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Abstract
This thesis aims to equip computers with the ability to understand ev-

eryday hand-object interactions in the physical world – both perceiving on-
going interactions in 3D space and predicting possible interactions. This
ability is crucial for applications such as virtual reality, robotic manipula-
tions, and augmented reality. The problem is inherently ill-posed due to the
challenges of one-to-many inference and the intricate physical interactions
between hands and objects. To address these challenges, we explore a learn-
ing approach that mines priors from everyday data to enhance computer
perception of interactions. Our goal is to develop methods for building 3D
representations that respect the physical world’s inherent structure and can
generalize to novel everyday scenes.

We first explore how to scale up 3D object priors for single-view object
reconstruction in isolation, by introducing a learning technique for unsuper-
vised, category-level 3D object reconstruction from unstructured image col-
lections. Furthermore, we argue that interactions between hands and objects
should not bemarginalized as occlusion noise, but rather explicitlymodeled
to improve 3D reconstruction. To this end, we propose an approach to recon-
struct hand-object interactions from a single image by leveraging hand pose
information to better infer in-hand objects. Our research then extends the
core idea to reconstruction from short video clips, where we combine multi-
view cues with data-driven priors for accurate 3D inference. While perceiv-
ing ongoing interactions allows for predicting possible interactions, we also
explore interaction synthesis – predicting spatial arrangements of human-
object interactions. We propose a generative method that leverages a large-
scale pretrained model to achieve realistic, controllable, and generalizable
predictions of novel everyday objects. Finally, this thesis presents a unified
generative prior for hand-object interactions, allowing for both reconstruc-
tion and prediction tasks. We also make efforts to scale up the training data
by aggregatingmultiple existing real-world interaction datasets. Wedemon-
strate that the resulting joint prior can facilitate interaction reconstruction
and prediction, outperforming current task-specific methods.
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Chapter 1

Introduction

We humans live in a physical 3D world. Not only do we live as passive ob-
servers to name objects in this world, but we also live to actively interact
with this world every single day in order to survive and thrive. Among the
daily activities, a significant amount of interactions is performed via human
hands [91]. Humans have evolved a great ability to perceive and predict
their own and others’ hand interactions. From one look at another holding
a cup, we understand hand gestures relative to the cup and can effortlessly
replicate their hold by ourselves. Even children from their second year of
life are able to use spoons with their hands [31]. Not only do we under-
stand what is happening, but we also anticipate what could happen. A bowl
would be picked up by humans in certain ways. A stack of bowls would
tipple if the bottom one is knocked. We argue that an intelligent agent aim-
ing to mimic human interactions or a virtual assistant striving to aid in them
must understand such generic everyday interactions. In this thesis, we aim
to equip computers with similar abilities: both perceiving the ongoing inter-
actions in 3D space and reasoning about the interactions to predict possible
futures.

The problem is inherently ill-posed. Multiple 3D shapes can result in
identical 2D projections and it is often impossible to disambiguate one from
another via pure geometry rules [192]. In addition, it adds another layer
of complexity due to the physical interaction in terms of contact and dy-
namics between hand and object [8, 162]. Though ill-posed and extremely
complicated from pure mathematical and physical views, humans respond
instantaneously and understand the everyday interactions of common ob-
jects in one shot. One of the key reasons behind this amazing ability is the
prior that humans adopt – we adapt to this existing physical world and the
common senses in social norms. We simply prefer some explanations to the
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alternatives (e.g. a mug typically having a handle, not putting fingers inside
a mug, holding knives by handles). These priors are exhibited implicitly in
our daily lives and are applicable to perceive and predict general objects. In
this thesis, we explore a learning approach to mine such priors from daily
life data to better perceive interactions.

To achieve the goal, we first need to build a 3D representation of the
scenes that respect the inherent structure of the physical world. This in-
cludes 3D inference of any individual objects (object prior) and 3D inference
of relations between the human and objects (interaction prior).

A desired system should be able to infer those 3D structures from any
2D visual inputs. In Chapter 3, we first scale up category-level objects prior
for 3D reconstruction in an unsupervised manner. To alleviate expensive
3D supervision, we explore leveraging abundant data sources, i.e. unstruc-
tured image collections, and use only automatic segmentation outputs from
off-the-shelf recognition systems as supervisory signals. Our insight is that
different instances within one category are geometrically related and regu-
larize each other at a category level from which the shape of each instance
can be specialized. We supervise the model by enforcing consistency be-
tween the projection of the predicted 3D and the observed images, while
also appearing realistic from a novel view. We show that the method can
generalize to in the wild data for 50 categories with variant topology and
shapes, an order of magnitude more than existing work. This work is pub-
lished as Ye, Yufei, et al. “Shelf-supervised mesh prediction in the Wild.”
CVPR 2021.

While building category-level prior for generic individual objects, we as-
sume a clear view of the objects of interest or occlusions are considered as
noise to be marginalized over. However, interacting with objects naturally
introduces a special form of mutual occlusion. For example, pinched fin-
gers indicate a thin structure within the hands. It can be explicitly leveraged
rather than to be marginalized over.

In Chapter 4, we propose an approach to reconstruct hand-object interac-
tion without any templates from a single image. We study to build interaction
prior – hand articulation is highly predictive of the object shape. In partic-
ular, given an image depicting a hand-held object, we first use off-the-shelf
systems to estimate the underlying hand pose and then infer the object shape
in a normalized hand-centric coordinate frame. We parameterize the object
by signeddistancewhich is inferred by an implicit network that leverages the
information from both visual feature and articulation-aware coordinates to
process a query point. We perform experiments across three datasets and
show that our method consistently outperforms baselines and is able to re-
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construct a diverse set of objects. We analyze the benefits and robustness
of explicit articulation conditioning and also show that this allows the hand
pose estimation to further improve in test-time optimization. This work is
published as Ye, Yufei, et al. “What’s in your hands? 3D Reconstruction of
Generic Objects in Hands.” CVPR 2022.

After building object prior and interaction prior for reconstruction from
single images, in Chapter 5, we extend the data-driven priors to reconstruct-
ing HOI from short video clips. The input video naturally provides more
multi-view cues to guide 3D inference than single images as the input. How-
ever, they are insufficient on their own due to occlusions and limited view-
point variations in everyday interaction clips. To obtain accurate 3D,we aug-
ment the multi-view signals with generic data-driven priors to guide recon-
struction. Specifically, given an input video, our proposed approach casts
3D inference as a per-video optimization and recovers a neural 3D represen-
tation of the object shape, as well as the time-varyingmotion and hand artic-
ulation. We empirically evaluate the current approach on egocentric videos
across 6 object categories, and observe significant improvements over prior
single-view and multi-view methods. We also demonstrate our system’s
ability to reconstruct arbitrary clips from YouTube, showing both 1st and 3rd

person interactions. This work is published as Ye, Yufei, et al. “Diffusion-
Guided Reconstruction of Everyday Hand-Object Interaction Clips.” ICCV
2023.

Perceiving the ongoing interactions allows for the prediction of the possi-
ble interactions. In Chapter 6, we study to predict different spatial arrange-
ments of human-object interactions. Given an image of an object. In par-
ticular, given an RGB image of an object, we synthesize plausible images of
a human hand interacting with it. We propose a two-step generative ap-
proach: a high-level sampling that samples an articulation-agnostic hand-
object-interaction layout, and a low-level sampling that synthesizes images
of a hand grasping the object given the predicted layout. Both are built
on top of a large-scale pretrained diffusion model to make use of its latent
representation. Compared to baselines, the proposed method is shown to
generalize better to novel objects and perform surprisingly well on out-of-
distribution in-the-wild scenes. The resulting systemallows us to predict de-
scriptive affordance information, such as hand articulation and approaching
orientation. This work is published as Ye, Yufei, et al. “Affordance diffusion:
synthesizing hand-object interactions.” CVPR 2023.

Finally, we draw inspiration from previous works and explore a unified
data-driven prior that allows for both reconstruction and prediction (Chap-
ter 7). We propose G-HOP, a generative prior for hand-object interactions
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that allows modeling both the 3D object and a human hand, conditioned on
the object category. To learn a 3D spatial model that can capture this joint
distribution, we propose a suitable 3D representation that represents the hu-
man hand via a skeletal distance field to obtain a representation alignedwith
the (latent) signed distance field for the object. We show that this hand-
object prior can then serve as generic guidance to facilitate other tasks like re-
construction from interaction clip and human grasp synthesis. Additionally,
we also put efforts into scaling up the available data by seven diverse real-
world interaction datasets spanning across 155 categories. It results in a first
approach that allows jointly generating both hand and object. Our empirical
evaluations demonstrate the benefit of this joint prior in video-based recon-
struction and human grasp synthesis, outperforming current task-specific
baselines.

Excluded Research In order to keep the thesis clean, I exclude my work
that learns to transfer semantic knowledge across categories by knowledge
graphs [216]. It is published as Xiaolong Wang∗, Yufei Ye∗, Abhinav Gupta
”Zero-shot Recognition via Semantic Embeddings and Knowledge Graphs.”
CVPR2018. (* denotes equal contribution). I also exclude mywork that pre-
dicts interaction in scenes via scene graph, for both video prediction [234]
and robotmanipulations [231]. They are published as Ye, Yufei, et al. “Com-
positional video prediction.” ICCV 2019 and Ye, Yufei, et al. “Object-centric
model predictive control.” CoRL 2019.
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Chapter 2

Background

2.1 Human Hand Pose Reconstruction

Approaches tackling hand pose estimation from RGB(-D) images can be
broadly categorized as beingmodel-free andmodel-based. Model-freemeth-
ods [29, 87, 142, 144, 153, 172, 173, 246] typically detect 2D keypoints and lift
them to 3D joints position or hand skeletons. Some works [29, 53, 160] then
directly predict 3D meshes vertices from the 3D skeleton by coarse-to-fine
generation. Model-based methods [10, 180, 197, 240, 243] leverage statistical
models like MANO [177] whose low-dimensional pose and shape parame-
ters can be directly regressed [10, 180] or optimized [197, 240, 243]. These
model-based methods are generally robust to occlusion, domain gap etc.,
and we build on these in our works.

In particular, throughout the thesis, we use off-the-shelf systems [180]
to get initial estimation of hand pose in images/videos. Although better
initial hand poses [159] are expected to lead to better interaction under-
standings, we keep the same off-the-shelf system for consistent compari-
sion. The reconstruction method is model-based which directly regresses a
45-dimensional articulation parameter (θA) and a 6-dim global rotation and
translation (θw) along with a weak perspective camera. We rig the paramet-
ric MANO model by the predicted articulation pose θA to obtain an articu-
lated hand mesh in a canonical frame around the wrist. To relate a point in
the wrist frame to the image space, we first transform the hand by the pre-
dicted global transformation and then project it by the camera matrix. As an
implementation detail, we convert the predictedweak perspective camera to
a full perspective one as it helps to account for large perspective effects. In
summary, we relate a query point in the canonical wrist frame to the image
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by
xp = πθw(x) = KTθwx

whereK is the camera intrinsic and Tθw is the global rigid transformation of
the hand.

While the thesis focuses on interactions rather than improving hand pose
estimators, we also show in Chapter 4, 5, and 7 that jointly reasoning about
the geometric interaction between the predicted 3D object and the inferred
hand pose can also help improve the hand pose estimate.

2.2 Reconstructing Generic Objects in Isolation
While model-based method is widely used for hand reconstruction to inject
our prior knowledge of human hands, it is significantly more challenging to
obtain a unified object model that can be used for general object reconstruc-
tion because of the significantly wide diversity of object geometry. Model-
free methods [1, 55, 154, 193, 220] learn a manifold of shape by first map-
ping the input to a latent space from which 3D shape is generated. These
methods typically suffer from losing finer details as the reconstruction only
rely on less expressive latent code. While all methods above have presented
impressive results, they crucially require 3D supervision. In contrast, our
approach in Chapter 3 aims for a coarse-to-fine inference where neither 3D
nor pose annotation is available.

With a similar motivation as ours in Chapter 3 to relax the need of super-
vision, several approaches study the reconstruction task with only multi-
view or even single-view supervision. The key is to ensure reprojection con-
sistency of the predicted 3D with available observations. While this relaxes
the requirement for tedious 3D supervision, manual annotations are still re-
quired in different forms, such as semantic key-points [93, 105], multi-view
association [30,126,204,219], categorical template [58,93,107,108], or camera
pose annotation [76,77,97,126,227]. Some recent works use self-supervised
semantic co-part segmentation [114], foregroundmasks [51,78], or symme-
try [221] to further relax the manual annotation. Our work in chapter 3 has
similar setup while ours does not require semantic in training, and recon-
structs textured full 3D meshes with various topology and shapes.

It is worth noting the remarkable progress in 3D/4D object reconstruc-
tion [84, 121, 244] after our work in chapter 3 is published. The progress is
mainly due to large-scale data [39,170], foundational models [42], and bet-
ter 3D representations [21, 137, 145, 154, 230]. However, the state-of-the-art
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methods typically assume isolated and unoccluded objects in images – and
cannot be directly leveraged for reconstructing hand-held objects. Even ap-
proaches that are robust to occlusion consider it as noisy context tomarginal-
ize over, instead of a source of signal for the shape of the underlying object.
In contrast, this thesis advocates that explicitly taking hand pose into ac-
count helps infer the 3D structure of objects more accurately.

2.3 Hand-Object Interaction Reconstruction
2D Understanding of Hand-Object-Interaction. In order to understand
hand-object-interaction, efforts have been made to locate the active objects
and hands in contact in 2D space, via either bounding boxes detection [5,
140, 187] or segmentation [49, 188]. Furthermore, temporal understanding
of HOI videos [56, 66, 163, 165, 196] aims to locate the key frames of state
changes and time of contact. In this thesis, we focus on the geometry aspect
of HOI.

HOI Reconstruction from Images. Reconstructing hand-objects interac-
tions is even more challenging than isolated object reconstruction due to
heavy mutual occlusions. Most of the prior works make the simplifying as-
sumption of knowing the instance-specific object template and then reduce
this ill-posed problem to 6DoF pose estimation [17,65,171,176,198,206,236].
Chapter 4 as well as previouswork [73,96] explore a template-free approach
to reconstruct more general objects by learning data-driven priors of inter-
action from large-scale datasets. While it is able to generate reasonable per-
frame predictions, it is not trivial to aggregate information from multiple
views in one sequence and generate a time-consistent 3D shape.

HOI Reconstruction from Videos. There have been many efforts in cap-
turing hand-object interactions with multiple cameras or monocular RGBD
cameras. Known (scanned) templates of either rigid or articulated objects
are fitted to multiple sequences and can achieve very accurate reconstruc-
tions to even serve as pseudo ground truth of datasets [12, 46, 68, 186, 201,
205]. Another line of works recover the 6D object pose frommonocular RGB
videos [70, 71, 158]. While all previous works assume the reconstructed ob-
ject to be known, a few very recent works focus on template-free in-hand
scanning frommonocular videos [67,85]. They directly leverage recent neu-
ral radiance field and neural implicit fields [117, 138, 154, 155, 164, 225, 230],
that have shown great potential in novel view synthesis and representing
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generic 3D/4D scenes. However, their scanning setup [67, 85] requires ev-
ery region of the objects to be fully observed, which is often not true for
everyday video clips. In contrast to all prior works, we tackle template-free
3D HOI reconstruction from everyday video clips in Chapter 5 and 7.

2.4 Hand-Object Interaction Prediction
Visual Affordance from Images. Affordance is defined as functions that
environments could offer [54]. Although the idea of functional understand-
ing is core to visual understanding, it is not obvious what is the proper
representation for object affordances. Some approaches directly map im-
ages to categories, like holdable, pushable, liftable, etc. [14, 79, 112, 147].
Some other approaches ground these action labels to images by predicting
heatmaps that indicate interaction possibilities [47, 86, 123, 146, 152]. While
heatmaps only specify where to interact without telling what to do, recent
approaches predict richer properties such as contact distance [96], action
trajectory [123,141], grasping categories [60,133], etc.. Instead of predicting
more sophisticated interaction states, in Chapter 6, we explore directly syn-
thesizing HOI images for possible interactions because images demonstrate
both where and how to interact comprehensively and in a straightforward
manner.

3D Grasp Synthesis. Interaction represented in 2D can not be directly
used to command a robot to grasp an object in 3D. There are extensiveworks
in robotics that predict 3D robot grasp [2, 11, 116, 132] for different end-
effectors. Meanwhile, human grasp as a special end-effector receives great
attention [13, 45, 61, 90, 96, 98, 124]. Most relevant work including GF [96]
and GraspTTA [90] model a conditional probability of human hand given
an object mesh. Chapter 6 explores the possibility of mining human inter-
action prior from large-scale image synthesis models to predict 3D human
grasps without knowing 3D object models. The coarse but generalizable
3D hand pose prediction is shown as useful human prior for dexterous ma-
nipulation [4, 38, 104, 133, 167, 222]. When the object geometry is known,
we directly leverage a generic joint hand-object generative prior (Chapter 7)
and show that this leads to more natural human grasps than task-specific
methods.
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Chapter 3

Reconstructing Generic Objects in
the Wild

We live in a 3D world where 3D understanding plays a crucial role in our
visual perception. Yet most computer vision systems in the wild still per-
form 2D semantic recognition (classification/detection). Why is that? We
believe the key reason is the lack of 3D supervision in the wild. Most recent
advances in 2D recognition have come from supervised learning but unlike
2D semantic tasks, obtaining supervision for 3D understanding is still not
scalable.

While some recent approaches [57, 220] have attempted to build super-
vised 3D counterpart of 2D approaches, the concerns about scalability still
remain. Instead, a more promising direction is to learn models of single
image 3D reconstruction by minimizing the amount of manual supervision
needed. Early approaches in this direction focused on using multi-view su-
pervision [219, 227]. However, obtaining multiple views of the same ob-
jects/scene is still not easy for the data in the wild. Therefore, recent ap-
proaches [93,108,148] have attempted to learn single-image 3D reconstruc-
tion models from image collections. These approaches have targeted use of
category templates, pose supervision and keypoints to provide supervision
(See Table 3.1). However, such supervision still limits the scalability to hun-
dreds of categories.

Our work is inspired by recent approaches that forgo supervision by ex-
ploitingmeta-supervision from the category structure and geometric nature
of the task. More specifically, the two common supervisions used are: (a)
rendering supervision ( [108, 114]): any given image of an instance in a
category is merely a rendering of a 3D structure under a particular view-
point. We can therefore enforce that the inferred 3D shape be consistent
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Figure 3.1: Given a single image, we predict a mesh with textures (rendered
from the predicted view and a novel view). The models can learn directly
from collections of images with only foreground masks, without supervi-
sion of mesh templates, multi-view association, camera poses, semantic an-
notations, etc..

with the available image evidence when rendered; (b) adversarial supervi-
sion ( [148]): in addition, the availability of an image collection also allows
us to understand what renderings of 3D structures should look like in gen-
eral. This enables us to derive supervisory signal not just from renderings
of predictions in the input view, but also from novel views, by encouraging
the novel-view renderings to look realistic. Prior work has exploited these
supervisions but individually they pose several limitations for scaling 3D
reconstruction models. For example, [58, 108] still requires template mod-
els. Similarly, [148] exploits the adversarial supervision and ignores the ex-
plicit geometric supervision. Therefore, such an approach only works on
categories with strong structure and curated image collections. Specifically,
table 3.1 summarizes the differences of our method with others in terms of
supervision and outputs.

This chapter attempts to build upon the very recent successes in meta-
supervision and provide an approach to scale learning of single image 3D
reconstruction in the wild. We present a two-step approach: the first step
relies on category-level understanding for coarse 3D inference (learned via
meta-supervision). The second step specializes coarse models to match the
details in the input image. Our approach can learn using only unannotated
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Table 3.1: Comparing ours to other image-based supervised works in terms
of supervision and outputs.

[77] [107][93] [97] [204][221][148][51] [114]ours
pose ✓ ✓ ✓

template ✓ ✓ ✓
semantic ✓ (✓)

multi-view ✓
mask (✓) ✓ ✓ ✓ ✓ ✓ ✓ ✓

3D recon. ✓ ✓ ✓ ✓ (✓) ✓ ✓ ✓
topology ✓ ✓ ✓
texture ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Figure 3.2: Volumetric Representation Prediction and Rendering. Left:
Given an input image, the encoder-decoder network infers a semi-implicit
volumetric representation (So, Sf ) and a camera pose v. The semi-implicit
volume is then projected from the predicted camera pose to obtain fore-
ground image and mask. The semi-implicit volume is also projected from a
novel view v′. The projections are required to bothmatch the 2D observation
and appear realistic. Right: Projection process mimicking ray marching.

image collections, without requiring any ground-truth 3D [9,57,214], multi-
view [204, 227], category templates [58, 107], or pose supervision [97, 219].
This not only allows our approach to infer accurate 3D, but also enables it to
do so beyond the synthetic settings, using in-the-wild image collections in
a ‘shelf-supervised’ manner: with only approximate instance segmentation
masks obtained using off-the-shelf recognition systems as supervision. Yet
our biggest contribution is the demonstration of scalability –we show results
on order of magnitude more classes than existing papers.
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3.1 Method

Our goal is to learn a model that, given an input image segmented with ob-
ject mask, outputs a 3D shape in the form of a triangle mesh with texture
and the corresponding camera pose. We use a two-step approach. First, we
predict a canonical-frame volumetric representation and a camera pose to
capture the coarse 3D structure which is consistent with categorical priors.
We then convert this coarse volume to a memory-efficient mesh representa-
tion which is refined to better match the instance-level details.

We propose to learn the category level model from image collections us-
ing geometric and adversarial meta-supervision signals. More specifically,
our key insight is that the projection of the predicted 3D should explain
the observed images and masks, while also appearing realistic from a novel
view.

3.1.1 Volumetric Reconstruction Model

First we define the volumetric reconstruction model which is learned sepa-
rately for each category. Given an image this model predicts a volumetric
representation in a canonical frame with corresponding camera pose. Note
that unlike approaches that use a deformable category-level shape space, a
volumetric representation allows us to capture larger shape and topology
variations.

Concretely, we adopt a semi-implicit representation comprised of an ex-
plicit occupancy grid So, with an implicit 3D feature Sf , i.e. S = (So, Sf ). The
latter can help capture appearance, texture, material, lighting, etc. This al-
lows synthesizing bothmask and appearance fromaquery view, and thereby
lets us use both RGB images and foreground masks as supervision. The
overall method is depicted in Figure 3.2.
Encoder-Decoder Architecture. We learn an encoder-decoder style network
ϕ to predict this semi-implicit representation (S, v) ≡ ϕ(I) where v is the
camera pose. The encoder maps the input image to a low-dimensional la-
tent variable z and predict the camera pose, i.e. (z, v) ≡ ϕE(I). The latent
variable z is then decoded to the volumetric representation, S ≡ ϕD(z). The
key here is that the view-independent decoder learns to predict the shape
in a canonical pose across all instances in the category. To further regularize
the network, we leverage the observation that many objects exhibit reflec-
tion symmetry, and enforce a fixed symmetric plane (x = 0) via averaging
predicted features in symmetrically related locations.
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Volumetric Rendering. Our goal is to supervise the volumetric model us-
ing only 2D observations. Therefore, what we need is a rendering function
(π)which projects volumetric representation to obtain 2D images andmasks
from a query view i.e. (I,M) ≡ π(Sf , So, v). Similar to other volumetric neu-
ral renderers [129,204], we use a geometrically informed projection process
by mimicking ray marching.

For a given pixel p, we useD samples along the ray to obtain a ‘rendered’
feature and mask value. Let us denote the coordinate of the d-th sample
on the ray as Cv + λdep where ep is the corresponding ray direction. We
sample both implicit feature and occupancy at these locations, denoted as
Sf [Cv + λdep] and So[Cv + λdep]. We then composite these samples to obtain
a per-pixel feature spf andmask spm, by using the expected value with respect
to ray stopping probability [203]:

spf =
D∑
d=1

(So[C + λdep]
d−1∏
h=1

(1− So[C + λhep]))

· Sf [C + λhep]

The pixelwise mask value spm is similarly rendered by setting Sf to constant
1. While this process lets us directly compute the rendered maskM , we use
a few upconvolutional layers to transform the rendered 2D feature image to
the output color image.
Training. We supervise this network with only unannotated images and
foreground masks. We use three different kinds of supervision (or terms in
the loss function):
Pixel consistency loss. Our first term is the simplest one. Any predicted vol-
umetric representation when rendered in the same camera view should ex-
plain the input image and mask. This is performed in color space, mask
space [125], and perceptual space [238] .

