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Abstract

As collaborative robots are increasingly deployed in personal environments,
such as the home, it is critical they take actions to complete tasks consistent
with personal preferences. However, determining personal preferences
for completing household chores is challenging. Many household chores,
such as setting a table or loading a dishwasher, are sequential and open-
vocabulary, creating a landscape of almost endless a priori preferences.
Taking assistive actions in this domain means that a robot must first
determine someone’s personal preference from within this expansive space.
To do this, robots rely on people to communicate information about their
preferences.

Communication about preferences is often collected ex situ: A person is
presented with an abstract situation with several alternative solutions and
gives feedback on which solution they think they would prefer if they were
acting in situ. This feedback on the preferred solution, combined with
similar responses from multiple people in multiple situations, is then used
to train a preference model. These data can be burdensome to collect,
are based on ex situ data collection which does not guarantee alignment
with in situ preferences, and fails to capture information about changing
to preferences that may arise due to the execution of the collaboration.

In this thesis, we argue that robots can provide personalized in situ
assistance using observations of naturalistic human behaviors. In other
words, robotic assistance can be viewed as a process of value alignment
and can be achieved during task execution using observations of naturally
occurring goal-directed behaviors. To support this argument, we make
five main contributions.

First, we define assistive robotics as a value alignment problem and identify
the main components in defining such a problem: the people involved,
the space (or environment) in which the interaction takes place, and the
relative timing of the robot and collaborative partners’ actions. Second,
we introduce a dataset of naturalistic human-robot collaboration behavior
collected in a simple collaborative object rearrangement task. Third, we
use this data set to highlight the importance of continued personalization
in assistive scenarios. Fourth, we present a method for extending these
ideas to complex surface rearrangement tasks with naturalistic data using
large internet-scale pretrained multi-modal foundation models. Finally,
we present a method for continually finetuning these large foundation
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models using naturalistic in situ behaviors, demonstrating how we can
provide seamless robotic assistance from varying sources of in situ human
behavior data.
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1 Introduction

While realizing the deployment of general purpose household robots will require
significant advancements in many sub fields of robotics, a particular challenge arises
with respect to human-robot interaction: how should robots come to understand
what it is people want them to do?

People can be particular about how household chores are performed. For example,
finding the proper way to load a dishwasher has sparked myriad online debates, and a
quick trip to online forums will provide you with almost as many uses for a dishwasher
as there are uses for a multitool. This is true even though many manufacturers
provide optimal dish loading advice in their owner’s manuals [338]. This indicates
that household robots need to be flexible in the way they complete chores, allowing
individuals to express unique preferences and subsequently performing the chore in a
manner faithful to this preference. In other words: care should be taken to ensure
that the robot’s objectives align with the human’s objectives. This process, called
value alignment [113], does not regulate whether it is the robot’s preference that is
being executed or the person’s. As such, we explore algorithms that operate under
assistive value alignment which introduces an additional restriction that the robot
must identify and execute the human’s preference.

Determining people’s individual preferences for completing a task is challenge.
Population-level preferences can be captured by collecting large datasets of many
different people’s preferences. For example, by collecting ex situ preferences by
choosing a between two trajectories taken by a robot in a lunar lander game [68] or
autonomous driving scenario [267], a reward model can be developed that can be
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used to train policies that solve the underlying task (e.g. lunar lander or autonomous
driving). This approach is perhaps most notable for its success in fine-tuning large
language models with reinforcement learning through human feedback [89, 90, 91].

Due to their sample inefficiency, employing these approaches in situations where
preference data is difficult to gather, for example, determining individual preferences
for how to complete household chores, is challenging. Instead of relying on collecting
ex situ data, we propose using naturalistic in situ data. In prior work researchers have
used naturalistic behaviors such as joystick commands [138, 184] to specify objectives
in simple, non-sequential tasks, or corrective pushes to specify the trajectory a person
prefers a robot to take in motion planning tasks with specified start and end states
[185]. We propose using in situ, naturalistic behaviors due to its availability (e.g.
by recording people completing household tasks) and goal directed nature to train
algorithms that execute household chores according to personal preference.

This problem is further complicated by the fact that personal preferences in house-
hold chores can be very complex. Household chores can be modeled as rearrangement
problems [28]. This class of problems assumes access to a goal specification function
g = ϕ(s0, S

∗) that maps an initial state s0 and a solution set S∗ to a goal g. Then,
a goal-conditioned agent π(at|st, g) is tasked with transforming the state from the
initial state s0 to a goal state s∗ ∈ S∗.

While much work in this area focuses on training the policy π, we are additionally
interested in understanding how to personalize the goal specification function ϕ.
Determining this specification can be difficult for two reasons: the open vocabu-
lary and sequentially dependent nature of household rearrangement tasks and the
communication mechanism robots use to interpret value-aligned goals.

Household object rearrangement tasks operate over unique sets of objects that
differ from household to household and change over time. Additionally, people have
complex relationships with how certain items, for example, expensive crystal glasses
received as a wedding present, should be treated, making it difficult for a robot to
predetermine the objects it may encounter or what it should do with those objects
in any given task. This requires treating complex household rearrangement tasks as
open-vocabulary tasks [351], in which there is no predetermined set of objects from
which to choose. Solving such tasks typically requires developing [147] or using pre-
trained generalized feature spaces [343] that characterize objects by their attributes
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as opposed to the class in which they belong.

Adding further complication is that solutions to household tasks can have am-
biguous sequential ordering that may induce personal preference: should plates be
made and then served during a dinner party, or should they be set first, with dinner
served table side? To account for these difficulties, we situate our work within the
domain of assistive surface rearrangement: a sequential decision making task that
expands household object rearrangement to include under specified goal states and
mechanism for people to communicate their desired goal state.

In this thesis, we propose and investigate two main ideas: 1) that general purpose
household robots should be viewed as assistive robots that undergo a process of
assistive value alignment, and 2) the source of information that robots use to determine
people’s preferences should be task-aligned, easy to express, and readily available.

1.1 Thesis outline

To investigate these ideas we divide our work into seven chapters. First, we give
an overview of related and background work in Chapter 2. Then, we introduce the
concept of assistive robotics as an assistive value alignment problem in Chapter 3,
then explore the feasibility of collecting naturalistic data in assistive robotics tasks
in Chapter 4, which we use to identify the need for personalized solution sets in
rearrangement problems in Chapter 5. Following this we scale our problem space up
to complex rearrangement tasks and determine the efficacy of using large foundation
models to serve as personalized solution sets and goal specification functions in
Chapter 6, after which we present an algorithm to continually fine-tune abstract
preference representations (such as those given by large foundation models) using
naturalistic behaviors in Chapter 7. Finally, we conclude with a discussion on the
generalizability of the ideas presented in this research and open question and future
directions for developing household robots that perform assistive value alignment
from naturalistic behaviors in Chapter 8. These chapters are summarized below.
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1.1.1 Background and related work

In Chapter 2 we outline the background and related work necessary to contextualize
our research. We first begin with a discussion on human behaviors in human robot
collaborations. We then formalize household tasks as object rearrangement problems,
and discuss the various problem formulations we will use for the remainder of the thesis.
Here, we present the various assumptions for each of our major contributions. Then,
we formalize household rearrangement tasks as cooperative inverse reinforcement
learning tasks. Finally we discuss various ways to represent states and actions as
features for use in collaborative rearrangement problems that utilize large foundation
models.

1.1.2 Components of robotic assistance: people, space, and
time

Chapter 3 introduces our first contribution, which is to define assistive robotics as
an assistive value alignment problem. We support this through a comprehensive
review of the literature on assistive robotics research. Additionally, we identify three
crucial components that determine an assistive system: the people involved in the
assistive interaction, the space or environment in which the interaction takes place,
and the time at which the human and robot partner’s actions affect the environment.
By identifying these components, researchers should be able to identify and resolve
ambiguities that can arise during assistive value alignment. This work was drawn
from our publication in Frontiers in Robotics and AI [221].

1.1.3 Human behavior during simple surface rearrangement
tasks

Next, to determine the feasibility of using and collecting in situ, naturalistic behaviors
for assistive surface rearrangement, we collect a suite of such behaviors in Chapter 4.
Our dataset, called HARMONIC, is situated in a simple surface rearrangement task
that represents an assisted eating task. In this work, we assume a goal specification
function and define the state st, as being comprised of the robot’s position xt and the
estimate of the user’s goal b(g) (a choice from among three possible goals). The robot’s
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task is to observe the user’s joystick actions aht and use this information to update its
estimate of the user’s goal. After it is updated, the robot can use its estimate of the
user’s goal to determine an action art that moves the robot’s position closer to the
estimated goal. The task is complete when a single goal has been reached. During this
time, the user exhibits myriad other behaviors that could indicate their goal choice,
such as eye gaze, body position, and electromyographic signals. In HARMONIC,
we collect these behaviors and introduce a large dataset of synchronized in situ,
naturalistic behaviors. These behaviors can aid in the development of generalizable
feature spaces that aids in mapping naturalistic human behaviors to unspecified goals
in simple surface rearrangement tasks. This work was drawn from our publication in
The International Journal of Robotics Research [222].

1.1.4 Evidence that value alignment requires continual per-
sonalization

In Chapter 5, we use the behaviors collected in Chapter 4 to attempt to train a
generalizable feature space that could be used to perform downstream surface re-
arrangement tasks. We identify several actions people consistently perform when
controlling a robot in the HARMONIC dataset and train a model that maps natural-
istic behaviors to these action categories. We find that including multiple behavior
modalities improves performance on the activity recognition task. Moreover, however,
we find that our feature space, which was trained at a population level, has widely
varying performance when generalizing across participants, as identified through leave-
one-out validation. This indicates that while these feature spaces can be trained from
naturalistic behavior at a population level, individual differences likely necessitate
further personalization of the feature space in order to be useful for downstream
tasks.

1.1.5 Personalized feature spaces in complex surface rear-
rangement tasks

In Chapter 6 we take the evidence that we need personalized feature spaces from
Chapter 5 and aim to personalize generalizable feature spaces (parameterized by large
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foundation models) in complex surface rearrangement tasks. To this point, our work
has been situated in simple surface rearrangement tasks characterized by a closed
vocabulary and a lack of sequential dependence. Typical household tasks, however,
are open vocabulary and have ambiguous sequential dependence. To scale our work to
these types of tasks, it is imperative that we adopt a more general feature space that
can encapsulate these characteristics of household tasks. Recent work in multi-modal
foundation models trained over internet scale data has indicated that these models
may serve this purpose well [343, 347]. Combining this insight with the insights from
our previous work, namely that generalized feature spaces such as those found in
pre-trained foundation models need personalized refinement for downstream tasks,
we introduce DegustaBot.

In this work we first introduce a complex, open-vocabulary, sequentially dependent
surface rearrangement task. Then, we introduce a method to use large-scale, pre-
trained, multi-modal foundation models to solve these complex surface rearrangement
tasks in a personalized manner. We validate this method on a naturalistic dataset
of table setting examples and find that these feature spaces can be successfully
personalized along features such as relative object distance and arrangement centroid
position. Interestingly, however, we also find preliminary evidence that these seemingly
intuitive metrics may not be those that people optimize for when solving a table
top-rearrangement task. This work is currently under submission and published on
arxiv [225].

1.1.6 Continual personalization using naturalistic corrections
during surface rearrangement tasks

While Chapter 6 introduced a method for personalizing large foundation models,
we found that these methods still did not match people’s preferences exactly. To
account for this, we introduce a method for continued personalization from naturalistic
behaviors in Chapter 7. To address these shortcomings, we use insights from our
earlier work: that goal-directed in situ naturalistic behaviors can be used to specify
goals in surface rearrangement tasks. While previously our aim was to use eye
gaze and joystick controls to solve a simple surface rearrangement task, our aim
now is to use corrective actions to refine a generalized feature space. We develop a
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simulated surface rearrangement task in which the robot’s goal is to place objects into
a dishwasher according to an unknown user preference. The person can communicate
this preference during task execution by replacing incorrectly placed objects into their
correct location, i.e. take a corrective action. To make use of both the population level
model and these corrective actions, the robot policy is first trained at a population
level with an architectural bottleneck that forces the final layer of the model to be an
online linear regression. This way, the model starts with information gained from the
pre-trained feature space to initialize a linear regression model which can then be
refined online using the information gained from the corrective actions to perform
a belief update over the linear regression model. We find this to be an effective
method for fine-tuning a pre-trained feature space in simulation. This work was
drawn from our publication in The International Conference on Autonomous Agents
and Multiagent Systems [226].

1.1.7 Conclusion

Finally, we conclude our work in Chapter 8. With these five main contributions, we
show how developing assistive robots can be viewed as a value alignment problem
that can be solved by using naturally occurring goal-directed behaviors. We show this
in the context of both simple and complex surface rearrangement tasks, and introduce
several naturalistic datasets for further study into developing general purpose robots
that can assist in completing household tasks by aligning to individual preferences
and adapting to changing preferences.
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2 Background and related
work

Before presenting our investigations into whether we can use naturalistic behaviors
to provide value aligned robotic assistance, we some relevant work and background
material. We begin this discussion with an overview of various approaches for using
naturalistic human behaviors during human robot collaborations. This is followed
by an overview of rearrangement tasks in robotics and embodied AI, as well as a
formalization of household tasks as rearrangement tasks. We then cover topics related
to cooperative inverse reinforcement learning in collaborative rearrangement, and
formalize the rearrangement problem as a cooperative IRL problem. Finally, we
cover various approaches for featurizing naturalistic behaviors for use in robotics and
collaboration.

2.1 Human behaviors during human robot collab-
orations

Our main thesis statement revolves around whether or not we can use naturalistic
human behaviors to provide value-aligned robotic assistance. Toward this end, we
begin our coverage of related work with a discussion over how naturalistic behaviors
have been used for robotic control. In this section, we aim to give the reader an
overview of previous approaches for incorporating naturalistic behavior into robotics
and what types of behavior are typically used. Additionally, we discuss how researchers
have approached collecting large data sets of naturalistic behaviors in various subfields
of robotics. Finally, naturalistic behaviors can be noisy signals. Due to this, it is
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often necessary for researchers to develop explicit featurizations of these behaviors in
order to make them useful for robotics algorithms. In the final subsection, we provide
an overview of some of these techniques.

2.1.1 Naturalistic human behaviors for robotic control

Eye gaze, EMG, and body pose have all been useful signals for robotic control.
Since eye gaze is a rich signifier of intention during manipulation, both by hand
[116, 141, 165] and by robot [19], its use has been explored through numerous robotic
collaboration settings, including anticipating which object a user will request [127],
and triggering assistive aid during autonomous driving [41]. Electromyography signals
have been used for robot control [20] and task monitoring [79].

There has also been work on learning and leveraging human policies (using
keyboard input) [256, 257] and attention models (using keyboard input and eye gaze)
[356] for assisted and shared robot control in Atari games in an arcade learning
environment [31].

Additional behaviors used to specify user intent during robot control tasks include
verbal interaction [44, 316], joystick input [137, 138], or even calculated hand and
arm movements that show a robot how to complete a manipulation task [155]. While
these signals vary drastically in their modalities, all of the control signals require
calculated and deliberate actions from the participant.

2.1.2 Multimodal human behavior data sets

Data sets from human robot interaction

Multimodal data sets have attracted interest in many different communities, such as
psychology [346], computer vision [75, 95, 241, 290, 292, 293], human-robot interaction
[21, 33, 139, 286, 303], and natural language processing [26]. These data sets, though,
can be difficult to collect at a large scale. This can be due to the increasing engineering
demand required with each additionally desired modality, physically collocating robots
and humans, and the need to respect humans’ privacy rights. This leads to many
multimodal data sets that include either few participants or few data modalities. In
addition, these data sets are rarely designed to study direct, physical human-robot
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collaborations in which the human and robot act in similar spaces. HARMONIC
gives researchers the opportunity to study direct human robot collaboration in the
form of a large scale data set in both the number of available modalities as well as
the number of participants. Here, we compare how HARMONIC relates to other
multimodal human-robot interaction in order to illustrate these distinctions and the
potential use of HARMONIC.

Robots in Conversational Settings. The majority of publicly released HRI
data sets study the inclusion of robots as conversational partners. To successfully
incorporate robots as part of a social conversation, it is necessary to perceive human
behavior, understand how this relates to the conversation, and be able to synthesize
similar behavior to keep the conversation flowing smoothly. Much of this work
surrounds determining the human’s visual focus of attention (VFOA) [139, 286]. In
these works, VFOA is a discrete representation of eye gaze estimated from the user’s
head position. Other data sets are designed to capture unscripted conversations with
a robot [33] by capturing conversations through a robot’s third person video recorder.
In all of these works, no signal-specific sensors (e.g. an eye gaze camera) were used in
order to capture specific human behaviors (e.g. eye gaze).

Other conversational data sets have a linguistic focus [26]. This work designs
an interaction in which a human commands a robot to perform a specific task, and
contains many different views of the language spoken. Due to the focus on verbal
communication, this data set does not give researchers the ability to understand how
nonverbal behaviors may be utilized in order to understand the intent behind the
human’s command.

Finally, perhaps the most similar data set to HARMONIC (in terms of data
streams collected) again focuses on predicting VFOA during a conversation [303].
Unlike other works that focus on VFOA, this data set explicitly captures eye gaze
using a Tobii eye tracker [320]. Thus, this work studies how gaze changes between
structured and unstructured conversation with and without the presence of a robot.
This data set is not designed, however, to study these nonverbal behaviors in physical
collaborations.

In all of these situations, the behaviors collected for analysis are centered around
noncollaborative tasks. HARMONIC provides an opportunity to study how these
behaviors can be interpreted to provide better assistance during collaborative tasks.
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Robot as Student. The Multimodal Human-Robot Interaction Dataset [21]
is designed for interactive object learning through human guidance. This data set
presents a situation in which a human uses a small number of task specific behaviors
in order to teach the robot about object models. This data set is intended to instruct
the robot by leveraging a human’s innate teaching ability, as opposed to studying
physical human-robot collaboration.

Humans teaching robots has also been studied in psychology [346]. Here, re-
searchers studied how humans’ eye gaze patterns changed as a robot displayed gaze
patterns that were designed to emulate the gaze patterns displayed by people who
employ different styles of learning. Again, this task is different from a direct collabo-
ration, such as our shared autonomy task. Furthermore, this data set does not appear
to be publicly available.

Data sets from machine learning and computer vision

Surprisingly, our data set is similar to those from the machine learning and computer
vision communities. The tasks studied in these data sets often include non-scripted,
egocentric videos of daily activities [75], gaze prediction for egocentric videos [95],
action recognition in third person video [241, 293], relating first and third person
videos as a proxy for theory of mind [292], and learning about human social affordance
from a third person view [290]. These data sets include large amounts of potentially
relevant data for human-robot collaboration, but most importantly, they do not
contain interactions with a robot. While these data sets may be useful for an
initial understanding of human behavior, they do not provide insights into how these
behaviors manifest in human-robot collaborations.

2.1.3 Explicit featurizations of human behaviors for assisted
teleoperation

Previous work has also modeled unimodal and multimodal primitives in order to aid
in human robot co-manipulation. Uni-modal approaches have focused on recording
human behavior, generating primitives from these recordings, implementing them
as robot actions, and then testing by having a human complete the task with the
robot [32, 191]. Multimodal approaches have focused on generating primitives from
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recordings of various views of the same or similar direct control input (e.g., EMG
and human arm manipulability) in periodic tasks (e.g., sawing a board with a robot)
[237, 238]. Regardless of the modality, these approaches focus solely on the direct
control inputs.

Although these approaches have shown success, they neglect other signals that
people naturally display while engaging with the world, with no added burden to the
user. For example, previous work has shown that humans naturally elicit a wide range
of non-verbal behaviors [40, 141] when performing collaborative tasks. In particular,
eye gaze is closely related to hand movements, especially during manipulation tasks.
When reaching for an object, the gaze to that object typically precedes the hand
motion by about 600ms [165]. Gaze typically moves to the next object before the
hand reaches its target [141], and gaze rarely rests on objects that are not involved
in the current task [116].

Nonverbal behaviors have previously been used for direct control in remote robot
navigation [166], drone teleoperation [352], and human-robot comanipulation in a
table carrying task [8]. However, these approaches do not consider using naturalistic
gaze as an indirect and supplementary control method, as we do in this work.

In human robot co-manipulation, prior work has begun to characterize hand-eye
coordination when operating a robot under shared autonomy [19]. Although this
work characterized many important interactions, it did not provide formal primitives
or exhaustively analyze the relationships between joystick and eye gaze signals in a
data-driven manner.

2.2 Household tasks as object rearrangement prob-
lems

We are particularly interested in providing assistance during household tasks, such as
loading a dishwasher, setting a table, packing for a trip, or cleaning a room. Although
these tasks are diverse in the types of objects involved and how each object is used,
they all have a similar structure: each is essentially a generalized pick-and-place task.
This means that these tasks can easily be formulated as rearrangement problems [27].
We first provide an overview of various approaches to rearrangement problems in
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robotics and embodied AI, followed by a formalization of collaborative rearrangement,
which incorporates unspecified goals and continual specification through human input.

2.2.1 Object rearrangement in robotics and embodied AI

Recent advances in embodied AI have led to a flurry of benchmarks where an
embodied agent is tasked with rearranging objects in a real or simulated home
environment [27, 87, 103, 219, 222, 246, 311, 336]. However, these benchmarks have
specified goal states, as compared to our work, where the preferred object arrangement
has to be inferred from context examples.

Another line of work, focused on object rearrangement, in which target objects are
specified by pointing gestures [255], eye gaze [220], or target layouts [348] during task
execution. However, these works require manually specified target location for every
object and are hence human effort intensive. A line of follow-up work addresses this
issue by modeling preferences using learned priors about where objects are typically
placed [146, 271, 314]. However, these preferences are generic and not personalized.

Previous work on personalized object rearrangement relies on simulated or large
crowd-sourced data sets of human preferences to learn fixed latent preference vec-
tors [147] or latent preferences that can be adapted online [226], model spatial
relationships [145] or perform collaborative filtering [2]. In contrast, our approach
leverages in-context learning with large-scale pre-trained VLMs to perform per-
sonalized object rearrangement. While ours is not the first work which leverages
foundational models to perform few shot personalized rearrangement, we are first ones
to perform fine-grained preference alignment, i.e, spatial preferences. As compared to
prior works [343], which operate over a discrete preference space, that is, identifying
the correct receptacle for each object.

2.2.2 Formalizing collaborative rearrangement

To study assistive collaborations, we introduce assistive surface rearrangement. As
discussed in Chapter 1, a typical rearrangement task assumes a solution set S∗,
an initial state s0, a goal specification function g = ϕ(s0, S∗), and a single goal-
conditioned agent π(at|st, g) who moves takes action to advance the initial state s0

to a goal state s∗ ∈ S∗ by taking actions at.
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In assistive surface rearrangement, we assume there is an additional, human, agent
πh that can optionally take actions in the environment to advance the initial state
to the goal state. Furthermore, the solution set and goal specification function are
determined by the human agent and can only be observed by πr through actions
taken by πh. This means that to advance towards s∗, πr must infer the goal, the goal
specification function, the solution set or all three from the actions taken by πh.

In Chapters 4 and 5, we consider a surface rearrangement problem where the
solution set known a priori, and consists of all 6 DOF robot positions x from which
a goal g ∈ G is reachable. The goal specification function is given by the human,
who chooses a particular g in advance of the task. The robot must estimate g using
observations of the person’s behavior through actions taken on a joystick.

In Chapter 6 and 7 we consider a rearrangement problem where the solution set,
goal, and goal specification function are all known only to the person in advance of
the task and must be inferred (implicitly or explicitly) by πr. The state s = [O,L, o, l]
consists of a set of objects that can be placed O, the objects that have been placed
oi ∈ O, the locations in which an object can be placed L, and the locations at which
an object has been placed li ∈ L, where l ∈ R2.

In Chapter 6, the state is represented as images and language. In Chapter 7, the
state is represented symbolically. In both chapters, a robot policy, parameterized by
a neural network, must estimate s∗ by observing prior demonstrations of the task
as completed by πh. In Chapter 7, we also consider observations of actions that πh
takes during the execution of the task.

