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Abstract

Robots hold the promise of becoming an integral part of human life by helping us in
our homes, out on farms and in our factories. However, current robots lack the motor
skills necessary to perform everyday manipulation tasks, operate outside structured
settings and interact with humans. This thesis advocates the principles of active,
continual and collaborative learning to allow a robot to autonomously learn the skills
necessary to master its domain. We propose a novel Plan to Learn (P2L) framework
in which the robot solves a meta planning problem to decide which skills it should
learn so that it can achieve its long-term objective while minimizing the cost of data
collection. We formalize and study this idea from both a practical and a theoretical
lens in two challenging scenarios.

First, we explore how robots can plan to learn as part of a collaborative human-
robot team. We develop an optimal mixed integer programming-based planner Act,
Delegate, or Learn (ADL) to allocate tasks and decide which skills the robot should
learn to reduce its teammate’s workload. We also provide log(n)-approximation al-
gorithms for ADL by showing that it is an instance of the well-known uncapacitated
facility location problem. Next, we explore multi-step tasks, such as opening a door,
which require several skills to be sequenced. Our first algorithm MetaReasoning for
Skill Learning (MetaReSkill) estimates a probabilistic model of skill improvement to
identify and prioritize skills that are both easy to learn and most relevant to the over-
all task. Finally, we present a hierarchical reinforcement learning formulation to solve
the P2L problem for recovery learning. RecoveryChaining learns both where and how
to recover by leveraging a hybrid action space consisting of primitive robot actions
and nominal options that transfer control to a model-based controller. We demon-
strate the effectiveness of our P2L framework on a variety of practically motivated
and challenging manipulation tasks both in simulation and in the real world.

This thesis is only a first step towards the ambitious goal of building autonomously
learning robots that plan to learn. We sincerely hope that the developed framework
and its instantiations on these manipulation tasks will pave the way for further re-
search.
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1 Introduction

1.1 Motivation

Figure 1.1: Examples of robots operating in household and collaborative manufac-
turing settings. Robots need a diverse repertoire of capable motor skills to succeed
in such complex and unstructured environments. This thesis advocates that robots
should actively and autonomously hone their skills and acquire new ones to achieve
their objectives.

It is exciting to live in a day and age where thousands of robots regularly manage
massive warehouses and rovers are deployed on Mars to aid in space exploration.
Robots hold the promise of becoming an integral part of human life by helping us
fold laundry (Miller et al., 2012) in our homes, monitor crops (Lee et al., 2024) out on
farms, and collaborate with human workers (Pearce et al., 2018) in factories. To fulfill
this promise, we need general-purpose robots that can robustly function in diverse
environments, autonomously adapt to novel situations and effectively collaborate with
human partners. Despite significant progress, robots today are nowhere close to
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achieving these three important capabilities. First, robots lack the physical dexterity
required to even perform everyday tasks such as making an omelette and assembling
furniture. Second, robots are still largely restricted to highly structured and controlled
settings where they are deployed with carefully designed and often hand-engineered
skills. Finally, most robots are either separated from humans by a fence in factories
or they treat humans as obstacles to be avoided.

Much of recent progress towards general-purpose robots has been powered by data-
driven methods such as learning from demonstrations (Ravichandar et al., 2020) and
deep reinforcement learning (Lillicrap et al., 2015). Some of the impressive advances
made by this approach include generalist robot policies (Brohan et al., 2022) that can
learn a variety manipulation skills through imitation and learning dexterous manipu-
lation, such as, solving a Rubik’s cube with a human-like hand (Akkaya et al., 2019)
using reinforcement learning. However, these methods require massive amounts of
data which is a challenge because robot data collection requires expensive physical
robots and significant human labor. Consequently, these methods work well only in
narrow domains for which sufficient amount of expert data is available and lack the
robustness necessary for real-world deployment.

Recent data collection efforts like the Open-X Embodiment dataset (Collaboration
et al., 2023) have sought to address this limitation by collecting and consolidating
data from multiple institutions. While such endeavours are certainly promising and
perhaps necessary to deploy robots in open-world environments (Horvitz, 2008), they
are by no means sufficient. A robot operating in unstructured environments has to be
prepared to handle situations that are beyond its pre-trained capabilities. When such
situations arise, and they are often the norm rather than the exception, an intelligent
and autonomous robot ought to take charge of its own learning to go beyond canonical
datasets. Such a robot would need to actively collect experiences in its domain to
improve and extend its skillset to achieve its long-term objective. This in-domain
learning would require careful reasoning to decide which experiences are relevant to
the objective and how to efficiently collect those experiences while ensuring that the
robot is useful to its human partners.

The goal of this thesis is to make progress towards building such collaborative
robots that can operate reliably in less structured settings. Our vision is to build
robots that learn autonomously to be useful to their human partners. Ideally (as
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Figure 1.2: We organize robot capabilities into three levels of increasing difficulty.
We wish to develop robots that can plan not only how to solve long-horizon tasks but
also how to efficiently learn the right set of skills required to achieve a given objective.
The real-world images used in this figure are from Eric Berger and Keenan Wyrobek
at the Salisbury Robotics Lab, Stanford University, 2007.

visualized in figure 1.2), we would like a user to give only a high-level objective, such
as, “help me clean my house” to a robot. The robot should have the long-horizon
planning capability to achieve this objective. If the robot realizes that it lacks certain
skills, for example, the skill to wipe tables, then it should efficiently learn the missing
skills by requesting human demonstrations or in simulation. On the other hand, if
the missing skill is difficult to learn, for example, the skill to fold shirts, then the
robot should request help from the user. This thesis pursues three broad themes of
continual learning, active learning and human-robot collaboration towards achieving
this long-term goal.

Continual Learning

The standard train-test paradigm of machine learning is ill-suited to robotics. A
robot may not fully know all the situations it may face during deployment. Hence, we
adopt the paradigm of continual learning in which learning is done continually during
deployment as and when new situations arise. Chapter 3 proposes a human-in-the-
loop learning algorithm for learning on the job as new tasks arrive while chapters 4
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and 5 take the approach of continually discovering a robot’s failures and learning new
skills to recover from them. This allows the robot to gradually expand its capabilities
to cover the situations it is likely to encounter in its domain.

Active Learning

The high cost of data collection in robotics necessitates careful deliberation to
minimize the cost of data. This requires identifying skills that are most relevant to
the overall objective. In chapter 3, our discuss an approach that prioritizes skills that
cover multiple tasks. In chapter 4, our proposed algorithm identifies the skills that
are most relevant to the overall multistep task by using a task planner. While we
focus on choosing which skills to learn in this thesis, the active learning idea can be
extended to also decide how to learn when multiple sources of data are available, viz.,
real-world, simulation, human, etc.

Human-Robot Collaboration

Collaborative robots have the advantage of being able to seek help from and assist
their human teammates. Hence, they do not need to be fully autonomous to be useful.
In fact, a semi-autonomous strategy may often be preferable, where an agent transfers
control to a teammate if it improves the probability of achieving the goal (Hexmoor,
2000). For example, in a game of soccer a player may choose to pass the ball to a
fellow player if it improves the chances of scoring. Such situated reasoning, wherein
a robot’s role in the team depends on the situation, can inform whether or not the
robot should learn a particular skill. We leverage this insight in chapter 3 to assign
tasks that are difficult to teach and one-off to the human teammate. This allows the
robot to assist the human by focusing on doing repetitive tasks without needing too
many demonstrations.

1.2 P2L: Plan to Learn

Intelligence is the ability to use optimally limited resources to achieve
goals. (Ray Kurzweil)

We integrate these ideas of continual, active and collaborative robot learning in
a novel Plan to Learn (P2L) framework. We mathematically formalize and study
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P2L through both a practical and theoretical lens. The main question P2L seeks to
answer is how should a robot optimally utilize the resources at its disposal, including
time, computation and human help, to acquire skills to achieve its objective. We
assume a robot is operating autonomously in a domain with task distribution D. The
performance of the robot on a task instance τ is captured by the objective function
J(τ,L) which is a function of the robot’s skillset L = {π1, . . . , πn}. Computing the
performance may require solving a planning problem. For example, this corresponds
to a task allocation problem in chapter 3 and a task planning problem in chapter 4.
The expected performance of the robot is

Eτ∼DJ(τ,L) (1.1)

Given infinite resources, the robot could fully learn all the skills and maximize
its performance. However, in reality data collection and learning is expensive and
time consuming. Hence, we assume that every data point collected for a skill has an
associated skill-specific cost clearn. It is important that the robot quickly identifies
and focuses on the right skills to ensure efficient learning. Let xi be the amount of
data collected for skill πi and L′ be the resulting improved skillset. Here, we assume
a single source of data. Additional sources of data with different cost of collection
can similarly be incorporated in this framework. Our P2L framework trades off
task performance against the cost of learning by solving the following optimization
problem.

maxEτ∼DJ(τ,L′)−
∑

i

xi · clearn (1.2)

This is a meta planning problem whose solution provides the robot with a strategy
to optimally use its time and resources to learn a skillset that is optimized for its
specific domain. We consider a more general human-robot team setting in chapter 3,
where the robot also has the option to delegate some tasks to the human teammate.
Delegation may useful if it is easier for the robot to delegate a task than to learn how
to do it on its own. We develop principled algorithms to solve the P2L problem in
two challenging domains of human-robot teaming and multi-step manipulation. This
thesis shows that robots can learn more efficiently and collaborate more effectively by
deliberatively choosing what to learn, i.e., by planning to learn.
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1.3 Thesis Overview

Chapter 2 provide useful context and background necessary to understand our
contributions. The following chapters present the core contributions of this thesis.

Chapter 3 discusses the P2L problem in a human-robot team scenario. We
consider collaborative manufacturing where a human-robot team needs to complete
a given sequence of assembly tasks in minimum execution cost. We assume that all
future tasks come in a fixed sequence and are known ahead of time. To this end, we
propose the Act, Delegate or Learn (ADL) planner (Vats et al., 2022) that determines
which tasks to assign to a robot, which tasks to assign to a human and which skills
to teach the robot.

Chapter 4 moves away from human-robot collaboration and explores P2L in the
context of multistep manipulation tasks. We assume that the robot has a symbolic
representation of the task in the form of a skill graph which can be used to plan.
We propose Metareasoning for Skill Learning (MetaReSkill) (Vats et al., 2023) to
efficiently learn task-relevant skills using this symbolic representation. MetaReSkill
uses an estimated skill improvement model in conjunction with a skill planner to
actively learn the most task-relevant skills.

Chapter 5 relaxes the assumption of having a symbolic skill graph and introduces
a reinforcement learning-based approach RecoveryChaining (Vats et al., 2024) to solve
the P2L problem. RecoveryChaining uses a hybrid action space to efficiently learn
robust recovery policies that can be chained with model-based controllers. The action
space contains temporally extended nominal options that transfer control to a specific
nominal controller.

Chapter 6 concludes with a summary of contributions, discussion and directions
for future work.
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2 Background

This chapter surveys the broader literature on meta-reasoning, active machine
learning and hierarchical reinforcement learning. Additional background and related
work specific to each chapter is discussed in the relevant chapter.

2.1 Meta-reasoning

The human mind is able to solve a wide range of complex perception and deci-
sion making problems despite having access to only a fixed amount of computational
resources and limited experience. Griffiths et al. (2019) argue that, “the constraints
that characterize human cognition are also intrinsic to developing key components of
what we recognize as intelligence”. This ability to make the most of limited resources
has enabled humans to become efficient and general-purpose learners. One of the key
components of this general intelligence of the human brain is meta-reasoning (Acker-
man and Thompson, 2017). Meta-reasoning refers to the processes in the brain that
monitor the progress of human reasoning activities, i.e., metacognitive monitoring
and allocate time and effort devoted to different cognitive tasks, i.e., metacogni-
tive control. In particular, rational metareasoning (Russell and Wefald, 1991) treats
computations as actions to be selected from based on their expected utilities. For ex-
ample, an agent could compute the value of computation for every computation that
could be executed and pursue the computation with the highest value. We adopt a
similar approach in this thesis, wherein some of the robot actions are meta-actions
that correspond to spending computational resources or querying humans for data
collection.

Meta-reasoning has been used in artificial intelligence to design agents that can uti-
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lize computation efficiently to operate in resource constrained environments. Robots
often use anytime motion planning for acting under tight time constraints. Anytime
algorithms (Zilberstein, 1996) are algorithms that can improve the quality of solu-
tions with additional computation time. Meta-reasoning has been used in this context
to decide when to stop planning and start executing the current best plan (Svegliato
et al., 2018; Sung et al., 2021). In many practical situations, it is preferable to execute
a sub-optimal plan instead of waiting to compute a better plan. This trade-off be-
tween solution quality and computation time is typically encoded in a utility function
which can be optimized through meta-reasoning.

Budgeted Machine Learning

Many machine learning applications require good classification performance under
budget constraints and hence can take advantage of meta-reasoning. In particular,
budgeted machine learning (Gao and Koller, 2011; Benbouzid et al., 2012; Karayev
et al., 2013) is a relatively new field that studies the trade-off between prediction
accuracy and prediction cost in resource constrained settings. In some settings, the
constraint is during training. For example, Li et al. (2019) propose to adjust the
learning rate schedule to maximize performance of a neural network. In some med-
ical applications, the agent has access to labels but needs to pay for each attribute
of a sample. Here, Deng et al. (2013) propose multi-armed bandit-based and other
heuristic ways to pick training examples for training. In other applications, there are
resource constraints during inference. Here, prior works seek to learn a classifier that
utilizes inexpensive sensing and classification modalities as much as possible. Tech-
niques include learning (Wang et al., 2014; Trapeznikov and Saligrama, 2013) feature
acquisition rules using empirical risk minimization and formulating (Benbouzid et al.,
2012; Karayev et al., 2013) the acquisition problem as an MDP.

2.2 Active Learning

The standard machine learning (ML) paradigm focuses on learning the most per-
formant model from a given dataset. However, it is difficult to obtain sufficient data
in many domains in which data collection is expensive, for example, if a human needs
to be queried to generate the label for a training instance. An important observation
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is that not all data points are equally important from the perspective of model train-
ing. For example, in the case of classification, data that lie close to the separation
boundary is more informative than data that clearly belongs to a specific class. Active
learning (AL) (Aggarwal et al., 2014; Settles, 2009) is a sub-field of ML that leverages
this observation to achieve the best model performance while spending the minimum
effort on data collection. Every active learning system has access to an oracle that
generates the label for a query. The oracle could be a human or a computationally
expensive algorithm. The role of the active learning system is to intelligently pose
queries to the oracle.

A number of strategies have been developed for different active learning scenarios.
We highlight a few here.

1. Uncertainty Sampling (Lewis, 1995). The learner maintains an estimate of
its confidence in different parts of the input space. It then queries instances that
it is most uncertain about. For example, when training a Bayesian classifier, a
learner should label instances whose predicted probability is close to 0.5.

