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Abstract
The role of tactile sensing is widely acknowledged for robots interacting with the

physical environment. However, few contemporary sensors have gained widespread
use among roboticists. This thesis proposes a framework for incorporating tactile
sensing into a robot learning paradigm, from development to deployment, through the
lens of ReSkin – a versatile and scalable magnetic tactile sensor. By examining design,
integration, policy learning and representation learning in the context of ReSkin, this
thesis aims to provide guidance on the implementation of effective sensing systems
for robot learning.

We begin by proposing ReSkin – a low-cost, compact, and diverse platform
for tactile sensing. We develop a self-supervised learning technique that enables
sensor replaceability by adapting learned models to generalize to new instances of
the sensor. Next, we investigate the scalability of ReSkin in the context of dexterous
manipulation: we introduce the D’Manus, an inexpensive, modular, and robust
platform with integrated large-area ReSkin sensing, aimed at satisfying the large-
scale data collection demands of robot learning.

Based on the learnings from the development of ReSkin and the D’Manus, we
propose AnySkin – an upgraded sensor tailored for robot learning that further reduces
variability in response across sensor instances. AnySkin is as easy to integrate as
putting on a phone case, eliminates the need for adhesion and demonstrates enhanced
signal consistency. We deploy AnySkin in a policy learning setting for precise
manipulation, demonstrate improved task performance when augmenting camera
information, and exhibit zero-shot transfer of learned policies across sensor instances.

Going beyond sensor design and deployment, we explore representation learning
for sensors including but not limited to ReSkin. Sensory data is typically sequential
and continuous; however, most research on existing sequential architectures like
LSTMs and Transformers focuses primarily on discrete modalities such as text and
DNA. To address this gap, we propose Hierarchical State Space (HiSS) models,
a conceptually simple and novel technique for continuous sequence-to-sequence
prediction (CSP). HiSS creates a temporal hierarchy by stacking structured state-
space models on top of each other, and outperforms state-of-the-art sequence models
such as causal Transformers, LSTMs, S4, and Mamba. Further, we introduce CSP-
Bench, a new benchmark for CSP tasks from real-world sensory data. CSP-Bench
aims to address the lack of real-world datasets available for CSP tasks, providing a
valuable resource for researchers working in this area.

Finally, we conclude by summarizing our takeaways throughout the journey
of ReSkin from development to deployment, and outline promising directions for
bringing tactile sensing into the fold of mainstream robotics research.
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Chapter 1

Introduction

Sensing devices play a vital role in enabling robots to comprehend and respond to their sur-
roundings effectively. Among these sensors, tactile sensors are particularly important as they
provide robots with a sense of touch, allowing them to handle objects with precision, detect
obstacles or hazards, adjust their grip on objects, and manipulate their environment effectively.
Despite significant progress in this field over the years, a universally applicable tactile sensing
solution for robots remains elusive. This is primarily due to the complex, multi-step processes
of developing, integrating, and learning from tactile sensors – each step presenting its own set
of challenges. This thesis provides a recipe for addressing these challenges through the lens of
ReSkin, a magnetic tactile sensing solution focused on durability, scalability and robustness for
robot learning applications.

1.1 Tactile sensors for Robotics

The criticality of tactile feedback to human dexterity [77, 78, 79] has long inspired numerous
investigations into robotic tactile sensors since the earliest days of robotics [67, 91]. Over the years,
miniaturization and rapid prototyping have expedited the development of tactile sensors relying on
a range of transduction technologies [52]. Resistive [128, 147] and piezoresistive [12, 129] sensors
measure applied pressure through the change of electrical resistance due to the deformation of a
material between two electrodes. Capacitative sensors [53, 133] similarly rely on conditioning
circuits that measure the change in capcitance resulting from the deformation of the sensor in
order to capture the interaction characteristics. More recently, optical sensors [40, 90, 146, 152]
that use a camera in conjunction with an elastomeric material, and capture physical interactions
with the environment through a series of images of the deforming elastomer, have emerged as
a high resolution alternative for tactile sensing. Other solutions use MEMS devices [105, 132]
and piezoelectric materials [36, 159] as transduction mechanisms for recording physical contact
information.

However, many of these sensing solutions suffer numerous drawbacks that preclude their
adoption as commodity sensors for robotics. With the exception of optical sensors, each sensing
technology requires direct electrical connections between the circuitry and soft elastomer. While
the integration of soft elastomers has enhanced tactile sensors across the board by improving
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contact conformity, this unintended coupling increases costs and complicates integration. Optical
sensors overcome this pitfall by separating the sensing electronics (camera) from the sensing
interface (elastomer), but require a clear line-of-sight between camera and elastomer severely
restricting their form factor and increasing design complexity. Elastomeric interfaces, by virtue
of being soft, degrade much faster than the associated electronics and need to be frequently
replaced. However, replaceability and consistency in sensor response are characteristics that are
seldom discussed in the context of soft sensors. Furthermore, the complex fabrication procedures
associated with soft sensors make them difficult to manufacture at scale and increase variability in
response across sensor instances.

In light of these shortcomings, the focus of this thesis is primarily on tactile sensing using
magnetic elastomers [69, 70]. The use of magnetic transduction allows ReSkin circuitry that
measures the signal to be completely independent and detached from the magnetic elastomer that
serves as the sensing interface. This affords our sensors a range of advantages from low cost and
scalability to variable form factors enabling sensorization of surfaces of diverse shapes and sizes.
The simplicity and repeatability of our fabrication process further reduces the variability in sensor
response across different instance of the magnetic elastomer skins, minimizing disruption due to
replacement of the elastomer and strengthening our case as a general purpose tactile sensor for
robotics.

Tactile Sensing and Robot Hands

Analogous to tactile sensing, the versatility of the human hand has inspired long-standing efforts to
emulate its capabilities with a robotic hand [10, 89, 103]. The complexity of building these devices
results in most contemporary solutions such as the Shadow Hand [82, 139] and the Allegro Hand
(Wonik Robotics) being extremely expensive (>$25,000), brittle, and difficult to repair. These
pitfalls are at odds with the demands of data-driven robotics, the emerging class of algorithms
for robot control, that rely on large amounts of data, and in turn hardware that is inexpensive
and robust to the vagaries of large-scale data collection. Solutions like the LEAP Hand [124]
and the Trifinger Hand [151] have sought to plug this gap by creating inexpensive, versatile and
easy to assemble robotic hands. However, while tactile sensing has been widely acknowledged
to be central to human dexterity [78, 79], none of these solutions provide a scalable integration
of tactile sensing at a reasonable price point (<$50,000). The D’Manus – an open-sourced hand
with integrated large-area sensing fills this crucial void in the robot hand landscape. Furthermore,
the hand is fully 3D-printable, has a palm to aid dexteriry unlike [2, 151], critical adduction and
abduction capabilities unlike the Allegro, and is at least 10× less expensive than most commercial
alternatives.

1.2 Deep Learning and Sensors
Most real world control systems, such as wind turbine condition monitoring [130], MRI recogni-
tion [84] and inertial odometry [4, 98], often process noisy sensory data to deduce environmental
states. Conventional sensor response modeling largely relies on analytical techniques to model
the relationship between the raw measured quantity (such as resistance, capacitance, magnetic
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flux) and the quantity of interest (force, torque, inertial measurements) [96, 120]. While analytical
modeling is useful in mapping the measured transduction to interpretable quantities such as
force or contact location, it is often cumbersome and/or requires restrictive assumptions that do
not fully model the behavior of the sensor [61]. Computational techniques like Finite Element
Analysis [97], while effective, can be extremely slow and preclude real time use of the sensors they
model. Advances in rapid prototyping and manufacturing technology have fuelled an increase
in the pace and diversity of sensor development, as well as a demand for indirect modeling
techniques that enable real-time deployment of these sensors. Machine Learning has emerged
as a viable solution to this problem, by enabling implicit sensor modeling without the need to
explicitly model the complex physical phenomena driving the transduction mechanism [32, 75].

However, as recent research in deep learning for vision and language has shown impressive
capabilities across tasks involving these modalities [1, 41], capable ML models for sensory data
are few and far between [86, 154]. Deep learning solutions that do show promising results on
sensory data continue to be sensor-specific [71, 153] studies. This is the result of a catch-22
in sensor learning: lack of consolidated, labelled datasets of sensory data, the resulting lack of
research in neural architectures that are good at processing sensory data, and therefore, a lack of
an understanding of the extent of capabilities of sensory systems that would inform and prompt
the collection of more data. To tackle this problem, we propose a two-part solution: CSP-Bench –
a benchmark of six sensory datasets for continuous sequence prediction, and Hierarchical State
Space Models – a neural architecture adept at sequential reasoning over continuous sensory data,
based on incorporating temporal hierarchies into structured state space models like S4 and Mamba.
We draw from success stories in vision and language [85] have demonstrated the importance of
prudent neural architecture choices and inductive biases in learning effective representations for
learning-based reasoning. We show that on six sensory prediction tasks across three different
sensors, HiSS outperforms conventional sequence modeling architectures like causal Transformers,
LSTMs, S4 and Mamba.

1.3 Multimodal Policy Learning

As roboticists tackle problems of robots operating in unstructured environments, robot learning,
especially with the advent of deep learning, has emerged as an especially promising solution.
Impressive capabilities for grasping [161], manipulation of articulated objects [42, 107] as well
as bimanual manipulation [162] have been made possible by integrating cutting edge neural
architectures [68, 117, 142] for vision with advances in density estimation [30, 93] and imitation
learning algorithms. However, keeping in line with the consistent theme in this chapter, robot
learning models that incorporate tactile sensing are consipucously scarce. Analysis for learning
precise, complex skills that require reasoning about physical interactions with the environment are
largely restricted to simulation [28, 92] with little discussion on transferring policies to the real
world. Alternative approaches often involves convoluted, unrealistic camera setups to get around
the lack of tactile sensing [3, 5]. In this thesis, we perform a controlled study of multimodal policy
learning with vision and tactile sensory data and cross-validate the criticality and effectiveness of
all the available modalities for learning effective robot policies for precise manipulation.
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1.4 Thesis Outline
The rest of this thesis document is structured as follows: Chapter 2 is introduces to ReSkin –
a magnetic tactile skin, its capabilities, and the potential of learned sensor models, Chapter 3
introduces the D’Manus: an open-source dexterous hand design with integrated large-area sensing,
Chapter 4 introduces an upgraded self-adhering sensor skin design and demonstrates replaceability
in policy learning, while Chapter 5 talks about a new benchmark and a novel learning architecture
for sequential modeling of tactile and other sensory data. We highlight takeaways and future
prospects in Chapter 6.
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Chapter 2

ReSkin: versatile, replaceable, lasting
tactile skins

Bhirangi, R., Hellebrekers, T., Majidi, C., & Gupta, A. (2021, October). Reskin: versatile,
replaceable, lasting tactile skins. In 5th Annual Conference on Robot Learning.

TH designed the procedure for fabricating ReSkin. RB was responsible for the fabrication of
skins, setting up experiments, and training prediction models. RB and TH were jointly responsible
for experiment design and analysis of results.

Abstract
Soft sensors have continued growing interest because they enable both passive conformal contact
and provide active contact data from the sensor properties. However, the same properties of
conformal contact result in faster deterioration of soft sensors and larger variations in their
response characteristics over time and across samples, inhibiting their ability to be long-lasting
and replaceable. ReSkin is a tactile soft sensor that leverages machine learning and magnetic
sensing to offer a low-cost, diverse and compact solution for long-term use. Magnetic sensing
separates the electronic circuitry from the passive interface, making it easier to replace interfaces
as they wear out while allowing for a wide variety of form factors. Machine learning allows us to
learn sensor response models that are robust to variations across fabrication and time, and our self-
supervised learning algorithm enables finer performance enhancement with small, inexpensive
data collection procedures. We believe that ReSkin opens the door to more versatile, scalable
and inexpensive tactile sensation modules than existing alternatives. Videos of experiments and
fabrication, code and learned models can be found on https://reskin.dev.
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2.1 Introduction
In recent years, AI has advanced significantly from large-scale recognition to defeating human
players in games. But surprisingly current approaches still struggle at one task: dexterous
manipulation. While babies, from a young age, can perform several challenging manipulation
tasks, robots continue to struggle even with simple tasks. Why is that? We believe a significant
bottleneck in dexterous manipulation is the lack of practical solutions to tactile sensing. From
collecting large-scale rich contact data in the wild for learning models to building individual tactile
sensors for robot fingers and hand surfaces, current tactile sensing solutions lack on multiple
dimensions and fail to scale up.

Figure 2.1: A) ReSkin is easy to fabricate and the size of a penny, enabling a wide range of
applications. B) Robot gripper using tactile feedback from ReSkin sensors to hold a blueberry
without squishing it. C) Dog shoe with an embedded ReSkin sensor; (inset) visualization of
sensor measurements. D) Contact localization on a new ReSkin sensor using our self-supervised
adaptation procedure. E) Contact localization on a ReSkin curated into a fabric sleeve as a 2in x
4in contiguous skin. F) ReSkin sensor as a fingertip sensor to record forces and contacts while
folding a dumpling

In the context of robotics and AI, good tactile skins aim to provide: (a) conformal contact for
stable grasping/manipulation; (b) accurate compression and shear force measurements; (c) high
force (<0.1 N) and temporal resolution (>100 Hz); and (d) large surface area coverage (>4 cm2)
with good spatial resolution for sensing at all contact points. For practical usage, good tactile
sensors should also prioritize being (e) compact and versatile, (f) inexpensive, and (g) long-lasting.
Current solutions for tactile sensing have not been able to address all of these needs. For example,
vision-based tactile sensors are often bulky, expensive, and slow to respond (30-60 Hz) [90, 95].
Resistive and capacitive soft sensors require many connections that lead to early failure and
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integration challenges [7, 145]. Commercial sensing options, such as BioTac, are expensive
(>$1000) and available in limited form factors. Rigid tactile sensors, such as force-sensitive
resistors, lack the soft, deformable surface that is advantageous for object/environment interaction.
Above all, while there has been a plethora of work focused on fingertip sensing, all-over sensing
skins are much less studied.

There are two primary reasons why sensing skins have not been practical solutions for tactile
sensing: (a) first, there is a direct trade-off between the soft materials that enable conformal contact
and their ability to perform well over time. The exact properties that make soft sensors ideal for
dexterous manipulation, make them degrade easily during robotic tasks; (b) but more importantly,
even skins with durable lasting materials require data-driven modeling which generally fails to
generalize from one sensor to another. Therefore, any replacement of skin requires relearning the
model which is impractical (hence, limiting experiments to one sensor only [70]).

Figure 2.2: ReSkin is replaceable!

We propose ReSkin – an inexpensive (<$30), re-
placeable, compact, versatile and long-lasting tactile soft
skin. ReSkin is composed of soft magnetized skin and
a flexible magnetometer-based sensing mechanism. Any
deformation of the skin caused by normal/shear forces
is read via distortions in magnetic fields. These distor-
tions can be mapped back to estimate the contact points
and forces on the original skin using a learned machine
learning model. The ReSkin design is compact (2-3mm
thick) and long-lasting (our ML models perform accurate
predictions even beyond 50K interactions. ReSkin is ver-
satile – the skin and the sensor mechanism can be used
anywhere from robot hands to objects to gloves, arm
sleeves and even dog paws. ReSkin has high temporal
(up to 400Hz) and spatial resolution (1mm with 90% accuracy). But what makes ReSkin the
ideal tactile skin is the ability to replace an old skin with a new skin as if you are peeling off an
old band-aid and putting a new one on. Our learned models perform strongly even on new skins
out-of-the-box but can be further adapted to high precision and resolution using a self-supervised
calibration technique. We believe ReSkin has the ability to collect contact data in the wild, provide
robust tactile perception capabilities to our robot (See Figure 2.1) and effectively make tactile
perception a first-class citizen among its peers (pixels and sound).

2.2 Background
Soft sensing skins provide tactile or proprioceptive information without affecting the underlying
mechanics of the system. Machine learning approaches have recently been shown to effectively
parse soft sensor data for robotic grasping [18, 19, 34], proprioception [141], and object classifi-
cation [33], among many others [32, 125, 155]. Recent work in this area has relied on all types of
sensing principles to collect and infer information in all types of form factors [17, 66, 160]. For
example, resistive networks patterned onto a knit glove have been used to collect tactile grasping
dataset and classify objects using neural networks [133]. Capacitive soft skins can be scaled up to
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larger areas by sampling at different interrogation frequencies to detect position via SVMs with
just one interface [128]. Multi-modal sensing skins have also been shown to improve the ability to
discern between 8 types of applied deformation using neural networks [81] and static or dynamic
inputs [111]. Data-driven approaches are becoming more common over traditional modeling
due to the unpredictable material properties that introduce both non-stationary responses and
non-linear behaviors over time, especially considering the dynamic interactions and unconstrained
environments robots may encounter.