2.3 Cooperative inverse reinforcement learning for
collaborative rearrangement

After formalizing household tasks as collaborative rearrangement tasks, we still need
a method for using naturalistic behaviors to specify people’s goals. For this, we use
the idea that people’s in-situ behaviors are goal-oriented [22]. This means that we
can use the behaviors people exhibit while they are performing a task to infer their
goal. We provide an overview of how previous work has approached this and then
formalize solutions to collaborative rearrangement as a solution to a cooperative
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inverse reinforcement learning problem [113].

2.3.1 Naturalistic behaviors for adaptive collaborations

Using inverse reinforcement learning (IRL) for robot control can be difficult, in part,
due to the ambiguity that arises from traditional IRL [1]. Maximum entropy IRL
facilitates this by using the principle of maximum entropy to order solutions according
to how well they match observed user behavior [361]. This solution has also been
used in behavioral science to model people’s ability to infer others’ goals from their
behavior, as exhibited during goal-directed plans [22].

These insights have been applied to robot trajectory optimization for shared
control. In the difficult task of teleoperating a high-degree of freedom robot arm with
a low-degree of freedom input device, such as a joystick, a robot can observe user
input commands and infer the user’s most likely goal from a set of predetermined
goals. The robot then assists the user by moving along a path toward the predicted
goal [138]. MaxEntIRL can also be used to interpret less direct forms of user behavior,
such as physically pushing a robot out of the way to determine which path the
user prefers the robot to take, for example to carry a coffee mug around a laptop
computer instead of over it [185], using naturalistic eye gaze in combination with
joystick signals to control a robot arm [18, 19, 222], or using corrective actions to
learn about features of the environment that relate to a person’s preference to increase
generalizability and sample efficiency [223]. We are interested in adapting online
MaxEntIRL for determining high-level task plans consistent with user preferences in
household collaborations from in-task corrective behavior.

IRL has also been applied to learn robot policies in other types of human-robot
interaction. For example, to learn people’s preferences from observations of indepen-
dent task demonstrations [342], or by learning assistive social actions for therapy
by combining therapists’ expertise with expert demonstrations [15], or for social
health, such as a robot receptionist learning to give hygiene advice in a shopping
mall [65]. Our formulation learns preferences from in situ, collaborative behavior for
collaborative rearrangement tasks.

Finally, another important aspect of maintaining human-agent assistive collabora-
tions is maintaining collaborative fluency [122]. Maintaining principles of collaborative

16



2. Background and related work

fluency, such as minimizing agent and human idle time, allows human-agent collabora-
tions to function similarly to human-human collaborations, thereby reducing friction
on people to interact with autonomous agents. Furthermore, robots that help people
complete collaborative tasks have been shown to affect a person’s ultimate decision
[220], making it important to continuously monitor and assess people’s goals during
collaboration. In this work, we will use these ideas as justification for our desire to
develop an algorithm that adapts to user preferences in real-time.

2.3.2 Solving collaborative object rearrangement with coop-
erative inverse reinforcement learning

We formalize the task of surface rearrangement, a specific instance of rearrangement
problems [27, 311], as a coorperative inverse reinforcement learning problem [113],
which consists, in our case, of a decentralized partially observable Markov decision
problem (DEC-POMDP) which is a tuple of (S,Π, A, T, Z,O, r, γ). Our objective is
to find a policy πr that solves this DEC-POMDP:

• S is the set of all possible states. As in prior work [185], we assume that
a particular state s ∈ S is a tuple of observable and unobservable features:
s = (x, g).

• Π is the set of agents. In our initial version of this problem, we assume two
agents: a human agent and an assistive agent.

• Ai is the set of actions for a particular agent ai. We assume that the person
both selects objects and corrects object placements, while the robot can only
make object placements.

• Zi is the set of observations used to infer g. The assistive agent’s observation
space is the person’s action space. In this work we assume that the human does
not infer the robot’s preference.

• T (st−1, at−1, st) denotes the transition dynamics that model the probability of
entering a particular state given the current state and both agents’ actions.
As in prior work [185], changes in T are dictated by g. We assume this to be
constant and deterministic within a single episode.

• Oi(st+1, uti, z
t+1), the observation distribution for agent πi.
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• ri(st, {ai}t) is the reward function for the each agent. We assume an assistive
setting where the agent is trying to estimate and maximize the person’s reward
function. We therefore assume all agents have the same reward function.

• γ, a discounting factor.

In Chapter 4, the robot estimates the user’s goal (as represented by one of three
marshmallows on a plate) using observations of a user’s joystick input. In Chapter
7, the robot estimates the user’s goal (as represented by a completed symbolic
arrangement) using observations of corrective actions the user takes during the
completion of the task.

Given that we assume two agents and that we are only optimizing one (because
the other is assumed to be a person over whose policy we have no control), this
problem reduces to a single-agent problem, allowing it to be decomposed to a POMDP.
Since POMDPs are computationally intractable to solve exactly, we use the QMDP
approximation [178]. Prior work in online human robot collaboration [185] has shown
how a QMDP can be solved online using online gradient descent, adapted for our
purpose in Alg. 3, where ψ is a state-feauturizing function that maps states to an
arbitrary representation.

2.4 Implicit featurizations for collaborative rear-
rangement

With a formalization of collaborative rearrangement tasks, as well as a formalized
solution to these tasks, we still need a method to featurize naturalistic behaviors in
order to make them consumable by robotics algorithms. Previously, we discussed
explicit representations of these behaviors, but these representations typically require
a lot of domain knowledge about each behavior signal and can be difficult to generalize
across different behaviors and tasks. Recently, generalized pretraining of large-scale
models has provided an opportunity to experiment with generalized representations of
images and language in robotics. Our aim is to explore these models to have generalized
representations of naturalistic human behaviors in collaborative rearrangement tasks.
We first begin by discussing how such models, often called foundation models, have
been used in robotics. We would specifically like to encode behaviors as images, so
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we follow this section with a discussion on how images are specifically used to prompt
multimodal foundation models. Finally, we discuss how these models and similar
models have been used in collaborations between humans and robots or embodied
agents.

2.4.1 Foundation models for robotics

VLMs pre-trained on large-scale datasets have shown commonsense reasoning abilities.
Researchers have used these abilities to perform robotics planning and control [97, 125].
Many prior works [10, 128, 129, 176, 179, 182, 224, 254, 294, 300, 333, 355] have used
pre-trained LLMs to generate actionable natural language plans for robots. VLMs
have also been used to generate sub-goals for navigation [59, 83, 101, 126, 279, 280]
and manipulation [74, 288] tasks. Additionally, previous work has also used LLMs to
directly generate low-level executable policy code for robots [174, 296]. Another line
of work has also used LLMs to generate rewards, which can be for RL [130, 189, 353].
In our work, we use a VLM to generate the policy code to accomplish a continuous
preference-aligned novel goal state.

2.4.2 Visual prompting in vision language models

The development of in-context learning for few shot adaptation of LLMs [47], was
followed by a flurry of prompt optimization approaches. While one line of work
focuses on prompt-tuning [170] or prefix-tuning [171] through backpropagation using
numerical gradients, others rely on the generated answer scores to perform opti-
mization with textual gradients [245], prompt search using genetic algorithms [345],
or iterative prompt refinement [349]. More recently, approaches have tried to use
visual prompting to improve VLM performance by leveraging a VLM’s ability to
solve multiple choice problems. [180, 217]. Our approach adapts these methods to
a complex visual preference learning task using these insights to prompt VLMs to
combine information from multiple images to reason about a person’s preference.
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2.4.3 State and action-conditioned collaboration

Prior approaches to solving long-horizon tasks with complex temporal dependencies
and under specified solutions, such as those present in our surface rearrangement
domain, can rely on resolving ambiguities through a combination of teleoperation
and preprogrammed routines [70], or by suggesting optimal, predetermined solutions
[219]. Solutions following the former method can place undue burden on a person
to explicitly express their preferences, and render robot action redundant when
a demonstration completes. They also require people to continually demonstrate
their desired solution as the constraints of the task, such as a person’s preference or
the environment, vary. Methods following the latter example do not allow for full
freedom of expression from the user and assume that all users have the same “optimal”
solution.

Zero-shot coordination is a recent field of research that aims to develop models
that can successfully and immediately interact with novel partners. This can be done
by pretraining models in simulation against agents designed to mimic human behavior
[56] or over a diverse population of simulated agents [308]. However, using these
methods can lead to overly specific solutions. Others have used large language models
trained with web-scale data to propose task plans that are then executed by robots
[10]. These task plans are not adapted to an individual user, whose reward function
may or may not fit well within the distribution seen during training. These methods
place the burden on the person to either accept a less preferred robot behavior
or continue to provide actions that increase the likelihood of the robot behavior
exhibiting behavior in line with the person’s preferences. In this work, we focus on
combining these good initializations with online adaptation.

Often, approaches that are based solely on deep neural networks that have been
trained specifically require people to generate explicit descriptions of their preferences
that can be decoded by the model into robot action [10]. Actions produced from this
process are not guaranteed to align with a person’s task objective. Although deep
networks can potentially be adapted to individual preferences through fine-tuning
[63, 118], doing so with large models can lead to challenging and unstable learning
that results in variable performance [208]. In this work, we focus on developing
an algorithm that can quickly adapt to people’s naturally expressed, task-oriented
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behavior.
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3 Components of robotic
assistance: people, space,

and time

Before developing methods to provide value aligned robotic assistance using
naturalistic human behaviors, it is important to understand robotic assistance. To
understand this, it is critical to view assistive robotics as a system with multiple
components that is designed to support a person in achieving a goal they want to
achieve. In this section, we lay out the components that are involved in an assistive
robotics system and explain how assistive robotics can be viewed as a value alignment
problem. We support these definitions with a review of recent research in assistive
robotics.

Smart wheelchairs that navigate easily through crowded rooms, robots that train
older adults through stroke rehabilitation exercises, and robotic arms that aid motor-
impaired individuals in eating a meal in a restaurant are examples of research in diverse
fields: intelligent motion planning, rehabilitative medicine, and robotic manipulation
that have been identified as contributing to the development of robots capable of
performing helpful tasks for people. This research has been fruitful, but has remained
siloed as researchers from these various fields focus on the specific assistive tasks
relevant to their own disciplines.

The lack of a common structure in the field of assistive robotics makes it difficult
for researchers to incorporate findings from other domains into their own work.
For example, how does the relationship between a grocery stocking robot and the
surrounding customers relate to the relationship between an airport guide robot and
the surrounding crowd? Does a robot designed to autonomously declutter a room
convey a similar sense of agency as a virtual robot suggesting an optimal ordering in
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which you should clean your room? Answers to these and similar questions would
form a basis that would provide clarity for research in assistive robotics, but are
currently difficult to determine due to the disparate nature of assistive robotics.

In this work, we identify a subset of common challenges and develop themes
that begin a conversation about how assistance can be abstracted out of specific
problem domains and can be used to answer questions about assistance in general,
thus benefiting the entire field of assistive robotics. This would enable researchers to
explore the underlying principles of assistive robotics and communicate them across
domains. To start, we suggest that assistance is not a characteristic of a robotic
system as it has been historically treated. Instead, assistance is a task-independent
perspective on human robot interaction. Treating assistance as a task-independent
perspective on HRI, we can group existing assistive research by its effect on three key
axes: people (e.g. who is involved in the system and the roles they play), space (e.g.
how the robot’s action affects the task), and time (e.g. when the robot performs its
actions during the task).

This perspective considers an assistive system as an interaction in which a user
and a robot forge a complex, asymmetric relationship guided by the user’s goals. This
perspective is somewhat different from general HRI because the user is responsible
for determining the interaction’s end goal while the robot acts in service of this
goal. Similar to other collaborative settings, the human-robot pair is then tasked
with performing subsequent actions to achieve the human’s goal, but unlike in some
collaborations, maintaining human autonomy is paramount. In this relationship, the
robot has more agency and independence of action choice than a simple tool (i.e. the
robot’s choice of action is not determined solely by the user), but it must defer to the
user’s goal and independent actions.

We introduce three design dimensions with which roboticists can begin to reason
about the assistive interactions of robots and humans. First, we discuss how the
assistive robot’s role can be described with respect to the relationship it has with its
user, for example, how it weighs priorities when there are multiple potential people
it could assist. Second, we propose that an assistive robot’s role can be described
in terms of how it operates in the execution space, that is, the space in which the
robot has its primary effect. Finally, we propose that the same robot’s actions can
be described in terms of the temporal space, that is, the duration and sequence of
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the actions. We support these dimensions by reviewing and grouping over 200 recent
assistive robotics research papers.

By using assistance as a lens through which to analyze patterns that arise in
assistive robotics, we hope to help designers of assistive robots more easily explore the
design space and identify similar examples of past solutions, even across application
domains. Additionally, we hope this work will motivate researchers to continue to
refine this notion of assistance and its effects on human-robot interaction paradigms.

3.1 The assistance perspective

In the field of robotics, defining assistance can be tricky: in a broad sense, every robot
is built to assist some person. Therefore, we do not attempt to separate assistive
systems from non-assistive systems. Instead, we propose assistance as a particular
perspective through which many robotic systems can be viewed. This perspective
considers robotic agents that are autonomous in action but subordinate in goal to
a human partner. Almost any robot system can in theory be viewed as assistive
to someone, so we do not limit this scope. Rather, we explore what this analytic
framework provides. This perspective clarifies particular design tradeoffs and trends
general to assistive systems whatever their task domain. In this work, we describe
several key design axes that arise when considering a robotic system as assistive and
discuss implications these axes have on the interaction.

Before discussing these key design axes, we first formalize what we mean by a
human-robot interaction, then provide a more detailed description of what it means to
view assistance as a perspective. Next, we give a brief synopsis of previous attempts
to characterize assistance and assistive robotics, and finally we give an overview of
the remainder of this paper.

3.1.1 General human-robot interaction

Before discussing assistance, we first sketch a general framework for human-robot
interaction, which we draw broadly from multi-agent systems research. Formalizations
of this problem can be found in previous literature [136]; here we only establish enough
language to discuss assistance rather than requiring assistive systems to use this exact
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model.
First, we define a user u ∈ U as any person involved closely in the interaction.

Typically, the user is in close physical proximity to the robot and provides explicit or
implicit control signals to the robot. For example, a person teleoperating a robotic
arm, getting directions from a social robot, or building a table with a robot helper
would be considered a user.

Next, the system has at least one robot r ∈ R. Canonically, a robot is defined as
an embodied system that can sense its environment, plan in response to those sensory
inputs, and act on its environment. An assistive robot may have a wide array of
sensory, planning, and acting capabilities in order to be successful in its task. Some
of these capabilities will be critical for the robot’s functioning (e.g., LIDAR to avoid
hitting obstacles), while others will be critical for providing assistance to the user
(e.g., a body pose recognition algorithm to identify the user’s location and gestures).

Finally these agents exist in a shared environment, each with their own internal
state. These are described in totality by the mutual state sm = (sr, su, se) that defines
the individual states of the robot, user, and environment. The robot and user both
have goals gr, gu ∈ G and can take actions ar ∈ Ar and au ∈ Au that affect their
mutual state. By acting to update their mutual state, each agent has the potential to
affect the other agent’s behavior resulting in an interaction between the two agents.
Depending on the exact scenario, a task will be considered complete when one or
more agents has achieved their goal.

3.1.2 Assistance as a perspective on human-robot interaction

Using this formulation, we can more carefully define assistance. Assistive systems
interpret the robot as autonomous in its actions but subordinate in its goal. By
giving the user the sole responsibility for setting both agents’ goals, the two agents
now attempt to satisfy some shared goal g by reaching a mutual state where g is
true: sgm. This framing distinguishes assistive robotics from both traditional assistive
technologies like a white cane, which has no control over its actions or goals, and
traditional robotics, which develops agents with full control over their actions and
goals. This framing gives rise to three key design axes: how assistive robots affect
people through space and time. The discussion of these implications is the subject of
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the rest of this paper.
In HRI, as in assistive robotics, there is no requirement for there to be a single

user. In fact, many assistive robotics scenarios involve more than one user. This
becomes challenging, as it is the responsibility of one of these users to set the goal for
the robot, but selecting which user has this responsibility may change the type of
assistance the robot is able to provide. This is especially true when one user’s goals
may conflict with another user’s goals. This highlights the importance of determining
the roles of people when considering assistive robotics problems (Section 3.3).

Furthermore, since the user and robot are working towards the same goal, the
robot has more freedom over its action space. Instead, the robot can assume that
the user would perform the task independently as a baseline, and only then choose
how best to provide assistance. In addition to manipulating the environment directly,
the robot can assist by altering the user’s state space, which helps the user to make
more effective task progress. A head-mounted augmented reality device that displays
the optimal path for cleaning a room can assist in the world without needing to
physically interact with objects. The assistive scenario allows more choice over the
robot’s action space than would a general robot (Section 3.4).

Finally, in order to advance to the mutual goal state and complete the task, the
user and robot complete each sequence of actions (a1

u, . . . , a
t
u, a1

r, . . . , a
t
r, respectively)

that transition the system to the desired goal state (sm = sgm). Given that these
actions occur in the mutual state, it is important that the user and the robot time
their actions appropriately, so that they do not attempt to solve the same part of the
task simultaneously, or worse, provide conflicting actions that result in undoing each
other’s work. How to time actions is crucial to studying assistive robotics (Section
3.5).

Each of these axes presents researchers with decisions that result in critical trade-
offs when designing an assistive robot. Throughout the remainder of this work, we
will describe how assistive robots from different application domains fall along these
axes.

By taking assistance as a perspective, it is our goal to provide an abstraction that
allows for comparing systems from different domains to discover universal challenges
that arise from robot assistance. We do not suggest that these axes describe a
full assistive system or are a complete set of critical design axes. Rather, viewing
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assistance along these particular axes of people, space, and time enables some cross-
domain comparisons and insights on its own, and it also demonstrates how assistance
overall can benefit from a general examination.

3.1.3 Prior categorizations of assistive robotics

By grouping assistive robots along the aforementioned design axes, we view assistance
as an abstract concept that illuminates parallel research problems across different
application domains. We build on previous literature which categorizes assistive
robotics within particular application domains, for example socially assistive robots [99,
199], joint action [132], and physically assistive robots [46].

Some work does try to describe assistance as a whole. Jarrassé et al. [136]
categorizes joint action between dyads by positing a cost function for each agent
defined on each agent’s task error and required energy. Among categories in which both
agents are working together towards the same goal, the paper specifies collaboration
between two equal peers, assistance when one agent is subordinate to another, and
education in which the educator assists the partner but moderates its own effort to
encourage increasing effort from its partner. We take this core idea of assistance as
subordination and build on it in our definition of the assistance perspective.

Most similar to the current work, perhaps, is the accounting given in Wandke
[331]. This overview of assistance in human-computer interaction notes that defining
assistance as any system that provides some benefit to the user would include nearly
all technical artifacts. Therefore, the paper restricts its attention to systems that
bridge the gap between a user and the technical capabilities of the system due to the
user’s unfamiliarity with the system or excessive burden of use. In contrast to this
approach, our work presents assistance as a perspective rather than a definition; it
could in principle be applied to any technical artifact but may only be useful for some.
Additionally, this definition of assistance focuses on how assistive systems correct a
deficiency in a user’s understanding of the system or capability to use it. In contrast,
our definition of assistance as a perspective admits beneficial actions from the robot
of all sorts, not just those repairing the user’s ability to use a system.
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3.1.4 Overview of this paper

By defining assistance as a perspective, we provide language to discuss ideas about
assistance from different domains. This will allow researchers from various areas
of assistive robotics to come together to illuminate and discuss common research
challenges. Additionally, researchers can make design decisions about how the assistive
robot affects people in space and time by using this framework to consider similar
approaches to problems from disparate task domains. In the remainder of this paper,
we discuss these design axes and explore their implications through a review of
existing assistive robotics literature. Section 3 describes our method for collecting
these papersSection 4 describes the people design axis, Section 5 describes the space
design axis, and Section 6 describes the time design axis. These axes are summarized
in Table 3.1. We then conclude the paper with a discussion over the implications of
this work.

3.2 Methods

To develop this taxonomy, we conducted a literature review of recent papers on
assistive robotics.

Initial search. First, we hand-selected 74 papers from the last five years of the
annual Human Robot Interaction conference (HRI 2016–2020). From these papers
we generated an initial set of search terms by aggregating titles, abstracts, and
author generated keywords using the R [248] package litsearchr [110]. Using these
aggregated keywords, we formed an initial search query.

Refined search. We ran the initial search query on the Web of Science. This
search yielded approximately 1500 papers. We repeated the keyword aggregation
on this set of keywords, and then hand-selected new keywords from among them
based on their prevalence and relevance to assistive robotics. We repeated the Web of
Science query with this refined set of keywords, which yielded, again, approximately
1500 papers. The refined search was run on 29th January 2021. We included a paper
based on whether this statement evaluated true based on a search of the entire text
of the paper.

((assist* NEAR *robot*)
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OR (collab* NEAR *robot*))
AND (*human* OR *people* OR *person* OR *subject* OR *user*
OR ”elderly people” OR ”older adults” OR ”natural human” OR ”stroke
patients” OR ”healthy subjects”)
AND (“human-robot interaction” OR “human-robot collaboration” OR
“robot interaction” OR “robot collaboration” OR collaboration OR hri OR
“human robot collaboration” OR “physical human-robot interaction” OR
“human robot interaction” OR “machine interaction” OR “human-machine
interaction” OR “human interaction”)
AND (“collaborat* task*” OR “assembly task*” OR “social interaction*”
OR “assembly process*” OR “shared workspace*” OR “manipulation
task*” OR “human safety” OR “daily living” OR “service *robot*” OR
“production system*” OR “safety standard*” OR “mobile robot*” OR
“assisted therap*” OR “collision avoidance” OR “object manipulation” OR
“collaborative assembly” OR “socially assistive” OR “assistive *robot*”
OR “social *robot*” OR “teleoperat*”))

Paper selection. Starting from the refined Web of Science results, we filtered
out all papers from venues with fewer than two related documents and papers that
were older than five years, with a small exception. In an attempt to keep papers
with significant contributions to the field, papers older than five years were kept if
they had more than 10 citations. This process left approximately 465 papers. Each
paper in this set was then manually checked for relevance by reading the title and
abstract. To be included, we required the paper to include both (1) an assistive
interaction with the user and (2) a system capable of taking actions. This step mainly
removed papers focused on robotic system development or perception improvements
rather than assistance itself. This yielded 313 papers, each of which was again
reviewed against the aforementioned exclusion criteria, removing papers that focused
on systems development and the performance of perceptual systems over interaction.
The entire search process yielded over 200 papers that we classified into our taxonomy.
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additional targetsone human and one robotinteractants

Figure 3.1: An assistive system can treat people beyond a single user as additional
targets of assistance or as interactants, and either choice introduces particular com-
plications into the assistive dynamic.

3.3 People

In Section 2, we described assistance with single users. This description works well
for situations that have only one user, which is common in laboratory settings. In
realistic settings, however, a robot will typically encounter more than one person in
the course of their task. These other people can act in a variety of different roles
within the interaction. In this section, we explore themes in how assistive interactions
incorporate more people into the general human-robot dyad (Fig. 3.1).

3.3.1 Terminology

The simplest approach a system can take towards other people is simply to ignore
them completely. While this case tends not to be analyzed explicitly, it is implicit in
many systems. It can be appropriate to ignore other people, especially in situations
for which additional people will be rare. Even when working with other people, the
robot can expect its primary user to control the robot appropriately rather than
explicitly considering other users. A robot might severely downplay its relationship
with others when doing so conflicts with its primary user’s goals, such as an emergency
response robot that ignores standard social navigation behaviors to reach its patient
as fast as possible.

When the system does choose to reason about other people, its treatment of them

31



3. Components of robotic assistance: people, space, and time

can be determined by dividing them into two different roles: the target of assistance,
whose goals are of equivalent importance as other targets; and interactants, who
require the attention owed to any other person as explored throughout human-robot
interaction research but don’t have their goals privileged by the robot.