2. Expected Error Reduction (Roy and McCallum, 2001). In contrast to
the uncertainty sampling approach that maximizes the label uncertainty of its
queries, this approach minimizes the uncertainty in prediction of the remaining
instances. The learner computes the expected reduction in its error if it is re-
trained with an additional data-point for every instance and queries the label
of the instance that promises the highest reduction.

3. Variance Reduction (Cohn, 1993). The error reduction approach is expen-
sive as it computes the error reduction in terms of all the remaining instances.
When using variance reduction, the learner tries to reduce future expected error
by minimizing the variance of the model as per the bias-variance decomposi-
tion (Geman et al., 1992) of the expected error. This can be expressed in closed
form and is hence computationally cheaper.

4. Expected Model Change (Settles et al., 2007). This is a decision-theoretic
approach in which the learner selects an instance that would impart the greatest
change to the model if the learner knew the label.

While typical AL algorithms select one query at a time, neural networks require
batches of data. Recent works on deep active learning use core-set selection (Sener
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and Savarese, 2018; Yehuda et al., 2022) to select batches of samples for training
neural networks. They formulate the selection problem either as a facility location or
a covering problem (Vazirani, 2013). While both these problems are NP-hard, these
approaches use their polynomial-time approximation algorithms to solve them. We
will use a similar idea in chapter 3 to develop approximation algorithms for planning
to learn. AL has also been extended to the multi-task setting by Harpale and Yang
(2010) by using a utility gain that not only improves performance on one task but
also performance on other tasks.

Active learning has been an important area of research in the robot learning com-
munity because of the high cost of data collection. AL methods have been proposed
for learning parameterized robot skills from fewer samples (Fabisch and Metzen, 2014;
Da Silva et al., 2014). AL techniques are particularly relevant to robot learning from
demonstrations as each demonstration involves significant amount of human effort.
AL can allow the robot to be an active participant of its learning process and reduce
human effort (Chernova and Veloso, 2009). Recent methods like INQUIRE (Fitzger-
ald et al.) even allow the robot to actively choose the appropriate query type to learn
from humans.

2.3 Hierarchical Reinforcement Learning

Hierarchical reinforcement learning (HRL) (Pateria et al., 2021) is an approach for
solving long-horizon decision making problems by decomposing them into smaller sub-
tasks to enable easier policy learning and better generalization. This decomposition
allows decisions to be made at higher levels of abstraction without having to deal with
the low-level details. Each sub-task may itself be a reinforcement learning problem
which can be solved independently to learn a low level policy. A higher-level policy
is then learned on top of these low level policies. In general, HRL can have a multi-
level hierarchy of sub-tasks. However, it is more common in robotics to have a
bilevel hierarchy. We use bilevel hierarchies in this thesis as well in which temporally
extended actions, called options, are used as an abstraction over low level robot
actions for efficient learning.
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Options Framework

We model each robot skill as an option as per the options framework (Sutton
et al., 1999; Konidaris et al., 2018). Each option consists of three components:

1. robot control policy π which chooses the robot’s low level actions.

2. initiation set I, also sometimes called a precondition, which defines the states
from which the option can be executed.

3. termination condition β which defines the states in which the option must ter-
minate.

Skill Preconditions

We use a probabilistic version of initiation sets, where the precondition (Konidaris
et al., 2015) of a skill is a classifier ρ : Θ → [0, 1] that takes in features describing
a state and returns the probability that the skill can be successfully executed from
that state. This classifier is usually trained by executing the skill from various start
states to generate success labels (Kroemer and Sukhatme, 2016).

11



3 P2L for Human-Robot
Teams: Act, Delegate

or Learn

The vast majority of industrial robots today are pre-programmed by domain ex-
perts to do highly specific tasks. These robots lack the flexibility to recover from
errors and adapt to even small changes in their task or environment. While robot
learning (Kroemer et al., 2021) promises to reduce pre-programming and improve
generalization, full robot autonomy for challenging tasks in unstructured environ-
ments is likely to be out of reach for the foreseeable future (Kragic et al., 2018).
Even when full autonomy is technically feasible, it may not always be affordable
as teaching robots to do new tasks requires expensive data collection and extensive
tooling. In this chapter1, we consider the middle ground of collaborative robotics
wherein robots operate alongside humans. Collaborative robotics has been of great
interest for applications in manufacturing and service industries because it combines
the complementary strengths of humans and robots (Vicentini, 2021).

Consider a manufacturing facility with collaborative robots that gets its orders
at the start of each day. How should the human and robot workers work together
to efficiently fulfil all the orders? Traditionally, planners for task allocation (Gom-
bolay et al., 2013; Shannon et al., 2016) have been used to allocate tasks to humans
and robots based on their capabilities. However, they assume that robots comes
pre-trained or pre-programmed with a fixed set of capabilities. This static view of
robots misses the opportunity to have robots learn on the job from their human team-
mates. In particular, techniques from learning from human demonstrations(LfD) (Ar-
gall et al., 2009; Chernova and Thomaz, 2014) can be used to teach the robot new
skills that empower it to better assist the human on future tasks. This leads to a

1This chapter is based on material from Vats et al. (2022).
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Figure 3.1: Consider three assembly tasks visualized in a 2D task state-space. Each
colored oval covers tasks that can be solved by a specific robot skill. Note that skill
B covers more tasks than the other two skills while task C remains uncovered even
after learning skill B. Our framework schedules teaching of only those skills that
cover enough future tasks to offset the cost of robot teaching. Remaining tasks are
delegated to a human for completion.

number of important questions: Should additional robot teaching be done? If so, on
which tasks? What tasks should be done by robots and what tasks by humans?

To this end, we propose a decision making framework Act, Delegate, or Learn
(ADL) that jointly reasons about task allocation and robot learning. Learning extends
the capabilities of a robot, which is useful when similar tasks are expected to be
encountered again in the future. One-off tasks that are beyond the capability of the
robot, on the other hand, are allocated to the human. We focus on a setting where
tasks come in a known fixed sequence. This is motivated by time and cost critical
domains like agile assembly lines in factories where a diverse but known set of orders
need to be fulfilled with minimum human and robot effort. While human help is
available, it is at a premium. Hence, we would like to use it optimally so as to minimize
the overall effort. We show the ADL framework provides significant reduction in
human workload compared to task allocation and robot learning approaches.
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Figure 3.2: Overall approach: (i) Training in Simulation Skills are learned (using
RL) and deployed on tasks τ ∼ D to collect data on what other tasks can be solved
by a skill learned for a particular task. A precondition prediction model is trained
using this data. (ii) Real World Execution Our planner makes use of the learned
model to decide when the robot should attempt a task, when it should delegate to a
human and when it should learn a new skill for a task.

3.1 Related Work

Task Allocation

Task or function allocation is the decision making problem of determining which
functions should be performed by machines and which by humans (Inagaki et al.,
2003; Fitts et al., 1951). While a number of strategies have been proposed, the one
closest to our work is economic allocation (Inagaki et al., 2003; Dearden et al., 2000)
which finds an allocation that ensures economic efficiency.

Adaptive Automation

Adaptive automation can accommodate changes in the environment or the human
for function allocation. A number of frameworks have been proposed over several
decades (Rouse, 1976; Scerbo, 1996; Kaber et al., 2001; Sheridan, 2011) which focus
on optimizing operator workload, attention and efficiency. Consequently, their focus
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has been on modeling the human (Pew, 1969; Chen and Barnes, 2014; Shannon et al.,
2017). (Basich et al., 2020) recently propose an interactive model of autonomy, where
a system learns a model of its competence online. All these strategies assume that
the robot has certain fixed capabilities

Learning from Demonstrations

There are three main categories(Ravichandar et al., 2020) of LfD– kinesthetic
teaching, teleoperation and passive observation. Kinesthetic teaching is the most
common approach for providing demos in manufacturing and health-care (Ravichan-
dar et al., 2020), while tele-operation does not require the user to be copresent with
the robot. Passive observation usually requires multiple demos (Hayes and Scassel-
lati, 2014), special instrumentation (motion capture, force-torque sensors) depending
on the task and is complicated to solve due to the need for retargeting. Despite recent
progress, teaching robots generalizable skills still requires significant human effort.

Interactive Robot Learning

Interactive robot learning (Chernova and Veloso, 2009; Cakmak et al., 2010; Gri-
bovskaya et al., 2010) seeks to make it easier for humans to teach robots, for example,
by minimizing the number of demos. A popular approach is for the robot to ask for
help when it is not confident or uncertain. In particular, Confidence-Based Auton-
omy (Chernova and Veloso, 2009) uses classification confidence to choose between
autonomous execution and request for a demo and Xie et al. proactively ask for help
from a human when the agent enters irreversible states. ThriftyDAgger (Hoque et al.,
2021) uses estimated probability of task success to determine when to solicit human
interventions. Different from these approaches, our framework takes into account
the cost of human intervention which depends on the type of intervention, such as,
demonstration or recovery from failures. Rigter et al. (2020) propose a multi-armed
bandit approach to explicitly minimize a cost function corresponding to human ex-
ertion. However, their decision making framework is myopic and does not take into
account the effect of a demonstration on improving robot performance on future tasks.
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Multi-task Learning

Deisenroth et al. (2014) look at learning a single policy in a multi-task setting with
a continuous set of tasks. Kupcsik et al. (2017) learn a two level policy where the low
level policy controls the robot for a given context and the high level policy generalizes
among contexts. In contrast, we take a library of independent skills approach, where
generalization happens only at the lower level.

3.2 Act, Delegate or Learn Framework

(a) (b)

Figure 3.3: (a) Transition Model. Our MDP has three actions: arob, ahum and
ademo with associated costs of crob, chum and cdemo corresponding to the options act,
delegate and learn. A human intervenes to complete a task if robot execution fails.
We assume that a human can complete all the tasks and is available at all times
to teach the robot. (b) Simplified Transition Model. We can replace the two
stochastic outcomes due to arob with a single outcome whose cost is an expectation
over them.

We are interested in completing a known sequence of tasks with minimum total
expected human and robot effort. Before deployment, we are provided an approximate
distribution D of tasks that are expected to be encountered. The robot may be pre-
trained with a set of skills based on this knowledge. The actual tasks and the order
in which they need to be done are revealed only at test time. At this stage, a decision
needs to be made for every task: should the robot do the task, should it delegate
the task to a human or should it ask to be taught how to do the task? We require
that every task be completed. Hence, each robot failure incurs additional cost due to
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human intervention to complete the task and correct the setup. Finally, we assume
that a human is available at all times to intervene if needed - either to correct a robot
failure or to teach it, for example, by providing demonstrations.

A popular approach for solving related tasks is to learn a parameterized skill
(da Silva et al., 2012), that adapts the policy based on changes in the task. This
approach is practical if only some aspects of the task can change. Adapting to various
changes in the tasks requires a more complex skill parameterization that makes the
learning problem harder and more sample complex. An alternative approach, which
we take in this work, is to have the robot maintain a library L = {π1, · · · , πn} of
skills, each of which is learned on a narrow task distribution from demonstrations.
Given a task τ , the robot picks an appropriate skill for it. by selecting a skill with the
highest probability of success: argmaxπ∈L ρπ(τ). This representation has a number of
advantages over learning a monolithic skill, chiefly, modularity, allowing local updates
and providing alternatives in case of execution failure.

3.2.1 Problem Definition

The ADL planning problem is a stochastic shortest path (SSP) problem (S,A, T , C,G)
(Kolobov, 2012) where S is a state space, A is an action space, T : S×A×S → [0, 1]
is a transition model, C : S × A × S → R+ is a cost function and G ⊂ S is a set of
goal states. We define each of these components of the MDP for our problem:

State Space

Each state s ∈ S is a tuple ⟨L, k⟩, where L is the skill library of the robot at that
state and k refers to the tasks completed so far.

Action Space

A = {arob, ahum, ademo}, where arob implies that the robot attempts to solve the
task, ahum implies that the human solves it and ademo implies that the human teaches
the robot a new skill for it in addition to solving it.

Transition Function

T models whether the skill library got updated or a task was completed after an
action. Though the outcome of robot execution is stochastic, we can convert it into
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a deterministic MDP by taking an expectation over the two outcomes (see figure 3.3
for details). We will be using the resulting simplified transition model in the rest of
the paper. The transition model makes it clear that arob and ahum do not affect the
skill library in any way. On the other hand ademo updates the library by adding a
new skill π to its repertoire.

Cost Function

The cost function is defined as

C(si, a) =



crob(i) + Pr(fail) · cfail(i) a = arob

chum(i) a = ahum

cdemo(i) a = ademo

(3.1)

where, Pr(fail) = 1−maxπ∈L ρπ(τi). The cost of a robot execution includes the cost
of a potential failure and hence depends on the robot’s skill library. crob, chum and
cdemo are domain and task dependent costs specified by a domain expert. For example,
in manufacturing, where minimizing the economic cost of production is crucial, crob

could reflect the cost of operating a robot, while chum and cdemo could depend on
the efficiency of a human collaborator. There exist a number of approaches (Chen
and Barnes, 2014; Shannon et al., 2017; Gombolay et al., 2017) to model human
performance. cfail corresponds to the difficulty of fixing a mistake made by the
robot. In some domains, this could be as simple as asking a human in the factory
to complete the remaining task, while in others, it may be high if there is a risk of
damage due to a failure.

A goal state is reached once all the tasks have been completed. Let {τi}n
i=1 be

the sequence of tasks and η = {ηi}n
i=1 be the sequence of actions taken. Then, the

expected cost of execution is: J(η) = ∑n
i=1 C(si, ηi), where si+1 = T (si, ηi) and our

goal is to find an optimal plan η∗ = argminη∈An J(η).
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3.3 Approach

3.3.1 Mixed Integer Programming Formulation

The standard techniques used to solve a deterministic SSP are graph search al-
gorithms like Dijkstra’s algorithm and A*. Unfortunately, the search graph induced
by our problem has exponentially many states in the number of tasks to be done.
Though A*-like algorithms can leverage heuristics to speed-up search, their perfor-
mance is highly dependent on the quality of the heuristic and hence incur substantial
overhead for designing good heuristics.

Motivated by this, we propose a mixed integer programming (MIP) formulation
of the SSP which can be solved using off-the-shelf solvers without the need to design
heuristics. These solvers provide high quality solutions (with sub-optimality bounds)
and are highly scalable.

We introduce decision variables for every task: xi, yi, zi ∈ {0, 1}, wi ∈ [0, 1],∀i ∈
{1, · · · , n}. Let binary decision variable xi be 1 if a demo is sought on task τi, yi be
1 if a human is asked to solve it and zi be 1 if the robot is asked to attempt the task.
As the robot may fail in its attempt, we model the probability of human intervention
with a continuous decision variable wi– note that it is non-zero only if robot execution
is chosen for a task. We exercise indirect control over wi via the probability of failure
of the action taken.