Unlike capacitive[128], resistive[133], and piezoelectric[12] soft sensing, magnetic and optical
soft sensors do not require direct electrical connections between the circuitry and elastomer. This
is ideal to keep cost down, as the elastomeric interface degrades much faster than the accessory
electronics. It also simplifies the replacement process by not requiring the user to disconnect and
reconnect individual wires. While optical sensors provide high spatial resolution data, they also
require a clear line of sight between the camera and elastomer to observe deformations[40, 146].
The camera’s depth-of-focus puts a hard limit on the minimum distance to the elastomer surface
leading to relatively bulky sensor modules. In contrast, magnetic sensing benefits greatly from
minimizing the distance between sensor and elastomer, allowing for a much more compact tactile
sensor. In addition, the small form factor of magnetometers, as compared to cameras, enables
compatibility across more diverse form factors for the tactile sensor. We demonstrate these
key benefits by integrating the magnetic skin onto an arm sleeve, glove, dog shoe and a robot
end-effector. In each case, the elastomer is removable while the circuitry stays in place. While
there have been a number of attempts towards developing a large area skin - piezoresistive fabrics
[12, 17, 143], rigid taxels [29] as well as optical sensors[140], they often lack shear sensing
capabilities[12, 29, 143], conformal contact[29] and/or a scalable fabrication process[12]. ReSkin,
however, is uniquely positioned to satisfy all of these requirements, and has the potential to be a
scalable solution for all-over sensing skin.

ReSkin DIGIT GelSlim BioTac RSkin

Type Magnetic Optical Optical MEMS Piezoresistive
Frequency 400Hz 60 Hz 60 Hz 100 Hz ?
Variable Form Factor ✓ ✗ ✗ ✗ ✓

Thickness <3mm ✓ ✗ ✗ ✗ ✓

Low Cost ✓ ✓ ✓ ✗ ✗

Easily replaceable ✓ ✓ ✓ ? ✗

Area coverage ✓ ✗ ✗ ✗ ✓

Durable (>50k contacts) ✓ ? ✗ ✓ ?

Table 2.1: ReSkin is the only sensor that satisfies all the requirements for learning approaches

The underlying principle for magnetic sensing is that an applied deformation is measured as a
change in magnetic flux readings by nearby magnetometers. However, we still need to learn or
estimate the mapping function that decodes change in magnetic flux into contact force position and
magnitude. Several works on soft sensors have used neural networks for sensor characterizations
[63, 136], but these models are often trained on single sensor prototypes, and do not necessarily
transfer to new copies of the sensor. Then, the end-user is required to collect and sometimes
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Figure 2.3: A) Experimental setup for data collection with Dobot Magician, ATI Nano 17 (inset),
and six sensor boards streaming to a control computer. B) Mold for curing elastomer along with
magnet holders. C) Two types of circuit boards – rigid and flexible – designed for ReSkin.

label their own data for each sensor, which additionally requires access expensive, specialized
equipment [63, 80].

In this paper, we systematically perform an experimental analysis of the proposed magnetic
tactile sensor. First, we extensively study the characterization of a single sensor over time. We
demonstrate that one can learn a quite accurate data-driven model to map magnetic flux changes
to contact force location and magnitude. We also demonstrate that the skins are long-lasting.
However, models trained on one sensor fail to generalize to other sensors or to different circuit
board designs. Our first insight is to exploit multi-sensor learning: learn a more generalizable
model by using data from a larger number of sensors. While this leads to significant improvement,
it still falls well short of training and testing on the same sensor. Inspired by recent work in
self-supervised learning, we also present a simple self-supervised calibration procedure which
learns to adapt the multi-sensor model to a particular sensor using just a couple of hundred
pokes on the skin. Our self-supervised approach is inspired from several works in slow feature
learning [55, 76] and contrastive learning [27, 121, 147].

2.3 Design and Fabrication
The sensing principle for ReSkin relies on relative distance changes between embedded mag-
netic microparticles in an elastomer matrix and a nearby magnetometer. The use of magnetic
microparticles allows the skin to be molded into many shapes and thicknesses. When the magnetic
composite is deformed by applied force, the magnetometer reports changes in magnetic flux in its
X-,Y-, and Z- coordinate system [69]. For an overall sensing area of 20mm x 20mm (Figure 2.3),
we measure magnetic flux changes using 5 magnetometers. Four magnetometers (MLX90393;
Melexis) are spaced 7mm apart around a central magnetometer. All 3D-printed molds, circuit
board files, bill of materials, and libraries used have been publicly released and opensourced on
the website.
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Magnetic Elastomer Fabrication. Our fabrication technique takes advantage of strong edge-
effects of permanent magnets. We magnetize the composite over a 4x4 grid of much smaller cube
magnets (0.25in; AppliedMagnets). Additionally, we apply a more uniform magnetic field during
curing by placing the grid of magnets both above and below the sample (Figure 2.3B). Magnetic
microparticles (MQP-15-7 (∼80 mesh); Magnequench) and 2-part polymer (Dragonskin 10 NV;
Smooth-On) are mixed in a 2:1:1 ratio and poured into a 3D-printed mold. The mold is placed in
a vacuum chamber for 3 minutes to remove air bubbles before placing magnets above and below
the sample. The sample cures at room temperature (approx 24◦C) for at least 3 hours before being
removed.
Circuit Board. We use two variants of the circuit board for the experiments and demos pre-
sented in this paper – a rigid board and a flexible board illustrated in Figure 2.3C. The circuit
includes a 4-pin connector (JST-SH; Molex) that transfers 20 values of magnetometer data (Temp,
BX , BY , BZ for 5 chips) to a microcontroller (Trinket M0; Adafruit) at approximately 400 Hz.
The microcontroller processes and transmits this data over USB to be read over serial from a
central computer. To allow for easy replacement without damaging the board, we avoid the use of
permanent adhesive for attaching the sensing skin. Skins are secured using four screws (M2-6;
for the rigid boards), or using four sewable snaps (size 4/0, Dritz; for the flexible boards). The
bottoms of the rigid boards are first insulated by applying a thin layer of polymer (nitrocellulose).

2.4 Experimental Setup
Our goal is to perform experimental analysis of the proposed sensor, ReSkin, and the learned
mapping between the magnetic field measurements from the sensor (B) and the planar location
(x = (x, y)) and magnitude of the applied force (F). We want to analyze how ReSkin performs
on the different desired attributes – the accuracy of contact force estimation, spatial resolution
of contact prediction, robustness to wear and tear and how model performance varies across
different skin instances. For all the experiments, we use the data collection apparatus shown in
Figure 2.3. The circuit board along with the skin is fixed to a 3D printed mount and streams 4
values, (Temp, BX , BY , BZ), measurements for each of the five magnetometers at 400 Hz. A
hemispherical indenter fastened to the end of a Dobot Magician robot is used to apply forces at
different locations on the skin. The indenter also encases a 3-axis F/T sensor (Nano17; ATI) that
streams force data at 1kHz.

We restrict ourselves to quasi-static measurements and analysis for the results presented in the
following sections, unless stated otherwise. The world coordinate frame used in these experiments
is defined such that the xy-plane is aligned with the base of the robot as shown in Figure 2.3.
To collect data, we first specify a location for the robot to move to such that the indenter makes
contact with the skin. We then record five measurements from the sensor board. The specified
xy-location is used as the ground truth label for the location of the force. The normal force
measured by the Nano17 is used as the ground truth label for the magnitude of the applied force.

The indentations are made in a snake-like pattern along a 9x9 grid (excluding 4 points per
corner; a total of 65 indentations) of size 16cm x 16cm shown in Figure 2.3. During each iteration,
we do a single pass at each of 6 depths from 0.2mm to 1.2mm, for a total of 390 indentations. We
collect data over multiple iterations.
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(a) Variation of magnetic field over time for a single
sensor at two coordinates, over 10,000 indentations.
The first measurement is subtracted from other mea-
surements to better illustrate degree of variation.

(b) Variation in magnetic field at two different
points across five different sensors. Each line corre-
sponds to the average magnetic field measured over
10,000 indentations for a particular sensor

Figure 2.4: Variation in magnetic field over time and across different sensors. Each tick on the
x-axis corresponds to a component of the magnetic field measured by the sensor. While the
general trends for individual sensors overlap, there is still obvious variation across samples.

2.5 Single Sensor Model – Decoding Magnetic Flux to Contact
Characteristics

Our first experiment is to evaluate the accuracy of the mapping from magnetic flux B to contact
force location and magnitude prediction. Our five-layer multilayer perceptron (MLP) architecture
for the mapping function is: B(15) → MLP+ReLU(200) → MLP(200) → MLP(40)
→ MLP+ReLU(200) → MLP+ReLU(200) → xyF(3). The change in magnetic field
resulting from deformation is used as the input to our model. The third activation layer is the
bottleneck feature layer. We use feat(·) to represent this 3-layer feature extraction network. Our
loss function is L2-loss on (x, y, F ). We define the accuracy of contact localization as the fraction
of points whose x and y predictions are both within ±1 mm of their true label. We collect a total
of 50K samples and use a random 45K for training and 5K for test. On this simple experiment,
we get MSE for location and force is 0.037± 0.014 mm2 and 0.005± 0.002 N2 respectively, with
a contact localization accuracy of 99.58± 0.34%.

To demonstrate the shear sensing capability of the sensor, we perform another experiment.
Instead of the quasi-static setup explained in Sec. 2.4, data is collected dynamically by indenting
the skin to a certain depth and dragging it along the length of the sensor. We move in straight
lines along x and y directions at intervals of 2 mm to cover the entire area of the sensor. The net-
work architecture is the same as described in the previous paragraph, predicting (x, y, Fx, Fy, Fz)
instead of just (x, y, Fz). On this experiment, we get MSE for Fxy: 0.0011 ± 0.0002 N2, with-
out compromising on prediction of normal force (MSE:0.003 ± 0.001 N2) or contact location
(MSE:0.085± 0.006 mm2).

Of course, the above setup is not realistic since training and test data is unlikely be sampled
randomly from the same distribution. Instead, we use a more practical setting, training on an
initial K samples and testing on the samples that come after. As the elastomer goes through
multiple cycles of compression and retraction, we see a drift in the properties of the elastomer.
This is evidenced by the variation in the recorded magnetic field shown in Figure 2.4a. Therefore,
it is critical to analyze how the learned model behaves with respect to time.
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(a) Accuracy of contact localization and MSE for force
predictions, as the number of interactions with the skin
increases

(b) Scatter plot of predicted force and the
actual force applied, after 45,000 interac-
tions.

Figure 2.5: Model performance with increasing number of interactions

Since we learn a sensor model that uses the change in magnetic field as input, we would
need to record the magnetic field before and after contact occurs. Depending on the application
scenario in which the sensor is deployed, it may often be easier to collect calibrating no-load
magnetic field measurements at regular intervals. Here, we design an experiment to quantify
the effect of the frequency of this measurement on learned sensor models. We collect data from
50,000 indentations on a single sensor. We train a neural network to predict contact location and
force, using the first 5,000 indentations as the training set. This model is then evaluated on test
sets comprising 1000 indentations after every 5000 indentations, to understand the degree and
rate of domain shift. The results of this experiment are shown in Figure 2.5.

Based on Figure 2.5a, we observe that prediction errors are higher and increase faster when
we only make a single no-load measurement at the start. This can be attributed to the drift
in the elastomer response over time, which can be offset to a certain extent by more frequent
no-load measurements. Errors are also higher when no-load measurements are updated before
every contact. This could be a result of overfitting to the training data, since later experiments
were seen to significantly benefit from updating zero measurements just before every contact.
Furthermore, Figure 2.5b indicates that the model, on average, overestimates the applied force.
This overestimation can be attributed to the softening of the elastomer as the number of interactions
increases.

2.6 Adapting to New Sensors – MultiSensor Model + Self-
supervised Learning

Our goal is to provide a simple, replaceable tactile sensor. To achieve this, it is imperative that any
learned models acting on sensor measurements generalize to new sensor boards and skins. We
demonstrate the generalizability of our learned sensor response model in the following sections.
Our models predict the contact normal force (F ) and location(x = (x, y)) using the change in
magnetic field measured by the magnetometers(B). However, the cheap and easy fabrication
method for ReSkin comes with a significant degree of variability in the sensor response. Figure
2.4b demonstrates the variation in raw magnetic field resulting from an identical indentation
across different sensors. So, how can we learn a model that generalizes to new sensors and even
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new circuit boards?
We use two techniques to help improve generalization for new skins and PCBs. First, instead

of using data from a single sensor, we use data from multiple sensors to train our mapping function.
This allows the model to see more diverse data in training and learn a more generalizable mapping
function. Additionally, we apply a feature regularization component (self-supervised loss) to our
loss function. This component is a triplet loss computed in feature space as follows:

Ltriplet = max
(
0, ||feat(Ba)− feat(Bp)||2 − ||feat(Ba)− feat(Bn)||2

)
, (2.1)

where Ba,Bp and Bn are three datapoints with corresponding contact locations xa,xp and xn,
such that ||xa − xp|| < ||xa − xn||, ie. xa is closer to xp than xn. Subscripts a, p and n refer to
anchor, positive and negative samples respectively. This loss encourages points that are closer on
the skin to be closer to each other in feature space. It acts as a regularizer while also enabling us
to use the self-supervised adaptation procedure described in the following paragraph.

Note that this self-supervised loss does not require ground-truth contact location or force
readings and therefore can be leveraged to further improve performance on new sensor boards and
skins. A new user can collect their own unlabeled dataset, which can be indexed without requiring
explicit labels. For instance, the user can use the tip of a pen to indent the sensor skin in a straight
line and incrementally index these points as they move along the line. Triplets of points can now
be sampled along this line, and the indices can be used to order the pairs within each triplet by
distance. Our multi-sensor learned model can then be fine-tuned using these triplets to minimize
the triplet loss. At every training step, we sample a batch from the original training data, and an
equal-sized batch of triplets (sampled with replacement) from the unlabeled dataset. The former
is used to minimize the original loss function, while the latter is only used to minimize the triplet
loss.

2.6.1 Results
We compare four model approaches. Our baseline model is trained on one sensor and tested on
a different sensor. The other three are multi-sensor models – (a) trained without the triplet loss,
(b) trained with the triplet loss, and (c) trained with the triplet loss along with self-supervised
adaptation.

For the following comparisons, we collect data of 10,000 indentations each from 18 different
skins. We use a set of 6 sensor boards and 18 skins: each board appearing thrice in the dataset, each
time with a different skin on top. For the multi-sensor models, we perform 6-fold cross-validation,
with the held out test set corresponding to three different skins on a particular sensor board each
time. For the self-supervised adaptation, we use different subsets of the unseen sensor data in the
adaptation step, to qualitatively illustrate the effect of the quantity of data used for adaptation. For
the single-sensor model, we individually train on 3 different sensors and test on 9 other sensors.

Based on Table 2.2, we see that the multi-sensor models do significantly better than the
single-sensor model. Training on a larger set of sensors allows the neural network model to
generalize better. Further, we see that adding the triplet loss slightly affects performance. This
small drop could be attributed to the additional constraint on the feature space resulting from the
triplet loss. However, the self-supervised adaptation gives us a sizeable improvement over the
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Model Accuracy, in % MSExy, in mm2 MSEF , in N2

Single-sensor 25.24±10.12 6.453±3.363 0.420± 0.149

Multi-sensor without triplet loss 84.43±12.88 0.733±0.707 0.155± 0.025

Multi-sensor with triplet loss 81.03±12.86 0.756±0.718 0.155± 0.030

Multi-sensor with triplet loss,

adapted using 390 indentations
87.00± 11.81 0.514± 0.601 0.142± 0.025

Table 2.2: The single-sensor baseline performs poorly, failing to capture variability across sensors.
Our self-supervised adaptation significantly improves prediction accuracy as well as MSE in xy, F

(a) Self-supervised adaptation improves significantly
even with small quantities of adaptation data

(b) Self-supervised adaptation leads to even larger
performance gain with fewer sensors in training data

Figure 2.6: Self-supervised adaptation works with lesser adaptation data as well as training data

model predicting without adaptation. Note that the adaptation procedure also results in improved
force prediction performance.

