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Abstract

In modern solid waste recycling, Material Recovery Facilities (”MRFs”)
separate post-consumer waste streams into single material products for use
in manufacturing. MRFs face a number of challenges including difficulties
with staffing, contamination, and highly variable process infeeds, to the
point where the average American MRF only achieves roughly 60% of
its design throughput. To address these issues, in this work we describe
a novel framework for state representation of transient material flows in
MRFs and we provide examples of how our framework can be used to
design systems for real-time measurement, state estimation, and control
of these systems. We provide results both in simulation and in physical
experiment which suggest process throughput increases on the order of
40%. We then discuss the implications of this work for the recycling
industry as well as suggest direction for future work.
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Chapter 1

Introduction

1.1 Recycling and MRFs

Single stream recycling in the Unites States struggles with economic sustainability.

Single Stream (where all recyclable end-of-life products and packaging are commingled

at the collection point and are then sorted and sold at Material Recovery Facilities

(MRFs)) originated as a concept in the late 1980’s and early 1990’s as an alternative to

consumer-sort (where the consumer separates recyclables prior to collection, common

in areas where social responsibility is high such as Northern Europe) and curb-sort

(workers sort items manually at the collection point, common in areas where the value

of recycled material is high when compared to labor cost. We see this in the United

States primarily in the bulk scrap metal market). The core idea behind Single-Stream

is that by making the recycling process as easy as possible for consumers, consumer

participation rates would be as high as possible. The effort to sort the commingled

recyclables would then be put on large, centrally located MRFs which would be able

to take advantage of economies of scale and high-tech industrial automation to drive

costs down and recycling rates up.

This system has struggled with viability largely due to the difficulty of extracting

pure materials free of contaminants from the dirty, highly mixed waste streams that

arrive at MRFs. In 2019, the Northeast Recycling Council estimated the average
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1. Introduction

value of post-consumer recycled waste in the northeastern US at $45.83/ton and the

average processing cost for a MRF at $82/ton [15]. These costs are passed on to the

municipalities and institutions who collect the recyclable materials, and in the face of

rising costs stemming from a tight American labor market as well as international

political factors which decrease the viability of shipping unsorted recyclables overseas,

many municipalities have ended recycling programs while others have increased costs

to residents or restricted what materials would be accepted [4]. Faced with these

stark economics, municipalities and the American recycling industry are left with

three options: 1) Dramatically decrease the cost to sort recyclables at existing MRFs,

2) Convince the American public to correctly sort recyclables in their homes and to

bring sorted material to drop off locations or 3) Allow rising costs to slowly bring an

end to American public recycling programs entirely.

Since the price of sorted recyclable material is set by the market, the only way for

MRFs to increase profitability is to decrease the cost to sort. According to current

research ([23], [21]) along with our own conversations with MRF operators, one of

the core issues that MRFs face is that they are generally designed around the average

material flow through the facility over the course of a year, but that in reality material

inflow condition and composition is highly variable. When inflow composition and

condition strays from the norm, issues such as pile-ups on conveyors, machine clogs,

idle machines and process sections, and general system inefficiencies abound. [24][9].

1.2 Optimization of MRF operations via conveyor

belt speed control

Recycling sorting facilities generally are comprised of a series of material sorting

agent stations coupled by conveyor belt network. Fig. 1.1 shows a simple example of

a material sorting operation. Sorting system operators improve the performance of

individual sorting agents by using computer vision systems to detect, classify, and

track individual waste items. However, due to the large number of waste items in a

sorting system (measured in millions of individual items), these approaches become

2



1. Introduction

Figure 1.1: Materials on an experimental conveyor belt at Carnegie Mellon being
sorted by a human

computationally intractable when they are applied to optimize the system’s operation

as a whole.

The control of the flow rate of material through the system is a key aspect of

centralized multi-agent sorting system control. Since the rate at which material is

presented to a sorting agent directly affects the sorting agent’s ability to remove target

material from the stream, a centralized authority can affect the efficacy of sorting

agents throughout the system by varying flow rates. Dynamically varying the flow

rate throughout the system presents a problem for distributed control systems because

the system throughput will be limited to that of the slowest agent. In contrast, a

central authority can avoid bottlenecks by dynamically varying material flow rates in

response to varying infeed conditions.