Our overall objective is:

min
n∑

i=1
cdemo(i)xi + chum(i)yi + crob(i)zi + cfail(i)wi

where, zi = 1 − xi − yi as we allow exactly one of these three actions for a task.
Hence, the objective can be simplified.

min
n∑

i=1
c′

demo(i)xi + c′
hum(i)yi + cfail(i)wi (3.2)
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where ∀i ∈ {1, · · · , n}

c′
demo(i) = cdemo(i)− crob(i)

c′
hum(i) = chum(i)− crob(i)

wi = 1−max {ρ0, ρ1(τi)x1, · · · , ρi(τi)xi, yi}

The max term in the last equation is a maximization over the success probabilities
of the available ways to solve the task – using pre-trained skills (with precondition
ρ0), learning new skills (with preconditions ρ1 · · · , ρn) and delegating to a human
(represented by yi). yi is 1 if the robot delegates the task to a human, in which case
we are assured of task completion. In its current form this program is not linear due to
the max operation. However, we can easily convert it into a linear MIP by introducing
additional binary decision variables. Some solvers like Gurobi (Gurobi Optimization,
2021) can directly take this program and do the linearization under the hood.

3.3.2 Precondition Prediction Model

A key requirement of our planner is the ability to foresee the benefit of robot
teaching before committing to it. Past works (Kroemer and Sukhatme, 2016; Sharma
and Kroemer, 2020) have looked at the problem of precondition learning, wherein a
classifier is trained for an existing skill to predict what other tasks can be solved by
it. By contrast, we need to predict the preconditions of a skill that will be learned
if we choose to teach the robot– a precondition prediction problem. Our proposed
solution is to learn a classifier P : (τtrain, τtest)→ [0, 1] (figure 3.4) that takes as input
a train task and a test task and predicts whether a robot trained on the former will
be able to solve the latter. Intuitively, this can be thought of as learning a similarity
metric between tasks.

We collect training data for the precondition model using algorithm 1. This can be
prohibitively expensive as we need to learn robot policies to generate labels. We get
around this limitation by observing that we do not need to transfer robot skills from
sim2real but only task relationships— the former requires high fidelity simulation
while the latter does not. It is often the case that a lower dimensional state represen-
tation is sufficient to discriminate between tasks. The key is to simplify the problem
such that inter-task relationships remain intact– tasks that are similar/dissimilar in
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Figure 3.4: Precondition prediction model predicts the probability of success on a
test task τ ′ after the robot has been trained on a task τ .

the real world should remain so in simulation and vice versa. Concretely, we define
an abstraction (Li et al., 2006; Konidaris and Barto, 2009a) M as a pair of functions
(f, g) such that f : S → S ′ maps the original problem state space S to a smaller state
space S ′ and g : A → A′ maps the full action space to a smaller action space. The
specific state and action abstraction to be used in training are provided as domain
knowledge.

Algorithm 1 Data collection in abstract simulation.
1: procedure GetTrainingData(m, n)
2: X ← ϕ, Y ← ϕ
3: S ← Sample m tasks from D
4: for i ∈ {1, · · · , n} do
5: Sample τ from D
6: π ← Learn policy for τ
7: for τ ′ ∈ S do
8: x ← (τ, τ ′)
9: y ← Evaluate π on τ ′

10: X.insert(x), Y.insert(y)
return X, Y

3.4 Approximation Algorithm

The formulation presented in the previous section is intractable when the number
of tasks is large as MIP is NP-hard. In this section, we show that ADL is an instance
of the facility location problem (Vazirani, 2013). While solving the facility location
problem optimally is NP-hard, it has O(log n) approximation algorithms which can

21



Ch. 3 – P2L for Human-Robot Teams: Act, Delegate or Learn

compute a bounded-suboptimal solution in polynomial time. This reduction scales our
framework to large batches of tasks without compromising on efficiency and solution
quality.

We first briefly introduce the uncapacitated facility location (UFL) problem.
Please refer to Williamson and Shmoys (2011, chapter 4) for a more detailed treat-
ment. The facility location problem has a set of demands D = {1, . . . , m} and a set
of facilities F = {1, . . . , n}. There is facility cost fi associated with opening each
facility i ∈ F and an assignment or service cost cij of serving demand j by facility i.
The goal is to serve all the demands by opening a subset of facilities F ′ ⊆ F such that
the overall cost of opening the facilities in F ′ and the cost of assigning each demand
j ∈ D to the nearest facility i ∈ F ′ is minimized:

min
∑
i∈F ′

fi︸ ︷︷ ︸
facility cost

+
∑
j∈D

min
i∈F ′

cij︸ ︷︷ ︸
service cost

(3.3)

Theorem 3.4.1. ADL is an instance of the uncapacitated facility location problem.

Proof. Given an instance of ADL with m tasks, we construct an instance of UFL
with m demands and 2m facilities as follows. Let M be a large number such that
M > crob + cfail + chum. Define the set of demands as

D = {1, . . . , m}

corresponding to all the tasks. For every task, define a delegate facility and a learn
facility. The delegate facility corresponds to delegating that task while the learn
facility corresponds to learning the task. Hence, the set of facilities is

F = Fdel ∪ Flearn = {1del, . . . , mdel} ∪ {1learn, . . . , mlearn}

A delegate facility idel has a facility cost of fdel
i = cdel(i). The service cost is 0 for

task i and M for all the other tasks. A learn facility ilearn has a facility cost of
f learn

i = clearn(i). The service cost is

cij = crob + (1− ρi(τj)) · cfail

for all subsequent tasks τj and M for all preceding tasks. This is necessary as the
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(a) (b)

Figure 3.5: (a) Peg insertion under uncertainty in simulation and the real world (b)
Shown here is an overhead image of the task setup. In our experiments, we focused
on the holes (highlighted in red) close to the two wooden walls so that the robot could
always use one of the walls to localize the peg with respect to the target hole. The
task-id corresponding to each hole is written next to it.

tasks come in a fixed order.
The solution to this UFL instance is a subset F ′ ⊆ F of facilities that should be

opened to minimize the objective 3.3. A solution to ADL can be extracted as follows.
If facility idel ∈ F ′, then task τi should be delegated. If ilearn ∈ F ′, then the robot
should be taught τi. Otherwise the robot should attempt the task.

3.5 Experiments

We evaluate our approach, both in simulation and in the real world, on two chal-
lenging problems of insertion under uncertainty and Lego stacking. Our first objective
is to understand the benefits of the ADL framework as compared to baselines that are
myopic or reason about only a subset of the three options. Second, we evaluate our
hypothesis that the precondition model can be transferred to a real robot after train-
ing in simulation. In both these experiments, we use a 2-layer fully connected neural
network as our precondition prediction model and we are able to solve our mixed in-
teger program optimally in well under a second using Gurobi (Gurobi Optimization,
2021).
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Baselines

We compare our approach against three baselines:

1. Act Delegate (AD). The robot chooses between acting and delegating based
on the expected costs of these two actions.

2. Confidence-Based Autonomy (CBA) (Chernova and Veloso, 2009). Given
a fixed threshold θ, the robot attempts a task if its confidence in success is
greater than θ and asks for demonstrations to learn the task, otherwise.

3. Act-Learn Myopic (ALM). Similar to the strategy used by (Rigter et al.,
2020), the robot chooses between attempting a task and asking for human demos
by comparing the immediate expected costs of both the actions.

Evaluation Metrics

The main evaluation metric is the total cost of completing all the given tasks.
We also compare the methods based on the number of demonstrations and human
interventions and the number of failures.

Skill Representation

In both our experiments, the robot end-effector is controlled using Cartesian-space
impedance control which commands torques at the end-effector based on errors in the
Cartesian space using a spring-damper system. A skill is a sequence of waypoints in
the robot’s end-effector frame, where each waypoint is defined by a 6D pose and the
stiffness to be used in the corresponding spring-damper system.

3.5.1 Insertion under Uncertainty

We first look at insertion of blocks and pegs into a hole under uncertainty. Each
task involves inserting a block of dimensions 1 cm x 1 cm x 6 cm into a slot of
dimensions 1.2 cm x 1.2 cm x 2 cm in a known environment with a noisy estimate
of the slot location ∼ N (0, 0.32cm2). We generate four different environments of
dimensions 20 cm x 20 cm each, with different numbers of walls arranged in a grid.
We use the Nvidia Isaac Gym simulator (Nvidia, 2020) to simulate the tasks and
to train the precondition model. Due to uncertainty in the position of the hole, the
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robot needs to take uncertainty reducing actions for successful insertion. We visualize
such a strategy in figure 3.6 which first localizes the wall next to the hole.

(a) (b) (c) (d)

Figure 3.6: Shown here is a side-view of a 4-step block insertion strategy. The block
is shown in blue, the wall next to the slot is shown in solid black and the red arrow
points along the force vector applied on the board by the robot. The robot knows
the location of the slot with respect to the wall and hence first pushes against it to
reduce uncertainty in the x direction.

Precondition Prediction Model

We generate a set of 100 tasks from the same four environments for learning the
precondition prediction model. For 30 tasks out of these, we learn block insertion
policies using Relative Entropy Policy Search (REPS) (Peters et al., 2010). These 30
skills are evaluated on all the 100 tasks to generate success binary labels. Using this
data we train a 2-layer fully connected neural network as the precondition prediction
model. Given training and test task features τtrain and τtest, we feed τtrain − τtest as
input to the model to encode translational invariance.

Evaluation in Simulation

We compare ADL with AD, CBA(θ = 0.5) , CBA(θ = 0.2) and ALM in figure 3.7,
where 0.2 is the optimal CBA threshold found using grid-search. ADL outperforms
all the baselines at every level of pretraining. However, the improvement provided by
ADL drops with increase in pretraining as the robot can complete more of the tasks
autonomously without seeking additional demos or delegating. Also note that CBA
outperforms AD at low levels of pretraining but the opposite holds at higher levels
as demos sought by CBA are not cost-effective for the task set.
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Figure 3.7: Comparison of ADL vs baselines in total cost for solving 20 block insertion
tasks at different levels of skill pretraining. Pretraining is done by teaching the robot
randomly sampled tasks from the task distribution. ADL is strictly better than all
baselines at every level of pre-training. However, after pre-training with 8 skills, both
ADL and AD converge to full autonomy as the robot is able to solve most of the tasks
with pre-trained skills. We use crob = 10, chum = cfail = 100 and cdemo = 200.

Evaluation on a Real Robot

We do a qualitative evaluation of our approach on peg insertion in the real world
using the 7 DoF Franka Emika Panda arm. In our approximate model, we assume
that there is always only one hole in the task area and each new task is a different set
of walls and hole. In the real world we use a single Chinese checkers board as shown
in figure 3.5. We attach two pieces of wood next to the holes to act as fixtures for
localization. Each task here is fully specified by its location on the board. From a set
of 17 tasks, we create 5 sets of 10 tasks each for evaluating our approach.

The results from our experiment are summarized in in table 3.1. In task set 1
(table 3.1), all the tasks are close to the bottom wall and hence can be solved using
the same skill. The precondition prediction model is able to capture this relationship,
which is why ADL asks for only 1 demo and doesn’t delegate to a human. In task set
2 (table 3.1), tasks 12 and 14 lie close to the right wall and hence need a skill different
from the one that can solve the other 8 tasks in that set. Because the precondition
model is able to predict this (a) it does not ask the robot to attempt these two tasks
and (b) it delegates them to the human as it is not cost-effective to seek additional
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Order of Tasks
1 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
2 0, 1, 2, 12, 3, 4, 14, 5, 6, 7
3 1, 0, 2, 12, 3, 4, 14, 5, 6, 7
4 1, 3, 2, 12, 0, 4, 14, 5, 6, 7
5 1, 3, 5, 7, 0, 12, 4, 14, 2, 6

#demo #hum
1 0
1 2
1 3
1 4
2 2

Table 3.1: Our parameterized preconditions model learned in simulation transfers to
the real world as it is able to capture the relative distances of walls from the hole.
We assume crob = 10, chum = 100, cfail = 100, cdemo = 300.

demos for just two tasks.

3.5.2 Lego Stacking

In our second domain of Lego stacking we seek to evaluate how well our method
works in the real world. In particular, we want to understand whether a precondition
model learned using an abstract simulation is able to reduce effort in real world. Each
task involves picking up a part made up of Lego bricks from a table and stacking it
firmly onto a Lego base plate. A robot execution fails if two or more corners of the
part are not locked onto the plate or the robot hits the base at any point. The robot
is provided a bounding box around the part, a grasp location and a target location
by the user. We use a 66D feature vector for each task– binarized and resized image
(to 8× 8 ) along with its original size. Before running the experiments, we record 5
demos for each task in the ground set. Every time the robot requests a demo for a
task, one of the 5 pre-recorded demos is provided by sampling randomly.

Skills

Each stacking skill consists of three sub-skills executed in sequence: pickup, place-
and-wiggle and robust-tapping.

1. Pickup. Picks up the part given a grasp location.

2. Place-and wiggle. Places the part at the target location and pushes it down
while perturbing the part randomly to align it with the studs on the base plate.
For all parts, except the smallest ones, this step alone is not sufficient for firm
stacking as it only ensures stacking within a small region around the grasp.
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Figure 3.8: (Top) The ground set of 15 tasks from which test sets of 10 tasks each
are sampled uniformly randomly. (Bottom) The Franka-Emika Panda robot stacking
one of the parts onto the base plate.

3. Robust-tapping. Pushes down on the part at different locations to make sure
that the part is stacked firmly.

The first two are hand-designed and common across all tasks, while robust-tapping
needs to adapt the number and location of taps based on the geometry of the part.
The latter is learned in the grasp-frame and scaled based on the size of the part. This
allows the skill to generalize to different locations and across parts of similar shape
but different sizes.

Precondition Prediction Model

Physics-based simulators struggle to simulate interactions among multiple Lego
bricks and the interference fit mechanism used in them. Consequently, we use a cus-
tom simulation based on our observation that the primary reason for variability in
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skills is the geometry of the parts. We can afford to ignore physics and robot dy-
namics as we do not transfer the learned skills to the real world. Our coverage-based
simulation takes in a 2D image of a part and identifies only the number and location
of taps needed to cover the whole part by randomly sampling points on the image.
Experimentally, we found that a single tapping action has an effect upto about 3cm
from the tapping location. We use this knowledge in the simulation to determine
whether a part is covered or not after a sequence of taps. We capture 10 images
of each of the 15 tasks, along with a bounding box around the part and the grasp
location. After training skills for each of the resulting 150 tasks in our coverage-based
simulation, we evaluate them on all the tasks to generate binary success labels Using
this data we train a 2-layer fully connected neural network as the precondition predic-
tion model. Given training and test task features τtrain and τtest, we feed [τtrain, τtest]
as input to the model.