To further investigate the effectiveness of our self-supervised adaptation procedure, we look
at how increasing the quantity of data used for adaptation correlates with model performance.
As can be seen from Figure 2.6a, there is a significant improvement in performance between
no self-supervision and using 780 points for self-supervision. However, performance seems to
plateau as we increase the data beyond this point, which indicates that our model adapts quickly
with small amounts of unlabeled data. Finally, Figure 2.6b shows the effect of the number of
sensors in the training data on model performance. We use data from three unseen sensors as the
test set. As expected, performance improves as the amount of training data increases. Further,
we observe that the self-supervised adaptation, while always doing better than the other models,
offers a significant improvement in performance when using fewer sensors in training.
Generalizing models with manual indentations Since the analysis of our self-supervised
adaptation technique is performed in a very controlled scenario we perform another, less controlled,
experiment which is likely to be closer to the end user’s application setting. We manually indent the
sensor 325 times and run self-supervised adaptation using the triplet loss. To test the effectiveness
of the adaptation, we collect test data using the original experimental setup to evaluate the adapted
models. After adaptation we see improvements in accuracy, from 79.86% to 84.84%, MSExy

from 0.676 mm2 to 0.489 mm2 and MSEF from 0.268 N2 to 0.192 N2, clearly demonstrating the
effectiveness of our proposed method even outside a controlled environment.
Generalizing models to a different sensor board type In order to demonstrate the effectiveness
of our self-supervised adaptation scheme, we now adapt a model learned using rigid sensor boards
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on a flexible sensor board. Note that this is a significantly harder adaptation problem since the
distance between skin and circuit board is 80% lesser in case of the flexible board. We see an
average contact localization accuracy of 75% with MSE error on location and force as 0.72 mm2

and 0.54 N2 respectively. The relatively larger force errors can be attributed to an overestimation
bias resulting from signals appearing stronger due to the reduced thickness of the flexible board.

2.7 ReSkin in Action
We have demonstrated that ReSkin is a sensor capable of high resolution contact localization
and force prediction. The performance does not deteriorate significantly with wear and tear.
But most importantly, learned models generalize to new skins with a simple self-supervised
adaptation scheme. We now highlight how ReSkin’s compact design allows it to be used in diverse
applications with different form factors. In this section, we use ReSkin in different settings to
emphasize its effectiveness in a range of application scenarios. These demos are for proof-of-
concept only. For the following, we fabricated both flexible and rigid circuit boards of the exact
same design: flexible boards are more comfortable and thinner, while rigid boards can withstand
larger applied forces.
Force Sensitivity: Water in shot glass To visually illustrate the force sensitivity of our sensor,
we do a pouring demo where we place a shot glass on top of a ReSkin sensor. As the water
fills up, we see monotonically increasing sensor measurements indicating the sensor’s ability to
distinguish forces as small as the weight of less than 20 mL (< 0.2N) of water (Supplementary
Video on https://reskin.dev).
Robot Gripper. Next, we show that ReSkin can be a useful tactile sensor for robotics applications
such as grasping delicate objects such as blueberries and grapes (See Figure 2.1B). Two ReSkin
sensors with flexible circuit boards are placed on either side of a parallel jaw gripper (Robotiq
Hand-E Gripper on Sawyer Arm). Grasping soft and squishy objects requires force feedback –
applying too much force will squish blueberry and the grape. We show that the built-in force
sensing (30N minimum) is insufficient for the task, whereas ReSkin does an excellent job of using
force feedback to control grasping. Furthermore, we demonstrate that the grasping continues
to work well, with no tuning required, when we replace one of the skins with a new skin
(Supplementary Video on https://reskin.dev).
Location Sensitivity: Poking To visually illustrate the location sensitivity of our sensor, we
do a simple poking task on a new sensor and show the resolution of real-time contact location
estimation (See Figure 2.1D and Supplementary Video on https://reskin.dev).
Dog Shoe. Our next application demonstrates how ReSkin’s compact design makes it non-
obtrusive and useful for measuring tactile forces in the wild. One magnetic skin and flexible
circuit board is placed inside the sole of a dog shoe (size: 1.75in). A 1/16in layer of urethane
foam is added on top for comfort. The data is collected on-board and logged to an SD card at 250
Hz. The sensorized shoe is worn on the front right leg of a small dog (17 lb). The sensor tracks
magnitude and direction of applied force while resting, walking, and running (See Figure 2.1C
and Supplementary Video on https://reskin.dev).
Glove. We also demonstrate how ReSkin can be used to measure forces during natural human-
object interactions. A magnetic skin and rigid circuit board is placed on the right-hand index finger.
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A nitrile glove was placed over to hold the board in place, and keep the objects clean. The data
was collected on-board and logged to an SD card at 250 Hz. We demonstrate sensor output during
the sealing of dough (See Figure 2.1F and Supplementary Video on https://reskin.dev).
Arm Sleeve. Finally, we want to demonstrate that ReSkin is a surface sensor and can be used for
wide coverage tactile sensing. Specifically, we connected 8 flexible boards in two rows of four and
fabricated a larger, continuous skin (2in x 4in). All 8 boards are connected to a microcontroller
(QT Py; Adafruit) that samples all 40 magnetometers at 133 Hz. We show how ReSkin can be
scaled up for contact localization across larger surface areas (See Figure 2.1E Supplementary
Video on https://reskin.dev).

2.8 Conclusion
We present ReSkin: a low-cost, compact and long-lasting surface tactile sensor with high localiza-
tion accuracy and force sensitivity. ReSkin combines soft sensing with recent advances in machine
learning to develop models that generalize across time and individual skins. More specifically, we
use multi-sensor learning combined with self-supervised triplet loss for slow feature changes. We
also present an SSL adaptation procedure to further refine the models for new skins. Therefore,
ReSkin sensors have easily replaceable skin (as easy as peeling and putting new band-aid) that can
be used right away. We demonstrate that the compact form of ReSkin makes it an ideal candidate
for diverse applications: from grasping delicate objects to measuring forces exerted by dog feet;
from building wide-coverage contiguous skin to measuring contact forces in the wild.
Limitations and Future Work: While we have shown promising results on contact localization
and force prediction, there is enormous untapped potential for ReSkin at this stage. Experiments
in this paper are based on single point contact, and we aim to further investigate multi-point
contact. An interesting direction for future work is to analyze the effect of external magnetic
fields and metallic objects on ReSkin’s sensing ability. ReSkin can stream data up to 400 Hz
and we aim to leverage this capability to train better models using dynamic time-series data. We
believe that ReSkin (and its desirable properties) will make tactile perception far more accessible
for real-world use.
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Chapter 3

D’Manus: A dexterous hand with
large-area sensing

Bhirangi, R., DeFranco, A., Adkins, J., Majidi, C., Gupta, A., Hellebrekers, T., & Kumar, V.
(2023). All the Feels: A dexterous hand with large-area tactile sensing. IEEE Robotics and
Automation Letters.

AD and JA were responsible for running experiments. RB was responsible for building on VK’s
design of the D’Manus to integrate tactile sensing and improve dexterity. RB also designed and
analyzed the experiments shown in the paper.

Abstract
High cost and lack of reliability have precluded the widespread adoption of dexterous hands in
robotics. Furthermore, the lack of a viable tactile sensor capable of sensing over the entire area
of the hand impedes the rich, low-level feedback that would improve the learning of dexterous
manipulation skills. This paper introduces an inexpensive, modular, and robust platform - the
D’Manus - aimed at resolving these challenges while satisfying the large-scale data collection
demands of deep robot learning paradigms. Studies on human manipulation point to the criticality
of low-level tactile feedback in performing everyday dexterous tasks. The D’Manus comes with
ReSkin sensing on the entire surface of the palm as well as the fingertips. We also demonstrate
the generalizability of tactile models trained with the fully integrated system in a tactile-aware
task - bin-picking and sorting. Code, documentation, design files, detailed assembly instructions,
trained models, task videos, and all supplementary materials required to recreate the setup can be
found on https://sites.google.com/view/dmanus.
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D’Manus

Figure 3.1: The D’Manus – a low-cost, 10 DoF, reliable prehensile hand with ReSkin [13] sensing.

3.1 Introduction
Humans routinely operate in unstructured, cluttered environments through surprisingly imprecise,
improvised motions. Think about finding the keys hiding at the bottom of your bag, pulling a box
from the back of the fridge, or finding the steel ladle among the wooden spatulas. While you rely
on vision to plan motion at a high level, executing low-level actions involves using a wealth of
tactile signals to spatially understand and characterize the environment. The tactile information,
combined with natural compliance and underlying motion, enables the effortless dexterity of the
human hand. In moving towards robots with human-like sensorimotor abilities, there is a clear
need for systems that integrate rich tactile sensing capabilities with dexterous motion.

However, the high dimensionality of dexterous systems also makes them difficult to control.
Data-driven methods have emerged as promising approaches to high-dimensional control [15,
114], but success with dexterous manipulators has been limited [5, 64], and often restricted to
simulation [25, 119]. The contact-rich nature of tasks like in-hand manipulation and tool use makes
it difficult for policies learned in simulation to generalize to the real world. Collecting data from
real-world interactions, on the other hand, is difficult due to the absence of an affordable, reliable
hand that can handle the demands of large-scale data collection. Efforts aimed at developing such
hardware have been few and far between [2, 151], largely due to the manufacturing cost and the
lack of reliable sensing and actuation technologies.

In this work, we leverage recent advancements in rapid prototyping, modular actuation and
large-area sensing to present a hand that can make real-world dexterous learning accessible to a
wider community of researchers and roboticists. Concretely, our contributions are as follows:

• We present the D’Manus – an inexpensive, robust prehensile hand geared towards real-
world robot learning, complete with a detailed Mujoco-based simulation model for ease of
development and prototyping. We rigorously test the hand to withstand long(>400) hours
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of operation with no breakages;
• We equip the D’Manus with customized, integrated ReSkin [13, 69] sensors that provide

large-area tactile sensing over the entire surface of the palm and the fingertips, while
maintaining sharp fingertips/nails critical for dexterous manipulation;

• We demonstrate the caliber of the D’Manus along sensory effectiveness, dexterity, and
robustness axes by learning tactile perceptive models for softness and texture identification,
and validate their generalizability to unseen objects in a tactile-aware bin sorting task.

3.2 Related Work

3.2.1 Dexterous Hands and data-driven learning
The versatility of the human hand has long inspired a number of efforts aimed at creating similarly
capable robotic hands dating back to the early days of robotics [10, 103]. Concurrent work in
prosthetics and assistive robotics [89] has often overlapped with and contributed to research in
creating general-purpose robotic hands. More recently, advances in material science and rapid
prototyping as well as control algorithms have further pushed the envelope of capable dexterous
hands [113]. Since these efforts have primarily been directed towards demonstrating added
functionality on human control, they tend to fall short on the scalability, reliability, affordability,
and other capabilities required for the prolonged operation demands of robot learning. Despite the
recent advancements in data-driven robotics [114], robust dexterous platforms capable of meeting
the data needs of real-world learning have been few and far in between [2, 151]. This has restricted
recent investigations with dexterous hands to simulation [25, 119] or the few researchers who can
afford the hardware expense [5]. The D’Manus is an open-sourced hand that fills a crucial void
in the robot hand landscape – integrated large-area sensing and a palm unlike [2, 151], critical
adduction and abduction capabilities unlike the Allegro, 30× less expensive than alternatives
like [45, 82], and tested to be robust and easy to fix.

Additionally, most recent works aimed at solving dexterous manipulation [5, 110, 163]
conspicuously use a single exteroceptive sensory modality – vision. Vision provides rich sensory
information about the scene and the visual properties of objects, and has been successfully
integrated with robot learning frameworks [15, 114]. However, dexterous tasks are generally
contact-rich and require reasoning about contact information that cannot be captured entirely
using vision. We posit that the lack of rich tactile information limits a manipulator’s ability
to effectively perform real-world dexterous manipulation tasks involving force control, flexible
objects, and deformable media, particularly with smaller objects that receive degraded visual
signals due to occlusions. The D’Manus comes with integrated large-area sensing that offers a
rich tactile sensory modality and extensive spatial coverage suitable for learning such contact-rich
manipulation skills.

3.2.2 Tactile sensing
The modality of touch has a long history in robotic grasping and manipulation [125]. Several
different modalities like capacitive [20, 73], resistive [150], piezoelectric [35], magnetic [69, 137],
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Figure 3.2: Anatomy of the D’Manus hand: The D’Manus is actuated at joint level using
Dynamixel XM430-210 smart actuators. ReSkin sensors are integrated with the fingertips and the
palm. Each fingertip sensor is comprised of 8 magnetometers while the palm sensor consists of
32 magnetometers for a total of 56 magnetometers. Sensor and motor interfacing components are
housed in the core of the hand.

audio [47] and MEMS [112]-based sensors have been explored as tactile sensing alternatives
for robotics. With the recent success of deep learning, especially in computer vision, optical
tactile sensors [90, 160] have emerged as the popular choice of tactile sensor, due to their high
resolution as well as their compatibility with popular neural architectures (CNNs) for processing
signals. Most of these solutions, however, have limitations that significantly impede their ability
to serve as effective sensors for capable hands, which have strict requirements in terms of sensing,
space, cost and robustness. Some of these sensors are bulky [90, 160] or need direct electrical
connections between the circuitry and the interface [35, 150], resulting in design constraints that
compromise on the manipulation abilities of the hand. Some others are either expensive [150]
or difficult to fabricate [20, 73] and cannot be easily replaced, making them less suitable for
large-scale data collection given the inevitable wear-and-tear that comes from frequent contact
with a wide variety of objects. Yet other alternatives that are affordable and have suitable form
factors for dexterous hands tend to lack the resolution, shear sensing [108, 112] required for
fine-grained control. Manufacturing, cost, and reliability challenges only escalate with larger
area sensing systems, such as the MIT Glove [133], hex-o-skin [108], and uSkin [45, 46] among
others [20, 73, 112].

The class of works that come closest to our proposition are [45, 46] that use uSkin sensors to
sensorize a dexterous hand and demonstrate application in object classification and manipulation
tasks. However, uSkin uses macro-scale magnets embedded in elastomer as the sensing interface,
which involves complex design to avoid crosstalk between magnetometers [137], is bulky, and
creates an external magnetic field which can interfere with the environment. To counteract all
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Component Cost

ReSkin Circuits

Boards $ 38.50

Assembly $ 149.60

Parts $ 56.00

Magnetic Microparticles $ 5.50

Smooth-On DragonSkin-10 NV $ 5.50

3D printed components $ 50.00

Machined components $ 200.00

ReSkin Interfacing $ 20.45

Dynamixel Interfacing $ 51.10

Dynamixel XM430-210 motors $ 2899.00

Total $ 3475.65

Table 3.1: Cost breakdown for the D’Manus

of these problems, we turn to ReSkin [13, 69], which differs critically in the use of magnetic
microparticles instead of macro-sized magnets. ReSkin offers the D’Manus a number of key
advantages as a dexterous hand for robot learning, namely, (a) favorable form factor: ReSkin can
be much thinner(∼2mm) than its closest alternatives (>5mm) enabling sharp fingernails critical
to dexterous manipulation, (b) cost and replaceability: ReSkin is easily replaceable [13] and costs
50x lesser per sensor (∼ $20) than alternatives like uSkin (∼ $1000), and (c) wear resistance:
the absence of a hard-soft interface within the elastomer significantly improves the durability of
ReSkin [13] and, as a result, the D’Manus.

3.3 Platform and System Details

The D’Manus - a combination of Dynamixel and Manus, the Latin word for hand - is a low-
cost, reliable prehensile robotic hand with immersive tactile sensing over its larger contact
surfaces, i.e. the palm and fingertips as anatomized in Fig. 3.2. To benefit the community
and facilitate adoption, D’Manus is released as an open-sourced manipulation platform – CAD
models, bill of materials, circuit designs, assembly and setup instructions can be found on https:
//sites.google.com/view/dmanus. In this section, we detail the features and properties
of the system.
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3.3.1 The Hand: Construction and Interfacing

The D’Manus hand is a three-fingered, 10-DoF hand – each finger has three degrees of freedom,
with a fourth DoF for the thumb. We select 3D printed parts and commercial actuators which
allows the D’Manus to be easily customized and assembled while maintaining a low price
point($3500), as detailed in Table 3.1. The hand can be made compatible to be mounted on any
robot arm or wrist attachment of choice using a simple 3D printed adaptor. In converging on the
design of the D’Manus, we focus on three critical components: a palm, an opposable thumb and
modular fingers, while ensuring that the fingertips can still perform a precision grasp. While we
experimented with versions of the platform with up to 16 DoFs, we converged on the 10 DoF
D’Manus as it strikes a balance between dexterity, cost, robustness, weight, and size.

