laser beams and measuring the time it takes

for the reflection to return. While offering high accuracy, LiDAR systems tend to be

heavy and power-intensive, making them less ideal for smaller drones where payload

capacity is limited.

In contrast, photogrammetry, utilizing images from cameras to measure distances,

presents a lighter and often more cost-effective option. Traditional setups involve

stereo camera systems that infer depth through disparity calculations between images

taken from slightly different viewpoints. However, these systems typically require

multiple cameras positioned at various orientations to capture the environment fully,

increasing the computational burden for image processing.

Fisheye cameras have recently gained popularity in UAV applications due to their

wide field of view, which can cover much larger areas with fewer cameras. This

reduction in the number of required cameras not only decreases the weight and power

consumption but also simplifies the data processing pipeline. The wide-angle lenses

of fisheye cameras capture a panoramic view, reducing blind spots and enhancing the

UAV’s ability to navigate complex environments.

The shift towards fisheye cameras aligns with the ongoing need to optimize

SWAP in drone technology. Their ability to provide extensive coverage with minimal

hardware makes them an attractive alternative to traditional photogrammetry and

LiDAR systems, especially in scenarios where real-time response and agility are

paramount.

3.2 Multi-view Stereo Vision

Multi-view stereo (MVS) has a longer history compared with the aforementioned

multi-view distance estimation. MVS studies are more focused on reconstructing the

3D geometry of an object or a scene, other than providing distance estimations with

respect to a robot. Similar to distance estimation, MVS studies use both non-learning

[10][25][6][11][3][35] and learning-based approaches [36][9][37][38][18]. The result of

an MVS method is usually a volumetric representation (e.g., voxel grid surface), point

cloud, or surface mesh. Inside these learning-based models, a cost volume can be

10

3. Background

constructed following [36]. Most of the approaches use a reasonably large number

of distance candidates. Some works, e.g. [8][12][7], explore multi-scale or adaptive

candidates, which may use fewer candidates but need to do the computing in an

iterative way, leading to additional computational overhead.

3.3 Omnidirectional Distance Estimation

The most relevant non-learning model is from Meuleman, [15] where they generate

distance predictions for a reference fisheye image by selectively fusing information from

other fisheye image views. A complete distance prediction is then made by stitching

multiple estimations together. They also build a cost volume to aggregate information

across different distance candidates. For efficiency, the number of candidates is kept

at 32. Since the model is non-learning-based, there is no training and it can be

deployed on various camera layouts. This model is one of our main baseline models.

For the learning-based models, SweepNet and OmniMVS, by Won, [31][32][33] are

the standouts among the early approaches. Like the non-learning models, SweepNet

and OmniMVS will build a cost volume for a fixed number of candidates. This

number is configurable but in order to achieve desired accuracy the value is set at

around 100 or 200. The cost volume is consumed by the downstream part of the

model, typically layers of 3D Convolutional Neural Networks (CNN), and distance

values are estimated. Later, Su, [26] implemented a hierarchical version that makes

distance predictions on different scales, where at each scale, a cost volume is built in

the same way. The above models are trained with a fixed number of cameras and

placement. When the camera layout changes, new training and datasets may be

required.

Two recent works are closely related to our approach. One conducted by Chen,

[4] constructs multiple cost volumes for unsupervised learning. They use feature

variance to compare the cost volumes [36]. Our approach is similar with the difference

being that we handle self-occlusion explicitly. The other is OmniVidar [34], which

turns distance estimation into multiple rounds of binocular stereo estimations. On a

high level, the learning-based part of this approach is camera layout agnostic as long

as we can cover the final by undistorting and rectifying the input fisheye images

along different orientations. However, this process needs to be manually and carefully

11

3. Background

designed for every new camera layout. Our model can accommodate camera layout

change through an easier process with fewer manual procedures.

3.4 Current Challenges for Omnidirectional

Depth Estimation

Currently, omnidirectional depth estimation studies typically assumes a fixed camera

confirmation. Their dataset, training procedures, and evaluation benchmarks all

assume this same camera configuration. Without any mitigation, these learning-based

methods fail when presented new camera configurations or are recalibrated. This

rigidity in camera configuration makes current omnidirectional depth estimation

datasets and pretrained models less useful for anything other than validating paper

results.

Additionally, the computational efficiency of current omnidirectional methods are

quite low. As stated, many current learning-based methods make use of a cost-volume

approach that trades computational efficiency for a drastically reduced search space

that relies on chosen guesses at the true depth. Recent studies make architectural

strides to become faster, yet another way to make current methods faster would

be to reduce the number of guesses that are made in the cost volume. There is

currently little to no work on how to choose the hypothetical guesses nor how to

reduce the number of guesses that are needed while maintaining an advantageous

tradeoff between speed and accuracy.

12

Chapter 4

Methodology

4.1 Target and Evaluation Configurations

For real-world testing, we use an evaluation board with three fisheye cameras pointed

in the same direction and arranged in a triangular formation as in Fig. 4.1 and the

Figure 4.1: Camera Configuration for the evaluation board. Three fisheye cameras
are mounted pointing upwards in a triangular formation. A LiDAR, unused for this
study, introduces self-occlusions.

13

4. Methodology

training layout in Fig. 5.5. This target configuration enables an aerial robot to have

omnidirectional vision by placing cameras safely on top of its body, e.g. Skydio

2+ Drone. Additionally, this target configuration is especially challenging due to

the fact that image boundary regions from fisheye lenses are extensively used where

good calibration is hard to achieve. We utilize the TartanCalib toolbox to get better

calibration results with the Double Sphere camera model[5][28].

4.2 Model Overview

Figure 4.2: Model Overview. The model takes three fisheye images as input during
training and performs learned feature extraction with a shared feature extractor,
builds a cost volume with spherical sweeping, and regularizes the distance with a 3D
U-Net [31].

Similar to [31], our model builds a cost volume from spherically-sweeping learned

features and then regularizes this cost volume to achieve a probability distribution of

the true distance for each pixel. First, the model takes in three fisheye images during

training. Feature maps are extracted from the images with a shared 2D-convolution

feature extractor. Next, spherical sweeping is employed using a set of distance

candidates to warp the other fisheye images into the reference image frame at the

candidate distance. To aggregate all of the views into C channels, differing from

14

4. Methodology

prior works in omnidirectional vision with fisheye images, one of our model variants

(introduced in Section 5.2) uses feature variance to build the cost volume, similar

to [36]. By using feature variance as opposed to concatenating the feature vectors

together for each pixel for each warped image, the channel dimension is reduced by a

factor of N (number of images). Additionally, because the variance between a set of

vectors results in a same-length vector no matter how many vectors there are from the

input images, the model can explicitly exclude self-occluded pixels while maintaining

the required length of the C dimension. Since the cost volume has one dimension

more than the shape of the extracted 2D features, operations like 3D convolutions

need to be applied. We utilize a 3D U-Net typed regularizer to process the cost

volume into a probability distribution. The probability for each candidate is used in

a weighted sum to regress the distance for each pixel.

4.3 Spherical Sweeping

The process of spherical sweeping is crucial for aligning features between cameras,

thereby building a cost volume that reduces the search space of possible depth

candidates effectively through geometric constraints. If a depth candidate is more

accurate, the projections between cameras will be more geometrically consistent.

Therefore, the spherical sweeping step is essential for unprojecting query images,

rotating or transforming them into the reference image frame, and then projecting

them back onto the reference image plane to check correspondences.

Each depth hypothesis transforms the unit camera array from the unprojection

function into an actual 3D point that is hypothesized to have that depth. Spherical

sweeping poses the question: What if this pixel had this depth? What would the

resulting image look like in the reference image plane? The correct depth allows a

query pixel to overlay onto its corresponding reference pixel almost exactly.

Rather than regressing out a depth, this method projects the query image onto the

reference image plane to test the depth hypothesis. Analogous to plane sweeping used

to test disparity hypotheses in general stereo vision, spherical sweeping must accom-

modate the unique characteristics of fisheye images. Unlike traditional images where

correspondences lie along straight epipolar lines, in fisheye images, correspondences

lie along curved epipolar paths.

15

4. Methodology

Therefore, a generalized warping operation is required for fisheye images. This

sweeping step sweeps a query image across a series of depth images, warping the

image into multiple possible configurations where the entire image is assumed to be

at a certain depth candidate. This method builds a 3D cost volume, which, when

passed to the cost volume regulator, represents a set of possible resultant images.

The regulator’s task is to propagate information and learn to detect correspondences

across these images, increasing the likelihood of finding correct correspondences at

certain pixels while decreasing it at others if the depth hypothesis is less likely.

The effectiveness of this step in ensuring accurate depth estimations highlights the

necessity of integrating spherical sweeping with cost volume building and regulation

techniques, which may be further detailed in subsections dedicated to cost volume

building and regulation strategies.

4.4 Standard Deviation Cost Volume Aggregation

The use of equirectangular projection results in a region of high distortion at the top

of the projected image. While conventional planar convolution kernels may effectively

extract low-level features (e.g. edges, corners), they will face difficulty with high-level

features (e.g. textures, object features) which appear distorted differently in different

regions of the image. To account for the projection distortion we use a spherical

convolution similar to that described in [13], implemented using the deformable

convolution with fixed precomputed kernel offsets. Our spherical feature extraction

module comprises two ResNet stages of 5 and 10 layers respectively, followed by

a spherical convolution to aggregate high-level features. We show that the use of

spherical convolution improves distance prediction quality in the high distortion

region of the image.