Figure 3.9: Comparison of ADL vs baselines in the Lego stacking domain using
crob = 10, chum = cfail = 100 and cdemo = 200. ADL is the only planner that leverages
synergy among acting, delegating and learning to complete tasks at minimum cost.

Evaluation on a Real Robot

We evaluate all the approaches on 10 sets of 10 Lego-stacking tasks each using
crob = 10, chum = cfail = 100 and cdemo = 200. We choose cdemo > chum as it takes
much more time to provide a demo than for the human to stack the Lego themself,
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while chum = cfail as a failed robot execution can be fixed quickly by a human. crob is
the smallest cost as we value human time much more than robot time in this domain.
Figure 3.9 shows the total cost of completing all tasks using each of the methods. AD
delegates all tasks as the skill library is empty at the beginning, CBA asks for too
many human demos as it doesn’t take into account their relevance to the task set and
ALM doesn’t ask for any demos as its upfront cost is higher than failing at a task.
In contrast, ADL finds the optimal synergy among all the three options to solve the
tasks with minimum cost. The full results are summarized in table 5.1.

Total Cost # demo # hum # fail
ADL 856 (± 120.9) 1.2 (± 0.4) 4.2 (± 1.7) 1.5 (± 1)
AD 1000 (± 0) 0 (± 0) 10 (± 0) 0 (± 0)
CBA 1306 (± 207.2) 5.4 (± 1.2) 0 (± 0) 1.8 (± 1.5)
ALM 1100 (± 0) 0 (± 0) 0 (± 0) 10 (± 0)

Table 3.2: We report the mean and standard deviation of the results averaged over 10
different planning problems with 10 tasks each. Baselines ALM, AD and CBA(θ =
0.5) cost 28.5%, 16.8% and 52.6% more than ADL as they don’t plan ahead. We use
crob = 10, chum = 100, cfail = 100, cdemo = 200 and no skill pretraining.

Effect of Costs on Plans

To better understand the effect of costs on ADL, we compare ADL with baselines
in two settings (see figure 3.10):

1. Low cost of teaching, i.e., cdemo ≤ chum < crob + cfail. When it is easier to
teach a new skill to the robot than to assign it to a human, the cost optimal
strategy is independent of future tasks and is to simply ask for demos if the
robot is not confident. Unsurprisingly, both CBA and ALM perform as well as
ADL in this setting as planning is not required.

2. High cost of teaching, i.e., chum < crob + cfail < cdemo. Teaching a robot
how to do a new task is typically harder than assigning it to a human. In this
setting, it is important to plan ahead to minimize the number of demos since
the cost-optimal strategy depends on future tasks. Experimentally we find that
ADL does indeed perform substantially better than baselines.
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(a) cdemo = 90 ≤ chum < crob + cfail (b) chum < crob + cfail ≤ cdemo = 300

Figure 3.10: We compare ADL with baselines with different amounts of pre-training
at the start of deployment and two different costs of learning. (a) The cost-optimal
strategy is to ask for demos if the robot is not confident. Both CBA and ALM
perform as well as ADL in this setting. (b) It is important to plan ahead to be able
to minimize the number of demos. ADL performs substantially better than baselines
in this setting. crob = 10 and chum = cfail = 100 in both the settings.

3.6 Discussion

In this chapter, we proposed a P2L framework for collaborative robots that operate
as part of a human-robot team. Planners for task allocation in human-robot teams
have traditionally assumed robots possess a fixed set of capabilities. We argued that
this is a missed opportunity as collaborative robots can be taught new skills on the job
by their human teammate through demonstrations. However, this additional teaching
has to be done strategically to avoid over-burdening the human worker with queries
for demonstrations. Motivated by the assembly domain, we considered the setting of
fulfilling a known sequence of n tasks. In such settings, the cost of teaching a robot
via demonstrations is typically much higher than the cost of a human taking over the
task. However, it is beneficial to teach a new skill to the robot if the time spent by the
human on teaching is offset by the time saved by allocating additional tasks to the
robot in the future. This leads to a number of questions, such as, which additional
skills should be taught to the robot and how should tasks be allocated?

Our proposed planning framework called Act, Delegate or Learn (ADL) answers
these questions cost-optimally. ADL has two key components: (1) a general mixed
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integer programming formulation and (2) a learned domain-dependent precondition
prediction model to predict the benefits of learning a new skill. Simulated and real
world evaluations on two challenging manipulation domains indicate that our ap-
proach saves significant human and robot effort compared with approaches that do
not plan ahead.

3.6.1 Limitations

A major limitation of our approach is that it assumes knowledge about the effort
involved in teaching a robot and doing tasks in the form of costs. It can be challeng-
ing to acquire these costs accurately as they are highly situational and may depend
on human preferences. For example, kinesthetic teaching is more challenging with
heavy robot arms than with lighter arms. Estimating costs that are aligned human
preferences is hence a promising direction for future work. That said, our approach
can be useful even when the costs are not precisely known as long as they capture
the relative difficulty of the different actions.

Second, we focus on a setting in which the order of all future tasks is known. In
some settings it may be possible to re-order the tasks. This can allow the robot to
learn all the important skills early on so that it can apply them to the remaining
tasks. We believe our mixed integer programming approach can be extended to such
settings. We also currently do not account for uncertainty in future tasks which is
likely to be present in many domains.

Another limitation of our approach is that it does not reason about sequencing
multiple skills to solve multistep tasks. This limits ADL to relatively short horizon
tasks that can be completed using a single skill. For our approach to be more broadly
applicable, it would need to decide not only which tasks the robot should learn but
also which skill in the sequence to seek demonstrations for. A skill that is reused
across multiple tasks is evidently more important than a task-specific skill. We will
consider active skill learning for such multistep tasks in the next chapter.
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4 P2L for Multistep
Tasks: Metareasoning

for Skill Learning

In this chapter1, we move away from human-robot collaboration to focus on mul-
tistep tasks that require sequencing multiple skills. We focus on skill learning to
improve a robot’s robustness to failures due to noise in state estimation and actu-
ation. For example, a robot may miss the handle or drop the key while trying to
open a door due to an incorrect handle pose estimate. In practice, such mistakes are
often handled with hand-engineered or heuristic behaviors and state machines. While
practical for relatively simple tasks in controlled environments, this approach cannot
scale to systems deployed in the real-world which can fail in a variety of different
ways. Hence, there is a need for an algorithmic way to (1) discover potential failures
and (2) quickly improve the robot when new failures are discovered.

To this end, we propose an approach to incrementally improve a robot’s robust-
ness by discovering potential failures in simulation and learning recovery skills that
allow the robot to recover. While our approach can robustify against failures due to
uncertainty in both execution and state estimation, we focus on the latter as it is
more challenging. We assume the robot is given a nominal set of policies which can
complete the task under ideal conditions. These could be hand-designed controllers
or policies learned from human demonstrations. In reality, the state is rarely known
perfectly but is estimated using an online state estimation module. Consequently, the
robot may make mistakes during execution and enter a state from which it cannot
continue— a failure state. We discover such failures in simulation by executing the
nominal policies under a simulated state estimation model. Next, we cluster similar

1This chapter is based on material from Vats et al. (2023).
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Figure 4.1: To open a door, the robot has to (1) grasp the handle (2) rotate it and (3)
pull the door. However, it can fail during any of these three stages due to incorrect
state information and erroneously enter a failure state from which none of its skills
can be applied. We propose an approach that (1) discovers such failures in simulation
and (2) uses meta-reasoning to efficiently learn recoveries to the preconditions of the
robot’s existing skills.

failures and learn recovery skills for each of the clusters that allow the robot to recover
to the precondition of one of its nominal policies.

There are multiple potential recoveries from every failure cluster, each correspond-
ing to a precondition the robot could recover to. For n failure clusters and m precon-
ditions, this results in a total of n×m potential recovery skills. Since attempting to
learn all of these recoveries is computationally expensive and redundant, prior works
use heuristics to choose where to recover. Recoveries generated in such a way can
be sub-optimal as these heuristics don’t reason about the quality of the recovery.
For example, a common heuristic is to recover to a previous state upon detecting a
failure. However, it is preferable to recover closer to the goal in terms of execution
cost. On the other hand, it is not known a priori if recovering close to the goal is
feasible. To this end, we propose Meta-Reasoning for Skill Learning (MetaReSkill),
an algorithm that builds a predictive model of improvement in skill performance and
decides online which skills to devote training resources to such that the overall task
performance improves maximally.

34



Ch. 4 – P2L for Multistep Tasks: Metareasoning for Skill Learning

4.1 Related Work and Background

Recovery from Failures

Robotic systems are usually deployed with hand-designed recovery behaviors in
the anticipation of failures. Common recovery strategies include retrying the previous
step (Ebert et al., 2018; Matsuoka et al., 1999), backtracking (Wang and Kroemer,
2019) and hand-designed corrective actions (Hsiao et al., 2010; Sundaresan et al.,
2021). To execute a recovery, it is important to first detect (Rodriguez et al., 2010;
Park et al., 2016; Luo et al., 2021; Zachares et al., 2021) what kind of failure has hap-
pened or is about to happen. Pastor et al. (2012) propose Associative Skill Memories
which associate stereotypical sensory events with robot movements. Parashar and
Goel (2021) propose an architecture for robot assembly which uses meta-reasoning to
identify the cause of a failure and repair the knowledge that caused the failure. In all
these works, the recovery behaviors are either manually designed, which limits their
scalability, or are generated using a heuristic, which limits their complexity and qual-
ity. By contrast, we learn recovery behaviors with reinforcement learning which offers
the possibility of learning complex recoveries. Pacheck et al. (2019) encode the robot’s
capabilities in linear temporal logic (LTL) which allows them to suggest additional
skills that would make an infeasible task feasible. Similarly, Niekum et al. (2015)
learn a finite-state task representation from demonstrations and improve it using cor-
rective demonstrations. While we too leverage an abstract state representation, our
focus is on actively choosing which skill to learn. If human help is available during
deployment, then robots can use inverse semantics (Knepper et al., 2015) to seek help
through language requests such as “Please give me the white table leg that is on the
black table”. However, we do not assume help during deployment. More recently,
there has been interest in learning a policy to recover to a safe state (Thananjeyan
et al., 2021; Wilcox et al., 2022). However, these works learn a single recovery policy,
assume full observability and do not focus on the efficiency of learning.

Skill Chaining

Skill chaining (Konidaris and Barto, 2009b; Bagaria and Konidaris, 2019) is a pop-
ular approach to solve long horizon RL problems by decomposing them into shorter
sub-problems. A sequence of options is learned backwards from the goal, such that
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in each iteration a new option is learned to reach the precondition of the previously
learned options. The precondition is usually learned using binary classification and
describes the states from which the option policy can be successfully executed. During
the initiation period of an option it is executed from different states in the environ-
ment to collect data for training the precondition. The precondition classifier is then
frozen and used to generate success or failure rewards for the option that is trying to
reach it.

Acting under Uncertainty

The problem of acting under partial state information is optimally solved by for-
mulating it as a Partially Observable Markov Decision Process (POMDP) (Åström,
1965; Kaelbling et al., 1998). A POMDP is defined by the tuple ⟨S, A, T, R, Ω, O, γ⟩,
where S is the underlying state space and Ω is the observation space. In this for-
mulation, the robot acts on its state belief b, which is a probability distribution over
all possible current states. However, solving a POMDP exactly is intractable in ma-
nipulation (Kaelbling and Lozano-Pérez, 2013). Instead, we use a common heuristic
technique of using a state estimator to maintain a belief over world states based on
observations and actions, while the robot acts on the most likely state (Spaan, 2012).

4.2 Problem Setup

We are interested in solving a manipulation task defined by a distribution of start
states D and a goal indicator function fgoal : S → {0, 1}. The robot incurs costs based
on its actions and a penalty of cfail if it ends up in a dead-end or is unable to complete
the task in T timesteps. We are given a set of nominal control policies {π1, · · · , πk}
and a high level policy Π which chooses among these control policies. We assume that
they can reliably complete the task under no uncertainty. Our goal is to improve the
robustness of the robot by discovering and learning additional recovery skills that can
handle failures due to state uncertainty. Formally, we seek to maximize the expected
return of the high-level policy on the task distribution:

Eτ∼D

T∑
t=0,s0=τ

at∼π(st),π∼Π(st)

R(st, at) (4.1)
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where R(s, a) = −c(s, a) − cfail1failure and st is the most likely state at time t as
determined by a state estimator.

Recovery Skill

A recovery skill is an option whose goal is to bring the system to a state from
which its nominal control policies can take over. Formally, let Π = {π1, · · · , πk} be the
nominal set of control policies of the robot and let {ρ1, · · · , ρk} be their preconditions.
We say that the robot has reached a failure state if none of the preconditions ρi are
satisfied. A recovery skill (figure 4.1) drives the robot to a safe state where at least
one of the preconditions is satisfied so that the robot can complete the task.

4.2.1 Symbolic Skill Graph

Instead of reasoning with low-level ground states, which are high dimensional, we
build a compact symbolic skill graph G = (V, E). Each vertex in this graph is a
symbolic state corresponding to a set of continuous states defined by its precondition
ρ : S → {0, 1}. There exists an edge between two vertices u, v ∈ V if there is a skill
whose precondition contains u and its effect is contained in v. We initialize this graph
as a chain with vertices V = {ρ1, · · · , ρk, ρgoal} corresponding to the preconditions of
the nominal skills and edges E corresponding to the nominal policies. Let πij be the
skill from ρi to ρj and qij be its probability of success. If πij fails then we assume
it ends up in an absorbing failure state Fail incurring a penalty of cfail. πij can be
learnt using off-the-shelf RL algorithms where ρi is the initial state distribution and
ρj is the goal condition. While we could use ρj to define a binary reward function
for RL, this is usually impractical for high-dimensional domains. Fortunately, ρj can
also be used to define a dense reward, for example, by computing the distance to the
decision boundary or using the probability ρj(s) as the reward. Finally, the high level
policy Π for choosing which skill to execute at every symbolic state can be computed
using Value Iteration as the skill graph is discrete.

Precondition Chaining

The preconditions of the nominal skills can either be hand-designed or learnt. We
use precondition chaining (described in alg. 2) to learn the preconditions backwards
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Algorithm 2 Learning the preconditions of nominal skills via precondition chaining.
1: procedure PreconditionChaining({π0

1, · · · , π0
k})

2: Execute skill chain and collect N successful trajectories of size k + 1
3: D+

1:k ← Learn positive distribution of the start of every skill
4: goal ← fgoal ▷ Overall task goal
5: for i ∈ {k, k − 1, · · · , 1} do ▷ backwards from goal
6: X ← ϕ, Y ← ϕ
7: for 1 ≤ j ≤M do
8: Sample τ from D+

i

9: Set state to τ and execute π0
i

10: y ← 1 if goal is satisfied, 0 otherwise
11: X = X ∪ τ , Y = Y ∪ y

12: ρi ← Train classifier using (X, y)
13: goal ← ρi

return {ρ1, · · · , ρk}

from the goal. The main difference from skill chaining (Konidaris and Barto, 2009b;
Konidaris et al., 2012) is that we are not interested in discovering new skills at this
point but only in learning the preconditions of the given skills. This involves two
steps:

1. We collect successful trajectories by executing the nominal policies in simula-
tion. Let {s1, · · · , sk, sgoal} be one such trajectory consisting of only the start
and end states of each policy and sgoal is a state that satisfies the goal function.
For every policy πi, we learn a corresponding positive distribution D+

i over its
start states S+

i .