3.3.2 Large-area Exteroceptive Sensing: ReSkin

We use ReSkin [13, 69] to endow the hand with large-area exteroceptive tactile sensing. A ReSkin
sensor is comprised of a magnetometer circuit in conjunction with a magnetic elastomer. Contact
results in deformation of the elastomer which in turn results in a change in magnetic field that
is picked up by the magnetometers. Drawing from [13], we scale the sensor circuits and the
skins to the size of the palm and the fingertips while maintaining a thickness of 2mm for the
skins. Each fingertip sensor is comprised of 8 magnetometers, while the palm sensor consists
of 32 magnetometers. The signal from each magnetometer is the 3-axis magnetic flux density.
Where our approach deviates significantly from [13] is an improved fabrication procedure for
the magnetic elastomer skins used in this work. The skins are cured at room temperature without
interfering magnetic fields, and then magnetized using a pulse magnetizer with a 4 Tesla (40 kOe)
impulse. This change results in two improvements: (a) stronger signal strength: experiments with
the circuits presented in [13] showed at least 5-6x stronger signal along each axis for the same
deformation, and (b) ease and scalability of fabrication: magnetic grids scale poorly as the size of
the skin increases, making them difficult to assemble in grids as well as to pull apart post-curing
Data from the sensors is streamed to the control computer via USB through a microcontroller +
I2C mux. Fig. 3.2 illustrates the construction of the hand and how it integrates with the tactile
sensors. A highlight of this design is also the large sensorized area of the palm (∼ 11 cm x 12 cm)
which facilitates stable power grasps and provides a base with force feedback for objects during
in-hand manipulation tasks.

3.3.3 Control and Proprioceptive Sensing

To enable closed loop manipulation strategies with strong sensory feedback, the D’Manus also
comes with a range of proprioceptive sensing capabilities at the actuated joints, as listed in Table
3.2. Control strategies for manipulators lie on a spectrum between position/velocity control
and force control. When interaction forces are negligible, position control enables more precise
control of the end effector, while velocity control allows for smoother movements. On the other
hand, constraints in the environment and frequent interaction forces lend themselves better to
force control or “compliant” strategies [102]. The use of Dynamixel smart actuators afford the
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Property Options

Control Position, Velocity, Current, PWM

Proprioceptive Sensing Position, Velocity, Current, Realtime tick, Trajectory,
Input Voltage

Exteroceptive Sensing ReSkin (30 Hz)

Limits Position, Velocity, PWM, Current

Baudrate 9600 bps ∼ 4.5 Mbps

Table 3.2: Operational Details for the D’Manus

D’Manus a number of control modes as outlined in Table 3.2, allowing operational flexibility for
end user applications1.

3.3.4 Software

Figure 3.3: Simulated D’Manus

The D’Manus’s software package includes a python
driver that exposes all the operational modalities out-
lined in Table 3.2, a detailed simulation model of the
D’Manus based on MuJoCo (Figure 3.3), and a place-
holder model of ReSkin sensors intended for prototyping.
The software has been structured for ease of simulation
testing and transfer to real hardware.

3.4 Experiments

The D’Manus is designed to sustain and support long
hours of contact-rich interactions and data collection
with minimal, easily fixable breakages. Such robustness
allows the D’Manus to be used for long durations in a
real-world robot learning setup similar to the systems
demonstrated in ROBEL [2]. We evaluate the effec-
tiveness of D’Manus as a testbed for real world robot
learning along various axes –

1. Dexterity: In section 3.6.1, we evaluate D’Manus’s prehensile ability by subjecting it to a
variety of objects and grasping scenarios.

2. Tactile Perception: In sections 3.6.2, 3.6.3, we validate the discriminative ability of extensive
tactile sensing by using the D’Manus to perform material, softness, and texture identification
purely based on surface properties.

1PWM and current mode allow for force and hybrid position-force control
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3. Perceptive Generalization: We demonstrate generalization of learned tactile models for
softness and texture identification to unseen objects in section 3.6.3, and unseen tasks in
section 3.6.4, to substantiate the stationarity and richness of ReSkin data.

4. Integrated system: We also corroborate the capabilities of the integrated D’Manus in
section 3.6.4 by exposing it to unseen, real-time interactions in a bin picking setup and
demonstrating automated bin sorting purely from tactile information (no visual inputs).

5. Robustness: Finally, in section 3.6.5, we outline D’Manus’s endurance and resilience
towards extended periods of interaction rich operation.

While the D’Manus can be mounted on any robot arm, we used Franka Emika Panda robot for
all our experiments. Neural network models presented in the following sections are trained on a
single GPU (NVIDIA GeForce GTX 1080 Ti), and only take about 15 minutes of training time.

In the following section, we elaborate on the data collection and modeling choices for our
learned tactile perception models before presenting experimental results in more detail.

3.5 Tactile Perception: Data and Modeling

We learn two generalizable tactile perception models training on ReSkin interaction from a variety
of objects. The closest works in this space [45, 46] are restricted to classification problems that
only demonstrate effectiveness on the same set of objects in the training set. We validate our
models through testing on new, unseen objects. In this section, we detail the data collection setup
and the modeling frameworks used to build these perception models.

3.5.1 Data Collection

To collect tactile interaction data, we fix the D’Manus such that the palm is facing upwards as
shown in Fig. 3.4. For every object, we collect several trajectories of interaction data by placing it
on the palm and executing a noisy, scripted motor babbling policy (at 30 Hz control frequency)
for 10 seconds. While it is possible to train a policy optimized for recognition, we selected motor
babbling due to its simplicity and ability to collect data with minimal user intervention, and to
study the effectiveness of the tactile sensors in isolation from policy learning. Our data collection
trajectory was generated by smooth interpolation between randomly sampled waypoints in the
joint space. The waypoints were sampled in permissible range respecting the joint limits and
self-collision. We found that this naive policy provided sufficient data diversity for training our
models, and demonstrating generalization to unseen objects and tasks.

As the interaction policy is executed, ReSkin data from the fingertips and the palm is streamed
to the control computer at every time step. Each frame of data consists of 3-axis magnetic flux
measurements for each of the 56 magnetometers enumerated in Fig. 3.2. Sample data from an
interaction trajectory can be seen in Fig. 3.5. A more dynamic visualization of the raw data can
be found in the accompanying video.
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Figure 3.4: Data collection setup: Tactile data is collected by placing the object on the palm and
executing a human-scripted interaction policy for motor babble.

Figure 3.5: Sample ReSkin data: Visualization of tactile data from two of the fingers while
interacting with the loofah in Fig. 3.4.
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3.5.2 Model Learning
Vision-based tactile sensors [90, 160] have naturally leveraged convolutional neural networks
(CNNs) as a backbone for processing tactile information, as the signal is fundamentally images.
In contrast, the electromagnetic signals of ReSkin have much less redundancy and have relatively
lower dimensionality. In order to allow the learning algorithm to pick from a larger class of
functions, we choose to use fully connected multilayer perceptrons(MLPs) as building blocks
for the neural architecture used to process ReSkin signal. Further, contact information from
interaction is naturally sequential, and our model architecture must be capable of leveraging
temporal correlations. To ensure this, we use a recurrent neural architecture, an LSTM, at the base
of our model. The neural architecture used in this work, as shown in Fig. 3.6, consists of an LSTM
with 2 hidden layers followed by 3 fully connected layers. All the models in the experiments
take a sequence of magnetic flux vectors Bt×168 as input and are classification models trained to
minimize cross-entropy loss −

∑
x∈X logP (fθ(x) = ŷ).
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Figure 3.6: Model architecture

3.6 Results

3.6.1 Dexterity of the D’Manus
We qualitatively demonstrate the dexterous capabilities of the D’Manus (Fig. 3.8) using interac-
tions with everyday objects. We observe that the D’Manus is effective at grasping and (in-hand
as well as hand-arm) manipulation of day-to-day objects. Its abilities, however, are somewhat
restricted for in-hand manipulation of small objects (e.g. counting coins on palm). This is in
accordance with the dexterity and robustness trade-off we made and detailed in section 3.3.1.

3.6.2 Tactile Perception: Material Identification
To establish the effectiveness of tactile perceptual capabilities, we task the D’Manus to leverage
only its tactile signals to classify objects. The idea is to demonstrate that we can build tactile
models capable of capturing the differences between the tactile signature of different materials
as obtained by the D’Manus. We pick a set of six balls of identical shape and size, but with a
different outer covering – small bubble wrap, large bubble wrap, corrugated cardboard, silicone
sponge, a combination, and no covering material – as shown in Fig. 3.7, and collect interaction
data as described in Sec. 3.5.1. We use a 30-5 train-validation split for each ball.
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Figure 3.7: Material coverings for Material Identification Task: Uncovered, small bubble
wrap, large bubble wrap, corrugated cardboard, silicone sponge and combination of materials

Spherical Tripod PinchWrapLumbricalHook

Figure 3.8: Illustration of the D’Manus grasping different objects with a variety of grasps [43, 156]

We train classification models to learn to predict a probability distribution over the six materials
from tactile data, as detailed in section 3.5.2. Our models show a 71.24% accuracy on the 30
held-out trajectories (5 per material) described above, as shown in Table 3.3. This result confirms
the discriminability of tactile interaction data obtained by the D’Manus.

Task Validation accuracy

Material Identification 71.24%

Softness Classification 76.17%

Texture Classification 59.03%

Table 3.3: The D’Manus can distinguish between different materials purely using tactile feedback
(Sec. 3.6.2). Further, models trained for softness and texture classification generalize to interac-
tions with unseen objects (Sec. 3.6.3).

3.6.3 Perceptive Generalization: Softness and Texture

Having verified the distinguishability of sensory signals of D’Manus, we shift our focus to the
consistency of the sensory signal across different objects and scenarios. We develop tactile
perception models for softness and texture identification and demonstrate its generalization to
unseen objects. For generalization, it is imperative that the (a) D’Manus’s sensors capture overall
surface characteristics from interaction, (b) tactile perception models are robust to sensory drift
over time, and (c) models are effective outside the training environment. To make our models
robust to drift, training data is collected over an extended period of time (a few days). Test data is
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collected in the subsequent days to validate robustness to drift. Further, the bin sorting experiment
in Sec. 3.6.4 is performed about two weeks after training data is collected.

To learn tactile identification models, we would need quantifiable descriptions of surface
characteristics. We create a three-point scale to quantify softness – Hard, Medium, Soft – as
well as texture – Smooth, Medium, Rough. We manually assign softness and texture labels to
over 50 objects by consensus among the authors before starting the study. We use a set of 20
training objects and 9 validation objects for these tasks. The full set of objects and their split
can be found in Fig. 3.9. The corresponding datasets are created by collecting 15 trajectories of
tactile interaction data for each of the training objects and 5 trajectories for each of the validation
objects. We use the training data to train softness and texture identification models and examine
their generalizability to unseen objects.

Training Validation Test

Hard Medium Soft Hard Medium Soft Hard Medium Soft

Sm
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th

M
ed
iu
m

R
ou
gh

Figure 3.9: Datasets used for Softness and Texture Identification Models

Softness Classification

We train a classification model as described in section 3.5.2 to predict softness categories, and
present the results in Table 3.3. Our models successfully learn to classify objects on the softness
scale defined above.

Texture Classification

Training a model for texture classification analogous to softness classification has low gener-
alization on validation set. This can be attributed to the difficulty of characterizing texture
independently of its softness properties. A hard, highly textured ball (Fig. 3.9, bottom left) has
better defined irregularities on the surface when compared to the ball of yarn (Fig. 3.9, bottom
right). Without softness labels, neural networks struggle to find correlations between textured
objects across softness categories.

To get around this problem, we train separate Softness-Conditioned texture identification
models for each softness category trained on the corresponding subset of training data. To make a
prediction, a sequence of tactile measurements is first input to the softness model which outputs
a softness label. The texture model corresponding to this softness label is then used to predict
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a texture label from the same input sequence. The accuracy presented in Table 3.3 is the mean
accuracy over the three softness categories.

A highlight of D’Manus design, as outlined in section 3.3.2, is the large sensorized area of the
palm. To corroborate this design choice, we train standalone softness and texture identification
models corresponding to each individual fingertip and the palm. We evaluate the performance of
these standalone models and present a comparison in Table 3.4. The performance on the individual
finger models is significantly lower than the palm as well as the full prediction model. While
some of this discrepancy can be attributed to the fingers losing contact with the object during parts
of the interaction trajectory, strong performance of other models emphasizes the benefits of large
area sensing available on D’Manus.

Component Softness Accuracy Texture Accuracy

Finger 1 56.27% 49.77%

Finger 2 48.48% 46.99%

Finger 3 59.59% 50.50%

Palm 74.31% 54.20%

All 76.17% 59.03%

Table 3.4: Comparison of models trained using data from different components of the hand.

To further substantiate the strength of tactile perceptual capabilities of the D’Manus, and
demonstrate the integrated system in an unseen environment, we deploy the learned softness and
texture identification models in a tactile-aware bin sorting task in the following section.

3.6.4 Tactile Bin Sorting
As our final experiment, we access the ability of our trained models to generalize to realistic
environments and tasks. For this evaluation, we pick a cluttered bin sorting experiment. We
attempt to pick objects from a cluttered bin and sort them according to softness and texture from
tactile signals. We start with a cluttered bin as shown in Fig. 3.1. The robot samples a random
(x,y) location and reaches down into the bin until the ReSkin signal exceeds a specified threshold,
indicating the presence of an object. Then, a predefined grasp is executed and the hand is raised. If
the grasp is unsuccessful, the robot returns to random location selection. If the grasp is successful,
we predict softness and texture labels and sort the object into corresponding bins. We then replace
it by adding a new object to the bin and the process is continued. Over 20 successful grasps of
different objects, our models achieve a prediction accuracy of 65% on both softness and texture
prediction, confirming the ability of our models to extend to unseen tasks and environments in
the real world. Further, it is worth noting that the tactile models trained with the hand upright
are able to generalize to this setting where the hand is primarily operated in a downward-facing
configuration. Through this experiment, we validate the ability of the integrated D’Manus system
as well the generalizability of our models in performing tactile-rich tasks in unseen, real-world
environments.
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3.6.5 Robustness and Reliability
Amongst various versions of the platform, we have logged over 10,000 hours of operational time
over the course of 12 months in 3 different locations with a total of 5 breakages. These breakages
consisted of three motor failures, one 3D printed part failure, and operational deterioration of
wires – all of which were repaired in-house within 30 minutes by computer scientists unfamiliar
with the working details of the D’Manus. We attribute the robustness largely to the motor selection
- the high-quality Dynamixel XM430-210 uses metallic gears and a high safety factor for our
required force range. The version of the platform being released has significantly benefited
from aggressive real world testing of prior versions. The specific copy of the D’Manus used for
experimental results has been running for over 400 hours over the last 8 months with no breakages,
corroborating our claims about the robustness and reliability of this system for real-world learning
in contact-rich robotic tasks.

3.7 Conclusions and Limitations
We present the D’Manus – a low-cost, 3D printable, prehensile robotic hand geared towards robot
learning. The hand comes with multiple actuation modes, proprioceptive sensing abilities as
well as ReSkin-based large-area tactile sensing. We demonstrate the dexterity of this platform
in grasping a variety of objects. To exemplify the utility of the large-area sensing, we validate
the discriminability of the tactile signal by learning models for material identification as well
as category-level softness and texture identification. Further, we illustrate the transferability
of learned tactile models to unstructured, real-world envirionments through a touch-based bin
picking and sorting task. The design, assembly and setup instructions have all been open-sourced
to facilitate adoption by the community.
Limitations: While we validate the tactile capabilities of the hand, it falls short of validating the
tactile sensing in conjunction with dexterity. For future work, we would like to build a dexterous
policy with tactile sensing to explore this further. The global semiconductor shortage limited the
number of magnetometer chips we were able to integrate into this system. As a result, the system
lacks sensing on the phalanges, ie. the surface of the motors, as well as the sides and backs of
the fingertips. The design principles outlined in section 3.3.2 make this a simple extension of the
present version and will be addressed in subsequent work. We also believe that unlocking the full
potential of all-over tactile sensing requires integration of other sensory modalities like vision and
audio, allowing the system richer sensory inputs to solve complex dexterous tasks. Finally, this
work lacks quantitative comparisons to other existing platforms due to the high cost involved in
such a pursuit. We hope that open-sourcing D’Manus and its low cost will help with comparative
evaluations with our system.
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Chapter 4

AnySkin: Tailoring tactile skins for robot
learning

Bhirangi, R., Pattabiraman, V., Cao, Y., Haldar, S., Majidi, C., Gupta, A., Hellebrekers, T., &
Pinto, L. In Preparation.