A target of assistance derives directly from the definition of assistance: an assistive
scenario must have a person whose goals to primarily support. Consider a scenario in
which a person who has a spinal cord injury uses a robotic arm to aid them in eating
a meal with friends out at a restaurant. In this scenario, the arm’s user sets the goal
for the robot: to bring food from their plate to their mouth so they can consume it.
Assistive systems may have more than one target of assistance, which can lead to
conflicts over what goals to achieve.

The second role a person can play in an interaction is that of interactant. An
interactant is any other person involved in the scenario who is not a target. Continuing
the previous example, the people who are out to dinner with their robot-operating
friend are interactants. They have no direct bearing on the robot’s goal, but they are
potentially affected by the robot’s actions and may require some design effort for the
system. For example, the robot may have to avoid collisions with them during its
operation. While the robot’s relationship to interactants is not assistive, the presence
of a specific target of assistance can affect how the robot interacts with others.

When considering assistive systems that involve more people than just a single
target, the system must determine in which of these roles to consider the additional
people. These two roles are not mutually exclusive and there can be more than one
of each in a given scenario. Additionally, both targets of assistance and interactants
can give explicit control input to the robot. Designating people as additional targets
or as interactants bring about different challenges for the assistive system.

3.3.2 Additional targets of assistance

One condition that arises is that a single robot has multiple different targets, often
in asymmetrical ways. In the eating scenario, the robot might instead be assisting
everyone present, perhaps by both feeding its user and serving food to other people
at the table. Here, the robot is presented with a conflict: how should it choose to
prioritize the goals given by its targets and reconcile differences between them?

32



3. Components of robotic assistance: people, space, and time

This can be especially challenging in contexts such as education. An educational
robot might consider the teacher as its target and work to enrich a student according
to a mandated curriculum. It can also consider the student as its target, and try
to engage the student with concepts that are interesting to them regardless of the
curriculum. Much research in this area aims to make the content proposed by the
teacher more enjoyable by developing robotic behaviors that are meant to keep
the student engaged. Leite et al. [169] designed a robot puppet show to engage
young learners in an educational story, Martelaro et al. [197] designed a robot that
encourages students to encourage trust and companionship with their tutor, and
Christodoulou et al. [69] designed a robot to give nonverbal feedback to students in
response to quiz answers to keep them engaged with the testing material. In contrast,
Davison et al. [76] took a different approach and developed the KASPAR robot to
look like another student and deployed it in unsupervised, interactions that were
totally motivated by the student. In this way, they allowed the student to approach
the learning material voluntarily, giving the student more agency to learn what they
desired and at their own pace.

This dilemma can again be seen in therapeutic contexts, where a robot must
reconcile the goals of the doctor and the patient. Robots can increase a patient’s
motivation to do mundane, repetitive or uncomfortable exercises through the use
of a robot that does the exercise alongside the patient [276, 315]. Alternatively, a
robot could be used to give the patient more agency and independence over their own
treatment through a robot that helps someone independently practice meditation
[12], do independent cognitive behavioral therapy [81], or home therapy for autism
[285].

A full analysis of these interactions treats both the teacher and the student, or
both the therapist and the patient, as targets of assistance with goals that often align
but are not identical. This alignment mismatch can often lead to ethical challenges,
which are even more fraught when the capabilities, agency, and relative power of
the possible targets vary. While there is no general technical solution, this language
encourages designers to explicitly enumerate the multiple targets of the assistance
and to reason directly about conflicts in their goals.
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3.3.3 Additional interactants

On the other end of the spectrum are robots that treat additional people in the
system as interactants. Robots designed with this relationship in mind prioritize the
goals of its target of assistance. In our assisted eating scenario, the robot may need
to follow basic social norms around the other diners by avoiding collisions with them,
but it does not privilege their goals in the same way.

This relationship is typically used in scenarios where some figure of authority (e.g.
a teacher or a therapist) needs to relieve themselves of some amount of work. For
example, a teacher could employ a robot to teach half of their class in order to reduce
the student-to-teacher ratio for a particular lesson [263], or even have the robot teach
the class alone if they need to finish other work [242]. In this way, the teacher is the
target of assistance, while the students are treated only as interactants. The robot
should be able to teach competently enough to achieve the teacher’s goals, but the
students’ preferences about using the robot are not of direct concern.

Similarly in emotional or physical therapy a robot can be employed to lead group
sessions in lieu of a doctor, who may have more classes than they can handle [92, 134].
Alternatively, the robot may be better at collecting certain information than the robot.
For example a patient who has suffered a stroke may be unable to emit certain social
signals expected during social interaction. This could negatively affect a doctor’s
opinion of this patient, a problem that could be circumvented by having a robot
collect this information [43, 326]. The patient here, however, is not asked whether
they may prefer the social interaction regardless of the implicit bias the doctor may
possess.

These systems don’t generally follow an assistance dynamic with interactants.
Rather, general human-robot interaction research applies. However, the fact that the
system has a target, even if the target is not present, can change the robot’s behavior:
a robot acting as a proxy for a specific teacher may have different behavior than one
employed as a general-purpose robot, which might have bearing on how the general
human-robot interaction problem is resolved.
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3.3.4 Combinations of roles

If an assistive robot has multiple additional people present in the interaction, it
can choose to consider some of them as targets and others as interactants. In this
relationship, our assisted eating robot might treat both the user and the companion
seated next to them as targets of assistance, while those eating companions seated
further away from the user are treated as interactants. In this way the robot can
carefully maintain the goals of multiple people in proximity to the robot. This
framework can allow for more complex robot behavior near to the user without the
additional complication of handling everyone else at the table.

Another example would be a robot that participates in a collaborative scenario
with multiple human actors, some of whom serve as both targets of assistance and
interactants, while others are only interactants. For example, consider a local repair-
person who needs help from a remote repair-person. To give instructions, the remote
repair-person can use a robot to highlight the parts of the environment they are
discussing [190]. In this way, both actors are interactants in the scenario, but only
the local repair-person is the target of assistance.

3.3.5 Implications

These various relationships clarify the design choices involved in developing an assistive
system. A particular task, such as assistive eating, does not require a particular
relationship between the robot and the people it encounters. Rather, how a robot
relates to these people is a design decision that will have implications on the task.

The choice of roles affects how assistive systems with multiple people are evaluated.
When treating the user and their eating companions all as targets of assistance, the
robot would need to verify that it is helping them all in achieving their independent
goals. This type of evaluation may be difficult to actually measure and nearly
impossible to succeed on, as the companions have conflicting interests from the user.
Identifying what type of relationship the robot should have with its users can help
researchers disambiguate otherwise similar systems to determine which evaluations
are important.

The choice of which roles to use may also have implications on how much autonomy
to imbue in the robot. A robot that balances the goals of many people may require
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complex sensing, modeling, and planning to carefully moderate between them. A
simpler robot might delegate this goal moderation problem to its user and treat
additional people as interactants or ignore them entirely. This system gives the target
more control over the goals, but requires additional input from the user. If the robot
maintains full autonomy in this scenario, but it does not plan for other people’s goals,
it may in fact endanger them by running into them where another system would have
chosen to avoid them. These ideas show how the choice of relationship between the
robot and the people it encounters throughout a task can impact the design of the
final system.

3.4 Space

human brain human body environment

Figure 3.2: A robot can provide assistance by acting in several different action spaces.
It can assist by giving information to the user, adjusting the user’s body, or changing
the environment to help complete the task.

Assistive robotic systems can perform similar tasks by acting in different action
spaces. We show in Sec. 3.1 how to represent the mutual state during the interaction
as the state of the user su, the state of the robot sr, and the state of the environment
se. In general, assistive robots help their users perform an action in the environment.
Since the robot is fundamentally assisting a user, the same overall task can be assisted
by a robot acting in a variety of different ways. In this section, we categorize the action
space of assistive robots into the user’s mind, the user’s body, and the environment
(Fig. 3.2).
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Consider an assistive eating robot. The robot and its user sit at a table across
from one another, with a plate of food between them. The user’s goal is to eat the
food. The robot can provide assistance by performing a variety of different actions:
it can act on the user’s mental state by projecting a light onto a morsel of food that
would be easy to grab next, it can change the physical state of the user by guiding
their hand into an appropriate position, or it can change the environment by picking
up the morsel and feeding it to the user. All of these action spaces apply to the same
task and the same goal; what differs is in what way the user would most benefit from
assistance.

To illustrate this point more broadly, we provide a review of recent assistive
robotics literature, grouped by whether the robot is acting on the user’s mind, user’s
body, or environment.

3.4.1 Environment

One straightforward assistive robot is one that simply completes a task for the
user. For example, research has focused on autonomous butler robots [301, 302]
that perform tasks such as cooking and cleaning. Such a robot assists a user by
navigating around the apartment picking up misplaced items such as dirty laundry
and dishes and placing them in appropriate locations such as a laundry hamper or
dishwasher. The robot provides assistance by directly changing the environment. To
meet the minimal requirement of providing assistance (i.e. delivering some benefit to
the target of assistance), the robot must shift the environment from an undesirable
state configuration to a more desirable one.

Much research surveyed here assists users in exactly this way: by providing
autonomous assistance through environmental state manipulations. Researchers have
explored how a user can command a robot to organize a messy room [71, 140, 158,
200, 243], fetch misplaced or distant items [127, 131, 323, 339], or even perform more
specialized tasks autonomously (under the direction of the user) such as assisted
eating [52] and other tasks of daily living [227], search and rescue [84], welding [13],
or other industrial tasks [210]. Assistive tasks performed autonomously at the request
of a user through environmental manipulation can provide several benefits. This
method of task execution requires little user input, which makes it efficient for users
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who prefer not to spend time on chores and beneficial for users who may not be able
to accomplish the task at all.

Environmental assistance is not solely the domain of autonomous robots, how-
ever. Collaborative robots, specifically in tasks where the user and the robot take
independent actions that jointly manipulate the environment towards a mutual goal
state, also perform environmental assistance. Examples of such systems include
collaborative cleaning [80] and assembly [272, 358]. A robot working collabora-
tively with a user can improve its efficiency by modeling the user’s behavior, for
example by determining specific poses to hold an object in to facilitate fluid col-
laboration during assembly [11] or by anticipating and delivering the next required
item in assembly [114, 115, 192] or cooking [157, 202], or by providing help under
different initiative paradigms during assembly [24]. Collaborative environmental
assistance can also be used to perform joint actions with a user, such as in han-
dovers [45, 51, 53, 73, 107, 111, 162, 164, 218, 220, 249], where the goal is to transfer
an object from the robot’s end effector to the user’s hand; or co-manipulation
[78, 88, 106, 159, 230, 250, 252, 274, 275, 332], where the aim is for the user and
the robot to jointly move an object to a specified location or provide redundancy in
holding an object in a joint assembly task [234] or safety critical situation such as
surgery [309].

So far, all examples of environmental assistance have been provided by standalone
robots, commonly taking on a humanoid or robotic arm morphology. These robots
affect the environment by changing their own configurations first (e.g., using a
robot arm to pick up an object). As such, they are considered decoupled from the
environment. Robots can also be designed to be coupled with the environment; in
these examples, it is hard to distinguish between the robot’s state and the environment
state. These robots often take on more conspicuous yet specialized morphologies,
such as a mechanical ottoman [298, 357]. For example, a robotic suitcase can assist
an airline passenger by following them through an airport [96] and manipulating the
user’s sense of trust by moving across various proxemic boundaries. A set of robotic
drawers containing tools can assist a user in completing an assembly by proactively
opening the drawer containing the next required tool [205], and it can also manipulate
a user’s enjoyment in completing the task by employing emotional drawer opening
strategies. Environmentally coupled robots can be designed to be “invisible,” [298] or
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to be modifications to an existing environment or object. Moving away from more
traditional robot appearances may mitigate any negative effects from interacting with
a robot.

Other approaches include shared control which separates the responsibilities of
the user and the robot during the task. For example a teleoperated surgery robot
can hold a patient’s skin taut so that the surgeon can focus on performing incisions
[281]. A telepresence robot [160] can automatically avoid obstacles during navigation
[3, 306] or automatically rotate its camera to keep a desired object within view [204].
Finally, a remote, teleoperated space robot can perform as much of a task as is
possible before it pings the space station for human intervention [94]. By having the
robot configure itself according to some of the task requirements, the robot allows
the user to focus on other parts of the task.

3.4.2 Human body

While assistance applied directly to the environment can solve a wide variety of tasks,
some tasks require alternate strategies. One such scenario is when some change to the
user’s physical state is required to perform the task. For example, consider a robot
designed to assist a user who has difficulty bathing themselves. While it is technically
possible for that robot to transform the environment by bringing a bathtub to the
user, this is obviously impractical. The robot can instead transform the user’s state
by bringing them closer to the bathtub [82, 233]. This strategy of moving a user to
assist them is similar to autonomous environmental manipulation, but now the user
is being manipulated instead of the environment. This strategy results in limited
agency to the user, and is typically only employed when the user has minimal ability
to complete the task themselves.

In cases where users can perform some aspects of the task, a robot can also assist
by supplementing a user’s existing abilities. For example, if a user can walk but
has difficulty balancing or navigating, a smart walker can be utilized to help the
user navigate between locations [233, 291]. Similarly, if a user has some control over
their limbs, an exoskeleton robot can be used to provide extra support for day-to-day
usage [23, 67, 175, 214] or in therapeutic scenarios in order to help a user strengthen
weakened muscles [55, 362].
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In addition to aiding in task execution, physical user state manipulation can also
be used to assist in planning, such as when a user’s sensing capabilities are diminished.
For example, a visually impaired user may wish to solve a Tangram puzzle but must
pick up and feel each piece individually. To provide assistance to the user, a robot
could sense the puzzle pieces and determine which pieces are viable for the next
step of assembly. The robot can then physically guide the user’s hand to this piece
allowing the user to solve the puzzle [39]. This is an example of human body state
manipulation. Instead of manipulating the environment to solve the task, the robot
instead changes the user’s physical state configuration in order to better position
them to solve the task.

Robot assistance that acts on a user’s body can also be done by using the
resistance of the robot’s own joints. A user kinesthetically manipulating a robot arm,
for example, may not know the exact path the arm should travel in order to complete a
co-manipulation task. The robot can change its admittance or transparency such that
it becomes easier [135, 168, 172, 188, 196, 213] or more difficult [37, 49, 50, 163, 344]
to move as the robot’s end effector deviates from a known, low-cost path. This idea
can also be applied to full-scale robots, allowing a user to navigate a robot from
one point to another by guiding it as if it were another human [64] or to use the
stiffness of the robot’s arm as a support while standing up [133]. Admittance control
as a body state manipulation allows the user to have a high degree of control when
operating the robot, but allows the robot to provide information about which parts
of the environment are better to traverse by altering the stiffness of its joints. This
strategy can also be used in therapeutic settings, where a patient recovering from a
stroke can be given an automatic, smooth schedule of rehabilitation exercises as the
robot changes its admittance depending on the force feedback it receives from the
user [134].

3.4.3 Human brain

The final location of assistance we identify is the user’s mental state. These robots
assist by transforming the user’s understanding of the world in a helpful way. One
common method is for the robot to communicate unknown environmental information
to the user. For example, a robot can play particular sounds as it completes its
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tasks so that a user can track it more easily [57]. A robot can also describe the
local environment for a visually impaired user in a navigation task, enabling them
to create a semantic map of the environment [61]. Similarly, a robot can provide a
visual signal to designate objects it intends to interact with so the user can avoid
them [14, 190, 289], areas where the robot expects to move so the user can stay away
[121] or areas or paths that the robot thinks the user should take to complete a task
in an optimal fashion [219]. In an emergency scenario, a robot can visually indicate
the direction of a safe exit [262]. Finally, a robot can provide haptic feedback to
indicate when to turn in a navigation task [173, 207]. Robots that provide alerts
like these assist by communicating information about the task or the environment
directly to the user so that the user can effectively perform the task.

Robots can also assist in the mental state domain by adopting social roles.
Generally, these robots are designed to perform socially beneficial functions similar to
those that a human would provide, such as a robot that takes the role of a customer
service agent [329] or a bingo game leader [186]. In educational settings such as one-on-
one tutoring [100, 144, 150, 325] and classroom teaching [150, 232, 242, 253, 263, 337],
a robot can deliver lectures in a similar manner to a human teacher. In therapeutic and
medical settings, a robot can administer routine medical surveys [326] independent of
the doctor’s social biases [43], provide therapy sessions for routine cognitive behavioral
therapy [81] or physical therapy [201], and perform other general therapeutic tasks
[9, 12, 92, 268]. Finally, a robot’s assistance can vary based on its social role, such as
a concierge robot performing different social behaviors when responding to children
or adults [212], an advice-giving robot providing explanations when a user’s behaviors
become non-optimal [104] or a robot that gives cooking advice varying its strategies
so that the advice is more readily received [321].

Instead of performing a procedure itself, a robot can assist a professional when
affecting a user’s mental state. When a therapist is unable to be physically present
with a child, for example, a parrot robot can be employed in the home to entice a
child with autism to practice skills learned during a therapy session [35, 285]. During
therapy with agitated patients, introducing a pet-like PARO robot can induce mental
states more conducive to effective therapy [58, 266, 282, 287]. A child-like robot can
allow a young patient to practice social skills with a partner more akin to a peer than
the therapist is [4, 108, 152, 229, 313]. Similarly, a child-like robot can assist a teacher
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by reinforcing a students desire to self-engage in educational material, something
students may be more likely to learn with a peer than a teacher [76, 341], or increase
a user’s ability to recall a story by acting out portions of it [169].

Since robot actions are sometimes interpreted socially and as being intentional,
robots can select their actions to influence the user’s mental state. For example,
predictable and legible motion strategies that indirectly communicate a robot’s
goals are readily interpreted by people [86]. These same strategies can be used in
collaborative tasks to indirectly show the robot’s goal to the user [38, 93, 312, 360].
Robots can also mimic human nonverbal behaviors like deictic eye gaze and pointing
gestures to indicate task relevant objects during collaborative tasks [42, 98] or to
assist in completing mentally taxing tasks [7, 119].

Similarly, robots can use their behavior to suggest their internal emotional state.
This strategy can increase rapport, fluidity and reception of a robot’s assistance
through emotive motions [205, 317] or giving the user feedback regarding a task’s
success through facial expressions [69, 251, 258]. Using socially meaningful actions
enables assistive robots to communicate with the user efficiently and fluidly.

Robots can also use social behaviors to induce specific, beneficial emotional
responses from a user. By mimicking human nonverbal behaviors, robots can use their
eye gaze to induce social pressure on a user to work more efficiently [261] or to soften
its own dominance to allow for better teamwork [239]. Assistive robotic gestures can
also increase feelings of openness in people who are discussing negative experiences
[123] and motivation in users during medical testing [322], in users during physical
exercise [194, 195, 276], and in stroke patients performing rehabilitative exercises
[315]. Since people generally view robotic gestures as intentional, robots can use
these gestures to induce mental states that assist the user in performing a task.

In addition to nonverbal communication strategies, robots that are capable of
speech can converse with users to induce beneficial mental states [154]. Robots can use
speech to change the content of the conversation [102] or to answer a question about
the surrounding environment [48]. Robots can use dialogue to gather information
during collaborative teleoperation [99], to engender trust in an escape room [105], or
to facilitate collaboration between two targets of assistance [307]. Robots can also
talk about themselves to influence a user’s view of themselves. For example, tutoring
robots for children can make vulnerable statements about themselves to increase
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trust with the student and student engagement [197]. Similarly, a robot in a group
setting can facilitate group trust by leading with vulnerable statements about itself,
so that its teammates feel more comfortable sharing their own vulnerabilities. This
effect can cascade as more group members explain their own failures, console each
other, and laugh together [277]. Failing to deliver assistance in contexts where the
robot is expected to provide assistance can have deleterious effects on a user’s mental
state, causing users to mistrust the robot negatively their relationship and rapport
[156, 265].

Beyond focusing on specific content of speech, conversational robots can further
affect the user’s mental state in the way they speak. Robots can perform back-
channelling to give the appearance of active listening [36, 278], or give informative
feedback to improve task performance [112, 167, 284], a user’s self-efficacy [354],
or their motivation [209, 283]. Robots can choose to only interrupt a distracted
user at appropriate times [297, 324]. A robot can also change its tone to project
an emotion such as happiness to improve the user’s mood and task performance
[187, 198, 259, 340]. Finally, a robot can combine these qualities with the content of
the conversation to change the user’s perception of the robot’s social role [25, 34, 206].
Specifically, a robot can act as a student during a tutoring session to induce different
learning techniques in a human student [269].

Shared control, especially when an input controller (e.g. a joystick) limits the
number of input degrees of freedom [19], can also be made easier for user’s by providing
assistance that alters the user’s mental state. A robot arm can assist its user by
maintaining more easily controllable state configurations [19, 137, 222, 319, 330]
or by optimizing which degrees of freedom the user can control at any given time
[120]. This idea can be extended to supernumerary arms that provide users with an
additional appendage but are difficult to control [216, 328], teleoperating robotic arms
through electromyography [231, 240] or similar sensing devices [211], or humanoid
robots [177, 359]. Additionally, a robot might be able to enter environments that are
unavailable to a user allowing the user to teleoperate the robot in these environments
effectively extending their reachable environment [124]. These strategies all effectively
alter the user’s mental state by decreasing the burden of user communication.

Finally, another strategy for robots to assist a user by transforming the robot’s
own physical configuration into one that is more amenable to task completion. This
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approach is useful in collaborative scenarios where the robot and user may collide.
To avoid this problem, robots can decrease their operating velocity when working in
close proximity to users [16, 264, 310] or take paths or actions specifically designed
to reduce the likelihood of a collision [77, 117, 181, 228]. Similar to shared control,
these strategies to assist the user decrease the user’s cognitive burden of planning
in the task. By taking responsibility for collisions, a robot can effectively alter its
own actions so that the user can be less concerned with monitoring and modelling a
robot’s behavior and concentrating on completing their portion of the task.

3.4.4 Implications

Choosing which action space the robot should act in is a crucial decision for robot
designers. To aid users in room cleaning, for example, researchers have developed
robots that alter the environment by directly picking up misplaced objects, while
others have developed augmented reality solutions that provide assistance in the
user’s mental space by showing them routes that, if followed, would lead to the
shortest time spent cleaning. Realizing that a given task can be solved by acting in
any part of the state allows researchers to develop novel solutions to problems that
have historically been restricted to robots that act in a single state.

This realization, however, means that determining the robot’s action space is
not simply determined by the task that the robot is being built to solve. Instead,
a roboticist must carefully consider the capabilities of the users for whom they are
designing the robot. The choice of how the robot acts must be tuned to the needs
of the user, and it has broader implications on the user’s sense of agency and trust
in the system. This separation of robot action spaces enables designers to compare
robots from different domains that have similar action spaces and develop better
assistive solutions.

3.5 Time

The third key design axis we present concerns how assistive robots coordinate the
timing of actions with the targets of their assistance. Consider an assisted eating
scenario. A robot might only offer food when given an explicit trigger by the user,
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reactive simultaneous proactive

Figure 3.3: A key axis in assistive robotic systems concerns what type of cue leads to
the robot taking actions. Robots can be reactive and respond to explicit input only,
be proactive and interpret the general task state to choose to act on their own, or
collaborate closely with the user by acting simultaneously with them.

or it can monitor the user’s behavior to decide when to initiate the action itself.
We categorize the timing of assistive actions as reactive, proactive, or simultaneous.
Reactive robots act only when given explicit commands. Proactive robots use
predictive models or other approaches to understand the world to initiate their actions
without an explicit command. Robots acting simultaneously occur in collaborative
settings, during which the robot continuously monitors the user for both explicit and
implicit information to direct its actions. Choosing how to time the robot’s behavior
can change the difficulty of the task and how users react to the robot’s assistance
(Fig. 3.3).