2. We train the precondition classifiers backwards from the goal. To learn the
precondition ρi, we sample states in the vicinity of D+

i and execute πi from
there. We verify its success using ρi+1 (ρgoal for ρk). This helps us gather infor-
mative negative samples S−

i and additional positive samples which are crucial
for learning a tight decision boundary. The precondition classifier ρi is trained
using S+

i and S−
i .

4.3 Approach

Our approach consists of two steps: failure discovery and learning recovery skills
using meta-reasoning.
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Figure 4.2: Failure Discovery. We execute the nominal skills under a simulated
state estimator to induce failures (shown in red). These failure states ∈ S are clustered
into failure modes using a Gaussian mixture model (GMM). This GMM is used as a
failure classifier during execution.

4.3.1 Failure Discovery

We procedurally generate failure states in simulation by executing the nominal
skills under noisy state information. Concretely, let s be the true current state and o

be a noisy observation. While the true state is known to us in simulation, we provide
only the observation to the nominal skills. Because of the mismatch between o and s,
the skill may not work as intended and the robot may end up in a new state s′ with
observation o′. If none of the existing skills is applicable at s′, we record s′ as a failure
state as the robot would not be able to recover from it even if it could observe the
true state. Note that we do not record o′ as it may not even be a valid world state.
While a recovery for s′ does not allow the robot to deal with its current observation
o′, it will be useful when the robot observes o ≈ s′. We propose two failure discovery
strategies:

1. Pessimistic Discovery. The robot executes its nominal policies open-loop
under simulated high state uncertainty. This strategy discovers a larger and
more diverse set of failures than what may actually be encountered during
execution. While this makes recovery learning computationally more expensive,
it doesn’t require a model of the state estimator.

2. Early Termination. The robot executes its nominal policies using observa-
tions from a simulated state estimator and terminates if none of the precondi-
tions are satisfied. This strategy discovers a more accurate failure distribution
and is preferable if a model of the state estimator is available.
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Let Sfail be the set of failures discovered. We cluster Sfail into n failure clusters
{ρf

1 , · · · , ρf
n} and add them as states to our symbolic skill graph. For failures discov-

ered using the early termination strategy, the size of a failure cluster corresponds to
the likelihood that the robot will end up in that failure. Both of these failure discov-
ery strategies lead to recoveries that provide significant improvement in performance
over heuristic recovery strategies in our experiments.

4.3.2 Meta-Reasoning for Skill Learning (MetaReSkill)

The robot may recover to one of the k + 1 preconditions {ρ1, · · · , ρk, ρgoal} from
every failure cluster. However, many of these recoveries are redundant or infeasible.
Instead of trying to learn all of them, our algorithm identifies and prioritizes the most
promising recoveries.

4.3.3 Objective

We define the Value of Failures to measure the performance of the robot at its
failure states. Consider a failure cluster ρf

i in figure 4.3 at the start of recovery
learning. ρf

i is not connected to any precondition as the success probability qij of all
the recoveries is 0. Hence, the value of this failure cluster is V (ρf

i ) = −cfail. With
further training, the value improves to

max
j

qijV (ρj)− (1− qij)cfail

ρj’s are high value states as nominal skills can be executed reliably from there. To
take into account multiple failure modes, we take a weighted sum of the values of all
the failure clusters:

V oF =
∑

i

|ρf
i |∑

j |ρf
j |

V (ρf
i ) (4.2)

where |ρf
i | is the number of ground states in the cluster ρf

i .
Intuitively, a high VoF implies that failures during execution are less problematic

as the robot is highly confident of recovering. Learning recoveries that optimize the
VoF improves robustness to failures. A good first meta-strategy is to train all the
recoveries in a round-robin manner as we do not know a priori what the best recovery
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Figure 4.3: Optimistic Recovery Learning. We learn recoveries using the most
likely state heuristic, i.e., we optimistically assume the state becomes fully observable
after the robot ends up in a failure state. We can potentially learn a recovery (shown
in dotted lines) to each of the preconditions. At the start of recovery learning, none of
these recoveries have been learnt and the robot always incurs a penalty cfail for failing.
After some training, the recoveries are partially learnt and have success probabilities
qij. Note that it is preferable to recover to preconditions closer to the goal as they
have a higher value than those away from the goal.

from every failure mode will be. While this works well in the initial stages of learning,
we observed in our experiments that it is quite inefficient as the VoF quickly saturates
(figure 4.6). To address this issue, we propose a meta-reasoning algorithm that tracks
the progress of all the recoveries and chooses which failure modes to focus on and
which precondition to recover to such that the VoF improves maximally with high
probability in every training episode.

4.3.4 Model of Task Performance

The key idea of MetaReSkill is to build a model of improvement in task perfor-
mance by estimating the rate of improvement (ROI) of individual skills. We use
confidence interval estimation to compute optimistic upper bounds ∆qU

ij of the ROI
∆qij of the success probabilities qij of all the recoveries. As shown in figure 4.4, this
provides an optimistic estimate of how much a recovery could improve after another
round of training.

Let θ be a parameter we wish to estimate. An α-confidence interval (Hines et al.,
2008) for θ is an interval (L, U) such that θ is contained in the interval with confidence
α. This also implies that U is an upper bound on θ at least with confidence α. Let
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Algorithm 3 Meta-Reasoning for Skill Learning
1: procedure train
2: Qij ← queue of max size w,∀i, j
3: for 1 ≤ t ≤ B do
4: if all policies have been trained ≥ K times then
5: for all i, j do
6: T ← transition matrix of skill graph
7: T (i, j)← qU

ij

8: JU
ij ← objective(T, R)

9: (i∗, j∗)← argmax JU

10: else
11: (i∗, j∗)← least trained policy
12: train recovery (i∗, j∗) for η episodes
13: q ← estimate new success rate of πi∗j∗

14: qbest ← max(q, qi∗j∗)
15: qi∗j∗ ← qbest, Qij.insert(qbest)
16: qU

i∗j∗ ← ComputeUCL(i∗, j∗)
return πij,∀i, j

17: procedure Objective(T, R)
18: V ← ValueIteration(T, R)
19: return ∑

i
|ρf

i |∑
j

|ρf
j |

V (ρf
i )

20: procedure ComputeUCL(i, j)
21: ∆Qij ← compute forward differences of Qij

22: n← |∆Qij|
23: ∆qU

ij ← ∆Qij + t(1−α)/2,n−1
s√
n

▷ UCL of ROI
24: qU

ij ← qij + ∆qU
ij return qU

ij

θ1, · · · , θw be a random sample of the parameter. Under the assumption that the
underlying population is normally distributed, the mean µ of the distribution lies in
the following interval with probability α:

θ − t(1−α)/2,w−1
s√
w
≤ µ ≤ θ + t(1−α)/2,w−1

s√
w

where tα,w is the upper α percentage point of the student’s t-distribution with w

degrees of freedom and s is the standard error.
We compute the upper confidence limit (UCL) of ∆qij using only the w most recent

forward differences of qij as the rate of improvement is a non-stationary quantity (w
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Figure 4.4: Using a skill’s past rate of improvement in training rounds 2-4, we predict
its success rate (SR) in the future round 5.

is a domain-dependent hyper-parameter). For every recovery with current success
probability qij, qU

ij = qij +∆qU
ij is an optimistic upper bound on its success probability

after an additional round of training. Let JU
ij be the VoF computed by replacing qij

with qU
ij in the transition matrix of the recovery learning graph 4.3. JU

ij is then an
optimistic prediction of the VoF if we were to train πij for another round. Our
algorithm greedily picks a recovery for training that promises the highest VoF in the
next round. We initialize MetaReSkill with K rounds of round-robin to estimate the
UCL. Priors on ∆qij, if available, can further speed up learning.

4.4 Experiments

We evaluate our approach on the task of door opening under noisy handle position
information both in simulation and in the real world. The goal is to open a door by
at least 0.3 rad with the Franka Panda robot under high initial state uncertainty.

Simulation Environment

We adapt the door environment from the MuJoCo-based robosuite (Todorov et al.,
2012; Zhu et al., 2020) framework to match our real door. The world state is 18
dimensional and includes the robot’s joint angles and poses of the door and the
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Figure 4.5: Handles used in evaluation. We compare our approach with open-
loop execution on 5 different lever latch handles and a full-sized door with a real
robot. Only handle 1 and a small door was used during training; handles 2-5 and the
full-sized door are unseen.

Success Rate (%) Cost (m)
Recovery-skills (Ours) 92.4 0.95 (± 0.34)
Retry 66.9 0.80 (± 0.02)
Recover-to-prev 75.5 0.86 (± 0.19)
Recover-to-start 73.6 0.87 (± 0.26)
No-recovery 64.4 0.80 (± 0.02)
Open-loop 71.0 0.80 (± 0.02)

Table 4.1: Simulation results. We compare recovery skills trained with our ap-
proach using 150 REPS queries with heuristic recovery strategies. Our approach
significantly improves the success rate. The statistics are averaged over 5 sets of re-
covery skills learnt with different seeds, each evaluated 200 times using a simulated
state estimator and a limit of 10 skills per evaluation.

handle. The initial state uncertainty is sampled from N (0, σ = 2cm) each in the
x, y and z positions of the handle. We design 3 open-loop skills to be executed in
sequence - ReachAndGraspHandle, RotateHandle and PullHandle- as the
nominal skills. Each skill consists of one or more 7D waypoints that the robot tries
to reach using task space impedance control, where each target consists of a gripper
open/close state and a 6D end-effector pose. These skills are able reliably to open
doors in simulation and the real world if accurate state information is available.

Symbolic Skill Graph

We train the preconditions of the nominal skills by precondition chaining using
a total of 1223 positive and negative samples. Each precondition is a generative
classifier with the positive distribution D+ learnt as a Gaussian distribution and the
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negative distribution D− learnt as a Gaussian Mixture Model. The 3 nominal skills
result in 4 symbols for the start, subgoals, and the goal.

Recovery Skill

Each recovery skill πij is a parameterized skill (da Silva et al., 2012) that uses a
regression model to predict robot actions θ ∈ Θ based on the start state s. We use
k-nearest neighbours regression to predict a 21D vector, a sequence of three 6D poses
with respect to the initial end-effector pose and gripper open/close states, as robot
actions. Collecting data of the form (s, θ) for training this regression model involves
sampling a start state s from the failure mode ρf

i and computing the robot action
parameters θ for recovery to ρj using Relative Entropy Policy Search (REPS) (Peters
et al., 2010). For learning a recovery to precondition ρ, REPS uses the reward function
R(s) = 0.1 log fD+(s) + 10ρ(s), where fD+ is the probability density function of the
corresponding D+. Each REPS query takes about 2 minutes to solve on our Intel®
Core™ i7-9700K CPU.

4.4.1 Evaluation of Learnt Recovery Skills

We first evaluate the effectiveness of our overall approach using the pessimistic
failure discovery strategy we described earlier. We execute the nominal skills 1000
times for failure discovery to collect a total of 1400 failure states which we group into 6
clusters using the Gaussian Mixture Model (GMM) (Pedregosa et al., 2011). Common
failure modes include the robot missing the handle and the robot slipping while pulling
the handle due to an improper grasp. We learn recovery skills in simulation using a
budget of just 150 REPS queries. With 24 potential recovery skills, this means that
each recovery policy can get only 6 data-points on average.

Evaluation in Simulation

We simulate a state estimator by assuming that the standard deviation of the noise
distribution halves after every robot action. As we show in table 5.1, learnt recoveries
are significantly better than heuristic recovery strategies in improving success rate.
Recovering from failures during door opening often requires the robot to (1) carefully
move the handle so as not to weaken the grasp and (2) avoid collision with the
environment. Heuristic recoveries are unable to account for this and hence perform
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poorly. Compared to open-loop execution, our approach substantially improves task
success rate from 71% to 92.4%. This indicates that (1) the failures discovered using
our pessimistic failure discovery do cover a number of failures encountered by the
robot when using a state estimator and (2) recoveries can be reliably learnt with a
generic reward function defined using preconditions which promises better scalability
than reward shaping.

Open-loop (%) Recovery (%)
Handle 1 (Train) 75 (15/20) 90 (18/20)
Handle 2 (Test) 50 (5/10) 80 (8/10)
Handle 3 (Test) 80 (8/10) 80 (8/10)
Handle 4 (Test) 80 (8/10) 90 (9/10)
Handle 5 (Test) 60 (6/10) 90 (9/10)

Full-sized door (Test) 30 (3/10) 50 (5/10)

Table 4.2: Success Rate on a Real Robot. Learnt recovery skills significantly
outperform open-loop execution on a real robot across 5 different handles. Open-loop
fails almost half the time on handles 2 and 5 which are, respectively, the smallest and
the thinnest of the 5 handles. By contrast, the learnt recoveries use a caging grasp
to re-grasp the handle close to the handle’s axis of rotation and are robust to these
variations. We also test recovery skills on a full sized door where the success rate of
our approach drops to 50% due to the slip-prone cylindrical handle of the door.

Evaluation on a Real Robot

We transfer the preconditions, failure classifier, nominal skills and recovery skills
learnt in simulation to a real Franka Panda robot and run experiments with (a) 5
different lever latch handles on a small door and (b) a full-sized door in our building
with a cylindrical handle (figure 4.5). We fine-tune only the gains of the impedance
controller on the real robot by increasing their values to achieve similar tracking as in
simulation. As in simulation, the robot is controlled by a Cartesian-space impedance
controller that executes each skill open-loop. We evaluate the recovery skills learnt
in simulation under an idealized state estimator. The ground-truth handle position is
known to us but at T = 0, we only provide a noisy handle position estimate to the
robot, where, noise ∼ N (0, σ = 2cm). The robot executes its nominal skill using this
noisy state information. At T = 1, by the time the robot finishes executing the first

46



Ch. 4 – P2L for Multistep Tasks: Metareasoning for Skill Learning

skill, we assume that the state estimator has converged to the ground-truth. Hence,
the robot has access to the accurate handle position at this point. The robot uses its
preconditions to check if any of its nominal skills can be executed. If so, it executes
the remaining nominal skills. If not, it uses the failure classifier to identify the failure
mode and execute the best recovery from that mode.