4.5 Geometry-Informed Distance Candidates

Previous work on distance perception commonly used distance candidates spaced

evenly in the inverse distance space (hereinafter named EV). In the case of plane-

sweeping[36], EV candidates have the property that moving an object between

16

4. Methodology

consecutive candidates results in a constant pixel displacement of the corresponding

features in feature space.

In the case of sphere-sweeping[15][33], EV candidates generally do not result in

constant feature displacement due to the non-linearity of spherical sweeping. However,

for small camera baselines, they provide a close approximation, as shown in Fig. 4.3.

As previous work on sphere-sweeping has focused on small baseline configurations and

large numbers of candidates[31][32][33], the use of EV candidates caused negligible

impact on performance.

For better efficiency, we propose to use a small number of geometry-informed (GI)

candidates computed for specific camera extrinsics and ensure similar displacement

for each step between distance candidates. As feature position in the projected image

is proportional to the feature ray angle, GI candidates are obtained by developing

distance as a function of ray angle and sampling it with evenly spaced ray angle steps

(see Fig. 4.4). Later in the experiment section, we show that the use of GI candidates

Figure 4.3: GI and EV candidates for different camera spacings. EV candidates
approximate constant feature displacement steps for small spacings (baselines), but
result in highly uneven steps in large spacings. GI candidates generate constant
displacement steps as a function of camera spacing.

17

4. Methodology

Figure 4.4: Sphere-sweeping geometry. We pick distance candidates that result in
constant steps in ray angle corresponding to constant displacements in the projected
feature.

improves distance prediction accuracy in the cases of large camera spacing and low

candidate count.

4.6 Volume Loss

As seen in previous work [31][34][26], the main loss function of choice for the omni-

directional stereo vision supervised learning problem has been L1 loss on the final

distance map. However, there is a rich amount of information in the cost volume

itself before aggregation. Before linear combination but after softmaxing, the cost

volume represents a probability distribution of which distance candidate is the most

likely to be the true distance. In actuality, this probability distribution should look

like the interpolation between the two closest distance candidates to the true distance

value. Therefore, because the ground truth probability distribution is known and the

softmax’d cost volume represents a predicted probability distribution, a soft cross-

entropy loss function can be used as a more informative loss function [17]. Combined

with the GI distribution described in the previous section, using the volumetric soft

cross-entropy loss leads to accuracy gains.

18

4. Methodology

4.7 Synthetic Data Pipeline

A synthetic data collection pipeline was developed to produce a state-of-the-art

dataset for training models in omnidirectional stereo vision. The goal was to create a

dataset sufficiently photorealistic to bridge the simulation-to-reality gap effectively

during model inference. Due to the scarcity of fisheye data in existing datasets,

where previous studies often resorted to creating their datasets from lower fidelity

simulations, our approach emphasizes higher scene and condition variety.

The data pipeline was constructed using AirSim and simulated drones within

the Unreal Engine environment, noted for its exceptional fidelity, including realistic

lighting, exposure settings, reflections, and weather effects. These elements contribute

to a dataset that closely mimics real-world conditions, making it valuable for practical

applications.

Camera configurations critical to our studies were not available in existing datasets.

Our pipeline ensures that the camera extrinsics are fixed while allowing flexibility in

Figure 4.5: Our omni-directional stereo vision with fisheye images dataset consists of
about 95K samples from over 60 Unreal Engine 4 high-fidelity simulation environments,
manifested in various scene styles.

19

4. Methodology

camera intrinsics through the use of cube maps. These cube maps enable users to

configure their fisheye lenses as needed, facilitating future studies involving binocular

and trinocular setups with varied camera configurations.

During data collection, the roll, pitch, and yaw of the simulated drone were

randomized while maintaining the rigid body assumption across all three cameras.

The raw, unprocessed cube maps from data collection allow other researchers to easily

apply different fisheye configurations, enhancing the utility of the dataset for other

studies.

The cube maps were processed into fisheye images using a custom sampler based

on the double-sphere model. This model samples from pinhole cube map images to

generate fisheye images, with intrinsics gathered from real-world calibration results

using our calibration apparatus. Although this method introduced a visible seam

in the fisheye images, it was mitigated by disabling auto-exposure, and did not

significantly impact downstream results, although no comprehensive study on this

effect has been conducted yet. The environments used for data generation were

adapted from the Tartan Air dataset, modified to accommodate our multi-camera

setup.

4.8 Synthetic Dataset Characteristics

One of our model development goals is to deploy models on a camera layout similar

to that shown in Fig. 4.1. This three-camera plenary setup is the minimum to cover

the semi-sphere FOV on top of the plane. This setup also ensures that the robot

body in the middle of the cameras will not block the view of more than two cameras,

making stereo distance estimation possible for all FOV directions. Currently, no such

dataset exists and it motivates us to create a new dataset. In total, 100K samples

were collected from over 65 Unreal Engine 4 simulation environments used in the

collection efforts of TartanAir [30]. This dataset is over 10x larger than any currently

available dataset for omnidirectional stereo vision with fisheye images [31] and is

released for download on our project page. The camera layout is the training layout

in Fig. 5.5. Each sample consists of three RGB-dense distance pairs in fisheye format.

There are a large variety of outside, urban, indoor, and natural environments as

shown in Fig. 4.5.

20

Chapter 5

Experimental Procedures & Results

5.1 Model Training

5.1.1 Procedures & Data Augmentation

To enhance the robustness of our model and ensure it generalizes well to various

conditions, we employ several preprocessing and data augmentation techniques. These

steps are crucial for improving the model’s performance and reducing overfitting. The

following subsections detail the preprocessing and augmentation methods used in this

study.

5.1.2 Preprocessing

The initial step in our pipeline involves preprocessing the fisheye images. Each image

undergoes several preprocessing steps to ensure consistency and quality across the

dataset. These steps include:

• Normalization: All images are normalized to a standard scale to ensure

uniformity in pixel intensity values.

• Resizing: Images are resized to a fixed resolution to match the input dimensions

required by the model.

• Calibration: Using the TartanCalib toolbox, we calibrate the images with

the Double Sphere camera model to correct any lens distortions and ensure

21

5. Experimental Procedures & Results

accurate geometric representations [5][28].

5.1.3 Data Augmentation

To further improve the generalization capability of our model, we apply several

data augmentation techniques. Data augmentation helps in artificially expanding

the dataset by creating modified versions of the original images. The following

augmentations were applied:

Color Jittering

Color jittering is used to introduce variations in the color properties of the images,

making the model more robust to changes in lighting and color conditions. The

parameters adjusted include brightness, contrast, saturation, and hue. Figure 5.1

Part (b) illustrates the result of applying color jittering to an unaugmented fisheye

image.

(a) (b) (c)

Figure 5.1: (a) Original fisheye image without augmentation. (b) Fisheye image after
color jittering. (c) Fisheye image after color jittering and Gaussian noise.

Gaussian Noise

To simulate sensor noise and make the model more robust to noisy input data, we

add Gaussian noise to the images. This technique helps the model to learn to ignore

noise and focus on the relevant features for distance estimation. The augmented

image after applying Gaussian noise to the color-jittered image is shown in Figure

5.1, Part (c).

22

5. Experimental Procedures & Results

By combining these preprocessing and data augmentation techniques, we ensure

that our model is well-prepared to handle a wide range of real-world conditions,

thereby improving its accuracy and robustness in omnidirectional distance estimation

tasks.

5.1.4 Convergence Results

In this subsection, we analyze the convergence results of different model configurations

through various performance metrics, including L1 Loss, Mean Absolute Error (MAE),

Root Mean Squared Error (RMSE), Structural Similarity Index Metric (SSIM), and

Volumetric Loss. The models compared include G16VV, G16V, G16, and E16, with

G referring to Geometry-Informed distance candidates, E to the standard Even

distribution used in prior works, and the number indicating the number of distance

candidates used. Additionally, G16V employs volumetric loss, and G16VV utilizes

both volumetric loss and masking augmentation.

Figure 5.2: Convergence Results for L1 Loss and Volumetric Loss.

L1 Loss

As shown in Figure 5.2, models G16VV and G16V exhibit the lowest L1 loss values

throughout the training process, indicating superior convergence. G16 also performs

well but slightly lags behind G16VV and G16V. The E16 model has a higher L1 loss

compared to the G16 variants, demonstrating the effectiveness of Geometry-Informed

distance candidates and volumetric loss.

23

5. Experimental Procedures & Results

Volumetric Loss

The volumetric loss, crucial for models incorporating volumetric information, shows

that G16VV and G16V significantly outperform the other models, maintaining lower

volumetric loss values (Figure 5.2). This emphasizes the benefit of volumetric loss

and masking augmentation in these configurations.

Figure 5.3: Performance Metrics for RMSE Error, MAE Error, and SSIM.

Mean Absolute Error (MAE)

In terms of MAE, G16VV and G16V consistently achieve the lowest errors, closely

followed by G16 (Figure 5.3). E16, while performing adequately, shows higher MAE

values, reinforcing the advantages of the Geometry-Informed approach and volumetric

considerations.

24

5. Experimental Procedures & Results

Root Mean Squared Error (RMSE)

Similarly, RMSE results (Figure 5.3) highlight the superior performance of G16VV

and G16V, with G16 being competitive but slightly behind. E16 has higher RMSE

errors, indicating less robust performance in this metric.

