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Abstract
Data-driven learning is a powerful paradigm for enabling robots to learn skills.

Current prominent approaches involve collecting large datasets of robot behavior via
teleoperation or simulation, to then train policies. For these policies to generalize to
diverse tasks and scenes, there is a large burden placed on constructing a rich initial
dataset, which is bottle-necked by human labor required in collecting demonstrations
or careful design of simulation assets and scenes. Can we instead enable robots to
learn how to collect their own data for continual improvement? This thesis seeks to
tackle this question of exploration, which directs how agents should act, leading to
the discovery of useful behavior.

We first consider how to define exploration objectives even in the absence of
rewards or demonstrations. To explore new goals, our key insight is that it is easier
to identify action sequences that lead to some unknown goal state, than to generate
the unknown goal directly. This is enabled by training a world model that can be
used to measure the uncertainty of action sequences. For further e�ciency for real
world deployment, we decouple environment and agent-centric exploration. The
former relates to incentivizing actions that lead to change in the visual features of
objects which is often beneficial for manipulation tasks, and the latter to uncertainty
of the robot’s internal world model.

Next, we ask how to enable generalist robot explorers, for diverse tasks. Our
approach is to learn data-driven priors to structure the action space, using human
videos. We learn visual a�ordances, which characterize how objects can be interacted
with by hands or end-e�ectors, providing a very e�cient search space for exploration.
Further this shared a�ordance action space can be used to train a joint human-robot
world model. The model is first pre-trained on diverse video of human hands
performing various tasks, and then fine-tuned with very few robot exploration
trajectories. We also study how to e�ciently adapt internet-scale video di�usion
models using gradient information of a given reward function, which can enable
future applications that use such models for planning in robotics.

The third question we consider is how to enable greater autonomy for robot
explorers. We do so using mobile manipulation systems, as their extended feasible
task space and resetting ability allows for continual practice and improvement with
minimal human involvement. We show this on a quadruped equipped with an
arm that learns to move chairs, sweep trash and vertically stand up dust-pans via
real-world RL, as well as a custom wheeled system that learns to open doors across
various buildings on campus. Finally, orthogonal to the question of exploration, we
discuss how to scale data collection for bimanual dexterous manipulation using low-
cost high-fidelity teleoperation as well as procedural scene generation in simulation
to learn neural motion planners for robot arms. This is to obtain better initial policies
from which robots can explore.
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Chapter 1

Introduction

1.1 Motivation
A central goal in artificial intelligence is building agents that can sequentially make
decisions to perform tasks. Robotics considers this problem in the most general
setting, where the agent is embodied and can interact with the real world physically.
Wewould like robots that can perform a diverse variety of tasks and adapt to perform
new ones, in various environments and domains ranging from homes to factory
settings to outer space. Recent advances in machine learning have shown amazing
results in the fields of language and vision [40, 314, 327, 39, 397], by leveraging large
internet-scale datasets and scaling up training compute. Inspired by this, there has
been a renewed focus on data-driven learning for robotics. The current prevalent
paradigm is to collect large datasets of demonstrations, and then use imitation
learning [37, 36, 63, 458], or to leverage fast parallelizable simulators where agents
learn specific tasks via reinforcement learning [206, 178, 152, 6, 144]. If we are to
obtain general purpose policies using these approaches, there is a very large burden
placed on collecting a representative set of expert demonstrations via teleoperation,
or careful design of simulation environments and assets that capture various tasks,
scenes and objects. These will need to be exhaustive enough to enable the resulting
policy to generalize across various tasks and environments where robots might be
deployed. However, it is very di�cult to a priori anticipate all these settings.

In contrast, humans constantly learn new skills and improve in ability using
their daily experience. For example, people frequently pick up new sports such as
tennis, basketball or skiing, thoughmost require quite a bit of practice before gaining
proficiency. This critically depends on being able to interact with the world, and use
new data to keep learning, instead of relying on capabilities that are frozen in time.
Canwe similarly enable agents that learn by collecting their own interactive experience?
This leads to the question of exploration, which directs how agents should act to
collect their own data in order to improve, which is the topic of this thesis.
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How should agents direct their behavior to learn new skills and discover interest-
ing states? In robot learning, policies are typically trained to maximize some notion
of utility specified by a reward. Using this approach, separate reward functions
have to be specified for each new skill that the robot has to learn, and the training
process repeated. For example, using a reward for pushing objects, a robot will
only take actions for that particular task, and will not seek out new skills such as
picking or throwing. This is in stark contrast to how human children interact with
the world, often engaging in seemingly mindless play that is not related to a specific
task. However, this interaction endows them with rich, diverse experience which
can be repurposed to accomplish a whole range of object manipulation behaviors.
This is driven by what psychologists call ‘intrinsic motivation’ [334, 367]. Inspired
by this, the first question we ask is how can we define exploration objectives for
robots to exhibit similar behavior? We study objectives that quantify uncertainty of
actions, and that incentivize changes in the visual features of objects.

