
Model Predictive Control on Resource

Constrained Microcontrollers

Samuel E. Schoedel

CMU-RI-TR-24-44

August 6st

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Zachary Manchester, chair

Aaron Johnson
Brady Moon

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Robotics.

Copyright © 2024 Samuel E. Schoedel. All rights reserved.

To my friends. It’s the people, not the place.

iv

Abstract

Model predictive control is a powerful tool for controlling complex systems
subject to complex constraints. However, it is computationally expensive
and often requires large amounts of memory. Large, slow systems are
capable of storing the necessary computational power onboard and thus
do not require efficient, specialized algorithms to reduce time and space
complexity. On the other hand, smaller systems typically have faster dy-
namics that require higher frequency controllers. In addition, these smaller
systems are generally restricted to carrying smaller computers with less
memory, and so they can not fit large problems that allow for intelligent
control of the system. Existing methods for tackling model predictive
control at small scales are generally inefficient and inaccessible. This
thesis aims to tackle both problems by introducing a lightweight conically-
constrained convex model predictive control solver, TinyMPC, and its
associated software packages which facilitate easy adoption through the
use of high-level interfaces and code generation. We benchmark TinyMPC
against state-of-the-art quadratic and conic programming solvers on dif-
ferent microcontrollers, showing almost an order of magnitude speedup
and memory reduction. Finally, we demonstrate TinyMPC’s real world
efficacy by deploying it on the Crazyflie 2.1, a nano-quadrotor with fast
dynamics, and performing tasks with various convex constraints.

v

vi

Acknowledgments

Thank you to Oma and Opa, to whom I owe my education.

I would be nothing without my parents, Tom and Kendall. Thank you
for the long phone calls and long drives to visit. I can not ever repay you
for the advice, support, and memories you have given me through my
master’s degree and through life. I love you both.

I was lucky to find Zac Manchester, and I am grateful for his willingness to
spend one on one time explaining concepts, ability to share his passion, and
desire to see his students excel. Zac honed my desire to build interesting
robots into a specific skill set, one that I had been searching for during
the years prior to joining CMU. I was equally lucky to then meet Brian
Plancher, to whom I want to thank for his generosity with time, knowledge,
mentorship, and friendship. I would not be the researcher I am today
without him.

Life in Pittsburgh was made meaningful by the friendship of the incredible
people I met both in and out of the lab. There are too many people
to thank and experiences to describe here, but I can at least name a
few. I want to thank Conner Pulling for being the first person I knew
in Pittsburgh and who is a genuinely good roboticist, philosopher, travel
buddy, and friend. Thank you for making me laugh. This thesis would
look very different without Khai and Anoushka, to whom I am grateful for
staying up with me through late nights in the lab and rides home listening
to Price Tag and passing morning bikers. I have nothing but respect
for you both. Finally, I want to thank Sofia Kwok for her unconditional
support and encouragement, for lifting me out of ruts, and for all of
the adventures, thoughts, and laughter we shared. I am a better person
because of you. To those who joined me in listening to live music and loud
music, trying new food, exploring new cities, paddling kayaks and paddle
boarding, boating, eating crabs, watching movies, baking, throwing discs,
scaling rock walls, hitting tennis balls, watching astronomical phenomena,
skiing, playing chess, camping, talking, and building robots, thank you.

vii

viii

Contents

1 Introduction 1
1.1 Contributions . 2
1.2 Thesis Structure . 3

2 Background 5
2.1 The Linear-Quadratic Regulator . 5
2.2 Convex Model Predictive Control . 6
2.3 The Alternating Direction Method of Multipliers 7

3 TinyMPC: Model Predictive Control on Resource Constrained
Microcontrollers 9
3.1 Introduction . 9
3.2 The TinyMPC Solver . 12

3.2.1 Combining LQR and ADMM for MPC 13
3.2.2 Pre-Computation . 15
3.2.3 Penalty Scaling . 15

3.3 Experiments . 16
3.3.1 Microcontroller Benchmarks 17
3.3.2 Hardware Experiments . 19

3.4 Conclusions . 21

4 Conic Constraints and Code Generation with TinyMPC 23
4.1 Introduction . 23
4.2 Background . 26

4.2.1 Conic Model-Predictive Control 26
4.2.2 The Alternating Direction Method of Multipliers 27

4.3 Second-Order Conic Projection . 27
4.4 Code Generation with TinyMPC . 28
4.5 Experiments . 30

4.5.1 Microcontroller Benchmarks 31
4.5.2 Hardware Experiments . 34

5 Practical Implementation Tips and Tricks 37
5.1 Solver Frequency vs Horizon Length 37

ix

5.2 Solution Tolerance . 38
5.2.1 Continuous Iteration . 38

5.3 Penalty Parameters . 39
5.4 Obstacle Avoidance . 40

6 Conclusions 41
6.1 Summary . 41
6.2 Future Work . 42
6.3 Impact . 43

Bibliography 45

When this document is viewed as a PDF, the page header is a link to this Table of Contents.

x

List of Figures

3.1 TinyMPC is a fast convex model predictive control solver that enables
real-time optimal control on resource-constrained microcontrollers.
We demonstrate its efficacy in dynamic obstacle avoidance (top) and
recovery from 90◦ attitude errors (bottom) on a 27 gram Crazyflie
quadrotor. 11

3.2 A comparison of micro, tiny, and full-scale robot platforms and their
associated computational hardware. 12

3.3 Comparison of average iteration times (top) and memory usage (bot-
tom) for OSQP and TinyMPC on randomly generated trajectory
tracking problems on a Teensy 4.1 development board. 16

3.4 Figure-eight tracking at low speed (top) and high speed (bottom) com-
paring TinyMPC with the two most performant controllers available
on the Crazyflie. 17

3.5 Control trajectories during the Extreme Initial Poses experiment. . . 18

4.1 Top, we track a descending helical reference (red) with its position
subject to a 45◦ second-order cone glideslope. This requires the aircraft
to perform a spiral landing maneuver (blue). Bottom, we design a
predictive safety filter to guarantee safe maneuvers within a box-shaped
space (blue) regardless of the nominal controller behavior (red). . . . 24

4.2 The tree structure of the generated code. The main program is stored
in tiny main.cpp. 29

4.3 Comparison of average iteration times (top) and memory usage (bot-
tom) between different solvers. (a) compares TinyMPC to OSQP on
a QP-based predictive safety filtering task and was performed on an
STM32F405 Feather board. (b) compares TinyMPC to ECOS and SCS
on an SOCP-based rocket soft-landing using a Teensy 4.1 development
board. 30

4.4 Comparison of attitude/thrust vector constraint violations by TinyMPC
and different built-in controllers on the Crazyflie. 35

xi

List of Tables

4.1 Comparison of general-purpose and model-predictive control solvers. . 25
4.2 Solver performance of different control step durations. Within 20ms

(N = 16), the maximum number of solver iterations for ECOS, SCS,
and TinyMPC are 3, 33, and 444, respectively. ECOS was not able to
complete a single optimization iteration within 2ms. 33

xii

Chapter 1

Introduction

Since its conception, model predictive control (MPC) has been used to control a wide

variety of systems subject to complex constraints. MPC was first used in the 1970s to

control chemical processes, which generally had slow dynamics and thus didn’t require

frequent solutions to the MPC problem [63]. As faster computers were developed, the

technique was adopted by biomedical scientists [66], HVAC engineers [61], financial

advisors [67], power system engineers [7], and roboticists [9, 36], among many others.

The concept is straightforward: repeatedly optimize a trajectory at every time

step to overcome error in the model and noise in the system. For systems with fast

dynamics, the optimization problem must be solved at higher frequencies while larger

systems with slower dynamics don’t require new solutions as often. For autonomous,

mobile robotic systems, the computational power a robot must carry to do onboard

computation becomes a function of scale, where the compute a robot can physically

hold is directly proportional to its size, the controller frequency required to stabilize

the robot is inversely proportional to its size, and the size of the computer is directly

proportional to the minimum required controller frequency. As a result, larger robots

with slower dynamics require smaller computers than smaller robots with faster

dynamics, many of which can only carry microcontrollers.

Reducing the size limit of computers for small robots creates two issues: low

throughput and low memory. Not solving the model predictive control problem in

the expected window of time will cause the controller to lag behind the actual system

and might result in catastrophic behavior, and running out of memory means no work

1

1. Introduction

can be done on the problem in the first place. A solver tailored for tiny robots must

address these issues, namely compressing the problem to reduce memory footprint

and accelerating the problem to accommodate the higher frequency dynamics of

smaller systems.

Reductions in memory footprint have been approached by creating solvers tailored

for embedded systems [35, 56, 65] and by approximating the model predictive control

problem using lightweight neural networks [6, 54, 60, 69]. Solvers such as ECOS [23]

and HPIPM [26], among others, were built with the memory constraints of embedded

systems in mind. ECOS and HPIPM, however, rely on interior-point methods that are

difficult to warm start, which eliminates their potential for use in for model predictive

control. Those that are capable of warm starting, such as OSQP [65] and SCS [57], are

either too memory intensive, slow, or some combination due to their goal of solving

generic quadratic programs rather than model predictive control problems specifically.

Learned approaches to controlling tiny robots have been developed as well, and

organizations such as TinyML [54] have shown that it is possible to condense these

problems such that they fit on memory constrained and computationally constrained

systems. However, learning approaches are inherently an approximation to the actual

optimization problem and thus do not provide any constraint satisfaction guarantees

without additional computation [40, 72].

1.1 Contributions

The goal of this work was to explore different optimization techniques that lend

themselves to compressing and accelerating the model predictive control problem and

to ultimately show that it is feasible and useful to solve MPC problems on tiny robots.

The overall contributions are a model predictive control solver that compresses and

accelerates the optimal control problem to a degree over existing state-of-the-art

techniques that allows for controlling tiny robots, hardware demonstrations of the

solver running onboard a Crazyflie 2.1 nano-quadrotor [13], an open-source software

package with code generation capabilities, and an extension of the original solver that

allows for handling second-order cone constraints with demonstrations on the same

nano-quadrotor.

2

1. Introduction

1.2 Thesis Structure

Chapter 2: Background

This chapter introduces concepts related to model predictive control and classical

control that are helpful in understanding the techniques and algorithms described

in subsequent chapters. It begins with a holistic view of optimization then narrows

scope to the math relevant to this thesis.

Chapter 3: TinyMPC: Model-Predictive Control on Resource-
Constrained Microcontrollers

Running model predictive controllers on tiny robots requires a suitably tiny solver.

In this chapter we derive and describe the inner-workings of TinyMPC, a model

predictive control solver tailored for microcontrollers. We discuss the advantages of

using TinyMPC over more generic solvers and the sacrifices made to achieve gains

in speed and reductions in memory footprint. We defend algorithmic choices and

demonstrate the solver’s real-world efficacy by controlling a nano-quadrotor subject

to various convex constraints.