Structural Similarity Index Metric (SSIM)

The SSIM values (Figure 5.3) demonstrate that G16VV and G16V achieve the

highest structural similarity with the ground truth, suggesting better quality in the

reconstructed images. G16 also performs well, whereas E16 shows the lowest SSIM

values among the four models.

Overall Comparison

Overall, models G16VV and G16V consistently outperform others across all metrics,

making them the best-performing configurations. The inclusion of volumetric loss and

masking augmentation in G16VV provides an additional edge. G16 remains a strong

contender but falls slightly behind G16VV and G16V. E16, while performing better

than models with fewer candidates or no special augmentations, does not match the

performance of the Geometry-Informed variants.

These results demonstrate the effectiveness of Geometry-Informed distance candi-

dates and the enhancements provided by volumetric loss and masking augmentation,

establishing G16VV and G16V as the top models in our experiments.

5.2 Model Variants and Camera Layouts

We propose that geometry-informed (GI) distance candidates can directly improve dis-

tance estimation. GI candidates can be adapted to most of the MVS-omnidirectional

vision models where a fixed number of candidates are applied. In this work, we use a

set of model variants to show that GI candidates can work well with small candidate

numbers and changes in camera layout.

For a baseline comparison, we build a model for the 3-camera layout shown in

Fig. 4.2 using a similar structure as the OmniMVS model[31], the state-of-the-art

25

5. Experimental Procedures & Results

Figure 5.4: Comparison with synthetically-generated images from the unseen envi-
ronments. a, b: second and third views. c: equirectangular projected reference (first)
view. d, e: outputs of RTSS [15] and G16VV (ours). f: ground truth distance aligned
with the reference view. In scenes with low light, high-frequency features such as
patterns and trees, and thin objects, G16VV is more accurate and it can resolve fine
details.

omnidirectional distance estimator. We then have two simple variants from OmniMVS,

based on EV and GI candidates. We are targeting models with fewer candidates to

have better efficiency. We designate model names E16 and E8 for baseline models with

only 16 and 8 candidates, while G16 and G8 for the GI ones. Using the same naming,

let G16V be the model trained with the volume loss function. Finally, we also apply

the variance cost volume [36] to G16V and get G16VV. One detail about G16VV is

Figure 5.5: Camera layouts in experiments. From left to right: training, testing 1
(same as training), testing 2 (larger spacing, new reference location), testing 3 (larger
spacing, new reference location, and more cameras).

26

5. Experimental Procedures & Results

Figure 5.6: Sample results on real-world data. Model G16VV. Row a-d: distance
estimation, three camera views. Columns: A - Original input image, B - Input image
warped using the predicted distance (Raw a). Purple lines: vertical guidelines. If the
distance prediction is good, then the pixels on the purple line across Column B should
align among Row b-d. Our model trained only on synthetic data evaluated on real
images. The model can be optimized with NVIDIA TensorRT for better inference
speed on real robots.

that when calculating the cost volume, we explicitly handle the self-occlusion from

the robot. This is done by additionally showing the model a binary mask for every

input fisheye image. Such a mask marks non-occluded pixels as valid pixels. When

building the cost volume, a variance value is calculated by only considering visual

features from the non-masked regions. G16VV is smaller than other variants as a

result of using feature variance for building the cost volume. Besides E16 and E8, we

also make compare with the RTSS model [15]. In addition to the original RTSS model

with 32 EV candidates, we also tested RTSS with GI candidates and 16-candidate

variants.

All models are trained on the dataset in Section. 4.8. The distance range is fixed

at 0.5-100m during training. For comparison purposes, all models are trained with

the same fixed learning rate (0.0001) and batch size (16). We reserve some simulation

environments from training and collect ground truth data for evaluation.

Several camera layouts are used in the following experiments. As shown in Fig. 5.5,

all models are trained using the training layout. We test the models on different

layouts representing the change of spacing, number of cameras, and reference location.

A location on the plane is picked as the reference and the true omnidirectional distance

image is generated w.r.t this reference location in the simulator.

27

5. Experimental Procedures & Results

Table 5.1: Comparison using the same camera layout

model
candidates metrics time GPU (MB)
type num MAE RMSE SSIM (ms) start peak

RS-E16 EV 16 0.075 0.129 0.699 146
820 2780

RS-G16 GI 16 0.076 0.129 0.713 140
RS-E32 EV 32 0.053 0.101 0.776 144

1250 5130
RS-G32 GI 32 0.059 0.105 0.777 146

E8 EV 8 0.013 0.032 0.862
65 790 1030

G8 GI 8 0.012 0.029 0.867
E16 EV 16 0.011 0.028 0.876

111 790 1230G16 GI 16 0.010 0.028 0.877
G16V GI 16 0.013 0.028 0.875
G16VV GI 16 0.012 0.028 0.872 114 800 1090

EV : evenly distributed candidates. GI : geometry-informed. RS : the RTSS[15] model.

5.2.1 Evaluation with the Same Camera Layout

We first collected over 1000 samples using testing layout 1 in Fig. 5.5. Model

predictions are compared with ground truth omnidirectional distance images. We use

simple metrics including mean absolute error (MAE), mean root square error (RMSE),

and the Structural Similarity Index (SSIM) as in [15]. All metrics are computed

using the inverse distance (ranging from 0.01 to 2). We use a single NVIDIA V100

GPU for measuring the execution time and GPU memory usage. Several observations

can be made from Table 5.1: 1) with 16 or 8 candidates, a model can have very

competitive efficiency and GPU consumption compared to the real-time baseline

model (RTSS[15], model RS-E16 to RS-G32). 2) GI candidates do not improve the

non-learning baseline model[15] and this is the expected behavior. The baseline’s

performance increases with more candidates. 3) When using very few candidates,

such as E8 and G8, the one that uses GI candidates tends to be better. 4) Upon

proper training, all learning-based models have similar performance with and without

GI candidates, if tested using the same camera layout. Until now, GI candidates

have shown marginal performance gain. However, significant improvement is shown

in the next section where the testing camera layout is different from the training

configuration.

5.2.2 Evaluation with Different Camera Layout

To show the GI candidates’ ability to handle a camera layout that is different from

the training setup, we collect over 100 samples from the evaluation environments

28

5. Experimental Procedures & Results

with larger distances among the cameras, as illustrated in testing layout 2 Fig. 5.5.

For this test, we only use the variants that have 16 candidates. In the tests, we

apply a trained model twice, one with the candidates it was trained on, and the

other with the dedicated new candidates that are calculated concerning the deployed

camera layout (denoted as new in the following table). Table 5.2 shows that the GI

candidates can boost the performance of a trained model when deployed on a camera

layout that has longer displacement than the training data. We also observe from

Table 5.2 that model G16V, which is trained with our volume loss, tends to have

better SSIM values.

Using the G16VV model, since it builds the cost volume with feature variance

across all views, we can demonstrate that using the GI candidates, our model can

also handle the change of camera number. A separate set of over 100 samples is

collected from evaluation environments with four cameras laid out as testing layout

3 in Fig. 5.5. We show a sample result in Fig. 5.7. The quantitative results are

also listed in Table 5.2. G16VV gains better performance from only changing the

Figure 5.7: Sample results of four-camera layout. a: first view. b: second view. c:
camera layout. d: RTSS, e: G16VV w/ training candidates. f: G16VV w/ adjusted
GI candidates calculated w.r.t. camera layout. g: ground truth distance map. h:
ground truth equirectangular image view. When adjusted GI candidates are used,
G16VV is more accurate and resolves more details.

29

5. Experimental Procedures & Results

candidate values without any new training. On the speed side, from 3 cameras to

4 cameras, the processing time of G16VV adds only 6ms while the RTSS model

experiences a 35ms time increase. On the GPU memory side, since the RTSS model

precomputes the best view pairs for every output pixel, its memory does not change.

For G16VV, we observe an increase of about 60M Bytes.

Table 5.2: Comparison using new camera layouts

new
layout

model
candidates metrics
train eval MAE RMSE SSIM

3 cam
1m apart

RS-E32 - EV 0.124 0.217 0.697

E16
EV EV 0.033 0.053 0.768
EV new 0.018 0.037 0.829

G16
GI GI 0.030 0.050 0.786
GI new 0.020 0.039 0.823

G16V
GI GI 0.030 0.048 0.783
GI new 0.020 0.038 0.837

4 cam
1m apart

RS-E32 - EV 0.090 0.147 0.637

G16VV
GI GI 0.024 0.041 0.817
GI new 0.016 0.033 0.860

Candidates type: EV - evenly distributed, GI - geometry informed, new - GI for the
1m spacing. All models are trained with a camera spacing of about 0.3m and tested

with 1m. RS : the RTSS[15] model.

5.3 Deployment & Hardware Acceleration

We deploy the G16VV model on several Nvidia Jetson devices. To leverage the

hardware acceleration capability, we convert the entire model using TensorRT. We

demonstrate that our optimized model is capable of achieving more than 10Hz

on AGX Orin as shown in Table 5.3. All the deployed models (and intermediate,

hardware-independent models) are available on the project website.

30

5. Experimental Procedures & Results

Table 5.3: Inference memory and time of accelerated models.

architecture GPU
inference

time (ms) mem. (MB)

x86-64
RTX3080Ti 11 710
GTX1070MQ 210 800

NVIDIA Jetson
AGX Xavier 200 600
Xavier NX 270 1800
AGX Orin 65 1900

Original model: G16VV. The inference time and memory consumption are measured
across 100 consecutive runs. The entire model is accelerated by TensorRT and all the

models are available from the project website.