Lrgb = ∥Î − I∥1

Lmask = 1− ∥M̂ ⊗M∥1
∥M̂ ⊕M − M̂ ⊗M∥1

Lperc = ∥h(Î)− h(I)∥22
where Î , M̂ are rendered image and mask; h is the feature extracted by a
pretrained AlexNet [106] and ⊕⊗ are element-wise summation and multi-
plication respectively.
View synthesis adversarial loss. A degenerate solution could arise such that
the shape is only plausible from the predicted view. To avoid it, we require
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Figure 3.3: Instance-level specialization. We convert the inferred volumet-
ric occupancy to an initial mesh. The mesh geometry and textures are then
iteratively refined to better match the given input.

the projection of predicted shape to appear realistic from a random novel
view. Specifically, we sample another camera pose from a fixed prior to ren-
der the novel view: I ′ = π(ϕD(z), v

′), v′ ∼ p(v). We then present this gener-
ated image to an adversarial discriminator with an objective to fool it. We
similarly encourage photo-realismwhen rendering from the predicted cam-
era pose. The loss is minimized in a vanilla GAN [59] scheme.

Ladv = logD(I) + log(1−D(π(S, v)) + log(1−D(π(S, v′))

Content consistency loss. To further regularize the network we build on a
insight that the encoder and decoder networks should be self-consistent.
Given a synthesized image from the decoder, the encoder should predict the
actual content (latent variable with camera pose) that generated that image.
Formally,

Lcontent = ∥ϕE(πS(S, v))− (z, v)∥22
+∥ϕE(πS(S, v′))− (z, v′)∥22

Empirically, we found Lcontent important to stablize training.
Optimization. The neural renderer and decoder are trained to minimize

all of the above objectives. But the encoder is not optimized with the adver-
sarial loss, as in [111].
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3.1.2 Instance-Level Specialization

As shown in Figure 3.3, the volumetric representation captures general category-
level structure to hallucinate a full 3D shape. However, this shape is coarse
as it is: a) limited by the volumetric resolution, and b) generated only from
a low-dimensional latent variable. On the other hand, a mesh representa-
tion is more flexible and can allow capturing the finer shape details. We
therefore go beyond this coarse volumetric prediction, and capture details
specific to this instance by converting the volume to an initial mesh, which
is then adjusted to better match the input image.
Volumetric to Mesh. We first obatin an initial mesh from the predicted vol-
umetric occupancy. This is done similar to Mesh-RCNN [57] by binarizing
the occupancy grid So and extracting its surfaces. Next, every vertex is pro-
jected to the image to obtain visibility and texture at the vertex. At this step
we leverage the symmetry of the mesh to fuse the textures from its reflective
symmetric vertex. The final associated texture for each vertex is an average
of itself and its visible symmetric neighbors.
Mesh refinement. We optimize the geometry and refine the texture of the
mesh iteratively. Given a posed textured input mesh, we first optimize the
vertex location and the camera pose such that the projection of the mesh
matches the observation. After every step of mesh geometry update, vertex
textures are re-sampled from the image given the adjusted projected loca-
tion. More specifically, we use a mesh-based differential renderer [125] to
project and render. The rendered images and masks (Î , M̂) ≡ πG(G, v) are
encouraged to be consistent with the input image and foregroundmask. We
regularize the optimization by penalizing large vertex displacement ∥δX∥22
and encourage Laplacian smoothness ∥∆X∥22.

3.2 Experiments
Our goal is to highlight how our approach learns to predict 3Dmeshes from
image collections in the wild. Specifically, we show 3D reconstruction for 50
object categories from OpenImages dataset [110]. Note that this diverse set
of reconstructions is an order of magnitude larger than those of any existing
approaches.

However, there is no ground truth for OpenImages. Also, most baseline
approaches fail to work on uncurated image collections. In order to provide
comparisons, we perform two additional experiments. First, we compare
on data drawn from 3D Warehouse [217], using rendered images as image
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Table 3.2: Quantitative results (3D IoU / F-score) on synthetic data compar-
ing different methods for shape reconstruction.

airplane car chair
HoloGAN [148] 0.28/ 0.31 0.43 / 0.44 0.26 / 0.25
PrGAN [51] 0.29/ 0.18 0.48 / 0.37 0.28 / 0.28

Ours 0.33 / 0.46 0.55 / 0.43 0.31 / 0.29
Ours (refined) —- / 0.49 —- / 0.42 —- / 0.31

collection. Using synthetic data allows us to provide quantitative evaluation
and perform ablative analysis. Second, we also compare with some of the
other curated common datasets used in the literature (CUB, Chair-in-Wild,
ImageNet Quadrapeds). This helps us to qualitatively compare with some
baseline approaches.

3.2.1 Synthetic Data
Wefirst evaluate ourmethod onmodels from3DWarehouse [217], using the
subset recommended by Chang et al. [22]. We select three categories which
are commonly used to evaluate single-view reconstruction: aeroplane, car,
and chair. Note that within a category, the shapes across instances can have
a large variation and even different topology, especially for chairs. Each 3D
model is rendered from 20 views, with uniformly sampled azimuth [0◦, 360◦]
and elevation elevation [−60◦, 60◦]. However, the network is not provided
with multi-view associations in training.
Evaluation metrics. We report 3D IoU with resolution 323 and F-score in
the canonical frame for volumetric reconstruction and report F-score [200]
for mesh refinement. The F-score can be interpreted as the percentage of
correctly reconstructed surface. As our predictions (and those of baselines)
can be in an arbitrary canonical frame that is different from the ground truth
frame, we explicitly search for azimuth, elevation for each instance and bi-
narizing threshold for each category to align the predicted canonical space
with the ground-truth.
Baselines. Wecompare our approach to [51,148]. We adaptHoloGAN[148]
by training their system on our data, and obtaining a 3D output by adding
a read-off function from the learned volumetric feature to occupancy by en-
forcing the reprojection consistency with foregroundmasks. We implement
PrGAN [51] using our encoder-decoder network. Our implementation pro-
vides a boost to original PrGAN.
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Figure 3.4: Visualization of categorical volumetric representation across dif-
ferent methods.
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Figure 3.5: Ablation study: refining mesh initialized from the predicted vol-
ume (col 2/5) and another volumes (col 3/6).

Figure 3.6: Visualizing categorical volumetric representation across differ-
ent methods on CUB-200-2011, Quadrupeds, Chairs in the wild.

Figure 3.4 visualizes the reconstructions in a canonical frame on 3 cate-
gories. HoloGAN is able to reconstruct a blobby shape, but as it does not ex-
plicitly represent 3D occupancies, it struggles to generate a coherent shape.
PrGAN is able to capture the coarse shape layout but it lacks somedetails like
flat body of aeroplanes. In contrast, we reconstruct the shapemore faithfully
to the ground-truth as we leverage information from both appearance and
foreground masks. Quantitatively, we report the 3D IoU on these categories
in Table 3.2 and, consistent with the qualitative results, observe empirical
gains across all categories.
Mesh Refinement. Table 3.2 also reports the evaluation of the mesh refine-
ment stage. Compared with the initial meshes converted from volumetric
representation, our specialized meshes match the true shape better.
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Table 3.3: Quantitative results (3D IoU) on synthetic data to ablate the effect
of each loss term.

airplane car chair
Ours 0.33 0.55 0.31

Ours −Ladv 0.25 0.44 0.22
Ours −Lcont 0.24 0.54 0.23

Figure 3.7: Ablation study: comparing reconstructed volumes when the
model disables different loss terms.

In Figure 3.5, we visualize the refinement results with an interesting ab-
lation to further highlight the importance of mesh initialization. Instead of
initializing with our predicted volume, we initialize the mesh from another
chair consisting of different numbers of chair legs. The refinement fails to
specialize well. This indicates that the meshes for all instances cannot be ad-
justed from one single shape especially when shapes have a large variance,
and that our volumetric prediction, though coarse, provides an important
initialization for the instance-level refinement.
Loss ablation. We provide quantitative (Table 3.3) and qualitative (Figure
3.7) results to show each loss term is necessary. Without adversarial loss, the
model collapses to generate shapes only looking similar to the input from the
predicted view. It does not even look like a chair from another view, since
this degenerate solution is not penalized by other losses. Without content
loss, the performance also drops, especially on categories with larger shape
variance like chairs. The consistency loss is not ablated because it is needed
for the task of reconstruction.
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Figure 3.8: Visualizing our refined shapes from the predicted view (2nd col-
umn in each quadruplet) and a novel view (3rd+4th / quadruplet) on CUB,
Quadrupeds, Chairs in the wild. We are able to capture both the shared
shapes in categories and instance-specific differences.

3.2.2 Curated Collections

We also examine our method on three real-world datasets that have been
curated and used in the literature for the 3D reconstruction problem:
CUB-200-2011 [211]: The CUB dataset consists of 6k images of 200 bird
species with annotated foreground masks.
Quadrupeds from ImageNet [41]: The Quadrupeds dataset consists of 25k
images of different quadrupeds from ImageNet. Masks are provided by
Kulkarni et al. [107], whouse an off-the-shelf segmentation system [102] and
manually filter out the truncated or noisy instances. Quadrupeds consists
of multiple 4-legged animal species including buffalo, camels, sheep, dogs,
etc. The animals also exhibit rich articulation e.g. running, lying, heads up or
heads down. This makes the underlying shape variance significantly larger
than the CUB dataset.
Chairs in the wild [41, 150, 226]: For chairs in the wild, we combine chairs
in PASCAL3D, ImageNet, and Stanford Online Products Dataset to get 2084
images for training and 271 for testing. Masks in [41,150] are from segmen-
tation systems [25,102] and those in [226] are from annotations.

Figure 3.6 qualitatively compares our volumetric reconstruction to base-
lines on the 3 separate real-world datasets. Similar to results on synthetic
data, HoloGAN reconstructs only coarse blobby volumes as it does not ex-
plicitly consider occupancy or geometric-informed projection. PrGAN col-
lapses to shapes with little variance, since it does not use appearance cues.
But the real datasets have noisier foreground masks and textures contain
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more information. In contrast, we are able to learn the coarse categorical
shape just from the foreground images. Our reconstructions also capture
subtle differences like the length of bird tails, articulated heads of the quadrupeds,
the style of chairs.
Mesh Refinement. Figure 3.8 visualizes our refined meshes from the pre-
dicted view and a novel view on these three dataset. We observe that we
predict meaningful texture even for invisible regions and that the shape of
the mesh also looks plausible from another view. On CUB-200-2011, our
method captures the categorical shapes like blobby bodies, beaks and tails
while captures subtle shape differences between birds such as the tail length,
body width, neck bending, etc. On Quadrupeds, we are able to capture
quadrupeds common traits such as torso with one head and front back legs.
We can also depict their uniqueness such as the camel hump and longer legs,
the tapir having stout neck, the sheep raising up its heads, the horse bend-
ing down its neck, etc.. On Chairs in the wild, the learned common model
differentiates one-leg and four-leg chairs respectively. The four legs and seat
can be hallucinated even when occluded. The subtle differences such as a
wide or a narrow chair back are also captured. Despite the challenges in
the datasets, it is encouraging that our model can capture both, the com-
mon shapes and specialized details just by learning from these unannotated
image collections.

3.2.3 OpenImages 50 Categories
Finally, the highlight of our model is the ability to scale to images in the
wild. We evaluate our model on 50 categories on Open Images including
bagel, water tap, hat, etc.. The size of each category ranges from 500 to
20k. The foreground masks [7] are from annotation and filtered by a fine-
tuned occlusion classifier. Figure 3.10 visualizes the reconstructed meshes
from the predicted view and a novel view. Our method works on a large
number of categories, including thin (water taps, saxophone), flat (wheels,
surfboards), blobby structures (Christmas trees, vases). We are able to re-
construct shapes with various topology such as bagels, mugs, handbags.
The model captures the categorical shapes shared within classes and hal-
lucinates plausible occluded regions (mushroom, mugs). We can also cap-
tures details at instance-level, such as the number of wheels of roller-skaters,
styles of high-heels, hats, etc..
Integrating onCOCO. Weadditionally show results of ourmodels onCOCO
[120] without fine-tuning (Figure 3.9). We first detect and segment the ob-
jects with off-the-shelf segmentation [102] system. Based on the predicted
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Figure 3.9: Test on COCO: visualization of lifting detection results to meshes
via the shelf-supervised models.

classes, we then pass the segmented objects to our category-specific models
which are trained on previous datasets. Despite more cluttered scenes and
the dataset domain shift, our models can lift the 2D detection to 3D meshes
for various categories while preserving instance details.
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3.3 Discussion
In this chapter, we presented an approach to predict 3D representations from
unannotated images by learning a category-level volumetric prediction fol-
lowed by instance-level mesh specialization. We found that both are impor-
tant to infer an accurate 3D reconstruction. While we obtained encourag-
ing results across diverse categories, our approach has several limitations.
For example, our rendering model is simplistic and not incorporate light-
ing during rendering. Thus we cannot easily reason about concave struc-
ture. Additionally, while we only examined setups without annotated su-
pervision like mesh templates, our system could potentially incorporate ad-
ditional (sparse) supervision to improve the reconstruction quality. While
these challenges still remain, we believe our work on inferring accurate re-
construction with limited supervising can provide a scalable basis towards
the goal of reconstructing generic objects in the wild.

3.4 ImplementationDetails andAdditionalResults

3.4.1 Ablation Study

Assumption of viewpoint distribution. We briefly analyze the effect of
viewpoint prior. In figure 3.12 we visualize volumetric reconstruction train-
ing with different viewpoint prior on the mug category of synthetic data.
While our method is robust to some view distribution mismatch, the shapes
display artifact (e.g. two handles) when the assumed prior is far from the
ground-truth viewpoint distribution. It is because different viewpoint dis-
tribution may induce different 3D shapes as the adversarial loss matches its
projections with the existing image collections. We notice similar artifacts
when training on the real datasets (e.g. starfish and mugs on OpenImages
), as camera pose biases exist by human photographers (e.g. front view of
starfish or mugs with handles). While we assume azimuth from uniform
distribution across all experiments and have achieved some promising re-
sults on various categories, we encourage more works to explore the direc-
tion of better viewpoint distribution prior.
Robustness against segmentation quality. Our model depends on the seg-
mentation quality, as it is the only supervision. We ablate our model with
noisymasks, both qualitatively andquantitatively. Themodel trained/tested
with predictions from [19] (left) or with synthesized noise (mid) performs
comparably to using GT, until considerably severe corruption. Our experi-

23



ments in paper have already suggested that our model is robust to the noise
as masks might be truncated, occluded, or corrupted due to prediction error
(Fig 3.11 right). We also visualized the masks used in the main paper (Fig
3.11 right). Our experiments suggest that our model is robust to the noise as
masks might be truncated, occluded, or corrupted due to prediction error.

3.4.2 Architecture Details
Neural Network Architecture. The encoder is comprised of 4 convolu-
tion blocks followed by two heads to output v and z. Each block consists
of Conv(3 × 3) → LeakyReLU . The feature from the last block is fed to 2
fully-connected layers to get v and is fed to Average Pooling with another
fully-connected layer to output z. v is in 2-dim to represent azimuth and
elevation while the dimensionality of latent variable z is 128.

Thedecoder follows StyleGAN[94] to use the latent variable z as a “style”
parameters to stylize a constant 256×43 feature. Given z, the constant is up-
sampleed to the implicit 3D feature Sf by a sequence of style blocks. Then Sf
is transformed to get the occupancy grid So by a 3× 3× 3Deconv layer with
Sigmoid activation. Among all of our experiments, our decoder consists of 2
style blocks each of which are built with Deconv → AdaIN → LeakyReLU .
The shape of Sf is 64× 163 and the shape of So is 1× 323.

Training Details. We optimize the losses with Adam [100] optimizer
in learning rate 10−4. The learning rate is scheduled to decay linearly after
10k iterations, following prior work [245]. We weight the losses such that
they are around the same scale at the start of training. Specifically, we use
λ = 10 forLpixel+Lperc, 1 forLadv andLcontent. The volumetric reconstruction
network is optimized for 80k. Due to the diverse appearance and data noise
on Quadrupeds, we additionally regularize the network by an L2 distance
between the predicted voxels and the mean shape of all quadrupeds. The
model can still capture the articulation for different instance.

3.4.3 F-score Calculation
In order to calculate F-score – the harmonic mean of recall and precision,
the meshes are first converted to point cloud by uniformly sampling from
surfaces. The recall is considered as the percentage of ground-truth points
whose nearest neighbour in predictedpoint cloud iswithin a thresholdwhile
the precision is calculated as the other prediction-to-target way.
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Figure 3.10: Visualizing our reconstructed meshes from the predicted view
(2nd in each quadruplet) and a novel view (3rd and 4th in each quadruplet)
trained on multiple categories on Open Images.
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Figure 3.11: Left: qualitative results on CUB replacing annotation with pre-
diction in training and/or test time. Middle: quantitative results on syn-
thetic chairs by adding random noise on masks during both training and
inference. Right: masks used to train the models in the paper.

Figure 3.12: Results on training models with different viewpoint priors.
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Chapter 4

Reconstructing Generic Objects in
Hands from Single Images

In Chapter 3, we examine scaling up 3D reconstruction for single objects. But
those objects are considered in isolation as neither occlusion nor interaction
is assumed. Instead, objects are often manipulated by human hands in the
real worlds. This interaction naturally introduces contact and occlusions.
For example, holding a pen means a stick lying on purlicue and gripped
by thumb, index and middle fingers; holding a bowl is placing it on top
of an upfacing palm. In the following two chapters, we pursue a geometric
representation of hand-object interactions for generic objects, from single
images (this chapter) to monocular videos (Chapter 5).

Reconstruction of objects in hand in-the-wild is highly challenging and
ill-posed due to lack of data, presence of mutual and self-occlusion. Cur-
rent works [18,52,69,122,201] typically focus on reconstructing objects with
known templates, thus reducing the task to 6D pose estimation. We argue
that knowing the 3D template of the object as a priori during inference is
a strong assumption and prevents these systems from reconstructing un-
known objects. Furthermore, they struggle to handle various object shapes
in the wild as these templates are rigid and instance-specific. In contrast,
our work studies hand-object reconstruction without object templates and
instead focuses on reconstructing HOI for novel objects from images.

Our key observation is that hand articulation is driven by the local geom-
etry of the object. Thus, hand articulation provides strong cues for the ob-
ject in interaction. Fingers curled like fists indicate thin handles in between
while open palms are likely to interact with flat surfaces. Instead of treating
the hand occlusion as noise to marginalize over, we explicitly consider hand
pose as informative cues for the object it interacts with. We operationalize
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Figure 4.1: Given an RGB image depicting a hand holding an object, we infer
the 3D shape of the hand-held object (rendered in the image frame and from
a novel view).

this idea by conditionally predicting the object shape based on hand articu-
lation and the input image. Instead of estimating both hand pose and object
shape jointly, we leverage advances in hand pose reconstruction to estimate
hand pose first. Given the inferred articulated hand alongwith the input im-
age, our approach then reconstructs the object in a normalized hand-centric
coordinate frame.

We evaluate our method across three datasets including synthetic and
real-world benchmarks and compare ours with prior explicit and implicit
HOI reconstruction methods that infer the shape of unknown objects inde-
pendent of hand pose. Our articulation-conditioned object shape prediction
consistently outperforms prior works by large margins and can reconstruct
various objects in a wide range of shapes. We also analyze how our model
benefits from articulation-aware coordinates. Lastly, we show that the initial
hand pose estimation could be further improved by encouraging interaction
between the predicted hand and the object.

4.1 Method
Given an image depicting a handholding an object, we aim to reconstruct the
3D shape of the underlying object. Our key insight is that the hand articula-
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Figure 4.2: Given an image of a hand-held object, we first use an off-the-
shelf system to estimate hand articulation θA and the camera pose πw. With
the predicted articulated hand along with the image, the object shape is re-
constructed by an implicit network. For each query point x in canonical
hand wrist frame, it is transformed to image space xp to get visual feature
ϕ = g(xp, I). In parallel, we also encode its articulation-aware representa-
tion ψ = h(x; θ). Then we use an implicit decoder to predict signed distance
value s = f(x, ϕ, ψ).

tion is predictive of the object shape within it, for example, fingers pinching
together indicate a thin stick-like structure between them. We operational-
ize this by explicitly conditioning the inference of object shape on the (pre-
dicted) hand articulation.

As shown in Fig 4.2, we first use an off-the-shelf system to estimate hand
articulation and predict the camera transformation that projects the canon-
ical articulated hand to the image coordinates. Given the predicted hand
alongwith the input image, we then infer the object shape via an articulation-
conditioned reconstruction network. This network is implemented as a point-
wise implicit function [154] that maps a query 3D point to a signed distance
from the object surface, and the zero-level set of this function can be ex-
tracted as the object surface [130]. Instead of predicting this 3D shape in
the image coordinate frame, our implicit reconstruction network infers it in
a normalized frame around the handwrist. This allows the network to learn
relations between the hand articulation and object shape that are invariant
to global transformations.

More formally, given an input image I , we first infer the underlying the
hand pose θ and the camera pose π. Then, for any point x in the normal-
ized wrist frame, the object inference model takes in the query point with
the image and predicts its signed distance function s. More specifically, the
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projection of the point to image coordinates is used to obtain corresponding
visual features ϕ = g(π(x); I). In parallel, we also encode its position relative
to each hand joint to extract an articulation-aware representationψ = h(x; θ).
The point-wise visual feature and articulation embedding are then used by
an implicit decoder to predict signed distance value s = f(ϕ, ψ) at the query
point x.

4.1.1 Hand Reconstruction

As explained in Section 2.1, we use an off-the-shelf system [180] to estimate
hand articulation and associated camera pose from an input image. A point
in the canonical wrist frame where hand palm always faces upwards is pro-
jected to the image space by xp = πθw(x) = KTθwx. K is the camera intrinsic
matrix and Tθw is the global rigid transformation of the hand.

4.1.2 Articulation-conditioned SDF

Given the predicted hand articulation θA, and cameramatrixπθw , our articulation-
conditioned object shape inference network takes an additional input image
I to output a signed distance field of the object. For a query point in thewrist
coordinate frame, the point-wise network takes into account the query’s cor-
responding visual feature from a visual encoder and its relative position to
each joint from an articulation-aware positional embedder. The visual fea-
ture and the embedding are then passed to an implicit decoder along with
the query to predict the signed distance.
Visual encoder. The visual encoder first extracts the image feature pyramid
at different resolutions. For a query 3D point in the wrist frame, the visual
encoder projects it to the image coordinate and compute global and local
feature from the pyramid. The global part allows us to reason about global
context and generate more coherent object shapes. For example, realizing
the object is a bottle helps the network to generate a cylinder shape. The
local feature allows the prediction more consistent with the visual observa-
tion [183,235].

The backbone of the visual encoder is implemented as ResNet [74]. The
global feature is a linear combination of the averaged conv5 feature. The
local feature for each point is an interpolated feature at image coordinate
from where it is projected by the predicted camera ϕ[πθw(x)], where ϕ de-
notes resnet feature and ϕ[x] represents a bilinear sample of the feature at a
2D location x. The local feature sampling is implemented for every layer of
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the feature pyramid ϕ1,...,5[x]. It allows the model to draw visual cues with
various resolutions and receptive fields.
Articulation positional embedder. Our key idea is that the hand pose is
predictive of the object shape it interacts with. This is especially informa-
tive and complements the visual cues for reconstructing hand-held objects
that are often occluded. We explicitly encode hand pose information for the
query point via the articulation embedder. To do this, one naive way is to
simply use identity mapping ψ = θA. However, this representation is not
robust to hand prediction error as we show in ablation. Furthermore, it is
not trivial for the network to relate the reconstruction metric space with the
hand pose joint space. For example, if a point iswithin 2mm fromboth index
and thumb, it is very likely to have some object passing through. To better
capture the structure of the problem, we encode the hand pose information
by the position of the query points relative to the articulated joints.

More specifically, the articulation embedder takes as input an articulation
parameter θA and apoint position inwrist frameX to output the articulation-
aware encoding ψ = h(X; θA). The encoding is a concatenation of the coor-
dinates relative to every joint. Given the articulation parameter θA, we run
forward kinematics to derive transformation T (θA) : R3 → R45 that maps a
point in wrist frame to each joint coordinate. The 15 joint coordinates are po-
sition encoded [209] and concatenated together as the final representation
h(x; θA) = γ(T (θA)x) where γ is the positional encoder. For more details
please refer to appendix.
Implicit decoder. The decoder maps the query points with visual feature
and articulation embedding to a signed distance value f(x, ϕ, ψ) = s. These
two representations ϕ, ψ are concatenated together and passed along with
the query point to the decoder. The decoder simply follows the design in
DeepSDF [154] which consists of 8 layers of MLP with a skip layer.