3.5.1 Reactive

Reactive assistance occurs when the assistive action is triggered by an explicit
command. Consider a teleoperated robotic arm developed for assistive eating [19,
137, 222]. In these studies, a user uses a two-degree of freedom joystick to control
a seven-degree of freedom robot arm and pick up a morsel of food from a plate.
Direct control of this robot entails only moving the robot’s end-effector while the
user is engaging the joystick. The user might also give commands at a higher level of
abstraction, perhaps by pressing one button to request food and another for water.

Reactive robots can also respond to more task-specific, contextual triggers. In
[53], an assistive robot helps a user to put on their shoes. This interaction is modeled
as a complicated handover problem, where the user must have their foot properly
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positioned and apply enough resistance that the shoe remains on the foot. In this
work, the robot responds to a gesture performed by the user through their foot. When
they move their foot in the specified way, the robot knows that it is an acceptable
time to place the shoe on their foot.

In general, reactive systems give the user more control over the robot and agency in
the overall interaction. Additionally, the robot does not generally need sophisticated
models of the task, since it can rely on explicit input control. This simplicity means
that the robot tends to be less sensitive to the particular task or domain, as it relies
on the user to adapt the task to the robot’s capabilities. However, this additional
control requires the robot’s user to spend more time and effort on controlling the
robot, which can distract from other tasks. Controlling a robot at this level may
also require significant training, as the robot’s capabilities may not clearly match
the requirements of the task. The control burden grows as the user must explicitly
command the robot to begin an interaction [24], and requiring additional control
complexity, such as adding modal control to teleoperation, can be cognitively taxing
and slow [120]. Furthermore, requiring the user to explicitly cue the robot to act
reduces collaborative fluency, which has been shown to be desirable both in terms of
the perceived quality of the interaction [123] and by decreasing the time spent during
interactions [127].

3.5.2 Proactive

Proactive assistance occurs when the robot predicts that an action would fulfill the
user’s goals and takes that action without explicit instructions. For example, in
assisted eating, the robot may anticipate a user’s thirst after eating and choose
to reach for the glass of water before receiving explicit input. The robot relies
on a model of the task and user behavior to estimate what the user would want
next. Proactive assistance generally improves the smoothness of interactions, as the
assistance target does not need to spend the training time or cognitive load to provide
explicit instructions to the robot. However, this type of assistance is dependent on
the model used to cue its actions, so the added complexity may make the system less
reliable.

Consider again the task of operating a high degree of freedom robot using a
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low degree of freedom input device. Instead of using explicit signals from the user,
Herlant et al. [120] designed a robot that can proactively switch modes. In a simulated
navigation task, a user drives a robot through a two-dimensional maze while restricted
to moving the robot either horizontally or vertically at one time. The robot uses
a model of the environment to determine whether horizontal or vertical motion
is more optimal in the robot’s current position. The robot can then switch the
mode proactively, allowing the user to simply direct the robot to move, speeding
up the overall interaction time and removing the cognitive burden seen in reactive
mode-switching.

A robot can build a model of the user to infer the task goal before it has been
expressed. For example, a robot can predict the next fruit that a customer wants to
add to their smoothie [127]. Before the user explicitly requests this ingredient, the
robot can prepare to grab that ingredient, increasing the fluidity of the interaction.

One challenge of proactive assistance is that users can be uncomfortable or even
endangered if the robot makes unexpected motion. To mitigate this concern, the
robot can communicate its intentions to the user explicitly. This could be done by
having the robot show the user its plan directly on the physical environment, for
example highlighting the part of a car door it plans to work on [14], or by showing
its intended travel path in a virtual reality headset [289].

Proactive assistance enables more robust and general applications than reactive
assistance does. However, the added sophistication in assistance requires additional
complexity in the robot’s models and behavior, which is compounded by the need
to act in varied environments to unexpected stimuli. In addition, a purely proactive
system can be uncomfortable or dangerous if the user is not prepared for the robot’s
actions. To mitigate some of these concerns, assistance systems can design some parts
of the interaction as reactive and others as proactive. For example, the serving robot
in Huang and Mutlu [127] proactively moves closer to its estimate of the user’s most
likely request, but it does not initiate the actual grasping process until it receives an
explicit command.
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3.5.3 Simultaneous

Simultaneous assistance exists between these two and includes shared control and col-
laborative robots. These systems generally function similarly to proactive assistance,
but act at the same time as the user. These systems include both shared autonomy
systems [137, 138, 183], which fuse the user’s direct command with an autonomously
generated command and arbitrate between the two according to some schema. It also
includes tasks like carrying a table together [78, 230], in which both the user and the
robot must act independently for progress to be made.

Simultaneous assistance occurs often in collaborative assembly tasks. The goal and
structure of a joint assembly task is often pre-specified, making it easy to determine
a user’s goal, and a robot can directly assist by, for example, lifting and holding
heavy objects steady so that they can be worked [88, 98]. A robot can also assist by
orienting a part to optimize construction, for example by following the images found
in an assembly manual [11, 332].

Simultaneous assistance often benefits from sophisticated communication strategies.
For example, DelPreto and Rus [78] designed a robot to sense electromyographic
signals from a user to jointly manipulate a heavy object. To further aid in the task,
the robot could communicate back with the user, for example by changing its stiffness
during a co-manipulation task in order to alert the user they should not move an
object into a specific location [37]. Similarly, the robot could provide the user with
cues as to the next step during a complicated assembly task such as by pointing
at the next item of interest [7], providing a negative emotive feedback when a user
completes an incorrect assembly step [251, 258] or otherwise imbue the robot with
emotive capabilities to signal task progress [205, 317].

Simultaneous assistive systems generally require tight collaboration between the
user and the robot. The closeness of the collaboration requires the system to have a
more complicated strategy for understanding user commands, since it is unlikely that
the user will give precise commands while also accomplishing their task. However,
these models can be more flexible than pure proactive systems: the robot can gain
immediate feedback from the user about whether or not its action is correct, so it
can recover from some model failures more quickly.
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3.5.4 Implications

Determining when a robot should act has implications on the quality of a robot
interaction. Reactive systems use more explicit control which enables more user
agency, but it also increases the burden to complete a task. Proactive systems require
more sophisticated models and sensing onboard the robot, but they can improve
collaborative fluency while decreasing user burden. Systems that act in anticipation
of explicit user commands may even be able to influence future user behavior in
unforeseen ways, leading to questions about who is in control of setting the task goal
[220]. Proactive robots also generally lead to more robot agency, which introduces
complex challenges such as safety and trust.

Preferences among how a robot chooses to take action may differ among users even
within the same task domain. While one user may prefer a robot that requires less
training and complication to operate, another might prefer to have more direct control
over the robot to determine its behavior more precisely. If the user is paired with
the system they least prefer, the interaction may cease to be assistive. In addition,
an assistive system need not be completely proactive, reactive or simultaneous: the
system can choose different timing and cueing strategies based on the particular part
of the task under consideration. Choosing exactly when a robot executes its actions
requires careful thought about the nature of the task, the capability of the robot, and
the desires of the user.

3.6 Conclusion

In this work, we describe an overall perspective on robotic systems that emphasizes
their assistive intentions. With this perspective, we present three key design axes that
compare assistive robotics research across domains: the relationships they develop
with people, their action space, and their action timing. We explore these axes
through a review of recent assistive robotics research, showing how assistive robots
from across domains face similar challenges and make comparable decisions along
these axes.

Much of the research discussed in this work is specific to its task domain, due to
how the field has been organized and the difficulty of building abstractions. In this
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work, we propose some abstractions, and we hope that they will enable designers of
assistive robots to find systems in other domains that share their problems and to
draw deeper connections with them.

For each axis, we discuss design tradeoffs resulting from particular approaches.
From among these axes, several themes emerge. Choices in the robot’s action space
and timing can both affect a user’s sense of agency. Similarly, the robot’s action
space and relationship to the user both impact the structure of the communication
between the robot and the user, which alters the quality of the assistance. It is our
hope that researchers will explore more themes that span the design axes and provide
more structure to the development of assistive robots.

This work is intended to start a conversation about how to understand the specific
challenges of assistive robotics within the general area of human-robot interaction.
With this framework, we hope to encourage researchers to further explore the nature
of assistance as a general concept and its inherent challenges. We do not claim that
these axes are complete; rather, we present them as the beginning of a larger effort
to develop general principles of assistive robotics.

By understanding assistive robotics as a value alignment problem, as well as the
components of an assistive system, we can begin to build a system that provides
assistance to people in everyday household tasks. To do this, we can understand that
we want to capture behaviors from the person that we wish to assist, that we want to
assist by manipulating the environment, and that we will need to incorporate either
simultaneous or non-simultaneous actions depending on how the use is collaborating
with the robot. Our first step in building this system is to understand people’s
naturalistic behaviors during rearrangement tasks. Toward this end, we collect a large
scale dataset of naturalistic behaviors in a simple, simultaneous action, rearrangement
task, introduced in the following chapter.
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Key Axis Description

People (§3.3) How the robot considers additional people outside the base-
line dyad.

Targets of assistance Additional people whose goals are of comparable importance
to the user.

Interactants Additional people whose goals are not privileged and use
general human-robot interaction approaches.

Space (§3.4) The portion of the mutual state the robot’s actions affect.
Environment The robot affects the environment directly by, e.g., manipu-

lating task objects.
Human body The robot affects the user’s body by physically moving some

portion of their body.
Human brain The robot affects the user’s mental state by providing infor-

mation about the task or reducing the cognitive burden.

Time (§3.5) The relative timing between a robot’s actions and the user’s
explicit commands during the task.

Proactive The robot acts before an explicit command.
Reactive The robot acts in response to an explicit command.
Simultaneous The robot acts simultaneously with user action.

Table 3.1: Assistive robots can be explored along three key axes: how the assistive
system thinks about additional people, what part of the mutual state aligns with its
action space, and at what time it executes its actions during a task.
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4 Human behavior during
simple surface

rearrangement tasks

In human-robot collaborations, robots need to perceive, understand, and predict the
effects of their own actions, as well as the actions of their human partners. This is
especially important for assistive robots, which perform actions toward a (sometimes
implicit) human goal. To successfully produce these assistive actions, the robot system
must perceive, understand, and predict human mental states (the human’s goals,
intentions, and future actions, often unknown to external observers) that determine
what assistance the robot should provide.

Concretely, when people complete physical tasks, their external behaviors—such as
their eye gaze—can reveal insights about their internal mental states. An assistance
system that can understand how these behaviors relate to the task can predict
which objects and locations of a visual scene the human deems to be task relevant.
The system can also use these behaviors to determine whether or not interactions
with these objects or locations will take place, and qualities that describe these
interactions. This information is not known to the system prior to completing a task
and is not relayed to the system by the human via traditional means (e.g. verbal
or written communication). Thus, understanding these mental states in order to
assist the human requires perceiving and interpreting the human’s behavior during
human-robot collaborations.

An example of a behavior that has been well studied in physical tasks is eye gaze.
People almost exclusively fixate their eye gaze on objects or locations involved in
their current task [116], thereby ignoring task irrelevant parts of a scene. Should
these objects or locations require a direct interaction, people fixate their gaze on these
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Figure 4.1: The HARMONIC data set provides multimodal human, robot, and
environmental data collected during an assistive human-robot collaboration.

objects and locations before moving their hands to complete the interaction [165],
thus revealing the intended interaction object in advance of any physical contact.
The gaze also lingers on key points in the task, such as obstacles, revealing certain
landmarks of manipulation [141]. In addition, people gaze at objects before uttering
verbal references, which others can use to disambiguate and predict speech [6, 40].

Other human behaviors can also reveal current mental states. Electromyography
(EMG) signals, which record electrical stimulation of muscle fibers, can indicate what
action people are attempting to complete with their hands.

Furthermore, pupil size has been correlated with cognitive load [29, 30, 161], and
understanding current human body posture can reveal desired tasks and help prevent
potentially dangerous collisions [193].

In this paper, we present the Human And Robot Multimodal Observations of
Natural Interactive Collaboration (HARMONIC) data set. The HARMONIC data
set contains human, robot, and environment data collected during the human-robot
collaborative task (Figure 4.1). In this task, people control an assistive robot arm to
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pick up bites of food in a simple eating scenario. The 6 degree of freedom Kinova
Mico robot arm is controlled in three dimensions via a 2 axis joystick and manual
mode-switching. In some cases, the robot provides additional assistance through
shared autonomy [138].

Although the data were collected during an assistive eating task, their usefulness
extends beyond the specific domain of eating. The manual condition can be used
to study human teleoperation in the general case, for example, with tasks using
simplified grippers such as vacuum tooling. When combined with the shared autonomy
conditions, these data can be used to study co-manipulation across individuals and
varying levels of robot agency. Included in the data are a wide array of non-verbal
behaviors situated in a real-world task defined with a clear goal and thus relevant for
a variety of human-robot collaborations.

Human behavioral data include egocentric RGB videos, eye gaze positions relative
to these videos, infrared (IR) videos of both eyes, stereo, third person video of the
participant, and EMG recordings on the joystick-controlling arm. Robot related data
include joystick control inputs from the user, the control input and belief distribution
calculated by the assistance algorithm, and the robot position. Environmental data
include the 3D locations of food morsels as well as the locations of fiducial markers.
Further information and an explanation on how to access these data is provided in
the following sections.

Our data set will help researchers study the complex human-robot dynamics of
assistive teleoperation, which can vary between individuals and between different
levels of robot autonomy. For example, researchers could use this data set to learn
correlations between eye gaze and joystick control, in order to improve the goal-
inference predictions made by shared autonomy algorithms. Others might be interested
in modeling and forecasting the dynamics of joystick inputs under differing amounts
of robot assistance. Previous research using similar data has proposed identifying
unexpected events (e.g., human errors or task failure) by learning a normative gaze
behavior model and identifying anomalies [17]; the higher quality data provided in
this data set could continue this line of research as well as extend it to situations
where the robot provides variable levels of assistance within a unified framework.
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4.1 Data collection procedure

This section presents a brief overview of the user study and the robot system to
explain the conditions under which the data streams were recorded.

4.1.1 Participants

Twenty-four participants (13 female) were recruited from the Pittsburgh area. Seven-
teen were between the ages of 18–24, four between 25–30, one between 31–35, and
two between 41–45. The participant pool was screened for prior experience using this
robot arm in similar studies and, thus, were novices at the task. The experiment was
carried out in the Human And Robot Partners (HARP) Lab on the Carnegie Mellon
University campus. The participants were compensated $15 for one and a half hours
of their time.

4.1.2 Protocol

The participants controlled a robot arm, attempting to position a fork above one of
three marshmallows placed on a plate (see Fig. 4.1). They controlled a robot with a
two-axis joystick using modal control: the joystick’s two axes moved the end effector
of the robot in x and y, z and yaw, or pitch and roll. A joystick button allowed
participants to cycle between control configurations when pressed for less than 500
milliseconds. When the task was completed (that is, once a participant was satisfied
with the fork’s position or had given up on the task), the participant held down
the same joystick button for more than 500 milliseconds. This action triggered an
autonomously executed plan in which the robot moved down to the height of the
plate and speared the marshmallow (conditional on the proper positioning of the
fork). Finally, the robot arm moved into a serving position near the participant’s
mouth. This concluded the trial, and the robot automatically reset to the starting
configuration.

Participants were given a brief introduction to the purpose of the study and then
began a five-minute familiarization period, in which they controlled the robot in
teleoperation mode and the data were not recorded. The participants were then fitted
with eye gaze and EMG sensors (described below). They performed the task five
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times in sequence for each of four assistance modes (described in the next section).
The order of the assistance mode was fully counterbalanced among the participants.
After each block of five trials, participants were given a brief survey to record their
subjective perceptions about the algorithm. Once the final survey was completed,
participants were presented with a survey that compared all conditions through
ranked preference as well as free response.

4.1.3 Assistance conditions

Participants operated the robot under each of four different assistance conditions:
fully teleoperated, two different levels of assistance according to the shared autonomy
framework [138], and a fully autonomous robot.

The following is a brief description of how the assistance is calculated; a full
description is available in a previous publication [138]. The combined human-robot
system is modeled as a Partially Observable Markov Decision Process (POMDP)
[143, 299], where the participant’s goal is represented as one unknown member of a
small set of possible goals. Participant inputs via joystick are treated as observations.
The algorithm assumes that the user is noisily optimizing a cost function parameterized
by their unknown goal. Therefore, the Maximum Entropy Inverse Optimal Control
(MaxEntIOC) [361] framework can be used to evaluate a belief distribution in the
known goal set. From this belief state, the overall POMDP is solved by applying
the QMDP [178] approximation, which has proved reliable for similar shared control
scenarios. Our implementation slightly changed the original formulation to remove
the inherent living reward, which can cause the robot to converge on a goal even in
the absence of any positive joystick actuation. The resulting robot action consists of
a computed assistive action based on the inferred user goal distribution combined
with the original applied user action.

To provide different levels of assistance, the shared autonomy transition function
was modified slightly from prior work. In Javdani et al. [138], the given transition
function applies both the user and the robot control as determined by aapplied = u+ a.

In order to adapt the amount of user control, the applied action was parameterized
by a value γ: aapplied = (1−γ)u+γa, which trades off between the relative strengths of
the user command and the robot assistance. Note that the original shared autonomy
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procedure would correspond to the case γ = 0.5 and normalizing the vector aapplied.
The four conditions corresponded to four different levels of γ:

Direct teleoperation, γ = 0. The assistance signal a was computed but completely
discarded, so the user had full manual control over the robot.

Low assistance, γ = 0.33. The assistance signal was combined with the direct
user control, with the user signal weighted double.

High assistance, γ = 0.67. The assistance signal was combined with direct user
control, but the assistance signal was more highly weighted.

Autonomous robot control, γ = 1. The user control signal was not passed
through to the robot control. It was used for goal inference only and the robot was
autonomously controlled based on its goal inference results.

4.1.4 Sensors

Eye gaze. Participant eye gaze direction was captured by a Pupil Labs Pupil
[149, 247] sensor. This sensor consists of a glasses-like frame with two infrared
cameras with infrared illumination mounted below each eye for dark pupil tracking,
plus a third RGB camera oriented outward to capture egocentric video. The eye
cameras capture video at 120 Hz, and pupil labs software detects the pupil pixel
center. Before data were captured, the pupil locations and world camera videos
were calibrated by asking the participant to look at the center of the marker held
in front of them by the researcher (“manual marker calibration”). This calibration
routine was recorded for most participants and is made available in the calib folder.
The calibration is verified between each condition by asking participants to look at
particular places in the scene. These checks are recorded and made available in the
check folders.

EMG. Participant muscle activation while controlling the joystick was captured
using a Myo sensor [318]. Due to initialization failures, these data are only available
for about 20% of the runs (see Table 4.1 for full details). It consists of the EMG
message, denoting the activation of eight individual EMG sensors, the ORI message,
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denoting the orientation of the arm in roll/pitch/yaw, and the IMU message, denoting
the readings of the IMU attached to the armband.

External video. Participant behavior was captured using a Stereolabs [305]
ZED camera. The left and right videos are stored as separate MP4 files. The ZED
camera was placed on a tripod at approximately the same (marked) location for each
trial to capture a full-on view of the participant and occasional views of the scene.
ZED videos are available for the 10 participants who consented to their images being
released. In all cases, offline skeleton and face tracking information is available.

4.2 Descriptive statistics

This data set consists of 480 trials, comprising 20 trials for 24 participants. The data
represent about five hours of continuous instrumented robot control. A summary of
the available data appears in Table 4.1.

4.3 Data streams

The data are organized first by participant (p100-p123 reflecting the twenty-four
participants). Each participant folder contains folders for three types of recordings:
calib contains calibration passes, check contains intermediate gaze accuracy checks,
and run contains data collection runs. These folders contain numbered subfolders
that indicate the run sequence. A visual representation of selected data streams can
be seen in Fig. 4.2.

A single trial capture (a numbered folder) has the following subfolders:
• text data contains exported CSV files containing the raw data. The particular

raw data streams available are detailed in the following subsections. In addition
to raw data, this directory contains the body skeleton, facial, and hand keypoints
generated by running OpenPose [54, 295, 335] on the left and right streams of
the third-person ZED videos. The outputs from OpenPose are compiled into
face, right, and left-hand, and pose files for each stream of the depth camera.
For full descriptions, please refer to the OpenPose documentation.

• stats contains a number of YAML files detailing statistical information about the
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Figure 4.2: A visualization of several streams from the HARMONIC data set. The
top row displays the ZED video with OpenPose skeletons overlaid, then the egocentric
video captured from the Pupil camera, left eye video, one second of the calculated
gaze dot, the trajectory of the joystick, and finally the Myo activations. For the gaze
dot and the joystick, lighter colors represent more recent points in time. Each of
these plots represents one second of data, sampled at 30 FPS.
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trial and the general data stream, including the number of records, approximate
time distances between individual records and estimates of times when data
points may have been dropped based on the nominal data collection frame rate.

• videos contains the Pupil video files (eye0.mp4, eye1.mp4 and world.mp4)
exported as MP4 files using the H.264 video codec [260]. In addition, the
timestamps of each frame as either numpy (*.npy) files, raw text (*.txt), or
CSV (*.csv).

• processed contains a number of new formats of data extrapolated from the
underlying data (e.g. a video of the egocentric recording with a dot overlaid at
the gaze point).

4.3.1 Timing and synchronization

All data points were timestamped on collection and stored as 32- or 64-bit floating
point values in number of nanoseconds from the Unix epoch. The CSV files in
text data provide these data in several columns.

For ease of use, two common indices are provided for all data streams. The
world index field gives the egocentric video frame number corresponding to each
data point. A second common index, world index corrected, provides a second
index into the egocentric video, with a correction for dropped video frames. The
world index corrected value approximates a common 30Hz clock running through-
out the trial. For more sophisticated data alignment, please use the provided times-
tamps.

4.3.2 Eye gaze

Eye gaze videos were recorded at 120 Hz and located in the videos folder as eye0.mp4
and eye1.mp4, encoded using the H.264 video codec [260]. Frame-level times-
tamps are available in corresponding NumPy binary files, eye0 timestamps.npy
and eye1 timestamps.npy. The automated pupil detection results for each eye are in
the text data folder, under pupil eye0.csv and pupil eye1.csv. The field names
correspond to the output of the 3D pupil detection process in Pupil Labs, as described
in their documentation.
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Egocentric video is available in the videos folder as world.mp4 (encoded using the
H.264 codec [260]), with frame-level timestamps located in world timestamps.npy.
The calculated gaze position within the corresponding video frame is given in
text data/gaze positions.csv. See the pupil labs documentation for a full descrip-
tion of fields. The fields norm pos x and norm pos y correspond to the (x, y) pixel
in coordinates normalized to the size of the egocentric video frame, with the origin
point on the top left.

Data used to calibrate between pupil data and gaze point are stored in the text files
pupil cal eye0.csv, pupil cal eye1.csv, and world cal positions.csv. These
data are the same between runs of the same participant and are provided as a
convenience to recalculate a calibration if desired. Details of the current calibration
method can be found in the Pupil Labs software documentation.

4.3.3 Third person video

ZED videos were recorded using Stereolabs ZED software, version 1.1.0. Data
were initially stored as a Stereolabs SVO file, including separate left and right
videos and a common timestamp. The videos were extracted from the videos
directory as zed left.mp4 and zed right.mp4 encoded using H.264 [260]. The
timestamps were rescaled to the Unix epoch and stored as an integer number of
nanoseconds from the epoch in zed ts.txt, as well as floating-point NumPy format
in zed timestamps.npy. The zed corrs.csv stores the correlations to a common
index, as previously explained.

4.3.4 Additional sensor data

The following data streams are available in the text data directory, having been
extracted or calculated from the original binary.

• control mode.txt contains one character referring to that trial’s assistance
condition. Zero represents direct teleoperation and 3 represents robot control.

• morsel.yaml is a YAML file with the transforms for each detected morsel positions
in the robot base frame.

• ada joy.csv stores raw joystick input provided by the user. Joystick input is
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only provided when changed from the previous message leading to inconsistent
timing in the raw data. To rectify this, joystick data have been resampled
to a common 120 Hz frequency and missing data filled by the previous value.
Duplicate data are noted by unchanged headers.