31

5. Experimental Procedures & Results

32

Chapter 6

Conclusions

6.1 Released Materials

This work introduces Geometry-Informed (GI) distance candidate selection for omni-

directional vision models. GI candidate approximate constant feature displacement

between distance candidates. Additionally, GI candidates give the model extra flexi-

bility after training: camera spacings (stereo baselines) can be adjusted after training

without fine-tuning while maintaining good performance. We develop a set of models

with our improvements and compare them against available state-of-the-art baseline

models and show accuracy, speed, and memory consumption improvements. We also

show that our model, only trained on synthetic data, produces reasonable distance

estimations in the real world. Lastly, we release several model variants and our

dataset for the use by the community.

6.2 Limitations

While our model demonstrates significant advancements in omnidirectional stereo

vision, several limitations have been identified that warrant further investigation and

improvement:

33

6. Conclusions

Need for Rotation Invariant Features

One of the primary limitations of our current model is its sensitivity to the orientation

of objects in the scene. The model’s performance degrades significantly when the

orientation of the cameras change. This issue arises because the feature extraction

process is not rotation invariant. We have not yet attempted data augmentation

techniques or more advanced feature extraction algorithms to address this problem.

Potential solutions could include pre-warping the RGB images so that everything is

already aligned before being fed into the cost volume, or using advanced architectures

like vision transformers that can learn rotation-independent features.

Configuration-Agnostic Evaluation Techniques

Our model was specifically trained and evaluated using a three-camera front-facing

configuration. Prior studies have used outward-facing cameras. We did not test

other configurations due to the high cost of data collection for new physical camera

setups. However, it would be beneficial to develop evaluation methods and model

architectures that can accept various camera configurations. This would allow a

model trained on one dataset with a specific configuration to be evaluated on different

configurations without significant performance loss.

Ghost Points

Ghost points occur most frequently at the boundaries of objects, especially sharp and

straight ones. While the depth image may look fine from a 2D perspective, projecting

it outwards reveals issues. Slight fading at the edges causes ghost points, which

significantly impact mapping efforts. These erroneous points are due to the smearing

of edges into 3D space caused by slight changes in occlusions from different viewing

angles. Addressing this limitation will require refining the model’s ability to handle

edge information more robustly.

Thin Objects

Our model struggles with accurately detecting and estimating distances to thin objects

such as wires, thin beams, guardrails, and long poles. These objects pose a challenge

34

6. Conclusions

due to their minimal pixel area, which makes it difficult to find correspondences

necessary for depth prediction. The cost volume approach relies on significant overlap

of objects for accurate predictions, and thin objects inherently lack sufficient overlap.

Enhancing the model’s capability to handle thin objects will require improvements in

both feature extraction and depth estimation algorithms.

6.3 Future Work

Addressing these limitations will be crucial for the continued development and

refinement of our omnidirectional stereo vision model. Future work should focus on:

• Developing rotation-invariant feature extraction techniques to improve robust-

ness to object orientation.

• Creating configuration-agnostic evaluation methods to ensure consistent perfor-

mance assessment across various camera setups.

• Refining prediction algorithms to minimize the occurrence of ghost points and

enhance overall accuracy.

• Enhancing the model’s ability to detect and estimate distances to thin objects

through improved feature extraction and depth estimation methods.

These efforts will help advance the field of omnidirectional stereo vision and

contribute to the development of more reliable and accurate models for real-world

applications.

35

6. Conclusions

36

Part II

Tactical Reinforcement Learning

37

Chapter 7

Introduction

With the advent of deep learning, artificial intelligence agents have been able to

achieve superhuman-level performance at playing classical strategic games such as

chess, Go, and Starcraft [22, 29]. This development marks a step-change in an agent’s

ability to plan longer-horizon tasks to achieve a competitive goal against an intelligent

opponent with potentially unseen strategies.

The overarching framework and family of learning algorithms used to train agents

to this level of performance is called reinforcement learning (RL) [2]. Rather than

using a dataset of inputs and ground truth outputs, RL relies on an environment,

the resulting state changes that an environment goes through based on an agent’s

actions, and a reward function that rewards or penalizes agents based on the current

state of the environment. Through this framework, an agent can learn based off of

experience. Agents learn to maximize the reward based on a learned policy. With

deep learning, neural networks became the approximator of this learned policy with

great success [16, 22].

However, one of the overarching problems in RL is the credit assignment problem

for long-horizon tasks [19]. When an agent is asked to learn a task, the learning

goal of the agent is to find a sequence of actions that results in the highest reward.

However, if an agent cannot determine which action(s) led to the high reward, it

becomes hard to learn to perform the task well. The credit assignment problem can

become a problem when an environment’s reward function is sparse, or when a useful

reward signal is very infrequently given to the agent. For example, take an agent

39

7. Introduction

that needs to move a block onto a dot on the floor. Reward sparcity would happen if

an agent only receives reward when a block is placed in a specific location. When

the block is not in that location, no useful feedback is given to the agent. However,

if reward is given proportionally to the negative distance from the goal, the agent

will gain useful feedback every episode and learn that the maximum reward can be

achieved by placing the block on the dot.

In competitive strategic games, where the whole game is centered around achieving

a single long-term objective, sparse rewards become a large problem. Agents have to

learn to achieve a small subset of victory objectives, even at the cost of short-term

victories or sacrifices. Teaching delayed gratification with no feedback on if that

action is useful in the moment leads RL agents in strategic games to be strongly

affected by the credit assignment problem. There might even be misleading secondary

reward objectives that are still important such as victory while maintaining the

highest total health. These secondary objectives may lead agents to becoming stuck

in local minima, unwilling to sacrifice health for a high-reward objective that is never

achieved because an agent is unwilling and unable to organize it’s behavior long

enough to reach it.

In this project, a complex competitive strategy game is developed with rule-sets

of varying complexity. In all of the rule-sets, there are two teams with a set of units

that can move and attack over units. Players win the game by eliminating all of

the enemy’s units. There are different types of units that have various movement

budgets, health amounts, and attack values that naturally specialize the units to be

better at different strategic roles. The goal of the project is to show that RL agents

can win at this game and explore the capability of an agent to use tactics against

a heuristic agent to win. Tactics are defined by this project as the agent having an

obvious intention behind the decision to move units for the purpose of obtaining an

advantage in the game. Lastly, this project also performs a hyperparameter study

to show the effect of various hyperparameters on the performance of the Proximal

Policy Optimization (PPO) algorithm and the policy network.

40

Chapter 8

Background

8.1 Reinforcement Learning

8.1.1 The Framework

Reinforcement Learning (RL) represents a unique branch of machine learning where

an agent learns to make decisions through interactions with a dynamic environment.

Unlike in supervised or unsupervised learning paradigms, reinforcement learning does

not involve direct feedback on the agent’s actions. Instead, learning is driven by

rewards that provide signals about the effectiveness of the actions taken [2].

Defining the Components of RL

The reinforcement learning process involves several key components: an agent has a

policy π(a|s) that produces actions a based on the current state s; the environment

is the world through which the agent interacts and from which it receives feedback;

a reward r is the immediate feedback given by the environment in response to an

action.

At each discrete time step t, the agent receives the current state st from the

environment, selects an action at, and receives a reward rt. The environment then

transitions to a new state st+1, according to a transition function T (s, a) that models

the dynamics of the environment.

41

8. Background

The Objective of Reinforcement Learning

The primary objective in reinforcement learning is for the agent to discover a policy

that maximizes the cumulative reward it receives over time [2]. This goal is often

formulated as maximizing the expected return, where the return, Gt, is defined as

the sum of discounted rewards:

Gt =
∞∑
k=0

γkrt+k+1

The discount factor γ, a value between 0 and 1, moderates the importance placed on

future rewards relative to immediate rewards. A lower γ results in a myopic agent

that prioritizes immediate rewards, whereas a higher γ encourages consideration of

long-term benefits.

Markov Decision Processes and Partially Observable MDPs

Reinforcement learning problems are often modeled as Markov Decision Processes

(MDPs), providing a mathematical framework for decision-making where outcomes

are partly random and partly under the control of a decision-maker. The formal

definition of an MDP is given by:

(S,A, T,R, γ)

where S is the set of all states, A is the set of all actions, T is the transition

function present in the environment, R is the reward function, and γ is the discount

factor.

In this framework, T (s′|s, a) describes the probability of transitioning to state s′

from state s given action a, and R(s, a) assigns a scalar feedback signal to each action

taken in a specific state. These components define the dynamics and the rewards of

the environment, guiding the learning process of the agent [2].

However, in many real-world scenarios, the agent cannot fully observe the current

state of the environment. These situations are modeled as Partially Observable Markov

Decision Processes (POMDPs), which extend MDPs by incorporating observations

that provide partial information about the state. In a POMDP, the decision-making

42

8. Background

process must account for uncertainty in state information, making it significantly

more complex but also more applicable to realistic environments.

Given the framework, the next step is is to define an algorithm that updates a

policy in response to the reward signal such that the policy learns the maximize the

expected reward. The following sections introduce a specific family of policy update

methods, called Policy Gradient Optimization, setting the stage for more detailed

discussions on specific algorithms and their applications in complex environments.