4.1.3 Training

To learn our articulation conditioned neural implicit field, we rely on a train-
ing dataset where we assume known hand pose and 3D shape of the object
in the image frame. We preprocess the data by sampling points inside and
outside of the object around the hand to calculate the ground-truth SDF. 95%
of the points are sampled around the surface of the objects and others are
sampled uniformly in the space. During training, the network optimizes to
match the predicted SDF to the ground-truth at the sampled points with the
eikonal term as a regularizer.
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L = ∥s− ŝ∥+ λ(∥∇s∥ − 1)2

After the network is learned, at inference time,wedonot require knoledge
of the object 3D shape in the canonical frame a priori which is a major limi-
tation of most most prior works.

4.1.4 Refining hand pose

While our work primarily focuses on object reconstruction conditioned on a
predicted hand pose, this initial pose prediction, while reliable, is not per-
fect. As object reconstruction also leverages visual cues, our insight is that
it can provide complementary information to further refine the predicted
hand pose. During inference, we show that the predicted hand pose and
object shape can therefore be further (jointly) optimized by enforcing phys-
ical plausibility – by encouraging contact while discouraging intersection.

We optimize the articulation pose parameters with respect to these two
interaction terms, which can be naturally incorporated with an SDF repre-
sentation. To discourage intersection between the hand and object, we pe-
nalize if the points on the hand surface are predicted to have negative SDF
values by the object reconstructionmodel. Following priorwork [73], we en-
courage hand-object contact for specifically defined regions – if the surface
points in these contact regions are near the object surface, they are encour-
aged to come even closer.

min
θ

∑
x∈H

∥max(−f(x), 0)∥+∑
x∈C

max(∥min(f(x)− τ, 0)∥ − ϵ, 0)

Note that the SDF f is conditioned on articulation thus it is also a function
of the hand pose θ. As we refine the hand pose, the SDF of the object also
changes accordingly. One could continuously update the SDF every time
the pose is updated but we use a simpler solution that fixes the SDF during
hand pose optimization and only update it once using the final optimized
pose θ.
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ObMan HO3D MOW
F-5 F-10 CD Vol F-5 F-10 CD Vol F-5 F-10 CD Vol

HO [73] 0.23 0.56 0.64 8.64 0.11 0.22 4.19 9.44 0.03 0.06 49.8 25.6
GF [96] 0.30 0.51 1.39 1.84 0.12 0.24 4.96 6.31 0.06 0.13 40.1 8.82
Ours 0.42 0.63 1.02 1.74 0.28 0.50 1.53 4.77 0.13 0.24 23.1 19.4

Table 4.1: Quantitative results for object reconstruction error using F-score
(5mm, 10mm), Chamfer distane (mm) and intersection volume (cm3). We
compare our method with prior works [73, 96] on Obman, HO3D, MOW
datasets.

Figure 4.3: Visualizing reconstruction from our method and two baselines
[73,96] on ObMan dataset from the image frame and a novel view.

4.2 Experiments

We compare our method with two model-free baselines [73, 96] on three
datasets – one synthetic, and two real-world. We show that our approach
outperforms baselines across these datasets, both in terms of object recon-
struction andmodeling hand-object interaction. We further analyze the ben-
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efit from explicitly considering hand pose and the benefit from our particu-
lar form of articulation-aware positional encoding. Lastly, we show that our
reconstructed hand-held object could further refine the initial hand pose es-
timation and improve hand-object interaction.
Datasets and Setup. We evaluate our method across three datasets.

• ObMan [73] is a synthetic dataset that consists as 8 categories of 2772
objects from 3D warehouse [23]. The grasps are automatically gener-
ated by GraspIt [139], resulting in a total of 21K grasps. The grasped
objects are rendered over random backgrounds using Blender. We fol-
low the standard splits where there is no overlap between the objects
used in training and testing.

• HO-3D [68] is a real-world video dataset consisting of 103k annotated
images capturing 10 subjects interactingwith 10 commonYCBobjects [247].
The ground- truth is annotatedusingmulti-camera reconstructionpipelines.
To test on more shapes, we create a custom split by holding out one
video sequence per object as test set. Please refer to the appendix for
more details.

• MOW [19] dataset consists of a curated set of 442 images, spanning
121 object templates, collected from in-the-wild hand-object interac-
tion datasets [36, 187]. It is more diverse in terms of both appearance
and object shape compared to the HO3D dataset, but only provides
approximate ground-truth. These object shape and hand pose annota-
tions are obtained via a single-frame optimization-based method [19].
We use 350 randomly selected examples for training and the remaining
92 for evaluation.

For theObMandataset, we use the handpose predictor fromHasson et al.
[73] as this system is specifically trained on this synthetic dataset. For HOI
and MOW, we use the FrankMocap [180] system that is trained on multiple
real-world datasets. Since HOI data with ground truth in the real world
is scarce and lacks diversity in terms of object shape and appearance, we
initialize our method and baselines with models pretrained on ObMan and
finetune them on HO3D and MOW datasets.
Evaluation metrics. We evaluate the quality of both, object reconstruc-
tion and the relation between object and hand. To evaluate the reconstruc-
tion quality, we first extract a mesh from the predicted SDF. Following prior
works, we then evaluate the object reconstruction by reporting Chamfer dis-
tance (CD), but also report the F-score at 5mm and 10mm thresholds as
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Figure 4.4: Visualizing reconstruction of our method and two baselines
[73,96] on HO3D dataset in the image frame and from a novel view.

Chamfer distance is more vulnerable to outliers [200]. Another desirable
property for HOI reconstruction is that the interpenetration between the
hand and the object should be minimal, we also report the intersection vol-
ume between two meshes (in cm3) as a measure of understanding the rela-
tions between the hand and object.
Baselines. While most prior approaches require a known object template,
recent work by Hasson et al. (HO) [73] and Karunratanakul et al. (GF) [96]
can tackle the same task as ours – inferring the shape of a generic object
from a single interaction image. HO jointly regresses MANO parameters
to estimate hand pose and reconstructs the object in the camera frame. It
is based on Atlas-Net [63], and deforms a sphere to infer the object mesh.
Closer to our approach, GF is also based on a point-wise implicit network.
It takes an image as input and outputs an implicit field that maps a point in
the camera frame to a signed distance to both, the hand and object, while
also predicting hand part labels.

Our approach differs from these baselines in three main aspects. First,
both prior approaches infer object shape independent of the predicted hand
pose, while we formulate hand-held object reconstruction as conditional in-
ference. Second, these baselines encode the visual information only via a
global feature while we additionally use pixel-aligned local features. Third,
while both baselines reconstruct objects in the camera frame, we predict
them in a normalized wrist frame with articulation-aware positional encod-
ing. Note that while our approach predicts 3D in a hand-centric frame, the
evaluations are all performed in the image coordinate frame for fair compar-
ison (using the predicted hand pose to transform our prediction).
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Figure 4.5: Visualizing reconstruction of our method and two baselines [73,
96] on MOW dataset in the image frame and from a novel view.

4.2.1 Results on ObMan
We visualize the reconstructed objects and the corresponding hand poses in
Figure 4.3. While baselines can predict the coarse shape of the object, they
typically lose sharp details such as the corner of the phone and sometimes
miss part of the surface of the object. This may be because they only use
a global feature of the image that loses spatial resolution. In contrast, our
method reconstructs shape that better aligns with the visual inputs from
the original view and hallucinate the invisible part of the objects occluded
by hands.

This is also empirically reflected in quantitative results reported in Table
4.1. We outperform baselines by a large margin on F-score. Our improve-
ment over baselines is particularly significant on the smaller threshold, in-
dicating that our method is better to reconstruct local shape. In terms of
Chamfer distance, ours is better than GF that is also based on implicit fields.
Ours is not as good as HO in Chamfer distance probably because HO explic-
itly trains to minimize Chamfer distance with a regularizer on edge length
which discourages large displacements from a sphere thus producing fewer
outliers.

4.2.2 Evaluation on real-world datasets
We visualize the reconstruction in the image frame and a novel view in Fig-
ure 4.4 and Figure 4.5. GF can predict blobby cylinders but the reconstructed
objects lack details in shape such as around the neck of the mustard bottle,
and sometimes reconstructs a different object shape such as predicting boxes
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instead of scissors. In contrast, our method is able to generate diverse ob-
ject shape more accurately including boxes, power drills, bottles, pens, cup,
spray bottles etc.

train set F-5 ↑ F-10 ↑ CD ↓
ObMan 0.14 0.27 4.36
MOW 0.15 0.30 4.09

Table 4.2: Cross-dataset generalization: we report quantitative results on
HO3D for models pretrained on ObMan and MOW.
Zero-shot transfer to HO3D. We also directly evaluate models that are only
trained on ObMan and MOW datasets and report their reconstruction re-
sults on HO3D dataset. Both models without finetuning still outperform
baselines trained on HO3D dataset. Interestingly, even though the MOW
dataset only consists of 350 training images, which is significantly less com-
pared to 21K images from the synthetic dataset, learning from MOW still
helps cross-dataset generalization. It indicates the importance of diversity
for in-the-wild training. Please see the qualitative result in the appendix.

4.2.3 Ablations
Importance of articulation conditioning. We analyze how hand articu-
lation conditioning helps hand-held object reconstruction by constructing a
variant of our method that only conditions on pixel-aligned image features.
This approach is analogous to the one proposed by Saito et al. [183] where
human 3D shape is inferred by a pixel-aligned implicit network. Table 4.3 re-
ports results of this variant that do not explictily consider hand articulation
and we observe that the object reconstruction degrades by a large margin
while the intersection volume also doubles. This suggests that hand infor-
mation provides a strong cue that is complementary to visual inputs. Figure
4.6 visualizes comparison between ours and the variant where our method
can better respect hand-object physical relations such as objects do not pen-
etrate the hands and the area around fingertips are likely to be in contact
with objects.
Representation of hand articulation matters for generalization. To repre-
sent articulation information, a natural alternative to our proposed articulation-
aware positional encoding is to simply concatenate the query point with the
MANO pose parameter θA, i.e. h̄(x; θA) = [x, θA]. The result in Table 4.4
shows that although it performs comparably when provided with ground-
truth hand pose parameters, it degrades significantly when with predicted
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F-5 ↑ F-10 ↑ CD ↓ Vol ↓

ObMan Ours 0.42 0.63 1.02 1.74
Ours w/o Art. 0.37 0.56 1.89 3.93

HO3D Ours 0.33 0.58 0.93 4.77
Ours w/o Art. 0.27 0.48 1.18 6.30

MOW Ours 0.13 0.24 23.1 19.4
Ours w/o Art. 0.10 0.19 29.0 17.3

Table 4.3: Analysis of articulation-conditioning: we report quantitative re-
sults of object error in F-score, Chamfer distane (CD), intersection volume
on 3 datasets and compare ours with the ablation that only consider visual
feature.

Figure 4.6: Visualizing reconstruction of hand-held object with or without
explicitly considering hand pose.

hand pose despite that we perform jitter augmentation on hand articula-
tion for both methods. More interestingly, it performs even worse than the
variant without articulation-aware encoding. This indicates that the object
shape overfits to pose parameters which are constant within one example.
In contrast, our articulation-aware positional encoding generalizes better.
Robustness against handprediction quality. Weuse handposes corrupted
by different levels of noise, either from Gaussian or more structured predic-
tion noise. For the latter, we linearly interpolate (and even extrapolate) the
true poses and off-the-shelf predictions. Our method still outperform base-
lines even when the predicted hand pose iswith twice more error (Tab 4.5 and
Fig 4.7).
Test-time refinement improves hand pose. The object reconstruction above
is obtained bydirect feed-forwardprediction. We then show that our articulation-
conditioned object shape can in turn refine the initial hand pose estimation
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Figure 4.7: Top: Object reconstruction given hand pose corrupted by Gaus-
sian on Obman dataset. Bottom: Object reconstruction given hand pose cor-
rupted by prediction error on HO3D dataset.

Figure 4.8: Visualizing hand-object reconstruction before and after test-time
refinement in the image frame and from two novel views.
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Method F5 ↑ F10 ↑ CD ↓ Vol↓
Art.-aware PE* 0.49 0.70 0.92 1.73
Pose param.* 0.46 0.66 1.25 1.44

Art.-aware PE 0.42 0.63 1.02 1.74
Pose param. 0.23 0.42 1.82 2.57
W/o art. 0.37 0.56 1.89 3.93

Table 4.4: Analysis of articulation-aware encoding: We compare differ-
ent ways to incorporate hand articulation: articulation-aware positional en-
coding and pose parameters. Star indicates reconstruct object shape given
ground truth hand articulation.

Noise ObMan HO3D
Level F5 ↑ F10 ↑ CD ↓ F5 ↑ F10 ↑ CD ↓

Gaussian
50% σ 0.40 0.63 1.01 0.28 0.50 1.51
100% σ 0.31 0.53 1.40 0.25 0.46 1.68
150% σ 0.24 0.42 1.94 0.22 0.42 1.93

Prediction
50% 0.46 0.67 0.96 0.29 0.52 1.48
100% * 0.42 0.63 1.02 0.28 0.50 1.53
200% 0.35 0.56 1.28 0.26 0.47 1.67

Baselines HO 0.23 0.56 0.64 0.11 0.22 4.19
GF 0.30 0.51 1.39 0.12 0.24 4.96

GT 0% 0.49 0.70 0.92 0.30 0.53 1.46

Table 4.5: Error analysis against hand pose noise. σ is the average prediction
error. * marks our unablated method.

and improve the HOI quality. We report end point error (EPE in mm) for
each joint on Obman dataset in Table 4.6. To evaluate HOI quality, we report
intersection volume along with simulation displacement of the object. We
follow prior works [73,96,205] to pass the HOI reconstruction to a simulator
and report how much the object slips from hand after running simulation
for a fixed amount of time.

As shown in Table 4.6, both object and hand reconstruction improve after
test-time refinement. The simulation displacement of the object drops with
less intersection region. When ground truth hand articulation is provided,
the object error and simulation displacement continue to improve. Figure
4.8 visualizes one example before and after refinement. Four finger tips are
attracted to object surface while the thumb is pushed out of the object.
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F-5↑ CD↓ Vol↓ Sim↓ EPE↓
ours w/o rf 0.17 1.02 1.74 3.32 8.9
ours w rf 0.17 1.00 1.28 3.00 8.7

ours w GT pose 0.20 0.92 1.73 2.44 –

Table 4.6: Test-time refinement. We report object error, intersection volume,
simulation displacement and hand error before and after test-time refine-
ment.

4.3 Discussion
In this chapter, we propose amethod to infer implicit 3D shape of generic ob-
jects in hand. We explicitly treat predicted hand pose as a cue for object infer-
ence via an articulation-aware positional encoding. We have shown that this
complements visual cues, especially when the hand-held object is occluded.
While the results are encouraging, there are several limitations. For exam-
ple, our work cannot be directly adapted to reconstructing dynamic grasps
from videos where object consistency given varying articulation is required.
Additionally, we require 3D ground-truth for training and it would be inter-
esting to extend it with differentiable rendering techniques. Despite these
challenges, we believe that our work on reconstructing hand-held generic
objects takes an encouraging step towards understanding HOI for in-the-
wild videos.

4.4 ImplementationDetails andAdditionalResults

4.4.1 Camera conversion
The off-the-shelf system predicts a weak perspective camera with a scale
factor s and 2D translation tx, ty. One can transform the point via the global
hand rotation and translation and then project it via the predicted camera
s, tx, ty.

sTθwX + (tx, ty)

We found that a full perspective camera help to account for large perspective
effect. Therefore, we convert the weak perspective camera to a full perspec-
tive one by translating the final mesh by an offset (tx, ty, f/s). In summary,
we project a query point in the wrist frame to the image by

πθw(X) = K[TθwX + (tx, ty, f/s)]

41



4.4.2 Coordinate Transformation

Our articulation embedder takes as input an articulation parameter θA and
a point position in wrist frameX to output the articulation-aware encoding
ψ = h(X; θA). The encoding is a concatenation of the coordinates relative to
every joint. Given the articulation parameter θA, we run forward kinematics
to derive transformation T (θA) : R3 → R45 that maps a point in wrist frame
to each joint coordinate.

The transformation betweenwrist to one joint Tj is computed by forward
kinematics chain. Consider one bone that connects joint j to its child i (e.g.
index proximal phalanx). The transformation matrix from this joint frame
to its child joint frame would be

Tji =

(
R(θj) tji
0 1

)
where tj is the bone length pre-defined in MANO models. Then the trans-
formation from wrist to any joint is the product of every transformation in
the kinematic chain Tj = Twi ·Tik · . . . Tlj . The coordinate of the queried point
relative to the joint becomes jX =j TwwX .

4.4.3 Training

We train our model using Adam optimizer with learning rate 1e − 4 on 8
GPUs. The batch size is 64. We train our model on ObMan for 200 epochs
and finetune it on HO3D and RHOI for 50k iterations respectively. The co-
efficient of eikonal term is 0.1.

4.4.4 HO3D dataset split

HO-3D [68] is a real-world video dataset consisting of 103k annotated im-
ages capturing 10 subjects interacting with 10 common YCB objects [247].
The original train-test splits are created by partitioning the interaction se-
quences. Sequences in the original test set involve only 4 objects of which
three appear in train set (bleach cleanser, mustard bottle, meat can) and all
of them are cuboidal shape. To test on more non-trivial shapes like power
drill, we create a custom split by holding out one video sequence per object
as test set. We list our sequences for train and test set in Table 4.7.
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Objects Test Sequences Train Sequence
010 potted meat can GPMF10 MPM14, GPMF13, MPM12, GPMF12, MPM11, GPMF11, MPM13, MPM10, GPMF14
021 bleach cleanser ABF10 SB11, SB12, ABF11, ABF13, SB10, ABF12, ABF14, SB13, SB14
019 pitcher base AP10 AP11, AP14, AP13, AP12
003 cracker box MC1 MC2, MC6, MC5, MC4
006 mustard bottle SM1 SM5, SM2, SM4, SM3
004 sugar box SS1 ShSu12, SiS1, SS2, ShSu14, ShSu13, SS3, ShSu10
035 power drill MDF10 MDF12, MDF14, MDF11, ND2, MDF13
011 banana BB10 BB12, SiBF10, SiBF14, SiBF11, SiBF12, BB13, BB11, SiBF13, BB14
037 scissors GSF10 GSF13, GSF12, GSF14, GSF11
025 mug SMu1 SMu41, SMu42, SMu40

Table 4.7: Our customized split on HO3D dataset.

4.4.5 Qualitative Results
We provide more qualitative results rendered in the image frame and from
another view in this PDF and video results when moving camera around
the object in the zipped website.

Figure 4.9 visualizes reconstruction from our method and two baselines
[73,96] on ObMan dataset from the image frame and a novel view.

Figure 4.10 visualizes reconstruction from ourmethod and two baselines
[73,96] on HO3D dataset from the image frame and a novel view.

Figure 4.11, 4.12 visualizes reconstruction fromourmethod and twobase-
lines [73,96] on RHOI dataset from the image frame and a novel view.

Figure 4.13 visualizes reconstruction of hand-held object with or without
explicitly considering hand pose on ObMan, HO3D and RHOI.

Figure 4.14 visualizes reconstruction of hand-held object from our mod-
els that only trained on ObMan and RHOI datasets.

Figure 4.15 visualizes hand-object reconstruction before and after test-
time refinement in the image frame and from two novel views.
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Figure 4.9: Visualizing reconstruction from our method and two baselines
[73,96] on ObMan dataset from the image frame and a novel view.
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Figure 4.10: Visualizing reconstruction from our method and two baselines
[73,96] on HO3D dataset from the image frame and a novel view.
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Figure 4.11: Visualizing reconstruction from our method and two baselines
[73,96] on RHOI dataset from the image frame and a novel view.

46



Figure 4.12: Visualizing reconstruction from our method and two baselines
[73,96] on RHOI dataset from the image frame and a novel view.
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Figure 4.13: Cross-dataset generalization: we show quantitative results on
HO3D for models pretrained on ObMan and RHOI.
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Figure 4.14: Visualizing reconstruction of hand-held object with or without
explicitly considering hand pose on ObMan, HO3D and RHOI.
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Figure 4.15: Visualizing hand-object reconstruction before and after test-
time refinement in the image frame and from two novel views.
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Chapter 5

Reconstructing Generic Objects in
Hands fromMonocular Videos

In previous chapter, we present a method to reconstruct Hand-Object Inter-
actions (HOI) from single images by learning a data-driven prior between
hand pose and object geometry. Although single-view 3D reconstruction
approaches [73, 96, 232] can leverage data-driven techniques to hallucinate
unobserved part to reconstruct HOI images, these approaches cannot ob-
tain precise reconstructions given the fundamentally limited nature of the
single-view input.

On the other hand, prior video-based HOI reconstruction methods pri-
marily exploit multi-view cues and rely on purely geometry-driven opti-
mization for reconstruction [85, 218]. As a result, these methods are suited
for in-hand scanningwhere a user carefully presents exhaustive views of the
object of interest, but they are not applicable to our setting as aspects of the
object may typically be unobserved.

In this chapter, we combine the benefits of both worlds to explore under-
standing everyday HOI in 3D from casual video clips. Specifically, given a
short clip of a human interacting with a rigid object, our approach can in-
fer the shape of the underlying object as well as its (time-varying) relative
transformation w.r.t. an articulated hand (see Fig. 5.1 for sample results).

Towards enabling accurate reconstruction given short everyday interac-
tion clips, our approach unifies the data-driven and the geometry-driven
techniques. Akin to the prior video-based reconstructionmethods, we frame
the reconstruction task as that of optimizing a video-specific temporal scene
representation. However, instead of purely relying on geometric reprojec-
tion errors, we also incorporate data-driven priors to guide the optimiza-
tion. In particular, we learn a 2D diffusion network which models the dis-
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Figure 5.1: Given a video clip depicting a hand-object interaction, we in-
fer the underlying 3D shape of both the hand and the object. Top: sampled
input frames; Middle: reconstruction in the image frame; Bottom: recon-
struction from a novel view.

tribution over plausible (geometric) object renderings conditioned on esti-
mated hand configurations. Inspired by recent applications in text-based 3D
generation [118, 161], we use this diffusion model as a generic data-driven
regularizer for the video-specific 3D optimization.

We empirically evaluate our systemacross several first-personhand-object
interaction clips from theHOI4Ddataset [127], and show that it significantly
improves over both prior single-view and multi-view methods. To demon-
strate its applicability in more general settings, we also show qualitative re-
sults on arbitrary interaction clips fromYouTube, including both first-person
and third-person clips.

5.1 Preliminary: Diffusion Models
Diffusion models [82] are a family of generative models. An advantage of
diffusion models is that they allow computing log-likelihood gradients via
score distillation [161, 213] and thus can be used as foundation generative
priors inmultiple domains like image generation [169,175], 3D object gener-
ation [92,118,161], novel-view synthesis [121,134], humanmotion [95,202],
video generation [190], etc..

Specifically, view-conditioned diffusion models like DreamFusion [161],
and Magic3D [118] have demonstrated the potential of diffusion models in
optimizing 3D scenes using conditioned text prompts. On the other hand,
approaches like NeRDi [40] and RealFusion [134] focus on 3D reconstruc-
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tion from images.
Meanwhile, recent image-conditioned generativemodels achieve impres-

sive results on various image translation tasks such as image editing [6, 88,
135], style transfer [113, 157]. But without further design, the edits of end-
to-end methods mostly modify textures and style, but preserve structures,
or insert new content to user-specified regions [3, 169, 182].

In the following chapters, we apply diffusion models to hand-object in-
teractions. In Chapter 5, we leverage geometry-based information to recon-
struct 3D models, which found to be beneficial in terms of generalizing to
novel scenes under distinct RGB appearances. In Chapter 6, we focus on af-
fordance synthesis where both layout (structure) and appearance are auto-
matically reasoned about. The repurposed diffusionmodel show significant
generalization due to its large-scale pretraining data. In Chapter 7, we use
diffusion model to learn a unified prior for 3D hand-object interactions and
apply it to both tasks of HOI reconstruction and grasp synthesis.