In this work, we present a novel modeling framework that divides the entire

conveyor into smaller Longitudinal Control Volumes (LCV) which enables a low-

dimensional representation and prediction of material flows throughout the sorting

facility. We present a method for converting detections of individual waste items

from images into sparse measurements in our state space. We use these measurement

3



1. Introduction

Figure 1.2: A series of sorting agents with dynamics coupled by a single conveyor belt

and prediction framework with a Kalman Filter to compute a global estimate of the

system state.

This modeling framework in is used conjunction with the global estimation result

in a model predictive control (MPC) module that optimizes the material flow to

maximize the overall value generated for successful sorting. The controller reacts to

the incoming material over a receding time horizon and changes the speed of the

conveyor to allow for efficient sorting of materials.

We demonstrate the efficacy of our novel estimation and control approach in

simulation and on a physical laboratory sorting system. We show improvements on

the order of 40-100% with respect to constant belt speed approaches. We later discuss

applications of our framework to diverse multi-agent systems including autonomous

mobile robots and over-actuated control systems.
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Chapter 2

Related Work

Profitability requirements drive decision-making in most recyclers. Even if a recycler

is being run as a non-profit, operations should still maintain profitability to the extent

that it is possible [26]. The ability of a MRF to sort material effectively is crucial

to its ability to maintain profitability. As the MRF’s ability to sort material drops,

the MRF is forced to landfill more of the material processed. In order to estimate

performance of the core sorting system in a MRF, a tool to convert a proposed system

design along with historical information on material inflows and proposed operating

parameters into an estimation of process efficiency is needed[22][26][24].

In order to estimate performance of the core sorting system in a material recovery

facility (MRF), the authors in [22][26][24] develop tools to estimate sorting process

efficiency based on historical data on material flow compositions. These tools leverage

long-term historical data and are used to calculate steady-state optimal material

flow rates for a given system. In this system-level offline modeling approach, a

network flow diagram for the MRF is created by approximating the dynamics of

mixed material flows through sorting machines and connecting them via a directed

graph. A system of linear equations is then constructed and solved to calculate

material stream compositions throughout the system at steady state [8][26].

The work presented in [24][9][11] expands on the foundational work by [8] and [26]

by estimating the percentage of material in the main stream that a single sort agent
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2. Related Work

can remove. They then set up a centralized optimization problem to find nominal

steady-state optimal material flow rates. These offline modeling and optimization

techniques represent a method for achieving global system coordination. However,

they do not capture dynamics associated with material flow characteristics changing

in time. They also rely on assumption of static sorting parameters which are often

not representative of real sorting operations [3][25].

A second line of research involves distributed control techniques which can run

in real-time. In these distributed control approaches, individual sorting machines

leverage local system information to improve their performance. A literature review

of these approaches for distributed optimization of sorting systems was conducted by

[12].

Of particular relevance to the content of this work, [17][13][16] leverage techniques

from computer vision and machine learning along with Kalman Filtering and multi-

target tracking. They track each object entering a sorting machine and optimize that

sorting machine’s operation around real-time flow characteristics. These approaches

show promising improvements to the operations of individual sorting machines, but

they have not been applied to solving the global coordination problem. We hypothesize

that the computational complexity of simultaneously tracking millions of individual

pieces of recycled material presents an obstacle to use in centralized control methods.

Furthermore, as noted in [18] and [22], real MRF operations are much less efficient

than would be expected. The authors of [23] investigate the discrepancy between

theoretically expected sorting operations and real MRF sorting data and conclude that

the high degree of variability in the material stream means that solutions calculated

with offline centralized optimization systems do not translate well to real operation.

The authors in [5] study the variability in the input material stream and provide

statistics on flow variability from real MRF operations, and they establish that online

control techniques are necessary to cope for the variations in the input material flows.

In this work, we draw particular inspiration from [23] and [5] who establish that

MRF sorting performance suffers in the face of variable input material flows. We

develop a state modeling approach which follows ideologically from the systems

described in [26] and [24], but which provides a measure of system state with enough
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fidelity for real-time dynamic control. We use this state estimation result as a basis

for real-time centralized control of material flows throughout the multi-agent sorting

system.