8.1.2 Policy Gradient Methods

Policy Gradient Methods constitute a class of algorithms in reinforcement learning

that optimize the policy directly [14]. This approach contrasts with value-based

methods, which estimate a value function and derive a policy indirectly. Policy

gradient methods adjust the policy parameters θ through gradient ascent, aiming to

maximize the expected return, thus providing a direct method of policy optimization.

Introduction to Policy Gradients

The foundation of policy gradient methods lies in the concept of gradient ascent on

the expected return. The policy, denoted by πθ, where θ represents the parameters of

the policy, is optimized to maximize the expected return from the start distribution.

This expected return, denoted as J(θ), is defined as:

J(θ) = Eτ∼πθ
[R(τ)]

Here, R(τ) represents the total reward received over a trajectory τ , and the expectation

is taken over the distribution of trajectories generated by the policy πθ.

Deriving the Policy Gradient

To optimize the policy, we need to compute the gradient of J(θ) with respect to the

policy parameters θ. This gradient, known as the policy gradient, is derived using

the likelihood ratio trick combined with the law of the unconscious statistician. The

43

8. Background

resulting gradient expression is:

∇θJ(θ) = Eτ∼πθ

[
T∑
t=0

∇θ log πθ(at|st)Qt

]

where Qt is the quality function, representing the return from time t onward. This

formula implies that the updates to the policy parameters are proportional to the

product of the gradient of the policy’s log-probability and the return. This relationship

encourages the increase in the probability of actions that lead to higher returns.

Advantages of Policy Gradient Methods

Policy gradient methods are advantageous due to their direct approach to optimizing

the policy, which can be particularly effective in environments with high-dimensional or

continuous action spaces. They naturally integrate the exploration through stochastic

policies, as the policy can suggest a range of actions with varying probabilities.

Additionally, these methods are theoretically guaranteed to converge to a local

maximum or a saddle point of the policy performance function [14]

Challenges in Policy Gradient Methods

Despite their advantages, policy gradient methods face several challenges. The

gradient estimates can have high variance, which can lead to inefficient learning and

high data requirements. These methods are typically less sample efficient compared

to value-based methods and are often sensitive to the initial conditions and the choice

of hyperparameters.

Variance Reduction Techniques

To address the issue of high variance in policy gradient estimates, several techniques

can be employed. One common approach is to subtract a baseline from the returns,

which reduces the variance of the gradient estimates without introducing bias. This

technique involves modifying the gradient formula to:

∇θJ(θ) = Eτ∼πθ

[
T∑
t=0

(∇θ log πθ(at|st)(Qt − b(st)))

]

44

8. Background

where b(st) is a baseline value, typically chosen as the state value V (st). When

b(st) = V (st), note that (Qt − Vt) is also called the advantage function, At. The

advantage function represents the ”relative goodness” of an action as compared to

other actions. This is often easier to learn or estimate as the absolute reward is not

needed and only a relative value needs to be learned.

Another approach is the use of actor-critic methods, where the policy gradient is

combined with value function approximation to stabilize the training process.

This section has elaborated on the theoretical underpinnings and practical aspects

of policy gradient methods, setting the stage for the specific enhancements introduced

by Proximal Policy Optimization in the subsequent sections.

8.1.3 Proximal Policy Optimization

Proximal Policy Optimization (PPO) represents a significant advancement in the

family of policy gradient methods, developed to address specific inefficiencies and

performance issues inherent in earlier methods [24]. This section traces the develop-

ment from early policy gradient methods to PPO, highlighting its operational and

strategic improvements over its predecessors.

Limitations of Early Policy Gradient Methods

Early policy gradient methods, while foundational in developing RL strategies that

optimize policy directly, often suffered from high variance in gradient estimates

and were sensitive to the step size used during learning. The performance of these

algorithms could drastically vary with slight changes in policy, leading to potentially

unstable training processes.

Introduction of Trust Region Policy Optimization

To mitigate the instability issues observed in early policy gradient methods, Trust

Region Policy Optimization (TRPO) was introduced [23]. TRPO aims to make robust

updates by limiting the changes to the policy at each step, thereby ensuring that

the new policy is not too far from the old policy. It achieves this by optimizing the

policy within a trust region, preventing large updates that could lead to performance

45

8. Background

collapse. The TRPO optimization problem is formulated as:

max
θ

Eτ∼πθold

[
πθ(at|st)
πθold(at|st)

Aπθold (st, at)

]
subject to

Es∼πθold
[DKL(πθold(·|s) ∥ πθ(·|s))] ≤ δ

However, TRPO’s reliance on solving complex constrained optimization problems

made it computationally intensive and difficult to scale.

Proximal Policy Optimization

PPO was developed as a response to the computational challenges of TRPO, sim-

plifying the approach to policy optimization while retaining the core idea of trust

regions [24]. PPO modifies the optimization strategy by using a clipped surrogate

objective function, which avoids the need for solving the constrained optimization

problem. The PPO objective is defined as:

LCLIP (θ) = Et [min (rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At)]

Here, rt(θ) =
πθ(at|st)

πθold
(at|st) represents the probability ratio, and ϵ is a small hyperparam-

eter that controls the extent of clipping, thus indirectly controlling the size of the

policy update.

PPO offers several advantages over its predecessors, including TRPO. It simplifies

the implementation by eliminating the need for complex second-order optimization

methods, making it more computationally efficient and easier to tune. This efficiency

does not come at the cost of performance, as PPO has been shown to perform

competitively on a wide range of tasks, from playing games to controlling robots. Its

ability to balance exploration and exploitation effectively, coupled with its robustness

to hyperparameter settings, makes PPO a popular choice among researchers and

practitioners in the field of reinforcement learning.

This section delineates the evolutionary path from earlier policy gradient methods

to PPO, emphasizing the methodological enhancements that PPO brings to the

field of reinforcement learning, particularly in terms of computational efficiency and

46

8. Background

training stability.

8.2 Strategic Games

Strategic games in the context of this thesis refer to those that require long-horizon

planning and involve tactics aimed at achieving a broader, theatre-level objective.

Such games often incorporate complex, multi-step processes where each action taken

by a player can significantly influence future states and outcomes. The strategic

nature of these games arises from the need for fine-grained control over the game

state, where players must devise and execute long-term strategies rather than focusing

solely on immediate rewards.

8.2.1 Characteristics of Strategic Games

In strategic games, players are often required to manage resources, plan their moves in

phases, and anticipate the actions of their opponents. These games typically feature:

• Long-term planning and reward structures.

• Multiple phases within a single turn, allowing for a series of actions before the

opponent can respond.

• A dynamic action space where available actions may change depending on the

state of the game.

Such characteristics demand that players not only react to immediate opportunities

but also plan for future advantages, making the gameplay both challenging and rich

in strategic depth.

8.2.2 Multiphasic Games

Multiphasic games are characterized by having multiple phases within a single turn.

During each phase, a player can execute a subset of actions, after which the opponent

has a chance to respond with their own set of actions. This structure introduces

a complex layer of strategic depth as decisions made in one phase can significantly

impact the outcomes of subsequent phases.

47

8. Background

Challenges in Multiphasic Games

One of the primary challenges in multiphasic games is the credit assignment problem.

Since certain actions do not directly result in rewards but influence the outcomes

of later phases, it becomes difficult to accurately assess the value of each action.

This indirect reward structure requires sophisticated strategies and planning, as

players must evaluate actions not only based on immediate outcomes but also on

their potential future benefits.

Example and Analysis

A typical example of a multiphasic game could involve a strategy game where players

first deploy units, then move them, and finally engage in combat. Actions taken

during the deployment and movement phases might not yield immediate rewards but

are crucial for positioning and gaining tactical advantages in the combat phase.

8.2.3 Variable Action Spaces

In many strategic games, the set of actions available to a player can change based on

the state of the game. This variable action space introduces additional complexity, as

the strategy must adapt to the evolving set of possibilities.

Challenges with Variable Action Spaces

Handling variable action spaces effectively is a significant challenge. It requires

the game AI to be flexible and context-aware, capable of dynamically adjusting its

strategy based on the available actions. This is particularly difficult when the action

space not only changes size but also varies significantly in terms of the types of actions

available.

Pointer Networks in Game AI

To address the challenges of variable action spaces, techniques like pointer networks are

employed. Pointer networks are a type of neural network that can learn the conditional

probability of an output sequence with elements that are discrete tokens corresponding

to positions in an input sequence. In the context of games like AlphaStar, pointer

48

8. Background

networks allow the AI to select actions from a dynamically changing set based on the

state of the game.

These sections outline the critical elements and challenges of strategic games that

feature multiphasic turns and variable action spaces. Understanding these aspects

is crucial for appreciating the advanced AI strategies discussed in the subsequent

chapters of this thesis.

8.3 Prior Works

8.3.1 AlphaStar

Background, Overview, and Key Features

AlphaStar, developed by DeepMind, achieved Grandmaster status in StarCraft II,

showcasing advanced reinforcement learning capabilities in dynamic, strategic environ-

ments [29]. The AI uses a multi-agent reinforcement learning framework, employing

diverse strategies and managing complex state and action spaces. A notable feature

is the use of pointer networks, which help in managing the variable action spaces by

effectively mapping game state inputs to action outputs.