VP and YC were responsible for data collection. SH and RB were responsible for policy learning
architecture search. VP, SH and RB were responsible for experiment design and analysis. RB was
responsible for designing the fabrication procedure for AnySkin.

Abstract
While tactile sensing is widely accepted as an important and useful sensing modality, its use pales
in comparison to other sensory modalities like vision and proprioception. AnySkin addresses the
critical challenges of versatility, replaceability, and data reusability, which have so far impeded
the development of an effective solution. By decoupling the sensing electronics from the sensing
interface, AnySkin simplifies integration as well as replacement, making it as straightforward as
putting on a phone case and connecting a charger. This work makes three key contributions: first,
we introduce a streamlined fabrication process and a design tool for creating an adhesive-free,
durable and easily replaceable magnetic tactile sensor; second, we characterize and policy learning
with a AnySkin sensor; and finally, we demonstrate the generalizability of models trained on one
instance of AnySkin to new instances.
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4.1 Introduction

Touch sensing is widely recognized as a crucial modality for biological movement and control [77,
78, 79]. Unlike vision, sound, or proprioception, touch provides sensing at the point of contact,
allowing agents to perceive and reason about forces and pressure. However, a closer examination
of robotics literature reveals a different narrative. Prominent works and current state-of-the-art
in robot learning primarily utilize vision sensing in conjunction with proprioception to train
manipulation skills [16, 161], often ignoring touch. If touch is indeed vital from a biological
perspective, why does it remain a second-class citizen in sensorimotor control?

To address this question, let’s examine what made cameras ubiquitous in robotics. Three
key factors are at play: cost, convenience, and consistency. Cameras are relatively inexpensive
(under $20), easy to integrate on a wide variety of robot platforms (e.g. multi-view, depth, ego-
centric), and allow for models trained on them (e.g. object detection, segmentation) to easily
transfer to images captured with new cameras. In contrast, touch sensors are often costly due to
expensive fabrication processes [132] or the need for high-end components (e.g., Gelsight). They
are inconvenient to use on different robot platforms, being custom-built for specific robot end-
effectors and constrained form factors requiring extensive adaptation for different shapes [40, 146].
Finally, touch sensors are inconsistent. Due to boutique fabrication, sensor profiles can vary
significantly even when produced through the same process. This inconsistency poses a challenge
when transferring tactile-based models across different instances of the same sensor. This transfer
is particularly critical for touch sensors, which must conform to their environment to ensure stable
grasps when sensing contact information. The requirement for a soft sensing interface to achieve
conformal contact accelerates wear, leading to more frequent replacements.

In this work we present AnySkin, a new touch sensor that is cheap, convenient to use and
consistent across different sensor instances. AnySkin builds on ReSkin [13], a magnetic-field
based touch sensor, by improving its fabrication, separating the sensing mechanism from the
interaction surface, and developing a new attachment mechanism. This allows AnySkin to (a)
have stronger magnetic fields, which significantly improves its sensor response, (b) be easy to
fabricate for arbitrary surface shapes, which allows easy use on different end-effectors, (c) be
easy to replace the sensor without adverse affecting the data collection process or the efficacy of
tactile-model trained on previous sensors.

We run a suite of experiments to understand the efficacy of AnySkin as a touch sensor for
policy learning. Our main findings can be summarized below:

1. AnySkin can readily be used on a variety of robots including xArm, Franka, and the four-
fingered LEAP hand [124] as shown in Figure 4.1 (See fabrication details in Section 4.4).

2. AnySkin is compatible with ML techniques for visuo-tactile policy learning for precise
tasks such as inserting plugs (See learning details in Section 4.5).

3. Models trained on one AnySkin directly transfers to a different AnySkin with only a
6% reduction in performance on the plug insertion task compared to the 66% drop in
performance with ReSkin sensors (See results in Section 4.5).

AnySkin is fully open-sourced and videos of fabrication, attachment, and robot policies are
best viewed on our project website.
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Figure 4.1: AnySkin is easy to integrate with a range of end effectors

4.2 Related Work

4.2.1 Tactile sensing
Existing literature on tactile sensing explores a wide range of modalities, each with their own
set of advantages and limitations. Capacitative sensors [128] sense contact through changes
in capacitance, offering high sensitivity, but struggling to model shear force and being prone
to breakage due to direct electrical connections between the circuitry and elastomer. Resistive
sensors [132] are simple and durable, but tend to provide more spatially discrete sensing with
lower spatial resolution. Optical sensors [18, 19] capture contact information using cameras to
track the deformation of an elastomer and provide high spatial resolution, but often pose hard,
stringent limits on the sensor form factor, due to physical constraints on the camera field of view.
This complicates integration for a wide range of applications and significantly increases the effort
required to sensorize surfaces of different shapes and sizes.

Magnetic tactile sensors [69, 70] largely overcome these limitations due to three salient advan-
tages: (a) separating the sensing electronics from the sensing interface to improve robustness (b)
compatibility with different form factors, and (c) an ability to capture shear forces as demonstrated
in [13]. Two prominent classes of magnetic sensors in robotics right now – ReSkin [13] and
uSkin (by Xela Robotics) use elastomeric sensing interfaces with magnetic microparticles and
macro-sized magnets respectively. In this work, we build on ReSkin sensors due to their lower
cost and ease of fabrication.

4.2.2 Replaceability for Tactile Sensors
Recent developments in rapid prototyping and elastomer technology have spurred a substantial
rise in the number of robotic tactile sensors. Discussions on replaceability of these sensors
continue to be few and far between. There are two main factors to consider when evaluating
replaceability: (a) the physical ease of replacing the sensor, and (b) signal consistency when
replacing the sensor with a new instance of the same sensor. Relatively speaking, the former is
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more frequently discussed [13, 90, 150] and resolved by simply separating the sensing interface
– generally the elastomer that is more susceptible to wear – from the sensing electronics which
tend to last much longer. The latter, however, tends to be much less discussed, and anecdotal
evidence suggests most researchers circumvent the problem by sticking to a single instance of the
sensor throughout their experiments. Signal consistency is imperative to making tactile sensing a
ubiquitous presence in robot learning, since it facilitates better generalizability of trained models
when sensing interfaces are inevitably replaced. In this paper, we evaluate the consistency of
AnySkin signal through a policy learning experiment in Section 4.5.

4.2.3 Visuotactile Policy Learning
As tactile sensors have increased in number and popularity, so have learning frameworks attempt-
ing to use tactile data in conjunction with other modalities to learn policies for robot manipulation.
A number of these works however, are restricted to simulation [65] with limited transfer to the real
world [92]. Works that demonstrate impressive sim2real transfer are often restricted to imprecise
continuous motion tasks, and the corresponding algorithms do not admit themselves to precise
manipulation in the real world [118, 157]. Often, learned multimodal policies are evaluated
with very limited variability prompting questions of their improvement over open-loop rollouts
of recorded demonstrations [92, 94], or do not sufficiently disentangle the effect of different
modalities, thereby bringing into question the multimodal nature of the policy [28]. In this work,
we learn visuotactile policies capable of solving a highly precise manipulation task: plug insertion,
while varying the location of the socket each time, and achieving successful insertion for unseen
socket locations in the real world, while providing a comprehensive analysis of the disentangled
effect of different modalities.

4.3 Background

4.3.1 ReSkin: replaceable magnetic tactile skins
ReSkin [13] is a set of magnetic tactile skins that uses a magnetic elastomer in conjunction with
a magnetometer circuit to measure deformation. In this work, we build on the ReSkin sensor
to create the AnySkin sensor that enables us to use the same circuitry as [13], but an upgraded,
self-adhering skin. The fabrication of these skins is described in Section 4.4, and the advantages
in terms of replaceability are elucidated in Section 4.5.

4.3.2 BAKU: transformer architecture for multimodal learning
In order to learn visuotactile policies in this work, we build on the BAKU architecture [62].
A schematic representation of the architecture used in our Behavior Cloning experiments in
presented in Figure 4.2. Each modality – four cameras and a tactile sensor – is first tokenized
using a corresponding encoder. An action token is appended to the tokenized encoders and the
resulting token sequence is passed through a transformer encoder. The output of this encoder
corresponding to the action token is then passed through an action head (in our case, an MLP) and
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Figure 4.2: BAKU architecture used in our experiments

is used to predict the next H actions [162]. At evaluation time, drawing from action chunking
with transformers [162], we use a smoothed average of the current action predicted over the last
H timesteps.

4.4 Fabrication

4.4.1 Mold design
While ReSkin significantly reduces the difficulty of replacing the sensing skin by separating the
sensing interface from the electronics, robust integration is still challenging due to the difficulty
of securing a soft skin to a hard surface. Using screws [13] results in a loose fit between the
electronics and skin and tends to tear the skin at the fastening point. While using adhesives can
be an attractive option on face value, adhesion between silicone and non-silicone materials is an
active topic of research and the process of properly securing the skin can be cumbersome and
time-consuming. Furthermore, adhesives tend to wear out over time and replacing the adhesive
can result in significant variability in sensor response as noted in Chapter 3. To circumvent these
problems, we present a self-adhering mold design that enables us to design skins that naturally
cling to the surface of the end effector similar to a phone case.

To create self-adhering skins, we create two part mold as shown in Fig. 4.3. We use a
triangular shape to allow the fingertip to reach into cramped spaces and choose a thickness of 2
mm following [13]. While the results in this paper are presented for the triangular shape shown
in Fig. 4.3, we also release a CAD tool that can convert a 2D drawing of a fingertip surface
and design a corresponding 2-part mold for creating custom-shaped skins. Unlike a number of
tactile sensors proposed in recent years that require significant effort and systems research for the
smallest change in form factor [90], AnySkin seeks to simplify the process of diversifying your
tactile sensor.

4.4.2 Magnetic elastomer fabrication
For the fabrication of the magnetic elastomer, we build upon the procedure detailed in Chapter 3,
incorporating a pulse magnetizer to magnetize the skins. To ensure a more uniform distribution
of magnetic particles throughout the skin, we utilize finer NdFeB MQFP particles. Additionally,
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Figure 4.3: Fabrication procedure for AnySkin

we employ custom-designed two-part molds to create self-adhering, adhesive-free skins. These
molds are 3D-printed using PLA plastic and are precisely aligned using integrated alignment
guides. While the results presented in this paper use a triangular tip, as depicted in Figure 4.3, we
also provide an open-source CAD tool that enables users to generate new mold designs by simply
sketching the desired 2D surface of the tip. The two-part mold is secured with simple plastic
clamps, and the elastomer compound is mixed and degassed before the magnetic microparticles
are manually stirred into the mixture, followed by another round of degassing. After degassing,
the magnetic elastomer mixture is poured through the inlet point shown in Figure 4.3, with the
process paused as needed to allow the mixture to flow through the mold and emerge at the outlet
point. The filled mold is then placed in a vacuum chamber, where a pressure of 29 mm Hg is
applied. The process is paused intermittently to prevent overflow as the bubbles dissipate. This
pressure is maintained until the mixture stops bubbling before the vacuum is released. The molds
are left to rest for 16 hours before being carefully opened to reveal the fully cured AnySkin.
After removing any excess material, the cured skin is placed in the pulse magnetizer, where a 4
Tesla (40 kOe) impulse is applied perpendicular to the largest surface of the skin, completing the
magnetization process.

4.5 Experiments

4.5.1 Experimental Setup

Our experimental setup consists of a 7-DOF X-Arm robot as shown in Figure 4.4. There are three
fixed cameras attached to the frame of the robot cage, in addition to one wrist camera attached to
the robot. The AnySkin sensor is integrated with one of the tips attached to the X-Arm gripper,
while the other tip is identically shaped and covered with non-sensorized elastomer. Manipulation
policies are trained using behavior cloning; the Meta Quest 3 is used with the OpenTeach [74]
library to collect 100 teleoperated demonstrations for the task at hand. For the analysis presented
here, we evaluate performance on the plug insertion task shown in Figure 4.5. The location of
the socket strip is changed for each demonstration in training data. For evaluation, we set aside
socket strip locations never seen in the training data and use the same set of locations for all policy
evaluations presented here.
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Figure 4.4: Experimental setup for visuotactile policy learning consisting of three fixed cameras,
one wrist camera, and an AnySkin sensor on one of the gripper tips

Figure 4.5: Progression of the plug insertion task used in policy learning experiments
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Modalities used Success rate

Fixed cameras 0/15

Fixed cameras, wrist camera 3/15

Fixed cameras, AnySkin 5/15

Fixed cameras, wrist camera, AnySkin 10/15

Fixed cameras, wrist camera, swapped AnySkin 9/15

Table 4.1: Policy performance on the plug insertion task with different input sets.

4.5.2 Results

In our policy learning experiments for the plug insertion task, we aim to address two primary
questions:

• What impact do the addition of a wrist camera and the AnySkin sensor have on policy
performance?

• How does substituting AnySkin influence the performance of the learned policy?

To explore the first question and isolate the effects of various inputs on policy performance,
we trained four distinct policies, each utilizing a different combination of inputs, as detailed in
Table 4.1. We began by establishing a baseline policy using only fixed cameras, which failed
entirely to perform the task. This outcome was expected, given that the insertion task demands
highly precise control of the robot, which is challenging to achieve using the distant perspective
provided by the fixed cameras alone. Next, we assessed policies that incorporated the fixed
cameras along with either the wrist camera or the AnySkin sensor, but not both. While these
policies were able to complete the task, their performance remained suboptimal. Finally, we
evaluated a policy that integrated both the wrist camera and the AnySkin sensor in addition to the
fixed cameras. This combination led to a twofold improvement in performance compared to the
next best policy. This result underscores the value of using wrist cameras in tandem with tactile
sensing, such as the AnySkin sensor, for executing precise manipulation tasks effectively.

To address the second question, we applied the same policies using fixed cameras, the wrist
camera, and the AnySkin sensor, but with a new tactile skin. This approach allows us to measure
the effect of the skin replacement on performance, providing insight into how changing tactile
skins influences the learned policies. Our results show a minor performance drop of about 6%
with the new skin as shown in Table 4.1. In contrast, using ReSkin sensors for an analogous
experiment had similar success rates with the training data skin, but swapping skins led to a
significant performance drop of approximately 60%, rendering the policy unable to complete the
task. This demonstrates that the AnySkin sensor offers better signal consistency across different
instances, making it more replaceable than the ReSkin sensor.
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4.6 Conclusion
To conclude, we have developed an enhanced version of the ReSkin sensor, which eliminates the
need for adhesive and offers improved signal consistency. This advancement is achieved through
a refined fabrication process that incorporates a two-part mold and a pulse magnetizer. We have
also integrated the AnySkin sensor into policy learning for a precision manipulation task, where it
significantly outperforms the combination of fixed cameras and a wrist camera. Furthermore, the
sensor exhibits superior replaceability compared to ReSkin.

Given these results, the AnySkin sensor stands out as a promising alternative for robot learn-
ing, thanks to its seamless integration with various robotic systems. Its ease of replacement is
particularly advantageous for gathering extensive tactile data across different platforms, poten-
tially facilitating large-scale representation learning with touch information. Even though our
experiments are focused on a single task, further preliminary results suggest that our findings
on replaceability and policy learning gains are applicable to a range of precision manipulation
tasks, including card swiping and USB insertion. While some limitations of ReSkin, such as
interference from magnetic objects, persist in AnySkin, we believe that AnySkin holds significant
promise as an effective and scalable tactile solution for robotic manipulation, paving the way for
future advancements in this field.
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Chapter 5

Hierarchical state space models for
continuous sequence-to-sequence modeling

Bhirangi, R., Wang, C., Pattabiraman, V., Majidi, C., Gupta, A., Hellebrekers, T., & Pinto, L.
(2024). Hierarchical State Space Models for Continuous Sequence-to-Sequence Modeling. In
Forty-first International Conference on Machine Learning.

CW and VP were responsible for collecting data and setting up experiments for the ”collected
datasets” presented as part of CSP-Bench. RB was responsible for designing the model architec-
ture, training and evaluating models, as well as the analysis presented in the paper.