Chapter 4: Code Generation and Conic Model-Predictive
Control with TinyMPC

A large section of optimization problems can be modeled using convex constraints.

In this chapter we demonstrate TinyMPC’s ability to easily include additional convex

constraints. An example is shown using second-order cones. After, we describe the

code generation abilities of TinyMPC and example usage from the Python interface.

The addition of second-order cone constraints allows TinyMPC to handle an entirely

new and large section of optimization problems, giving it the ability to reason about

friction cones and land rockets, among many other scenarios. The addition of a code

generation module allows problems solved with TinyMPC to be easily distributed

and verified across different microcontrollers through the use of a high level interface.

Chapter 5: Practical Implementation Tips and Tricks

This chapter contains an unordered list of the implementation details used during

the course of this research important to running TinyMPC on hardware. Information

3

1. Introduction

ranges from how to choose the best horizon length and selecting hyperparameter

values for better convergence to tips and trick for performing obstacle avoidance.

Chapter 6: Conclusions

There are many directions this work may be taken and many who could benefit

from its adoption. Chapter 5 discusses some of these directions along with various

ways the existing software could be used, some of the tradeoffs that come with its

use, and when to use TinyMPC in the first place.

4

Chapter 2

Background

This chapter describes optimal control and numerical optimization techniques funda-

mental to understanding the remainder of this thesis. We discuss the linear quadratic

regulator and its generic solution via Riccati recursion, introduce a generic model pre-

dictive control formulation, and end with an explanation of the alternating direction

method of multipliers (ADMM).

2.1 The Linear-Quadratic Regulator

The linear-quadratic regulator (LQR) [41] is a widely used approach for solving

robotic control problems. LQR optimizes a quadratic cost function subject to a set

of linear dynamics constraints:

min
x1:N ,u1:N−1

J =
1

2
x⊺
NQfxN + q⊺fxN+

N−1∑
k=1

1

2
x⊺
kQxk + q⊺kxk +

1

2
u⊺
kRuk + r⊺kuk

subject to xk+1 = Axk +Buk ∀k ∈ [1, N),

(2.1)

where xk ∈ Rn, uk ∈ Rm are the state and control input at time step k, N is the

number of time steps (also referred to as the horizon), A ∈ Rn×n and B ∈ Rn×m

define the system dynamics, Q ⪰ 0, R ≻ 0, and Qf ⪰ 0 are symmetric cost matrices

5

2. Background

and q and r are linear cost vectors.

Equation (2.1) has a closed-form solution in the form of an affine feedback controller

[41]:

u∗
k = −Kkxk − dk. (2.2)

The feedback gain Kk and feedforward dk are found by solving the discrete Riccati

equation backward in time, starting from PN = Qf , pN = qf , where Pk, pk are the

quadratic and linear terms of the cost-to-go (or value) function [41]:

Kk = (R +B⊺Pk+1B)−1(B⊺Pk+1A)

dk = (R +B⊺Pk+1B)−1(B⊺pk+1 + rk)

Pk = Q+K⊺
kRKk + (A−BKk)

⊺Pk+1(A−BKk)

pk = qk + (A−BKk)
⊺(pk+1 − Pk+1Bdk)+

K⊺
k (Rdk − rk).

(2.3)

2.2 Convex Model Predictive Control

Convex MPC extends the LQR formulation to admit additional convex constraints

on the system states and control inputs, such as joint and torque limits, hyperplanes

for obstacle avoidance, and contact constraints:

min
x1:N ,u1:N−1

J(x1:N , u1:N−1)

subject to xk+1 = Axk +Buk,

xk ∈ X , uk ∈ U ,

(2.4)

where X and U are convex sets. The convexity of this problem means that it

can be solved efficiently and reliably, enabling real-time deployment in a variety of

control applications including the landing of rockets [9], legged locomotion [22], and

autonomous driving [10].

When X and U can be expressed as linear constraints, (2.4) is a QP, and can be

6

2. Background

put into the standard form:

min
x∈Rn

1

2
x⊺Px+ q⊺x

subject to Ax ≤ b,

Cx = d.

(2.5)

Further analysis, including theoretical guarantees regarding feasibility and stability,

can be found in [14] and [52].

2.3 The Alternating Direction Method of

Multipliers

The alternating direction method of multipliers (ADMM) [17, 27, 29] is a popular

and efficient approach for solving convex optimization problems, including QPs like

(2.5). We provide a very brief summary here and refer readers to [15] for more details.

Given a generic problem:

min
x

f(x)

subject to x ∈ C,
(2.6)

with f and C convex, we define the indicator function for the set C:

IC(z) =

 0 z ∈ C

∞ otherwise.
(2.7)

We can now form the following equivalent problem by introducing the slack variable

z:
min
x

f(x) + IC(z)

subject to x = z.
(2.8)

The augmented Lagrangian of the transformed problem (2.8) is as follows, where λ is

7

2. Background

a Lagrange multiplier and ρ is a scalar penalty weight:

LA(x, z, λ) = f(x) + IC(z) + λ⊺(x− z) +
ρ

2
||x− z||22. (2.9)

If we alternate minimization over x and z, rather than simultaneously minimizing

over both, we arrive at the three-step ADMM iteration,

primal update : x+ = argmin
x
LA(x, z, λ), (2.10)

slack update : z+ = argmin
z
LA(x

+, z, λ), (2.11)

dual update : λ+ = λ+ ρ(x+ − z+), (2.12)

the last step of which is a gradient-ascent update on the Lagrange multiplier [17].

These steps can be iterated until a desired convergence tolerance is achieved.

In the special case of a QP, each step of the ADMM algorithm becomes very

simple to compute: the primal update is the solution to a linear system, and the

slack update is a linear projection. ADMM-based QP solvers, like OSQP [65], have

demonstrated state-of-the-art results.

8

Chapter 3

TinyMPC: Model Predictive

Control on Resource Constrained

Microcontrollers

Model predictive control (MPC) is a powerful tool for controlling highly dynamic

robotic systems subject to complex constraints. However, MPC is computationally

demanding, and is often impractical to implement on small, resource-constrained

robotic platforms. We present TinyMPC, a high-speed MPC solver with a low memory

footprint targeting the microcontrollers common on small robots. Our approach is

based on the alternating direction method of multipliers (ADMM) and leverages the

structure of the MPC problem for efficiency. We demonstrate TinyMPC’s effectiveness

by benchmarking against the state-of-the-art solver OSQP, achieving nearly an order

of magnitude speed increase, as well as through hardware experiments on a 27

gram quadrotor, demonstrating high-speed trajectory tracking and dynamic obstacle

avoidance.

3.1 Introduction

Model predictive control (MPC) enables reactive and dynamic online control for

robots while respecting complex control and state constraints such as those encoun-

9

3. TinyMPC: Model Predictive Control on Resource Constrained Microcontrollers

tered during dynamic obstacle avoidance and contact events [21, 38, 47, 70]. However,

despite MPC’s many successes, its practical application is often hindered by compu-

tational limitations, which can necessitate algorithmic simplifications [53, 59]. This

challenge is amplified when dealing with systems that have fast or unstable open-loop

dynamics, where high control rates are needed for safe and effective operation.

At the same time, there has been an explosion of interest in tiny, low-cost robots

that can operate in confined spaces, making them a promising solution for applications

ranging from emergency search and rescue [50] to routine monitoring and maintenance

of infrastructure and equipment [20, 24]. These robots are limited to low-power,

resource-constrained microcontrollers (MCUs) for their computation [25, 58]. As

shown in Figure 3.2, these microcontrollers feature orders of magnitude less RAM,

flash memory, and processor speed compared to the CPUs and GPUs available

on larger robots and historically were not able to support the real-time execution

of computationally or memory-intensive algorithms [54, 73]. Consequently, many

examples in the literature of intelligent robot behaviors executed on these tiny

platforms rely on off-board computers [4, 19, 39, 44, 68, 69, 71].

Several efficient optimization solvers and techniques suitable for embedded MPC

have emerged in recent years [35, 56]. Notable software packages among these are

OSQP [65] and CVXGEN [49]. Both of these solvers have code-generation tools

that enable users to create dependency-free C code to solve quadratic programs

(QPs) on embedded computers. However, they do not take full advantage of the

unique structure of the MPC problem, generally making them too memory intensive

and too computationally demanding to run within the resource constraints of many

microcontrollers.

On the other hand, the recent success of “TinyML” has enabled the deployment

of neural networks on microcontrollers [54]. Motivated by these results, we developed

TinyMPC, an MCU-optimized implementation of convex MPC using the alternating

direction method of multipliers (ADMM) algorithm. At its core, our solver is designed

to accelerate and compress the ADMM algorithm by exploiting the structure of the

MPC problem.

In particular, we precompute and cache expensive matrix factorizations, allowing

TinyMPC to completely avoid online division and matrix inversion. This approach

enables rapid computation with a very small memory footprint, enabling deployment

10

3. TinyMPC: Model Predictive Control on Resource Constrained Microcontrollers

Figure 3.1: TinyMPC is a fast convex model predictive control solver that enables real-time optimal
control on resource-constrained microcontrollers. We demonstrate its efficacy in dynamic obstacle
avoidance (top) and recovery from 90◦ attitude errors (bottom) on a 27 gram Crazyflie quadrotor.

on resource-constrained MCUs. To the best of the authors’ knowledge, TinyMPC is

the first MPC solver tailored for execution on these MCUs that has been demonstrated

onboard a highly dynamic, compute-limited robotic system. Our contributions include:

• A novel quadratic-programming algorithm that is optimized for MPC, is matrix-

inversion free, and achieves high efficiency and a very low memory footprint.

11

3. TinyMPC: Model Predictive Control on Resource Constrained Microcontrollers

Figure 3.2: A comparison of micro, tiny, and full-scale robot platforms and their associated
computational hardware.

This combination makes it suitable for deployment on resource-constrained

microcontrollers.

• An open-source implementation of TinyMPC in C++ that delivers state-of-the-

art real-time performance for convex MPC problems on microcontrollers.

• Experimental demonstrations on a small, agile, resource-constrained quadrotor

platform.

This paper proceeds as follows: Section 4.2 reviews linear-quadratic optimal

control, convex optimization, and ADMM. Section 3.2 then derives the core TinyMPC

solver algorithm. Benchmarking results and hardware experiments on a Crazyflie

quadrotor are presented in Section 4.5. Finally, we summarize our results and

conclusions in Section 3.4.

3.2 The TinyMPC Solver

TinyMPC trades generality for speed by exploiting the special structure of the MPC

problem. Specifically, we leverage the closed-form Riccati solution to the LQR problem

to compute the primal update in (2.10). Pre-computing and caching this solution

allows us to avoid online matrix factorizations and enables very fast performance

while maintaining a small memory footprint.