Reinforcement Learning Techniques and Strategic Implications

AlphaStar extensively uses policy gradient methods, particularly Proximal Policy

Optimization (PPO), to optimize strategies within the game’s intricate dynamics. It

combines supervised learning from human game replays and reinforcement learning

from agent-versus-agent games, mastering strategic interactions. The AI’s gameplay

involves critical decision-making in resource management and tactical combat under

partial information, illustrating the potential of reinforcement learning in strategic

applications.

Strategic Implications and Mechanics

AlphaStar’s strategic gameplay involves managing economies, expanding territories,

and conducting warfare with meticulously planned strategies that evolve in response

to the opponent’s tactics. The use of pointer networks enables the AI to select

49

8. Background

from a diverse set of possible actions dynamically, adapting to changes in the game

state seamlessly. This strategic depth requires the AI to balance short-term tactical

decisions with long-term strategic goals, a challenge that AlphaStar manages with

notable proficiency.

8.3.2 CivRealms

Concept, Significance, and Features

CivRealms serves as a simulated platform to study AI behavior in multi-agent envi-

ronments that simulate complex, real-world strategic interactions [20]. It challenges

AIs with features like partial observability and non-deterministic outcomes, providing

a rich environment for testing diverse strategic models. CivRealms supports experi-

ments in cooperative and competitive strategies, offering a flexible rule system that

mimics various strategic game dynamics.

Reinforcement Learning Applications and Strategic Dynamics

In CivRealms, AIs are tested against evolving game dynamics and player strategies,

where pointer networks are employed to handle dynamically changing action spaces.

The environment facilitates deep strategic planning, including alliance formation and

conflict resolution, requiring AIs to adapt their strategies continuously, mirroring the

strategic thinking needed in human interactions.

Strategic Implications and Mechanics

The gameplay in CivRealms requires a deep understanding of multi-agent dynamics

and the ability to predict and counteract the strategies of other players. Strategic

implications in CivRealms involve navigating complex scenarios such as resource

management, diplomatic engagements, and tactical conflicts, all managed through

the AI’s capability to process and react to partial information about the game state

and other players’ actions. This complex interaction model tests the limits of current

AI technology, particularly in understanding and manipulating open-ended strategic

environments.

50

Chapter 9

Methodology

9.1 Game Rules and Environment

This section discusses the mechanics of the game environment and how these give

rise to various tactics that reinforcement learning agents adopt. Certain mechanics

within the game lead to more complex behaviors in reinforcement learning agents.

For example, partial observability necessitates that agents learn to infer the positions

of enemy agents. Mechanics such as flanking bonuses for adjacent units encour-

age reinforcement learning agents to organize units into formations, enhancing the

effectiveness of encounters.

Another aspect considered is the impact of environmental complexity on learning.

Simpler environments allow for the study of basic agent behaviors, while more complex

rules and larger environments explore the effects on an agent’s learning rate and

capability [20].

A distinction is made between two types of worlds: a grid world and a hexagonal

world. Each world have similarities and differences in their rulesets and served different

purposes in the development of this project. The similarities of each environment are

discussed below and the differences are discussed in each worlds’ subsections.

51

9. Methodology

Figure 9.1: a) Example of Grid World Map, b) Diagram of Avenues-of-attack (AOA)
between hex and grid map types, c) Example of Hex World Map

Units

In terms of unit types, there are knights, cavalry, and spearmen. Spearmen, although

weaker with lower health and combat values, can still play a strategic role. Each team

also has two cavalry units with greater movement, attack, and health capabilities

but lesser than the single knight which boasts the highest combat effectiveness but

limited movement.

Phases

The game phases include a ’reveal phase’ where players can expose enemy units across

the map, critical for initiating attacks during the subsequent ’combat phase’. The

effectiveness of these phases in terms of strategic gameplay and learning outcomes

forms a crucial part of the study.

9.1.1 Grid World and Simpler Rules

Both worlds differ in rules: the grid world operates under simpler rules without terrain-

based bonuses or penalties, while the hexagonal world incorporates varied movement

costs and terrain effects for three types of units: light, heavy, and motorized. These

distinctions further complicate the learning environment and strategic possibilities.

52

9. Methodology

In the grid world, agents can attack from four directions, which allows a maximum

of four units to coordinate an attack on a single unit. Conversely, in the hexagonal

world, the potential for flanking is increased, with six directions available for attack,

allowing up to six units to simultaneously target a single unit.

The study also contrasts a small 5x5 grid world where enemy units are positioned

on opposite sides, with a larger 20x20 grid world where enemies are clustered. This

setup is used to investigate the effects of environmental size on strategic options and

agent learning.

In the small grid world, the setup serves as a proof of concept to demonstrate

that a reinforcement learning (RL) agent can consistently win against heuristic policy

agents. The small, simplified environment facilitates easier learning and strategic

execution by the RL agent.

In the larger grid world, agents are placed in clusters significantly far from each

other, enhancing the complexity of strategic maneuvers and learning. This setup is

intended to test the RL agents’ ability to adapt to and navigate larger, more complex

environments effectively.

9.2 Training Loop Overview

The policy was trained using Proximal Policy Optimization (PPO) and managed

through StableBaselines3 and the PettingZoo multi-agent reinforcement learning

environment library [21, 24, 27]]. The training loop was designed to end either when

1024 in-game turns, or 512 full turns, had been completed by the agent, or when

victory conditions were met—these were defined as one team completely routing the

enemy’s units to zero health and thereby removing them from the game board.

The training process was executed over increments of 10 million steps to verify

convergence, extending up to between 100 million and 500 million steps to explore

the effects of long-term convergence. During training, the agents’ units were vector-

ized across 32 CPUs to manage a rollout buffer size that varied across a range of

parameters. This intensive setup facilitated the detailed study of training procedures

and hyperparameter impacts on performance, which could potentially be discussed

further in sections dedicated to experimental setups or hyperparameter studies.

53

9. Methodology

54

Chapter 10

Experimental Procedure & Results

10.1 Hyperparameter Study

The hyperparameter study was conducted to systematically explore the impact of

various hyperparameters on the performance of reinforcement learning agents within

the grid world environment using Optuna, Stablebaselines3, and PettingZoo [1, 21, 27].

Over the course of 286 trials, different configurations were tested to optimize the

model’s ability to navigate and solve tasks effectively.

Figure 10.1: Cumulative Success Probability CDF. The probability of an agent
winning across the entire hyperparameter study was 70.73%.

55

10. Experimental Procedure & Results

The primary objective of this study was to identify the optimal settings for key

parameters, including the number of layers, layer sizes, learning rates, gamma values,

batch sizes, and the number of steps per update. By varying these parameters, we

aimed to understand their individual and collective effects on the model’s training

efficiency and overall performance.

The cumulative success probability CDF indicated that the agents had a 70.73%

chance of achieving a positive outcome, demonstrating the robustness of the model

under optimal conditions. This high success rate underscores the efficacy of the

selected hyperparameter ranges and their tuning.

Figure 10.2: Hyperparameter Optimization Over Trials. 286 Trials were conducted.

Throughout the trials, it became evident that certain hyperparameters had a more

pronounced impact on the learning outcomes. For instance, variations in the learning

rate and batch size significantly influenced the stability and speed of convergence.

Higher learning rates facilitated faster learning but sometimes led to instability, while

lower rates provided more stable but slower improvements.

56

10. Experimental Procedure & Results

Table 10.1: Hyperparameter Choices for Tuning

Parameter Choices

Layers 2, 3, 4
Layer Size 64, 128, 256
Learning Rate 1× 10−4, 3× 10−4, 1× 10−3

Gamma 0.9, 0.99, 0.999
Batch Size 64, 512, 2048
N Steps 64, 128

The table above summarizes the range of hyperparameters explored. Each pa-

rameter was selected based on its potential to influence the agent’s learning process

and performance. This systematic approach allowed for a detailed analysis of how

different settings affected the agent’s ability to learn and adapt within the grid world

environment.

Figure 10.3: Left: Objective values for different batch sizes. Middle: Impact of layer
sizes on performance. Right: Effectiveness of different numbers of steps.

Figure 10.4: Left: Learning rate optimization results. Middle: Performance across
different layer counts. Right: Gamma parameter adjustments and outcomes.

The results of the hyperparameter tuning provided valuable insights into how

different configurations can enhance the agent’s performance. For instance, larger

batch sizes generally resulted in more stable learning, while smaller batch sizes

sometimes led to faster but more volatile improvements. Similarly, the number of

layers and layer sizes had a significant impact on the model’s capacity to generalize

and learn complex strategies.

57

10. Experimental Procedure & Results

The variation in gamma values highlighted the importance of the discount factor

in shaping the agent’s long-term strategy. Higher gamma values generally promoted

long-term planning and more cautious strategies, while lower values encouraged more

immediate, aggressive actions [19].

In summary, the hyperparameter study was crucial in refining the model’s archi-

tecture and training process. By systematically exploring a wide range of parameter

settings, we were able to identify configurations that significantly improved the agent’s

performance in the grid world environment. These findings not only enhanced our

understanding of the model’s learning dynamics but also provided a robust foundation

for future research and application in more complex environments.

10.2 Training Results

The training process involved extensive hyperparameter tuning and performance

evaluation to optimize the reinforcement learning agents within the grid world

environment. This section details the key findings and insights drawn from the

training results, highlighting the impact of different hyperparameter settings on

model performance.