To be self-contained, we briefly explain the fundamentals of diffusion
models in the remaining section. Diffusionmodels learn to generate samples
from a data distribution p(x) by sequentially transforming samples from a
tractable distribution p(xT ) (e.g., Gaussian distribution). There are two pro-
cesses in diffusion models: 1) a forward noise process q(xt|xt−1) that gradu-
ally adds a small amount of noise and degrades clean data samples towards
the prior Gaussian distribution; 2) a learnable backward denoising process
p(xt−1|xt) that is trained to remove the added noise. The backward process
is implemented as a neural network. During inference, a noise vector xT is
sampled from theGaussian prior and is sequentially denoised by the learned
backward model [194,195].

The training of a diffusion model can be treated as training a denoising
autoencoder for L2 loss [210] at various noise levels, i.e., denoise x0 for dif-
ferent xt given t. We adopt the widely used loss term in Denoising Diffu-
sion Probabilistic Models (DDPM) [82, 194], which reconstructs the added
noise that corrupted the input samples. Specifically, we use the notation
LDDPM[x; c] to denote a DDPM loss term that performs diffusion over x but
is also conditioned on c (that are not diffused or denoised):

LDDPM[x; c] = E(x,c),ϵ∼N (0,I),t∥x−Dθ(xt, t, c)∥22, (5.1)

where xt is a linear combination of the data x and noise ϵ, and Dθ is a de-
noiser model that takes in the noisy data xt, time t and condition c. This also
covers the unconditional case as we can simply set c as some null token like
∅ [83].
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Figure 5.2: MethodOverview : Wemodel theHOI scene (middle) by a time-
persistent implicit field ϕ for the object, hand meshes H t parameterized by
hand shape β, hand articulation θtA, along a time-varying rigid transforma-
tion T th→o for object pose. We register the cameras in the hand frame. We
optimize a video-specific scene representation using reprojection loss from
the original view and diffusion distillation loss from a novel view v′.

5.2 Method
Given a monocular video of a hand interacting with a rigid object, we aim
to reconstruct the underlying hand-object interaction, i.e., the 3D shape of
the object, its pose in every frame, along with per-frame hand meshes and
camera poses. We frame the inference as per-video optimization of an un-
derlying 3D representations. While the multiple frames allow leveraging
multi-view cues, they are not sufficient as the object of interests is often par-
tially visible in everyday video clips, due to limited viewpoints and mutual
occlusion. Our key insight is to incorporate both view consistency across
multiple frames and a data-driven prior of the HOIs geometry. The learned
interaction prior captures both category priors, e.g. mugs are generally cylin-
drical, and hand priors, e.g. pinched fingers are likely to hold thin handles.
We train a conditional diffusion model for the prior that guides the HOI to
be reconstructed during per-video optimization.

More specifically, given a monocular video Î t with corresponding hand
and object masks M̂ t ≡ (M̂ t

h, M̂
t
o), we aim to optimize a HOI representation

(Sec. 5.2.1) that consists of a time-persistent implicit field ϕ for the rigid ob-
ject, a time-varying morphable mesh for the hand H t, the relative transfor-
mation between hand and object T th→o, and time-varying camera poses T tc→h.
The optimization objective consists of two terms (Sec. 5.2.3): a reprojection
error from the estimated original viewpoint and data-driven prior term that
encourages the object geometry to appearmore plausible given category and
hand information when looking from another viewpoint. The prior is im-
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plemented as a diffusion model conditioned on a text prompt C about the
category and renderings of the hand π(H) with geometry cues (Sec. 5.2.2).
It denoises the rendering of the object π(O) and backpropagates the gradient
to the 3D HOI representation by score distillation sampling (SDS) [161].

5.2.1 HOI Scene Representation
Implicit field for the object. The rigid object is represented by a time-
persistent implicit fieldϕ that can handle unknown topology and has shown
promising results when optimizing for challenging shapes [215, 228, 230].
For every point in the object frame, we use multi-layer perceptrons to pre-
dict the signed distance function (SDF) to the object surface, s = ϕ(X).
Time-varyinghandmeshes. Weuse a pre-definedparametricmeshmodel
MANO [178] to represent hands across frames. The mesh can be animated
by low-dimensional parameters and thus can better capturemore structured
motions, i.e. hand articulation. We obtain hand meshes H t in a canonical
hand wrist frame by rigging MANOwith a 45-dim pose parameters θtA and
10-dim shape parameters β, i.e. H t = MANO(θtA,β). The canonical wrist
frame is invariant to wrist orientation and only captures finger articulations.
Composing to a scene. Given the time-persistent object representation ϕ
and a time-varying hand mesh H t, we then compose them into a scene at
time t such that they can be reprojected back to the image space from the
cameras. Prior works [68, 71, 158] typically track 6D object pose directly in
the camera frame Tc→o which requires an object template to define the object
pose. In our case, since we do not have access to object templates, the ob-
ject pose in the camera frame is hard to estimate directly. Instead, we track
object pose with respect to hand wrist T th→o and initialize them to identity.
It is based on the observation that the object of interest usually moves to-
gether with the hand and undergoes “common fate” [189]. A point in the
rigid object frame can be related to the predicted camera frameby composing
the two transformations, camera-to-hand T tc→h and hand-to-object T th→o. For
notation convention, we denote the implicit field transformed to the hand
frame at time t as ϕt(·) ≡ ϕ(Th→o(·)). Besides modeling camera extrinsics,
we also optimize for per-frame camera intrinsics Kt to account for zoom-in
effect, cropping operation, and inaccurate intrinsic estimation.

In summary, given a monocular video with corresponding masks, the
parameters to be optimized are

ϕ,β,θtA, T
t
h→o, T

t
c→h,K

t (5.2)
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Figure 5.3: Geometry-informed Diffusion Method: Our diffusion model
takes in a noisy geometry rendering of the object, the geometry rendering
of the hand, and a text prompt, to output the denoised geometry rendering
of objects.

Differentialble Rendering. To render the HOI scene into an image, we
separately render the object (using volumetric rendering [230]) and the hand
(using mesh rendering [125, 156]) to obtain geometry cues. We then blend
their renderings into HOI images by their rendered depth.

Given an arbitrary viewpoint v, both differentiable renders can render
geometry images including mask, depth, and normal images, i.e. Gh ≡
(Mh, Dh, Nh), Go ≡ (Mo, Do, No)To compose them into a semanticmaskMHOI

that is later used to calculate the reprojection loss, we softly blend the indi-
vidual masks by their predicted depth. Similar to blending two-layer sur-
faces of mesh rendering, the final semantic masks can be computed by alpha
blending: M = B(Mh,Mo, Dh, Do). Please refer to supplementary material
for the full derivation of the blending function B.

5.2.2 Data-Driven Prior for Geometry

When observing everyday interactions, we do not directly observe all as-
pects of the object because of occlusions and limited viewpoint variability.
Despite this, we aim to reconstruct the 3D shape of the full object. To do so,
we rely on a data-driven prior that captures the likelihood of a common ob-
ject geometry given its category and the hand interactingwith it p(ϕt|H t, C).
More specifically, we use a diffusionmodelwhich learns a data-driven distri-
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bution over geometry rendering of objects given that of hands and category.

log p(ϕt|H t, C) ≈ Ev∼V log p(π(ϕt; v)|π(H t; v), C) (5.3)

where v ∼ V is a viewpoint drawn from a prior distribution, C as category
label and π as rendering function. Since this learned prior only operates in
geometry domain, there is no domain gap to transfer the prior across daily
videos with complicated appearances. We first pretrain this diffusionmodel
with large-scale ground truth HOIs and then use the learned prior to guide
per-sequence optimization (Sec. 5.2.3).

Learning prior over a-modal HOI geometry. As explained in 5.1, diffu-
sion models are a class of probabilistic generative models that gradually
transform a noise from a tractable distribution (Gaussian) to a complex (e.g.
real image) data distribution. They are supervised to capture the likelihood
by de-noising corrupted images (Equation 5.1).

In our case, as shown in Fig. 5.3, the diffusion model denoises the a-
modal geometry rendering of an object given text prompt and hand. Ad-
ditionally, the diffusion model is also conditioned on the rendering of uv-
coordinate ofMANOhandUh because it can better disambiguate if the hand
palm faces front or back. More specifically, the training objective is Ldiff =
LDDPM[Go;C,Gh, Uh]. The text prompt comes from a text template: “an im-
age of a hand holding {category}”.

ImplementationDetails. Whenwe train the diffusionmodel with the ren-
dering of ground truth HOI, we draw viewpoints with rotation from the
uniform distribution in SO(3) . We use the backbone of a text-to-image
model [149] with cross attention and modify it to diffuse 5-channel geom-
etry images (3 for normal, 1 for mask and 1 for depth). We initialize the
weights from the image-conditioned diffusion model [149] pretrained with
large-scale text-image pairs. The additional channels in the first layer are
loaded from the average of the pretrained weights.

5.2.3 Reconstructing Interaction Clips in 3D
After learning the above interactions prior, at inference time when given a
short monocular clip with semantic masks of hand and object, we optimize
a per-sequence HOI representation to recover the underlying hand-object
interactions. We do so by differentiable rendering of the 3D scene represen-
tation from the original views and from random novel views. The optimiza-
tion objectives consist of the following terms.
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“An image of a hand 
holding a toycar”

“An image of a hand 
holding a mug”

“An image of a hand 
holding a mug”

Figure 5.4: Generations from conditional diffusion model: Given the ge-
ometry rendering of hand Gh (only showing surface normals) and a text
prompt C, we visualize 4 different generations from the diffusion model.
Middle row shows the generated surface normal of the objects and bot-
tom row visualizes the generated object masks overlayed on the given hand
masks. Note the left andmiddle column share the same text conditionwhile
middle and right column share the same hand condition.

Reprojection error. First, the HOI representation is optimized to explain
the input video. We render the semantic mask of the scene from the esti-
mated cameras for each frame and compare the rendering of the semantic
masks (considering hand-object occlusion ) with the ground truth masks:
Lreproj =

∑
t ∥M t − M̂ t∥1

Learnedprior guidance. In themeantime, the scene is guided by the learned
interactino prior to appear more likely from a novel viewpoint following
Scored Distillation Sampling (SDS) [161]. SDS treats the output of a diffu-
sion model as a critic to approximate the gradient step towards more likely
images without back-propagating through the diffusion model for compute
efficiency:

LSDS = Ev,ϵ,i[wi∥π(ϕt)− Ĝi
o∥22] (5.4)

where Ĝi
o is the reconstructed signal from the pre-trained diffusion model.

Please refer to relevant works [134,161] or supplmentary for full details.
Other regularization. Wealso include two regularization terms: oneEikonal
loss [62] that encourages the implicit field ϕ to be a valid distance function
Leik = ∥∇Xϕ

2 − 1∥2, and another temporal loss that encourages the hand to
move smoothlywith respect to the objectLsmooth =

∑
t ∥T th→oH

t−T t−1
h→oH

t−1∥22
Initialization and training details. While the camera and object poses are
learned jointlywith object shape, it is crucial to initialize them to a coarse po-
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Table 5.1: Comparison with baselines: Quantitative results for object re-
construction error using F1@5mm and F1@10mm scores and Chamfer Dis-
tance (mm). We compare our method with prior works HHOR [85] and
iHOI [232] on the HOI4D dataset.

Mug Bottle Kettle Bowl Knife ToyCar Mean
F@5 F@10 CD F@5 F@10 CD F@5 F@10 CD F@5 F@10 CD F@5 F@10 CD F@5 F@10 CD F@5 F@10 CD

HHOR [85] 0.18 0.37 6.9 0.26 0.56 3.1 0.12 0.30 11.3 0.31 0.54 4.2 0.71 0.93 0.6 0.26 0.59 1.9 0.31 0.55 4.68
iHOI [232] 0.44 0.71 2.1 0.47 0.77 1.5 0.21 0.45 6.3 0.38 0.64 3.1 0.33 0.68 2.8 0.66 0.95 0.5 0.42 0.70 2.73
Ours 0.67 0.86 1.0 0.62 0.92 0.7 0.47 0.73 1.6 0.68 0.93 0.6 0.66 0.96 0.6 0.81 0.98 0.3 0.65 0.90 0.79

sition [119]. We use FrankMocap [179], an off-the-shelf hand reconstruction
system, to initialize the hand parameters, camera-to-hand transformations,
and camera intrinsic. More specifically, FrankMocap predicts finger articu-
lation θtA, wrist orientation θtw, and a weak perspective camera. The last two
are used to compute camera-to-hand transformation and intrinsics of a full
perspective camera. See appendix for derivation. We initialize the object
implicit field to a coarse sphere [230] and the object poses T th→o to identity
such that the initial object is roughly round hand palm.

The per-frame hand pose estimation sometimes fails miserably in some
challenging frames due to occlusion and motion blur. We run a lightweight
trajectory optimization on wrist orientation to correct the catastrophic fail-
ure. The optimization objective encourages smooth jointmotion across frames
while penalizing the difference to the per-frameprediction, i.e. L = ∥H(xt)−
H(x̂t)∥ + λ∥H(xt+1) − H(xt)∥ where λ is 0.01. Please see appendix for full
details.

5.3 Experiments

We first train the diffusion model on the egocentric HOI4D [127] dataset
and visualize its generations in Section 5.3.1. Then, we evaluate the recon-
struction of hand-object interactions quantitatively and qualitatively on the
held-out sequences and compare DiffHOI with two model-free baselines
(Section 5.3.2). We then analyze the effects of both category-prior and hand-
prior respectively, ablate the contribution from each geometrymodality, and
analyze its robustness to initial prediction errors (Section 5.3.3). In Sec-
tion 5.3.4, we discuss how DiffHOI compares with other template-based
methods. Lastly, in Section 5.3.5, we show that our method is able to re-
construct HOI from in-the-wild video clips both in first-person and from
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OursGT iHOI HHORInput

Figure 5.5: Qualitative evaluation on HOI4D: We show reconstruction by
ourmethod (DiffHOI) alongwith two baselines [85,232] in the image frame
(left) and another novel view with (top right) or without (bottom right)
hand. Please see project website for reconstruction videos.

third-person view.

Dataset andSetup. HOI4D is an egocentric dataset consisting of short video
clips of hand interacting with objects. It is collected under controlled envi-
ronments and recorded by head-wear RGBD cameras. Ground truth is pro-
vided by fitting 6Dpose of scanned objects to the RGBDvideos. We use all of
the 6 rigid object categories in portable size (mug, bottle, kettle, knife, toy car,
bowl). To train the diffusion model, we render one random novel viewpoint
for each frame resulting in 35k training points. We test the object reconstruc-
tion on held-out instances, two sequences per category. All of baselines and
ourmethod use the segmentationmasks from ground truth annotations and
the hand poses from the off-the-shelf prediction system [179] if required.

For in-the-wild dataset, we test on clips fromEPIC-KITCHENS [35] videos
and casual YouTube videos downloaded from the Internet. The segmen-
tation masks are obtained using an off-the-shelf video object segmentation
system [26].
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5.3.1 Visualizing Data-Driven Priors

Weshowconditional generations by the pre-traineddiffusionmodel in Fig. 5.10.
Given the geometry rendering of hand (only visualizing surface normal), as
well as a text prompt, we visualize 4 different generations from the diffusion
model. Middle row shows the generated surface normal of the object and
bottom row visualizes the generated object masks overlayed on top of the
given hand mask, for a better view of the hand-object relations. Note that
left and middle column condition on the same text prompts while middle
and right column conditions on the same hand pose. Please see appendix
for additional examples and visualizations of all modalities.

The generated objectmatch the category information in the promptwhile
the generations are diverse in position, orientation, and size. Yet, all of the
hand-object interactions are plausible, e.g. different generated handles all
appear at the tip of the hand. Comparing middle and right examples, dif-
ferent category prompts lead to different generations given the same hand
rendering. With the same prompt but different hands (left and middle),
the generated objects flip the orientation accordingly. In summary, Fig. 5.10
indicates that the learned prior is aware of both the hand prior and the
category-level prior hence being informative to guide the 3D reconstruction
from clips.

5.3.2 Comparing Reconstructions of HOI4D

Evaluation Metric. We evaluate the object reconstruction errors. Follow-
ing prior works [67, 85], we first align the reconstructed object shape with
the ground truth by Iterative Closest Point (ICP), allowing scaling. Then
we compute Chamfer distance (CD), F-score [200] at 5mm and 10mm and
report mean over 2 sequences for each category. Chamfer distance focuses
on the global shapes more and is affected by outliers while F-score focuses
on local shape details at different thresholds [200].
Baselines. While few prior works tackle our challenging setting – 3D HOI
reconstruction from casual monocular clips without knowing the templates,
the closestworks are two template-freemethods fromHuang et al. [85] (HHOR)
and Ye et al. [232] (iHOI).

HHOR is proposed for in-hand scanning. It optimizes a deformable se-
mantic implicit field to jointly model hand and object. HHOR captures the
dynamics by a per-frame warping field while no prior is used during opti-
mization. iHOI is a feed-forward method and reconstructs 3D objects from
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Table 5.2: Analysis of the effect of data-driven priors: Quantitative results
on HOI4D for object reconstruction error in the object-centric frame (F@5,
F@10, CD) and for hand-object alignment in the hand frame (CDh). We
compare our method with ablations that does not use prior, or use other
variants of diffusion models that only conditions on hand or category.

F@5 F@10 CD CDh

No prior 0.47 0.73 2.7 37.0
Hand prior 0.39 0.65 2.8 55.0
Category prior 0.56 0.87 1.6 85.2
Ours 0.62 0.91 0.8 48.7

Table 5.3: Ablation without surface normal, mask and depth: Quantitative
results on the HOI4D dataset for object reconstruction error using mean F1
scores (5mm, 10mm), CD in object frame and for hand-object alignment us-
ing CD in hand frame (CDh). We compare our method with other ablations
that do not distill normals, masks, and depths respectively.

F@5 F@10 CD CDh

− normal 0.37 0.57 4.5 282.6
−mask 0.57 0.84 1.2 106.7
− depth 0.66 0.93 0.7 49.6
Ours 0.70 0.93 0.7 41.9

single-view images by learning the hand prior between hand poses and ob-
ject shapes. The method does not leverage category-level prior and do not
consider time-consistency of shapes. We finetune their pretrained model to
take in segmentation masks. We evaluate their result by aligning their pre-
dictions with ground truth for each frame and report the average number
across all frames.

Results. We visualize the reconstructed HOI and object shapes from the
image frame and a novel viewpoint in Fig. 5.5. HHOR generates good-
looking results from the original view but actually degenerates to a flat sur-
face since it does not incorporate any prior knowledge besides the visual
observation. It also cannot decompose the hand and the object on the un-
observed side of the scene because HHOR distinguishes them by per-point
classification predicted from the neural field, which does not get gradient
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Figure 5.6: Visualizing HOI reconstruction comparisons of our method
with other variants of diffusionmodels that only incorporate category prior,
hand prior, and no prior. (Top: image frame, bottom: novel view)

from the observations. iHOI reconstructs better object shapes and interac-
tions but it is not very accurate as it cannot aggregate information across
different frames. Its prediction is not time consistent either (better visual-
ized as videos). In contrast, we are able to reconstruct time-persistent object
shapes with time changing hand poses. The reconstructed object is more
accurate, e.g. knife blade is thinner and the kettle body is more cylindrical.

This is consistent with quantitative results in Tab. 5.1. HHOR generally
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OursGTInput - Depth - Mask - Normal

Figure 5.7: Ablation Study: Visualizing HOI reconstruction comparison of
our method and variants that do not distill on depth, mask, and normals.
(Top: image frame, bottom: novel view)

performs unfavorably except for knife category. While iHOI performs bet-
ter, its quality is limited by only relying on information from a single frame.
DiffHOI outperforms the baseline methods by large margins in most se-
quences and performs the best on all three metrics for mean values.

5.3.3 Ablation Studies
We ablate our system carefully to analyze the contribution of each compo-
nent. Besides the object reconstruction errors in the aligned object-centric
frame,we further evaluate the hand-object arrangement by reporting theCham-
fer distance of objects in hand frame, i.e. CDh ≡ CD(T to→hO, T̂

t
o→hÔ)). We

only report mean value in the main paper. Please refer to supplementary for
category-wise results.
How does each learned prior help? We analyze how the category and
hand priors affect reconstruction by training twomore diffusionmodels con-
ditioned only on text-prompt or hand renderings respectively. We also com-
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Table 5.4: Error analysis against hand pose noise: * marks our unablated
method. Numbers in parentheses are per-frame prediction errors before op-
timization.

Object Reconstruction Hand Estimation
F@5 ↑ F@10 ↑ CD ↓ MPJPE ↓ AUC ↑

GT 0.68 0.91 0.75 – –
Prediction* 0.62 0.91 0.77 26.9(28.4) 0.49(0.47)
Pred. Error ×2 0.63 0.87 1.01 40.7(44.6) 0.31(0.27)

parewith the variantwithout optimizingLSDS (no prior). As reported quan-
titatively, we find that category prior helps object reconstructions while hand prior
helps hand-object relation (Tab. 5.2). And combining them both results in best
performance.

We highlight an interesting qualitative result of reconstructing the bowl
in Fig. 5.6. Neither prior can reconstruct the concave shape on its own –
the hand pose alone is not predictive enough of the object shape while only
knowing the object to be a bowl cannot make the SDS converge to a consen-
sus direction that the bowl faces. Only knowing both can the concave shapes
be recovered. This example further highlights the importance of both priors.
Which geometry modality matters more for distillation? Next, we investi-
gate howmuch each geometry modality (mask, normal, depth) contributes
when distilling them into 3D shapes. Given the same pretrained diffusion
model, we disable one of the three input modalities in optimization by set-
ting its weight on LSDS to 0.

As visualized in Fig. 5.7, the surface normal is themost importantmodal-
ity. Interestingly, the model collapses if not distilling surface normals and
evenperformsworse than the no-prior variant. Without distillation onmasks,
the object shape becomes less accurate probably because binary masks pre-
dict more discriminative signals on shapes. Relative depth does not help
much with global object shape but it helps in aligning detailed local geom-
etry (F@5) and aligning the object to hand (F@10).
How robust is the system to hand pose prediction errors? We report the
object reconstruction performancewhen usingGT vs predicted hand pose in
Tab. 5.4, and find that our system is robust to some prediction error. More-
over, even if we artificially degrade the prediction by doubling the error, our
performance remains better than the baselines (Tab. 5.1). We also report the
hand pose estimation metrics and find that our optimization improves the
initial predictions (in parentheses).
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Table 5.5: Comparison with template-based baseline: Quantitative results
on the HOI4D dataset for object reconstruction error in the object-centric
frame (F@5, F@10,CD) and for hand-object alignment (CDh). We compare
our methodwith HOMAN [71] with the ground truth template (-GT), with
random templates from the training split (and reporting the average), and
with furthest template from the ground truth (-furthest).

F@5 ↑ F@10 ↑ CD ↓ CDh ↓
HOMAN-GT 1.00 1.00 0.00 84.3
HOMAN-average 0.76 0.94 0.48 120.9
HOMAN-furthest 0.49 0.78 1.33 157.9
Ours(DiffHOI) 0.62 0.91 0.78 48.7

5.3.4 Comparing with Template-Based Methods
We compare with HOMAN [71], a representative template-based method
that optimizes object 6D poses and hand articulations with respect to repro-
jection error and multiple interaction objectives including contact, intersec-
tion, distance, relative depth, temporal smoothness, etc..

We show quantitative and qualitative results in Tab. 5.5 and 5.8. Note
that evaluating HOMAN in terms of object reconstruction is equivalent to
evaluating templates since the objects are aligned in the object-centric frame.
We first report the average object reconstruction errors when optimizing
with different templates from training sets. While the gap indicates poten-
tial room to improve object shapes for template-free methods, DiffHOI is
favorable over some templates in the training set. Nevertheless, when eval-
uating the objects in the hand frame, DiffHOI outperforms HOMAN by a
largemargin. The numbers alongwith visualizations in Fig. 5.8 indicate that
template-based methods, even when optimizes with multiple objectives to
encourage interactions, still struggle to place objects in the context of hands,
especially for subtle parts like handles. Furthermore, optimizing with ran-
dom templates degrades CDh significantly, highlighting the inherent draw-
backs of template-based methods to demand the accurate templates.