In order to estimate the efficiency of a given MRF configuration, there are two

possible approaches. First, individual pieces of material can be tracked/simulated

and the physics of each sorting station can be used to solve for a piece of material’s

trajectory through the MRF. For example, the trajectory of a plastic water bottle

through a MRF can be calculated by taking the geometry and mass of the bottle and

simulating its motion through the various sorting machines in the MRF taking into

account aerodynamic forces from air pressure sorting stations, contact forces from

the bottle bouncing along conveyor belts, gravity, and contacts with other pieces

of material. Due to the complexity of the MRF process and the heterogeneity of

material flows, this quickly becomes intractable [24]. This will be referred to as

“Physical Modeling”. In the second approach, the dynamics of mixed material flows

through sorting machines can be approximated by creating a network flow diagram

for the MRF as a whole and assigning a control volume to each sorting machine. A

system of equations can then be constructed and solved which ensures that mass flow

is conserved throughout the system. [24], [26], and [8] establish this field of MRF

modeling and describe it as “Probabilistic Modeling”.

The basic building block of the probabilistic MRF model is the Bayesian separation

unit. The Bayesian separation unit comprises a unit which divides a single input

stream into two (binary Bayesian unit) or more (multi-output Bayesian unit) material

flows given some separation parameters [24]. Consider a sorting unit which takes in

one input stream and outputs two output streams. We represent each stream as a

vector of mass flow rates broken down by material where µm represents the mass flow

rate of material m in the input stream and fm
i represents the mass flow rate of material

m in output stream i [18]. The effects of the sorting process are parameterized by

the probability of the target material correctly sent to the primary stream (r in [0,

1]) and the probability of non-target materials correctly sent to the secondary stream

(q in [0, 1]). In this case, if we take material 1 as the target material and output 1 as

the primary stream, we can calculate r = f 1
1 /µ1 and q = (f 2

2 + f 3
2 )/(µ2 + µ3).

7
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Figure 2.1: Block diagram of binary Bayesian sorting unit(figure from [18])

Under this framework, it is straightforward to compose these building blocks into

system level models. Take for example, the case where we have a system that only

carries a single material and is made up of of three units, one input unit, one sorting

unit, and one output unit (figure 2.2)

Figure 2.2: Example for Q-Matrix for simple linear system (figure from [26])

Here our scalar separation factor r from the binary Bayesian sorting unit becomes

a matrix Q that is built up of per-unit scalar separation factors. Reference [24] shows

how more complicated graphical representations of MRF processes can be represented

as Q matrices (figure 2.3).

Figure 2.3: Composition of binary Bayesian units into a model of a MRF process
along with corresponding Q matrix for a single material (figure from [26])

Testa also establishes that the steady state flows at any edge in the graph can be

solved for when the input material vector and the Q matrix are specified:

This tooling documented originally by [8] [26] and expanded on by [24],[9], [11]

and others allows us to calculate material flow compositions throughout a MRF

when provided with separation parameters for sorting units. These techniques are
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often used in conjunction with configuration optimization techniques to aid in MRF

design and layout as well as to estimate overall system efficiency and profitability,

however they are not without their downsides. These methods rely on a priori

knowledge of the separation parameters needed to generate Q matrices, and these

separation parameters are commonly calculated based on test data from different

types of machines in different operational environments [3][25].

In order to further investigate the dynamics of these separation parameters, [21]

performs a meta-study of 33 MSW separation datasets in the literature. The authors

find a number of limitations of using these types of datasets to simulate flows in a

real MRF. First, more than 80% of the datasets available in the literature do not

mention the operating conditions under which the data was collected (e.g. total flow

rate, material composition, machine settings, flow composition), and these conditions

can have significant effects on separation parameters [21][14][11][9]. This is especially

important since when separation parameters from the literature are used in plant

configuration studies such as described in [26][24][9], the assumption is made that these

separation parameters are constant. In this case, the different plant configurations

that are studied are associated with different flow compositions at individual sorting

units and with the assumption of constant separation parameters, any differences

in separation parameters associated with these changes in flow composition go

unaccounted for [21][23]. Further, [11] and [9] show that the final sorting efficiency of

the MRF is highly sensitive to separation parameters, with some output characteristics

varying nearly linearly with changes in specific separation parameters.