Overall Performance

The cumulative success probability, as illustrated in Figure 10.1, shows that the agents

had a 70.73% chance of achieving a positive outcome across the entire hyperparameter

study. This high success rate underscores the efficacy of the chosen hyperparameter

ranges and their tuning, indicating that the agents were generally robust and adaptable

to the grid world environment.

The hyperparameter optimization over 286 trials, shown in Figure 10.2, revealed

significant variability in the performance outcomes based on different hyperparameter

configurations. Notably, the models’ performance varied greatly with changes in

batch size, gamma, layer size, number of layers, learning rate, and number of steps.

Analysis of the hyperparameters revealed clear distinctions between well-performing

and poorly-performing models. Consistency and balanced hyperparameter settings

were crucial for optimal model performance, as demonstrated by the well-performing

58

10. Experimental Procedure & Results

Table 10.2: Common Hyperparameter Settings for Different Model Performances

Hyperparameter Best Models Average Models Poor Models

Batch Size 512 64, 512 64, 2048
Gamma 0.999 0.999 0.990, 0.999
Layer Size 256 64, 256 64, 128
Number of Layers 3 2, 3 3, 4
Learning Rate 0.0003 0.0003, 0.0010 0.0001, 0.0010
Number of Steps 128 64, 128 128

models which maintained consistent settings across trials.

Insights from Training Dynamics

The training dynamics illustrated by the mean reward, health metrics, and win rates

over time provide additional insights into the agents’ learning process.

Figure 10.5: Y-axis: Mean Reward Value, X-axis: Training timesteps. Mean reward
over time for different hyperparameter configurations. The yellow series represents
the three best models, the blue series represents the three worst models, and the
green series represents the three models closest to the average objective value.

59

10. Experimental Procedure & Results

Well-performing models consistently showed a rising trend in mean rewards,

indicating effective learning and strategy optimization. In contrast, poorly-performing

models exhibited flat or declining mean rewards, reflecting poor learning dynamics.

Figure 10.6: Left: Average health over training timesteps for the red team. Right:
Average health over training timesteps for the blue team.

The health metrics for the red and blue teams highlight the resilience and strategic

effectiveness of the agents. Well-performing models maintained higher and more

stable health levels, particularly for the red team, indicating robust strategies and

effective unit management.

Figure 10.7: Mean win rates over training timesteps for different hyperparameter
configurations. Agents are evaluated across 100 episodes. Left) Rate at which the
agent draws, Center) Rate at which blue successfully wins the episode, Right) Rate
at which the red heuristic agent wins the episode.

The win rate graphic further supports these findings, showing that well-performing

models had higher and more consistent win rates compared to poorly-performing

models.

60

10. Experimental Procedure & Results

10.3 Example of Learned Strategies

(a) (b) (c)

Figure 10.8: Examples of learned strategies: (a) Surrounding strategy where units
surround the enemy from multiple directions, (b) Flanking strategy exploiting heuristic
vulnerabilities, (c) Kiting strategy where units attack from a distance and then retreat
to avoid retaliation.

This section provides a qualitative analysis of various tactics employed by the

model to outmaneuver a heuristic policy. Demonstrated strategies include flanking, the

exploitation of heuristic vulnerabilities, and a maneuver known as kiting. Additionally,

the strategic exclusion of weaker units, such as spearmen, is employed to preserve

them from direct confrontations.

These tactics seem to be effective in smaller environments to gain advantages

after encounters end and also scale to larger ones.

In expanded spaces, units adopt hit-and-run tactics and exploit the heuristic

policy’s tendency to move towards the nearest enemy unit, effectively stalling them.

This occasionally results in a draw, which, while sub-optimal, is recognized as an

interesting adaptive behavior by the learned agent.

This adaptive strategy has prompted the integration of a reward term at the end

of games, hypothesized to mitigate such stalling tactics and encourage more decisive

outcomes. The use of visual aids in this subsection highlights the practical application

and effectiveness of learned strategies in various environmental contexts.

61

10. Experimental Procedure & Results

62

Chapter 11

Conclusions

The hyperparameter study provided valuable insights into the impact of different

settings on the performance and learning dynamics of reinforcement learning agents.

Consistent and well-balanced hyperparameters, such as those used by the well-

performing models, led to superior performance, effective strategy formulation, and

robust learning. In contrast, high variability and extreme settings resulted in subop-

timal performance, highlighting the importance of careful hyperparameter tuning in

reinforcement learning.

The findings from this study will guide future research and application of rein-

forcement learning models in more complex environments, ensuring that optimal

hyperparameter configurations are used to achieve the best possible outcomes.

11.1 Limitations

Overfitting to One Scenario

The models developed and trained in this study may have overfitted to the specific

grid world scenario used during training. Although the hyperparameter tuning

aimed to find robust configurations, the agents’ performance in different scenarios or

environments with varying rules and complexities was not evaluated.

63

11. Conclusions

Simple Rules, Small Strategy Space

The environments used in this study featured relatively simple rules and a small

strategy space. While this allowed for effective learning and strategy development,

it also limited the agents’ ability to generalize to more complex environments with

richer strategic possibilities.

11.2 Future Work

Better Architectures

Future research should explore more advanced neural network architectures that can

better capture the complexity of strategic decision-making in varied environments.

This could include deeper networks, attention mechanisms, or architectures designed

specifically for sequential decision-making.

Large Language Model (LLM) Guided Play

Integrating large language models (LLMs) to guide reinforcement learning agents

could enhance their strategic understanding and decision-making capabilities. LLMs

can provide contextual insights and high-level strategies that complement the agents’

learning from environment interactions.

More Complex Game Mechanics

Expanding the game mechanics to include more complex rules, varied terrain types,

and additional unit types will provide a richer environment for training and evaluating

reinforcement learning agents. This can help in understanding how agents adapt to

and learn in more intricate strategic scenarios.

64

Bibliography

[1] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori
Koyama. Optuna: A next-generation hyperparameter optimization framework,
2019. URL https://arxiv.org/abs/1907.10902. 10.1

[2] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony
Bharath. Deep reinforcement learning: A brief survey. IEEE Signal Processing
Magazine, 34(6):26–38, November 2017. ISSN 1053-5888. doi: 10.1109/msp.
2017.2743240. URL http://dx.doi.org/10.1109/MSP.2017.2743240. 7, 8.1.1,
8.1.1, 8.1.1

[3] Neill DF Campbell, George Vogiatzis, Carlos Hernández, and Roberto Cipolla.
Using multiple hypotheses to improve depth-maps for multi-view stereo. In
Computer Vision–ECCV 2008: 10th European Conference on Computer Vision,
Marseille, France, October 12-18, 2008, Proceedings, Part I 10, pages 766–779.
Springer, 2008. 3.2

[4] Zisong Chen, Chunyu Lin, Nie Lang, Kang Liao, and Yao Zhao. Unsupervised
omnimvs: Efficient omnidirectional depth inference via establishing pseudo-stereo
supervision. arXiv preprint arXiv:2302.09922, 2023. 3.3

[5] Bardienus P Duisterhof, Yaoyu Hu, Si Heng Teng, Michael Kaess, and Sebastian
Scherer. Tartancalib: Iterative wide-angle lens calibration using adaptive subpixel
refinement of apriltags, 2022. 4.1, 5.1.2

[6] Yasutaka Furukawa and Jean Ponce. Accurate, dense, and robust multiview
stereopsis. IEEE transactions on pattern analysis and machine intelligence, 32
(8):1362–1376, 2009. 3.2

[7] Shiyu Gao, Zhaoxin Li, and Zhaoqi Wang. Cost volume pyramid network with
multi-strategies range searching for multi-view stereo. In Computer Graphics
International Conference, pages 157–169. Springer, 2022. 3.2

[8] Xiaodong Gu, Zhiwen Fan, Siyu Zhu, Zuozhuo Dai, Feitong Tan, and Ping Tan.
Cascade cost volume for high-resolution multi-view stereo and stereo matching.
In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 2495–2504, 2020. 3.2

65

https://arxiv.org/abs/1907.10902
http://dx.doi.org/10.1109/MSP.2017.2743240

Bibliography

[9] Abhishek Kar, Christian Häne, and Jitendra Malik. Learning a multi-view stereo
machine. Advances in neural information processing systems, 30, 2017. 3.2

[10] Kiriakos N Kutulakos and Steven M Seitz. A theory of shape by space carving.
International journal of computer vision, 38:199–218, 2000. 3.2

[11] Maxime Lhuillier and Long Quan. A quasi-dense approach to surface recon-
struction from uncalibrated images. IEEE transactions on pattern analysis and
machine intelligence, 27(3):418–433, 2005. 3.2

[12] Jingliang Li, Zhengda Lu, Yiqun Wang, Ying Wang, and Jun Xiao. Ds-mvsnet:
Unsupervised multi-view stereo via depth synthesis. In Proceedings of the 30th
ACM International Conference on Multimedia, pages 5593–5601, 2022. 3.2

[13] Ming Li, Xueqian Jin, Xuejiao Hu, Jingzhao Dai, Sidan Du, and Yang Li. Mode:
Multi-view omnidirectional depth estimation with 360◦ cameras. In European
Conference on Computer Vision (ECCV), October 2022. 4.4

[14] Jiacai Liu, Wenye Li, and Ke Wei. Elementary analysis of policy gradient
methods, 2024. URL https://arxiv.org/abs/2404.03372. 8.1.2, 8.1.2