12

3. TinyMPC: Model Predictive Control on Resource Constrained Microcontrollers

3.2.1 Combining LQR and ADMM for MPC

We solve the following problem, introducing slack variables as in (2.9) and transform-

ing (2.4) into the following:

min
x1:N ,z1:N ,

λ1:N ,u1:N−1,
w1:N−1,µ1:N−1

LA(·) = J(x1:N , u1:N−1)+

IX (z1:N) + IU(w1:N−1)+

N∑
k=1

ρ

2
(xk − zk)

⊺(xk − zk) + λ⊺
k(xk − zk)+

N−1∑
k=1

ρ

2
(uk − wk)

⊺(uk − wk) + µ⊺
k(uk − wk)

subject to: xk+1 = Axk +Buk,

(3.1)

where z, w, λ, and µ are the state slack, input slack, state dual, and input dual

variables over the entire horizon. State and input constraints are enforced through

the indicator functions IX and IU . We use the ADMM algorithm (2.10), (2.11),

(2.12) to solve this optimal control problem. The primal update for (3.1) becomes an

equality-constrained QP:

min
x1:N ,u1:N−1

1

2
x⊺
NQ̃fxN + q̃⊺fxN+

N−1∑
k=1

1

2
x⊺
kQ̃xk + q̃⊺kxk +

1

2
u⊺
kR̃uk + r̃⊺uk

subject to xk+1 = Axk +Buk,

(3.2)

where
Q̃f = Qf + ρI, q̃f = qf + λN − ρzN ,

Q̃ = Q+ ρI, q̃k = qk + λk − ρzk,

R̃ = R + ρI, r̃k = rk + µk − ρwk.

(3.3)

We reformulate (3.3) and introduce the scaled dual variables y and g for conve-

13

3. TinyMPC: Model Predictive Control on Resource Constrained Microcontrollers

nience [17]:

q̃f = qf + ρ(λN/ρ− zN) = qf + ρ(yN − zN),

q̃k = qk + ρ(λk/ρ− zk) = qk + ρ(yk − zk),

r̃k = rk + ρ(µk/ρ− wk) = rk + ρ(gk − wk).

(3.4)

We observe that, because (3.2) exhibits the same LQR problem structure as in (2.1),

it can be solved efficiently with the Riccati recursion in (2.3). The slack update for

(3.1) becomes a simple linear projection onto the feasible set:

z+k = projX (x
+
k + yk),

w+
k = projU(u

+
k + gk),

(3.5)

where the superscript denotes the variable at the subsequent ADMM iteration. The

dual update for (3.1) becomes:

y+k = yk + x+
k − z+k ,

g+k = gk + u+
k − w+

k .
(3.6)

Finally, the algorithm terminates when the primal and dual residuals are within a set

tolerance.

14

3. TinyMPC: Model Predictive Control on Resource Constrained Microcontrollers

3.2.2 Pre-Computation

Solving the linear system in each primal update is the most expensive step in each

ADMM iteration. In our case, this is the solution to the Riccati equation, which has

properties we can leverage to significantly reduce computation and memory usage.

Given a long enough horizon, the Riccati recursion (2.3) converges to the constant

solution of the infinite-horizon LQR problem [41]. Thus, we pre-compute a single

LQR gain matrix Kinf and cost-to-go Hessian Pinf. We then cache the following

matrices from (2.3):

C1 = (R +B⊺PinfB)−1,

C2 = (A−BKinf)
⊺.

(3.7)

A careful analysis of the Riccati equation then reveals that only the linear terms need

to be updated as part of the ADMM iteration:

dk = C1(B
⊺pk+1 + rk),

pk = qk + C2pk+1 −K⊺
infrk.

(3.8)

As a result, we completely avoid online matrix factorization and only compute matrix-

vector products. We also dramatically reduce memory footprint by only storing a few

vectors at each time step.

3.2.3 Penalty Scaling

ADMM is sensitive to the value of the penalty term ρ in (2.9). Solvers like OSQP [65]

overcome this issue by adaptively scaling ρ. However, this requires performing

additional matrix factorizations. To avoid this, we pre-compute and cache a set of

matrices corresponding to several values of ρ. Online, we switch between these cached

matrices based on the values of the primal and dual residual values in a scheme

adapted from OSQP. The resulting TinyMPC algorithm is summarized in Algorithm

1.

15

3. TinyMPC: Model Predictive Control on Resource Constrained Microcontrollers

Algorithm 1 TinyMPC

function tiny solve(input)
while not converged do

//Primal update

p1:N−1, d1:N−1 ← Backward pass via (3.8)
x1:N , u1:N−1 ← Forward pass via (2.2)
//Slack update

z1:N , w1:N−1 ← Project to feasible set (3.5)
//Dual update

y1:N , g1:N−1 ← Gradient ascent (3.6)
q1:N , r1:N−1, pN ← Update linear cost terms

return x1:N , u1:N−1

0 10 20 30
0

200

400

600

T
im

e
p
er

It
er
at
io
n
(u
s)

0 10 20 30
0

200

400

600

0 10 20 30 40 50
0

200

400

600 TinyMPC
OSQP

4 8 12 16 24 28 32
300

400

500

600

(a) State dimension (n)

M
em

or
y
U
sa
ge

(k
B
)

4 8 12 16 24 28 32
300

400

500

600

Memory Limit

(b) Input dimension (m)

4 8 12 16 30 40 50
300

400

500

600

(c) Time horizon (N)

TinyMPC
OSQP

Figure 3.3: Comparison of average iteration times (top) and memory usage (bottom) for OSQP and
TinyMPC on randomly generated trajectory tracking problems on a Teensy 4.1 development board.

3.3 Experiments

We evaluate TinyMPC through two sets of experiments: first, we benchmark our solver

against the state-of-the-art OSQP [65] solver on a representative microcontroller,

16

3. TinyMPC: Model Predictive Control on Resource Constrained Microcontrollers

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.5

0

0.5

(a) X [m], period = 5 s

Y
[m

]

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.5

0

0.5

(b) X [m], period = 3 s

Y
[m

]

Reference
Mellinger
Brescianini
TinyMPC

Figure 3.4: Figure-eight tracking at low speed (top) and high speed (bottom) comparing TinyMPC
with the two most performant controllers available on the Crazyflie.

demonstrating improved computational speed and reduced memory footprint. We

then test the efficacy of our solver on a resource-constrained nano-quadrotor platform,

the Crazyflie 2.1. We show that TinyMPC enables the Crazyflie to track aggressive

reference trajectories while satisfying control limits and time-varying state constraints.

3.3.1 Microcontroller Benchmarks

As shown in Fig. 3.3, we first compare TinyMPC and OSQP on random linear MPC

problems while varying the state and input dimensions, as well as the horizon length.

Methodology

Experiments were performed on a Teensy 4.1 [2] development board, which has an

ARM Cortex-M7 microcontroller operating at 600 MHz, 7.75 MB of flash memory,

17

3. TinyMPC: Model Predictive Control on Resource Constrained Microcontrollers

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2
0.4
0.6
0.8
1
·105

(a) Time [s], Brescianini

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2
0.4
0.6
0.8
1
·105

(b) Time [s], PID

C
on

tr
ol
s

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2
0.4
0.6
0.8
1
·105

(c) Time [s], TinyMPC

Figure 3.5: Control trajectories during the Extreme Initial Poses experiment.

and 512 kB of RAM. TinyMPC is implemented in C++ using the Eigen matrix

library [31]. We used OSQP’s code-generation feature to generate a C implementation

of each problem to run on the microcontroller. Objective tolerances were set to

10−3 and constraint tolerances to 10−4. The maximum number of iterations for both

solvers was set to 4000, and both utilized warm starting. OSQP’s solution polishing

was disabled to decrease solve time. Other parameters were set to equivalent values

wherever possible.

Dynamics models A and B were randomly generated and checked to ensure

controllability for all values of state dimension n, input dimension m, and time

horizon N . The control input was constrained within fixed bounds over the entire

horizon. During the microcontroller tests, noise was added to mimic imperfect state

estimation. The largest problem instance involved 696 decision variables, 490 linear

equality constraints, and 392 linear inequality constraints.

18

3. TinyMPC: Model Predictive Control on Resource Constrained Microcontrollers

Evaluation

Fig. 3.3 shows the average execution times for both solvers, in which TinyMPC

exhibits a maximum speed-up of 8.85x over OSQP. This speed-up allows TinyMPC

to perform real-time trajectory tracking while handling input constraints. OSQP

also quickly exceeded the memory limitations of the MCU, while TinyMPC was able

to scale to much larger problem sizes. For example, for a fixed input dimension of

m = 4 and time horizon of N = 10 (Fig. 3.3a), OSQP exceeded the 512 kB memory

limit of the Teensy at a state dimension of only n = 16, while TinyMPC only used

around 400 kB at a state dimension of n = 32.

3.3.2 Hardware Experiments

We demonstrate the efficacy of our solver for real-time execution of dynamic control

tasks on a resource-constrained Crazyflie 2.1 quadrotor. We present three experiments:

1) figure-eight trajectory tracking at slow and fast speeds, 2) recovery from extreme

initial attitudes, and 3) dynamic obstacle avoidance through online updating of state

constraints.

Methodology

The Crazyflie 2.1 is a 27 gram quadrotor. Its primary MCU is an ARM Cortex-

M4 (STM32F405) clocked at 168 MHz with 192 kB of SRAM and 1 MB of flash.

OSQP could not fit within the memory available on this MCU, making it impossible

to be used as an MPC baseline. Instead, we compare against the four controllers

included with the Crazyflie firmware: Cascaded PID [1], Mellinger [51], INDI [64],

and Brescianini [18]. These are reactive controllers that often clip the control input

to meet hardware constraints.

All experiments shown were performed in an OptiTrack motion-capture environ-

ment sending pose data to the Crazyflie at 100 Hz. TinyMPC ran at 500 Hz with a

horizon length of N = 15 for the figure-eight tracking task and the attitude-recovery

task. For the obstacle-avoidance task, we sent the location of the end of a stick to

the Crazyflie using the onboard radio. Additionally, we reduced the MPC frequency

to 100 Hz and increased N to 20.

19

3. TinyMPC: Model Predictive Control on Resource Constrained Microcontrollers

In all experiments, we linearized the quadrotor’s 6-DOF dynamics about a hover

and represented its attitude with a quaternion using the formulation in [34]. This

problem has state dimension n = 12 and m = 4 representing the quadrotor’s full

state and PWM motor commands. The largest problem was in the dynamic obstacle

avoidance scenario, which was solved onboard at high frequency and consisted of

316 decision variables, 248 linear equality constraints, and 172 linear inequality

constraints.

Evaluation––Figure-Eight Trajectory Tracking

We compare the tracking performance of TinyMPC and other controllers with a

figure-eight trajectory, as shown in Fig. 3.4. For the faster trajectory, the maximum

velocity and attitude deviation reached 1.5 m/s and 20◦, respectively. Only TinyMPC

could track the entire reference while respecting actuator limits, while the Mellinger

and Brescianini controllers crashed almost immediately. TinyMPC converged at all

steps within a maximum of 7 iterations and under the allotted 2 ms solve time defined

by the 500 Hz control frequency.