We compare our approach (recovery) with open-loop execution (open-loop)
of nominal skills (table 5.2). The success rate of open-loop is sensitive to the
handle and varies from 50 − 80% By contrast, recovery improves the success rate
to 80−90% consistently across all of the 5 handles even though it was trained only for
handle 1. Both open-loop and recovery struggle at the full-sized door due to the
slippery cylindrical handle. However, our approach still does significantly better than
open-loop which only succeeded in 3/10 attempts. We expect recovery performance
to improve with further training and by the use of a good state estimator which will
enable closed-loop behavior. Importantly, our approach did not induce any additional
failures which indicates good transfer of the preconditions and failure classifier learnt
in simulation.

4.4.2 Evaluation of MetaReSkill

In this evaluation, we assume that we have access to an accurate model of the state
estimator so that we can estimate the failure distribution accurately. We discover
failures using our early termination discovery strategy along with a simulated state
estimator that halves the standard deviation of the noise distribution after every robot
action. We discover a total of 2000 failure states which we group into 5 clusters using
the GMM. These failures are less diverse than the failures discovered by pessimistic
discovery and are more concentrated near the door handle. We compare round-robin
learning of recoveries with MetaReSkill in figure 4.7 using 5 different seeds. We use
α = 0.95 to compute the confidence interval, window size w of 3 and query REPS for a
new data-point in every round, i.e. η = 1. We initialize the UCL estimates by training
every recovery twice in a round-robin order. Not only does MetaReSkill improve
significantly faster than round-robin, but also it converges to a better objective in all
the trials. In 3/5 trials, MetaReSkill used only 70% of the training budget to achieve
the best objective achieved by round-robin, i.e., 1 hour earlier. This shows that it

47



Ch. 4 – P2L for Multistep Tasks: Metareasoning for Skill Learning

Figure 4.6: (left) VoF Saturates. After quick initial improvement, the objective
saturates when recoveries are trained in a round-robin order. (right) Allocation.
We show how many rounds each of the 20 recoveries were trained for by Round-robin
and MetaReSkill. Each recovery is identified by the pair (i, j), where, i is the failure
cluster it is meant for and j is the precondition it recovers to. Round-robin trains all
of them equally while MetaReSkill prioritizes a small number of promising recoveries
that improve the VoF by the most.

Figure 4.7: We compare MetaReSkill with round-robin learning of recoveries over
100 REPS training episodes with 5 different seeds. MetaReSkill is initialized by
training each recovery twice initially in a round-robin manner. Hence, we see a
difference in performance from episode 40 when MetaReSkill kicks in. MetaReSkill
immediately focuses on the most promising recoveries which allows it to optimize the
VoF significantly faster, also converging to a better VoF in every trial.
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can make better use of training resources to improve robustness.

4.5 Discussion

In this chapter, we considered the problem of active skill learning for multistep
tasks motivated by the goal of sample efficient and scalable learning. We defined the
active learning problem as an online decision problem of selecting skills for training
that are going to improve the robot’s overall performance most quickly. This decision
depends on a number of factors, viz., the overall task distribution, the difficulty of
learning each skill and its relative importance to the overall task.

We proposed a P2L algorithm called Meta-Reasoning for Skill Learning, i.e.,
MetaReSkill that directly solves this decision problem. MetaReSkill makes use of
a symbolic skill graph, wherein, each vertex corresponds to the precondition of a skill
while an edge between two vertices u and v corresponds to the skill that is initi-
ated in u and terminates in v. Each edge in this symbolic graph has an associated
transition probability which reflects the success rate of the skill in reaching its in-
tended goal v. MetaReSkill estimates a probabilistic skill improvement model, i.e.,
the difficulty of learning skills online by monitoring their progress and computing
their rate of improvement in each round. The skill improvement model is combined
with the symbolic skill graph to build a task improvement model which can predict the
improvement in the overall task if a certain skill is further trained. The task improve-
ment model is then used online to choose the skill that is likely to best improve the
robot’s performance. We evaluated MetaReSkill on the problem of recovery learning
for multistep manipulation problems. First, we discovered failures of given nominal
skill in simulation by evaluating them under simulated state uncertainty and then
used MetaReSkill to actively train recovery skills. Compared to baselines, we found
that the learnt recovery skills significantly improve task success both in simulation
and in the real world. We also found that MetaReSkill made a much better use of
computation than round-robin skill learning.

4.5.1 Limitations

While MetaReSkill can in principle be used for learning in the real world, we
limited ourselves to learning skills in simulation in this chapter. There are a number
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of benefits to learning in simulation, such as, access to privileged information, the
ability to reset to failures and scalability. On the other hand, learning in simulation
requires setting up a reasonably accurate model of the task being solved. This can
be infeasible for certain problems which are difficult to simulate, e.g., soft objects.
Hence, an exciting direction for future work is to apply MetaReSkill to learn skills in
the real world. Kumar et al. (2024) have recently proposed a plan to learn approach
that is similar to MetaReSkill for practising parameterized skills in the real world.

Second, MetaReSkill requires a reasonably accurate symbolic skill graph to build
the task improvement model. While estimating the success rates of skills is relatively
easy, we found it challenging to accurately learn skill preconditions that correspond to
vertices in the skill graph. Training a skill precondition accurately requires a diverse
dataset of positively and negatively labeled samples which was challenging to collect.
We relax this requirement by proposing a model-free reinforcement learning approach
for the active recovery learning problem in the next chapter.
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5 P2L for Recovery
Learning:

RecoveryChaining

Figure 5.1: Due to uncertainty in the grasp of the object, the robot ends up making
contact with the shelf during execution resulting in a collision as well as an in-hand
slip failure. However, using the proposed recovery chaining framework, the robot
recovers from the collision state and then hands over control to the nominal place skill.
The learnt recovery also allows the robot to correct the slip by intentionally making
contact with the shelf wall. Note that the policy is trained entirely in simulation.

So far in this thesis, we have taken a model-based approach for planning to learn.
Both in chapters 3 and 4, we first learned a symbolic representation of the tasks
by learning skill preconditions. The effectiveness of our algorithms is hence heavily
reliant on the accuracy of these preconditions. This chapter1 relaxes that requirement
by learning recovery skills for multistep manipulation without relying on a symbolic
representation of the task.

Consider a robot trying to tidy up a human’s house. A robot trying to tidy up a
1The work presented in this chapter was done in collaboration with Devesh Jha and Diego

Romeres at Mitsubishi Electric Research Laboratories (MERL).
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house is confronted with a myriad of possible failures. It might pick up a half-read
‘Planning Algorithms’ book from the table and try to place it in the top shelf but fail
to see the objects already inside. How does it respond when the book bumps into the
clutter and starts slipping out of its hand? One potential recovery behavior would
be to first fix the slip by pushing the book against the shelf and then repositioning
it for another attempt. Humans can quickly come up with robust strategies to deal
with such failures, often with just partial information. For example, we often use our
sense of touch to extract objects from a bag when we don’t have a clear view of its
contents, and we use our quick reflexes to recover from slipping on a patch of ice.

However, popular model-based planning approaches (Mason, 2001; Kroemer et al.,
2021) struggle to generate such behaviors on-the-fly because of their reliance on an
approximate model of the environment. This reliance leads to failures when the
robot is faced with large inaccuracies in the model during deployment (Lagrassa
et al., 2020). Hence, robots are usually deployed with recovery behaviors to gracefully
handle potential failures. Common recovery strategies include retrying the previous
step (Ebert et al., 2018), backtracking (Wang and Kroemer, 2019) and hand-designed
corrective actions (Sundaresan et al., 2021). These heuristic strategies can be sub-
optimal and require significant manual engineering effort. In this paper, we propose
to use reinforcement learning (RL) (Sutton and Barto, 2018; Lillicrap et al., 2015) to
automate the discovery of robust recovery behaviours for multi-step manipulation. RL
is capable of discovering and learning complex robot skills (Haarnoja et al., 2023; Zhou
and Held, 2023) but is limited by the twin problems of (1) high sample complexity
and (2) significant reward shaping.

To address this, we propose a novel hierarchical reinforcement learning (HRL)
formulation RecoveryChaining for recovery learning that is much more sample ef-
ficient than flat RL and can solve challenging manipulation problems even with a
sparse reward. Our main idea is to use a hybrid action space which consists of prim-
itive robot actions and temporally extended nominal options that transfer control
to one of the model-based controllers. During exploration, when the agent takes a
nominal action at a state, it verifies in simulation whether or not the task can be
solved reliably by transferring control to the nominal controllers from that state. The
verification is then used as a binary reward signal for the recovery policy. Recov-
eryChaining not only learns how to recover from the immediate source of failure but
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Figure 5.2: We propose an approach to learn robust recovery behaviors on top of
given nominal controllers using reinforcement learning that works even with sparse
rewards. Here, the robot is trying to place a box on a shelf but accidentally collides
with the shelf due to an imprecise grasp. Using our approach, the robot learns a
recovery policy from the failure state in a hybrid action space consisting of primitive
robot actions and temporally extended nominal options that trigger a sub-sequence
of the nominal controllers. The recovery policy is trained to quickly take the robot
to the precondition of one of the nominal controllers so that it can transfer control to
the nominal controllers to complete the task. Solid arrows indicate actions taken by
the robot and dashed arrows other available actions.

also which nominal controller to recover to.
We evaluate our approach in three multi-step manipulation tasks of pick-place,

shelf, and cluttered-shelf. The results show that our approach is able to learn sig-
nificantly more robust recoveries than prior methods. In some of the shelf domain
scenarios, the robot is able to learn to leverage contact with the environment to re-
duce uncertainty, adjust for slip, and avoid further collisions. We also show that our
approach is suitable for sim-to-real by transferring the learned skills to a physical
Mitsubishi Electric Assista arm without the need of any real-world fine-tuning. (see
figure 5.1).

Assumptions. Our approach makes two key assumptions: (1) Training in simu-
lation. We learn recovery policies in a physics-based simulator, like MuJoCo (Todorov
et al., 2012) with the capability to reset to a previously observed state. (2) Failure
detector. We assume access to a failure detector module that can detect undesirable
states to prevent the robot from ending up in an irrecoverable failure.
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5.1 Related Work

Recovery Learning

Recent works have explored the idea of learning recovery policies using offline
datasets for safe exploration (Thananjeyan et al., 2021; Wilcox et al., 2022) and for
recovery from execution failures (Reichlin et al., 2022). For example, (Wilcox et al.,
2022) learn a safe set using an offline dataset. The learned preconditions (or safe sets)
are then used as the goal for recovery learning. Similarly, the approach presented in
chapter 4 also relies on a symbolic representation learned offline. This approach is
highly sensitive to the quality of the learned preconditions and is pessimistic as it tries
to stay close to the offline dataset. To address these issues, the approach presented
in this chapter uses online RL with temporally extended actions to better explore the
state space and discover robust policies.

Another common approach for learning reactive policies is to learn from human
demonstrations (Chernova and Thomaz, 2014; Chi et al., 2023). However, these poli-
cies are prone to failure if the robot visits out-of-distribution states during execution.
Online data collection (Ross et al., 2011) by an expert human is often required to learn
recoveries which makes this approach quite expensive. By contrast, our approach does
not rely on human demonstrations. (Wang et al., 2022) propose to recover by mod-
ulating dynamical systems learned from segmented demonstrations. However, this
assumes accurate detection of manually specified modes which we do not require.

Hierarchical Reinforcement Learning

Our recovery learning approach utilizes the hierarchical reinforcement learning
(HRL) framework, wherein recovery policies from failures are learned to connect them
to the nominal policies. Our approach is also inspired by previous works which show
that manipulation policies can be learned more efficiently by using structured action
spaces (Sharma et al., 2020; Nasiriany et al., 2022; Rosen et al., 2022) such as, object-
centric controllers and parameterized primitives. We discuss HRL in section 2.3.

Hybrid Methods

Hybrid methods combining the model-free and model-based techniques for RL
have also been explored in past research. Chebotar et al. (2017) combine model-
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based and model-free updates for time-varying linear Gaussian controllers. There has
been prior work by Lagrassa et al. (2020) to learn a model-free policy from expert
demonstrations to complete the task in regions where the model-based planner failed.
Uncertainty has also been to guide switching of controllers between model-based and
model-free policies (Lee et al., 2020). The model-based policy acts as a funnel to
guide the robot towards the area of interest while the model-free policy is used when
the uncertainty is high. Similarly, residual RL has been explored in past (Johannink
et al., 2019) where the problem of feedback control of complex tasks is solved by
decomposing them into a part that is solved efficiently by conventional feedback
control methods, and the residual which is solved with RL.

5.2 Problem Statement

Consider a long-horizon contact-rich manipulation task defined by a distribution
of start states and a binary goal function fgoal. We are given a sequence of k nominal
model-based controllers (or nominal policies) Πnom := (πnom

1 , . . . , πnom
k ) capable of

solving the task with non-zero probability. The nominal policies can form a chain, as
in figure 5.3, if they are applied sequentially but they can form a graph more generally.
Due to state and actuation uncertainty or model inaccuracy, the system may enter a
state (shown in red) in which none of the nominal policies are applicable. We utilize
an anomaly or failure detector module that monitors the execution of the system and
raises a flag fail-condition if unsafe or unexpected conditions are met, for example,
high end-effector forces, dropping an object, or slip. Collision while moving in free
space is a failure but collision when pushing an object on the table is expected. The
failure detector can be hand-designed or learned from demonstrations (Pastor et al.,
2012). Our goal is to robustify the system by efficiently learning a separate recovery
policy that allows the robot to complete the task even from these failure states. In the
following section, we describe our proposed approach and present solutions to some
of the key challenges associated with this learning problem.

55



Ch. 5 – P2L for Recovery Learning: RecoveryChaining

Figure 5.3: Representation of a sequence of nominal policies that solve a task speci-
fied by a binary function fgoal. Due to model inaccuracies and stochastic dynamics,
the system may end up in a failure state from which the nominal policies are not
applicable. The recovery policy πr is learned to take the system back on the nominal
chain.

5.3 Approach

We model the system as a MOMDP (Ong et al., 2010), wherein the robot main-
tains an estimate ŝ := (x, ŷ) of the true state s and acts based on (ŝ, o), where o ∈ O

corresponds to sensory observations such as proprioception. Our approach, visualized
in fig. 5.2, involves two steps: (1) Failure Discovery. Nominal policies are executed
under various conditions in simulation to induce and record failures. We leverage
privileged information in simulation to record both the true state s and the corre-
sponding observations associated with a failure. This allows us to directly reset to the
failure in simulation during recovery learning. (2) Recovery Learning. Recovery
policies are learned in simulation to handle the failures collected in the previous step
using reinforcement learning.

The final robot policy Π is composed of the nominal policies {πnom
i }k

i=1 and the
recovery policy πr.