5.3.5 Reconstructing In-the-Wild Video Clips
Lastly, we show that ourmethod can be directly applied tomore challenging
video clips. In Fig. 5.9 top, we compare between ourmethod and iHOI [232].
iHOI predicts reasonable shapes from the front view but fails on transparent
objects like the plastic bottle since it is never trained on such appearance.
In contrast, we transfer better to in-the-wild sequences as the learned prior
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Figure 5.8: Comparing with template-based method: We show reconstruc-
tion in the image frame (top) and fromanovel view (bottom) by ourmethod
and HOMAN [71] when provided with ground-truth templates, a random
template, and the most dissimilar template in the training split.

only take on geometry cues. In Fig. 5.9 bottom, we visualize more results
from our method. By incorporating learned priors, our method is robust
to mask prediction inaccuracy, occlusion from irrelevant objects (the onion
occludes knife blade), truncation of the HOI scene (bowl at the bottom left),
etc.. Our method can also work across ego-centric and third-person views
since the learned prior is trained with uniformly sampled viewpoints. The
reconstructed shapes vary from thin objects like knives to larger objects like
kettles.
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Figure 5.9: Comparing reconstructions of our method and the iHOI baseline
[232] on 8 in-the-wild video clips taken from the Internet (Left: image frame,
top right: novel view HOI, and bottom right: novel view object-only).

5.4 Discussion
In this work, we propose a method to reconstruct hand-object interactions
without any object templates from daily video clips. Our method is the first
to tackle this challenging setting. We represent the HOI scene by a model-
free implicit field for the object and a model-based mesh for the hand. The
scene is optimized with respect to re-projection error and a data-driven ge-
ometry prior that captures the object shape given category information and
hand poses. Both of thesemodules are shown as critical for successful recon-
struction. Despite the encouraging results, there are several limitations: the
current method can only handle small hand-object motions in short video
clips up to a few (∼5) seconds. Despite the challenges, we believe that our
work takes an encouraging step towards a holistic understanding of human-
object interactions in everyday videos.

5.5 ImplementationDetails andAdditionalResults
In the supplementary materials, we provide more implementation details
and experimental results. We discuss the details of differentiable rendering
of theHOI scene representation (Sec. 5.5.1), network architectures (Sec. 5.5.2),
scored distillation sampling of the pretrained diffusion model (Sec. 5.5.3),
and initialization details (Sec. 5.5.5). We also describe how to get 2D seg-

68



Table 5.6: Full ablation results of object reconstruction: Quantitative re-
sults for object reconstruction error using F1@5mm and F1@10mm scores
and Chamfer Distance (mm). We compare our method with variants that
do not optimize per-frame object poses (Sec.5.5.8), blend hand and object
masks in a hard way (Sec.5.5.9), or do not distill certain geometry modality
(Sec. 4.2, Tab. 4)

Mug Bottle Kettle Bowl Knife ToyCar Mean
F@5 F@10 CD F@5 F@10 CD F@5 F@10 CD F@5 F@10 CD F@5 F@10 CD F@5 F@10 CD F@5 F@10 CD

wo learning pose 0.66 0.88 0.8 0.27 0.82 1.3 0.26 0.65 2.1 0.74 0.97 0.4 0.57 0.95 0.7 0.75 0.97 0.4 0.54 0.83 0.89
hard blending 0.66 0.88 0.8 0.42 0.85 1.0 0.36 0.72 2.6 0.49 0.85 1.1 0.71 0.96 0.5 0.78 0.99 0.3 0.57 0.83 0.97
−mask 0.54 0.81 1.3 0.24 0.53 2.5 0.47 0.80 2.0 0.76 0.98 0.4 0.72 0.97 0.5 0.67 0.98 0.5 0.57 0.81 1.06
− normal 0.50 0.77 1.4 0.20 0.43 3.9 0.21 0.43 6.1 0.38 0.63 4.0 0.11 0.24 11.1 0.83 0.96 0.4 0.37 0.55 3.46
− depth 0.62 0.89 0.8 0.79 0.98 0.3 0.53 0.84 1.6 0.55 0.90 0.8 0.72 0.96 0.5 0.77 0.97 0.4 0.66 0.89 0.74
Ours 0.66 0.89 0.8 0.84 0.99 0.3 0.71 0.88 1.1 0.50 0.86 0.9 0.74 0.98 0.4 0.75 0.97 0.4 0.70 0.89 0.69

Table 5.7: Full ablation results of HOI alignment: Quantitative results for
hand-object alignment using Chamfer distance (mm) in hand frame (CDh).
We compare ourmethodwith variants that do not optimize per-frame object
poses (Sec.5.5.8), blend hand and object masks in a hard way (Sec.5.5.9), or
do not distill certain geometry modality (Sec. 4.2, Tab. 4).

Mug Bottle Kettle Bowl Knife ToyCar Mean
wo opt. obj pose 32.1 11.1 41.2 103.7 111.2 52.7 58.67
hard blending 26.2 14.7 96.2 177.0 80.7 72.9 77.96
−mask 30.6 17.8 48.4 418.0 80.3 45.0 106.69
− normal 489.9 319.8 69.4 172.8 299.8 344.1 282.62
− depth 19.3 9.6 134.2 53.5 35.0 49.6 50.20
Ours 20.4 12.2 45.2 92.8 53.8 27.0 41.92

mentation masks from in-the-wild clips (Sec. 5.5.4). Then, we show gener-
ation by the diffusion model (Sec. 5.5.6), full quantitative results reported
in the main paper (Sec. 5.5.7). Furthermore, we also show supporting evi-
dence that optimizing per-frame object poses (Sec. 5.5.8) and soft blending
(Sec. 5.5.9) are both important for better performance.

5.5.1 Differentiable Rendering
Given an HOI scene representation at a certain time t consisting of an im-
plicit field for the object and a mesh for the hand, we use differentiable
volumetric renderer [230] and mesh renderer [125, 156] to get their masks
(Mo,Mh) and depth (Do, Dh). In order to supervise them with reprojection
losswith respect to the ground truth semanticmasks, we blend hand and ob-
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ject masks by their predicted depths to obtain the rendered semantic masks
M ≡ B(Mh,Mo, Dh, Do).

The soft blending is computed as expected light transported to the cam-
eras, similar to blending two-layer surfaces of inmesh rendering [156]. More
specifically, denotemh, dh,mo, do as the value at pixel (i, j), e.g. mh ≡Mh[i, j].
For any pixel (i, j), the blended value is computed as

m = B(mh,mo, dh, do) =

∑
k=0,1wklk∑

k=0,1wk + wbg
(5.5)

where subscript k denotes the sorted value of hand and object according to
the predicted depth; lk is the one-hot semantic label (all 0 for background).
wk is the weight computed from depth:

wk = mk exp
zk −maxk,i,j Zk[i, j]

γ
, zk = mk

dfar − dk
dfar − dnear (5.6)

We show in Sec. 5.5.9 that soft blending (with loss in semantic masks) is
important for better results and performs favorably to the alternative (hard
blending with ordinal depth loss [71, 236]).

5.5.2 Network Architectures and Training Details (Sec. 3.1
3.2)

Implicit field. We use Multi-Layer Perceptron (MLPs) to implement the
neural implicit surface of the object ϕ. We borrow the architecture in the
original VolSDF [230] and reduce the network capacity to half as we find
it to suffice. More specifically, we stack four-layer blocks of which each is a
linear layer with channel dim 64 followed by a SoftPlus activation. We apply
positional encoding to the queried point X with 6 frequencies.

Conditional diffusionmodels. The backbone of the conditional diffusion
model is based on the architecture of the text-to-image inpaintingmodel [149].
More specifically, it is a 16-layer UNet with cross attentions and skip lay-
ers. The text condition along with the diffusion step embedding is passed
to the bottleneck of the UNet and is fused with the image feature by cross-
attention. The text prompt is encoded as CLIP tokens [168].

Details of training diffusion model. We train the diffusion model with
batch size 8, learning rate 1e − 4. We use AdamW [131] optimizer with
weight decay 0.01 and train for 500k iterations. We use linear noise sched-
ule [175].
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Details of optimizing HOI scene. We follow the training setup in a reim-
plementation 1 of the original paper [230]. We optimize the scene with 1024
rays per step, and set initial learning rate 5e − 4 with exponential learning
rate scheduler. We use Adam [99] optimizer and optimize for 50k iterations
per scene. Within a batch, we bias the sampled pixels from the background,
hand, and object region with probability 0.35, 0.35, 0.3 and linearly interpo-
late the probability to 0.1, 0.1, 0.8 in order to spend more effective computa-
tion on the object of interest, same as HHOR [85]. In the first 100 warm-up
iterations, we turn off SDS and only optimize for the reprojection loss and
other regularization terms. This will make the optimization more stable.

5.5.3 Score Distillation Sampling (Sec. 3.3)
With the pretrained diffusionmodel, we followDreamFusion [161] to distill
the learned prior to the 3D representation. The main idea is to let the diffu-
sionmodel denoise the corrupted renderings and treats the denoised output
as ‘ground truth’. More specifically, at each optimization step, we randomly
sampled a viewpoint with random rotation from SO(3) and random camera
distance. Then, we render the geometry renderings Go, Gh from the given
viewpoint in resolution 64x64. Next, we corrupt the geometry rendering of
the object with some noise Gi

o =
√
ᾱiGo +

√
1− ᾱiϵ (ᾱ is the noise schedul-

ing, ϵ is a gaussian noise) and pass it through the diffusionmodel alongwith
the geometry rendering of the hand and text prompt.

Ĝi
o = Dψ(G

i
o|Gh, C) (5.7)

We set the classifier-free guidance scale to 4, which is different from the
original paper where a small guidance scale cannot converge. It is proba-
bly because 2D observations provide stronger cues than text thus leading to
easier convergence.

5.5.4 Obtaining hand-object masks for in-the-wild clips.
Whileweprovide ground truth segmentationmasks to allmethods onHOI4D,
we obtain the segmentation masks by off-the-shelf prediction systems [26,
103, 187] for in-the-wild clips. More specifically, we first use a hand-object
interaction detector [187] to detect the location of the hand and the active
object in the first frame. Then, given the detected bounding boxes, we use
PointRend [103] to get the correspondingmasks. Next, we pass themasks of

1https://github.com/ventusff/neurecon
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interest in the first frame to a video object segmentation system STCN [26]
and obtain the tracked masks in every frame.

To automatically filter out the clips with undesirable segmentation qual-
ity, we run the STCN to track forward and backward in time and calculate
the Intersection over Union (IoU) between the initial masks and the masks
after tracking back. We use clips with IoU higher than 40% for both hand
and object masks.

5.5.5 InitializationwithOff-the-Shelf Predictions (Sec. 3.3.)
We use an off-the-shelf hand reconstruction [180] to estimate initial cam-
era poses T tc→h, hand shape parameter β, and hand articulation θtA. The
off-the-shelf system predicts per-frame 10-dim hand shape parameters βt,
48-dim hand poses θt, and a weak perspective camera st, ttx, tty. We take the
average of shape parameters across all frames to initialize the hand shape
parameter. Among the 48-dim predicted hand pose, we use the 45-dim fin-
ger articulation θtA to initialize hand articulation parameter while use the
remaining 3-dim wrist orientation θw as the rotation component of camera
pose T tc→h. The translation component is computed by converting the pre-
dicted weak-perspective camera to a full-perspective camera (we use a pin-
hole camera with a focal length of 1 and the principal point at the center
of the frame following Zhang et al. [236]). This is to handle large perspec-
tive effects, which are common in daily videos of indoor scenes. Given focal
length f and principal points px, py, the translation component then becomes
lt = ((ttx − px)/st, (tty − py)/st, f/st). To put them together, the initial camera
pose in the hand frame is initialized as:

T tc→h = [Rt|lt] = [Rot(θtw)|
(ttx − px)/st
(tty − py)/st

f/st

] (5.8)

5.5.6 Results of diffusion model generation
We show some conditional generations by the pre-trained diffusionmodel in
Fig. 5.10. Given the geometry rendering of hand (i) of which row 1-4 visual-
ize surface normal, depth, mask, and uv coordinate, as well as a text prompt
with category information, we visualize 5 different generations (ii-vi) from
the diffusion model. Row 1-3 in col ii-vi shows the generated geometry ren-
dering of the object, and row 4 visualizes overlayed hand and object masks
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Figure 5.10: Generations from conditional diffusion model. Given the ge-
ometry rendering of hand (i) (row 1-4 visualizing surface normal, depth,
mask, and uv coordinate), as well as a text prompt with category informa-
tion, we visualize 5 different generations (ii-vi) from the diffusion model.
Row 1-3 in col ii-vi shows the generated geometry rendering of the object,
and row 4 visualizes overlayed hand and objectmasks for a better viewof the
hand-object relations. All examples on the left use the ground truth paired
hand and category information while each example to its right uses another
random category but remain hand the same.
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for a better view of the hand-object relations, i.e. our model does not output
(ii-vi 4). All examples on the left use the ground truth pairs of hand and
category information while each example to its right uses another random
category but remains hand the same.

As shown in the figure, the generated object matched the category in-
formation in the prompt while the generations are diverse in position, ori-
entation, and size. Yet, all of the hand-object interactions are realistic, e.g.
different generated kettle/mug handles all appear at the tip of the hand.
Comparing left and right examples, different category prompts lead to dif-
ferent generations given the same hand rendering. With the same prompt
but different hands, the generated objects also change appearance accord-
ingly. For example, in the subfigure [Left A,C], the handles appear at the
left when the hand approaches from the left and vice versa.

Fig. 5.10 indicates that the learned prior is aware of both the hand prior
and the category-level prior hence being informative to guide the 3D recon-
struction from clips.

5.5.7 Category-wise results in ablations (Tab. 4)
In Tab. 4 in the main paper, we only report mean value across all categories
due to space limits. We provide quantitative results across all categories in
Tab. 5.6 (object reconstruction) and Tab. 5.7 (HOI alignment).

5.5.8 Ablation: Optimizing vs Fixing Object Pose.
While we observe that the pose of the object in contact relative to hands T th→o

does not change much, we still optimize per-frame object poses to account
for potential relative motion. As reported in Tab. 5.6, 5.7 and shown on the
project page, allowing changing pose across time improves the performance.

5.5.9 Ablation: Soft Blending
Our method obtains the final HOI semantic masks by soft blending hand
and object rendering as a weighted sum of the labels where the weight de-
pends on their predicted depth. The alternative way is to select the label of
the front surface and apply additional ordinal depth loss. This is common
in optimizing the interactions of two template meshes [71, 236]. As shown
in the qualitative results on the webpage, the alternative method generates
less desirable hand-object relations as the hand intersects with the object. It
is consistent with quantitative results in Tab. 5.6 and 5.7.
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Chapter 6

Predicting Hand-Object
Interactions via Image Synthesis

While previous chapters have studied reconstructing the ongoing interac-
tions, it does not address the question of what are the possible interactions
that could happen. Consider the bottles, bowls and cups shown in the left
column of Figure 6.1. Howmight a human hand interact with such objects?
Not only is it easy to imagine, from a single image, the types of interactions
that might occur (e.g., ‘grab/hold’), and the interaction locations that might
happen (e.g. ‘handle/body’), but it is also quite natural to hallucinate—in
vivid detail— several ways in which a hand might contact and use the ob-
jects. This ability to predict and hallucinate hand-object-interactions (HOI)
is critical to functional understanding of a scene, as well as to visual imita-
tion and manipulation.

Can current computer vision algorithms do the same? On the one hand,
there has been a lot of progress in image generation, such as synthesiz-
ing realistic high-resolution images spanning a wide range of object cate-
gories [109, 184] from human faces to ImageNet classes. Newer diffusion
models such as Dall-E 2 [169] and Stable Diffusion [175] can generate re-
markably novel images in diverse styles. In fact, highly-realistic HOI im-
ages can be synthesized from simple text inputs such as “a hand holding a
cup” [169,175].

On the other hand, however, such models fail when conditioned on an
image of a particular object instance. Given an image of an object, it remains
an extremely challenging problem to generate realistic human object inter-
action. Solving this problem requires (at least implicitly) an understand-
ing of physical constraints such as collision and force stability, as well as
modeling the semantics and functionality of objects — the underlying affor-
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Input Sample 1 Sample 2 Sample 3

Figure 6.1: Given a single RGB image of an object (first column), we syn-
thesize plausible images of hand-object interactions from which feasible 3D
hand poses can be directly extracted (remaining columns).

dances [54]. For example, the hand should prefer to grab the kettle handle
but avoid grabbing the knife blade. Furthermore, in order to produce visu-
ally plausible results, it also requires modeling occlusions between hands
and objects, their scale, lighting, texture, etc..

In this chapter, we propose a method for interaction synthesis that ad-
dresses these issues using diffusion models. In contrast to a generic image-
conditioned diffusion model, we build upon the classic idea of disentan-
gling where to interact (layout) from how to interact (content) [64, 79]. Our
key insight is that diverse interactions largely arise from hand-object layout,
whereas hand articulations are driven by local object geometry. For exam-
ple, amug can be grasped by either its handle or body, but once the grasping
location is determined, the placement of the fingers depends on the object’s
local surface and the articulation will exhibit only subtle differences. We
operationalize this idea by proposing a two-step stochastic procedure: 1) a
LayoutNet that generates 2D spatial arrangements of hands and objects, and
2) a ContentNet that is conditioned on the query object image and the sam-
pled HOI layout to synthesize the images of hand-object interactions. These
twomodules are both implemented as image-conditioned diffusionmodels.

We evaluate our method on HOI4D and EPIC-KITCHEN [37, 128]. Our
method outperforms generic image generation baselines, and the extracted
hand poses from our HOI synthesis are favored in user studies against base-
lines that are trained to directly predict hand poses. We also demonstrate
surprisingly robust generalization ability across datasets, and we show that
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Figure 6.2: The proposed method consists of two image-conditioned diffu-
sionmodels: LayoutNet andContentNet. Given an object image, we first use
LayoutNet (left) to predict a HOI spatial arrangement l0. For every diffu-
sion step, the LayoutNet splats the noisy layout parameter into image space,
concatenates it with the object image and their blending, and predicts the
denoised layout. We apply the diffusion loss in the splatted 2D space Lmask.
Then the ContentNet (right) takes in the predicted layout along with the
object image to synthesize an HOI image. The two modules are connected
by the articulation-agnostic hand proxy (middle top).

ourmodel can quickly adapt to newhand-object-interactionswith only a few
examples. Lastly, we show that our proposed method enables editing and
guided generation from partially specified layout parameters. This allows
us to reuse heatmap prediction from prior work [47, 146] and to generate
consistent hand sizes for different objects in one scene.

Our main contributions are summarized below: 1) we propose a two-
step method to synthesize hand-object interactions from an object image,
which allows affordance information extracted from it; 2) we use inpainting
techinuqes to supervise the model with paired real-world HOI and object-
only images and propose a novel data augmentation method to alleviate
overfit to artifacts; and 3) we show that our approach generates realistic
HOI images alongwith plausible 3D poses and generalizes surprisinglywell
on out-of-distribution scenes. 4) We also highlight several applications that
would benefit from such a method.

6.1 Method
Given an image of an object, we aim to synthesize images depicting plausible
ways of a human hand interacting with it. Our key insight is that this multi-
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modal process follows a coarse-to-fine procedure. For example, a mug can
either be held by its handle or body, but once decided, the hand articulation
is largely driven by the local geometry of the mug. We operationalize this
idea by proposing a two-step stochastic approach as shown in Fig 6.2.

We first use a LayoutNet to predict plausible spatial arrangement of the
object and the hand (Sec 6.1.1). The LayoutNet predicts hand proxy that
abstracts away appearance and explicitly specifies 2D location, size and ap-
proaching direction of a grasp. This abstraction allows global reasoning
of hand-object relations and also enables users to specify the interactions.
Then, given the predicted hand proxy and the object image, we synthesize
a plausible appearance of an HOI via a ContentNet (Sec 6.1.2). This allows
the network to implicitly reason about 3D wrist orientation, finger place-
ment, and occlusion based on the object’s local shape. We use conditional
diffusion models for both networks to achieve high-quality layout and vi-
sual content. The synthesized HOI image is realistic such that a feasible 3D
hand pose can be directly extracted from it by an off-the-shelf hand pose
reconstruction model (Sec 6.2.2).

Both networks are based on diffusion models introduced in Section 5.1.
To supervise the system, we need pixel-aligned pairs of HOI images and
object-only images that depict the exact same objects from the exact same
viewpoints with the exact same lighting. We obtain such pairs by inpainting
techniques that remove humans from HOI images. We further propose a
novel data augmentation to prevent the trained model from overfitting to
the inpainting artifacts (Sec 6.1.3).

6.1.1 LayoutNet: predicting where to grasp
Given an object image Iobj , the LayoutNet aims to generate a plausible HOI
layout l from the learneddistribution p(l|Iobj). We follow thediffusionmodel
regime that sequentially denoises a noisy layout parameter to output the fi-
nal layout. For every denoising step, the LayoutNet takes in the (noisy) lay-
out parameter along with the object image and denoises it sequentially, i.e.
lt−1 ∼ ϕ(lt−1|lt, Iobj). We splat the layout parameter onto the image space to
better reason about 2D spatial relationships to the object image and we fur-
ther introduce an auxiliary loss term to train diffusion models in the layout
parameter space.
Layout parameterization. Hands in HOI images typically appear as hands
(from wrist to fingers) with forearms. Based on this observation, we in-
troduce an articulation-agnostic hand proxy that only preserves this basic
hand structure. As shown in Fig 6.2, the layout parameter consists of hand
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palm size a2, location x, y and approaching direction arctan(b1, b2), i.e. l :=
(a, x, y, b1, b2). The ratio of hand palm size and forearm width s̄ remains a
constant that is set to the mean value over the training set. We obtain the
ground truth parameters from hand detection (for location and size) and
hand/forearm segmentation (for orientation).
PredictingLayout. Thediffusion-basedLayoutNet takes in a noisy 5-parameter
vector lt with the object image and outputs the denoised layout vector lt−1

(we define l0 = l). To better reason about the spatial relation between
hand and object, we splat the layout parameter into the image spaceM(lt).
The splatted layout mask is then concatenated with the object image and is
passed to the diffusion-based LayoutNet. We splat the layout parameter to
2D by the spatial transformer network [89] that transforms a canonical mask
template by a similarity transformation.
DDPM loss for layout. One could directly train the LayoutNet with the
DDPM loss (Eq. 5.1) in the layout parameter space: Lpara := LDDPM[l; Iobj].
However, when diffusing in such a space, multiple parameters can induce an
identical layout, such as a size parameterwith opposite signs or approaching
directions that are scaled by a constant. DDPM loss in the parameter space
would penalize predictions even if they guide the parameter to a equiva-
lent one that induce the same layout masks as the ground truth. As the
downstream ContentNet only takes in the splatted masks and not their pa-
rameters, we propose to directly apply the DDPM loss in the splatted image
space (see appendix for details):

Lmask = E(l0,Iobj),ϵ∼N (0,I),t∥M(l0)−M(l̂0)∥22. (6.1)

where l̂0 := Dθ(lt, t, I
obj) is the output of our trained denoiser that takes in

the current noisy layout lt, the time t and the object image Iobj for condition-
ing.

In practice, we apply losses in both the parameter space and image spaces
Lmask+λLpara becausewhen the layout parameters are very noisy in the early
diffusion steps, the splatted loss in 2D alone is a too-weak training signal.
Network architecture. We implement the backbone network as a UNet with
cross-attention layers and initialize it from the pretraineddiffusionmodel [149].
Themodel takes in images with seven channels as shown in Fig 6.2: 3 for the
object image, 1 for the splatted layoutmask and another 3 that blends the lay-
out mask with object image. The noisy layout parameter attends spatially to
the feature grid from theUNet’s bottleneck and spit out the denoised output.
Guided layout generation. The LayoutNet is trained to be conditioned
on an object image only but the generation can be guided with additional
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conditions at test time without retraining. For example, we can condition
the network to generate layouts such that their locations are at certain places
i.e. l ∼ p(l0|Iobj, x = x0, y = y0). We use techniques [195] in diffusionmodels
that hijack the conditions after eachdiffusion stepswith corresponding noise
levels. This guided diffusion enables user editing and HOI synthesis for
scenes with a consistent hand scale (Sec. 7.1.2). Please refer to the appendix
for LayoutNet implementation details.

6.1.2 ContentNet: predicting how to grasp

Given the sampled layout l and the object image Iobj , the ContentNet synthe-
sizes aHOI image Ihoi. While the synthesizedHOI images should respect the
provided layout, the generation is still stochastic because hand appearance
may vary in shape, finger articulation, skin colors, etc.. We leverage the re-
cent success of diffusionmodels in image synthesis and formulate the articu-
lation network as a image-conditioned diffusionmodel. As shown in Fig 6.2,
at each step of diffusion, the network takes in channel-wise concatenation of
the noisyHOI image, the object image and the splattedmask from the layout
parameter and outputs the denoised HOI images Dϕ(I

hoi
t , t, [Iobj,M(l)]).