• input info.csv contains the user input to the robot. The robot mode field
denotes which control mode the robot is in (x/y, z/yaw, or pitch/roll), and the
rest of the fields denote the applied twist corresponding to the user’s joystick
input.

• assistance info.csv contains the outcome of the shared autonomy algorithm.
It stores the current probability inferred for each goal and the resultant twist
applied to the robot at that timestep.

• joint states.csv contains the information for each joint of the robot.
• robot position.csv contains the cartesian position of each of the robot links,

as calculated from the forward kinematics using the data from joint states.csv.
• myo emg.csv contains EMG output of the Myo.
• myo imu.csv contains IMU output of the Myo.
• myo ori.csv contains orientation data received from the Myo sensor.

4.4 Known issues

4.4.1 Missing data

Due to computational load, certain data streams may have periodic dropouts. The
stats directory contains some information on when and how often these occur, and
general statistics are given in Table 4.1. The missing data are particularly exacerbated
for the Myo signal because the data recording software failing to start. Finally, due to
permissions restrictions, unedited ZED video capture is available for 10 participants,
deidentified video (video with faces blurred) is available for 13 participants, and video
for 1 participant is unavailable for release. Within the released participants, some
initialization failure means that videos of certain trials are occasionally missing.
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4.5 Accessing the data

The data will be hosted on the HARP Lab website: http://harp.ri.cmu.edu/
harmonic. Several files are provided for download: harmonic data.tar.gz, a com-
pilation of all of the data, (∼ 68 Gb), harmonic minimal.tar.gz, consisting of the
text data, videos, and stats directories, (∼ 15 Gb), harmonic text.tar.gz, con-
sisting of the text data directory, (∼ 4 Gb), and finally harmonic sample.tar.gz,
consisting of all of the data for a single participant, (∼ 303 Mb). The data
sets will be versioned using semantic versioning and that page will maintain a
log of all changes that may be made to the data set after release. Furthermore,
our GitHub contains a repository for basic processing tools located here: https:
//github.com/HARPLab/harmonic_cpp. Finally, for the original robot control code,
follow this link to a fork of the publicly available implementation of the shared
autonomy code we used: https://github.com/HARPLab/ada_meal_scenario [137].
Our robot control code is on the branch: “adjustable”.

4.6 Conclusion

We presented a data set of humans who performed a food acquisition task by con-
trolling a robot manipulator. During this task, a variety of types of participant data
were collected, including eye gaze information, electromyography of the controlling
arm, stereo video, and robot controller information. This data set enables research
into human-robot collaboration and multimodal human behavior analysis.

Using this dataset of naturalistic human behaviors we can begin to understand
how to featurize human behaviors in order for a robot to better provide assistance
during a simple surface rearrangement task. Using the insight that eye gaze and
joystick information may reveal different information about a user’s goal during
different parts of the task, we used the behaviors collected in HARMONIC to train
a coordinated feature representation of these two behaviors for potential use in a
downstream assistance task. These experiments are outlined in the following chapter.
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Left Eye Right Eye Egocentric Video ZED Camera
Total duration (h:m:s) 5:19:26 5:10:45 5:33:44 4:44:45
Total frames 2299877 2237380 600728 512569
Nominal frequency (Hz) 120 120 30 30
Frames dropped 133301 195860 7459 94431
Coverage (%) 94.52 91.95 98.77 84.44
Present (%) 100.00 100.00 100.00 87.25
Coverage if present (%) 94.52 91.95 98.77 94.83

Joystick Rob. pos. EMG IMU ORI
Total duration (h:m:s) 4:56:00 5:48:05 1:10:49 1:10:53 1:10:53
Total frames 2131160 1670798 212465 212664 212659
Nominal frequency (Hz) 120 80 50 50 50
Frames dropped 114250 1680 802368 802204 802206
Coverage (%) 94.91 99.90 20.94 20.95 20.95
Present (%) 100.00 100.00 21.48 21.48 21.48
Coverage if present (%) 94.91 99.90 99.75 99.83 99.83

Table 4.1: Descriptive statistics of each data stream in the data set. Total duration
and Total frames refer to the collective amount of data of that signal over all trials
and participants. Total duration is extracted by dividing the total frames by the
nominal frequency. Frames dropped are based on interpolating from the nominal
frame rate and detecting missing data. Coverage is computed by dividing the number
of data frames by the expected number of data frames from the nominal frequency
over the whole data set, Present indicates the fraction of trials that have at least
one datum of that type, and Coverage if present is the total number of data frames
divided by the expected number evaluated only if at least one datum is present in
the trial.
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5 Evidence that value
alignment requires

continual
personalization

Our goal of understanding how to use naturalistic behaviors to provide value-assigned
assistance requires that we understand how best to incorporate these signals into
robotic algorithms. In this work, we explore how we can develop implicit, differentiable
representations of these behaviors so that they can be used for downstream assistance
tasks.

Without any algorithmic support, it can be extremely taxing for an individual
to directly control, i.e., teleoperate such a robot. This is because the number of
DOFs of the robot being controlled is generally much larger than that of the input
device. Furthermore, it is not sufficient to allow the robot to complete these tasks
autonomously, as previous work has shown that retaining explicit user control is
especially important in assistive domains, where users strongly prefer systems that
allow them to stay in control of assistive robots, even if they are less efficient at
completing the task [109, 151].

To address this, researchers have developed shared autonomy algorithms that
combine user control with autonomous robot behavior, resulting in comanipulation
of the robot [85, 109, 137]. For shared autonomy algorithms to be successful, they
must have the ability to accurately characterize a user’s state to support complex
and high-dimensional comanipulation tasks, such as assisting a user with motor
impairment to eat with a 6 degree of freedom (DOF) arm. These algorithms use
direct control signals, such as the operator’s joystick inputs, to predict the operator’s
goals so that the robot can take a cooperative action to assist the user.

However, basing such goal predictions only on direct control signals, such as
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explicit joystick behavior, misses the opportunity to use rich human behavior signals
that can further reveal user state, specifically user intent. For example, eye gaze is
closely related to the target and timing of manipulation actions in people [116, 165].
In human-robot comanipulation tasks, here cooperative eating with a 6 DOF robot
arm, eyes can be used to predict user actions or identify errors in teleoperation
[5, 17, 19]. Eye gaze is therefore a natural mechanism to supplement the human goal
prediction that takes place during shared autonomy.

To successfully incorporate this signal into the shared autonomy paradigm, it is
necessary first to understand hand-eye coordination in comanipulation. Specifically,
we need to determine the basic building blocks of comanipulation that will allow us
to coordinate between a user’s eye gaze and how they control the robot’s end-effector
(here by using their hand to manipulate a joystick). Coordination allows us to relate
the varying task-relevant information contained in the different data streams to each
other. For example, in assisted eating, the joystick can reveal the immediate vector
in which a person wants the robot to travel, but eye gaze can reveal the ultimate
bite of food the user wishes to spear; here, it is important to perform an action that
does not move too far away from the immediate action while still optimizing for the
overall goal. By relating the joystick and eye gaze streams in this example, we can
get a more complete vision of the user’s state: not just where they want to go, but
how they would like to get there.

However, before coordinating the data, it must be processed. From an algorithmic
perspective, processing human behavior signals like eye gaze, head pose, or joystick
inputs is non-trivial. These signals are noisy and different data streams provide
different task-relevant features. In addition to the algorithmic complexities, simply
obtaining these signals is challenging, as collecting data from multiple sensors to train
data-driven models can require burdensome engineering efforts to set up, calibrate,
and synchronize. Fortunately, there have been a few large-scale data set collection
efforts for teleoperation and human-in-the-loop comanipulation tasks [222, 334].

In this paper, we use a large-scale multimodal data set called HARMONIC
to identify the basic building blocks of hand-eye coordination exhibited by people
during comanipulation tasks (Fig. 5.1). We identify semantic, multimodal action
primitives that establish the basis for a user’s state. Then, we apply modern data-
driven techniques to classify multimodal, multiview real world data into these action
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Figure 5.1: The HARMONIC data set contains (a) third person video, (b) egocentric
video, (c) eye gaze fixations, and (d) joystick data from a human-robot co-manipulation
task.

primitives, to verify our choice in primitives as well as show that coordination between
eye gaze and joystick is possible. Finally, we justify the multimodal problem by
showing that unimodal analyses are not sufficient to explain joint behaviors.

We provide several novel contributions toward an understanding of hand-eye
coordination in comanipulation. We first define macro action primitives, which
segment user actions into meaningful sequences of individual user states, and discuss
how they differ from physiological gaze primitives (Section 5.1.1). To evaluate our
data-driven recognition models for macro actions, we create a synthetic data set
that contains these action primitives so that we have full control over the generative
process and have perfect access to ground truth annotations (Section 5.1.3). We show
how these semantic macro action primitives can be modeled using both the synthetic
and real raw data (Section 5.2), and provide a thorough experimental analysis of our
models (Section 5.3).

5.1 Problem domain

We build models of hand-eye coordination in human-robot comanipulation to better
understand the user state during high-dimensional comanipulation tasks such as
assisted eating. To describe hand-eye coordination, we define action primitives
that provide a semantic understanding of user state. We draw our action primitive
definitions by semantically analyzing the HARMONIC data set, which is described
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(a) Exploration (b) Pursuit (c) Correction (d) Mode switch (e) Toggle

Figure 5.2: Five macro action labels capture combined eye gaze and end effector
dynamics. a) Exploration denotes periods of high eye gaze movement and low joystick
(robot) movement. b) Pursuit denotes periods of highly correlated eye gaze and
joystick movements, where the eye gaze follows the path of the robot. c) Correction
denotes successive glances between different parts of the scene while the robot is
moving. d) Mode switch denotes when the user is using modal control to cycle
through sets of degrees of freedom. e) Toggle denotes periods in which the joystick is
being moved in rapid, short, consistent activations.

briefly here. Additionally, to test these primitives in a systematic fashion, we construct
a synthetic data set, as described below.

5.1.1 Defining action primitives

In our current work, we use the term micro actions to refer to three low-level gaze
action primitives that can be used to understand attention or user state. Fixations
are eye movements that focus the eye gaze on a single point in space and are used to
gather visual details. Saccades are fast, point-to-point movements of the eyes that
bring a new area into the center of vision. Finally, smooth pursuits are when the eyes
track a moving object to keep it in the center of vision.

However, micro actions only partially express hand-eye coordination during co-
manipulation, because they do not capture the robot’s movement. For this, we
manually analyzed the HARMONIC data and identified five common macro actions
(Fig. 5.2) composed of gaze gaze and joystick movements. Our five macro actions
are: exploration, correction, pursuit, mode switch, and toggle.

Exploration is defined by minimal joystick activity and high eye gaze activity.
Semantically, this class represents a person exploring the space with their eye gaze,
preparing to make an action with the joystick. This sequence starts when the joystick
moves into a period of rest and ends once the user activates the joystick. This can be
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Figure 5.3: A graphical description of the differences between macro action categories
from HARMONIC. Eye gaze sequences are red, while joystick sequences are blue. The
y-axis shows the normalized cumulative distance for each sequence. The x-axis shows
normalized sequence lengths. Every trial is plotted, with a representative sequence
highlighted in bold.

seen in Fig. 5.3 where the joystick sits generally at the bottom of the plot, indicating
no movement throughout the sequence, and the eye gaze is dispersed throughout the
plot.

Pursuit is defined by correlated eye gaze and joystick action. In this class (which
is not to be confused with the micro action primitive smooth pursuit), the participant
moves the joystick and follows the resulting robot action with their gaze. This may
result in large eye gaze movements when the robot is moving across the visual scene
or little eye gaze movement when the robot’s end effector is rotating. This action
begins when the eye gaze begins to follow the robot’s action (as resulting from the
joystick activation) and ends once the eye gaze moves away from the previously
fixated position. This relationship can be seen in Fig. 5.3 where the gaze and joystick
signals are tightly coupled.

Correction can be categorized by high joystick activity and consistent eye gaze
glances between a “home” point and another task relevant scene point. Prior work has
called these “monitoring” glances [19]. This action can reveal an operator’s goal or
the target of their current control input. This sequence begins as eye gaze moves away
from a previously fixated position during joystick activation. It ends once the eye
gaze has travelled back to the original position (after one or more fixations elsewhere
in the scene), the joystick comes to a period of long rest, or the participant enters
into one of the other semantic categories. This can be seen in Fig. 5.3 where the eye
gaze initially takes a stair step approach indicating fast movement initially, a pause
and then fast movement again. This pattern is then followed in the joystick channel.
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Frame 0 Frame 19 Frame 38 Frame 57 Frame 76 Frame 95

Figure 5.4: Our synthetic dataset was modeled as a simplified version of the eye gaze
and joystick signals from the HARMONIC task. Here, an example of the exploration
action, with simulated eye gaze (square), robot position (triangle), and goal (circle).

Mode switch represents when the participant switches control modes. This class
is programatically generated by taking the five frames before and after the button
press that causes a robot control mode switch.

Toggle is defined by quick, successive joystick taps with the eye gaze path closely
following the end effector. This begins when the participant makes short bursts with
the joystick, and ends either when the joystick comes to a period of inactivity or
consistent activity. This can be seen in Fig. 5.3, where the cumulative distance of
the joystick takes a stair step pattern, while the gaze initially lags behind and then
catches up at the end of the sequence.

5.1.2 Naturalistic human behavior data set

As the source of real-world human-robot comanipulation data, we used the previously
released HARMONIC data set [222], described in Chapter 4. Though the full data set
includes approximately five hours of data, for the current analysis, we are investigating
teleoperation only. Therefore, we only included the five trials per participant where
people were fully teleoperating the robot (i.e., the robot assistance signal was set to
zero). These data are pictured in 5.1.

5.1.3 Synthetic data set

Real-world data are noisy, so we developed a synthetic data set that allows us to
test our models with hypothetically perfect inputs. Additionally, it provides an
opportunity to control and experiment under a variety of noise parameters, prototype
experiments at scale, have full control over the data generator, and have access to
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actual ground truth labels.
This synthetic data set was designed to mimic the task in the HARMONIC data

set. The robot end effector navigates to a virtual goal, while a virtual eye gaze stream
is simultaneously overlaid on the scene. As seen in Fig. 5.4, the robot is represented
as a triangle, the eye gaze as a square, and the goal as a circle. The robot aims to
navigate to within a threshold of the goal. Trials with fewer than 200 or more than
1000 frames were discarded.

Table 5.1 shows the distribution of micro and macro actions in both HARMONIC
and synthetic data sets. We can see that the number of sequences is relatively
balanced in the HARMONIC data set, with fewer toggle sequences overall.

Table 5.1: Distribution of class labels in HARMONIC and synthetic datasets for both
the micro and macro classification tasks.

HARMONIC Synthetic

Micro
Saccade 0.1796 0.4321
Smooth Pursuit 0.5541 0.1743
Fixation 0.2663 0.3936

Macro

Exploration 0.2319 0.3377
Correction 0.2424 0.0993
Pursuit 0.1765 0.1140
Mode Switch 0.2181 0.3377
Toggle 0.1311 0.1113

5.2 Method

5.2.1 Micro and macro action labeling

Micro action labels were automatically classified using Bayesian Decision Theory
Identification (I-BDT) [270] which classifies gaze-actions in online settings. For an
explanation of this algorithm, we refer the reader to the original paper.

Macro actions were hand-labeled for ten participants in the HARMONIC data set.
Sequences with significant amounts of low-confidence eye gaze calculations (given by
the eye tracker). Two of the ten labeled participants (p102 and p103) were completely
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discarded due to significant missing data. For the remaining labeled participants,
we dropped 62 of 2931 total sequences (2.1% of sequences) or 2931 of 48135 frames
(3.4% of frames) because of missing gaze data. Supplementary information contains
more details about our exclusion criteria, as well as our subsampling method.

5.2.2 Models and input representations

We built models for micro and macro actions using a two-layer Gated Recurrent Unit
Recurrent Neural Network (GRU-RNN) [66] to encode a given input sequence using
the PyTorch neural network library [235]. We tested four input families: eye gaze
alone, joystick alone, an early fusion of eye gaze and joystick, and a late fusion of
eye gaze and joystick (Table 5.2. We also considered different hidden sizes for these
models, which are shown in the hsize column of Table 5.2.

To decode these sequences into classification vectors, we collect the context vectors
for each step in the sequence, and then feed this into a three-layer Multi-Layer
Perceptron. In late fusion models, the eye gaze and joystick signals are each encoded
by two separate encoders, and then the context vectors are concatenated prior to
being decoded. This is in contrast with the early fusion models, in which the eye
gaze and joystick sequences are concatenated along the feature axis and then jointly
encoded.

The first layer of the decoder is the product of the maximum sequence length
and the hidden layer size. The second layer is half that, and the final layer is the
number of classes. This decoder model is fully connected, and ReLU [215] is used
for nonlinearity after the first and second layers. All models were trained using the
Adam optimizer [153] using a learning rate of 1e-3 and a cross-entropy loss weighted
by class distribution (given in Table 5.1).

The x,y embedding indicates that the inputs are given to the model as is, without
modifications. For synthetic data, this is the x,y position of both the eye gaze and
the joystick. For HARMONIC data, eye gaze includes the confidence score from the
eye tracker, while the joystick additionally includes a hot vector that indicates the
current control mode. The dx,dy embedding indicates that the difference (or discrete
derivative) of the signal is taken before the input is passed to the model. Finally,
the binary representation divides the input space into a 10x10 grid and generates a
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hot vector indicating the pixel closest to the real-valued number. This vector is then
passed on to the model as input.

5.2.3 Problem setup

For both tasks, we consider a supervised classification problem. Our goal here is to
show a correlation between the segmented raw data and our provided macro labels.
Outperforming chance and the zero rule (guessing the majority class) shows that
the chosen macro labels are good segmentations of the raw data. In future work,
the representations learned by these models could be used as context vectors that
can be incorporated into the shared autonomy paradigm. We give the results on the
classification problem in Section 5.3.

5.3 Experimental results

The results of the experiment for both real and synthetic data sets for both micro and
macro tasks are shown in Table 5.2. Following the initial experiments, an analysis
of individual differences in the real world was performed for both the micro and
macro task. For this, we used k-fold cross-validation, where each fold was a single
participant, as seen in Table 5.5. The accuracy and mean average precision (mAP)
are reported for all experiments. For both micro and macro actions, the chance values
were calculated by taking the inverse of the number of classes (three for micro action
classification and five for macro action classification). The majority class values are
given in Table 5.1 for both data sets and tasks. These are calculated by dividing the
total number of sequences of a particular class by the total number of sequences in
the entire data set.

5.3.1 Micro action results

The best performance for synthetic data in both metrics came from the joint late
fusion model with a hidden size of 16 and inputs represented as the difference of the
raw signal. The 0.9710 accuracy score outperforms both guessing at chance (0.3333)
and consistently guessing the majority class (0.4321). Given that these results are an
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idealized version of the real-world data, these numbers represent a theoretical upper
bound on performance.

The real data also outperformed chance and guessing the majority class (0.3333
and 0.5541). The best results for these data were obtained with the eye-only model,
with the best representation being the difference of the input signal. Accuracy was
best under the 256 hidden size model, while mAP performed the best under the 16
hidden size model, but both models performed similarly in both metrics.

5.3.2 Macro action results

Synthetic data performed well in all categories for macro action classification (Table
5.2). In all cases, it outperformed chance (0.2) and guessing the majority class
(0.3377). The best performance was achieved by the late fusion model with a hidden
size of 16 and input streams represented as the difference of the raw signal. Both
fusion models significantly outperformed the single-stream models.

The real data also outperformed chance (0.2) and guessing the majority class
(0.2424) in all experiments, with the best performance resulting from the early fusion
model with hidden size of 256 and the original input stream as the input to the model.
Although this model performed the best, performance on the late fusion model and
the joystick only model were similar.

5.3.3 Participant level cross validation

Table 5.5 shows the accuracy and mAP scores when each participant is considered as
their own test set for the micro and macro tasks. The micro task should be compared
to the eye only model, dx, dy, 256 models, and the macro task should be compared to
the eye+joy (e), x,y, 256 model. Evidence was found to suggest individual differences
in the macro action classification, but not in the micro action classification.

5.4 Discussion

Improved performance in the synthetic data for both classification tasks was realized
by jointly modeling eye gaze and joystick data. For real data the best results for micro
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action classification came by modeling eye gaze alone, with the joystick model only
slightly outperforming consistently guessing the majority class. This indicates that in
real data, the patterns of joystick behavior do not differ significantly across micro
action sequences, further justifying the need to create and analyze macro actions to
encompass user control input signals.

In macro action classification, the joystick and both fusion models performed
similarly, with slight improvements coming from the fusion models. Thus, outper-
forming the joystick signal is possible in this task, but the fusion between the eye
gaze and joystick signals is non-trivial and should be explored further. All models
significantly outperformed guessing the majority class, indicating that eye gaze and
joystick display distinct patterns within the proposed primitives.

Another finding was that the model’s preferred input representations were consis-
tent across task and data set. The best performance from both synthetic and real
data on the micro and macro classification tasks came from representing the eye gaze
as the original, real-valued input. The joystick stream was best represented as the
difference in the synthetic data and as a real value in the real data, but, since the
joystick in the synthetic data actually represents the end effector of the robot, taking
the diff of this signal actually results in a signal similar to the joystick data in the
real data set.

Additionally, we found no consistent improvement when considering wider hidden
representations, indicating that smaller models can be used to achieve this task. This
finding is important because assistance algorithms must be processed online, and the
use of smaller and lighter models makes this approach more viable. Furthermore,
there was no appreciable difference between the early and late fusion models.

Finally, Table 5.5 shows that micro actions are consistent between participants, as
the weighted average of accuracy over the 19-fold cross validation compared similarly
to the accuracy of the best eye only model (though mAP underperformed). This is
in contrast to the macro action categories, Table 5.5, in which the weighted average
of both accuracy and mAP significantly under performed the best early fusion model.
This indicates that there are individual differences, and the building of effective
models to account for these differences should be further studied.
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5.5 Conclusion

In this work we are motivated by the need to understand hand-eye coordination
for human-robot comanipulation. This problem is especially important for assistive
robotics tasks, in which operators could greatly benefit from the introduction of
indirect control signals, such as eye gaze, into assistance algorithms. We introduced a
novel concept of macro actions, which are semantic action primitives that represent
high-level task activities. These macro actions are complementary to micro actions,
which represent low-level behavior. We defined five macro actions that combine eye
gaze and joystick in an assistive eating task drawn from the HARMONIC data set.
We then developed multimodal models of micro and macro actions, and extensively
analyzed the models’ performance under different parameters. Our analysis further
justifies the need for semantic macro primitives, and highlights the benefit of jointly
modeling eye gaze and joystick signals within a single task. Finally, we discussed how
participants show individual differences. This work will enable future research into
the combination of indirect and direct control signals to fully perceive human goals
in comanipulation settings.

In this work we additionally found that there is a large variance in the performance
of our model as it generalizes across individuals, suggesting that there is a significant
need for representations of people’s behaviors to be personalized to individuals, i.e.
generalized feature spaces are unlikely to be able to provide value-aligned assistance.
Toward this end, we explore how we can use large-scale pretrained feature spaces, which
have been shown to be easily conditioned using in-context learning, for personalization
in object rearrangement tasks. Additionally, through this work, we realized that
while the data provided in HARMONIC provide rich naturalistic behavior, the simple
surface rearrangement task does not accurately reflect the open-vocabulary and
sequentially dependent nature of the household tasks we are aiming to emulate. As
such we introduce a new domain in the following chapter and discuss how we can use
foundation models to personalize a pretrained feature space.
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Table 5.2: Results for the synthetic and HARMONIC datasets on the micro classifi-
cation task. We report accuracy (acc) and mean average precision (mAP). We test
a variety of input streams: eye gaze only (E), joystick only (J), an early fusion of
eye gaze and joystick (E+J-e), and a late fusion of eye gaze and joystick (E+J-l).
Additionally, we test different embeddings (embed) of the inputs: binary, real (raw),
and difference (del). Finally, we test two different hidden unit sizes (∥h∥): 16 and
256.