Π(s, a, t) =


πnom

t (s, a) if fail-condition is false

πr(s, a) if fail-condition is true
(5.1)
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5.3.1 Failure Discovery

We discover and record potential failures Dfail of the nominal policies by exe-
cuting them from various initial conditions. Once a failure is detected, execution is
terminated and the resulting state s = (x, y) is recorded. Though, the robot may not
have access to the true world state at test time, we can do so during training either
in simulation or with extra sensors in the physical world. This is straightforward
in simulation but would require extra sensing on a real system during training, for
example, using AprilTag markers.

5.3.2 Recovery Learning

Our goal is to learn a policy that reliably takes the robot to the precondition of
one of the nominal policies from all the failures Dfail. For example, if the book in a
robot’s hand slips while putting it on a shelf, recovery should regrasp the book such
that the place controller can be executed. Prior works (Thananjeyan et al., 2021;
Wilcox et al., 2022; Reichlin et al., 2022) in recovery learning explicitly learn the
nominal precondition Inom

i offline and compute actions to satisfy it for recovery. The
agent computes actions to maximize the precondition r(s, a) = Inom

i (s) and hence
relies on accurate estimation of the precondition. This is often difficult in practice
and highly dependent on the quality of the offline dataset making these approaches
brittle and pessimistic. We discuss these issues in more detail in section 5.3.3.

To address these drawbacks, we propose an online RL approach that does not
rely on a learned reward function and works even with sparse rewards. Our main
observation is that we can compute a monte-carlo estimate of the precondition of a
nominal controller πnom

i by executing the chain of nominal controllers in simulation
(πnom

i , . . . , πnom
k ) and verifying whether the goal was achieved or not. Thus, the

precondition can be estimated as Imc
i (s) = r(s, (πnom

i , . . . , πnom
k )).

A Straw-man Approach

A straw-man RL approach to leverage this observation would be to replace the
learned Inom

i with Imc
i . However, this is highly inefficient as the environment would

have to execute long sequences of nominal controllers, potentially multiple times, in
every step to compute the reward. Ideally the environment need not have to repeat-
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edly compute the monte-carlo estimates from states well outside the precondition.

RecoveryChaining

Our key insight is to let the RL agent decide when to estimate the precondition.
We provide the RL agent with temporally extended nominal options onom

i which
simulate the transfer of control to the nominal policy πnom

i . The sequence of nominal
policies onom

i = (πnom
i , . . . , πnom

k ) is then executed from that state and the resulting
task success is used as a reward. We choose to make the nominal options terminal so
that the corresponding reward is independent of the policy being learned and hence
is stationary. A single simulation is sufficient in deterministic MDPs but additional
simulations may be required in highly stochastic domains. We use only a single
simulation in our experiments. Monte-carlo simulations are computationally more
expensive than querying a learned precondition but provide a more reliable reward
estimate in our experience.

RecoveryChaining MDP

Let A be the original action space of the agent consisting of primitive actions
and S be the state space. Then, the RecoveryChaining MDP is defined by the tuple
(S, Arc, T, rrc, γ, µrc) where

• Arc is a hybrid action space A∪{onom
1 , . . . , onom

k } consisting of primitive actions
and terminal nominal options that transfer control to the nominal policies.

• rrc(s, a, s′) = fgoal(s′)

• µrc = Dfail

The hybrid action space is visulialized in figure 5.4. Intuitively, when the agent is
far away from the precondition Inom

i and executes onom
i , it gets no reward. After a

few trials and errors, the agent identifies states that lie outside the precondition and
stops executing the nominal option from those states. On the other hand, as the
agent gets closer to the precondition, it receives higher rewards upon executing onom

i

and implicitly learns that it is inside the desired precondition.
This approach has three key advantages:
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1. The agent implicitly learns the nominal preconditions through trial and error
and stops computing monte-carlo estimates for nominal controllers that are
not applicable. This makes it much more computationally efficient than the
straw-man approach.

2. The ability to try all the nominal policies allows the agent to potentially discover
novel ways to reuse them.

3. The agent is not obligated to recover to any precondition. If the correct recovery
is to completely avoid the nominal policies then it can discover such strategies.

Early Termination

We use an additional trick to further optimize the computation of reward for
the nominal actions. Failure states are designated as absorbing states in the Re-
coveryChaining MDP. This allows us to terminate a monte-carlo simulation of the
nominal policies early if the fail-condition is met. In practice, this speeds up the
simulations as the application of a controller without satisfying its precondition often
quickly results in collisions and slip.

State Representation

To recover from failures due to inaccurate and partial state information, it is
necessary that the robot has access to multiple sensing modalities, such as vision,
proprioception and tactile sensing. Proprioception, in particular, is commonly avail-
able and provides reliable information about how the robot is making contact with
the world. We use an asymmetric learning approach, where we leverage full state
information available in simulation for failure discovery but train the recovery policy
to use only those state variables that will be available at deployment. To bridge
the sim-to-real gap, we convert end-effector force signals into a binary signal using
a threshold. Further, we also provide the recovery policy with a limited amount
of history in partially observable domains which is critical for it to learn a robust
recovery.
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Figure 5.4: We use a hybrid action space for reinforcement learning. It consists of
both primitive robot actions and nominal options that transfer control to a sequence
of nominal policies that can take it to the goal if applied successfully.

5.3.3 RecoveryChaining vs Pretrained Preconditions

Most previous recovery learning works learn the nominal precondition (Vats et al.,
2023) or the safe set (Wilcox et al., 2022) using an offline dataset. The recovery policy
is then trained to satisfy the leaned precondition. While this approach is efficient as it
decouples recovery learning from the overall task, it suffers from two issues in practice:

Brittleness

Recovery learning is highly sensitive to the quality of the learned preconditions.
RL is a reward maximizer that is known to find and exploit loopholes even in carefully
hand-designed reward functions (ope, 2016). A learned reward function aggravates
this issue as the agent is likely to explore states that are quite different from the
states where data for learning the reward function was collected. It is a challenge in
manipulation, in particular, because the complex and non-linear dynamics induced
by contact make generalization from limited data difficult. Hence, there is a risk that
the agent may learn an undesirable behavior using a pre-trained

Pessimistic Bias

Learning with pretrained preconditions is pessimistic as the agent needs to stay
close to the offline data. While this is effective at dealing with small perturbations it
cannot discover complex recovery behaviors that require the agent to visit an out-of-
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Figure 5.5: Comparison of the learning curves between RecoveryChaining (RC) and
Pretrained Preconditions (PP) in pick-place, shelf and cluttered-shelf domains. RC
makes consistent progress in learning while PP hits a local optimum early in training.
It is not able to further improve its policy as it is limited by a learned reward model.
PP does quite poorly on the shelf task due to its partially observable nature. Results
are averaged over 5 runs.

distribution state. Recovery sometimes requires novel use of existing policies which
is not possible with a pessimistic bias in learning.

5.4 Experiments

We evaluate our proposed approach in three challenging multi-step manipulation
environments. The purpose of these experiments is to understand (1) whether our
approach can learn robust and composable recoveries and (2) how well the hybrid
approach of combining model-based and model-free policies works.

Baselines

We compare our method RecoveryChaining (RC) with three baselines. Nominal:
completes the task using just the model-based controllers. Pretrained Preconditions
(PP): learns a recovery policy to reach preconditions learned from offline data. RL:
learns a model-free policy for the entire task using RL with a hand-designed dense
reward and just the primitive actions.

RL Training

We use a discrete action space to learn all the policies. Each action primitive is
defined in the robot’s end-effector frame and operates only on a single dimension.
Each translation action primitive moves the end-effector by ±2 cm along x, y or
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z axis and the rotational primitives apply a roll, pitch or yaw of ±π/2. We train
all the RL approaches for 0.5 million timesteps using Proximal Policy Optimization
(PPO) (Schulman et al., 2017) from stable-baselines (Raffin et al., 2019). Most of the
default hyper-parameters worked well us so we didn’t have to do much tuning. We
run all the methods using 5 different seeds and report the average.

5.4.1 Pick-Place Domain

Figure 5.6: The pick-place task requires the robot to pick a small bread from the
source bin and place it in the target bin. The nominal controllers do not account for
the sides of the bin because of which the end-effector collides with them when the
bread is close to the walls. One such situation is shown in the right figure.

Our first domain is the pick-place task from robosuite (Zhu et al., 2020). To solve
this task, the robot needs to pick a small loaf of bread from the source bin and place
it in the target bin. The robot gets a 46 dimensional observation consisting of object
poses, end-effector pose, etc. The bread is initialized in a different location in the
source bin in every episode.

Nominal Skills

We designed four Markovian nominal controllers: GoToGrasp skill takes the
robot to a pre-grasp pose over the object, Pick skill picks up the object, GoToGoal
moves the robot to the drop location and Place skill places the object at the drop
location. Each controller is implemented as a state machine that selects a target
pose for the robot end-effector in the Cartesian space based on its current state. The
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target end-effector pose is then achieved using task-space impedance control with
fixed impedance. The nominal skills achieve a success rate of 70% on their own in
this task.

Failures

Most of the failures in this task occur when the initial location of the bread is
close to one of the walls. The robot needs to reach inside the bin to grasp the object
due to its small size. This causes the end-effector to collide with the wall leading to a
failure that the nominal skills aren’t capable of handling. Collision is detected using
a threshold on the end-effector forces. We collect a total of 100 failures for learning
recovery.

Recovery

The learned policy finds two different strategies to recover from these failures.
The first strategy rotates the end-effector along the z axis so that it does not collide
with the wall when the robot reaches inside the bin. The second, and perhaps more
interesting, strategy uses the gripper fingers to push the object away from the walls
before picking it up. RC uses a combination of these two strategies to improve the
success rate from 70% to 90%. On the other hand, PP quickly plateaus and converges
to a locally optimal policy (fig 5.5). It uses preconditions learned from around 300
nominal trajectories as the reward function. RL is not able to learn the task at all.
We summarize the success rates in table 5.1.

5.4.2 Shelf Domain

Our second domain is a shelf environment with state uncertainty also implemented
using robosuite. In this task, (fig. 5.9) the robot needs to pick up a box from a table
and place it inside a shelf in an upright position. The robot observes a noisy estimate
of the position of the box, where, the noise is sampled from a zero-mean Gaussian
distribution with standard deviation of 1 and 2 cm along the y and z axes, respectively.
We also provide the robot the number of actions taken so far as an observation. This
allows it to learn open-loop policies if needed. The dimensions of the shelf and the
box and the position of the shelf are sampled randomly in every episode.
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Nominal Skills

We designed three nominal skills for the task assuming that the observations are
accurate. Pick skill: the robot goes to the observed position of the box, closes the
gripper, and picks up the box; Move skill: the robot moves to a pre-placement
position conditioned on the given position of the shelf; Place skill: the robot places
the box on the shelf and retracts. These nominal skills can complete the task reliably
if the state estimates are accurate but can fail when the state estimates are wrong.
All the nominal skills control the robot using task-space impedance control with fixed
impedance.

Failures

We collect failures by executing the nominal policies in simulation under state
uncertainty. The failure conditions are given by the end-effector forces Fe exceeding a
predefined threshold. Note that these thresholds are different for simulation and real-
world and need to be tuned appropriately. The nominal controllers assume perfect
pose of the box. However, the robot may grasp the box with an offset due to a wrong
position estimate. This leads to mainly two types of failures: (1) collision: robot
collides with the shelf or the table (2) collision-slip: collision with the shelf leads to
in-hand rotation of the object if there is a delay in stopping the robot.

Recovery

The recovery policy learns to move up and inside the shelf before switching to the
nominal skill because most collisions happen below the center of mass of the object.
We found that providing the number of past actions was crucial to learn a recovery in
this task because of unreliable state estimates. In our ablation studies with different
amounts of state uncertainty, we found that the policy tends to be more conservative
and learns relatively open-loop policies under high uncertainty. Overall, RC did
significantly better than PP on this task by improving task success from 46% to 83.2%.
RC was not able to recover from failures involving significant in-hand rotation of the
box as it was not provided with its orientation observation. Additional sensing, for
example, slip detection using a tactile sensor can further improve the recovery policy.
The reward model for PP was learned using 232 nominal trajectories.
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Nominal Nominal + RC Nominal + PP RL
Pick-place 70 90 75.6 0
Shelf 46 83.2 56 0
Cluttered-shelf 39.2 57.2 43.2 0

Table 5.1: Comparison of the overall success rate. RecoveryChaining (RC) signifi-
cantly robustifies the nominal controllers in both the domains and is the best per-
forming method. The improvement is more pronounced in the shelf domain as it has
state uncertainty which makes learning more challenging. RL was not able to solve
the tasks at all despite a dense reward.

5.4.3 Cluttered Shelf Domain

(a) Cluttered shelf domain. (b) Failure state.

Figure 5.7: (a) The robot needs to place a box on a cluttered shelf with two objects.
In addition to avoiding collision, successful task completion requires the robot to
avoid rotating the objects on the shelf. (b) The robot collides and rotates the objects
during execution leading to a failure.

We consider a more complex version of the shelf domain with two objects randomly
placed on the shelf. The robot needs to avoid them while putting the box on the shelf.
We use the same nominal skills used in the shelf domain.

Failures

In addition to monitoring end-effector forces for collision detection, we also use
vision-based failure detection to avoid toppling objects on the shelf. The failure de-
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Figure 5.8: A comparison of the number of different nominal options taken by the
agent in the pick-place task in every round of exploration consisting of 120 actions.
The agent explores all the nominal options initially but quickly identifies and commits
to the best nominal controller to recover to.

tector is triggered if the robot topples or rotates any object by more than a predefined
threshold. Such failures can be detected in the real world by using object detectors
and pose estimation while we use privileged state information in simulation. We show
an example of a failure in figure 5.7.

Recovery

We compare the learning curves of RC with PP in figure 5.5. RC learns a sig-
nificantly more reliable recovery skill than that learned by PP. However, we observe
a drop in performance compared with that on the simpler shelf task. We believe
performance can be improved with longer training, a dense reward function and a
better action space.
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5.4.4 Analysis of Learned Recoveries

RC can identify the best nominal controller to recover to.

We do not provide the agent any prior knowledge about where it should recover
to and which nominal controller it should switch to. To understand the exploration
behavior of RC we plot the number of times the agent chooses each nominal option in
a round of exploration in figure 5.8. Each round consists of 120 actions. We observe
that the agent initially explores all the nominal controllers but quickly identifies the
most suitable one and commits to recovering to its precondition. The RC policy
implicitly learns the preconditions of all the nominal controllers through trial and
error and avoids trying to switch to a nominal controller at states in which it is
unlikely to succeed.

RC can reuse the nominal controllers in novel ways.