Evaluation––Extreme Initial Poses

Fig. 3.1 (bottom) shows the performance of the Crazyflie when initialized with a 90◦

attitude error. TinyMPC displayed the best recovery performance with a maximum

position error of 23 cm while respecting the input limits. The PID and Brescianini

controllers achieved maximum errors of 40 cm and 65 cm, respectively, while violating

input limits (Fig. 3.5). The other controllers, INDI and Mellinger, failed to stabilize

the quadrotor, causing it to crash.

Evaluation––Dynamic Obstacle Avoidance

We demonstrate TinyMPC’s ability to handle time-varying state constraints by

avoiding a moving stick (Fig. 3.1 top). These experiments are more challenging

because the constraints arbitrarily switch between inactive and active, requiring far

more iterations to solve to convergence. The obstacle sphere was re-linearized about

its updated position at each MPC step, allowing the drone to avoid the unplanned

movements of the swinging stick. As illustrated, the quadrotor could move freely in

20

3. TinyMPC: Model Predictive Control on Resource Constrained Microcontrollers

space to avoid the dynamic obstacle and come back safely to the hovering position.

As an additional challenge, we added a constraint such that the quadrotor must

stay within a vertical plane defined by x = 0. The Crazyflie deviated a maximum

of approximately 5 cm from this constraint plane while successfully avoiding the

dynamic obstacle.

3.4 Conclusions

We introduce TinyMPC, a model predictive control solver for resource-constrained

embedded systems. TinyMPC uses ADMM to handle state and input constraints

while leveraging the structure of the MPC problem and insights from LQR to reduce

memory footprint and speed up online execution compared to existing state-of-the-art

solvers like OSQP. We demonstrate TinyMPC’s practical performance on a Crazyflie

nano-quadrotor performing highly dynamic tasks with input and obstacle constraints.

21

3. TinyMPC: Model Predictive Control on Resource Constrained Microcontrollers

22

Chapter 4

Conic Constraints and Code

Generation with TinyMPC

Conic constraints appear in many important control applications like legged locomo-

tion, robotic manipulation, and autonomous rocket landing. However, current solvers

for conic optimization problems have relatively heavy computational demands in terms

of both floating-point operations and memory footprint, making them impractical

for use on small embedded devices. We extend TinyMPC to handle second-order

cone constraints. We also present code generation software to enable deployment

of TinyMPC on a variety of microcontrollers. We benchmark our generated code

against state-of-the-art embedded QP and SOCP solvers, demonstrating a two-order-

of-magnitude speed increase over ECOS while consuming less memory. Finally, we

demonstrate TinyMPC’s efficacy through multiple hardware experiments on the

Crazyflie 2.1.

4.1 Introduction

Second-order cones represent an important class of constraints that appear in many

robotics and aerospace control problems when reasoning about friction, attitude, and

thrust limits [37, 42, 43]. However, solving the resulting second-order cone programs

(SOCPs) at real-time rates can be computationally challenging, especially on the

low-power, resource-constrained microcontrollers found on embedded systems.

23

4. Conic Constraints and Code Generation with TinyMPC

Figure 4.1: Top, we track a descending helical reference (red) with its position subject to a 45◦

second-order cone glideslope. This requires the aircraft to perform a spiral landing maneuver (blue).
Bottom, we design a predictive safety filter to guarantee safe maneuvers within a box-shaped space
(blue) regardless of the nominal controller behavior (red).

For deployment on microcontrollers, which often lack full hardware support for

floating-point arithmetic, an ideal MPC solver should be division-free, only use static

memory allocation, and support warm starting to take advantage of computation at

previous time steps [3, 12, 33, 48]. Compiled code should also have a low memory

footprint and be easily verifiable through an interface to a high-level language like

Python. Table 4.1 compares existing solvers that are commonly used in control settings.

We focus on SOCP solvers but also include two popular quadratic programming (QP)

solvers. Because most of these are not purpose-built for MPC, they either do not

24

4. Conic Constraints and Code Generation with TinyMPC

Table 4.1: Comparison of general-purpose and model-predictive control solvers.

Solver SOC Warm Starting Embedded Open Source Quad. Obj. MPC Tailored

Clarabel [30] ✓ ✗ ✗ ✓ ✓ ✗

COSMO [28] ✓ ✓ ✗ ✓ ✓ ✗

ECOS [23] ✓ ✗ ✓ ✓ ✗ ✗

MOSEK [8] ✓ ✗ ✗ ✗ ✓ ✗

OSQP [65] ✗ ✓ ✓ ✓ ✓ ✗

SCS [57] ✓ ✓ ✓ ✓ ✓ ✗

FORCES [5] ✗ ✓ ✓ ✗ ✓ ✓

ALTRO-C [33] ✓ ✓ ✗ ✓ ✓ ✓

TinyMPC (ours) ✓ ✓ ✓ ✓ ✓ ✓

easily support warm starting; don’t take advantage of problem or sparsity structure

and thus use too much memory to deploy on most microcontrollers; are not written

in a language that allows the solver to be easily ported to an embedded system; or

some combination of these issues.

Furthermore, while several of these solvers, including ECOS [23] and SCS [57],

support code generation for embedded devices, they still either use too much memory

to fit on resource-constrained microcontrollers or are too computationally inefficient

to solve MPC problems in real time. Specifically, ECOS’s use of an interior-point

method does not allow efficient warm starting, which is essential for good performance

in MPC applications. Additionally, both ECOS and SCS return a certificate of

infeasibility. While this is generally a useful feature, it requires extra computation

that is unnecessary in an MPC setting, where an inability to find a solution will result

in system failure regardless of whether the solver can detect infeasibility.

Prior work introduced TinyMPC [55], a QP solver for model-predictive control

based on the alternating direction method of multipliers (ADMM) [16]. TinyMPC

avoids divisions while reducing computational complexity and memory footprint

by pre-computing and caching expensive matrix factorizations and only performing

matrix-vector products online, achieving state-of-the-art performance.

In this work, we extend the TinyMPC solver [55] to support second-order cone

constraints on states and inputs, enabling real-time second-order cone model-predictive

control on resource constrained platforms. Importantly, we also develop an open-source

25

4. Conic Constraints and Code Generation with TinyMPC

code generation software package with a Python interface to ease the deployment of

TinyMPC on a wide range of microcontrollers.

To the best of the authors’ knowledge, TinyMPC is the first MPC solver intended

for execution on resource-constrained microcontrollers that handles second-order cone

constraints. Our specific contributions include:

• An open source implementation of TinyMPC with support for second-order

cone constraints, making it the fastest and lowest-memory-footprint embedded

SOCP solver.

• User-friendly interfaces for easy code generation and solution verification using

TinyMPC with examples in Python and C++.

• Experimental validation on hardware for several benchmark control problems.

The remainder of this paper is organized as follows: Section 4.2 provides mathe-

matical preliminaries on the linear-quadratic regulator and the alternating-direction

method of multipliers. Section 4.3 introduces TinyMPC and its extension to handle

conic constraints. Section 4.4 gives an overview of the code generation software

and demonstrates the minimum code required to set up a problem with TinyMPC.

Section 4.5 details benchmarks on ARM Cortex M4 and M7 microcontrollers, as well

as hardware experiments on a Crazyflie quadrotor. Finally, Section ?? summarizes

our conclusions.

4.2 Background

4.2.1 Conic Model-Predictive Control

As opposed to 2.5, when the convex constraint sets X and U can be expressed as

linear and second-order cone constraints, (2.4) is an SOCP, and can be put into the

standard form (where K is a cone):

min
x∈Rn

1

2
x⊺Px+ q⊺x

subject to x ∈ K,

Gx ≤ h.

(4.1)

26

4. Conic Constraints and Code Generation with TinyMPC

4.2.2 The Alternating Direction Method of Multipliers

ADMM takes the same augmented Lagrangian as in 2.9 and three-step-update form

as described in chapter 2. ADMM splits the problem into separate steps to divide

the work done on the cost function and on satisfying the constraints. Because of

this, it is straightforward to modify the slack update step to add additional convex

constraints such as second-order cones. ADMM-based SOCP solvers such as SCS [57]

have demonstrated state-of-the-art results.

4.3 Second-Order Conic Projection

TinyMPC exploits properties of the MPC problem to efficiently solve the primal update

in (2.10), prioritizing high speed and low memory footprint over generality. Specifically,

we cache the solution to an infinite-horizon LQR problem to reduce memory and

pre-compute expensive matrix inverses in (2.3) to reduce online computation as in

chapter 3.

To add arbitrary convex constraints, we can write the slack update in (2.11) as

the operator Π that projects the slack variable onto the feasible space. For linear

inequality constraints, the projection is onto a set of upper and lower bounds defined

by the element-wise operator

Π(z) = max(zl,min(zu, z)), (4.2)

where z corresponds to the state and control input slack variables. We now extend

(2.1) to solve problems that include conic constraints defined by

K =
{
z ∈ Rn|zn ≥

√
z21 + z22 + · · ·+ z2n−1

}
. (4.3)

The structure of the ADMM algorithm inherently isolates the projection step,

allowing us to replace the projection operator in the slack update (4.2) with the SOC

27

4. Conic Constraints and Code Generation with TinyMPC

projection

ΠK(z) =

0, ∥v∥2 ≤ −a,

z, ∥v∥2 ≤ a,

1

2

(
1 +

a

∥v∥2
) v

∥v∥2

 , ∥v∥2 > |a|,

(4.4)

where v = [z1, . . . , zn−1]
⊺, a = zn. Here, zi, i = 1, ..., n is any vector subset of the

state or control slack variables. This projection can be used in addition to projections

for other types of convex constraints, allowing ADMM to solve any problem with

constraints defined by disciplined convex programming (DCP) [45].

4.4 Code Generation with TinyMPC

We have developed a code generation tool for TinyMPC with a Python interface

that produces dependency-free C++ code. Listing 4.1 is an example Python script

that generates problem-specific TinyMPC code. The setup function is used to

initialize the problem with specific data, which consists of the time horizon (N),

system model (A, B, and c), cost weights (Q and R), linear and conic constraint

parameters (bounds and socs), and solver settings. Users may opt to set primal and

dual solution tolerances, the maximum number of iterations per solve, and whether

to check termination conditions. Tuning the maximum number of iterations for a

particular system is often critical for returning a usable solution within real-time

limits. The codegen function is then used to generate the tailored code.

The directory structure of the resulting code is shown in Fig. 4.2. The solver’s

source code and associated headers are in the /tinympc subdirectory. The gener-

ated code is compact and does not rely on dynamic memory allocation, making it

particularly suitable for embedded use cases. An example program is located in

tiny main.cpp. This program imports workspace data from the tiny data workspace.hpp

header and then solves the given problem (Listing 4.2).