Micro
input embed hsize acc (synth) acc (real) mAP (synth) mAP (real)
E raw 256 0.9186 0.6964 0.9670 0.6700
E 0/1 256 0.9620 0.6648 0.9949 0.6666
E raw 16 0.9316 0.6774 0.9738 0.6716
E del 256 0.8656 0.7076 0.8703 0.7027
E del 16 0.9695 0.7006 0.9963 0.7028

J 0/1 256 0.8671 0.5182 0.9068 0.5037
J raw 256 0.9141 0.5561 0.9464 0.5248
J raw 16 0.9016 0.5610 0.9328 0.5148
J del 256 0.9456 0.5638 0.9895 0.5112
J del 16 0.9486 0.5372 0.9902 0.5079
E+J-e 0/1 256 0.9416 0.6830 0.9804 0.6668
E+J-e raw 256 0.8971 0.6669 0.9242 0.6822
E+J-e raw 16 0.9226 0.6767 0.9555 0.6895
E+J-e del 256 0.9575 0.6522 0.9955 0.6608
E+J-e del 16 0.9650 0.6669 0.9956 0.6915

E+J-l 0/1 256 0.9271 0.6767 0.9776 0.6864
E+J-l raw 256 0.9386 0.6669 0.9861 0.6782
E+J-l raw 16 0.9051 0.6697 0.9434 0.6869
E+J-l del 256 0.9640 0.6957 0.9954 0.6930
E+J-l del 16 0.9710 0.6613 0.9977 0.6709
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Table 5.3: Results for the synthetic and HARMONIC datasets on the macro classifi-
cation task. We report accuracy (acc) and mean average precision (mAP). We test
a variety of input streams: eye gaze only (E), joystick only (J), an early fusion of
eye gaze and joystick (E+J-e), and a late fusion of eye gaze and joystick (E+J-l).
Additionally, we test different embeddings (embed) of the inputs: binary, real (raw),
and difference (del). Finally, we test two different hidden unit sizes (∥h∥): 16 and
256.

Macro
input emb ∥h∥ acc (synth) acc (real) mAP (synth) mAP (real)
E raw 256 0.7763 0.4884 0.5981 0.4522
E 0/1 256 0.8310 0.4884 0.7266 0.4431
E raw 16 0.8539 0.4653 0.7713 0.4459
E del 256 0.9185 0.5347 0.9237 0.4805
E del 16 0.9195 0.5644 0.9050 0.5054

J 0/1 256 0.7783 0.6436 0.6274 0.5886
J raw 256 0.8062 0.6931 0.6710 0.6797
J raw 16 0.7962 0.6502 0.6599 0.6642
J del 256 0.8917 0.5479 0.8230 0.5241
J del 16 0.9006 0.5809 0.8203 0.5666
E+J-e 0/1 256 0.7952 0.6205 0.6595 0.6244
E+J-e raw 256 0.8082 0.6997 0.6847 0.7053
E+J-e raw 16 0.8956 0.6832 0.8456 0.6682
E+J-e del 256 0.9652 0.5578 0.9664 0.5452
E+J-e del 16 0.9543 0.5248 0.9706 0.4748
E+J-l 0/1 256 0.8678 0.6271 0.7979 0.6357
E+J-l raw 256 0.8111 0.6238 0.6702 0.6613
E+J-l raw 16 0.7873 0.6964 0.6680 0.6997
E+J-l del 256 0.9612 0.6139 0.9707 0.5889
E+J-l del 16 0.9662 0.5314 0.9792 0.5257

Table 5.4: Results for the HARMONIC dataset on the macro task using the best
representations from Table 5.2.

Input gaze embed gaze hsize joy embed joy hsize acc mAP
eye+joy(ef) dx,dy 16 x,y 16 0.6799 0.6805
eye+joy(ef) dx,dy 256 x,y 256 0.6403 0.6197
eye+joy(lf) dx,dy 16 x,y 256 0.6997 0.7147
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Table 5.5: Micro action cross validation by participant ID (eye only, dx,dy, 256 model).
† Data were excluded due to significant noise. ‡ Data were not labeled for macro
actions.

Micro Macro
ID Accuracy mAP Accuracy mAP
p101 0.7021 0.7571 0.5587 0.6551
p102 0.6651 0.6396 † †
p105 0.7317 0.6690 † †
p106 0.7161 0.7089 0.6818 0.7742
p107 0.6140 0.6658 0.6023 0.5704
p108 0.7901 0.7346 0.7005 0.7010
p109 0.6984 0.6458 0.6447 0.6140
p110 0.6889 0.7492 0.5209 0.5921
p111 0.5305 0.5527 0.6204 0.6111
p112 0.7105 0.7313 0.4638 0.5165
p113 0.6549 0.6851 ‡ ‡
p114 0.7111 0.7250 ‡ ‡
p115 0.7333 0.7019 ‡ ‡
p117 0.8023 0.6709 ‡ ‡
p118 0.8175 0.6650 ‡ ‡
p119 0.5987 0.5872 ‡ ‡
p121 0.7128 0.7097 ‡ ‡
p122 0.6942 0.6745 ‡ ‡
p123 0.6915 0.7144 ‡ ‡

Avg 0.6923 0.6429 0.5951 0.6233
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6 Personalized feature
spaces in complex

surface rearrangement
tasks

Assistive home robots should complete tasks in ways that align with user prefer-
ences [221]. Consider the task of setting plates and utensils on a table for dinner.
The correct solution for this task is subject to your preferences for the type of utensils
you want to use and how you prefer to arrange them. However, modeling individual
preferences, especially those that consider fine-grained features such as the real-valued
location of objects and their relative placements, is challenging, as such preferences
are subjective, difficult to specify explicitly, and vary from person to person. In
this work, we explore this problem through the example of personalized dinner table
arrangement and determine a personalized task plan for setting a dinner table given
examples of a person’s preference.

Prior research on multi-object rearrangement collects problem-specific datasets of
simulated or human demonstrations that represent personal preferences for completing
a household task. They hypothesize that collecting large data sets of task-specific
preferences is sufficient to train a feature space that can generalize to novel participants
who were excluded from training data [2, 145, 147, 223]. However, these methods
often yield poor generalization to these held-out participants due to the large effects
from individual differences. These challenges indicate that it is difficult to collect a
large dedicated dataset to train a feature space that covers the unbounded space of
personal preferences for even a single task and suggests that generalized pre-training
is a potentially fruitful path of research. These ideas are further compounded when
considering under specified preferences and preferences that are influenced by cultural
norms or decorum.
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Figure 6.1: DegustaBot takes in a single person’s preferred table arrangements (shown
here as the visual context ki and order of object placement Ti), the objects O from
which the algorithm can select, the table to set s0 and the task prompt ℓ. The robot
then produces a task plan in the form of an object arrangement (visualized as an
image sT ) and the order of object placement T . This predicted arrangement, Pred,
should match a held-out preference created by the user, GT.

Large-language models (LLMs) may provide a solution. They are pretrained
on internet scale data, and have shown the ability to solve tasks upon which they
weren’t explicitly trained. They can leverage knowledge about the abstract external
concepts that often guide personal preferences. In fact, it has been shown they can
infer generalizable user preferences from few examples with in-context learning [343].
Representing multi-object preference learning solely in language, however, removes
important visual information about a task. At the same time, these problems cannot
be solved purely visually, as they do not have a grounded vocabulary of actions over
which to reason. Therefore, we developed a new prompting technique that provides
such a vocabulary. We built a virtual tabletop setting task, and collected a large
dataset of human preferences for different arrangements in order to test this technique.
Concretely, in this paper, we make the following contributions:

• DegustaBot: a novel method for implicit visual preference learning to find
personalized solutions to fine-grained multi-object rearrangement tasks.

• A novel human evaluation used to evaluate personalized multi-object rearrange-
ment agents.

• A dataset of naturalistic preference data in a simulated multi-object rearrange-
ment task.
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Figure 6.2: Details of a table arrangement. An arrangement is described by the
objects within the arrangement, the order in which they are placed, their features
(such as color, shape and material, and their location and orientation.

6.1 Problem specification

People have widely varying preferences, making it difficult to develop one-size-fits-all
solutions, even for problems that at first glance seem to be well-specified. One person
may consider a table to be arranged with a simple fork and a bowl, while another
will not sit down to eat until their flower arrangement is perfect and a candle is
lit. Furthermore, these preferences cannot easily be specified in natural language:
language is often either ambiguous or requires cumbersome description.

Instead, we argue that preferences can be specified implicitly by visual representa-
tions of the final state of a multi-object rearrangement task.

To investigate this, we choose table setting as an example application. Con-
cretely, the goal of a preference model M is to maximize the likelihood of seeing
a state s∗ ∈ S∗ given an initial state s0, a preference K, and a language prompt ℓ,
maxs∈S∗M(s | K,O, s0, ℓ). A state s is a table arrangement composed of available
objects O and locations L, the currently placed objects o ∈ O and their locations
l ∈ L. A state can be represented as an image, for example, a picture of a dining
table, or in language, such as the description of a table setting. A preference indicates
a solution set S∗ ∈ S, which indicates the set of all final states that are acceptable
under that preference. We represent a preference as a history of demonstrations
K = [k0, k1, . . . , kC ] where each element is the concatenation of the state and object
placement order kc =

[
sTc , Tc

]
.
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An arrangement s of length T is a sequence of tuples that contain information
about positioning l and object o information, that is, s1:T = [(l1,o1), · · · , (lT ,oT )].
l ∈ R3 represents the continuous elements of an arrangement (x- and y-positions of
an object on the table surface and r, the rotation of the object), and o represents the
features of an object. Objects can be represented visually, as images, or in text, by a
short description of their visual appearance.

As in previous work, [217], we consider a family of functions Ω that lift non-visual
information into the image domain. An arrangement can be lifted into the visual
domain with Ωs : s→ Is × Ts, where Is is a visual representation of the arrangement,
and T is a language description of the order in which objects were placed. We also
consider ΩO : O → IO, which jointly maps all objects to the visual domain.

Objective. In this work, we want to investigate whether foundation models
trained on internet scale data and conditioned on implicitly defined preferences can
produce personalized task plans. In other words, we consider the following problem:

Mg(K,O,L, s0, ℓ) ?=MH(O,L, s0, ℓ) where K ∼MH ,

where M} is a model parameterized by parameters g, and MHk
is a human with

preference k. We parameterize Mg as a vision and language model. While there have
been a surfeit of large foundation models recently becoming available, we choose to
investigate three high-performing, recent models: OpenAI’s GPT-4o [91], Anthropic’s
Claude-3 Haiku [89], and Google’s Gemini 1.5 Pro [90].

6.2 Estimating simulated table arrangements using
VLMs

Solving our implicit, visually represented tabletop arrangement task requires incor-
porating visual information across several images (e.g., k, o, s0). We present and
evaluate several different zero-shot methods for prompting VLMs to produce task
plans that solve table-top arrangement problems. We do this through lifting functions
which add extra information to an image before sending it to a VLM like GPT4v
along with a query, such as adding a grid or highlighting a point in space.
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{1: {
   "color1": "blue",
   "color2": "silver",
   "material1": "plastic",
   "material2": "metal",
   "class": "fork"
 } ...
}

Objects as Language 
(OaL)

Grid of Marked Objects 
(GoMO)

Unmarked Arr.
(UMA)

Grid-Marked Arr.
(GMA)

Figure 6.3: Object and arrangement lifting functions, from left to right: OaL, a
representation of objects as language, for this we use the json representation; GoMO,
grid of marked objects, which represents objects visually with referential marks
overlaid on each object; UmA, Unmarked Arrangement lifts the arrangement into
the image domain; and finally GMA, Grid-Marked Arrangement, which overlays a
spatial reference grid on the continuous table top space.

6.2.1 Producing task plans through visual prompting

We evaluated different lifting functions Ωs and ΩO to solve a personalized tabletop
arrangement with zero shots. In addition to lifted images, we include a text prompt
that describes the problem and the desired format of the output.

Selecting Objects

We first describe the object lifting functions, ΩO:
Objects as Language We take each object in our dataset and represent it as a

dictionary of features, which are concatenated to create a dictionary of all objects
and their representations (see Fig. 6.3, left).

Grid-of-Marked Objects. We represent objects visually by creating grids of
objects within a category. Each object is overlaid with a spatial reference marker to
aid in object detection [350] and the image is labeled with object type and preference
number (see Fig. 6.3, second column).

Selecting Locations and Rotations

We represent the arrangements visually through Ωs in two ways:
Unmarked Arrangements. We assume that positions x represent an object’s

centroid. Then, representative images are resized to fit within an initial arrangement
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(e.g. an empty table) and are pasted at x. They are then rotated according to the
rotation r.

Grid-Marked Arrangements. We turn predicting a continuous location into a
multiple choice question over grid cells that serve as spatial reference markers. First,
we overlay a spatial grid on each preference image and then ask the model to produce
all the grid cells that an object will intersect with on a table after it is placed. We
average the centroids of the responses over multiple responses to get a continuous
position prediction.

Combining Lifting Functions into Visual Prompting Methods

We combine these lifting functions into four methods that test each models ability to
predict task plans in table-top arrangement tasks as follows:

• DegustaBot-LOUMA. uses Language Objects with UnMarked Arrangements
• DegustaBot-LOGMA. uses Language Objects with Grid-Marked Arrange-

ments
• DegustaBot-MOUMA. uses Marked Objects with UnMarked Arrangements
• DegustaBot-MOGMA. uses Object Images with Grid-Marked Arrangements.

6.2.2 Simulating preferences for table arrangement

We develop a small data set of simulated preferences for controlled evaluation. These
preferences are drawn from three positional preferences, three object preferences, and
a single order preference. We design these preferences to approximate a standard, a
semi-standard, and a non-standard table setting. To test our model over a distribution
of positions, we add positional and rotational noise to these table settings. The object
preferences are also drawn from three color preferences: a preference for all red, all
blue, or all yellow objects.

We display arrangements on two visually distinct tables. In total, we simulated
18 preferences on two table tops for a total of 36 preferences. We tested these in both
a reconstruction task (predict on the same table) and a generalization task (predict
on a different table) for 72 total experiments.
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6.2.3 Validation metrics

We test two main hypotheses: (1) that large vision and language models develop a
feature space that is useful for estimating preferences for real-valued multi-object
rearrangement tasks; and (2) that visually grounding preference information aids in
estimating complex preferences.

Object selection: this measures a method’s ability to select objects consistent
with the preference. We compute this as the accuracy of object selection: did the
model select exactly the right object?

Position Selection: We take a geometric approach to comparing arrangements.
While a point-to-point comparison seems immediately intuitive, the geometric re-
lationship between points in a particular table setting are important, as well. For
example, a table settings performing poorly when measured with point-to-point
correspondences may still be similar geometrically to the preferred arrangement, only
displaced slightly. To account for these issues, we introduce another evaluation metric:
root mean squared deviation (RMSD).

We use the Kabsch algorithm [142] to register matched points between predicted
and ground truth arrangements, and find the translation vector g and rotation matrix
r that minimize the root mean squared deviation between the two paired frames:

min
r∈R,g∈G

√√√√ 1
N

N∑
n

(Āgtn −R(Āpredn − g))2.

We report this minimized RMSD as our geometric evaluation metric.

6.2.4 Results

We test each model with each combination of visual lifting functions and report
results on how well the predicted image matches the ground truth scene’s geometry,
as reported through RMSD, and chosen utensils, as reported through accuracy. These
results are shown in Fig. 6.4.

First, we see that GPT-4o outperforms other choices of VLM in both RMSD and
object prediction, under all methods. We can also see that grid-marked methods tend
to improve a model’s ability to match scene geometry. Finally, we see that visual
representations of aid in correct prediction. The results for Gemini-1.5-Pro, LOUMA
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Figure 6.4: Quantitative results for evaluating DegustaBot on simulated preferences.
Left shows the performance of each model’s ability to capture the geometry of the
table arrangement, as measured by RMSD. Right shows each model and method’s
accuracy when choosing items to place in the arrangement. GPT-4o and MOGMA
perform the best on both metrics.

are missing due to a 97% failure rate on this method. Taking these results together,
we see that DegustaBot-MOGMA using GPT-4o outperforms all other methods on
this task. We will use this method to analyze naturalistic preferences in the next
section.

6.3 Naturalistic tabletop arrangement dataset

To understand whether this approach works with naturalistic data, we collected a
dataset of preferences for table arrangements through an online study. We then
assessed the performance of the model, as in Sect. 6.2.4.

6.3.1 Data collection

Our user study consisted of a task with two stages: Preference Elicitation and
Self-Evaluation. During Preference Elicitation, we prompt participants to create
their preferred table-top arrangements. In Self-Evaluation, participants rate these
arrangements, as well as several transformations of their arrangements. We used
these ratings to develop a subjective analysis of the performance of the model. The
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RMSD Threshold
0.01 0.05 0.10

Acceptancerandom 0.714 0.300 0.169
Acceptancestructured 0.992 0.973 0.965

Table 6.1: We report the percentage of people who find scenes below a specific
threshold hold acceptable under both the random and structured noise condition. We
find that people are extremely sensitive to random noise, and not very sensitive to
structured noise. We see that when the RMSD is below 0.01, between 71.4% and
99.2% of people find the scene acceptable.

participants saw a total of six rounds of this task: a practice round, followed by five
experimental trials.

We collected a data set of 995 table arrangements drawn from 199 participants.
Participants were paid USD$4.00 for completing the 20 minute task. All participants
were located in the United States at the time they completed the task. We did not
collect additional demographic information about our participants. This study was
approved by the IRB of record.

Preference Elicitation

Participants were first presented with an image of one of five different empty tables,
and asked to to set the table by selecting objects from five object categories: plates,
spoons, forks, knives, and cups. After selecting an object category, participants were
shown all instances in that category simultaneously. Each category contained 25
objects of varying shapes, colors, and materials, yielding an object dataset of 125
Creative Commons licensed and public domain images of table setting utensils.

Participants were then presented with a simple drag-and-drop interface through
which they could place the object anywhere on the table’s surface and rotate it object
to their liking. The participants continued this procedure until they were satisfied
with the arrangement. The only restriction placed on table arrangements was that
participants were required to set a minimum of three objects. After completing a
table arrangement, participants moved on to the self-evaluation portion of the task.
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RMSD Threshold
Method 0.01 0.05 0.10

Post Jitter Correction 0.123 0.787 0.920
Copy and Paste 0.059 0.586 0.745

Human Performance 0.010 0.432 0.669
KNN 0.002 0.052 0.182

DegustaBot-MOGMA 0.000 0.219 0.672
DegustaBot-LOUMA 0.009 0.299 0.659

DegustaBot-LLM 0.034 0.446 0.623
DegustaBot-LVM 0.041 0.483 0.666
DegustaBot-VLM 0.036 0.405 0.597

Table 6.2: We compare our methods’ performances against several baselines at several
RMSD thresholds. Post Correction Jitter, which we consider our upper bound,
produces model acceptable model responses 12.3% of the time at the 0.01 threshold,
78.7% of the time at the 0.05 threshold, and 92% of the time at the 0.1 threshold. We
see that the Copy and Paste baseline, which uses privileged sensing information, has
the second best response rate. Our Vision Model method performs the best out of
methods that do not use privileged information and, interestingly, is closely aligned
with the Human Performance baseline.

RMSD Threshold
Method 0.01 0.05 0.10

DegustaBot-LLM 0.034 0.443 0.623
DegustaBot-LLM-AR 0.071 0.501 0.630

Table 6.3: We compare DegustaBot-LLM to an autoregressive variant. We report
thee results on a random subselection of 445 preferences, due to the significant cost
increase of running an autoregressive variant. We see siginificant improvements over
the LLM model at lower RMSD thresholds, suggesting that autoregressive models
perform better than their non-autoregressive counterparts.
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Successes Failures

GT

Pred

Figure 6.5: Qualitative results. On the top line we see ground truth images from
our naturalistic preference data and on the bottom we see DegustaBot-LOGMA’s
predictions, lifted into the image domain. On the left side of the image we see three
examples where DegustaBot-LOGMA predicts similar arrangements to the ground
truth image. On the right we see some failure cases.

Subjective Acceptability

We then asked the participants to evaluate several arrangements.
Rating the initial scene. After creating an arrangement, sintial participants

were prompted to answer the question, Please rank your agreement to the following
statement: This is my preferred table arrangement, sliding scale from 0-100 to offer
their baseline acceptability score b0.

Jittering the initial scene. To understand what errors affect people’s sense
of an acceptable arrangement we randomly transformed sintial. A transformation
magnitude between 0 and 1 was randomly selected as tj. The scene sintial was then
translated and rotated by this amount to create sjitter. Participants then gave a
second acceptability rating bjitter.

Threshold of Acceptability. We take the difference in ratings binitial − bjitter,
and correlate this with the distance between sinitial and sjitter, giving us a subjective
acceptability measure. We choose a rating difference threshold of 0.2, which is
interpreted as the threshold at which people find sjitter to be at least as acceptable
as sintitial. We then report the percentage of people who meet this acceptability
threshold at various levels of RMSD. This tells us the percentage of people who are
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Figure 6.6: Additional Qualitative results. We show the qualitative performance of
all methods on five random experiments from five random participants. From left to
right we show the Target image (GT), Copy and Paste (CP, Human Performance
(HP), KNN (KNN), DegustaBot-MOGMA (GMA), DegustaBot-LOUMA (UMA),
DegustaBot-LLM (LLM), DegustaBot-LvM (LVM), DegustaBot-VLM (VLM).

likely to find a scene acceptable below a given RMSD threshold.

6.3.2 Additional baselines and methods for prompting FMs

We introduce several additional baselines and methods for prompting foundation
models with naturalistic arrangement data.

Participant Correction We report the RMSD between scorrect and sinitial. This
method reflects how an individual participant recreates the scenes after it has been
jittered. This method provides a good upper bound for a method’s performance, as it
reflects what the original participant cared about when correcting the arrangement.

Copy and Paste. We consider a baseline that uses the configuration of a
randomly selected input arrangement as the predicted arrangement. This method
has privileged information in that we assume that it has perfect perception. This
method aims to understand the performance of a method that
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Human Performance. We perform a second user study that prompts people to
do the same task as the model: given four arrangements, create a new arrangement
that matches the preference represented. We collect these annotations for 884 of our
original scenes. Participants were paid $4.00 for the completion of the 20 minute task.
Each participant annotated 5 unique preferences from the original dataset.

KNN. We divide our preference data set into training and testing sets (80/20
split) and train a nearest neighbor model over the average CLIP [83] features of the
input images. We find the closest preference in the training set to the average CLIP
features of the prompt from the testing set, and use the held-out arrangement from
this set as the prediction for this method. We perform 5 fold cross-validation to cover
the whole dataset.

DegustaBot-LLM. DegustaBot Large Language Model represents the entire
problem as text. Inspired by TidyBot [343], we represent the inpute preferences as
short snippets of code with the objects, a summary of the initial state, several pick
and place actions that take an object ID, and a real valued x and y location. We
end each snippet with a short summary of the final scene. Objects are represented
by a dictionary mapping object ids to a short description of the object, which was
annotated by GPT-4o. Summaries of initial and final scenes were also annotated by
GPT-4o.

DegustaBot-LLM-AR. We consider an autoregressive version of DegustaBot-
LLM. We only consider an autoregressive version of the language variant of our model
due to the significant cost of running an autoregressive version of the vision model.

DegustaBot-LVM. DegustaBot Large Vision Model represents the objects,
initial scene, and final scene as images. Code snippets to represent the task plan
are kept as text. For this method, we annotate object images with their object
number. Additionally, we annotate the final scenes with bounding boxes, as provided
by OWL-ViT [203], and their object ID.

DegustaBot-VLM. Finally DegustaBot Vision Language Model uses both rep-
resentation from the previous two methods to prompt the model. Objects are
represented both a images and text, as well as initial and final scenes.
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6.3.3 Results

We evaluated our method on naturalistic preference data. In Tab. 6.4 we report object
prediction accuracy and RMSD as the number of preferences images increases from
0, 2, to 4. We see that increased context length improves performance metrics, but
potentially with diminishing returns. This indicates that 1) human preferences are
diverse and not easily predicted in a context-free setting, and 2) our method makes
efficient use of few context examples to predict a person’s preference. We also see that
the performance here is well below the performance on the synthetic data, indicating
that visual preference learning from naturalistic preference data is a difficult task.