Since invariance assumptions for separation parameters likely lead to mismatches

between predicted and real sorting operations, [23] introduces a mixed modeling

framework for modeling separation parameters as a combination of static separation

parameters and simple functions of environmental parameters such as flow composition

or belt speed. These functions of environmental parameters can be derived from test

data or explicit physical modeling [23]. Even with these more adaptive separation

parameters, solving for MRF efficiency and profitability using system level modeling
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techniques still fails to reflect day-to-day plant operations since MRF inflows vary

significantly in material composition and condition, both between material source

transfer stations and in time for a given transfer station [18] [22].
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Chapter 3

Longitudinal Control Volumes:

Mathematical Formulation

In this chapter, we present a method to represent the current state of a sorting system

using a framework called Longitudinal Control Volumes. We then describe a model

that can track the material composition flow as it moves across the conveyor.

3.1 Longitudinal Control Volumes (LCV)

The state representation of a sorting system needs to provide information about the

composition of the material flow as it evolves along the conveyor. To compute this,

we first longitudinally split the sorting system into small control volumes arranged

sequentially along the direction of travel of the belt (Fig. 3.1). The size of these

control volumes is tuned based on the spatial resolution of the perception system and

the computational load of having a high number of control volumes. The amount of

material in the control volume forms the basis for constructing the state vector.

We construct the state vector by first concatenating smaller vectors xi
k, for every

material i. Each vector element in xi
k corresponds to a control volume and indicates

the quantity of a material occupying that control volume at timestep k. Lastly, the

current speed of the conveyor belt, rk is added to the end of the concatenated vector
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3. Longitudinal Control Volumes: Mathematical Formulation

Figure 3.1: Control volumes overlaid on conveyor belt serving a team of human and
robot sorters

which forms the full system state. The total amount of a given material in the entire

system can by computed by summing the elements of the state vector corresponding

to that material. Given a total of m control volumes and n different material types

to be sorted, the state vector is of the size nm+ 1 and can be written as follows

Xk = [x1
k,x

2
k, . . . ,x

n
k, rk]

T (3.1)

Total amount of material i in the system =
∑

xi
k

3.2 State Transition Model

The motion of the conveyor belt and the sorting process change the composition

of material in the control volumes. To predict this change in the system state, we

decompose the state transition matrix to model both the dynamics associated with

the conveyor motion (L(rk)) and the dynamics associated with the sorting process

(F(Xk)) to model a linear approximation of these processes. The control input to

the system is the change in conveyor speed ∆r. This makes the matrix B a mn+ 1

long zero vector with the last element equal to 1 as the control input affects only the

12
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last element of the state. This state transition model is written as follows,

Xk+1 = A(Xk)Xk +Buk

= F(Xk)L(rk)Xk +B∆r (3.2)

The motion matrix L(rk) models the motion of material across different control

volumes in the system carried by conveyor belts. This is dependent on the current

speed of the conveyor belt. To construct this matrix for any arbitrary belt speed, we

compute these motion matrices for integral belt speeds and perform linear interpolation

between these integral speed motion matrices. Given an integer belt speed r̂k, we can

construct a motion matrix L(r̂k) as follows,

L(r̂k) =


L(r̂k) 0m×m . . . 0m×m 0

0m×m L(r̂k) . . . 0m×m 0

. . . . . . . . . . . . .

0m×m 0m×m . . . L(r̂k) 0

0 0 . . . 0 1


where L(r̂k) is a m×m modified shift matrix given by

L(r̂k)ij = δi,j+r̂k

where δi,j is the Kronecker delta

This motion matrix can only be defined for an integral belt speed due to the

Kronecker delta. Hence we do a linear interpolation of the lower and upper integral

motion matrices to compute the motion matrix for an arbitrary belt speed. Given a

belt speed rk, we can compute the motion matrix L(rk) as follows,

L(rk) =
⌈rk⌉ − rk
⌈rk⌉ − ⌊rk⌋

L(⌊rk⌋) +
rk − ⌊rk⌋
⌈rk⌉ − ⌊rk⌋

L(⌈rk⌉)

where ⌈x⌉ = ceil(x) and ⌊x⌋ = floor(x)

We model the dynamics associated with removing material at sorting agents using

13
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the sort matrix F(Xk). As each sorting agent only spans a few control volumes in

the entire system, they can sort a limited amount of material in each time step. To

capture this behavior, we define a separation parameter pij for each sort agent [21][8].