Abstract

In delving into representation learning for ReSkin, we found that reasoning from sequences of
raw sensory data is a ubiquitous problem across fields ranging from medical devices to robotics.
These problems often involve using long sequences of raw sensor data (e.g. magnetometers,
piezoresistors) to predict sequences of desirable physical quantities (e.g. force, inertial measure-
ments). While classical approaches are powerful for locally-linear prediction problems, they
often fall short when using real-world sensors. Sensors are typically non-linear, are affected
by extraneous variables (e.g. vibration), and exhibit data-dependent drift. For many problems,
the prediction task is exacerbated by small labeled datasets since obtaining ground-truth labels
requires expensive equipment. In this work, we present Hierarchical State-Space Models (HiSS),
a conceptually simple, new technique for continuous sequential prediction. HiSS stacks structured
state-space models on top of each other to create a temporal hierarchy. Across six real-world
sensor datasets, from tactile-based state prediction to accelerometer-based inertial measurement,
HiSS outperforms state-of-the-art sequence models such as causal Transformers, LSTMs, S4,
and Mamba by at least 23% on MSE. Our experiments further indicate that HiSS demonstrates
efficient scaling to smaller datasets and is compatible with existing data-filtering techniques. Code,
datasets and videos can be found on https://hiss-csp.github.io.
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5.1 Introduction
Sensors are ubiquitous. From air conditioners to smartphones, automated systems analyze sensory
data sequences to control various parameters. This class of problems - continuous sequence-to-
sequence prediction from streaming sensory data - is central to real-time decision-making and
control [122, 130]. Yet, it has received limited attention compared to discrete sequence problems
in domains like language [39] and computer vision [38].
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Figure 5.1: CSP-Bench is a publicly accessible benchmark for continuous sequence prediction
on real-world sensory data. We show that Hierarchical State Space Models (HiSS) improve over
conventional sequence models on sequential sensory prediction tasks.

Existing approaches for prediction from sensory data have largely relied on model-based
solutions [37, 149]. However, these approaches require domain expertise and accurate modeling
of complex system dynamics, which is often intractable in real-world applications. Moreover,
sensory data contains noise and sensor-specific drift that must be accounted for to achieve high
predictive performance [99]. In this work, we investigate deep sequence-to-sequence models that
can address these challenges by learning directly from raw sensory streams.

However, to make progress on continuous sequence prediction (CSP), we first need a repre-
sentative benchmark to measure performance. Most prior works in CSP focus on a single class of
sensors [71, 99], making it difficult to develop general-purpose algorithms. To address this, we
created CSP-Bench, a benchmark consisting of six real-world labeled datasets. This collection
consists of three datasets created in-house and three curated from prior work – a cumulative 40
hours of real-world data.

Given data from CSP-Bench, an obvious modeling choice is to use state-of-the-art sequence
models like LSTMs or Transformers. However, sensory data is high-frequency, leading to long
sequences of highly correlated data. For such data, Transformers quickly run out of memory,
as they scale quadratically in complexity with sequence length [142], while LSTMs require
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significantly larger hidden states [87]. Deep State Space Models (SSMs) [56, 57] are a promising
new class of sequence models. These models have been shown to effectively handle long context
lengths while scaling linearly with sequence length in time and memory complexity, with strong
results on audio [54] and language modeling. On CSP-Bench, we find that SSMs consistently
outperform LSTMs and Transformers with an average of 10% improvement on MSE metrics (see
Section 5.6). But can we do better?

A key insight into continuous sensor data is that it has a significant amount of temporal
structure and redundancies. While SSMs are powerful for modeling this type of data, they are
still temporally flat in nature, i.e. every sample in the sequence is reasoned with every other
sample. Therefore, inspired by work in hierarchical modeling [135, 158], we propose Hierarchical
State-Space Models (HiSS). HiSS stacks two SSMs with different temporal resolutions on top of
each other. The lower-level SSM temporally chunks the larger full-sequence data into smaller
sequences and outputs local features, while the higher-level SSM operates on the smaller sequence
of local features to output global sequence prediction. This leads to further improved performance
on CSP-Bench, outperforming the best flat SSMs by 23% median MSE performance across tasks.
We summarize the contributions of this paper as follows:

1. We release CSP-Bench, the largest publicly accessible benchmark for continuous sequence-to-
sequence prediction for multiple sensor datasets. (Section 5.4)

2. We show that SSMs outperform prior SOTA models like LSTMs and Transformers on CSP-
Bench. (Section 5.6.1)

3. We propose HiSS, a hierarchical sequence modeling architecture that further improves upon
SSMs across tasks in CSP-Bench. (Section 5.5)

4. We show that HiSS increases sample efficiency with smaller datasets, and is compatible with
standard sensor pre-processing techniques such as low-pass filtering. (Sections 5.6.5, 5.6.6)

5.2 Related Work

5.2.1 Sequence-to-sequence prediction for sensory data

Most real world control systems, such as wind turbine condition monitoring [130], MRI recogni-
tion [84] and inertial odometry [4, 98], often process noisy sensory data to deduce environmental
states. Traditionally, these problems were solved as estimation and control problems using filtering
techniques, like the Kalman Filter [104, 126], that still require complex sensor models. Deep
learning has shown promise in domains without analytical models, yet many solutions continue to
be sensor-specific [71, 153].

Deep State Space Models (SSMs) [56, 57, 116, 127] are an emerging class of models that
improve over conventional sequence models in modeling long-range dependencies – an important
consideration for high-frequency sensory data. However, to the best of the authors’ knowledge,
none of these models have been evaluated on continuous sensing data beyond audio [54]. In this
work, we benchmark deep SSMs on six sensory sequence-to-sequence prediction tasks on sensors
such as ReSkin, XELA, accelerometers, and gyroscopes.
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5.2.2 Hierarchical Modeling

Incorporating temporal hierarchies into sequence modeling architectures has been shown to
improve performance across a number of tasks like recommender systems [158], human activity
recognition [135] and reinforcement learning [49, 88, 134]. HiSS is inspired by this line of work
and extends it to SSMs for continuous seq-to-seq tasks.

5.2.3 Data for Continuous Sequence Prediction

A primary challenge with developing general models for continuous sequence prediction is
the lack of a concrete evaluation benchmark. Odometry/SLAM datasets [50, 101] are viable
candidates [21, 131] for CSP datasets. But most data across sensory modalities like audio [51, 148],
ECG [109, 144], IMU [22, 24, 106] and tactile sensing [14, 45, 115] is labeled sparsely only at
the sequence level.

The recent proliferation of sensors in smartphones and other smart devices has resulted in
renewed interest in creating labeled datasets for CSP [23, 71]. A common setting is to use a
motion capture system to obtain dense, sequential labels for sensory data from inexpensive IMU
sensors [48, 138]. In this work, we curate three such datasets as part of CSP-Bench: a continuous
sequence prediction benchmark.

Another category of sensors of significant interest for CSP are touch sensors. Touch sensors
capture the dynamics of contact between the robot and its surroundings. Deep learning and rapid
prototyping have driven a rapid surge across a range of tactile modalities from optical [90, 160] to
capacitative [128] and magnetic sensing [13, 137]. Most work on continuously reasoning over
tactile data is directed towards policy learning [19, 59, 60], where small datasets and confounding
factors make it difficult to evaluate the efficacy of architectures for CSP. In this work, we set up
supervised learning problems to investigate sequence-to-sequence models for two magnetic tactile
sensors: ReSkin [13] and XELA [137].

5.3 Background

5.3.1 Sequence-to-sequence Prediction

Consider a data-generating process described by the Hidden Markov Model in Figure 5.2. The
observable processes – sensor, S, and output, Y , represent two measurement devices that capture
the evolution of the unobserved latent process, X . Generally, S is a noisy, low-cost device like an
accelerometer, and Y is a precise, expensive labeling system like Motion Capture. The goal is to
learn a model that allows us to estimate Y using data sequences from S.

The CSP problem involves estimating the probability of the t-th output observation, yt, given
the history of input observations, s1:t. For the experiments listed in this paper, we approximate this
probability by a Gaussian with constant standard deviation, ie. p(yt|s1, . . . st) = N (µθ(s1:t), σ

2I),
where σ is a constant, and parameterize µθ by a deep sequence model. Our goal is to find the
maximum likelihood estimator for this distribution – argminθ

∑
t ∥yt − µθ(s1:t)∥2. Therefore,

our models are trained to minimize MSE loss over the length of the output sequence.
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Figure 5.2: Hidden Markov Model for a two-sensor system. X is a data-generating process.
Sensor, S, and output, Y , are two observable processes.

5.3.2 Deep State Space Models
Deep State Space Models (SSMs) build on simple state space models for sequence-to-sequence
modeling. In its general form, a linear state space model may be written as,

x′(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t),

mapping a 1-D input sequence u(t) ∈ R to a 1-D output sequence y(t) ∈ R through an implicit
N-D latent state sequence x(t) ∈ Rn. Concretely, deep SSMs seek to use stacks of this simple
model in a neural sequence modeling architecture, where the parameters, A,B,C and D for each
layer can be learned via gradient descent.

SSMs have been proven to handle long-range dependencies theoretically and empirically [58]
with linear scaling in sequence length, but were computationally prohibitive until Structured
State Space Sequence Models (S4) [57]. S4 and related architectures by [44, 116, 127] are
based on a new parameterization that relies on time-invariance of the SSM parameters to enable
efficient computation. Recently, Mamba [56] improved on S4-based architectures by relaxing the
time-invariance constraint on SSM parameters, while maintaining computational efficiency. This
allows Mamba to achieve high performance on a range of benchmarks from audio and genomics
to language modeling, while maintaining linear scaling in sequence length. In this paper, we
benchmark the performance of SSMs like S4 and Mamba on sensory CSP tasks, and show that
they consistently outperform LSTMs and Transformers.

5.4 CSP-Bench: A Continuous Sequence Prediction Bench-
mark

We address the scarcity of datasets with dense, continuous labels for sequence-to-sequence
prediction by collecting three touch datasets with 1000 trajectories each and combining them
with three IMU datasets from literature to create CSP-Bench. For each dataset, we design tasks
to predict labeled sequences from single sensor data to avoid confounding factors. We also
include data from varied sources like cameras and robot movements to facilitate future research in
multi-sensor integration and multimodal learning. The detailed characteristics of these datasets
are summarized in Table 5.1, aiming to support diverse sensory data analysis.
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Figure 5.3: CSP-Bench is comprised of six datasets. Three datasets – ReSkin Marker Writing,
ReSkin Intrinsic Slip and XELA Joystick Control are tactile datasets collected in-house on two
different robot setups as demonstrated above. Three other datasets – RoNIN [71], VECtor [48]
and TotalCapture [138] are curated open-source datasets.

5.4.1 Touch Datasets

Our touch datasets are collected on two magnetic tactile sensor designs: ReSkin [13] and
Xela [137]. The ReSkin setup consists of a 6-DOF Kinova JACO Gen1 robot with a 1-DOF RG2
OnRobot gripper as shown in Figure 5.3. Both gripper surfaces are sensorized with a 32 mm ×30
mm ×2 mm ReSkin sensor. Each sensor has five 3-axis magnetometers which measure changes
in magnetic flux resulting from the deformation of the skin on the gripper surface. Appendix A.1
contains more details on the fabrication and integration of ReSkin into the gripper.

The Xela setup consists of a 7-DOF Franka Emika robot fitted with a 16-DOF Allegro hand
by Wonik Robotics. Each finger on the hand is sensorized with three 4x4 uSkin tactile sensors and
one curved uSkin tactile sensor from XELA Robotics as shown in Figure 5.3. Sensor integration
was provided by XELA robotics, which was designed specifically for the Allegro Hand. While
the underlying sensory mode is the same for both ReSkin and Xela, they differ in spatial and
temporal resolution, physical layout, and magnetic source.

ReSkin: Marker Writing Dataset

We collect 1000 Kinova robot trajectories of randomized linear strokes across a paper. Initially,
the marker is arbitrarily placed between the gripper tips, and data collection begins when the
marker touches the paper. The robot then moves linearly between 8-12 random points uniformly
sampled within a 10cm x 10cm workspace, pausing for a randomly sampled delay of 1-4 seconds
after each motion. Images of sample trajectories can be found in Appendix A.3.

The goal of this sequential prediction problem is to use tactile signal from the gripper to
predict the velocity of the end-effector in the plane of the table. Velocity labels are easily obtained
from robot kinematics, and serve as a proxy for the velocity of the marker strokes against the
paper. What makes this problem challenging is that the sensor picks up contact information from
both, the relative motion between the marker and the gripper, and the motion of the marker against
the paper. The model must learn to disentangle these two motions to make accurate predictions.
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Table 5.1: Summary of all the modalities present in CSP-Bench. Modalities used for training are
italicized. In addition to the data used for training models, we also release synchronized video
and robot kinematics data to facilitate further research in CSP problems.

Dataset Modalities Model Inputs Model Outputs Size

(dim) (dim) (min)

Marker Writing ReSkin (100 Hz), 2 Cameras
(30 Hz), Robot (45 Hz)

ReSkin (30) End-effector
velocity (2)

420

Intrinsic Slip ReSkin (100 Hz), 3 Cameras
(30 Hz), Robot (45 Hz)

ReSkin (30) End-effector
velocity (3)

640

Joystick Control Xela (100 Hz), 2 Cameras (30
Hz), Robot (50 Hz), Hand
(300 Hz), Joystick (20 Hz)

Xela (552) Joystick State
(3)

580

VECtor
[48]

IMU (200 Hz), 2 Cameras (30
Hz), RGBD (30 Hz), Lidar
(10 Hz), MoCap (120 Hz)

IMU (7) User velocity
(3)

22

TotalCapture
[138]

IMU (60 Hz), 8 Cameras (60
Hz), MoCap (60 Hz)

IMU (39) Joint velocities
(60)

45

RoNIN
[71]

IMU (200 Hz), 3D Tracking
Phone (200 Hz)

IMU (7) User velocity
(2)

600
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ReSkin: Intrinsic Slip Dataset

We again use the Kinova setup to collect 1000 trajectories of intrinsic slip – the gripper grasping
and slipping along different boxes clamped to a table. At the start of every episode, we close the
gripper at a random location and orientation on the box and start recording data. We sample 8-12
random locations and orientations within the workspace of the robot along the length of the box,
and then command the robot to move along the box while slipping against it. We use 10 boxes
of different sizes to collect this dataset to improve data diversity in terms of contact dynamics.
Example images and dimensions are available in Appendix A.3.1.

The goal of the sequential prediction problem is to use the sequence of tactile signals from the
gripper tips to predict the translational and rotational velocity of the end-effector (again obtained
from robot kinematics) in the plane of the robot’s motion. In addition, the abrasive nature of the
task causes the skin to wear out over time. To account for this wear, we change the gripper tips
and skins after 25 trajectories on every box, improving data diversity as a result.

XELA: Joystick Control Dataset

For our final dataset, we record 1000 trajectories of data from the Allegro hand interacting with
the joystick as shown in Figure 5.3. The hand/robot setup is teleoperated using a VR-based
system derived from HoloDex [6]. Joystick interactions are logged synchronously with robot
data, tactile sensing data, and the camera feed. Specifically, this includes the full robot kinematics
(7 DOF Arm at 50 Hz + 16 DOF Hand at 300 Hz), XELA tactile output (552 dim at 100 Hz),
and 2 Realsense D435 cameras (1080p at 30 Hz). Each trajectory consists of 25-40 seconds of
interaction with the joystick.

The goal of the sequential prediction problem is to use tactile signal from the Xela-sensorized
robot hand to predict the state of the joystick, which is recorded synchronously with all the
other modalities. The extra challenge with this dataset, in addition to the significantly higher
dimensionality of the observation space, is the noisier trajectories resulting from human demos
instead of a scripted policy.

5.4.2 Curated Public Datasets

In addition to the tactile datasets we release with this paper, we also test our findings on data from
other datasets, particularly ones using IMU sensor data (illustrated in Figure 5.3) – the RoNIN
dataset [71] which contains smartphone IMU data from 100 human subjects with ground-truth 3D
trajectories under natural human motions, the VECtor dataset [48] – a SLAM dataset collected
across three different platforms, and the TotalCapture dataset – a 3D human pose estimation
dataset.

5.5 Hierarchical State-Space Models (HiSS)
In this work, we focus on continuous sequence-to-sequence prediction problems for sensors
i.e. problems that involve mapping a sequence of sensory data to a sequence of outputs. In
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Figure 5.4: (Left) Flat SSM directly maps a sensor sequence to an output sequence. (Right) HiSS
divides an input sequence into chunks which are processed into chunk features by a low-level
SSM. A high-level SSM maps the resulting sequence to an output sequence.

the following sections, we describe our preprocessing pipeline and HiSS – our approach to
sequence-to-sequence reasoning at different temporal scales.