We implement the image-conditioneddiffusionmodel in the latent space [174,
191, 207] and finetune it from the inpainting model that is pre-trained on
large-scale data. The pretraining is beneficial as the model has learned the
prior of retaining the pixels in unmask region and hallucinate to fill the
masked region. During finetuning, the model further learns to respect the
predicted layout, i.e., retaining the object appearance if not occluded by hand
and synthesizing hand and forearm appearance depicting finger articula-
tion, wrist orientation, etc.

6.1.3 Constructing Paired Training Data

To train such a system, we need pairs of object-only images and HOI image.
These pairs need to be pixel-aligned except for the hand regions. One possi-
ble way is to use synthetic data [32,72] and render their 3D HOI scene with
and without hands. But this introduces domain gap between simulation
and the real-world thus hurts generalization. We instead follow a different
approach.

As shown in Fig 6.3, we first extract object-centric HOI crops from ego-
centric videoswith 80% square padding. Thenwe segment the hand regions
to be removed and pass them to the inpainting system [149] to hallucinate
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(a) HOI Image (b) Hand Mask

(c) Inpainted
Object Image

(d) SDEdited
Object Image

(e)

(f)

(g)

Figure 6.3: Paired Data Generation: Given an HOI image, we first segment
out hand (b) and remove it by inpainting (c). Then we use SDEdit [136] to
reduce inpainting artifact (d). As inpainting introduce discrepancy between
mask and unmasked region (f) while SDEdit undesirably modifies the un-
masked object region, we mix up both object image sets in training.

the objects behind hands. The inpainter is trained on millions of data with
people filtered out therefore it is suitable for our task.

Data Augmentation. Although the inpainting generates impressive object-
only images, it still introduces editing artifacts, which the networks can eas-
ily overfit to [237], such as sharp boundary and blurriness in masked re-
gions. We use SDEdit [135] to reduce the discrepancy between the masked
and unmasked regions. SDEdit first adds a small amount of noise (we use
5% of the whole diffusion process) to the given image and then denoises
it to optimize overall image realism. However, although the discrepancy
within images reduces, the unmasked object region is undesirably modified
and the overall SDEdited images appear blurrier. In practice, we mix up the
object-only images with and without SDEdit for training.

We collect all data pairs fromHOI4D [128]. After some automatic sanity
filtering (such as ensuring hands are removed), we generate 364k pairs of
object-only images and HOI-images in total. We call the dataset HO3Pairs
(Hand-Object interaction and Object-Only Pairs). We provide details and
more examples of the dataset in the appendix.

81



LDM Pix2Pix VAE OursInput LDM Pix2Pix VAE OursInput

Figure 6.4: Visualizing HOI synthesis from our method and three base-
lines [88,101,174] on HOI4D (left) and EPIC-KITCHEN dataset (right).

Table 6.1: Quantitative results for HOI synthesis using contact recall, FID
score, and a user study on the HOI4D and EPIC-KITCHEN datasets. We
compare our method with prior works [88,101,174].

HOI4D dataset EPIC-KITCHEN dataset

Method Contact Recall(%) FID User Contact FID User
Kettle Knife TrashCan Chair Mug Bowl ToyCar Laptop Bottle mean Study Recall Study

LDM [174] 82.67 72.28 83.33 82.08 66.67 78.10 88.00 62.00 87.22 64.44 105.26 27.5 76.56 118.15 23.3
Pix2Pix [88] 79.50 70.26 82.50 76.88 68.50 79.64 89.00 63.00 85.42 73.02 107.09 15.5 70.00 125.62 13.3
VAE-ContentNet [101] 91.00 78.95 91.50 85.63 73.00 90.00 94.00 69.00 90.00 83.49 98.19 23.0 82.03 115.86 27.9
Ours 91.00 84.21 97.00 88.75 60.00 92.86 96.00 72.00 91.67 87.14 99.00 34.0 86.56 117.22 35.4

6.2 Experiments
We train our model on the contructed HO3Pairs dataset, evaluate it on the
HOI4D [128] dataset and showzero-shot generalization to the EPIC-KITCHEN[37]
dataset. We evaluate both the generated HOI images and the extracted 3D
poses. For image synthesis, we compare with conditional image synthesis
baselines and show that ourmethodgeneratesmore plausible hands in inter-
action. Beyond 2DHOI image synthesis, we compare the extracted 3D poses
with priorworks that directly predict 3Dhandposes. Furthermore, we show
several applications enabled by the proposedHOI synthesismethod, includ-
ing few-shot adaptation, image editing by layout, heatmap-guided predic-
tion and integrating object affordance with the scene.
Datasets Instead of testing with inpainted object images, we evaluate our
model on the real object-only images cropped from the frameswithout hands.
The goal is to prevent models from cheating by overfitting to the inpainting
artifacts, as justified in the ablations below.

The HOI4D dataset is an egocentric video dataset recording humans in
a lab environment interacting with various objects such as kettles, bottles,
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laptops, etc.. The dataset provides manual annotations of hand and object
masks, action labels, object categories, instance ID, and ground truth 3D
hand poses. We train and evaluate on 10 categories where full annotations
are released. For each category, we hold out 5 object instances for evaluation.
In total, we collect 126 testing images.

The EPIC-KITCHEN dataset displays more diverse and cluttered scenes.
We construct our test set by randomly selecting 10 frames from each video
clip. We detect and crop out objects without hands [224]. In total, we collect
500 object-only images for testing.

6.2.1 Evaluating Image Synthesis
EvaluationMetrics. We evaluate HOI generation using threemetrics. First,
we report the FID score [80, 185], which is widely used for image synthesis
that measures the distance between two image sets. We generate 10 sam-
ples for every input and calculate FID with 1000 HOI images extracted from
the test sets. We further evaluate the physical feasibility of the generated
hands by the contact recall metric — it computes the ratio of the gener-
ated hands that are in the “in-contact” state by an off-the-shelf hand detec-
tor [187]. We also carry out user studies to evaluate their perceptual plausi-
bility. Specifically, we present two images from two randomly selectedmeth-
ods to users and ask them to select the more plausible one. We collect 200
(for HOI4D) and 240 (for EPIC-KITCHEN) answers and report the likeli-
hood of the methods being chosen.
Baselines. We compare our method with three strong image-conditional
synthesis baselines. 1) Latent DiffusionModel (LDM) [174] is one of the state-
of-the-art generic image generation models that is pre-trained with large-
scale image data. We condition the model on the object image and finetune
it on HO3Pair dataset. This baseline jointly generates both layout and ap-
pearance with one network. 2) Pix2Pix [88] is commonly used for pose-
conditioned human/hand synthesis [20,143]. We modify the model to con-
dition on the generated layoutmasks that are predicted from our LayoutNet.
3)VAE [101] is a widely applied generative model in recent affordance liter-
ature [50, 115, 239]. This baseline uses a VAE with ResNet [75] as backbone
to predict a layout parameter. The layout is then passed to our ContentNet
to generate images.
Results. We visualize the generated HOI images in Fig 6.4. Pix2Pix typi-
cally lacks detailed finger articulation. While LDM and VAE generate more
realistic hand articulations than Pix2Pix, the generated hands sometimes do
not make contact with the objects. The hand appearance near the contact
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Input GANHand Pose Diffusion Ours Input GANHand Pose Diffusion Ours

Figure 6.5: Visualizing 3D affordance prediction from our method, GAN-
Hand [32] and diffusion model [174] that directly predicts 3D pose on
HOI4D (left) and EPIC-KITCHEN dataset (right).

region is less realistic. In some cases, LDM does not add hands at all to the
given object images. In contrast, our model can generate hands with more
plausible articulation and the synthesized contact regions are more realistic.
This is consistent with the quantitative results in Tab 6.1. While we perform
comparably to the baselines in terms of the FID score, we achieve the best
in terms of contact recall. The user study shows that our results are favored
the most. This may indicate that humans perceive interaction quality as a
more important factor than general image synthesis quality.
Generalizing to EPIC-KITCHEN. Although our model is trained only on
the HOI4D dataset with limited scenes and relatively clean backgrounds,
our model can generalize to the EPIC-KITCHEN dataset without any fine-
tuning. In Fig 6.4, the model also generalizes to interact with unseen cate-
gories such as scissors and cabinet handles. Tab 6.1 reports similar trends:
performing best in contact recall, comparably well in image synthesis and is
favored the most by users.
Ablation: Data Augmentation. Tab 6.2 shows the benefits of data augmen-
tation to prevent overfitting. Without any data augmentation, the model
performs well on the inpainted object images but catastrophically fails on
the real ones. When we add aggressive common data augmentations like
Gaussian blur and Gaussian noise, the performance improves. Training on
SDEdited images further boosts the performance. The results also justify the
use of real object images as test set since evaluating on the inpainted object
images may not reflect the real performance.
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Table 6.2: Analysis of data augmentation: contact recall (CR%) and FID
score on the real and the inpainted object image set of HOI4D and com-
parisons of ours with the ablations of excluding aggressive common data
augmentation (CmnAug) or SDEdit [136].

Real Obj Img Inpainted Img
CmnAug SDEdit CR FID CR FID

39.37 113.93 89.05 89.38
✓ 79.52 99.12 93.81 89.01
✓ ✓ 87.14 99.00 94.29 88.50

Table 6.3: User study for 3D affordance prediction on HOI4D and EPIC-
KITCHEN dataset. We compare our method with GANHand [32] and a
diffusion model that directly predicts 3D poses.

Method HOI4D EPIC
GANHand [32] 23.8 23.53
3D Pose Diffusion 27.9 34.1
Ours 48.2 42.4

Ablation: LayoutNet Design. We analyze the benefits from our Layout-
Net design by reporting contact recall. The LayoutNet predicts more phys-
ically feasible hands by taking in the splatted layout masks instead of the
5-parameter layout vector (87.14% vs 78.10%). Moreover, the contact recall
drops to 83.96%when the diffusion loss in Sec 6.1.1 is removed, verifying its
contribution to the LayoutNet.

6.2.2 Evaluating Extracted 3D Hand Poses
Thanks to the realism of the generated HOI images, 3D hand poses can be
directly extracted from them by an off-the-shelf hand pose estimator [181].
We conduct a user study to compare the 3D poses extracted from our HOI
images against methods that directly predict 3D pose from object images.
We present the rendered handmeshes overlaid on the object images to users
and are asked to select the more plausible one. In total, we collected 400 and
380 answers from users for HOI4D and EPIC-KITCHEN, respectively.
Baselines. While most 3D hand pose generation works require 3D object
meshes as inputs, a recent work by Corona et al. (GANHand) [32] can
hallucinate hand poses from an object image. Specifically, they first map
the object image to a grasp type [48] with the predefined coarse pose and
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Table 6.4: Few-shot Adaption: Quantitative results using contact recall
when finetuning the proposed HOI synthesis model and a pretrained in-
painting model with 32 samples from new categories.

bucket scissors stapler mean
w HOI pretrain 92.0 95.0 70.0 85.7
w/o HOI pretrain 90.0 68.8 34.0 64.3

then regress a refinement on top. We finetune their released model on the
HO3Pairs datasets with the ground truth 3D hand poses. We additionally
implement a diffusion model baseline that sequentially diffuses 3D hand
poses. The architecture is mostly the same as the LayoutNet but the diffused
parameter is increased to 51 (48 for hand poses and 3 for scale and location)
and the splatting function is replaced by theMANO [178] layer that renders
hand poses to image. See the appendix for implementation details.
Results. As shown in Fig 6.5, GANHand [32] predicts reasonable hand
poses for some objects but fails when the grasp type is not correctly classi-
fied. The hand pose diffusion model sometimes generates infeasible hand
poses like acute joint angles. Our model is able to generate hand poses that
are compatible with the objects. Furthermore, while previous methods typ-
ically assume right hands only, our model can automatically generate both
left and right hands by implicitly learning the correlation between approach-
ing direction and hand sides. The qualitative performance is also supported
by the user study in Tab 6.3.

6.2.3 Application

We showcase several applications that are enabled by the proposed method
for hand-object-image synthesis.
Few-shot Adaptation. In Tab 6.4, we show that our model can be quickly
adapted to a new HOI category with as few as 32 training samples. We ini-
tialize both LayoutNet and ContentNet from our HOI4D-pretrained check-
points and compare it with the baseline model that was pre-trained for in-
painting on a large-scale image dataset [174]. Wefinetune bothmodels on 32
samples from three novel categories in HOI4D and test with novel instances.
The baseline model adapts quickly on some classes, justifying our reasons
to finetune our model from them—generic large-scale image pretraining in-
deed already learns good priors of HOI. Furthermore, our HOI synthesis
model performs even better than the baseline.
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Figure 6.6: Layout Editing: VisualizingHOI synthesiswhen the conditioned
layouts gradually change location and orientation.

Layout Editing. The layout representation allows users to edit and con-
trol the generated hand’s structure. As shown in Fig 6.6, while we gradually
change the layout’s location and orientation, the synthesized hand’s appear-
ance changes accordingly. As the approaching direction to the mug changes
from right to left, the synthesized fingers change accordingly from pinching
around the handle to a wider grip around the mug’s body.
Heatmap-Guided Synthesis. As shown in Sec 6.1.1, our synthesized HOI
images can be conditioned on a specified location without any retraining.
This not only allows users to edit with just keypoints, but also enables our
model to utilize contact heatmap predictions from prior works [47, 146]. In
Fig 6.7, we sample points from the heatmaps and conditionally generate lay-
outs and HOI images which further specifies how to interact at the sampled
location.
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Heatmap Sampled Location Layout HOI Image Extracted Pose

Figure 6.7: Heatmap-guided synthesis: Given a heatmap, LayoutNet is
guided to generate layout at the sampled location, from which HOI images
are synthesized and 3D poses are extracted.

Integration to scene. We integrate our object-centricHOI synthesis to scene-
level affordance prediction. While the layout size is predicted relative to
each object, hands for different objects in one scene should exhibit consis-
tent scale. To do so, we first specify one shared hand size for each scene and
calculate the corresponding relative sizes in each crops (we assume objects
at similar depth and thus sizes can be transformed by crop sizes, although
more comprehensive view conversions can be used). The LayoutNet is con-
ditioned to generate these specified sizes with guided generation techniques
(Sec 6.1.1). Fig 6.8 shows the extracted hand meshes from each crops trans-
ferred back to the scene.

6.3 Discussion

In this chapter, we propose to synthesize hand-object interactions from a
given object image. We explicitly reason about where to interact and how
to interact by LayoutNet and ContentNet. Both of them are implemented as
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Figure 6.8: Scene-level Integration: Given a cluttered scene, we detect each
object and synthesize its interactions individually. Each object’s layout scale
is guided to appear in the same size when transferred back to the scene.

diffusionmodels to achieve controllable and high-quality visual results. The
synthesized HOI images enable a shortcut to more plausible 3D affordance
via reconstructing hand poses from them. Although the generation qual-
ity and the consistency between the extracted 3D poses and images can be
further improved, we believe that HOI synthesis along with our proposed
solution opens doors for many promising applications and contributes to-
wards the general goal of understanding human interactions in the wild.

6.4 Appendix

6.5 ImplementationDetails andAdditionalResults
In the appendix, we providemore implementation details andmore qualita-
tive results. We discuss the details of articulation-agnostic hand proxy and
how to apply DDPM loss in the image space for training the LayoutNet (Sec.
6.5.1). We also present ablations on ContentNet(Sec. 6.5.2). We further
show: (i) the paired data construction method being robust, in Sec. 6.5.3,
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(ii) baseline implementations details in Sec. 6.5.4, (iii) details of integrating
our approach to scene-level affordance prediction in Sec. 6.5.5. Finally, we
discuss the limitation of our approach (Sec. 6.5.6), and show more qualita-
tive results in Sec. 6.5.7. Visual results are also included in the video.

6.5.1 LayoutNet (Sec 6.1.1)
Layout parameters. As mentioned in Sec 6.1.1, we parameterize the lay-
out as (x, y, a, b1, b2), where x, y is the location, a2 is size, and b1, b2 are un-
normalized approaching direction parameters. For training the LayoutNet,
we obtain the ground truth parameters from off-the-shelf 2D hand predic-
tion systems. The size and location comes from the predicted bounding box
of a hand detector [187], which typically defines the hand region up to the
wrist. The orientation is calculated from hand segmentation whose region
is typically defined as the entire hand region, including hand and forearm.
The approaching direction is calculated as the first principal component of
a hand mask that centers on the location of the palm of the predicted hand.

We splat the layout parameters onto 2D via the spatial transformer net-
work [89] that transforms a canonical mask template by a similarity trans-
formation. The 2D similarity transformation is determined from the layout
parameters. More formally,

Tl =

(
sR t
0 1

)
=

a2b̂1 −a2b̂2 x

a2b̂2 a2b̂1 y
0 0 1

 ,

where b̂1, b̂2 is the normalized vector of b1, b2.
The lollipop-shape template in the canonical space is implemented with

its circle being an isometric 2D Gaussian with a standard deviation of 1 and
its rectangle being a 1DGaussianwith a standard deviation s̄ = 2. Thewidth
of the rectangle is calculated from the training data as the average ratio of
the widths of forearms and palms.
DDPM loss on mask. In Equation 5.1, we write the DDPM loss in terms of
reconstructing clean samples. In practice, we follow prior works [149, 169,
174] that reconstruct the added noise ϵ as

Lnoise
DDPM = Ex,ϵ∼N (0,I),t∥ϵ− ϵθ(xt, t)∥22.

The estimated clean sample l̂0 is connected with the estimated noise by l̂0 =
1√

1−ᾱt
lt−

√
ᾱt√

1−ᾱt
ϵθ, whereαt, ᾱt represent the noise schedule for each diffusion

time step.
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We train the LayoutNet with a weighted sum of the parameter loss Lpara
for esitmating the noise term ϵ, and amask lossLmask for estimating the clean
sample term l̂0. The hyperparamter λ is set to 10.
Guided layout generation. LayoutNet inherits properties from diffusion
models that can be guided to generate samples with additional constraints
at test time. We follow Song et al. [194]. After each diffusion steps, we hi-
jack the additional constraints with corresponding noise levels for the next
diffusion step.

More specifically, instead of passing in the network’s output xt from the
previous time step, we hijack it with xt ← x̃tm + xt(1 −m), where m is
the indicator mask of the given condition x̃0. The unspecified constraints in
x̃0 are set to 0. x̃t represents the additional constraint with corresponding
noise level, i.e. √1− ᾱtx̃0 +

√
ᾱtϵ.

6.5.2 ContentNet (Sec 6.1.2)

The goal of ContentNet is to generate high-resolution (2562) realistic HOI
images conditioned on the predicted layout and the input object image. We
tried two different approaches commonly used in diffusion models [149,
174] as backbones for the ContentNet. One way (called ours/AffordDiff-
LDM) is to follow Rombach et al. [175], as described in our main paper, that
implements the ContentNet in the latent space where images of size 2562

are compressed to 3-dimensional features of size 642 by a fixed pretrained
autoencoder. The other way (called ours/AffordDiff-GLIDE) is to follow
Nichol et al. [149] that uses a cascaded diffusion model that first generates
images of size 642 and then upsamples them by a factor of 4.

All of the quantitative results in our main paper, including the user stud-
ies and all ablations, are based on Afford-LDM. AffordDiff-GLIDE is better
in terms of contact recall (90.8% vs 87.1%) while AffordDiff-LDM is signifi-
cantly better in terms of FID score (99.0 vs 121.6). We find that AffordDiff-
LDM generates less blurry results and the hand texture appears sharper
and more realistic. In comparison, we find AffordDiff-GLIDE perceptually
preferred because AffordDiff-GLIDE generates more realistic, though blur-
rier, finger articulations. The qualitative results in the main paper on EPIC-
KITCHEN dataset (Fig 1 and Fig4 right in the main paper) show Afford-
GLIDE. However, we provide the qualitative comparison of Afford-LDM
with baselines in Fig 6.9 and Fig 6.10 of the appendix. We further provide a
comparison of these two variants in Fig 6.15 of the appendix.
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6.5.3 Constructing Paired Training Data (Section 6.1.3)

Cropping Details. We crop all objects with 80% squared padding before
resizing such that objects (hands) appear in similar (different) sizes. The
model learns the priors of their relative scales, e.g., a hand to grasp a kettle
appears much smaller than that of a mug (Fig 4).

We show that the proposed method to obtain pixel-aligned pairs of HOI
and object-only images is robust and can also be applied to more cluttered
images. When there is more than one hand in the HOI image, we randomly
select one to remove. We show results of applying our data construction
method on theHOI4D (Fig 6.9) and the EPIC-KITCHEN (Fig 6.10) datasets.

6.5.4 Baselines Implementation

Pix2Pix [88] (Sec4.1)Wemodify the official Pix2Pix implementation1. Given
the predicted layout and the provided object image, we concatenate them
channel-wise and pass them through 6 blocks of ResNet to output HOI im-
ages. The discriminator takes in the concatenation the of the object-only
image, the splatted layout image, and generated HOI image and learns to
discriminate between the real and fake domains. We tried batchnorm and
instancenorm and found that batchnorm generated better results in general
but has some black holes if the background statistics deviate from that of the
training set.
VAE [101] (Sec4.1) VAE is notoriously known for being hard to balance for
both generation variance and reconstruction quality. We sweep hyperpa-
rameters of the KLdivergence loss’sweights from 1, 1e−1, 1e−2, 1e−3, 1e−4
and use 1e− 3 as it produces the highest contact recall.
GANHand [32] (Sec4.2) GANHand is originally proposed both to predict
3D MANO hands for images of YCB objects [16] and to optimize physical
plausibility with respect to the known or reconstructed 3D shapes of YCB
objects. We compare our method with their sub-network for grasp predic-
tion from RGB images (blue branch in their original paper, Fig 4). The sub-
network takes in the object’s identity, the desk plane equation and the ob-
ject’s center in 3D space, in addition to the object image. Since these are not
available in the HOI4D dataset, we set them to zeros. We apply an addi-
tional reconstruction loss for 3D hand joints, MANO hand parameters and
camera parameters. We finetune the network from the public checkpoints
for another 10k iterations.

1https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
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6.5.5 Scene Integration
We integrate our object-centric HOI synthesis to scene-level affordance pre-
diction. We first detect the objects in the scene and then expand the detected
bounding box’s size with the same pad ratio (0.8 of the original object size).
However, when the scene is crowded, the extended object cropsmay include
other objects thus distracting the layout generation. We instead crop the ob-
ject with the detected bounding box and pad the cropped object with bound-
ary values. This allows the network to generate hand interaction only for the
object of interest.

6.5.6 Limitation and Failure Cases
Although it is encouraging that the proposed model can perform zero-shot
generalization to the EPIC-KITCHENdataset, the proposedmethod inherits
limited generalization capabilities from general learning-based algorithms.
The proposed model will fail when the object image’s appearance deviates
toomuch from the training set, e.g. for too cluttered scenes, extreme lighting,
very large objects (like a fridge) or very small objects (like a pin), etc.. The
currentmodel also cannot generate hands entering from the top of the frame
or generate hands from a third-person’s view due to the bias in the training
set. These limitations require training with more diverse data. Additionally,
the consistency of the hand’s appearance and of the extracted hand poses
can be further improved.

6.5.7 Qualitative Results
Fig 6.9 shows more examples of the constructed paired training data. We
train all themodelswith a uniformmixture of inpainted and SDEdited object
images.

Fig 6.10 shows that the proposed paired data construction is robust and
can be applied to the EPIC-KITCHEN dataset.

Fig 6.11 shows more comparisons of the generated HOI images by the
proposedmethod (LDM-version as reported in tables) and other image syn-
thesis baselines [88,101,174] on the HOI4D dataset.

Fig 6.12 shows more comparisons of the generated HOI images by the
proposedmethod (LDM-version as reported in tables) and other image syn-
thesis baselines [88,101,174] on EPIC-KITCHEN dataset.

Fig 6.13 showsmore comparisons of the extracted 3Dhand pose obtained
by the proposed method and other 3D affordance baselines [32,174] on the
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HOI4D dataset.
Fig 6.14 showsmore comparisons of the extracted 3Dhand pose obtained

by the proposed method and other 3D affordance baselines [32,174] on the
EPIC-KITCHEN dataset.

Fig 6.15 shows an ablation study on comparison of the LDM and GLIDE
version of our model on HOI4D and EPIC-KITCHEN datasets.