[15] Andreas Meuleman, Hyeonjoong Jang, Daniel S Jeon, and Min H Kim. Real-time
sphere sweeping stereo from multiview fisheye images. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
11423–11432, 2021. (document), 2, 3.3, 4.5, 5.4, 5.2, 5.1, 5.2.1, 5.2

[16] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning, 2013. URL https://arxiv.org/abs/1312.5602. 7

[17] Tyler Nuanes, Matt Elsey, Aswin Sankaranarayanan, and John Shen. Soft cross
entropy loss and bottleneck tri-cost volume for efficient stereo depth prediction.
In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), pages 2840–2848, 2021. doi: 10.1109/CVPRW53098.2021.
00319. 4.6

[18] Rui Peng, Rongjie Wang, Zhenyu Wang, Yawen Lai, and Ronggang Wang.
Rethinking depth estimation for multi-view stereo: A unified representation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8645–8654, 2022. 3.2

[19] Eduardo Pignatelli, Johan Ferret, Matthieu Geist, Thomas Mesnard, Hado
van Hasselt, Olivier Pietquin, and Laura Toni. A survey of temporal credit
assignment in deep reinforcement learning, 2024. URL https://arxiv.org/

abs/2312.01072. 7, 10.1

[20] Siyuan Qi, Shuo Chen, Yexin Li, Xiangyu Kong, Junqi Wang, Bangcheng
Yang, Pring Wong, Yifan Zhong, Xiaoyuan Zhang, Zhaowei Zhang, Nian Liu,

66

https://arxiv.org/abs/2404.03372
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/2312.01072
https://arxiv.org/abs/2312.01072

Bibliography

Wei Wang, Yaodong Yang, and Song-Chun Zhu. Civrealm: A learning and
reasoning odyssey in civilization for decision-making agents, 2024. URL https:

//arxiv.org/abs/2401.10568. 8.3.2, 9.1

[21] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernes-
tus, and Noah Dormann. Stable-baselines3: reliable reinforcement learning
implementations. J. Mach. Learn. Res., 22(1), jan 2021. ISSN 1532-4435. 9.2,
10.1

[22] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan,
Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis,
Thore Graepel, Timothy Lillicrap, and David Silver. Mastering atari, go, chess
and shogi by planning with a learned model. Nature, 588(7839):604–609, Dec
2020. ISSN 1476-4687. doi: 10.1038/s41586-020-03051-4. URL https://doi.

org/10.1038/s41586-020-03051-4. 7

[23] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter
Abbeel. Trust region policy optimization, 2017. URL https://arxiv.org/abs/

1502.05477. 8.1.3

[24] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms, 2017. URL https://arxiv.org/abs/

1707.06347. 8.1.3, 8.1.3, 9.2

[25] Steven M Seitz and Charles R Dyer. Photorealistic scene reconstruction by voxel
coloring. International Journal of Computer Vision, 35:151–173, 1999. 3.2

[26] Xiaojie Su, Shimin Liu, and Rui Li. Omnidirectional depth estimation with hier-
archical deep network for multi-fisheye navigation systems. IEEE Transactions
on Intelligent Transportation Systems, 2023. 3.3, 4.6

[27] J. K. Terry, Benjamin Black, Nathaniel Grammel, Mario Jayakumar, Ananth
Hari, Ryan Sullivan, Luis Santos, Rodrigo Perez, Caroline Horsch, Clemens
Dieffendahl, Niall L. Williams, Yashas Lokesh, and Praveen Ravi. Pettingzoo:
Gym for multi-agent reinforcement learning, 2021. URL https://arxiv.org/

abs/2009.14471. 9.2, 10.1

[28] Vladyslav Usenko, Nikolaus Demmel, and Daniel Cremers. The double sphere
camera model. CoRR, abs/1807.08957, 2018. URL http://arxiv.org/abs/

1807.08957. 4.1, 5.1.2

[29] Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, An-
drew Dudzik, Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds,
Petko Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss, Ivo Danihelka,
Aja Huang, Laurent Sifre, Trevor Cai, John P. Agapiou, Max Jaderberg,
Alexander S. Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard,
David Budden, Yury Sulsky, James Molloy, Tom L. Paine, Caglar Gulcehre,

67

https://arxiv.org/abs/2401.10568
https://arxiv.org/abs/2401.10568
https://doi.org/10.1038/s41586-020-03051-4
https://doi.org/10.1038/s41586-020-03051-4
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2009.14471
https://arxiv.org/abs/2009.14471
http://arxiv.org/abs/1807.08957
http://arxiv.org/abs/1807.08957

Bibliography

Ziyu Wang, Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama, Dario
Wünsch, Katrina McKinney, Oliver Smith, Tom Schaul, Timothy Lillicrap, Ko-
ray Kavukcuoglu, Demis Hassabis, Chris Apps, and David Silver. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):
350–354, Nov 2019. ISSN 1476-4687. doi: 10.1038/s41586-019-1724-z. URL
https://doi.org/10.1038/s41586-019-1724-z. 7, 8.3.1

[30] Wenshan Wang, Delong Zhu, Xiangwei Wang, Yaoyu Hu, Yuheng Qiu, Chen
Wang, Yafei Hu, Ashish Kapoor, and Sebastian Scherer. Tartanair: A dataset to
push the limits of visual slam. 2020. 4.8

[31] Changhee Won, Jongbin Ryu, and Jongwoo Lim. Omnimvs: End-to-end learning
for omnidirectional stereo matching. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 8987–8996, 2019. (document), 2,
3.3, 4.2, 4.5, 4.6, 4.8, 5.2

[32] Changhee Won, Jongbin Ryu, and Jongwoo Lim. Sweepnet: Wide-baseline
omnidirectional depth estimation. In 2019 International Conference on Robotics
and Automation (ICRA), pages 6073–6079. IEEE, 2019. 3.3, 4.5

[33] Changhee Won, Jongbin Ryu, and Jongwoo Lim. End-to-end learning for
omnidirectional stereo matching with uncertainty prior. IEEE transactions on
pattern analysis and machine intelligence, 43(11):3850–3862, 2020. 3.3, 4.5

[34] Sheng Xie, Daochuan Wang, and Yun-Hui Liu. Omnividar: Omnidirectional
depth estimation from multi-fisheye images. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 21529–21538,
2023. 2, 3.3, 4.6

[35] Qingshan Xu and Wenbing Tao. Multi-scale geometric consistency guided multi-
view stereo. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 5483–5492, 2019. 3.2

[36] Yao Yao, Zixin Luo, Shiwei Li, Tian Fang, and Long Quan. Mvsnet: Depth
inference for unstructured multi-view stereo. In Proceedings of the European
conference on computer vision (ECCV), pages 767–783, 2018. 3.2, 3.3, 4.2, 4.5,
5.2

[37] Yao Yao, Zixin Luo, Shiwei Li, Tianwei Shen, Tian Fang, and Long Quan. Recur-
rent mvsnet for high-resolution multi-view stereo depth inference. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages
5525–5534, 2019. 3.2

[38] Hongwei Yi, Zizhuang Wei, Mingyu Ding, Runze Zhang, Yisong Chen, Guoping
Wang, and Yu-Wing Tai. Pyramid multi-view stereo net with self-adaptive
view aggregation. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part IX 16, pages 766–782.

68

https://doi.org/10.1038/s41586-019-1724-z

Bibliography

Springer, 2020. 3.2

69

	1 Thesis Introduction
	I Adaptive Omnidirectional Stereo Vision
	2 Introduction
	3 Background
	3.1 Overview of Range-Sensing Methods for UAVs
	3.2 Multi-view Stereo Vision
	3.3 Omnidirectional Distance Estimation
	3.4 Current Challenges for Omnidirectional Depth Estimation

	4 Methodology
	4.1 Target and Evaluation Configurations
	4.2 Model Overview
	4.3 Spherical Sweeping
	4.4 Standard Deviation Cost Volume Aggregation
	4.5 Geometry-Informed Distance Candidates
	4.6 Volume Loss
	4.7 Synthetic Data Pipeline
	4.8 Synthetic Dataset Characteristics

	5 Experimental Procedures & Results
	5.1 Model Training
	5.1.1 Procedures & Data Augmentation
	5.1.2 Preprocessing
	5.1.3 Data Augmentation
	5.1.4 Convergence Results

	5.2 Model Variants and Camera Layouts
	5.2.1 Evaluation with the Same Camera Layout
	5.2.2 Evaluation with Different Camera Layout

	5.3 Deployment & Hardware Acceleration

	6 Conclusions
	6.1 Released Materials
	6.2 Limitations
	6.3 Future Work

	II Tactical Reinforcement Learning
	7 Introduction
	8 Background
	8.1 Reinforcement Learning
	8.1.1 The Framework
	8.1.2 Policy Gradient Methods
	8.1.3 Proximal Policy Optimization

	8.2 Strategic Games
	8.2.1 Characteristics of Strategic Games
	8.2.2 Multiphasic Games
	8.2.3 Variable Action Spaces

	8.3 Prior Works
	8.3.1 AlphaStar
	8.3.2 CivRealms

	9 Methodology
	9.1 Game Rules and Environment
	9.1.1 Grid World and Simpler Rules

	9.2 Training Loop Overview

	10 Experimental Procedure & Results
	10.1 Hyperparameter Study
	10.2 Training Results
	10.3 Example of Learned Strategies

	11 Conclusions
	11.1 Limitations
	11.2 Future Work

	Bibliography