This separation parameter is defined per material for every control volume based

on the maximum number of items that can be picked up by the corresponding sort

agent.

If αi represents the subset of control volumes spanned by a sort agent and γi

represents the maximum amount of material that can picked up in a single timestep,

we can compute the separation parameters based on ratio of maximum pick rate and

amount of material present on the control volumes of a sort agent (η). We can also

represent imperfections inherent in the sorting process by a discount factor qi with

values ranging from 0 (i.e. no successful sorting) to 1 (perfect sorting).

ηi = qi
γi∑

αi

xi
pij =

1, if j /∈ αi

max(0, 1− ηi), otherwise

The sorting F(Xk) matrix consists of smaller diagonal matrices F (xi
k) that

capture the sorting process for every material in each control volume. This allows

us to represent the dynamics associated with all sorting machines in the system in

a single linear element. The matrix F (xi
k) is a m × m diagonal matrix with the

diagonal elements equal to the separation parameter pij . We can write this as follows:

F(Xk) =


F (x1

k) 0m×m . . . 0m×m 0

0m×m F (x2
k) . . . 0m×m 0

. . . . . . . . . . . . .

0m×m 0m×m . . . F (xn
k) 0

0 0 . . . 0 1

 F (xi
k) =


pi1 0 . . . 0

0 pi2 . . . 0

. . . . . .

0 0 . . . pim


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Chapter 4

System Design

We create a system to make an optimal tradeoff between sorting task completion

and system throughput in the context of a recycling sorting operation. As the

material flows through the conveyor, there is uncertainty in the state induced by the

sorting process and material moving relative to the conveyor belt. To incorporate

this uncertainty, we present a framework to use a computer vision system to detect

materials and estimate the system’s state using an Kalman Filter based on the LCV

state transition model. We then use this estimated state as input for a centralized

model predictive control module, which maximizes the difference between the reward

associated with successful sorting and the cost associated with failing to sort potentially

valuable material. The controller outputs an optimized conveyor belt speed that

maximizes the system’s throughput while maintaining high rewards for sorting. A

block diagram of this system is shown in Fig. 4.1.

4.1 State Estimation

In order to incorporate real-time data into our state estimate, we devise a computer

vision system to detect individual objects on a subset of control volumes. An Intel

Realsense D435 RGB camera provides top-down images to a YOLO-based object

detection system that classifies different materials and returns bounding boxes that
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4. System Design

Figure 4.1: A block diagram of the proposed system to optimize belt speeds for
sorting

describe the location and type of individual items [19]. The detection from every

frame is incorporated as a measurement vector.

To compute the measurement vector, we project the visible control volumes into

the camera image and add the counts of detected objects into the control volumes

associated with their locations. If a detected object spans multiple control volumes,

we add portions of the detected object to each control volume spanned by the object.

If λ is the number of control volumes in the camera’s view and W i is the set of

detections of material i, we can compute the measurement vector zk as follows,

zk =
[
ζ̄0 ζ̄1 . . . ζ̄n

]
ζ̄ i =

[
βi
0 βi

1 . . . βi
λ

]
16



4. System Design

Figure 4.2: Control volume boundaries overlaid on image with bounding box detections
from object detection system. The red and blue bars at the bottom help illustrate
binning for different materials and the measurement vector generated from this input
image.

βi
j =

∑
w∈W i

Area of bounding box for detection w

spanning control volume j

Total area of bounding box

for detection w

This process is shown in Fig. 4.2. The measurement vector is of the size nλ as it

comprises the control volumes visible to the camera. We also associate a measurement

covariance matrix to incorporate the noise inherent to the object detection system.

We adopt a Kalman Filter (KF) that can estimate the entire state of the system

using the state transition model and the measurements coming from the computer

vision system [10]. The uncertainty induced by the sorting process and movement

of the conveyor belt is modeled as the process noise for the KF. This filter enables

the prediction of the full-state with an associated covariance that represents the

uncertainty in the predicted state.