Fig 6.16 shows more layout editing results.
Fig 6.17 shows more results of heatmap-guided synthesis.
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Figure 6.9: Visualizing more examples of the constructed paired training
data. We train all the models with a mixture of inpainted and SDEdited
object images.
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Figure 6.10: Visualizing the proposed paired data construction applied to
EPIC-KITCHEN.
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Input OursLDM Pix2Pix VAE Input OursLDM Pix2Pix VAE

Figure 6.11: Visualizing more comparisons of the generated HOI images
from the proposedmethod and other image synthesis baselines [88,101,174]
on the HOI4D dataset.
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Input OursLDM Pix2Pix VAE Input OursLDM Pix2Pix VAE

Figure 6.12: Visualizing more comparisons of the generated HOI images
from the proposedmethod and other image synthesis baselines [88,101,174]
on the EPIC-KITCHEN dataset.
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Figure 6.13: Visualizing more comparisons of the extracted 3D hand pose
from the proposed method and other 3D affordance baselines [32, 174] on
the HOI4D dataset.
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Figure 6.14: Visualizing more comparisons of the extracted 3D hand pose
from the proposed method and other 3D affordance baselines on the EPIC-
KITCHEN dataset.
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Figure 6.15: Visualizing the ablation of ContentNet for its LDM-based and
GLIDE-based implementations (Sec 6.5.2).
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Figure 6.16: Visualizing more layout editing results.
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Figure 6.17: Visualizing more results of heatmap-guided synthesis.
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Crops

Input Predicted  3D poses transferred to scene

Figure 6.18: Visualizing more scene integration results with the individual
prediction from crops.
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Chapter 7

Generative Hand-Object Prior for
Reconstruction and Prediction

While we have explored data-driven approach to the problem of reconstruc-
tion (Chapter 3, 4, 5) and prediction (Chapter 6) separately, in this chapter,
we explore if a single generic data-driven prior can be used to aid both recon-
struction and prediction. The insight is that knowing the general 3D struc-
ture of hand-object interaction can be beneficial for both tasks. For example,
imagine holding a bottle, or a knife, or a pair of scissors. Not only can you
picture the differing shapes of these objects e.g. a cylindrical bottle or a flat
knife, but you can also easily envision the varying configurations your hand
would adopt when interacting with each of them. Even though the form of
these hand-object interactions may vary widely depending on factors such
as geometry (e.g. we will hold a pen and a pan rather differently), or intent
(e.g. passing a knife vs. using it to cut), we humans can effortlessly picture
such interactionswith everyday objects in our daily lives. In this chapter, our
goal is to build a computational system that can similarly generate plausible
hand-object configurations.

Specifically, we learn a denoising diffusion-based generative model that
captures the joint distribution of both hand and object during interaction in
3D. Given a category-conditioned description e.g. ‘a hand holding a plate’,
our generative model can synthesize both, plausible object shape as well as
the relative configuration and articulation of the human hand (see Fig. 7.1
top). A key questionwe address is thatwhat are goodHOI representations for
the model. While objects shapes are typically described via spatial (signed)
distance fields, human hands are commonlymodeled via a parametric mesh
controlled by an articulation variable. Instead of modeling these disparate
representations in our generative model, we propose a homogeneous HOI
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Figure 7.1: G-HOP can generate plausible hand-object interactions across
a wide variety of objects (top). The learned generative prior can also guide
inference for tasks such as reconstructing everyday interaction clips and syn-
thesizing human grasps given object meshes.

representation and show that this allows learning a 3D diffusion model that
jointly generates the hand and object.

In addition to enabling synthesis of diverse plausible hand and object
shapes, our diffusion model can also serve as a generic prior to aid infer-
ence across tasks where such a representation is a desired output. For exam-
ple, the ability to reconstruct or predict interactions is of central importance
for robots aiming to learn from humans, or virtual assistant trying to aid
them. We consider two well-studied tasks along these lines: i) reconstruct-
ing 3D hand-object shapes from everyday interaction clips, and ii) synthe-
sizing plausible human grasps given an arbitrary object mesh. To leverage
the learned generative model as a prior for inference, we note that our dif-
fusion model allows computing the (approximate) log-likelihood gradient
given any hand-object configuration. We incorporate this in an optimization
framework that combines the prior likelihood-based guidance with task-
specific objectives (e.g. video reprojection error for reconstruction) or con-
straints (e.g. known object mesh for synthesis) for inference.

While understanding hand-object interactions is an increasingly popular
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E(O)Latent Object SDF

Figure 7.2: Method Overview of Generative Hand-Object Prior: Hand-
object interactions are represented as interaction grids within the diffusion
model. This interaction grid concatenates the (latent) signed distance field
for object and skeletal distance field for the hand. Given a noisy interaction
grid and a text prompt, our diffusion model predicts a denoised grid. To
extract 3D shape of HOI from the interaction grid, we use decoder to decode
object latent code and run gradient descent on hand field to extract hand
pose parameters.

research area, real-world datasets capturing such interactions in 3D are still
sparse. We therefore aggregate 7 diverse real-world interaction datasets re-
sulting in long-tailed collection of interactions across 157 object categories,
and train a shared model across these. To the best of our knowledge, our
work represents the first such generative model that can jointly generate
both, the hand and object, and we show that it allows synthesizing diverse
hand-object interactions across categories. Moreover, we also empirically
evaluate the prior-guided inference for the tasks of video-based reconstruc-
tion and human grasp synthesis, and find that our learned prior can help
accomplish both these tasks, and even improve over task-specific state-of-
the-art methods.

7.1 Method

We first seek to model the joint distribution of the geometry of hand-object
interactions p(O,H|C) where C is the text of an object category. We use a
diffusion model Ψ (Section 5.1) to learn this generative prior, and propose
a spatial interaction grid representation for learning (Sec. 7.1.1). We then
apply this learned prior to guide reconstruction frommonocular video clips
and human grasp synthesis (Sec. 7.1.2). For both tasks, we frame inference
as test-time optimization that combines task-specific constraints/objectives
with score “distillation” from the pre-trained diffusion model.
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7.1.1 Generative Hand-Object Prior
In this work, we propose ‘interaction grids’ as a homogeneous HOI repre-
sentation that allows the diffusion models to effectively reason about the
3D hand-object interactions. Specifically, an interaction grid (Fig. 7.2) is a
concatenation of a latent signed distance value grid representing the object
E(O) and a ‘skeletal distance’ field based grid parameterized by 3D hand
pose H(θ), i.e. x ≡ (E(O), H(θ)). We model the interaction grid in a nor-
malized hand-centric frame, where the hand palm always faces upwards.
The hand-centric frame more effectively captures the inherent structures of
interaction common to various objects, such as grasping handles, regardless
of whether the object is a kettle or a power drill [232].
Latent Object Signed Distance Field. We use a signed distance field
(SDF) grid to capture object details. As the memory grows cubically with
grid resolution, we follow prior works to use a VQ-VAE [208] to compress
high-resolution SDFgrids into lower-dimension object latent. z = E(O),O =
D(z). Note that when training the autoencoder, the object SDF grids are also
transformed into hand-centric frame.
Skeletal distance field for Parametric Hand. While there is consensus on
how to represent objects, it is unclear what is a good representation of hand
during interaction. Many prior works generate hand/human shape by dif-
fusing in the compact pose parameter space [95,202] but we find this space
not ideal whenwe diffuse it jointly with objects latent grids (see supplemen-
tary) probably because the diffusion model cannot easily to reason about
spatial interactions using this heterogeneous representation (1D articulation
vector and 3D SDF grid). Instead, we propose to represent hand in a pose-
parameterized distance field H(θ). It is a 15-channel 3D grid that encodes
the distance to each joint. H(θ)[u, v, w]i=1:15 ≡ ∥X[u,v,w] − Ji∥22. This skeletal
distance field can be converted from pose parameter space and vice versa by
leveraging differentiable parametric meshmodel MANO [178]. Specifically,
MANO takes in the pose parameter and outputs joint position Ji(θ) to com-
pute the skeletal field. To recover pose parameter θ from a skeletal distance
field, we run gradient decent on pose parameter tominimize the distance be-
tween the inducedfield and the givenfield, θ∗ = argminθ(H(θ)−Ĥ)+w∥θ∥22.
Denoising Diffusion Model. In training, the diffusion model takes in a
text embedding and a noisy 3D interaction grid xi and is supervised to re-
store the clean grid x̂0.

LDDPM[x;C] = Ei,ϵ∼N (0,I)wi∥x̂0 −Ψ(xi, i,C)∥22 (7.1)
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Figure 7.3: Reconstructing Interaction Clips: We parameterize HOI scene
as object implicit field, hand pose, and their relative transformation (left).
The scene parameters are optimizedwith respect to the SDS loss on extracted
interaction grid and reprojection loss (right).

The object distance field is in resolution 643 and the VQ-VAE downsamples
the resolution to 163 which is then concatenated with the hand skeletal field.
We implement the diffusion model as 3D-UNet with three 3D convolution
blocks. The text prompt is encoded by CLIP [168] text encoder and is passed
to the 3D-UNet by cross-attention at each block.

7.1.2 Prior-guided Reconstruction and Generation

Given the learned generative prior, we leverage it for both HOI reconstruc-
tion and human grasp synthesis. The inference in both tasks is performed
via test-time optimizationwhich is guided by distilling the learned prior. We
use score distillation sampling (SDS [161,213]) to approximate log-probability
gradients of interaction grids x from the diffusion model. Specifically, to
guide the grid to be more plausible at every optimization step, we corrupt
the current interaction grid x by a certain amount of noise and let diffusion
model denoise it. The discrepancy between this denoised prediction and the
current estimate can be be used an objective to obtain log-likelihood gradi-
ents:

∇x log p(x) ≈ ∇xLSDS[x] = Eϵ,i[wi(x− x̂i)] (7.2)

In the following section, wewill show that both reconstruction and grasp
synthesis can leverage the common optimization frameworks by instantiat-
ing task-specific parameters and constraints.
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Reconstructing Interaction Clips

Given a video clip depicting a hand interacting with a rigid object, we aim to
reconstruct the underlying 3D shape of the hand and the object. We follow
DiffHOI [233] which performs inference via a optimizing 3D scene repre-
sentation with respect to a reprojection term and a data-driven prior term.
Instead of their 2D diffusion prior which can only guide object shape infer-
ence, we substitute our learned joint 3D generative prior and show that it
leads to improved performance for video-based reconstruction.
Scene Parameters and Rendering. We adopt a similar representation as
DiffHOI [233], which decomposes the HOI scene into three parts: i) a time-
persistent object signed distance field represented by an implicit neural net-
work ϕ(·); ii) time-varying hand pose parameters θt, and iii) the relative
poses Tt

o→h between them. This scene representation can be rendered into
2D masks It by differentiably compositing renderings of the volumetric ob-
ject and hand mesh.
Prior-GuidedReconstruction. Different fromDiffHOI, our data-drivenprior
is in 3D space instead of 2D. Furthermore, our prior also models the hand
pose rather than use it as a condition, and can thus also provide gradients to
guide hand pose optimization. Specifically, to regularize the 3D represen-
tation, we query the 3D volume in the hand-centric frame to get interaction
grid for each frame and pass the grid to the pre-trained diffusion model, i.e.
xt = (E(ϕ(Tt−1

o→hXgrid)), H(θt)), where Xgrid is the coordinate of the queried
volume. Other losses are similar to [233]: the reprojection term is computed
in the mask space Lreproj = ∥It − Ît∥; other regularization include Eikonal
loss and temporal smoothness.

The optimization converges faster than previous work, perhaps because
the prior in 3D provides stronger supervision. Specifically, we optimize
15000 iterations for each video clips which takes about an hour (which is
85% faster than DiffHOI [233]).

Synthesizing Plausible Human Grasps

Given an object mesh Mo, we aim to synthesize human grasps for the ob-
ject. Formally, this corresponds to sampling from the conditional distribu-
tion p(H|O,C). While our diffusion model captures the joint distribution
of hand and object, it does not allow sampling human grasp directly given
an object. Instead, we obtain plausible grasps via a test-time optimization
approach to seek grasping modes while constraining the object to match the
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Figure 7.4: Grasp Synthesis: Weparameterize human grasps via hand artic-
ulation parameters and the relative hand-object transformation (left). These
are optimized with respect to SDS loss by converting grasp (and known
shape) to interaction grid (right).
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Figure 7.5: Dataset Statistics: number of training samples for each category
when training our generative prior. Zoom in for better view.
input. We also provide a mechanism to rank the generation by measuring
consensus between diffusion model and the grasp synthesis.
Grasp Parameters. We parameterize a human grasp by the relative pose
of the hand with respect to the objectTo→h, along with its articulation θ. We
initialize hand articulation to amean configurationwhile initializing relative
pose with a random orientation and translation.
Optimization. In order to use diffusion model to guide grasp synthesis,
we first convert the object mesh into SDF gridGo, which is then transformed

BowlCamera Hammer Mouse PliersScrewdriverTeapot WrenchSpatula

Figure 7.6: Generations from Generative Hand-Object Prior: Given a text
prompt (only showing class label), we visualize two generated interactions
from G-HOP . Categories are sorted frommost common to least common in
training (left to right). Generations are diverse in terms of object shape such
as teapots, hand articulation such as mouse, and use intent like hammer.
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from the object-centric to the diffusion model coordinate (hand-centric) by
the relative pose To→h, i.e. x = (E(To→hGo), H(θ)). We optimize the rela-
tive pose along with hand articulation for 500 iterations by maximizing the
interaction likelihood from Eq. 7.2, i.e. log p(x(To→h,θ)). To account for ac-
curacy loss when converted to low-resolution grids, we refine the predicted
handwith the originalmesh to encourage surface contact and penalizemesh
collision. We show in supplementary that the distillation provides a good
initialization for the mesh refinement while surface refinement further im-
proves contact and grasp stability.
Ranking Grasps. The proposed approach to grasp synthesis is stochastic
due to different initialization and the stochastic distillation process. Thus
diverse grasps can be sampled. Furthermore, many applications like robotic
manipulation would also want to know how plausible each grasp is. We
also propose a mechanism to evaluate the sampled grasp. We approximate
the likelihood upper bound [81] by averaging SDS loss across different time
steps i:

s(θ,To→h) = −
T∑
i=1

wi∥x(θ,To→h))− x̂i(ϵ)∥22 (7.3)

Intuitively, this measures the agreement between the prediction and the de-
noised output from the diffusion model, which indicates the distance of the
current grasp to a plausible mode. We observe that this score provides a
consistent and meaningful ranking across different samples.

7.2 Experiments
We train the generative prior on a collection of HOI datasets. We first show
data distribution on this dataset collection and then visualize samples from
the learned generative prior (Sec 7.2.1). In Sec. 7.2.2, we show that the
learnedprior benefits the task of reconstructing interaction clips. Ourmethod
outperforms other reconstruction baselines on HOI4D and we also show re-
construction of in-the-wild videos. In Sec. 7.2.3, we evaluate human grasps
that are synthesized by directly applying our learned prior. We compare
G-HOP to other baselines on two datasets and conduct user study to show
that human grasp synthesized by ours is the most preferred one.
Training Data. We train our diffusion model on a combination of sev-
eral world datasets including [13,24,33,127,199,229], using their annotated
3D meshes of hand and objects. The name of categories across datasets are
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GT Ours DiffHOI HHOR

Figure 7.7: Qualitative Evaluation on HOI4D: We show reconstruction by
G-HOP and two other video reconstruction baselines [85, 233] in the im-
age frame (left) and from another viewwith (top right) or without (bottom
right) reconstructed hand. Please see our project page for reconstruction
videos from all methods.
not standardized so we manually map synonyms or different formats to the
same word (e.g. cellphone, iphone→ phone, doorknob, door knob→ door
knob). In total, we reduce 362 different words to 155 classes. All training
data were converted into SDF grids, in hand-centric frame, with a resolu-
tion of 643 and spanning 30cm in all directions.

7.2.1 Visualizing Data-Driven Prior
We visualize the number of training samples per class in Fig. 6.3. The data
is extremely unbalanced and follows a long-tail distribution. Classes with
most training samples like mug consist of more than 10k grasps while few-
shot classes such as skillet lid consist of fewer than 100 grasps.

In Fig. 7.6, we visualize hand-object interactions generated from the learned
generative prior. We show 3 samples in different rows for each class. The
classes from left to right are sorted by the training size from more to less.
We see that the generated objects vary in shape. For example, different cam-
eras display various lengths of lens. The generated samples are also diverse
in terms ofways to hold them. Some hammers are held by handles and some
are held by heads (for hand-over). We also find that the model can generate
diverse and plausible samples on few-shot classes (shown on the right side).

7.2.2 Reconstructing Interaction clips
Setup and EvaluationMetrics. We evaluate interaction reconstruction on
the HOI4D dataset. HOI4D is an egocentric dataset recording people inter-
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Figure 7.8: In-the-Wild Reconstruction: reconstruction on interaction clips
from novel datasets [35, 68].

H
O

3D
3D

W

Sample 1 Sample 2 Sample 1 Sample 2
GT OursGraspTTA

Sample 1 Sample 2Input Object

Figure 7.9: Visualizing Grasp Generations: Given an object mesh (left)
from HO3D or ObMan, we sample two grasps from each method.
acting with different objects. We use the same split as DiffHOI [233] that
consists of 2 video clips for all portable rigid object categories. The objects
in the test set are held out from the train set. We evaluate three aspects of
the output: object reconstruction error, hand reconstruction error (MPJPE,
AUC), and hand-object alignment (CDh). Following prior works [85, 233],
we align the object reconstruction with the ground truth by scaled Itera-
tive Closest Points (ICP) and report F-score at 5mm, 10mm, and Chamfer
distance in the aligned space. To evaluate the relation between hand and
object, we report Chamfer distance of objects in hand-centric frame CDh ≡
CD(Tt

o→hO, T̂
t
o→hÔ).

Baselines. Wecomparewith three other template-free baselines that tackle
reconstruction from casual monocular interaction clips.
i) iHOI [232] is a single-view 3D reconstruction method that learns to map
from image feature andhand articulation to in-handobject shape. Themodel
is finetuned on HOI4D and reconstruction is evaluated per-video frame.
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Table 7.1: ComparingHOI reconstruction: object error (F@5mm, F@10mm,
CD), hand-object alignment CDh, and hand error (MPJPE, AUC) onHOI4D.
We compareG-HOP with baselines and also ablate if reconstruction benefits
from priors in the 3D space or from joint modeling hand and object.

Object Error Align Hand Error
F5↑ F10↑ CD↓ CDh ↓ MPJPE↓ AUC↑

iHOI [232] 0.42 0.70 2.7 27.1 1.19 0.76
HHOR [85] 0.31 0.55 4.7 165.4 - -
DiffHOI [233] 0.62 0.91 0.8 48.7 1.12 0.78
G-HOP 0.76 0.97 0.4 18.4 1.05 0.79

G-HOP(Cond) 0.66 0.92 0.7 19.3 1.14 0.77

ii) HHOR [85] optimizes a hand-object field with respect to the input video
without any data-driven prior.
iii)DiffHOI [233] is closest to our work. Themain difference is that the prior
in their work takes hand pose as input thus modeling the conditonal proba-
bility p(π(O)|π(H), C). Additionally, their prior is an image-based diffusion
model instead of a 3D diffusion model.
iv) G-HOP (Cond) is our ablated models that is conditioned on hand pose
and text prompt (same as DiffHOI but with 3D backbone). It aims to disen-
tangle the effect of upgrading the prior from 2D to 3D from modeling joint
instead of conditional probability.
For fair comparison, our diffusion model for HOI4D evaluation only trains
on HOI4D train split. All other experiments use the model trained on all
datasets.
Results. Wevisualize reconstructions fromdifferentmethods in Fig. 7.7 in
the image frame and from a novel viewpoint. HHOR, which does not lever-
age data-driven learning, struggles with unobserved regions and outputs
degenerate solutions as shown from the novel view. While iHOI reconstructs
better shapes for each frame, there are not temporally consistent (shown in
supplementary video) and it cannot benefit from multi-view cues. In com-
parison, DiffHOI reconstructs temporally consistent and more realistic re-
sults, but the reconstructed shape is relatively coarse. For instance, the ket-
tle handle is merely a bump on top of a cylinder and the reconstruction does
not reflect the concavity of the mug. In contrast, the reconstruction from
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OursGraspTTA

Front Back Front Back

Figure 7.10: Contact Map on Hand: We visualize contact probability on
hand over all generated samples from G-HOP and GraspTTA [90] on the
HO3D dataset.
G-HOP captures more details of object shape. In the bottom row, it even
captures the space between the handle and the cup body. The visualization
is consistent with the quantitative results in Tab. 7.1. Furthermore, we also
find that the hand pose reconstruction also improves since the prior in G-
HOP can also guide hand pose as well.

Ablations. Comparing with the ablated 3D conditional model (Tab. 7.1),
we find that upgrading 2D prior to 3D improves object reconstruction sig-
nificantly but does not improve hand reconstruction much. Joint modeling
leads to better hand pose, which can in return improve object reconstruction
further. Interestingly, we also find that the variant that jointly models HOI
in image space performs even worse than DiffHOI. See appendix (2D joint
prior) for further discussion.

Figure 7.11: Comparison with Baselines: Preference percentages from
users for pairwise method comparison on HO3D and ObMan.
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Table 7.2: Comparison with Baselines: We compare our synthesized
human grasps against GraspTTA [90] and annotated grasps provided by
datasets (GT) on HO3D and ObMan. We report table the intersection be-
tween meshes, displacement distance in simulation, and hand contact ratio
and area.

Intersection Disp. Contact
maxD↓ avgD↓ vol↓ avg ↓ ratio↑ area↑

H
O3

D GT 1.32 0.37 6.16 2.32 0.95 0.15
GraspTTA 2.44 0.61 5.25 2.89 1.00 0.23
G-HOP 1.84 0.31 11.46 0.95 1.00 0.23

Ob
M
an GT* 0.98 0.74 1.70 1.57 1.00 0.12

GraspTTA 0.87 0.58 5.56 1.54 1.00 0.18
G-HOP 0.74 0.51 17.40 1.85 0.93 0.25

7.2.3 Synthesizing Plausible Grasps

Setup and Evaluation Metrics. We evaluate human grasp synthesis on
two datasets [68,73]. HO3D is a real-world HOI dataset whose objects come
from the YCB dataset [15], which has appeared in our training data. To test
the generalization ability to novel objects, we also evaluate on a subset of
3D Warehouse used in Hasson et al. [73] (ObMan). It is a synthetic dataset
that our prior has never seen in training. Following prior work [90, 96], we
evaluate grasp quality by 1) the amount of intersection between hands and
objects (mean volume, maximum and mean depth), 2) the displacement of
objects when placed into simulation [34], and 3) the contact hand region
(ratio and area, where ratio is the percentage of grasps that have non-zero
contact area). There is a trade-off between contact/simulation displacement
and intersection. While the metrics characterize the grasp quality, no single
metric alone is conclusive on grasp synthesis. So we also conducted a user
study. We show users two human grasps randomly chosen from two meth-
ods and ask them to select their preferred one. We collected 440 and 380
answers from 22/19 users on HO3D and ObMan accordingly.
Baselines. We compare with baseline GraspTTA [90] which is trained on
in-domain data (ObMan with annotated grasps). It learns to generate con-
tact maps on hand and object which are then optimized along with hand
pose be self-consistent during test time. We also compare with ground truth
annotation in both datasets. While Grasping Fields [96] is also a representa-
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Figure 7.12: Grasp Diversity: 10 random grasps of a power drill. Although
GraspTTA generates more diverse grasps, some of them are not plausible as
they disregard object functions.
tive method for grasp generation, their evaluation setup assumes a known
object pose relative to the hand unlike ours, and randomizing this relative
pose significantly affects their performance. We detail this further and re-
port our results under their evaluation setting in supplementary.
Results. Fig. 7.9 visualizes two human grasp synthesis from each method
for a given object. Annotated grasps (GT) in two datasets display differ-
ent grasping styles. Semi-automatically generated grasps [73] sometimes
do not look natural and tend to “over-grasp” as they are generated to max-
imize stability. GraspTTA is trained on the same dataset and shows similar
over-grasp behavior while our grasps appear more natural. In contrast, G-
HOP grasps objects from different directions while all of the synthesized
hands make contact with the objects.
Grasp Diversity. We calculate the mean of standard deviations of hand
vertices σ from 100 generations per object in the object/hand-centric frame
on HO3D in Fig. 7.12. All methods show comparable diversity in the object-
centric frame but both methods can improve on the diversity of finger ar-
ticulation. Note that standard deviation on its own is not a good metric as
diverse samples may be implausible or ignore object affordance as visual-
ized.
Grasp Characteristic. Fig. 7.10 visualizes the overall contact probabil-
ity on hand across all generated grasps. The contact region of GraspTTA
is centered at fingertips and (implausibly) even at the nail region shown
on the back of the hand. Contact regions from G-HOP are distributed on
both fingers and palm, which is more consistent with how humans use their
hands [11].
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Table 7.3: Ranking Grasps: plausibility on HO3D over all grasps, along
with the top and bottom 10% grasps ranked by G-HOP.

maxD↓ avgD↓ vol↓ disp ↓ ratio↑ area↑
G-HOP (top 10%) 1.74 0.31 10.57 0.71 1.00 0.22
G-HOP (all) 1.84 0.31 11.46 0.95 1.00 0.23
G-HOP (bottom 10%) 1.87 0.33 13.11 1.41 1.00 0.23

Figure 7.13: Ranking Grasps: We visualize grasps with two highest scores
(top) and two lowest scores (bottom) among 100 generated grasps from G-
HOP.