Prior approaches that use pretrained preconditions, like skill chaining, provide a
pessimistic bias to the RL agent by freezing the preconditions after the initiation
period. This prevents the agent from discovering novel ways to use the nominal
controllers that may be quite different from the trajectories used to train the pre-
condition. Sometimes, the robot needs to use the nominal controllers in novel ways
not seen during nominal execution. We describe one such novel reuse of the place
skill discovered by our agent for the shelf task in figure 5.9. In this example, the
box undergoes significant in-hand rotation due to a collision with the shelf below its
center of mass. The robot needs to re-grasp the box before placing it on the shelf
as it may fall over otherwise. The RC agent discovers that switching to the nominal
place skill from inside the shelf fixes the in-hand slip by aligning the box with the
back of the shelf. This behavior is well outside the distribution of states visited by the
nominal skills as the place controller is designed to be triggered outside the shelf.

5.4.5 Transfer to a Physical Robot

We transfer the nominal and recovery policies to a real robot. Our real-world setup
includes a 6-DoF Mitsubishi Electric Assista robot arm with a WSG-32 parallel-jaw
gripper and a Mitsubishi F/T sensor 1F-FS001-W200 mounted on the wrist of the
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Figure 5.9: While trying the nominal controllers from different states during explo-
ration, the agent discovers a novel application of the place controller. (top) The
place skill was designed to gently place the box assuming it is upright. (bottom) To
fix the slip due to a prior collision, RC learns to move deeper inside the shelf than
nominal execution before switching to the place skill. This allows the robot to fix
the orientation of the box by pushing against the back of the shelf to ensure stable
placement.

robot. We evaluate the feasibility of sim-to-real transfer of recoveries learned using
our approach. We train the recovery in a simulated Assista robot with a box and then
evaluate it on a real Assista with one box and two unseen objects- a mustard bottle
and a can. Failures are induced on the real robot by providing incorrect position
estimates of the shelf. Similar to the simulation, we implement a collision detector
on the real robot by using observations from the F/T sensor on the robot. The robot
was able to recover from both collision and slip (fig. 5.1) by using our recovery. The
policy generalized well to the mustard bottle but performed slightly worse on the can
because it is smaller than the box that was used for training and its curved surface
is more prone to slip.

Recovery Rate (%)
Box 100 (5/5)
Mustard bottle 100 (5/5)
Can 80 (4/5)

Table 5.2: Summary of real-robot experiments on a real robot. Our approach gener-
alizes to a mustard bottle and a can despite having been trained only on a box.
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5.5 Discussion

In this chapter, we proposed a hierarchical reinforcement learning approach to
learn model-free recovery policies for robustifying nominal model-based controllers.
Our approach, called RecoveryChaining, uses a hybrid action space to efficiently learn
robust recovery policies that can be chained with model-based controllers. The action
space contains temporally extended nominal options that transfer control to a specific
nominal controller. These nominal options reduce the effective horizon of the task
and enable recovery learning for multi-step manipulation. We evaluated our approach
in three challenging domains and found that our approach can significantly improve
task success using just a sparse reward. We also successfully transferred a recovery
trained in simulation to a physical robot to demonstrate the feasibility of sim-to-real
transfer.

5.5.1 Limitations

Similar to the previous chapter, the work presented in this chapter also relies on
a physics-based simulator for recovery learning. This limits its applicability to tasks
that can be modeled well in simulation and introduces the challenge of sim-to-real
transfer. Furthermore, RecoveryChaining does require a large number of timesteps
for learning a performant recovery policy despite being more efficient than flat RL.
Hence, it may be challenging to apply this approach to learning in the real world. One
middle ground is to first learn in simulation using our approach and then finetune
in the real world using an adaptive framework like Xiong et al. (2024). There is
scope for further improving the sample complexity of our method by using off-policy
RL. The main challenge is that off-policy RL tends to be more unstable and hence
harder to train than on-policy RL. Finally, more research is needed on efficiently
learning recoveries in partially observable environments. Partial observability is a
fundamental and ubiquitous challenge in open-world manipulation. In structured
and lab settings, this can often be addressed via careful sensor placement and task
design to make the environment fully observable to the robot. However, this is not
feasible in unstructured settings in the open world where the robot has to intelligently
reason about partial observability to operate autonomously.
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6 Conclusion

6.1 Summary of Contributions

This thesis made the following key contributions:

• Plan to Learn Framework. This thesis advocated the principles of continual,
active and collaborative robot learning to achieve the goal of general-purpose
robots. Based on these principles, we introduced a novel plan to learn (P2L)
framework for robot learning in which the robot decides which skills to learn
according to the constraints it has to operate under and resources it has access
to. P2L formalized active robot learning in complex situations as a meta plan-
ning problem which traded off the cost of learning against the improvement in
overall performance.

• P2L for Human-Robot Teams. We mathematically formalized and solved
the P2L problem for collaborative human-robot teams. We considered a human-
robot team that had to fulfill a given sequence of orders at minimum expected
human and robot effort. We proposed the Act, Delegate or Learn (ADL) planner
to solve this problem. To the best of our knowledge, ADL is the first optimal
planner that jointly optimizes robot learning and task allocation. We also showed
that ADL was an instance of the uncapacitated facility location problem. This
reduction provided us with log(n)-approximation algorithms for ADL.

• P2L for Multistep Tasks. We formalized the P2L problem for skill learning in
multistep tasks, such as assembling furniture as an active skill learning problem.
We proposed Metareasoning for Skill Learning (MetaReSkill) which is the first
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active skill learning algorithm for sequential decision problems. MetaReSkill
estimated a probabilistic model of skill improvement to predict how individ-
ual skills would improve with additional training. This model was then used in
conjunction with a task planner to identify skills which enable the most improve-
ment in the overall objective. Compared to baselines, the learnt recovery skills
significantly improved task success both in simulation and in the real world.
We also demonstrated that MetaReSkill made much better use of computation
than round-robin skill learning.

• P2L for Recovery Learning. We proposed a hierarchical reinforcement
learning-based approach RecoveryChaining to efficiently learn recovery skills.
To recover from a failure during a multistep task, a robot needs to decide where
and how to recover. RecoveryChaining learned both where and how to recover
by leveraging a hybrid action space consisting of primitive robot actions and
temporally extended nominal options that transfer control to a model-based
controller

• Rigorous Real Robot Evaluation. We demonstrated the effectiveness of
the P2L framework by rigorously evaluating it on practically motivated and
challenging manipulation tasks such as, opening doors, placing objects on a
shelf under uncertainty and Lego assembly.

6.2 Directions for Future Work

We believe that this thesis is only the start of what could be a fruitful exploration
of planning to guide robot learning. We hope that the developed framework and its
instantiations on these manipulation domains pave the way for further research. We
discuss some promising avenues for future work next.

6.2.1 ADL for Unordered and Uncertain Tasks

The ADL framework discussed in chapter 3 is designed for a fixed and known
sequence of tasks. However, there are many domains, both in manufacturing and
household settings, where the order of tasks can be altered or where there is uncer-
tainty about future tasks. For example, consider a human-robot team that is asked to
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assemble 100 chairs. The team can assemble the chairs in any order but the sub-tasks
involved in assembling a specific chair have a fixed order. We hypothesize that the
mixed integer programming approach used in ADL can be extended to decide the
optimal ordering of tasks whenever possible. This would give robots the flexibility to
identify the most useful skills and learn them early.

Handling uncertainty in future tasks may require more work. The current frame-
work assumes a known set of future tasks, while uncertainty in tasks is usually rep-
resented by a probability distribution over tasks. One potential approach to adapt
ADL is to plan with a set of tasks sampled from the task distribution. This could
be a good proxy for the distribution if the sample size is sufficiently large. Another
possibility is to plan greedily by picking the best action in expectation over the task
distribution. However, this would not have the strong theoretical guarantees of ADL.

6.2.2 Learning Human Preferences

Human-robot collaboration calls for robots to assist humans while adapting to
their personal preferences and learning new skills on the job. However, this assump-
tion does not hold in many domains. For example, a household robot may not be sure
where it should put the dishes after unloading a dishwasher. Users may have differing
preferences about where they like to put different types of dishes. Similarly, many
users may not be comfortable with the robot holding a knife. It is crucial for effec-
tive collaboration that the robot learns these preferences without overburdening the
human with queries about their preferences. Prior work in interactive robot learning
like Fitzgerald et al. and Bıyık et al. (2022) select informative queries by optimizing
across multiple query modalities to maximize information gain. While this approach
does allow a robot to learn human preferences more efficiently, it assumes that all
preferences are equally important. In particular, these works make assumptions about
the role of a robot in a human-robot team. The role of a robot depends on the robot’s
capabilities, the human’s preferences and can change as the robot acquires new ca-
pabilities. Furthermore, preference queries should also depend on the frequency of
tasks. It is much more important for a robot to know how to handle a human’s daily
mug than to know how to handle an expensive dinner plate that the human doesn’t
trust the robot with. We believe that our idea of goal-oriented skill learning proposed
in chapter 3 can be generalized to the problem of goal-oriented preference learning.
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6.2.3 Learning Skills in the Real World

The reliance on physics-based simulators in this thesis to discover failures and learn
skills is a major limitation. This not only imposes the challenge of sim-to-real transfer
but also it requires significant effort to design a reasonably accurate simulation of
the environment. Learning in the real world is important since simulators cannot
accurately capture the full range of situations a robot may face during deployment.
Hence, a natural idea is to both discover failures and learn skills in the real world.
However, this would require modifications in the approach presented in chapter 4
which assumes access to privileged state information and the ability to reset the
simulator to arbitrary states. This poses interesting questions about how to actively
select failures to recover from when the robot is not guaranteed to be able to recreate
them. Failures that occur later are likely to be harder to recreate than failures that
occur early during execution. Perhaps it is preferable to learn skills to handle failures
closer to the start before moving on to those that occur later in the task. Furthermore,
learning in the real world is cumbersome and expensive. This can be ameliorated by
combining learning in the real world with that in simulation.

6.2.4 Partially Observable Environments

We explored failures due to partial observability in a number of our experiments.
While we found that reinforcement learning can often learn useful Markov policies
to deal with a limited amount of partial observability, a more principled solution is
to learn policies that adapt to the history of past actions and observations. There
are two popular approaches to incorporate history in the policy, viz., using recurrent
neural networks (RNN) to represent the policy and learning in the belief space. Both
of these approaches have unique challenges. The use of RNN is more popular in
the RL community due to its generality. However, this representation has to deal
with the dual burden of memory, i.e., remembering important information and credit
assignment. This makes it computationally much more challenging to train than
training Markovian policies. In our experiments, we were unable to scale this approach
to realistic robot skill learning. We believe that learning in the belief space is a
more promising direction as this representation has been successfully used in robotics.
However, the belief space is still higher dimensional than the state space and hence
has higher sample complexity. To address this, we conjecture that POMDP planners
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can be used in our RecoveryChaining framework to guide the reinforcement learning
agent. We have already seen that model-based planners can drastically simplify RL
in contact-rich tasks. Hence, it is conceivable that they may be similarly helpful in
partially observable tasks by generating information gathering demonstrations that
the RL agent may struggle to discover on its own.

74



Bibliography

Faulty reward functions in the wild, Dec 2016. URL https://openai.com/research/
faulty-reward-functions. 5.3.3

Rakefet Ackerman and Valerie A Thompson. Meta-reasoning: Monitoring and control
of thinking and reasoning. Trends in cognitive sciences, 21(8):607–617, 2017. 2.1

Charu C Aggarwal, Xiangnan Kong, Quanquan Gu, Jiawei Han, and S Yu Philip.
Active learning: A survey. In Data classification, pages 599–634. Chapman and
Hall/CRC, 2014. 2.2

Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew,
Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al.
Solving rubik’s cube with a robot hand. arXiv preprint arXiv:1910.07113, 2019.
1.1

Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey
of robot learning from demonstration. Robotics and autonomous systems, 57(5):
469–483, 2009. 3
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Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learn-
ing and structured prediction to no-regret online learning. In Proceedings of the
fourteenth international conference on artificial intelligence and statistics, pages
627–635. JMLR Workshop and Conference Proceedings, 2011. 5.1

William B Rouse. Adaptive allocation of decision making responsibility between
supervisor and computer. In Monitoring behavior and supervisory control, pages
295–306. Springer, 1976. 3.1

Nicholas Roy and Andrew McCallum. Toward optimal active learning through sam-
pling estimation of error reduction. int. conf. on machine learning. 2001. 2

Stuart Russell and Eric Wefald. Principles of metareasoning. Artificial intelligence,
49(1-3):361–395, 1991. 2.1

83



Bibliography

M. Scerbo. Theoretical perspectives on adaptive automation. 1996. 3.1

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.
5.4

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A
core-set approach. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings. OpenReview.net, 2018. URL https://openreview.net/forum?id=
H1aIuk-RW. 2.2

Burr Settles. Active learning literature survey. 2009. 2.2

Burr Settles, Mark Craven, and Soumya Ray. Multiple-instance active learning. Ad-
vances in neural information processing systems, 20, 2007. 4

Christopher J Shannon, Luke B Johnson, Kimberly F Jackson, and Jonathan P How.
Adaptive mission planning for coupled human-robot teams. In 2016 American
Control Conference (ACC), pages 6164–6169. IEEE, 2016. 3

Christopher J Shannon, David C Horney, Kimberly F Jackson, and Jonathan P How.
Human-autonomy teaming using flexible human performance models: An initial
pilot study. In Advances in human factors in robots and unmanned systems, pages
211–224. Springer, 2017. 3.1, 3.2.1

Mohit Sharma and Oliver Kroemer. Relational learning for skill preconditions. arXiv
preprint arXiv:2012.01693, 2020. 3.3.2

Mohit Sharma, Jacky Liang, Jialiang Zhao, Alex LaGrassa, and Oliver Kroemer.
Learning to compose hierarchical object-centric controllers for robotic manipula-
tion. In Jens Kober, Fabio Ramos, and Claire J. Tomlin, editors, 4th Conference
on Robot Learning, CoRL 2020, 16-18 November 2020, Virtual Event / Cambridge,
MA, USA, volume 155 of Proceedings of Machine Learning Research, pages 822–844.
PMLR, 2020. URL https://proceedings.mlr.press/v155/sharma21a.html. 5.1

Thomas B Sheridan. Adaptive automation, level of automation, allocation authority,
supervisory control, and adaptive control: Distinctions and modes of adaptation.
IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Hu-
mans, 41(4):662–667, 2011. 3.1

Matthijs TJ Spaan. Partially observable markov decision processes. In Reinforcement
Learning, pages 387–414. Springer, 2012. 4.1

84

https://openreview.net/forum?id=H1aIuk-RW
https://openreview.net/forum?id=H1aIuk-RW
https://proceedings.mlr.press/v155/sharma21a.html


Bibliography

Priya Sundaresan, Jennifer Grannen, Brijen Thananjeyan, Ashwin Balakrishna, Jef-
frey Ichnowski, Ellen Novoseller, Minho Hwang, Michael Laskey, Joseph E. Gonza-
lez, and Ken Goldberg. Untangling dense non-planar knots by learning manipula-
tion features and recovery policies. In Robotics Science and Systems (RSS), 2021.
4.1, 5

Yoonchang Sung, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. Learning when
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