17



4. System Design

4.2 Model Predictive Control

We construct a Model Predictive Control (MPC) problem which uses the state-

transition model described in ?? and the estimated state to optimize sorting operations

and control the conveyor belt speed in real-time. We choose to maximize an objective

function that can maximize the value of sorted material which is obtained using a

Value matrix V and an Opportunity Cost matrix O. The Value matrix maps the

price of a material ρi onto the sort matrix(F i(xk)). The Opportunity Cost matrix

encodes the material that we fail to sort and are forced to sell for a lower price as

mixed material. These matrices are computed as shown below.

V =
[
v̄0 v̄1 . . . v̄n 0

]
v̄i = ρiF (xi

k)1m

O =
[
ō0 ō1 . . . ōn 0

]
ōi = ρi(I − F (xi

k))1m

where 1m is a 1-vector of size m× 1

For the optimization, we set the horizon to the time it would take material to fully

transit the system with all belts at their slowest speed. Eq. 4.1 describes our objective

function that seeks to maximize the difference between the total sale price of material

sorted over the horizon and the value lost by selling a material with contamination.

max
X1:T

T∑
l=1

[V −O]Xl (4.1)

s.t.

Xl+1 = F(Xl)L(rl)Xl +Bul for l = 1, . . . , T − 1

umin ≤ ul ≤ umax

We set up a quasi-Newton solver with a back-tracking line search to maximize

our objective function. We compute the gradients by calculating finite-difference

derivatives for each control variable, and use the gradient for to pick the update

direction. The update step is then scaled using a BFGS approximation of the
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inverse Hessian matrix in the traditional Newton update equation [2][6][7][20]. The

optimization is terminated based on fulfillment of the Armijo Condition[1]. The

resulting optimized control input (conveyor belt speed) corresponding to the next

timestep is then applied to the system. This process is repeated at every timestep.
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Chapter 5

Experiments and Results

We conduct experiments in simulation and on a physical conveyor belt sorting system

and evaluate our system’s performance by comparing it to that of a baseline approach.

For the baseline, we run the conveyor at a constant speed, similar to approaches

currently used in industrial MRFs. This optimal constant speed is estimated based

on the historical average material flow through the system. We compare the total

value generated by this baseline to the value generated by running the system at the

optimized variable belt speed generated by the MPC module.

5.1 Simulation-based evaluation of MPC

performance

We create a simulated environment where infeed material flow is procedurally gen-

erated in a manner representative of actual material flows in an MRF according

to material variability statistics described in [5]. The LCV-based state transition

model described previously is used to forward-simulate the sorting operation. We

generate 30 runs that each represent an hour of continuous operation. We take the

average optimized belt speed produced by the MPC module for each run and repeat

the experiment with a constant belt speed equal to that average optimized speed.

21
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We compare the final accumulated value at the end of each optimized run with the

accumulated value from its corresponding constant speed run. We repeat this process

for sorting systems with 2, 3, and 4 distinct materials to be sorted.

5.2 Full-system Experiments on Physical Sorting

Equipment

We also conducted experiments on a physical conveyor belt sorting system to evaluate

the performance of our end-to-end system. Different material streams can be fed to

the conveyor belt using a hopper on one end. A computer with a ROS framework

captured overhead images from the Intel RealSense D435 camera, executed the state

estimation and MPC modules in real-time, and controlled the speed of the conveyor

belt using a servo motor. At the end of this conveyor, a human sorter was tasked

with removing one material from the flow. This setup is shown in the Fig. 5.1.

In these physical experiments, we use two materials: empty green bottles and

empty red cans. In order to investigate the ability of our framework to react to

changing infeed conditions during these short runs, we loaded the hopper with varying

distributions of the material flows as the MPC module optimized the conveyor belt

speed in real-time. For each of these runs, we computed the value generated for

sorting and compared this to the value generated using a constant speed baseline

experiment. The constant speed was equal to the average of the optimized speeds

generated by the MPC module.