Tab. 7.2 also reflects the same characteristics. AlthoughG-HOPhas higher
intersection volume, it has lowest average intersection depth and largest con-
tact area. It also achieves the best performance in terms of grasp stability
on HO3D and comparable results on out-of-domain ObMan objects. In user
studies, G-HOP is preferred against allmethods on both datasets, evenwhen
comparing with ground-truth.
Ranking Grasps. Finally, we show that the proposed grasp score yields
meaningful grasp ranking. In Fig. 7.13, we visualize top 2 and bottom 2
grasps out of 100 generations from G-HOP, evaluated by the proposed eval-
uationmethod. The rankingmatches human’s common sense. For example,
power drills are often held in the middle; narrow side of bottles is often held
upwards. Physically infeasible grasps are ranked low such as hands pen-
etrating the mug. Furthermore, the worst two grasps out of 100 are still
reasonable in most cases. Note that all the grasps we show to users are
randomly chosen for fair comparison. Quantitatively, top-ranked grasps in
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Tab. 7.3 show reduced simulation displacement and less intersection, vali-
dating our ranking approach’s efficacy.

7.3 Discussion
In this chapter, we propose a method to jointly generate 3D shape of HOI
given an object category. Ourmethod is the first to generate HOI across such
diverse categories. The learned prior G-HOP can serve as generic prior for
relevant tasks like reconstructing interaction clips and human grasp synthe-
sis, and we find that it leads to better performance than current task-specific
baselines. Despite the encouraging results, we are aware of several limita-
tions: current method requires category information as input which may
prevent the model from further scaling up; there is no explicit mechanism
to guarantee contact; and the model is still not at a scale comparable to gen-
erative models in other domains due to limited training data. Nevertheless,
we believe that our work takes an encouraging step towards scaling up a
general understanding of hand-object interactions.

7.4 ImplementationDetails andAdditionalResults
In the supplementary materials, we provide more implementation details
and experimental results on the generative hand-object prior, prior-guided
reconstruction, as well as prior-guided grasp synthesis. We discuss network
architecture (Sec. 7.4.1), effect of hand representation (Sec. 7.4.1), how to ex-
tract hand pose from skeletal distance field (Sec. 7.4.1), and the text prompt
we used (Sec. 7.4.1). Then, we show implementation details in reconstruct-
ing interaction clips and per-category results in Sec. 7.4.2. Furthermore, we
analyze the effect of mesh refinement in grasp synthesis and discuss com-
parison with prior work Grasping Field [96] in Sec. 7.4.3.

7.4.1 Hand-Object Prior
Network Architecture

We use the same network architecture of latent autoencoder and 3D UNet
diffusion model backbone as in SDFusion [27]. The 3D UNet backbone
consists of several residual blocks. Each block is a stack of GroupNorm
layer [223], non-linear activation [44], and 3D convolutional layer, with op-
tional cross attention layer to time embedding and text embedding. We pro-
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vide an overview of network details and hyperparameters of our model in
Tab. 7.4.

G-HOP
z-shape 163 × 3
|Z| 8196
Input Channel 3 + 15
Diffusion Steps 1000
Noise Schedule linear
Channels 64
Number of Blocks 3
Attention resolutions 4,2
Channel Multiplier 1,2,3
Number of Heads 8
Transformers Depth 1
Batch Size 64
Iterations 500k
Learning Rate 1e-4

Table 7.4: Network architecture for G-HOP.

Ablating Skeletal Distance Field

Manypreviousworks [95,202] learn adiffusionmodel in the compact hand/human
pose parameter space. We try to represent hand shape by hand pose param-
eters but find that this pose space is not optimal for jointly diffusing hand
pose and objects in interaction. More specifically, the ablated method (pose
parameter space) uses the same architecture as the main model except for
the (noisy) pose parameter is passed via cross-attention layer instead of con-
catenating skeletal distance field to the object latent grid. We also search hy-
perparameters such asweights in DDPM loss to balance diffusing hand pose
and diffusing object latent. We visualize the best ablated model in Fig. 7.14
in comparisonwith our proposedmodel that represent hand shape by skele-
tal distance field. The diffusion model with pose parameter space struggles
to generate plausible hand articulation together with objects. This is prob-
ably because the diffusion model is hard to reason about interaction in the
heterogeneous space (1D hand pose and 3D object grids).
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Figure 7.14: Comparing Hand Representation in Generative Hand-Object
Prior: Top 2 rows show the diffusion model that represents hand shape as
pose parameters; bottom 2 rows show the diffusion model (ours) that rep-
resents hand shape as skeletal distance field. The homogeneous grid space
is easier for the network to reason about interaction.

Hand Pose from Skeletal Distance Field

Our proposed diffusion model generates skeletal distance field, from which
hand pose parameters can be extracted. Given a target skeletal distance field
Ĥ , we optimize hand pose θ such that its induced field is closer to the target,
i.e. θ∗ = argminθ(H(θ) − Ĥ)2 + w∥θ∥22. We set w to 1e-5 and optimizes for
1000 steps with Adam optimizer [100] with learning rate 1e-2.

Text Prompt Template

We use the template “a hand holding a {category}” to convert category into
a text prompt. In addition, we find that appending additional category at-
tribute like size and shape beneficial when we scale up the number of cate-
gory (see results in Sec. 7.4.2). It may be because attributes help to transfer
information between categories with similar shapes but distinct semantics,
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Table 7.5: Comparing Object Error of HOI Reconstruction on HOI4D.
Mug Bottle Kettle Bowl Knife ToyCar mean

F5↑ F10↑ CD↓ F5↑ F10↑ CD↓ F5↑ F10↑ CD↓ F5↑ F10↑ CD↓ F5↑ F10↑ CD↓ F5↑ F10↑ CD↓ F5↑ F10↑ CD↓
iHOI [232] 0.44 0.71 2.1 0.47 0.77 1.5 0.21 0.45 6.3 0.38 0.64 3.1 0.33 0.68 2.8 0.66 0.95 0.5 0.42 0.70 2.7
HHOR [85] 0.18 0.37 6.9 0.26 0.56 3.1 0.12 0.30 11.3 0.31 0.54 4.2 0.71 0.93 0.6 0.26 0.59 1.9 0.31 0.55 4.7
DiffHOI [233] 0.64 0.86 1.0 0.54 0.92 0.7 0.43 0.77 1.5 0.79 0.98 0.4 0.50 0.95 0.8 0.83 0.99 0.3 0.62 0.91 0.8
G-HOP 0.62 0.93 0.7 0.93 1.00 0.2 0.64 0.96 0.6 0.66 0.96 0.5 0.91 0.99 0.2 0.78 0.98 0.3 0.76 0.97 0.4
G-HOP(Cond) 0.57 0.87 1.0 0.74 0.98 0.4 0.46 0.83 1.3 0.47 0.84 1.1 0.95 1.00 0.1 0.74 0.98 0.4 0.66 0.92 0.7
G-HOP(2D) 0.54 0.80 1.3 0.26 0.58 2.5 0.46 0.85 1.1 0.35 0.57 6.4 0.21 0.68 1.9 0.79 0.97 0.3 0.43 0.74 2.3

e.g. pens and spoons are all thin sticks. We use LLM [151] to generate at-
tribute automatically. We list text prompt we used in Tab. 7.11.

Table 7.6: Comparing Hand Error of HOI Reconstruction on HOI4D.
Mug Bottle Kettle Bowl Knife ToyCar mean

MPJPE↓ AUC↑ MPJPE↓ AUC↑ MPJPE↓ AUC↑ MPJPE↓ AUC↑ MPJPE↓ AUC↑ MPJPE↓ AUC↑ MPJPE↓ AUC↑
iHOI [232] 1.10 0.78 1.09 0.78 1.11 0.78 1.23 0.76 1.39 0.72 1.20 0.76 1.19 0.76
DiffHOI [233] 1.06 0.79 1.01 0.80 1.07 0.79 1.21 0.76 1.33 0.73 1.04 0.79 1.12 0.78
G-HOP 1.02 0.80 0.97 0.81 0.98 0.81 1.09 0.78 1.20 0.76 1.02 0.80 1.05 0.79
G-HOP(Cond) 1.08 0.78 1.06 0.79 1.09 0.79 1.18 0.76 1.34 0.73 1.11 0.78 1.14 0.77
G-HOP(2D) 1.10 0.78 0.97 0.81 1.06 0.79 1.24 0.75 1.24 0.75 1.07 0.79 1.11 0.78

Table 7.7: Comparing Hand-Object Alignment (CDh ↓) of HOI Recon-
struction on HOI4D.

Mug Bottle Kettle Bowl Knife ToyCar mean

iHOI [232] 19.7 13.9 35.9 49.3 21.9 21.6 27.1
HHOR [85] 229.1 172.0 100.4 50.1 185.1 255.8 165.4
DiffHOI [233] 18.1 15.3 42.2 101.8 91.6 23.3 48.7
G-HOP 12.4 9.7 41.8 26.2 13.2 7.5 18.4
G-HOP(Cond) 10.2 6.9 40.7 10.4 39.1 8.5 19.3
G-HOP(2D) 14.5 33.6 61.6 71.0 141.7 38.8 60.2
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Table 7.8: Additional Ablation Studies of HOI reconstruction: We report
object error (F@5mm, F@10mm, CD), hand-object alignment CDh, and hand
error (MPJPE, AUC) on HOI4D. We analyze the effect of other implementa-
tion details, including dynamic noise thresholding and choice of text prompt
templates.

Object Error Align Hand Error
F5↑ F10↑ CD↓ CDh ↓ MPJPE↓ AUC↑

G-HOP 0.76 0.97 0.4 18.4 1.05 0.79
Ub = 0.25 0.69 0.95 0.5 50.0 1.01 0.80
Ub = 0.75 0.49 0.76 4.0 48.1 1.06 0.79
G-HOP (G) w/ attr 0.65 0.92 0.7 17.8 1.06 0.79
G-HOP (G) wo/ attr 0.61 0.89 0.8 24.6 1.04 0.79
7.4.2 Reconstructing Interaction Clips

Following prior work [233], we evaluate reconstruction on two sequences
per category on HOI4D.We report mean performance per category in terms
of object error (Tab. 7.5), hand error (Tab. 7.6), and their alignment (Tab. 7.7).
In addition to baselines and ablations reported in main paper, we also ana-
lyze the effect of other implementation details as follows:

DynamicNoise Threshold. The amount of injected noise in SDS has large
impact on the guidance effect. We find that thin structures are better cap-
tured when adding a smaller noise while thick structure are better captured
when adding larger noise. We use an adaptive noise scheduler that dynam-
ically adjusts the maximum amount of noise Ub, i ∼ U [Ua, Ub] based on the
current object shape. More specifically, it is a linear interpolation based on
minimal object SDF value in the current representation, i.e.

Ub =
s− smin

smax − smin

Ubmax + (1− s− smin

smax − smin

)Ubmin

s = clamp(minO[Xgrid], smin, smax)

In our experiment, we set Ubmax = 0.75, Ubmin = 0.25, smin = −0.2, smax =
−0.01. As reported in Tab. 7.8, our dynamic noise threshold leads to better
performance than constant noise threshold.
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Figure 7.15: 2D Joint Prior (DiffHOI-J): reconstruction and grasp synthesis
results guided by 2D joint prior.

Scaling Up Number of Categories. For fair comparison, we use the dif-
fusion model that only trains on HOI4D dataset to reconstruct interaction
clips. In Tab. 7.8„ we also compare with the generalist model (G-HOP (G) )
that trains on all seven datasets. Note that we use G-HOP (G) in all other ex-
periments. We find that adding attribute to text prompt helps when scaling
up tomore categories. While G-HOP (G) leads to a bit worse reconstruction
performance on the HOI4D dataset than the specialist which is trained only
on HOI4D, it still outperforms other baselines.

2D Joint Prior. We trained a joint prior version of DiffHOI, or a 2D version
of G-HOP p(π(O), π(H)|C). Interestingly, we find that this cannot effectively
guide grasp synthesis or reconstruction (Fig. 7.15, Tab. 7.5-7.7). It performs
even worse than DiffHOI [233], perhaps because it is harder to learn the
distribution over object, hand, and rendering viewpoints (unlike DiffHOI
where the ‘conditioning’ informs about the hand and viewpoint).

7.4.3 Grasp Synthesis
Comparison with Grasping Field. Grasping Field [96] is a representa-
tive method that uses a conditional VAE to generate hand surface distance
field given an object point cloud. Their evaluation setup generates grasps
for known object pose with respect to hand. We evaluate G-HOP under
their setup by only optimizing hand articulation while keeping the relative
pose as the given ground truth. We denote this setting with known object
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Table 7.9: Comparison with Baselines: We compare human grasp synthe-
sis along with prior work GF [96]. * denotes GF’s evaluation setting with
known object pose.

Intersection Disp. Contact
max D ↓ avg D ↓ vol ↓ avg ↓ ratio ↑ area ↑

ObMan

GF [96]* 0.56 0.44 6.05 2.07 0.89 0.06
G-HOP* 0.97 0.70 6.39 2.03 1.00 0.13
GF [96] 0.79 0.64 43.35 1.82 1.00 0.09
G-HOP 0.74 0.51 17.40 1.85 0.93 0.25

Table 7.10: Effect of Refinement: We report human grasp synthesis before
and after mesh refinement. G-HOP† denotes generated grasps before mesh
refinement.

Intersection Disp. Contact
max D ↓ avg D ↓ vol ↓ avg ↓ ratio ↑ area ↑

ObMan G-HOP† 0.74 0.57 8.25 3.87 0.82 0.12
G-HOP 0.74 0.51 17.40 1.85 0.93 0.25

HO3D G-HOP† 1.84 0.31 11.46 0.95 1.00 0.23
G-HOP 2.42 0.68 7.55 2.48 0.99 0.20

pose as *. G-HOP also benefits from well initialized object poses as con-
tact ratio increases to 100%. Our contact area reduces probably because the
given object pose are obtained fromGT grasps that usesmore finger tips and
thismakes the human hand palm harder tomake contact. We also show that
randomizing the relative pose (our evaluation setup) significant affects their
performance, as visualized in Fig. 7.16. Note that GF gets large intersection
volume but less intersection depth. This is because the latter is only calcu-
lated on each hand vertices inside of the object. For example, in the second
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GF (random object pose) GF* (known object pose)

Hand surface MANO hand Hand surface MANO hand

Figure 7.16: GF assumes known object pose when evaluating. Randomizing
object pose affects their performance.

row of Fig. 7.16, the knife penetrates hand, leading to high volume. But the
maximum intersection depth for each hand vertices is less than the thickness
of the knife.

Effect of Refinement After optimizing human grasps with respect to SDS
loss using object SDF grid, we also do a light-weight mesh refinement by
replacing the object SDF grid with the original mesh. It is to account for loss
of accuracy during mesh conversion. We use the same objectives in previ-
ous work [73, 232] that encourage contact and discourage penetration. We
denote the generated grasps before mesh refinement as † and report its per-
formance on two datasets in Tab. 7.10. Even without mesh refinement, the
generated grasps also have large contact area and less displacement in sim-
ulation. The refinement process can adjust hand pose to further improves
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G-HOP † G-HOP G-HOPG-HOP †

Figure 7.17: Effect of Mesh Refinement: We visualize synthesized grasps
before (G-HOP†) and after (G-HOP) refinement.

the contact and grasp stability.

User Study Interface

Fig. 7.18 shows the user interface for evaluating the generated grasps. Users
are presented two grasps visualized from different view angles as gif and
are asked to choose the more plausible grasps.
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Figure 7.18: User Study Interface: Wevisualize user study interface includ-
ing the user instruction page and the survey page.
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Table 7.11: We provide list of class names and their attributes used in
the text prompt. The class names are manually merged across different
datasets while the attributes are automatically generated by large language
model [151].

Class Attribute
plate medium, flat, circular
baseboard big, long, rectangular
stamp small, flat, square
laptop big, flat, rectangular
funnel medium, conical
spatula medium, flat, elongated
pear small, pear shaped
lemon small, oval
stick varies, cylindrical, long
cylinder varies, cylindrical
mug medium, cylindrical, handle attached
flute medium, cylindrical, long
shield big, curved, oval or round
floor big, flat, rectangular or irregular
mouse medium, oval, handheld
fish varies, animal shaped
screw driver medium, cylindrical, elongated
pen small, cylindrical, elongated
hair dryer medium, elongated, handheld
burger medium, cylindrical, stacked layers
paint roller medium, cylindrical, handheld
power saw big, elongated, handheld or standalone
bottle medium, cylindrical, narrow neck
pump varies, mechanical, various shapes
flask medium, cylindrical or conical, narrow neck
sheet big, flat, rectangular
hand bag medium, varies, handle attached
stapler medium, rectangular, handheld
gummy small, animal or object shaped
fork small, elongated, tines at one end
wood varies, solid, various shapes
chopsticks small, cylindrical, elongated
strawberry small, heart-shaped
cupmod medium, cylindrical, handle attached
spray medium, cylindrical, nozzle at top
crate big, cuboid, open structure

Continued on next column
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Continued from previous column
Class Attribute
microwave big, rectangular, box-like
headphone medium, round or oval, worn over ears
apple small, round, stem at top
backpack big, varies, straps attached
brick medium, rectangular, solid
wood plank big, flat, rectangular
tv big, flat, rectangular
rubiks small, cubical, multicolored faces
carpet big, flat, rectangular or oval
container varies, solid, various shapes
lego small, rectangular or square, connecting knobs
jar medium, cylindrical or oval, lid on top
oven big, box-like, door at front
mixer big, varies, mechanical
train big, cylindrical, long
teddy bear medium, animal shaped, soft
chess rook small, cylindrical, castle-shaped top
binoculars medium, cylindrical, two lenses
pencil mod small, cylindrical, elongated
knife medium, flat, sharp edge
tin medium, cylindrical or rectangular, lid on top
light tube medium, cylindrical, elongated
ball small, spherical
cupcake small, cylindrical, rounded top
spoon small, oval or round, handle attached
chalk small, cylindrical, elongated
light bulb small, round, screw base
case varies, box-like, lid or zipper
peg test varies, varies, testing equipment
piggy bank medium, animal shaped, slot on top
kettle medium, rounded, spout and handle
wrench medium, elongated, adjustable jaw
bacon small, flat, elongated
purse medium, varies, handle or strap
boat big, elongated, hollow
disk small, flat, circular
game controller medium, ergonomic, buttons and joysticks
keyboard medium, flat, rectangular
trowels medium, flat, handle attached
shovel big, flat, long handle
eye glasses small, oval or round, frame with lenses
stanford bunny small, animal shaped, 3D model
camera medium, box-like, lens at front

Continued on next column
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Continued from previous column
Class Attribute
rifle big, elongated, barrel and stock
can small, cylindrical, lid on top
range big, flat or box-like, knobs and burners
toy airplane small, aerodynamic, wings attached
cube varies, cubical
tablet medium, flat, rectangular
teapot medium, rounded, spout and handle
chair big, varies, seat and backrest
beaker small, cylindrical, pouring lip
plum small, round, pit inside
triangle varies, triangular
barrel big, cylindrical, hollow
cup small, cylindrical, handle attached
toothpaste small, cylindrical, tube-shaped
bag varies, varies, handle or strap
pyramid varies, pyramidal
dice small, cubical, numbered faces
ruler small, flat, rectangular
scissors small, paired blades, handles
clamp small, C or G shaped, screw mechanism
phone medium, flat, rectangular
marbles small, spherical, glass or clay
dart small, conical, pointed tip
calculator medium, flat, rectangular
duck varies, animal shaped
chain varies, interlinked, metal
bucket medium, cylindrical, handle attached
peach small, round, pit inside
donut small, cylindrical, hole in center
flashlight medium, cylindrical, light at one end
sponge small, soft, varies
mat medium, flat, rectangular or oval
cardboard varies, flat, rectangular
scoop small, semi-spherical, handle attached
block varies, solid, cuboidal
pliers medium, paired jaws, handles
board big, flat, rectangular
shoe medium, foot-shaped, footwear
floor mate varies, flat, used for cleaning
brush varies, bristles attached, handle
alarm clock small, circular or square, time display
hood big, curved, worn over head
pot medium, cylindrical, handle attached

Continued on next column
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Continued from previous column
Class Attribute
chessboard medium, square, 8x8 squares
pillow medium, soft, rectangular
power drill medium, cylindrical, elongated
marshmallow small, cylindrical or cubic, soft
bowl medium, round, hollow
tube varies, cylindrical, hollow
frisbee medium, flat, circular
hammer medium, heavy head, handle attached
toothbrush small, bristles at end, handle
toycar small, car shaped, wheels attached
elephant big, animal shaped
tray medium, flat, raised edges
box varies, cuboidal, lid or flaps
book medium, flat, rectangular
skillet lid medium, flat or domed, handle on top
table big, flat, supported by legs
banana small, curved, elongated
padlock small, rounded or square, shackle on top
bin big, cylindrical or cuboidal, open top
blender medium, cylindrical, mechanical
pitcher medium, cylindrical, handle and spout
toilet big, bowl-shaped, plumbing fixture
wine glass small, stemmed, conical
towel big, flat, rectangular
vacuum big, cylindrical, mechanical
chips small, flat, round or oval
orange small, round, citrus fruit
microphone small, cylindrical, handheld
usb stick small, rectangular, electronic
door knob small, round, mounted on door
fryingpan medium, flat, round
watch small, round, straps attached
eraser small, rectangular or cylindrical, soft

Concluded
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Chapter 8

Conclusions

In this thesis, we explored methods that learn to infer possible 3D representations of ev-
eryday hand-object interactions from visual inputs. Although we have made progress in
pushing the boundaries of perceiving everyday human interaction, especially for generic
unknown objects, there are still many open problems to be addressed.

First, in the thesis, we primarily focus on hand interactionswith rigid objects of portable
size in quasi-static scenarios, where humans reach out to grasp objects in order to hold them
firmly. However, human-hand interactions are highly dynamic. These interactions, includ-
ing hand pose and even object states, keep changing depending on the task progress [91].
For example, making dumplings involves a series of distinct dynamics and deformations of
the dough. To model such interactions, we need to develop methods that can capture the
fine motion of hands and moments of contact, as well as to investigate better 3D represen-
tations that can respect the dynamics and deformations of the physical process.

Second, the work presented in the thesis involves only a single object and is limited to
short interactions up to a few seconds. However, human interactions come from a much
larger context, engaged with multiple objects of interest. For example, making a pour-over
coffee takes a few minutes and requires interactions with multiple objects such as a filter,
grinder, kettle, cup,etc., as well as interactions among these entities. Manually specifying
the interactions and their preconditions becomes intractable. It may involve some hierarchy
representation to model the long-term interactions at different levels of granularity and
leveraging common sense from large language models as a high-level planner to navigate
through the hierarchy [241,242].

Finally, it is a very exciting direction to apply the learned interaction priors to other
scientific domains such as robotics and biomechanics. In robotics, it is promising to use
the learned human priors to guide robot manipulations, especially for tasks that require
human-like dexterity [4,28,38,104,133,167,212]. In biomechanics, wewould like to provide
scalable methods for healthcare applications such as automatically monitoring hand usage
for patients with hand injuries, and assisting rehabilitation process. On the other side, we
also need to draw inspiration from these fields to further improve the vision systems, such
as co-designing the vision and manipulation policy for robotics [166], and leveraging well-
studied biomechanics models [43] to capture human hands better.
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