In Tab. 6.1 we report the rate at which people find scenes under certain RMSD
thresholds acceptable. In Tab. 6.2 we report the rate at which our various methods
and baselines produce arrangements below these thresholds, as measured by the
RMSD distance between the scene our model produces and a held out arrangement.
From these data, we can see that 1) people are highly sensitive to the jittered
scenes we produced, making this a strict metric and 2) our best performing model
(DegustaBot-LVM) produces reasonable scenes at both low and high thresholds, when
compared to the Copy and Paste and Human Performance baselines. We see that the
vision model is the best performing of the language and vision ablations, suggesting
that visual information is important for completing this task. We also see that our
VLM models are in line with Human Performance, suggesting both that this is a
hard task and that our models are doing reasonably well at it. Finally, we see that
the Copy and Paste baseline performs the best, suggesting that if you have privileged
object detection information and privileged preference information, you can improve
performance at this task.

In Tab. 6.3 we compare DegustaBot-LLM with an autoregressive variant, DegustaBot-
LLM-AR. In DegustaBot-LLM-AR, we update the state with the output of a previous
model iteration until the model produces no more actions to add to the task plan.
We see that this method outperforms DegustaBot-LLM on all RMSD thresholds, and
suggest that autoregressive methods would improve performance on this task and
make them more generalizable to real robotics tasks.

Finally, in Figs. 6.5 and 6.6 we show several qualitative results. In Fig. 6.5, each
column depicts a different participant within our data set. The top row displays
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Length of k 0 2 4
Object Prediction Accuracy (↑) 0.037 0.090 0.089

RMSD (↓) 0.173 0.109 0.100

Table 6.4: We report object prediction accuracy and RMSD of DegustaBot-MOGMA
on naturalistic preferences. We see that with increased context length our method
achieves higher performance, though perhaps with diminishing returns.

ground truth images, and the bottom rows depict our method’s prediction. When
geometric patterns are regular, DegustaBot-LOGMA does well to predict them.

6.4 Using corrective actions to refine pretrained
feature spaces

Online IRL relies on people exhibiting behaviors that are highly correlated with
their goals, often leading to action representations that do not benefit from shared
structure, leading to poor sample efficiency and out-of-domain generalization. To
study this, we consider two different choices of action representation: per-ID, ψID,
which represents actions as one-hot vectors, and per-quality, ψQuality, which represents
actions by shared properties between different actions, such as the material, shape
or size of an object in the dishwasher loading domain. We aim to show how ψQuality

can improve sample efficiency and generalizability when people’s task objectives
are correlated along their actions, for example, people place glass bowls into the
dishwasher in a similar manner to glass cups.

We first develop a set of simulated user objectives, g. Eight highly correlated
objectives, shown in the top row of Fig. 6.7 are blended with randomly sampled
objectives according to g = gcorrelated∗(1−β)+grand∗β along five correlation thresholds
β ∈ {0, 0.01, 0.1, 0.5, 1}, shown in the bottom row of Fig. 6.7, to develop objectives
with varying degrees of correlation along actions. We then train a randomly initialized
robot objective,s ĝ, to approximate these user objectives, g, using Algorithm 1.

Furthermore, we create a set of O objects that share features with another object
along at least one quality (e.g., a glass mug, a glass bowl, a plastic mug, and a plastic
bowl) and represent our surface by a grid of L locations. Objects are divided into
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Figure 6.7: Highly correlated objectives across qualities (top) and those same objec-
tives blended with noise (β = 0.5). Rows of an objective represent surface locations
and columns represent objects. Elements represent the value associated with placing
that object in that location, ranging from [−1, 1].

training and testing sets.
Per-ID representations return one-hot vectors with the element representing the

object or location ID activated. For objects, this results in an action space Uobj, that
is a square identity matrix of size |O| × |O|. For locations, Uloc is a square identity
matrix of size |L| × |L|.

Per-quality representations share features across different object categories by
concatenating one-hot vectors over each quality (e.g., material or shape), q ∈ Q.
Per-quality representations of objects return an action space Uobj that is of size
|O| × ∑

q∈Qobj |q|, or similarly for locations, Uloc of size |L| × ∑
q∈Qloc |q|. Per-ID

representations imply a g of size |O| × |L|, while per-quality representations imply a
g of size ∑

q∈Qobj |q| ×
∑
q∈Qloc |q|. When the total size of the qualities is less than the

number of objects they describe, per-quality representations yield a more efficient
representation of the space.

Each line in Fig. 6.8 shows a regret curve for a separate objective (ranging from
highly correlated across qualities to randomly correlated across features). Shaded
regions showing the standard error on the collection of runs. The mean average regret
(mAR) for a policy taking random actions is shown in black, and the reference zero
line is shown in dotted brown. Per-ID results are shown on the left, and per-quality
representations are shown on the right. Training mAR curves are shown on top and
zero-shot performance on all objects on the bottom. Each increment along the x-axis
is an episode ranging between one and six object placements.
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We report regret over other potential metrics, such as accuracy or corrections,
because it reflects the underlying reward our algorithm receives. Accuracy and
corrections are both overly critical metrics: accuracy penalizes an algorithm for
choosing an “incorrect” placement even if it returns the same reward as the “correct”
label, while corrections penalize all incorrect placements equally, even when differences
in reward received may be negligible.

These results show both representations capture objectives with strong correlations
across object qualities and episodes of in-domain objects. For highly correlated objec-
tives, per-quality representations converge slightly faster than per-ID representations,
though they underperform as objectives become less correlated.

These results also show that per-quality representations can generalize to out
of domain objects, when objectives are highly correlated. This is because these
representations can express preferences such as “place all glass objects on the top”,
something per-ID representations are unable to do. Taking into account the results of
in-domain training, we show how choosing an appropriate representation space can
improve upon the drawbacks of online IRL, namely that it can be sample inefficient
and overfit to in-domain data.

6.5 Limitations and Generalizability

In this work, we developed a method that can serve as a preference perception pipeline
for a robot that performs household multi-object rearrangement tasks, DegustaBot.
While we only test this method in a table setting domain, it should be generalizable
to any surface arrangement task where the preferences can be represented as a planar
view of an image. Although this is a strong assumption, many similar works in robotics
make a similar assumption, either in simulation [347] or on real robots equipped
with suction grippers [148]. Representing visual preferences from non-planar views
for foundation models is an open question and important future research. We think
this work could also be easily extended to work tasks where the object placement
locations would not all fit in frame, for example putting clothes away throughout
a house, by including a model of the house and representations of all of its various
placement locations.

Although we do not perform this experiment on a real robot, this setting emulates
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suction cup pick-and-place routines that have been shown to work reliably for similar
surface rearrangement tasks [148]. We introduce DegustaBot-LLM-AR, which is an
autoregressive version of our model, which takes in the current state information to
make a prediction. This method shows success, suggesting that our method would be
generalizable to real robotics situations which rely on current state information due
to unforeseen errors, such as a cup falling over after being placed.

Finally, our main focus is to develop a method that generalizes to various types
of preferences. Demonstrating our methods’ performance over our naturalistic data
set does demonstrate this ability. Additionally, we demonstrate that our model can
generalize across locations, by changing the table representation in the model prompt.
However, it would be good to test our methods’ ability to generalize a preference
across different objects and tasks, as well. This would require collecting more data
using different sets of objects, and this is left as future work.

Additionally, we assumed that a robot has access to a person’s prior table setting
arrangements. Part of our contribution is to release a large dataset of realistic table-
top arrangements for others to train from. In reality, the amount of data that we
require from an individual to achieve reasonable performance is quite small compared
to prior preference learning approaches [147].

A final limitation is that VLMs are not trained for fine-grained rearrangement
tasks like ours. We presented several prompting methods that achieve reasonable
performance even under this limitation, but our method would improve substantially
if the underlying models were fine-tuned for fine-grained image reasoning tasks or
even trained from the ground up for this kind of problem [60].

6.6 Conclusion

We introduced DegustaBot, a novel method for prompting VLMs to perform the
challenging task of visual preference learning in multiobject rearrangement tasks. We
formalize this task, and then analyze several methods’ performance over simulated
preferences. We then collect a large dataset of naturalistic preferences and evalu-
ate additional methods on these naturalistic data, finding that, although this is a
challenging task, our method produces acceptable table arrangements.

With DegustaBot, we see that it is possible to personalize generalized feature
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spaces using in-context learning. In this chapter, we additionally present a brief
method for using corrective actions to further personalize feature spaces online. This
work serves as the basis for the following chapter, which formalizes this idea and
rigorously tests it to show how we can combine generalized feature spaces with online
personalization from naturalistic human behavior.
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Figure 6.8: We report mean average regret (mAR). From left to right we show per
ID representations and per Quality representations. From top to bottom, we show
training and zero-shot testing on out of domain objects after N iterations. Colors
indicate β thresholds as follows: 0 is blue, 0.01 is orange, 0.1 is green, 0.5 is red, and
1 is purple. Both methods perform similarly in training for well-correlated objectives,
while per ID representations outperform when preferences are uncorrelated. For
per Quality representations, improvements when training on correlated preferences
correspond to improvements in testing set, which does not hold true for per ID
representations.
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7
Continual

personalization using
naturalistic corrections

during surface
rearrangement tasks

Agents that collaborate with people to complete a person’s preferred goal cannot
always know this preference in advance of an interaction. Although people may
initially state these preferences, they may drift, sometimes completely, over the
course of multiple interaction episodes. Although there may be no continued explicit
communication between collaborative partners, people’s in-situ behaviors are goal-
driven and thus can reveal the up-to-date preference. This means that updating agent
policies based on in situ behaviors is critical to assisting people during collaborations,
that is, to ensure that robot actions are deferential to user goals [221].

Much current research on human-agent collaboration aims to learn zero-shot
collaboration policies from offline datasets that are collected from human-human
demonstrations [56] or generated synthetically [308]. Instead of using an individual’s
in-situ behavior to update a model online to improve performance with respect to
that individual’s preference, these approaches train agents offline in collaboration
with the population of partner agents represented by the training dataset. They
then target good performance in aggregate on task metrics. At test time, these
approaches assume that the preferences and behavior of a new human collaborator
will fall within the distribution of the collaborators represented by the training data.
While these approaches have been shown to be effective on task metrics in general
collaboration settings, they do not necessarily transfer to the stricter criteria of
assistive collaborations where success in a task is dictated by a personal preference,
and people’s goals and behaviors can drift away from the training distribution.
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Figure 7.1: One step of an example surface rearrangement task: cupboard organization.
From left to right: a person (H) picks an object to place in the dishwasher; the agent
(A) initially places this incorrectly; the person corrects the placement. From this, the
agent learns that the user likes to place blue objects on the bottom shelf and can
place the next, similar object correctly.

Furthermore, the population of personal preferences is substantial and diverse,
making it difficult to ensure adequate coverage during training time. Collecting large
datasets of human-human data is time-consuming and expensive, while collaboration
among populations of procedurally generated agents can yield data that do not tightly
match the distribution of the human population. Furthermore, as people repeatedly
execute a collaborative task, they may develop new preferences that are unlikely to
be captured by the distribution of collaboration data represented in offline datasets.

We propose a method that takes advantage of these advances in zero-shot coordina-
tion and applies them to algorithms for fast, online adaptation from in-situ behavior.
In this way, we hope to achieve both good initial performance when assisting a new
partner, but also to continue to adapt to their preference over continued exposure.

However, deciphering people’s exact preferences can be difficult, as these prefer-
ences are often not explicitly stated and can change over the course of an interaction.
Fortunately, in situ behaviors are aimed at and can implicitly reveal information
about a person’s current preference or goal, even when it is not expressly commu-
nicated. We suggest that agents engaging in assistive collaborations utilize these
goal-directed behaviors to infer and act toward a person’s current goal, thereby
enabling personalized assistance.

To do develop a model that can utilize these goal-directed behaviors for collab-
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orative assistance, we introduce BLR-HAC: Bootstrapped Logistic Regression for
Human Agent Collaboration. This model is trained using a two-stage approach:
first, we pretrain a transformer [327] to learn to produce the parameters of a shallow,
parameterized policy that second, is updated throughout a human-agent collaboration
using online logistic regression. To test BLR-HAC, we first introduce a formalization
of a specific instance of a rearrangement task, which we call an assistive surface
rearrangement. We then compare BLR-HAC’s performance in a simulated version of
this task against two baselines: 1) a traditional transformer trained with behavior
cloning and 2) a traditional shallow policy trained with online logistic regression.

Our chosen domain of surface rearrangement models household tasks, like dish-
washer loading, which have complex, long-term dependencies determined by a combi-
nation of a person’s environment and their strongly held preferences. For example, a
person may prefer to place large dishes before small ones to maximize capacity. Such
high-dimensional state and preference spaces lead to an almost infinite number of
diverse and equally valid solutions for completing any given household chores. For
example, choosing to load a dishwasher based on dish material is just as valid as
loading based on dish size; it is a matter of personal preference. Given this diversity,
household tasks make especially good testbeds for studying algorithms that require
aligning robot policies with people’s reward functions, thus mimicking many use cases
for assistive robotics.

While some prior approaches to developing autonomous assistants for household
tasks rely on people providing full task demonstrations in advance of a collaboration,
BLR-HAC aims to operate in real time, utilizing information from each action as it
is taken by a person. Furthermore, approaches based on full task demonstrations can
introduce additional burden on a person and be redundant with the goal-directed
behavior that people exhibit when completing tasks [22]. In contrast, training shallow
low-capacity models with logistic regression through MaxEntIRL to utilize in-situ
behavior has been shown to effectively and quickly adapt to people’s objectives in
areas such as robot teleoperation [138] and motion planning [185].

We tested BLR-HAC in a simulated version of our surface rearrangement task. We
find that BLR-HAC outperforms baseline low-capacity models and large, nonlinear
models trained with behavior cloning in zero-shot coordination. We also find that
BLR-HAC achieves similar performance but requires a fraction of the compute of a
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transformer that is fine-tuned online. This finding holds true when considering both
preferences that remain the same over time, i.e. are stationary, and those that drift,
i.e. are nonstationary. Together, these results show how BLR-HAC is able to take
advantage of the strengths of both zero-shot and fast online adaptation methods.
It does this by pretraining a large non-linear model to learn the parameters of a
shallow policy that can be updated with online logistic regression. This results in a
collaborative agent that is both well-initialized and highly adaptable.

In this paper we make the following contributions:
• a formalization of common household tasks as collaborative IRL tasks, which

we call surface rearrangement,
• a novel model, BLR-HAC, that combines the strengths of pretrained large,

nonlinear models with low-capacity models trained online via logistic regression
for efficient learning in human-robot collaborations, and

• evidence from experiments in simulation that BLR-HAC outperforms its com-
ponent models.

7.1 Approach

Our ultimate goal is to learn an assistive policy that collaborates with a person during
a surface rearrangement task. Given that we want our policy to be assistive, it should
take actions that align with the person’s underlying preference to complete the task.
We interpret this as a regret minimization problem, where the policy aims to minimize
the regret of its actions with respect to the actions that would be exhibited under the
person’s true preference for completing the task. Importantly, we assume that the
policy does not have prior knowledge of this preference and that the person does not
immediately or explicitly reveal it. Additionally, we assume that the space of possible
preferences that the person could hold to be extremely large, making disambiguation
from limited interaction with the person difficult.

Under these conditions, we have two main ways to perform regret minimization.
First, we can ensure that our policy takes good initial actions that are likely to align
with the person’s preference, often called zero-shot performance. Second, we can
adapt the policy online as a history of behavior is accumulated.
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Algorithm 1 Surface Rearrangement
Require: πr, πh, env, O,L

1: s0 ← env.reset ()
2: ξ ← [ s0 ]
3: Initialize gθ
4: while ξ.length < L do
5: ath ← πh (·|st−1, gθ)
6: atr ← πr (·|ath, st−1, gθ̂)
7: st, atc ←env.step(ath, atr, st−1)
8: ĝθ ← ĝθ − α (ψh(ah) · ψr(ar)− ψh(ah) · ψr(ac))
9: ξ.append([ath, atr, atc, st])

10: end while

Action inference and policy adaptation do not operate in a vacuum, but rather
within the course of the interaction. A common metric in human-robot interaction:
collaborative fluency [122], for example, is critical for people considering an interaction
with a robot to be “good.” An important facet of this metric is related to the amount
of time the robot sits idle during task execution. This makes frequently updating
large models during an interaction challenging, as both action inference and policy
updating require large amounts of computation, leading to high robot idle times. We
aim to develop a method that can take advantage of the good performance of large
nonlinear models while being able to quickly adapt to user preferences, as expressed
through their in-situ behavior, without causing the robot to idle.

To learn an assistive policy that solves the DEC-POMDP discussed in Sec. 2.3.2,
we first generate a simulated data set of diverse high-level preferences (Sect. 7.1.2).
Using these preferences, we collect a dataset of collaborative demonstrations in a
simulated surface rearrangement task on a range of difficulties (Sect. 7.1.2). We
then train our two-stage algorithm by first learning to mimic the collected expert
demonstrations (Sec. 7.1.3) and second, using the preference representations learned
in Sec. 7.1.4 to perform a fast online adaptation.

7.1.1 Problem setup

In this work, we consider the surface rearrangement task, Algorithm 1, where two
agents work together to arrange a set of objects O into a set of locations L. In
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Figure 7.2: From left to right, we first embed the input state and actions using ψ.
These are then concatenated and fed into the preference estimatorM. This learns to
output reward parameters, gθ which are used to initialize an online learning policy
using the policy π, which determines the robot’s action ar.

this task, the assistive agent aims to help a person rearrange objects into locations.
Importantly, the agent’s goal is to achieve the final state that is desired by the person,
which is initially unknown to the agent.

A single episode of this task consists of an object repository containing objects
o ∈ O. The initial state of the episode is |L| randomly chosen objects from O and L

vacant locations. Each location has a capacity for a single object. Progress in the
task is made by placing objects o in locations l ∈ L. A task is completed when all
objects o have been placed in a location l. For simplicity, we assume that N ≤ |L|
and that placing o in l occurs instantaneously.

Two agents interact in an episode in the following way. The human agent πθ first
picks an object given the current state st−1. Then, the robot agent πθ̂ places this
object into a location. The environment then returns the next state st and the human
corrects the robot’s action, returning atc. An episode ξ can be represented as the
following tuple:

(
s0, a1

h, a
1
r, a

1
c , s

1, ...aLh , a
L
r , a

L
c , s

L
)
.

7.1.2 Datasets

Modeling a Diverse User Population

The two key ideas of our method to develop assistive robots for household collabora-
tions is that the method should be able to both effectively use a large population
of preference data to pretrain good initializations and be able to quickly adapt to a
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Algorithm 2 Expert Demonstration Collection
Require: Θ, π, env, O, L

1: D = [ ]
2: for θ in Θ do
3: ξ ← surfaceRearrangement(πh, πr, env, O, L)
4: D.append (ξ)
5: end for

particular preference when presented with information about that preference.

To capture these ideas in our experiments, we develop a simulated dataset of
preferences. First, we sample a large set of preferences, representing a population,
as encoded by gθ. We assume that preferences within this population are drawn
normally from one of several modes, each of which indicates a subpopulation of
similar preferences. We sample three preference datasets: train, , and test. From
each set of preferences, we sample episodes of surface rearrangement episode roll-
outs, thus creating three datasets: Dtrain, Deval, and Dtest. Dtrain consists of 1000
simulated preferences, sampled from four modes, with 1000 episodes per prefer-
ence. Deval, and Dtest each contain 100 simulated preferences, with 20 episodes per
preference.

Environments for surface rearrangement

To test the efficacy of our approach in varying difficulties, we develop three environ-
ments. Each environment scales the difficulty of the problem by increasing the size
of the state space. We have a small environment, with five possible objects and five
locations, a medium environment, with ten objects and ten locations, and finally a
large environment, with 25 objects and 25 locations.

To collect a demonstration data set for each environment, we use Alg. 2. Im-
portantly, to collect expert demonstrations, we set gθ = ĝθ and use a linear policy
π = ψh(ah) · gθ · ψr(Ar), where all ψ are implemented as one-hot embedding layers.
For each environment, we collect 100 demonstrations from each preference generated
in Sec. 7.1.2.
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Algorithm 3 Learning Priors for Online Linear Regression
Require: D,M, ψh, ψr, ψs

1: while training do
2: for (s, ah, k) in D do
3: ĝθ ←M (ψs (s) , ψh (ah) , ψr (ac))
4: ar ← argmaxar∈Ar

ψh(ath) · ĝθ · ψr(Ar)
5: loss← p(ac) log q(ar)
6: training ←M.update(loss)
7: end for
8: end while

7.1.3 Learning preferences in a diverse user population

The first step of our proposed algorithm aims to minimize regret by achieving
good zero-shot performance. Ultimately, we want to model p(ar|s, ah). However,
this problem is ill-posed, as two policies parameterized by different preferences will
correctly take two different actions ar given the same state and human action. To
account for this ambiguity, we include a history of the prior state k and action pairs
taken under current preference and maximize p(ar|st−k−2:t−1, at−k−1:t

h , at−k−2:t−1
c ). For

the sake of brevity, we will slightly abuse the notation and refer to this distribution
as p(ar|s, ah, k).

Again, when training assistive agents, achieving low zero-shot performance is
not our only objective. We also need an agent that adapts online to incoming user
behavior while maintaining collaborative fluency. This means developing a lightweight,
low-parameter model capable of performing action inference and policy adaptation in
real time.

To do this, instead of learning p(ar|s, ah, k) directly, we first learn a latent space
that corresponds to the weights of a logistic regression problem. These weights serve
as input to the second step of our algorithm, Sec. 7.1.4. Thus, we train our model
to maximize Mψ,ψ(s, ah, k, t) = p(gθ|s, ah, k, t). In this way, we place an inductive
bias over the latent space of the model, enticing it to learn a matrix of size O × L,
which can be used as the weights of an online logistic regression problem. We treat
this as a classification problem and minimize the cross entropy loss between our
model’s predictions and the collected expert demonstrations: L = p(ac) · log q(ar)
where q(ar) = ψ(ah) ·M(s, ah, k, t) · ψ(Ar), as shown in Alg. 3.
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7.1.4 Bootstrapping shallow linear models for fast, online
adaptation

The second step of our proposed algorithm aims to minimize regret through online
adaptation. Using the output of the model learned in Sect. 7.1.3, we can employ online
logistic regression, which has been shown to work well to teach human preferences to
agents through corrective feedback in robot control tasks. Importantly, since online
logistic regression has a very simple update rule to estimate gθ that operates on a
much smaller number of parameters than a large, nonlinear network, we can adapt
this initial estimate of the person’s preference in situ without risking large human or
robot idle time, thereby maintaining collaborative fluency.

To update our estimate of gθ, we use a linear approximation of the QMDP solution
to the DEC-POMDP in Section 2.3.2 and stochastic gradient descent, resulting in
the following update rule:

ĝθ = ĝθ − α (ψh(ah) · ψr(ar)− ψh(ah) · ψr(ac))

where α is the learning rate.

Small Medium Large
No Prior Prior No Prior Prior No Prior Prior

ShallowLinear 0.413 0.665 0.215 0.518 0.096 0.289
DeepLinear 0.425 0.680 0.199 0.504 0.101 0.303

MLP 0.605 0.759 0.361 0.653 0.120 0.358
Transformer 0.729 0.771 0.603 0.673 0.160 0.412

Table 7.1: We compare zero-shot performance on the test set of each environment.
We have two axes of comparison: model complexity in the rows, and inductive prior
in the columns. Results are reported in terms of accuracy. We can see that the
highest capacity, attention based model trained with an inductive prior outperforms
all other models in every environment.
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7.2 Experimental design

To test our algorithm, we designed several experiments. First, we validate the need
for large, nonlinear models to learn the distribution of preferences embedded in the
demonstration dataset, Sect. 7.2.1. Then we explore how our algorithm performs in
its intended use case: fast, online adaptation. We tested this in two scenarios. Sect.
7.2.2 analyzes adaptation to a single preference over time, while Sect. 7.2.2 explores
how well our algorithm performs when the preference generating the behavior changes
without explicit communication to the robot.