5.5.1 Data Preparation and Sampling
Every sensor in the real world operates at a different frequency, and data from different sensors is
therefore collected at different nominal frequencies. Generally, our sensor sequences come from
an inexpensive, noisy sensor operating at a higher frequency than an expensive, high precision
device which gives us output sequences. To emulate this scenario and standardize our experiments,
all sensor sequences are resampled at a frequency of 50Hz, and output sequences are resampled at
5Hz for all the datasets under consideration, unless specified otherwise. The specific choice of
these frequencies is dictated by the sampling frequencies of sensors in the available data.

All the sensors considered in CSP-Bench are prone to drift; therefore, in line with previous
work [13, 60, 71], we estimate a resting signal at the start of every sensor trajectory and deviations
from this resting signal are passed to the model. Since sensor drift can be causally data-dependent,
the entire sensory trajectory is passed to the model as input. Sensor and output sequences are
normalized based on data statistics for their corresponding datasets, and details are listed in
Appendix A.2. Additionally, we find that appending one-step differences to every element in the
sensor sequence helps improve performance, in line with numerous prior works [26, 72].

5.5.2 Model Architecture
Here we describe Hierarchical State Space Models (HiSS) – a simple hierarchical architecture
that uses SSMs to explicitly reason over sequential data at two temporal resolutions, as shown
in Figure 5.4. The sensor sequence is first divided into a set of equally-sized chunks of size k.
Each chunk is passed through a shared SSM, say S4, which we refer to as the low-level SSM.
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The outputs of the low-level SSM corresponding to the k-th element of each chunk are then
concatenated to form a rarified chunk feature sequence. Finally, this sequence is passed through a
high-level sequence model to generate the output sequence.

Why should HiSS work? Sequential sensory data is subject to phenomena that occur at
different natural frequencies. For instance, an IMU device mounted on a quadrotor is subject
to high-frequency vibration noise and low-frequency drift characteristic of MEMS devices [83].
With HiSS, our goal is to create a neural architecture with explicit structure to operate at dif-
ferent temporal scales. This will allow the low-level model to learn effective, temporally local
representations, while enabling the high-level model to focus on global predictions over a shorter
sequence.

5.5.3 Training details

We focus on sequence-to-sequence prediction tasks. All our models are trained end-to-end to
minimize MSE loss as explained in Section 5.3.1. For all tactile datasets and VECtor, we use an
80-20 train-validation split. For the RoNIN dataset, we use the first four minutes of every trajectory
for our analysis, and use a validation set consisting of trajectories from unseen subjects. For
TotalCapture, we use the train-validation split proposed by Trumble et al. [138]. Hyperparameter
sweep ranges for each of our models and baselines are listed in Appendix A.2. We maintain
similar ranges of parameter counts across models for the same task.

5.6 Experiments and Results

In this section, we evaluate the performance of HiSS models on CSP tasks and understand their
strengths and limitations. Unless otherwise specified, we use non-overlapping chunks of size 10,
and aim to answer the following questions:
• How do SSMs compare with LSTMs and Transformers on CSP-Bench?
• Can HiSS provide benefits over temporally flat models?
• How does chunk size affect the performance of HiSS?
• Is HiSS compatible with existing preprocessing techniques like filtering?
• How does HiSS perform in low-data regimes?

Baselines: We use two categories of baselines: Flat and Hierarchical. Flat models consist
of LSTMs, Causal Transformers, S4 and Mamba, in addition to MEGA [100]. Hierarchical
baselines include variations of HiSS models where the high-level and/or low-level SSMs are
replaced by causal transformers and LSTMs, and MEGA-chunk [100], which is loosely classified
as a high-level transformer with a low-level MEGA model. Table 5.2 presents a performance
comparison on CSP-Bench for each of these baselines and proposed HiSS models.
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Table 5.2: Comparison of MSE prediction losses for flat and HiSS models on CSP-Bench.
Reported numbers are averaged over 5 seeds for the best performing models. MW: Marker
Writing, IS: Intrinsic Slip, R: RoNIN, V: VECtor, JC: Joystick Control, TC: TotalCapture

Model
type

Model Architecture MW IS JC R V TC

(cm/s) (m/s) (m/s) (m/s)

Fl
at

Transformer 2.375 0.460 1.020 - 0.043 -

LSTM 1.168 0.310 1.074 0.044 0.035 0.177
S4 1.319 0.262 0.980 0.038 0.034 0.348

Mamba 0.883 0.176 1.064 0.040 0.032 0.364

MEGA 0.8960 0.2105 0.9806 0.0370 0.0330 0.1944

High-level Low-level

H
ie

ra
rc

hi
ca

l

Transformer

Transformer 0.668 0.219 0.911 0.062 0.037 0.305

LSTM 0.996 0.253 0.935 0.042 0.038 0.320

S4 0.620 0.157 0.898 0.036 0.037 0.358

Mamba 1.027 0.202 0.906 0.047 0.037 0.456

(MEGA-chunk) MEGA 1.1270 0.2090 1.0450 0.0512 0.0403 0.1940

LSTM

Transformer 0.762 0.937 1.609 0.388 0.030 0.294

LSTM 0.866 0.284 1.076 0.044 0.029 0.252

S4 0.637 0.153 0.908 0.048 0.032 0.350

Mamba 0.792 0.192 1.061 0.044 0.029 0.364

S4

Transformer 0.757 0.290 0.925 0.044 0.030 0.245

LSTM 0.859 0.180 0.952 0.032 0.029 0.245

S4 0.626 0.155 0.906 0.026 0.030 0.344

Mamba 0.826 0.182 0.920 0.032 0.029 0.408

Mamba

Transformer 0.702 0.301 0.955 0.037 0.030 0.206

LSTM 0.759 0.175 0.964 0.035 0.027 0.243

S4 0.566 0.132 0.901 0.030 0.030 0.253

Mamba 0.725 0.168 0.905 0.032 0.025 0.376

HiSS boost over best Flat +36% +25% +8% +31% +21% -37%
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5.6.1 Performance of Flat models on CSP-Bench
At the outset, we see that SSMs – Mamba and S4, consistently outperform the best-performing
Transformer and LSTM models by 10% and 14% median MSE respectively across CSP-Bench
tasks. The only anomaly is the TotalCapture dataset where the LSTM outperforms all other
models. We analyze this later in Section 5.6.7.

5.6.2 Improving CSP Performance with HiSS
HiSS models perform better than the best-performing flat models, SSM or otherwise, with a
further improvement of ∼23% median MSE across tasks. Among hierarchical models, HiSS
models continue to do as well as or better than the others with a relative improvement of ∼ 9.8%
median MSE. Further, we make two key observations within models that use a specific high-level
architecture: (1) these models consistently outperform corresponding flat models, indicating that
temporal hierarchies are effective at distilling information from continuous sensory data; (2) the
best models use S4 as the low-level model, indicating that S4 is particularly adept at capturing
low-level temporal structure in the data.

These observations raise a natural question: What is happening under the hood? In the next
four sections, we attempt to better understand the working of HiSS.

5.6.3 Does HiSS Simply do Better Downsampling?
The first question we seek to answer is whether simply downsampling the sensor sequence to the
same frequency as the output would do just as well as HiSS. As we see in Table 5.3, while some
flat models with downsampled sensor sequences indeed improve performance over flat models in
Table 5.2, they remain far behind HiSS models. This reinforces our hypothesis that HiSS models
distill more information from the sensor sequence than naive downsampling.

One advantage of using hierarchical models is memory efficiency. They can significantly
reduce computational load for models like transformers which scale quadratically in the length
of the sequence. Using an SSM such as S4 or Mamba as the low-level model can significantly
reduce the computational load (O(N2) → O(N2/k2)) for k ≪ N , where k and n are chunk
size and sequence length respectively. Table 5.2 shows that such a model consistently improves
performance over a flat causal Transformer across tasks.

5.6.4 Effect of Chunk Size on Performance
Having established the effectiveness of HiSS relative to conventional sequence modeling architec-
tures, we seek to investigate the effect of a key parameter – the chunk size – on the performance
of HiSS models. Downsampling the sensor sequences at the output frequency, as presented in
Section 5.6.3 essentially corresponds to using a chunk size of 1. The rest of the analysis presented
so far uses a chunk size of 10, corresponding to the largest non-overlapping chunks that cover
the entire sensory sequence given sensor and output sequence frequencies of 50 Hz and 5 Hz
respectively. In this section, we conduct two additional experiments with chunk sizes of 5 and 15
and present the results in Table 5.4. We see that while performance improves drastically as the
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Table 5.3: Performance comparison with (a) downsampled inputs, (b) low pass filter on input
sequences, and (c) fewer training samples

MW IS JC R V TC

Downsampled inputs

Trnsfrmr 2.41 0.33 .957 .116 .039 0.34

LSTM 1.92 0.27 .975 .094 .034 0.20
S4 2.22 0.29 .974 .081 .036 0.31

Mamba 1.96 0.26 .980 .077 .033 0.25

HiSS 0.57 0.13 .901 .027 .025 0.26

Low Pass Filtering

Trnsfrmr 1.79 0.31 1.01 - .034 0.38

LSTM 1.15 0.26 1.08 .038 .024 0.12
S4 1.19 0.22 0.94 .031 .022 0.25

Mamba 0.78 0.14 0.95 .030 .018 0.17

HiSS 0.55 0.11 0.87 .036 .020 0.13

Smaller Training Dataset

Fraction 0.3 0.3 0.3 0.3 0.5 0.5

Trnsfrmr 4.30 0.85 1.237 - .046 0.54

LSTM 1.83 0.54 1.313 .053 .039 0.39

S4 2.31 0.45 1.197 .043 .038 0.43

Mamba 1.74 0.37 1.195 .039 .036 0.48

HiSS 1.26 0.29 1.106 .034 .029 0.37
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Table 5.4: Effect of chunk size on perfomance of HiSS models

Chunk
size

MW IS JC R V TC

5 1.18 0.20 .933 .046 .033 0.32

10 0.57 0.13 .901 .027 .025 0.25

15 0.54 0.12 .899 .035 .026 0.24

chunk size increases, it plateaus once the chunk size reaches the ratio of the sensor and output
frequencies (10 in our case). This behavior can be explained by the fact that chunk sizes smaller
than this ratio result in the model never seeing parts of the sensor sequence, while chunk sizes
larger than this ratio result in an overlap between chunks.

5.6.5 Effect of Sensory Preprocessing on Performance

A common approach to preprocessing noisy sensor data is to design low-pass filters to process the
signal before it’s passed through the model. To analyze the compatibility of HiSS models with
such existing preprocessing techniques, we separately apply order 5 Butterworth filters with 3
different cut-off frequencies to the sensor sequence and report model corresponding to the best
cut-off frequency in Table 5.3. We make two key observations: (1) with the exception of the HiSS
model for RoNIN, low pass filtering improves performance across the board; (2) HiSS models
still perform comparably with or better than flat models.

With respect to (1), we see that the best-performing HiSS model from Table 5.2 continues
to outperform the best flat model using filtered data, implying that the low-pass filter may have
filtered useful information could have been used to improve task performance. This points to an
important pitfall of handcrafted preprocessing techniques – they can often filter out information
that could have been exploited by a sufficiently potent model. Consequently, the ability of HiSS
models to require little to no preprocessing of the input sequence bolsters their credentials to serve
as general purpose models for CSP data.

5.6.6 How Does HiSS Perform on Smaller Datasets?

The lack of a comprehensive benchmark for continuous sequence prediction so far speaks to the
difficulty of collecting large, labeled datasets of sensory data. Therefore, performance in low-data
regimes could be critical to wider applicability of different sequence modeling architectures. To
benchmark this performance, we compare the performance of flat as well as HiSS models on
subsets of the training data. While TotalCapture and VECtor are substantially smaller than the
other datasets (see Table 5.1), we include them in this analysis while using a larger fraction of
training data than other datasets. Results are presented in Table 5.3. We only present the best
performing HiSS model here for conciseness. The full table can be found in Appendix A.4.
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We see that on smaller fractions of the training dataset, HiSS outperforms flat baselines on
every task in CSP-Bench. This indicates an important property of HiSS models – data efficiency.
Low-level models operate identically on all of the chunks in the data, allowing them to learn more
effective representations from small datasets than flat models.

5.6.7 Failure on TotalCapture
The most visible failure case for the performance of both flat SSMs as well as HiSS models is on
the TotalCapture dataset, where the flat LSTM significantly outperforms all other models. We
hypothesize that the high dimensionality of the input and output spaces prevents SSMs from
learning sufficiently expressive representations that can filter out high frequency data. This is also
evidenced by the higher performance of LSTM low-level models across hierarchical architectures
for this dataset, which correlates with the correspondingly higher effectiveness of the flat LSTM
over flat SSMs. Further evidence of the inability of SSMs to filter out noise can be found in
Section 5.6.5, where the performance of HiSS models nearly matches the LSTM when the input
sequence is passed through a lowpass filter. This indicates that the HiSS model struggles to learn
the filtering behavior from data here, unlike other datasets where performance remains fairly
consistent with and without the lowpass filter.

5.7 Conclusion and Limitations
We present CSP-Bench, the first publicly available benchmark for Continuous Sequence Prediction,
and show that SSMs do better than LSTMs and Transformers on CSP tasks. Then, we propose
HiSS, a hierarchical sequence modeling architecture that is more performative, data efficient and
minimizes preprocessing needs for CSP problems. However, sequence-to-sequence prediction
from sensory data continues to be an open, relatively underexplored problem, and our work
indicates significant room for improvement. Moreover, while SSMs show significant promise for
CSP tasks, they are relatively new architectures whose strengths and weaknesses are far from
being well-understood. Section 5.6.7 explains some of the challenges of SSMs, and as a result,
HiSS, on high-dimensional prediction problems with small datasets of noisy sensor data. In
terms of ease of training, current HiSS models introduce an additional hyperparameter of chunk
size. While our models are robust to large chunk sizes, finding optimal ones is an exciting future
direction. Finally, while CSP-Bench is large, the number of sensors that can benefit from learned
models is larger. Hence, we are committed to supporting CSP-Bench and adding more, larger
datasets in the future.
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Chapter 6

Conclusion and Future Prospects

This thesis sought to explore the full trajectory of taking a tactile sensor from design and develop-
ment all the way into the fold of data-driven learning for robotics. With ReSkin and AnySkin, and
the associated focus on repeatability and replaceability, we provide sensing alternatives that are
perfectly suited for robot learning. While some of the takeaways outlined through this document
are specific to magnetic tactile sensing, we believe a number of the questions we address are fairly
general to understanding and improving the interplay between tactile sensing and robot learning.
In the rest of this chapter, we discuss a few open questions, connect the work in this thesis to those
broader questions, and outline directions for future research that would take us closer towards
finding answers to them.

How can we collect and effectively use large scale tactile datasets?

If we look at the biggest deep learning success stories in recent years – vision and language
– a central component has been the swathes of Internet-scale data that has been used to train
performative models with increasingly impressive capabilities. Thinking about large-scale data
in the context of tactile sensing requires us to take a step back and acknowledge the number
of ways in which tactile sensing is inherently different from these modalities, and the resulting
challenges that come with it. A primary challenge is the lack of a standardized capture device as
well as representations. Camera images and linguistic vocabularies serve the purpose of effectively
capturing visual and linguistic data in a standardized, shareable format. The lack of a standardized
tactile sensor and the absence of a framework to translate data between different tactile sensors
precludes the creation of datasets at the same scale. Moreover, visual and linguistic information
has been collected over the years for the purposes entirely divorced from training deep learning
models such as communication, entertainment and recorded history. The lack of such auxiliary
applications for tactile sensing also contributes to the limited availability of large collections of
tactile data.

This prompts two distinct directions for future research: (i) designing interfaces for collecting
tactile information, and (ii) developing algorithms that enable reasoning over tactile information
in a shared representation space. There has been some work in the former, such as the MIT
Glove [133], but most solutions share the problems inherent to their respective tactile sensors –
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they are brittle and are extremely difficult to fabricate. An exciting direction for future work is the
integration of robust, reliable sensors like ReSkin and AnySkin with easier to fabricate simpler
data collection interfaces like the Stick [123] and UMI [31]. These interfaces can be replicated on
the robot and offer the highest chances of success for using tactile data from the data collection
interface in training policies for a robot with an identical end-effector.