Users may choose to compile code for their host system either manually or through

the TinyMPC interface for testing. Listing 4.3 shows an example Python script that

loads the generated code library, solves the problem, then retrieves the solution. The

reference trajectory and initial state may be set before solving using the set xref,

28

4. Conic Constraints and Code Generation with TinyMPC

import tinympc

Create a TinyMPC object

tiny = tinympc.TinyMPC()

Initialize the solver

tiny.setup(N, A, B, c, Q, R, bounds, socs, settings)

Generate code

tiny.codegen(output_dir)

Listing 4.1: A minimal Python script to generate the code for an MPC problem.

<proj dir>

include

Eigen

tinympc

[*.hpp]

[*.cpp]

src

tiny data workspace.cpp

tiny main.cpp

Figure 4.2: The tree structure of the generated code. The main program is stored in tiny main.cpp.

#include "tinympc.hpp"

#include "tiny_data_workspace.hpp"

int main(int argc, char **argv) {

tiny_solve(&solver); // Solve the problem

return 0;

}

Listing 4.2: A simple C++ program that loads the problem data from tiny data workspace.hpp

and solves the problem.

set uref, and set x0 functions, and may be done on the microcontroller using

the C++ equivalents. Additional wrapped functions exist for overwriting existing

constraint parameters.

29

4. Conic Constraints and Code Generation with TinyMPC

import tinympc

Create a TinyMPC object

tiny = tinympc.TinyMPC()

Load the library

tiny.load_lib("path/to/shared/library.so")

Solve the problem

tiny.solve()

Get the solution

tiny.get_u(u)

Listing 4.3: An example Python script to run the generated code.

0

40

80

120

Static Limit

M
em

or
y
U
sa
ge

(k
B
)

0

40

80

120

Static Limit

0

200

400

600

800

1,000

Dynamic Limit

2 4 8 16 32
102

103

State Dimension (n)

T
im

e
p
er

It
er
at
io
n
(u
s)

4 8 16 32 64 100

103

104

Time Horizon (N)

TinyMPC
OSQP

(a) Predictive safety filtering

2 4 8 16 32 64 128 256100

101

102

103

104

105

Time Horizon (N)

TinyMPC
ECOS
SCS

(b) Rocket soft-landing

Figure 4.3: Comparison of average iteration times (top) and memory usage (bottom) between
different solvers. (a) compares TinyMPC to OSQP on a QP-based predictive safety filtering task
and was performed on an STM32F405 Feather board. (b) compares TinyMPC to ECOS and SCS
on an SOCP-based rocket soft-landing using a Teensy 4.1 development board.

4.5 Experiments

We benchmark the performance of TinyMPC’s generated code through two sets of

experiments: first, we compare TinyMPC against state-of-the-art solvers on two

30

4. Conic Constraints and Code Generation with TinyMPC

common microcontrollers, demonstrating faster computation and decreased memory

usage. Second, we solve various control tasks running onboard a 27 gram Crazyflie

nano-quadrotor [13]. Our results show that TinyMPC’s fast computation and low

memory footprint enables robots to execute dynamic behaviors while respecting both

linear and second-order cone constraints.

4.5.1 Microcontroller Benchmarks

We compare TinyMPC against state-of-the-art solvers for two problems while varying

the number of states and the horizon length. The first is a predictive safety filtering

problem with box constraints on the state and input. The second is a rocket soft-

landing problem with a second-order cone constraint on the thrust vector. The

safety filter QP is benchmarked against OSQP and the rocket soft-landing SOCP is

benchmarked against ECOS and SCS. The microcontroller results are reported in

Fig. 4.3.

Predictive Safety Filtering

We formulate a QP with box constraints on the state and input variables to act as a

predictive safety filter for a nominal task [11, 32]. We compare the solution times and

memory usage of TinyMPC and OSQP while varying state and horizon dimensions.

We utilize TinyMPC’s and OSQP’s Python code generation interfaces to produce

microcontroller firmware for each problem. In a previous study [55], QP-based MPC

was evaluated on the Teensy 4.1 microcontroller which features a powerful ARM

Cortex-M7 operating at 600 MHz with 7.75 MB of flash memory, and 512 kB of

RAM. Here, we benchmark on a much less powerful microcontroller, the STM32F405

Adafruit Feather board, which has an ARM Cortex-M4 operating at 168 MHz with

1 MB of flash memory and 128 kB of RAM, to better understand the scalability limits

of embedded QP solvers.

Fig. 4.3a shows the total program size and the average execution times per

iteration, in which TinyMPC uses drastically less memory and exhibits a maximum

speed-up of 2.5x over OSQP. This reduction in memory usage allows TinyMPC

to solve real-time optimal control of complex systems with long time horizons. In

particular, TinyMPC was able to handle time horizons of up to 100 knot points,

31

4. Conic Constraints and Code Generation with TinyMPC

whereas OSQP surpassed the 128 kB memory capacity of the STM32 at a time horizon

of only N = 32. Additionally, TinyMPC demonstrated scalability to larger state

dimensions up to 32, whereas OSQP encountered memory limitations beyond n = 16.

Rocket Soft-Landing

The soft-landing problem requires a rocket to land with small final velocity at a desired

position. This is often decomposed into two control loops, where the translation

dynamics are handled with MPC and the attitude dynamics are handled by a faster

linear feedback controller [9]. In this scenario, we assume an ideal attitude controller

and use a point-mass model with a second-order cone constraint on the thrust vector.

We benchmark the performance of TinyMPC against ECOS and SCS, state-of-the-art

SOCP solvers. C code for ECOS and SCS was generated using CVXPYgen [62].

C++ code for TinyMPC was produced using the Python code generation interface

introduced in Section 4.4. All solver options were set to equivalent values wherever

possible. All tolerances were set to 0.01 and code was executed on the Teensy

4.1 microcontroller. The Teensy allowed us to collect more data than on the less

capable STM32F405, as the largest SOCP problem involved 2301 decision variables

as well as 1530 linear equality constraints, 1530 linear inequality constraints, and 255

second-order cone constraints.

Fig. 4.3b shows the amount of dynamically allocated memory and the average

execution times per iteration for varying time horizon. TinyMPC outperforms SCS

and ECOS in execution time and memory, achieving an average speed-up of 13x over

SCS and 137x over ECOS. TinyMPC performed no dynamic allocation while SCS

and ECOS dynamically allocated the workspace at the beginning due to the use of

the CVXPYgen interface. This caused SCS and ECOS to exceed the RAM of the

Teensy during execution. Without using the CVXPYgen interface, the dynamically

allocated workspace must instead be stored statically, still exceeding the memory

limit of the Teensy. Overall, TinyMPC was able to solve problems with a horizon of

256, while SCS and ECOS failed at N = 64.

32

4. Conic Constraints and Code Generation with TinyMPC

Table 4.2: Solver performance of different control step durations. Within 20ms (N = 16), the
maximum number of solver iterations for ECOS, SCS, and TinyMPC are 3, 33, and 444, respectively.
ECOS was not able to complete a single optimization iteration within 2ms.

A. Constraint Violation

Control Step (ms) 1000 20 10 2

ECOS 0.00 132.63 1757.00 –
SCS 2.04 5.48 10.59 22.84
TinyMPC 0.01 0.01 0.01 4.43

B. Landing Error

ECOS 1.33 629.02 939.26 –
SCS 1.35 1.36 1.37 2.11
TinyMPC 0.87 0.87 0.87 0.87

Early Termination

High-rate real-time control requires a solver to return a solution within a strict time

window. Table 4.2 shows the trajectory-tracking performance of each solver on the

rocket soft-landing problem with different control step durations. We solve the same

problem as in 4.5.1, except that each solver must return within the specified control

step duration. The maximum number of iterations for each solver was determined

based on the average time per iteration for each solver with N = 16 (Fig. 4.3b).

For example, when the solvers are given 20ms to solve the problem, the maximum

number of solver iterations for ECOS, SCS, and TinyMPC were 3, 33, and 444,

respectively. Two different metrics are reported: 1) the total control input violation

on box and SOC constraints and 2) the landing error (defined as the norm of the

deviation between the final and goal states). These metrics were evaluated at four

different control step durations for each solver.

ECOS successfully solved to convergence only when given 1000ms for each control

step, which is impractical for most real-time control tasks. It failed in subsequent cases

due to its limited speed and inability to warm start, with zero iterations completed

within 2ms. On the other hand, even though SCS and TinyMPC were not able to

solve the problem to full convergence at every iteration for shorter control steps, they

were able to utilize warm starting to maintain low constraint violation and landing

error. TinyMPC outperformed SCS for all control step durations and, critically, only

33

4. Conic Constraints and Code Generation with TinyMPC

appreciably violated constraints at the shortest duration of 2ms.

4.5.2 Hardware Experiments

We deployed our TinyMPC implementation onto a Crazyflie nano-quadrotor [13],

which has an ARM Cortex-M4 (STM32F405) clocked at 168 MHz with 192 kB of

SRAM and 1 MB of flash. The Crazyflie was subjected to three problems involving

second-order cone or box constraints: predictive safety filtering, attitude/thrust vector

regulating, and spiral landing. The Crazyflie’s state was represented by a point mass

with a thrust vector input. We used a cascaded control architecture for each of these

tasks [9], running TinyMPC at 50 Hz and using the Crazyflie’s built-in Brescinanini

controller [18] to track the solution at 1 kHz. All experiments were done using an

optical flow deck attached to the Crazyflie for fully onboard state estimation. An

Optitrack motion capture system was used only for long exposure photos (Fig. 4.1).

Quadrotor Predictive Safety Filtering

We use a nominal PD controller and formulate a predictive safety filtering problem as

a QP that can be efficiently solved using TinyMPC, similar to 4.5.1. The Crazyflie

was commanded to execute an unsafe sinusoidal path of amplitude 1.2 m, which was

then tracked with the PD controller and filtered by TinyMPC using a horizon of

20 knot points and box constraints at ±0.6 m. As illustrated in Fig. 4.1 bottom,

the Crazyflie respects the safety limits (blue) despite the nominal PD-controlled

trajectory being 1.2 m in magnitude (red). This experiment illustrates TinyMPC’s

ability to act as a safety layer for unsafe policies.

Attitude and Thrust-Vector Regulation

In many controllers for vertical take-off and landing (VTOL) aircraft, the thrust

vector is constrained to lie within a cone [46]. We formulated an SOCP-based MPC

problem for the Crazyflie drone that incorporates such a thrust-cone constraint, which

implicitly constrains the drone’s attitude. As depicted in Fig. 4.4, TinyMPC was able

to successfully limit the Crazyflie’s attitude to two different maximum values of 0.25

radians and 0.2 radians. Conversely, the built-in Brescianini and Mellinger controllers

34

4. Conic Constraints and Code Generation with TinyMPC

−0.4

−0.2

0

0.2

0.4

A
tt
it
u
d
e
-
R
ol
l

0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

Time [s]

A
tt
it
u
d
e
-
P
it
ch

Brescianini
Mellinger
TinyMPC 0.25
TinyMPC 0.2

Figure 4.4: Comparison of attitude/thrust vector constraint violations by TinyMPC and different
built-in controllers on the Crazyflie.

exhibited significant attitude deviations, resulting in failures. It is important to

note that one can only reduce the attitude deviations of these reactive controllers

through careful gain tuning, while TinyMPC allows them to be specified explicitly as

constraints.