7.2.1 Zero-shot coordination

We evaluated our model in each environment over the test set using Alg. 3. While
we are in search of an algorithm that performs regret minimization, this metric is
relative to a specific preference. To understand model performance in an absolute
sense and compare across environments, we report accuracy in terms of the number
of correct robot action predictions. This metric is inversely correlated with regret.

We choose our baselines to examine two key questions: 1) are high-capacity,
nonlinear models necessary for disambiguation between preferences in a highly diverse
preference space, and 2) how does inducing an inductive prior over the latent space
affect zero-shot performance?

To answer these questions, we introduce baselines across two axes: model com-
plexity and model bias. To determine the effect of high-capacity nonlinear models on
zero-shot performance we compare four levels of model complexity in terms of how
we implement ψ in Fig. 7.2:

• ShallowLinear. Typical online IRL settings learn a shallow model from
scratch using MaxEntIRL. To bootstrap this process, one could perform the
same process over the offline dataset, thereby encoding the diverse preference
population in the initial model weights. Our intuition, though, is that since
demonstrations are drawn from a large, diverse population of preferences, and
that the relations between preferences and people are not known a priori, this
disambiguation will benefit from a nonlinear function approximator. We expect
nonlinear, high-capacity models to outperform this baseline.
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• DeepLinear. Since the space of preferences is very large, it could simply be
that increasing model capacity without introducing nonlinearity may capture
the preference distribution. To test this, we introduce DeepLinear, which
simply adds additional model parameters in both width and depth. We expect
this model to outperform a ShallowLinear model but underperform nonlinear
methods.

• Multi-Layer Perceptron. To test the importance of modeling the preference
distribution with a nonlinear model, we introduce a multi-layer perceptron base-
line. We expect this model to outperform both linear methods but underperform
attention-based mechanisms.

• Causal Transformer. Finally, since we are passing a history of behavior
to the model at every time step, we can infer the current preference from
this sequence of behaviors. Attention-based mechanisms, specifically causal
transformers, have been shown to excel at modeling sequential data. To test
this we implement ψ as a transformer, and expect it to outperform all other
methods.

The second axis of baselines we develop compares the importance of introducing
an inductive bias over the latent space to learn gθ. We compare an implementation
of the above models in which each model minimizes L = p(ar) · logM(s, ah, k) to our
proposed inductive bias, which minimizes L = p(ar) · logψ(ah) · M(s, ah, k) · ψ(Ar).

Implementation details

To implement our models we make the following decisions. We perform a separate
parameter sweep for each model and environment for the following parameters and
ranges: learning rate (1e−3, 1e−6), the dimensionality of hidden layers (25, 28), and
the number of layers in ψ (3, 5, 7, 10, 12). We set the size of the input history to
be 50, padding when necessary. For each model, we implement all ψ as a single,
one-hot embedding space of vocabulary size 208, where 0-7 are special characters,
8-107 are location indices, and 108-207 are object indices. To implement ψ, we use
PyTorch [236] and base our implementation of a causal transformer on Decision
Transformer [62]. We implement π as a simple linear model for inductive bias and as
an MLP for no inductive bias. All models are trained using the appropriate training
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and evaluation sets, which do not overlap with the test set, with 10 epochs of early
stopping.

7.2.2 Test-time adaptation

Developing assistive policies is not only about achieving good zero-shot performance.
The space of actual human preferences is almost boundless and is likely impossible to
capture in advance of an interaction. Therefore, it is important to develop algorithms
that can rapidly align with the preferences associated with a person’s in-situ behavior.
We study this in two settings. First, we analyze our algorithm’s ability to adapt to
a stationary preference over the course of multiple episodes. Then, we analyze our
algorithm’s ability to adapt in scenarios where preferences are nonstationary. Here,
we are interested in an algorithm’s ability to 1) maintain decent performance in the
face of a preference change and 2) rapidly recover after the change in preference.

Stationary Preferences

To test our algorithm’s ability to adapt to stationary preferences, we averaged the
performance of our bootstrapped online IRL algorithm on all preferences in the testing
set over 20 episodes in each testing environment.

We compare against a linear model that learns from scratch and a method
that optimizes over all transformer parameters between episodes but keeps inference
computation constant. We measure computation cost in terms of FLOPS and calculate
these values empirically using FVCore. We expect to see that the bootstrapped online
IRL algorithm achieves a similar performance to the online transformer method, but
at a fraction of the compute.

Nonstationary Preferences

Similarly to the stationary preferences experiment, we run IRL over 20 episodes. In
this analysis, however, we switch to a different random objective after 10 episodes.
Again, we compare against a linear model learning from scratch and an online
transformer implementation. We expect to see that the linear method starts with
poor performance but adapts quickly when exposed to incoming behavior. We expect
to see that the transformer method starts with good performance and adapts more
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Figure 7.3: Learning curves for each test environment for each algorithm. We report
the average accuracy over each episode. BLR-HAC is able to achieve the low zero-shot
performance of the transformer method, and the fast adaptation of the linear method.
Additionally, we can see that as the episode length increases, these differences in
performance are more notable, with the linear method failing to catch up to the other
two methods over the course of 20 episodes.

slowly as behavior data is accumulated. Finally, we expect our method to achieve
the benefits of both the linear from scratch and the transformer methods: it should
start off with reasonable performance and adapt quickly as data are aggregated.

Implementation Details

For both experiments, we do a hyperparameter sweep over the learning rate in the
range (1e−2, 1e−5) for the transformer and (1, 5, 10) for the linear models. In both
cases, we used the maximum learning rate for all experiments. In addition, we use
stochastic gradient descent for optimization in both cases. To train the transformer
method, we perform five steps of gradient descent between each episode.

7.3 Results

From running the experiments outlined in Sec. 7.2, we have three main results. First,
we find support for our hypothesis that nonlinear, high-capacity models trained with
inductive biases can learn a diverse population of user preferences. In Tab. 7.1, we see
that the attention-based method trained with an inductive prior outperforms all other
methods, achieving 77.1%, 67.3%, and 41.2% accuracy on the small, medium, and
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Figure 7.4: Learning curves over each test environment for each algorithm. We
report average accuracy over episodes. BLR-HAC is able to perform on par with the
transformer method in the small and medium environments and part of the large
environment. BLR-HAC outperforms all methods in all environments immediately
after the preference switch. In the large environment, though, the transformer recovers
more quickly as it has access to more data.

large environments, respectively. We see that the difference in performance between
models trained with and without the inductive prior increases as the difficulty of
the problem increases. Additionally, we see the general trend that higher capacity
nonlinear models outperform lower capacity linear models. These results empirically
justify our desire to use a high-capacity nonlinear model to bootstrap a linear model
in an online logistic regression problem.

Our second set of results is shown in Fig. 7.3. Here, we plot the test-time
adaptation accuracy for three models: linear (in red), BLR-HAC (in green), and
online transformer (in yellow). From these graphs, we can see support for our
hypothesis that bootstrapped, shallow linear models trained with IRL achieve good
accuracy with low computation. We can see that BLR-HAC and Transformer both
start with higher accuracy than Linear in all cases and that this difference increases
as the problem complexity increases. Furthermore, we see how BLR-HAC achieves a
similar performance over episodes as the transformer method, but at a fraction of
the computation. Although both methods have similar inference compute, of OxL
FLOPS, BLR-HAC uses only 2xOxL FLOPS, while the Transformer method uses
∼ 400M FLOPS during updates.

Finally, in Fig. 7.4 results from test-time adaption with nonstationary preferences.
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These results show mixed support for our hypothesis that bootstrapped, shallow
linear models trained with IRL recover well from unexpected shifts in user behavior.
In each graph, episodes 1-10 show results similar to the previous set of experiments.
However, in episode 10, the preference shifts, and all models suffer a drop in perfor-
mance. Interestingly, in all cases, BLR-HAC suffers the smallest drop in performance.
Although this is a positive result, we also see that as the environment becomes more
complex, BLR-HAC suffers in its adaptation rate from episodes 10-20. While it
adapts on par with the linear method (though still achieves higher performance due
to its better initial performance), it adapts slower than the transformer-based method.
This is likely due to the fact that the transformer is able to make better use of the
larger amounts of data that are being aggregated in the large environment.

7.4 Discussion, limitations, and future work

We develop policies for assistive agents that are both well-initialized and highly
adaptable. Through simulated experiments, our method achieves both the good
initializations of large, nonlinear models trained with behavior cloning and the fast
adaptation to user behavior present in low-capacity models trained with online
MaxEntIRL. Importantly, BLR-HAC initializes better than ShallowLinear on test
data that are far from the initial distribution, meaning that our approach should
ideally allow for faster adaptation to populations for whom it is difficult to collect
data for offline pretraining.

Future work should explore applying BLR-HAC to user studies with real people
to determine whether the better initializations and faster adaptations of our method
hold outside of simulation and are preferred. It is also important to study the effect
of the size of the surface rearrangement problem on these results.

User studies also provide an opportunity to improve our method. Collecting
interaction data through interactive simulators, such as AI Habitat [273, 311], deployed
on platforms such as Amazon Mechanical Turk [72] or Prolific [244] would allow us
to pretrain BLR-HAC with real data.

Finally, our method also assumes a single, synchronized modality of corrective ac-
tions: direct state corrections. This makes our learning problem easier by maximizing
the correlation between the leader’s corrections and their reward function. We would
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like to extend our approach to account for other modalities of corrections issued
asynchronously, such as those expressed in real time through verbal or nonverbal
communication.

We show that we can use offline datasets to bootstrap assistive collaborations
by pretraining assistive agents. However, this method necessitates using specific
subpopulations of the larger human population, i.e. those represented by the dataset.
This leads to ethical questions such as: Are the preferences present in the dataset
representative of the larger population? How does this affect people who have
preferences outside this subpopulation? These questions are especially pertinent in
assistive settings, where agents are likely to encounter out-of-distribution phenomena
at test time. Questions such as these are the motivation for this work.

We assume that a critical part of providing assistance is to reduce unnecessary
burden placed on individuals while acting in alignment with their preference. When
a person’s preferences are well represented in the data set, pretraining necessarily
minimizes a person’s burden to bring the agent into alignment with their preference.
When a person’s preferences are not well represented in the data set, our method
quickly aligns to the person’s preference quickly by using their in-situ, goal-directed
behavior. Thus, while the model does not have an initial representation of these
out-of-domain preferences, it knows how to interpret goal-directed behaviors to learn
such a representation.

We believe that there is ample opportunity for future work to continue to explore
solutions to these ethical dilemmas. For example, by learning more generalizable
features of preferences that allow for better representations of human preferences, or
by teaching agents to learn to learn preferences, which would improve an assistive
agents ability to adapt to out-of-distribution preferences.

7.5 Conclusion

In this work, we laid out an argument for why assistive agents should be both well-
initialized and highly adaptable. We introduced a novel formulation of assistive human-
agent collaboration as collaborative inverse reinforcement learning and introduced an
algorithm BLR-HAC that takes advantage of sophisticated population-level modeling
found in deep neural networks with the fast adaptation of shallow, low-capacity
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inverse reinforcement learning methods. Finally, we verified these claims through
simulated experiments. With these experiments, we show how we can use naturalistic
human behaviors in order to provide value-aligned robotic assistance.
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8 Conclusion

Providing robotic assistance to people with household tasks is a challenging under-
taking that would give back valuable free time and help people for whom these tasks
are physically burdensome. In this thesis, we lay out an argument that robots that
provide such assistance should do so according to a value alignment process: to assist
a person, a robot must take actions that support a person’s goals. We also identify
the components of an assistive robotic system and a large literature review of recent
work in assistive robotics, Chapter 3.

We then demonstrate how naturalistic behaviors can be collected in a simplified
version of such a task in Chapter 4 and show how these can be used to train feature
spaces that could be used for downstream rearrangement tasks in Chapter 5. We show
evidence that personalization is needed in assistive robotics, by demonstrating how
models trained at the population level suffer when generalizing across participants.

Seeing this evidence for the need to personalize such general feature spaces, we
present a method for doing so using in-context learning in Chapter 6. We explore this
idea in complex, open-vocabulary, sequentially dependent rearrangement problems,
which model household tasks. Our first study in this uses in-context learning to
personalize the feature spaces of large, generalized pretrained models trained on
internet scale data. While we find that we can use these methods to personalize these
large models for rearrangement problems, we find that the solution is not sufficient
on its own and propose a method to use naturalistic human behavior to continually
refine these feature spaces.

Finally, seeing that in-context prompting was not enough to personalize alone, we
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introduce a method for continual, shallow fine-tuning of a large model’s preference
representation in Chapter 7: BLR-HAC. This method finetunes large, pretrained
models by using naturalistic corrective behaviors during the execution of a collabora-
tive rearrangement task. This method works by training a small model on top of a
large, pretrained model, that learns to interpret corrective actions as goal oriented,
thereby allowing rapid training for individuals and continued refinement over the
lifecycle of the interaction.

8.1 Generalizability

Although we presented several different methods for providing robot assistance in
surface rearrangement tasks, the space of general rearrangement tasks is quite large
and can vary according to many different task variables. As such, it is important to
discuss the ways in which our methods can generalize to a broader space of tasks and
the preferences that can be held within these tasks.

First, since our pipeline (e.g., the work done in Chapter 6) uses vision-and-language
models to capture preferences, it could theoretically generalize to any preference
that is able to be represented as an image, in text, or as a combination of both.
Bin-picking tasks, for example, could be represented as images of the placement bins
and abstract images of the items that can be placed. The bin each object belongs
to can be represented as is currently, through prior examples of a task plan. More
complex tasks, such as building a three-dimensional structure, such as a car or a Lego
model, could require additional intermediate representations.

In practice, we only experimented with preferences that could be represented as
a planar image of, for example, a table top. We do extend previous work, which
typically considers a set of objects in view (e.g. Dalle-Bot [148], which rearranges
only the items in view on a table top at the beginning of a task) to be able to arrange
only a subset of items that are not in view in the current scene. The set of objects
from which you would like to select can be passed in as an unorganized list of either
images or object descriptions.

Additionally, while our methods do capture preferences over the order in which
objects are placed, they do this at a coarse level, assuming access to general
pick and place functions that can reliably pick and place any object. Our cur-
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rent method would not be able to account for preferences that operate over finer
grained details of the task planning process, such as the exact trajectory a robot
takes as it executes a pick and place action.

Some rearrangement tasks also require memory or maintaining some amount of
knowledge about multiple states at any given task. For example, when stocking aisles
in a grocery store, a person may need to remember what items are in inventory, what
items have run out on the shelves, and what items other employees are in charge of
stocking. While such a task could likely be represented in text or in images, it is
an open question if large foundation models can reason over increasingly complex
tasks such as this one. Additionally, there may be a missing social component of such
a system: how does the robot execute the rearrangement task when its objectives
conflict with the objectives of another person? As these memory requirements grow,
as is common in many rearrangement tasks, methods that rely on models with fixed
context length may struggle to perform well.

8.2 Future research directions

Given these various limitations in the generalizability of our approach, as well as the
experience we gained in building the systems presented, we propose several directions
for future work, as follows.

8.2.1 Real robot implementation

First, connecting DegustaBot (Chapter 6) and BLR-HAC (Chapter 7 could result
in a real system that would be able to provide robotic assistance in a real surface
rearrangement task, such as setting the table. By instantiating the pre-trained model
in BLR-HAC with a modern foundation model, such as GPT4-o, and implementing a
top-down pick and place robot, a working system could be built.

Such a set-up would be beneficial in a variety of ways. First, it would allow
researchers to easily test the generalizability of new objects and new tasks. Participants
could bring in real objects from home and use them to perform a novel rearrangement
task. Additionally, while the images we use in Chapter 6 are drawn from real images,
a realistic setup would allow us to determine the method’s ability to be robust to
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confounding features such as lighting variation.
A realistic setup could also help researchers perform user studies which would be

critical for understanding whether people actually enjoy this kind of assistance, as
well as for collecting naturalistic preferences and additional naturalistic behaviors that
people use to express their preferences in such a task. With such datasets, additional
improvements to the method could be made to make it generalize to more types of
user preferences.

Finally, a system such as this would also allow us to test whether or not goal
representations (such as capture in Chapters 6 and 7 can be used by downstream
action execution policies. Our current work assumes a coarse action execution policy
that relies on general pick and place actions. Future work could consider these task
plans as the goal representation input for a more fine-grained goal conditions execution
policy that could account for preferences in the trajectory a robot takes. This would
disambiguate preferences about what should be done from how that task should be
done, which would hopefully improve sample efficiency of online preference learning
methods. A real world robot system could be a test-bed for such an implementation
to test such hypotheses.

8.2.2 Modulating between conflicting goals

While much of the focus of the work in this dissertation focuses on capturing and
refining an individuals goal in a rearrangement task, these tasks can also have a
social element when executed in the real world. People can have high-level values and
low-level values that may not always be consistent with one another. Philosophical
literature has suggested that people’s preferences can operate at different ranges that
can sometimes conflict with one another, e.g., wanting to be safe but not wanting
to wear a motorcycle helmet [304]. For example, if asked, a person may proclaim
a desire to stay safe while operating motor vehicles, but in practice not wear their
helmet or buckle their seatbelt when they drive a motorcycle or car.

Our current methods, which rely entirely on in situ behaviors, likely lean heavily
on aligning to low level values (e.g. what the person is doing right now) and may
therefore not be preferred in tasks where higher level values are of more concern or are
difficult for a person to act on. Ex-situ behavior, for example interviewing someone
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about their preferred table arrangement, may reveal higher-level value information
that could be used in conjunction with in-situ information to accomplish tasks in a
way that satisfies both sets of values. Studying such questions would also allow us
to understand what a robot should do when these value systems are incompatible
and help us develop robots that can still provide assistance even though it is unclear
what the person actually wants.

These ideas also occur in environments with multiple people. In a household,
for example, different people may have different ideas about how to optimally load
a dishwasher. A robot cannot load a dishwasher to please two people, but must
accomplish the task. Understanding how the robot fits into this social dynamic, and
how it should align its objectives to the family unit, is critical for long-term adoption
in realistic households.

8.2.3 Incorporating multiple modalities of naturalistic human
behaviors

Finally the work presented in this thesis relies on a relatively small set of naturalistic
behaviors through which people can communicate their goals: gaze, visual demon-
strations, text demonstrations, and corrective actions. In reality, people express
their content or discontent through a huge amount of different behaviors, such as
the prosody of speech, facial expressions, laughter, or other non-language utterances.
Researchers should explore the multi-modal nature of human behaviors and human
preferences.

First, researchers could train models to combine multiple different modalities of
in situ, naturalistic, and goal-directed behaviors, similar to our work in Chapter 5.
Training coordinated feature spaces for multiple different modes of behavior could
allow for redundancy in understanding user goals, as well as being able to infer goals
or preferences that are not apparent in any single signal. Large datasets of this kind
could also bootstrap alignment to novel preferences or to novel tasks, for example
through retrieval-augmented generation. This would make it not necessary to perform
costly data collection on every new preference or task.

Finally, even though language and vision are very general forms of representing a
preference, people often express their preferences through other means. Language is
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particularly interesting because of its variety and capability for expression. Verbal
utterances, for example, can indicate when someone is unhappy with a current action,
or eye gaze can reveal what a person really wants a robot to do. Idiolects can also
develop that indicate additional information, potentially through short hand (e.g.,
“pass me that thingy” instead of “pass me the round blue object on the rightmost
side”), which can be useful for executing collaborative rearrangement tasks. With a
better understanding of how to incorporate language into methods such as the ones
we present here, a larger variation of preferences could likely be captured with fewer
data examples.

8.3 Closing thoughts

With the work presented in this thesis, we have argued that robots can provide
value-aligned assistance using naturalistic human behavior that can be used in
rearrangement tasks that model household chores. Although we have presented
these methods and tested them in mostly simulated environments, it is increasingly
important to understand what people want a robot to do. As such, we believe that it
is very important to 1) understand how people execute rearrangement tasks in their
homes to capture a realistic dataset of people’s preferences and how strongly these
preferences are held, and 2) get robots in front of people so that we can understand
how these preferences may change as a robot executes more of these types of chores.
With this work, we hope that we have pushed forward the knowledge in this field, so
that we can one day achieve the goal of deploying general purpose assistive robots in
household environments.
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Bayesian identification of fixations, saccades, and smooth pursuits. In
Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking Re-
search & Applications, ETRA ’16, pages 163–170, New York, NY, USA,
2016. ACM. ISBN 978-1-4503-4125-7. doi: 10.1145/2857491.2857512. URL
http://doi.acm.org/10.1145/2857491.2857512. 5.2.1

[271] Gabriel Sarch, Zhaoyuan Fang, Adam W Harley, Paul Schydlo, Michael J Tarr,
Saurabh Gupta, and Katerina Fragkiadaki. Tidee: Tidying up novel rooms
using visuo-semantic commonsense priors. In European conference on computer
vision, pages 480–496. Springer, 2022. 2.2.1

[272] Celal Savur, Shitij Kumar, and Ferat Sahin. A framework for monitoring human
physiological response during human robot collaborative task. In 2019 IEEE
INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNET-
ICS (SMC), IEEE International Conference on Systems Man and Cybernetics
Conference Proceedings, pages 385–390. IEEE, 2019. 3.4.1

[273] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wij-
mans, Bhavana Jain, Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik,
et al. Habitat: A platform for embodied ai research. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 9339–9347,
2019. 7.4

161

http://www.roboticsproceedings.org/rss13/p53.html
http://www.roboticsproceedings.org/rss13/p53.html
http://doi.acm.org/10.1145/2857491.2857512


Bibliography

[274] Jonas Schmidtler and Klaus Bengler. Size-weight illusion in human-robot
collaboration. In 2016 25TH IEEE INTERNATIONAL SYMPOSIUM ON
ROBOT AND HUMAN INTERACTIVE COMMUNICATION (RO-MAN),
IEEE RO-MAN, pages 874–879. IEEE, 2016. 3.4.1

[275] Jonas Schmidtler, Moritz Koerber, and Klaus Bengler. A trouble shared
is a trouble halved - usability measures for human-robot collaboration. In
2016 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND
CYBERNETICS (SMC), IEEE International Conference on Systems Man and
Cybernetics Conference Proceedings, pages 217–222. IEEE, 2016. 3.4.1

[276] Sebastian Schneider and Franz Kummert. Motivational effects of acknowledging
feedback from a socially assistive robot. In A Agah, JJ Cabibihan, AM Howard,
MA Salichs, and H He, editors, SOCIAL ROBOTICS, (ICSR 2016), volume
9979 of Lecture Notes in Artificial Intelligence, pages 870–879. SPRINGER-
VERLAG BERLIN, 2016. 3.3.2, 3.4.3

[277] Sarah Strohkorb Sebo, Margaret Traeger, Malte Jung, and Brian Scassellati.
The ripple effects of vulnerability: The effects of a robot’s vulnerable behav-
ior on trust in human-robot teams. In HRI ‘18: PROCEEDINGS OF THE
2018 ACM/IEEE INTERNATIONAL CONFERENCE ON HUMAN-ROBOT
INTERACTION, ACM IEEE International Conference on Human-Robot Inter-
action, pages 178–186. ASSOC COMPUTING MACHINERY, 2018. 3.4.3

[278] Sarah Strohkorb Sebo, Ling Liang Dong, Nicholas Chang, and Brian Scas-
sellati. Strategies for the inclusion of human members within human-robot
teams. In PROCEEDINGS OF THE 2020 ACM/IEEE INTERNATIONAL
CONFERENCE ON HUMAN-ROBOT INTERACTION (HRI ‘20), ACM IEEE
International Conference on Human-Robot Interaction, pages 309–317. ASSOC
COMPUTING MACHINERY, 2020. 3.4.3

[279] Dhruv Shah, Michael Robert Equi, B lażej Osiński, Fei Xia, Brian Ichter, and
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