The latter of the two directions is more ambitious and isn’t obviously solvable but offers the
highest potential for leveraging large amounts of tactile data. The associated problem is similar
to the distribution shift problem when using human videos [8, 9, 11] where the algorithm must
account for the difference in appearance between human hands in the datasets and the robot end
effectors used during policy deployment. This problem is more pronounced with tactile data.
Consider a dataset of a human performing tasks in the kitchen wearing a tactile glove. While
the glove may faithfully capture all the contact interactions between the human hand and the
environment, it is unclear how this information would transfer to a robot hand with a completely
different morphology. Further, it also difficult to ascertain whether the same strategy used by
the human hand is compatible with a morphologically different robot hand, and therefore, if
the contact interaction data from the human hand is even useful. The recent surge in humanoid
research as well as more anthropomorphic robot hands may hold interesting answers to this
question. Another interesting line of research is developing algorithms capable of learning from
data collected with different tactile sensors like Gelsight [160] and ReSkin, as a step towards
unifying the distributed, sensor-specific strands of contemporary research in tactile sensing.

What is an effective learning paradigm for visuotactile policies?
As of this writing, behavior cloning remains the predominant method for training robot manip-
ulation policies in real-world applications. While it has demonstrated impressive capabilities
in robot learning, behavior cloning is not ideal for developing visuotactile policies for robots
due to its reliance on supervised learning from demonstration data. This approach can lead
to compounding errors, where the robot encounters states not represented in the training data,
resulting in poor generalization—an issue particularly acute with tactile data. For instance, in
the plug insertion task discussed in Section 4.5, visual data from being close to the socket strip
can be nearly indistinguishable from visual data during a collision. However, the tactile data in
these scenarios is markedly different. A visual policy trained on expert demonstrations, where
collisions are rare, may generalize reasonably well, but a visuotactile policy is much more vul-
nerable to out-of-distribution errors. Moreover, current teleoperation systems used for collecting
demonstrations lack the ability to convey tactile feedback to the operator, further undermining the
reliability of behavior cloning.

On the other hand, existing reinforcement learning algorithms, while offering an alternative, are
often brittle, require large amounts of data, and depend on environmental resets that are difficult to
implement in real-world settings. Therefore, a hybrid approach could offer significant advantages
in addressing these challenges. Some recent work has attempted to use reinforcement learning in
simulation in conjunction with domain randomization [118, 157] or real-world adaptation. While
promising, precise manipulation tasks continue to remain outside the reach of this approach for
now. A large part of this shortcoming can be attributed to the lack of reliable, accurate simulators
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for tactile sensors. A promising direction for future work is building more performant physics
engines capable of simulating the complex phenomena that underlie tactile sensors.

An advantage of ReSkin and AnySkin sensors in the context of policy learning is also the
low dimensionality of sensory information while capturing essential characteristics of contact
like contact location, and normal and shear force. While these sensors may not be able to
reconstruct high resolution contact images akin to optical sensors like Gelsight, the inherent low
dimensionality reduces the need for dimensionality reduction in preprocessing [90] and allows
the signal to be directly leveraged in the policy pipeline.

In conclusion, this thesis has delved into the potential of tactile sensing to enhance robotic
learning and interaction in complex, unstructured environments. Through the design of a sensor
optimized for integration with machine learning, we have demonstrated a significant improvement
in the ease with which tactile sensing can be employed to enhance robots’ abilities to perceive and
manipulate objects. These findings make a valuable contribution to the broader field of robotics
by underscoring the critical role of tactile feedback and the essential considerations for sensor
design to achieve human-like dexterity and adaptability. We hope that the results presented in this
thesis will serve as a foundation for further research in robotic learning, bringing tactile sensing
closer to becoming an indispensable component of advanced robotic systems.
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Appendix A

Appendix for Chapter 5

A.1 ReSkin fabrication details

ReSkin measures the changes in magnetic flux in its X, Y and Z coordinate system, based on the
change in relative distance between the embedded magnetic microparticles in an elastomer matrix
and a nearby magnetometer. The use of magnetic microparticles enables freedom in regard to the
shape and dimensions of the molded skin. In our use case here, we use a skin of thickness 2mm.
This section further details the complete fabrication process involved in the sensorized gripper
tips we use for our ReSkin: OnRobot Gripper on a Kinova JACO Arm setup (See Figure A.1).

A.1.1 Circuitry

Data from the ReSkin sensors is streamed to a computer via USB. The two sensors are connected
to an I2C MUX which in turn is connected to an Adafruit QT Py microcontroller as described in
Bhirangi et al. [13]. See Figure A.1.

Figure A.1: Circuitry
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A.1.2 OnRobot Gripper Tips
The skins are affixed to the 3D-printed gripper tips using silicone adhesive, as shown in Figure
A.2. The dimensions of the tips are 32 mm ×30 mm ×2 mm. The same tips also house the
flex-PCB boards, which measure the change in magnetic flux in all 3 axes.

Figure A.2: Gripper Tips with ReSkin

A.2 Model architectures and Training

A.2.1 Flat Architectures
For each of the flat sequence models presented in this work, the input sequence is first embedded
into a hidden state sequence by a linear layer. This hidden state is then passed to the respective
sequence model. The outputs of the sequence model (the hidden states for LSTM, S4 and Mamba)
are then mapped to the desired output space

A.2.2 Hierarchical architectures
The hierarchical models are obtained by simply stacking two flat models together. The input
sequence is first divided into equal sized chunks as described in Section 5.5.2. Each chunk is
passed through the low-level sequence model and the outputs corresponding to the last timestep of
each chunk are concatenated to form the chunk feature sequence. This sequence is passed through
a high-level sequence model to obtain the output sequence

A.2.3 Hyperparameters
All models are trained for 600 epochs at a constant learning rate of 1e-3. Learning rate schedulers
were not found to improve performance by noticeable amounts. Table A.1 contains the ranges of
hyperparameters used for training the flat models presented in the paper. We do not sweep over
all of these hyperparameters for each task. A subset of these parameters is chosen for each task
depending on the input and output dimensionality of the task and the best-performing models are
reported. The exact hyperparameters for each experiment can be found on the Github repository.
For any given task, we ensure that sweeps over all model classes consist of models that have the
same order of magnitude of learnable parameters.

For the hierarchical models, we use a smaller subset of the parameters listed in Table A.1 to
sweep over the high level models. Parameter ranges swept over for low-level models are listed in
Table A.2. The exact hyperparameters for each experiment can be found on the Github repository.
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LSTM Transformer S4 Mamba

Input size
16, 32, 64, 128, 256

Model dim
32, 64, 128, 256, 512

Model dim
32, 64, 128, 256, 512

Model dim
32, 64, 128, 256, 512

LSTM hidden size
256, 512, 1024

No. of heads
2,4

No. of layers
2

No. of layers
4,6

No. of layers
4, 6

No. of layers
4, 6

Dropout
0.0, 0.1

Dropout
0.0, 0.1

Dropout
0.0, 0.1

Table A.1: Hyperparameters for flat architectures

LSTM S4 Mamba

Input size
16, 32, 64

Model dim
16,32,64,128, 256

Model dim
16, 32, 64, 128, 256

LSTM hidden size
16,32,64,128,256

No. of layers
1

No. of layers
4, 6

No. of layers
3,4

Table A.2: Hyperparameters for low-level models used in hierarchical architectures
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A.3 Experimental Setup and Data Collection details

Figure A.3: Marker Writing Frames (Top): The gripper tips hold the marker and bring it in
contact with the paper before the sequence starts. The arm maneuvers the marker to execute
eight strokes on the paper. Instrinsic Slip Frames (Middle): The gripper tips hold the box to
start the sequence, and slip through the robot workspace with different orientations. Joystick
Control Frames (Bottom): After the sequence begins, the hand holds the joystick, controlling its
movement through various positions.

A.3.1 ReSkin: Onrobot Gripper on a Kinova JACO Arm

Marker Writing

For this experiment, we first grasp the marker with 300 N force in an arbitrary position and
bring it in contact with the paper. We then start recording data and command the robot to move
sequentially to 8-12 randomly sampled locations within a 10× 10 cm2 plane workspace, making
linear strikes on the paper. Figure A.3 illustrates a sample sequence from this dataset. We note
that during the strikes, the grasped marker undergoes orientation drifts at times, which adds to the
complexity in signal. We record a total of 1000 trajectories of 15-30 seconds each, comprising of
2 different colored markers.
The prediction task here is to predict the strike velocity (δx/δt, δy/δt), given the tactile signals thus
reconstructing the overall trajectory.
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Figure A.4: Boxes in the Dataset
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Intrinsic Slip

In Section 5.4.1, we outlined our methodology for collecting data through a total of 1000 trajecto-
ries. This involved using 10 distinct boxes and 4 sets of skins for 25 trajectories per combined
pair. We first sample a random location and orientation within the task workspace. Next, we close
the gripper with a random force sampled in the range of 50-75 N and then start recording data.
With the gripper grasping the box, we uniformly sample 8-12 locations sequentially, thus slipping
through the robot workspace. Figure A.3 illustrates a sample sequence from this dataset. The
workspace is the upper region of the box, which is a space of dimensions Box Length x Tip
Size(3cm), shown in Figure A.5. We clamp the wrist rotation limits at [-π/4, π/4], making the
overall local sampling bounds of the gripper tip position (center of tip), Y:[0, box length], Z:[0,
tip size], θ:[-π/4, π/4].

Figure A.5: End-effector Workspace on the Box, & Local Co-ordinate System

Bhirangi et al. [13] characterize the ability of ReSkin sensor models generalize to skins
outside the training distribution, but these experiments are limited to single-frame, static data.
Here, we collect an analogous dataset for the sequence-to-sequence prediction problem. To avoid
confounding effects, the evaluations provided in this paper are based on a random partitioning of
this dataset. However, we collect and publish an additional 100 trajectories on an unseen box and
an unseen set of skins to test the generalizability of trained models.

The dimensions of all boxes used in this experiment are detailed below. See Table A.3 and
Figure A.4.

In this experiment, in addition to predicting the linear velocities of the end-effector, we also
predict the angular velocities at the wrist/the end-effector rotation (δx/δt, δy/δt, δθ/δt).

A.3.2 Xela: Allegro Hand on a Franka Emika Panda Arm
Joystick Control

For the final tactile dataset, we teleoperate an Allegro Hand with Xela sensors mounted on a
Franka arm to interact with an Extreme3D Pro Joystick shown in Figure A.6, which streams data
comprising of 6 rotation axes (X, Y, Rz, Throttle, Hat0X, Hat0Y) and 12 buttons (Trigger, 2
Thumb Buttons, 2 Top Buttons, 1 Pinkie Button and 6 Base Buttons). Unlike the prior datasets,
which originated out of random yet scripted policies, this dataset has an added complexity from
the unstructured human interactive control. Figure A.3 illustrates a sample sequence from this
dataset. Due to the arm workspace and the finger size constraints, we focus on 3 axes - X, Y and
Z-twist for our prediction task. Given the readings from the Xela sensors, we predict the joystick’s
states of interest.
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Box Number Dimensions (L x H x W cm)
1 20 x 12 x 4

2 16.5 x 8.5 x 3

3 14 x 9 x 5

4 17 x 13 x 4.5

5 15 x 10 x 4.5

6 16.5 x 13 x 6

7 17 x 10 x 5.5

8 18 x 19.5 x 5.5

9 17 x 11 x 3.5

10 12 x 8 x 6.5

11 (unseen) 23 x 16 x 5

Table A.3: Dimensions of Boxes in the Dataset

Figure A.6: Extreme3D Pro Joystick & Co-ordinate System
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A.4 Ablations

A.4.1 Data Preprocessing
In this section, we provide more detailed tables for the experiments in Sections 5.6.5. Table
A.4 contains results from separately applying order 3 Butterworth filters to the input sequences
with cutoff frequencies of 0.75Hz, 2.5Hz and 7.5Hz. For each setting, we pick the set of models
corresponding to the cutoff frequency with the best performance, and report average performance
over 3 seeds.

Table A.4: Comparison of MSE prediction losses for flat and HiSS models on CSP-Bench when
passing the input sequences through a low-pass filter. Reported numbers are averaged over 5 seeds
for the best performing models. MW: Marker Writing, IS: Intrinsic Slip, JC: Joystick Control,
TC: TotalCapture

Model type Model Architecture MW BS JC RoNIN VECtor TC

(cm/s) (m/s) (m/s) (m/s)

Flat

Transformer 1.7940 0.3096 1.0080 - 0.0346 0.3845

LSTM 1.1498 0.2596 1.0770 0.0382 0.0242 0.1234
S4 1.1885 0.2209 0.9449 0.0305 0.0228 0.2467

Mamba 0.7823 0.1367 0.9459 0.0297 0.0188 0.1661

High-level Low-level

Hierarchical

Transformer
LSTM 1.0052 0.1883 0.9074 0.0532 0.0284 0.2314

S4 0.6703 0.1249 0.8652 0.0434 0.0260 0.2908

Mamba 0.8912 0.1251 0.8731 0.0435 0.0243 0.3118

LSTM
LSTM 0.8063 0.2434 1.0500 0.0430 0.0272 0.1754

S4 0.6462 0.1477 0.9885 0.0419 0.0288 0.1968

Mamba 0.7515 0.1657 1.0080 0.0420 0.0234 0.1755

S4
LSTM 0.8525 0.1390 0.9269 0.0306 0.0272 0.1905

S4 0.6667 0.1221 0.9296 0.0377 0.0222 0.2284

Mamba 0.7825 0.1180 0.8898 0.0396 0.0207 0.2527

Mamba
LSTM 0.8143 0.1308 0.9660 0.0369 0.0255 0.1594

S4 0.5535 0.1074 0.8665 0.0362 0.0272 0.1301

Mamba 1.5657 0.1057 0.8765 0.0367 0.0212 0.1466
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Table A.5: Comparison of MSE prediction losses for flat and HiSS models on CSP-Bench when
using a fraction of the training dataset. Reported numbers are averaged over 5 seeds for the
best performing models. MW: Marker Writing, IS: Intrinsic Slip, JC: Joystick Control, TC:
TotalCapture

Model type Model Architecture MW IS JC RoNIN VECtor TC

(cm/s) (m/s) (m/s) (m/s)

(Fraction) 0.3 0.3 0.3 0.3 0.5 0.5

Flat

Transformer 4.2975 0.8509 1.2370 - 0.0460 0.5430

LSTM 1.8322 0.5376 1.3130 0.0533 0.0390 0.3855

S4 2.3070 0.4450 1.1970 0.0431 0.0379 0.4338

Mamba 1.7443 0.3677 1.1950 0.0394 0.0358 0.4838

High-level Low-level

Hierarchical

S4
LSTM 1.5417 0.3428 1.2350 0.0387 0.0331 0.3982

S4 1.5460 0.2931 1.1260 0.0346 0.0337 0.3992

Mamba 2.3302 0.3760 1.1060 0.0412 0.0326 0.4913

Mamba
LSTM 1.5810 0.3478 1.2410 0.0362 0.0309 0.3530
S4 1.2600 0.2883 1.1370 0.0378 0.0333 0.3675

Mamba 1.7508 0.3688 1.1140 0.0383 0.0286 0.4320

A.4.2 Smaller Datasets
In this section, we provide more detailed tables for the experiments in Sections 5.6.6. Table A.5
contains results from subsampling the training datasets – 30% of the dataset for MW, IS, JC and
RoNIN, and 50% of the dataset for VECtor and TotalCapture. We see that HiSS consistently
outperforms flat models across tasks in CSP-Bench when training on fractions of the training
dataset, indicating the sample efficiency of HiSS models.
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A.5 TotalCapture Preprocessing
This dataset provides readings from 12 IMU sensors and the ground truth poses of 21 joints
obtained from the Vicon motion capture system. To standardize the data within a consistent
coordinate system, we transformed all IMU sensor readings from their native IMU frames to the
Vicon frame. Our task is to predict the velocities of the 21 joints given the IMU acceleration data
in the Vicon reference frame.

To convert IMU acceleration data into the Vicon frame, we utilize the calibration results
provided in the files named <subject id> <sequence name> calib imu ref.txt and
<sequence name> Xsens AuxFields.sensors. The acceleration of each IMU sensor
in the Vicon frame is calculated as follows:

avicon = Rvicon
inertialR

inertial
imu aimu, (A.1)

where Rinertial
imu is the rotation matrix converted from the IMU local orientation quaternion (w, x, y,

z) provided in the <sequence name> Xsens AuxFields.sensors files. This quaternion
represents the IMU’s orientation in the inertial reference frame.

Furthermore, Rvicon
inertial is obtained by converting the quaternion information (<imu name> x

y z w) available in the <subject id> <sequence name> calib imu ref.txt files,
which encapsulates the transformation from the inertial frame to the Vicon global frame.
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