Conically Constrained Spiral Landing

Planetary landing problems typically include a glideslope constraint to ensure sufficient

elevation during approach and to prevent the spacecraft from crashing into the

surroundings [46]. Fig. 4.1 demonstrates the ability of TinyMPC to handle the

35

4. Conic Constraints and Code Generation with TinyMPC

planetary landing glideslope constraint of spacecraft. The reference trajectory is a

descending cylindrical spiral (red). We formulated an SOCP-based MPC problem to

restrict the Crazyflie’s position to within a 45◦ cone originating from the center of

the cylindrical reference trajectory, and solved it with TinyMPC. Our solver forces

the Crazyflie to conform to the state-constraint cone, resulting in a spiral landing

maneuver within a safe glideslope (blue).

36

Chapter 5

Practical Implementation Tips and

Tricks

5.1 Solver Frequency vs Horizon Length

Horizon length is one of the most important parameters to choose when initializing

TinyMPC. A longer horizon will almost always produce more dynamic behaviors, but

only given that the solver will converge or come close to convergence at every time

step. In a real-time scenario, there is a computational budget that restricts how many

iterations may be performed at every time step. Longer horizons reduce the number

of iterations that may be computed and potentially compromise the stability of the

system. In a real implementation, stability analysis may be performed on a particular

system to determine the minimum controller frequency. Horizon length may then be

extended or shortened depending on the complexity of the task. Unfortunately, more

complex tasks generally require more iterations to converge but also longer horizons

to fully reason about the task. This is an unavoidable truth that limits the number

of solver iterations that can be performed at every time step.

A general rule of thumb is to reduce the horizon length and increase the solver

frequency for highly dynamic tasks that don’t include constraints dependent on data

external to the system’s state, such as obstacles, and to increase horizon length as

much as possible for tasks such as obstacle avoidance that require large deviations

37

5. Practical Implementation Tips and Tricks

to the reference trajectory. For tasks that require long horizon lengths that result

in an optimal control problem too complex to compute in real-time, sometimes it

is necessary to add a hierarchial control scheme where TinyMPC computes a new

trajectory at a slower rate than it would normally be used to control the system

directly, and then track the output with a higher frequency controller, commonly

implemented as a PID or LQR controller. This is sometimes necessary for systems

with very high frequency dynamics, and while the low level controller might violate

the constraints satisfies by TinyMPC, the hierarchial control scheme will still allow

the system to reason about dynamically changing environments. It is also possible

to add safety margins on TinyMPC’s constraints when using a hierarchial controller

such that the low level controller is less likely to violate the actual system limits.

5.2 Solution Tolerance

Solution tolerance determines how accurate the solver’s answer must be before

finishing. A tighter tolerance takes more time to reach, and different solvers have

different solution tolerance time curves. ADMM, for example, is capable of solving

to coarse tolerances very quickly but takes much longer to solve to tight tolerances.

Solvers sometimes include a fine-tuning step that is specifically built for converging

to tight tolerances. In our case, however, solving to tight tolerances is detrimental.

When solving as part of a feedback loop, the responsiveness of the loop is often

limited by the speed of the solver, and the longer the solver takes the more error

will accumulate between the most recent state estimate and the actual state of the

system. One must strike a balance between fast solves and accurate solves. Solutions

with very tight tolerances take longer to find and thus reduce the overall accuracy of

the system, and very coarse tolerances can result in solutions that haven’t converged

enough to be useful.

5.2.1 Continuous Iteration

For a problem where we care about knowing that the solver has converged at each

time step, the best solution tolerance to use is often found through trial and error.

Another approach is to simply not check whether we have converged. This has the

38

5. Practical Implementation Tips and Tricks

benefit of not spending additional CPU cycles computing solution tolerance, which

can be more expensive than another solver iteration.

For all of the demonstrations presented in this thesis, we did not check for

convergence and instead assumed we would endlessly solve the MPC problem. New

state estimation data was fed to the system at every control time step, which was

500 Hz for most tasks, and each control time step consisted of only a few solver

iterations. This scheme of high control frequency and low solver iterations makes

sense in real-time scenarios where the system is constantly evolving and solving the

optimal control problem with old data has rapidly diminishing returns. This setup

only works because of warm starting, which ensures that work done on solving the

MPC problem in previous time steps is carried over into future time steps. One

can imagine that when the system is at equilibrium and the state is not changing

rapidly, the solution error will become very small. When the system is undergoing

more change, as when tracking an aggressive reference trajectory, the solution error

will increase. This is because the initial state of the system is constantly changing in

these scenarios and not enough iterations are performed per control step to converge

to a tighter tolerance.

5.3 Penalty Parameters

Most ADMM-based solvers compute a new KKT system online when they determine

that the penalty parameter ρ needs to be updated. OSQP, for example, uses a

heuristic that compares the speed of convergence for the constraints and cost function,

and updates ρ when that ratio is beyond a certain threshold. Since TinyMPC relies on

offline computation of expensive matrices, cached values that correspond to different

values of ρ are all computed offline. A similar check to the one used by OSQP is

performed online and the precomputed values corresponding to the closest ρ, known

as a cache level in TinyMPC, is chosen for use in the next iteration. With the current

implementation, each cache level must be precomputed offline. The values for ρ are

chosen by trial and error but are generally scaled geometrically between a few orders

of magnitude. For example, ρ might be between 1e-3 to 1e3, but for specific tasks

that push the limits of the microcontroller in terms of required solution frequency,

it is possible to test different precomputed cache levels in simulation to determine

39

5. Practical Implementation Tips and Tricks

which ones result in the fastest convergence.

It may also be important to switch between different cache levels based on external

circumstances. For example, in the obstacle avoidance task, we set two different

values of ρ and overwrote the penalty switching heuristic to force a change whenever

the drone violated the obstacle constraints. Similar results may be achieved with the

penalty update heuristic. We chose to explicitly change the penalty parameter using

problem specific data to increase responsiveness.

5.4 Obstacle Avoidance

The controller must run alongside additional necessary processes such as the state

estimator, and for most microcontrollers the computational budget for each time step

is taken up by these two tasks. However, TinyMPC is fast enough that additional

computation may be performed without compromising these necessary processes. In

the dynamic obstacle avoidance example, we stream the location of the end of the stick

to the Crazyflie at every time step. We then perform a number of preprocessing steps

before solving the actual MPC problem. We assume an inflated sphere surrounds

the end of the stick we are trying to avoid and, given the most recent state of the

Crazyflie and the sphere, compute a plane tangent to the sphere at the point closest

to the drone. This plane defines a halfspace constraint that requires the drone stay

outside of the sphere. We do this for each time step, so there are as many halfspace

constraints as there are knot points in the horizon. We use the velocity of the sphere

to predict its location at each time step before linearizing each halfspace constraint.

40

Chapter 6

Conclusions

6.1 Summary

In this work we present TinyMPC, a solver for convex model predictive control on

resource constrained robots. The solver outperforms the state-of-the-art QP solver

OSQP both in terms of memory footprint and solution speed. We then extend

TinyMPC to handle second-order cone constraints and show that it outperforms the

state-of-the-art conically-constrained QP solvers SCS and ECOS in the same metrics.

We demonstrate TinyMPC’s efficacy on the Crazyflie 2.1, a 27 gram nano-

quadrotor with fast dynamics. TinyMPC is able to control the Crazyflie to maneuver

around dynamic obstacles, reasoning about constantly changing linear inequality

constraints in real time. Although TinyMPC reasons about only a single linearization

of the full nonlinear system dynamics, it can still successfully command aggressive

maneuvers. This is shown by stabilizing the Crazyflie after taking off at a 90 degree

angle. We show that reasoning about thrust limits results in a smoother recovery

than obtained with the built-in controllers, which do not reason about thrust limits.

We also demonstrate TinyMPC’s second-order cone constraint handling capabilities

by following a helical descent path subject to a conic position constraint. Finally, we

perform thrust vector regulation by constraining the attitude of the Crazyflie to stay

within a second-order cone. We show that this additional conic constraint allows the

Crazyflie to successfully track an aggressive maneuver while built-in controllers fail

to do so.

41

6. Conclusions

The code used to perform these experiments has been open-sourced on GitHub at

https://github.com/TinyMPC. Additional information is available at the associated

website, https://tinympc.org. We developed a code generation tool to streamline

the process of integrating TinyMPC with various microcontrollers and a Python

package to make the solver more accessible. The Python package is able to gen-

erate microcontroller-flashable code and is also capable of hooking into generated

Python bindings for the newly generated C++ code for validation in a higher level

language. This allows anyone with an existing pipeline with simulation, estimation,

and visualization in either C++ or Python to iterate and interact with the TinyMPC

solver.

6.2 Future Work

TinyMPC’s primary limitation is its ability to reason about only one set of linear

dynamics. As shown in this work, a single linearization is often enough to perform

a large number of maneuvers. However, for more extreme agility, it is sometimes

necessary to be able to reason about the entire system. In these cases, it could be

possible to extend TinyMPC by linearizing about multiple robot configurations and

switching between them in real-time. Doing this would require additional memory

and offline computation time proportional to the number of linearizations, but would

allow the system to approximate the manifold of the true nonlinear dynamics.

Supporting numerous high level languages and deploying the solver on a wide

range of microcontrollers to validate usability is an important part of making a solver

accessible to a larger community. Future work might include developing packages for

additional languages that bind to the existing C++ API.

Because the alternating direction method of multipliers separates constraint

handling from making progress on the cost function, it is simple to add additional

convex constraints to the problem. Thus, future work could include refactoring the

existing code base to allow for arbitrary convex constraint inputs using a disciplined

convex programming approach.

42

https://github.com/TinyMPC
https://tinympc.org

6. Conclusions

6.3 Impact

Model predictive control is generally considered less approachable than learning

methods, and this is largely due to a lack of tooling. TinyMPC aims to introduce new

techniques for compressing the model predictive control problem to a size suitable for

tiny robots, but is also meant to be an accessible tool that can easily fit into existing

software stacks. Integrating TinyMPC as an available default controller in software

such as Bitcraze’s Crazyflie firmware or PX4 autopilot would make model predictive

control more familiar to a larger audience.

TinyMPC’s speedups and memory footprint reductions over state-of-the-art solvers

allows it to solve long horizon model predictive control problems in real time on

resource constrained hardware. This enables more intelligent control on small robots

and less power consuming control on large robots. Ultimately, these advancements

bridge the gap between computationally intensive convex model-predictive control

and resource-constrained processing platforms.