5.3 Results

The results of our proposed framework for a three-material sorting simulation is shown

in the Fig. 5.2. We compare the total profit generated by our method to that of

the constant speed baseline model. Fig. 5.2(a) shows the instantaneous distribution

of the materials in their respective sort stations, along with their price. Fig. 5.2(b)

shows shows the target conveyor belt speed by the MPC module (cyan line) and the
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5. Experiments and Results

Figure 5.1: Physical conveyor belt experimental setup showing the RealSense D435
overhead camera, human sorter and the sorted materials

target belt speed by the constant speed baseline (magenta line). Fig. 5.2(c) shows

the total profits accumulated for successfully sorted materials for both versions.

From the plots shown in the figures 5.2(a) and 5.2(b), it is evident that the MPC

module is reacting to the amount of material coming into the system. As more

Material 0 (which has a higher price) enters the system, the controller slows down

the conveyor to allow the sorters to pick up more material, increasing the profits

accumulated. For the same case, since the constant speed model does not change the

belt speeds, the plant incurs a loss as the sorters fail to sort this high-value material,

and the impure mixture is worth much less. We see the same behavior even in the

2-material runs as shown in the Fig. 5.3.

We notice similar trends across all the different runs for varying amounts of

materials in the system. When different materials are distributed evenly, the constant

speed baseline and our proposed framework perform similarly. In contrast, the profit

rate of our method goes up quickly when the distribution varies quickly. This was true

across all the 90 runs we conducted in simulation. Fig. 5.4(a) shows the average profit
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rate along with the variance in profit rate for the proposed method and the constant

speed baseline for varying number of simulated material runs. In the 2-material

case, our optimized speeds improved the margin by around 40 percent while we see

around two times the profit in the 3-material and 4-material cases. In the physical

experiments with 2-materials, the optimized speed run improves the profit margins

by two times as shown in Fig. 5.4(b).

24



5. Experiments and Results

Figure 5.2: Result of a simulated 3-material sorting run. (a) Plot showing the
instantaneous amount of material passing through a sort agent station (b) Plot
showing the output belt speeds for the MPC and the baseline. (c) Plot showing the
accumulated value as a result of successfully sorting.
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Figure 5.3: Result of a 2-material sorting run. (a) Plot showing the instantaneous
amount of material passing through a sort agent (b) Plot showing the output belt
speeds for the MPC and the baseline. (c) Plot showing the accumulated value as a
result of successfully sorting.
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(a) Simulated material flow (b) Physical experiment with 2 ma-
terials

Figure 5.4: Result plot showing profit rate for optimized speed vs constant speed
control
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Chapter 6

Conclusions

6.1 Discussion

In this work, we present a novel framework that modeled the movement of material

along a conveyor belt in a sorting system. We presented an end-to-end system that

successfully detected and estimated these material flows while optimizing the conveyor

belt speed for maximizing value in the sorting process. We conducted experiments

both in simulation and on a physical conveyor belt with varying numbers of materials

and compositions. We achieved around 40 to 100% increase in the profit rates using

the proposed model predictive controller that accounted for the entire state of the

system.

Overall, we see this work as a compelling demonstration of the potential benefits

of real-time centralized control of conveyor belt sorting systems. In that light, we

see it of paramount importance to determine the degree to which these results will

scale up to a full size MRF. In particular, in this work we have made the computer

vision problem simpler by using a controlled sample of different materials. In an

operational MRF, the material streams present will be much more highly varied and

so the difficulty of deploying a functional computer visions system will increase.
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6.2 Future Work

Although the presented work shows dramatic improvements to process profitability,

we identify several potential avenues for further research. As the MPC module does

not leverage the uncertainty information from the state estimation module, we intend

to explore incorporating the uncertainty in the optimization process along with trying

to model an objective function derived from operations research. We would like to

investigate learning-based approaches to directly infer measurement vectors from

camera images. Further, we are in the process of scaling our experiments at an

operational MRF sorting facility. Future work also includes integrating this system

with a fully mechanised sorting line in order to eliminate any inconsistency associated

with using a human sorting worker.

Beyond the development of the core tech, a substantial body of possible future

work lies in the application of this technology to real-world conveyor-based sorting

systems. The clearest application is in the municipal MRF, as that was what this

work was designed to address. In addition to municipal MRFs, possible future work

could include applications as varied as rock-crushing mills and package sortation

systems.
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