43

6. Conclusions

44

Bibliography

[1] Controllers in the Crazyflie — Bitcraze. URL https://www.

bitcraze.io/documentation/repository/crazyflie-firmware/master/

functional-areas/sensor-to-control/controllers/.

[2] Teensy® 4.1. URL https://www.pjrc.com/store/teensy41.html.

[3] Emre Adabag, Miloni Atal, William Gerard, and Brian Plancher. Mpcgpu:
Real-time nonlinear model predictive control through preconditioned conju-
gate gradient on the gpu. In IEEE International Conference on Robotics and
Automation (ICRA), Yokohama, Japan, May. 2024.

[4] Vivek Adajania, Siqi Zhou, Singh Arun, and Angela Schoellig. Amswarm: An
alternating minimization approach for safe motion planning of quadrotor swarms
in cluttered environments. In 2023 IEEE International Conference on Robotics
and Automation (ICRA), pages 1421–1427, 2023.

[5] Embotech AG. Forcespro, 2014–2023. URL https://forces.embotech.com/.

[6] Kwangjun Ahn, Zakaria Mhammedi, Horia Mania, Zhang-Wei Hong, and Ali
Jadbabaie. Model predictive control via on-policy imitation learning, 2022.

[7] Lars Imsland Anne Mai Ersdal, Davide Fabozzi and Nina F. Thornhill.
Model predictive control for power system frequency control taking into
account imbalance uncertainty. SEAMS-UGM International Conference
on Mathematics and its Applications, 2014. doi: https://doi.org/10.3182/
20140824-6-ZA-1003.01631. URL https://www.sciencedirect.com/science/

article/pii/S1474667016417428.

[8] MOSEK ApS. Introducing the MOSEK Optimization Suite 10.1.28, 2024. URL
https://docs.mosek.com/latest/intro/index.html.

[9] Behçet Açıkmeşe, John M. Carson, and Lars Blackmore. Lossless convexification
of nonconvex control bound and pointing constraints of the soft landing optimal
control problem. IEEE Transactions on Control Systems Technology, 21(6):
2104–2113, 2013. doi: 10.1109/TCST.2012.2237346.

[10] Mithun Babu, Yash Oza, Arun Kumar Singh, K. Madhava Krishna, and Shanti

45

https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/functional-areas/sensor-to-control/controllers/
https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/functional-areas/sensor-to-control/controllers/
https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/functional-areas/sensor-to-control/controllers/
https://www.pjrc.com/store/teensy41.html
https://forces.embotech.com/
https://www.sciencedirect.com/science/article/pii/S1474667016417428
https://www.sciencedirect.com/science/article/pii/S1474667016417428
https://docs.mosek.com/latest/intro/index.html

Bibliography

Medasani. Model predictive control for autonomous driving based on time scaled
collision cone. In 2018 European Control Conference (ECC), pages 641–648,
2018. doi: 10.23919/ECC.2018.8550510.

[11] Federico Pizarro Bejarano, Lukas Brunke, and Angela P Schoellig. Multi-step
model predictive safety filters: Reducing chattering by increasing the prediction
horizon. In 2023 62nd IEEE Conference on Decision and Control (CDC), pages
4723–4730. IEEE, 2023.

[12] Arun L. Bishop, John Z. Zhang, Swaminathan Gurumurthy, Kevin Tracy, and
Zachary Manchester. Relu-qp: A gpu-accelerated quadratic programming solver
for model-predictive control. In IEEE International Conference on Robotics and
Automation (ICRA), Yokohama, Japan, May. 2024.

[13] Bitcraze. Crazyflie 2.1, 2023. URL https://www.bitcraze.io/products/

crazyflie-2-1/.

[14] Andrea Boccia, Lars Grüne, and Karl Worthmann. Stability and feasibility
of state constrained mpc without stabilizing terminal constraints. Systems
and Control Letters, 72:14–21, 2014. ISSN 0167-6911. doi: https://doi.org/10.
1016/j.sysconle.2014.08.002. URL https://www.sciencedirect.com/science/

article/pii/S0167691114001595.

[15] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein.
2011.

[16] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al.
Distributed optimization and statistical learning via the alternating direction
method of multipliers. Foundations and Trends® in Machine learning, 3(1):
1–122, 2011.

[17] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al.
Distributed optimization and statistical learning via the alternating direction
method of multipliers. Foundations and Trends® in Machine learning, 3(1):
1–122, 2011.

[18] Dario Brescianini, Markus Hehn, and Raffaello D’Andrea. Nonlinear quadro-
copter attitude control. 2013.

[19] Kong Yao Chee, Tom Z Jiahao, and M Ani Hsieh. Knode-mpc: A knowledge-
based data-driven predictive control framework for aerial robots. IEEE Robotics
and Automation Letters, 7(2):2819–2826, 2022.

[20] Sébastien D De Rivaz, Benjamin Goldberg, Neel Doshi, Kaushik Jayaram, Jack
Zhou, and Robert J Wood. Inverted and vertical climbing of a quadrupedal
microrobot using electroadhesion. Science Robotics, 3(25):eaau3038, 2018.

[21] Jared Di Carlo. Software and control design for the MIT Cheetah quadruped

46

https://www.bitcraze.io/products/crazyflie-2-1/
https://www.bitcraze.io/products/crazyflie-2-1/
https://www.sciencedirect.com/science/article/pii/S0167691114001595
https://www.sciencedirect.com/science/article/pii/S0167691114001595

Bibliography

robots. PhD thesis, Massachusetts Institute of Technology, 2020.

[22] Jared Di Carlo, Patrick M. Wensing, Benjamin Katz, Gerardo Bledt, and Sangbae
Kim. Dynamic locomotion in the mit cheetah 3 through convex model-predictive
control. In 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 1–9, 2018. doi: 10.1109/IROS.2018.8594448.

[23] A. Domahidi, E. Chu, and S. Boyd. ECOS: An SOCP solver for embedded
systems. In European Control Conference (ECC), pages 3071–3076, 2013.

[24] Bardienus P Duisterhof, Shushuai Li, Javier Burgués, Vijay Janapa Reddi, and
Guido CHE de Croon. Sniffy bug: A fully autonomous swarm of gas-seeking
nano quadcopters in cluttered environments. In 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 9099–9106. IEEE,
2021.

[25] Wojciech Giernacki et al. Crazyflie 2.0 quadrotor as a platform for research and
education in robotics and control engineering. URL https://www.bitcraze.

io/papers/giernacki_draft_crazyflie2.0.pdf.

[26] Gianluca Frison and Moritz Diehl. Hpipm: a high-performance quadratic pro-
gramming framework for model predictive control. IFAC-PapersOnLine, 53(2):
6563–6569, 2020.

[27] Daniel Gabay and Bertrand Mercier. A dual algorithm for the solution of
nonlinear variational problems via finite element approximation. Computers &
mathematics with applications, 2(1):17–40, 1976.

[28] Michael Garstka, Mark Cannon, and Paul Goulart. Cosmo: A conic operator
splitting method for large convex problems. In 2019 18th European Control
Conference (ECC), pages 1951–1956. IEEE, 2019.

[29] Roland Glowinski and Americo Marroco. Sur l’approximation, par éléments finis
d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de
dirichlet non linéaires. Revue française d’automatique, informatique, recherche
opérationnelle. Analyse numérique, 9(R2):41–76, 1975.

[30] Paul Goulart and Yuwen Chen. Clarabel, 2022. URL https://oxfordcontrol.

github.io/ClarabelDocs/stable/.

[31] Gaël Guennebaud, Benôıt Jacob, et al. Eigen v3. http://eigen.tuxfamily.org,
2010.

[32] Kai-Chieh Hsu, Haimin Hu, and Jaime F Fisac. The safety filter: A unified
view of safety-critical control in autonomous systems. Annual Review of Control,
Robotics, and Autonomous Systems, 7, 2023.

[33] Brian E Jackson, Tarun Punnoose, Daniel Neamati, Kevin Tracy, Rianna Jitosho,
and Zachary Manchester. Altro-c: A fast solver for conic model-predictive control.

47

https://www.bitcraze.io/papers/giernacki_draft_crazyflie2.0.pdf
https://www.bitcraze.io/papers/giernacki_draft_crazyflie2.0.pdf
https://oxfordcontrol.github.io/ClarabelDocs/stable/
https://oxfordcontrol.github.io/ClarabelDocs/stable/

Bibliography

In 2021 IEEE International Conference on Robotics and Automation (ICRA),
pages 7357–7364. IEEE, 2021.

[34] Brian E. Jackson, Kevin Tracy, and Zachary Manchester. Planning with attitude.
IEEE Robotics and Automation Letters, 6(3):5658–5664, 2021. doi: 10.1109/
LRA.2021.3052431.

[35] Juan L. Jerez, Paul J. Goulart, Stefan Richter, George A. Constantinides,
Eric C. Kerrigan, and Manfred Morari. Embedded online optimization for model
predictive control at megahertz rates. IEEE Transactions on Automatic Control,
59(12):3238–3251, 2014. doi: 10.1109/TAC.2014.2351991.

[36] Donghyun Kim, Jared Di Carlo, Benjamin Katz, Gerardo Bledt, and Sangbae
Kim. Highly dynamic quadruped locomotion via whole-body impulse control
and model predictive control. arXiv preprint arXiv:1909.06586, 2019.

[37] Charles A Klein and Sakon Kittivatcharapong. Optimal force distribution for
the legs of a walking machine with friction cone constraints. IEEE Transactions
on Robotics and Automation, 6(1):73–85, 1990.

[38] Scott Kuindersma. Taskable agility: Making useful dynamic behavior easier to
create. Princeton Robotics Seminar, 4 2023.

[39] Nathan O Lambert, Daniel S Drew, Joseph Yaconelli, Sergey Levine, Roberto
Calandra, and Kristofer SJ Pister. Low-level control of a quadrotor with deep
model-based reinforcement learning. IEEE Robotics and Automation Letters, 4
(4):4224–4230, 2019.

[40] Keuntaek Lee, Kamil Saigol, and Evangelos A Theodorou. Safe end-to-end
imitation learning for model predictive control. IEEE International Conference
on Intelligent Robots and Systems, 2019.

[41] Frank L. Lewis, Draguna Vrabie, and V.L. Syrmos. Optimal Control, 1 2012.
URL https://doi.org/10.1002/9781118122631.

[42] Xinfu Liu, Zuojun Shen, and Ping Lu. Entry trajectory optimization by second-
order cone programming. Journal of Guidance, Control, and Dynamics, 39(2):
227–241, 2016.

[43] Miguel Sousa Lobo, Lieven Vandenberghe, Stephen Boyd, and Hervé Lebret. Ap-
plications of second-order cone programming. Linear algebra and its applications,
284(1-3):193–228, 1998.

[44] Carlos E Luis, Marijan Vukosavljev, and Angela P Schoellig. Online trajectory
generation with distributed model predictive control for multi-robot motion
planning. IEEE Robotics and Automation Letters, 5(2):604–611, 2020.

[45] S. Boyd M. Grant and Y. Ye. Disciplined Convex Programming. Global Opti-
mization: From Theory to Implementation. Springer.

48

https://doi.org/10.1002/9781118122631

Bibliography

[46] Danylo Malyuta, Taylor P. Reynolds, Michael Szmuk, Thomas Lew, Riccardo
Bonalli, Marco Pavone, and Behçet Açıkmeşe. Convex optimization for trajectory
generation: A tutorial on generating dynamically feasible trajectories reliably
and efficiently. IEEE Control Systems Magazine, 42(5):40–113, 2022. doi:
10.1109/MCS.2022.3187542.

[47] Zachary Manchester, Neel Doshi, Robert J Wood, and Scott Kuindersma.
Contact-implicit trajectory optimization using variational integrators. The
International Journal of Robotics Research, 38(12-13):1463–1476, 2019.

[48] Tobia Marcucci and Russ Tedrake. Warm start of mixed-integer programs for
model predictive control of hybrid systems. IEEE Transactions on Automatic
Control, 66(6):2433–2448, 2020.

[49] Jacob Mattingley and Stephen Boyd. CVXGEN: A code generator for embedded
convex optimization. In Optimization Engineering, pages 1–27.

[50] KN McGuire, Christophe De Wagter, Karl Tuyls, HJ Kappen, and Guido CHE
de Croon. Minimal navigation solution for a swarm of tiny flying robots to
explore an unknown environment. Science Robotics, 4(35):eaaw9710, 2019.

[51] Daniel Mellinger and Vijay Kumar. Minimum snap trajectory generation and
control for quadrotors. In 2011 IEEE International Conference on Robotics and
Automation, pages 2520–2525, 2011. doi: 10.1109/ICRA.2011.5980409.

[52] Arash Mohammadi, Houshyar Asadi, Shady Mohamed, Kyle Nelson, and Saeid
Nahavandi. Optimizing model predictive control horizons using genetic algorithm
for motion cueing algorithm. Expert Systems with Applications, 92:73–81, 2018.
ISSN 0957-4174. doi: https://doi.org/10.1016/j.eswa.2017.09.004. URL https:

//www.sciencedirect.com/science/article/pii/S0957417417306000.

[53] Sabrina M. Neuman, Brian Plancher, Thomas Bourgeat, Thierry Tambe, Srini-
vas Devadas, and Vijay Janapa Reddi. Robomorphic computing: A design
methodology for domain-specific accelerators parameterized by robot morphology.
ASPLOS 2021, page 674–686, New York, NY, USA, 2021. Association for Com-
puting Machinery. ISBN 9781450383172. doi: 10.1145/3445814.3446746. URL
https://doi-org.ezp-prod1.hul.harvard.edu/10.1145/3445814.3446746.

[54] Sabrina M Neuman, Brian Plancher, Bardienus P Duisterhof, Srivatsan Krishnan,
Colby Banbury, Mark Mazumder, Shvetank Prakash, Jason Jabbour, Aleksandra
Faust, Guido CHE de Croon, et al. Tiny robot learning: challenges and directions
for machine learning in resource-constrained robots. In 2022 IEEE 4th Inter-
national Conference on Artificial Intelligence Circuits and Systems (AICAS),
pages 296–299. IEEE, 2022.

[55] Khai Nguyen, Sam Schoedel, Anoushka Alavilli, Brian Plancher, and Zachary
Manchester. Tinympc: Model-predictive control on resource-constrained mi-

49

https://www.sciencedirect.com/science/article/pii/S0957417417306000
https://www.sciencedirect.com/science/article/pii/S0957417417306000
https://doi-org.ezp-prod1.hul.harvard.edu/10.1145/3445814.3446746

Bibliography

crocontrollers. In IEEE International Conference on Robotics and Automation
(ICRA), Yokohama, Japan, May. 2024.

[56] Brendan O’Donoghue, Georgios Stathopoulos, and Stephen Boyd. A splitting
method for optimal control. Control Systems Technology, IEEE Transactions
on, 21:2432–2442, 11 2013. doi: 10.1109/TCST.2012.2231960.

[57] Brendan O’Donoghue, Eric Chu, Neal Parikh, and Stephen Boyd. Conic opti-
mization via operator splitting and homogeneous self-dual embedding. Journal
of Optimization Theory and Applications, 169(3):1042–1068, June 2016. URL
http://stanford.edu/~boyd/papers/scs.html.

[58] Petoi. Open source, programmable robot dog bittle. Available at https://www.
petoi.com/pages/bittle-open-source-bionic-robot-dog (5.9.2023).

[59] Brian Plancher and Scott Kuindersma. A performance analysis of parallel
differential dynamic programming on a gpu. In Algorithmic Foundations of
Robotics XIII: Proceedings of the 13th Workshop on the Algorithmic Foundations
of Robotics 13, pages 656–672. Springer, 2020.

[60] Alexander Reske, Jan Carius, Yuntao Ma, Farbod Farshidian, and Marco Hutter.
Imitation learning from MPC for quadrupedal multi-gait control. In 2021 IEEE
International Conference on Robotics and Automation (ICRA). IEEE, may
2021. doi: 10.1109/icra48506.2021.9561444. URL https://doi.org/10.1109%

2Ficra48506.2021.9561444.

[61] Paniz Hosseini Saman Taheri and Ali Razban. Model predictive control of
heating, ventilation, and air conditioning (hvac) systems: A state-of-the-art
review. Journal of Building Engineering, 2022. doi: https://doi.org/10.1016/j.
jobe.2022.105067. URL https://www.sciencedirect.com/science/article/

abs/pii/S2352710222010750.

[62] Maximilian Schaller, Goran Banjac, Steven Diamond, Akshay Agrawal, Bar-
tolomeo Stellato, and Stephen Boyd. Embedded code generation with cvxpy.
IEEE Control Systems Letters, 6:2653–2658, 2022. doi: 10.1109/LCSYS.2022.
3173209.

[63] Dale E Seborg, Duncan A Mellichamp, and Thomas F Edgar. Process Dynamics
and Control. World Scientific Publishing.

[64] Ewoud J. J. Smeur, Qiping Chu, and Guido C. H. E. de Croon. Adaptive
incremental nonlinear dynamic inversion for attitude control of micro air vehicles.
Journal of Guidance, Control, and Dynamics, 39(3):450–461, 2016. doi: 10.2514/
1.G001490.

[65] Bartolomeo Stellato, Goran Banjac, Paul Goulart, Alberto Bemporad, and
Stephen Boyd. Osqp: An operator splitting solver for quadratic programs.
Mathematical Programming Computation, 12(4):637–672, 2020.

50

http://stanford.edu/~boyd/papers/scs.html
https://www.petoi.com/pages/bittle-open-source-bionic-robot-dog
https://www.petoi.com/pages/bittle-open-source-bionic-robot-dog
https://doi.org/10.1109%2Ficra48506.2021.9561444
https://doi.org/10.1109%2Ficra48506.2021.9561444
https://www.sciencedirect.com/science/article/abs/pii/S2352710222010750
https://www.sciencedirect.com/science/article/abs/pii/S2352710222010750

Bibliography

[66] Ravi Sekhar Sushma Parihar, Pritesh Shah and Jui Lagoo. Model predictive
control and its role in biomedical therapeutic automation: A brief review. Applied
System Innovation, 2022. doi: https://doi.org/10.3390/asi5060118. URL https:

//www.mdpi.com/2571-5577/5/6/118.

[67] Wawan Hafid Syaifudin and Endah R. M. Putri. Model predictive con-
trol of heating, ventilation, and air conditioning (hvac) systems: A
state-of-the-art review. SEAMS-UGM International Conference on Math-
ematics and its Applications, 2019. doi: https://doi.org/10.1063/1.
5139166. URL https://pubs.aip.org/aip/acp/article/2192/1/060020/

756115/The-application-of-model-predictive-control-on.

[68] Guillem Torrente, Elia Kaufmann, Philipp Föhn, and Davide Scaramuzza. Data-
driven mpc for quadrotors. IEEE Robotics and Automation Letters, 6(2):3769–
3776, 2021.

[69] Pratyush Varshney, Gajendra Nagar, and Indranil Saha. Deepcontrol: Energy-
efficient control of a quadrotor using a deep neural network. In 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 43–50,
2019. doi: 10.1109/IROS40897.2019.8968236.

[70] Patrick M Wensing, Michael Posa, Yue Hu, Adrien Escande, Nicolas Mansard,
and Andrea Del Prete. Optimization-based control for dynamic legged robots.
arXiv preprint arXiv:2211.11644, 2022.

[71] Lele Xi, Xinyi Wang, Lei Jiao, Shupeng Lai, Zhihong Peng, and Ben M Chen.
Gto-mpc-based target chasing using a quadrotor in cluttered environments. IEEE
Transactions on Industrial Electronics, 69(6):6026–6035, 2021.

[72] He Yin, Peter Seiler, Ming Jin, and Murat Arcak. Imitation learning with
stability and safety guarantees. IEEE Control Systems Letters, 6(2):409–414,
2021.

[73] Zhengdong Zhang, Amr AbdulZahir Suleiman, Luca Carlone, Vivienne Sze, and
Sertac Karaman. Visual-inertial odometry on chip: An algorithm-and-hardware
co-design approach. 2017.

51

https://www.mdpi.com/2571-5577/5/6/118
https://www.mdpi.com/2571-5577/5/6/118
https://pubs.aip.org/aip/acp/article/2192/1/060020/756115/The-application-of-model-predictive-control-on
https://pubs.aip.org/aip/acp/article/2192/1/060020/756115/The-application-of-model-predictive-control-on

	Introduction
	Contributions
	Thesis Structure

	Background
	The Linear-Quadratic Regulator
	Convex Model Predictive Control
	The Alternating Direction Method of Multipliers

	TinyMPC: Model Predictive Control on Resource Constrained Microcontrollers
	Introduction
	The TinyMPC Solver
	Combining LQR and ADMM for MPC
	Pre-Computation
	Penalty Scaling

	Experiments
	Microcontroller Benchmarks
	Hardware Experiments

	Conclusions

	Conic Constraints and Code Generation with TinyMPC
	Introduction
	Background
	Conic Model-Predictive Control
	The Alternating Direction Method of Multipliers

	Second-Order Conic Projection
	Code Generation with TinyMPC
	Experiments
	Microcontroller Benchmarks
	Hardware Experiments

	Practical Implementation Tips and Tricks
	Solver Frequency vs Horizon Length
	Solution Tolerance
	Continuous Iteration

	Penalty Parameters
	Obstacle Avoidance

	Conclusions
	Summary
	Future Work
	Impact

	Bibliography