These objectives allow the robot to discover skills, driven only by its interactions
in its particular environment. Given a new environment, the process of discovery
needs to be repeated. This leads us to ask if we can enable generalist explorers,
which can utilize strong data-driven priors that are e�ective across environments.
We look to human videos, since this is a rich data source depicting how to perform
various tasks of interest, and is likely to keep increasing in size. Videos showing how
humans interact with their environments communicate a top-down signal to robots
of what are useful actions to undertake in a given scene. Importantly, we seek to
extract actionable information from human videos in the form of ‘a�ordances’, which
depict where and how to interact. Further, we show how these a�ordance action
representations can be used to train generalist world models, e�ective for multiple
tasks. This leads us to discuss the future of world models, likely to be enabled by
recent advances in powerful video generation techniques [137, 39]. We investigate
how to e�ciently adapt generations from pretrained internet-scale video di�usion
models, which can enable future applications to robotics.

While these data-driven priors enable robots to explore in a much more sample-
e�cient manner, continual improvement on tasks is bottleneck by the restricted
autonomy of robots. Specifically, human intervention is often required to reset the
scene, such as when objects are interacted with on a table and fall to the ground.
Furthermore, many tasks of interest are precluded simply because they involve
manipulation of larger, heavier objects, such as sweeping with a broom or opening a
door. Returning to our example of learning for human children, we observe they
engage in play mostly autonomously, without constant parent intervention. This is in
large part due to mobility which greatly expands the set of reachable states. Hence,
we next ask how to similarly enable better autonomy for robot exploration, using
mobile manipulation systems? We show how to enable a Spot robot with an arm to
learn multiple skills via practice and also build our own custom system for opening
real-world doors across di�erent buildings on campus.
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So far we have discussed how robots can act to improve their performance.
For robot deployment, an important orthogonal question is how competent the
initial robot policy is. While exploration is important for improvement, for practical
deployment there is no need to start with a randomly initialized policy. Hence,
we also investigate approaches for scaling robot data critical for training initial
deployment policies, both via low-cost teleoperation for bimanual dexterous tasks,
and procedural scene generation in simulation for motion planning.

1.2 Contributions

The key questions this thesis studies are 1) How to define exploration objectives,
even in the absence of rewards or demonstrations? 2) How to build generalist robot
explorers, for diverse tasks? 3) How to enable greater autonomy for robot explorers,
using mobile manipulation systems? Finally, we investigate approaches for scaling
up data collection for robot learning, using low-cost teleoperation for imitation and
procedural scene generation in simulation.

1.2.1 Exploration Objectives

The problem setting for these objectives involves unsupervised exploration, where the
agent does not have access to any rewards or demonstrations. After a period of
interaction with the environment, we test the agent with user-defined tasks.

Latent Explorer-Achiever: In Chapter 2, we present an algorithm that can dis-
cover skills and perform tasks in various simulation environments from raw image
observations. This includes controlling a Franka robot to perform multi-stage tasks
involving multiple objects such as a cabinet, light switch and kettle. The exploration
objective involves having the agent setting goals for itself that are interesting. Prior
work attempts this by sampling goals from the frontier of known states, using a
measure of novelty [99, 285, 28, 295]. It is very di�cult to directly generate goals
that are far beyond the frontier of the agent’s past experience, since this space is
unknown. Our key insight is that it is instead easier to identify action sequences
with uncertain outcomes. This is enabled by training a world model [140, 145, 146],
that predicts outcomes of long sequences of actions in a learned latent space. We
then use this to train a policy that prioritizes action sequences that have uncertain
predictions, estimated via ensemble variance [287] in the world model latent space.
These trajectories are likely to lead to states that fall beyond the agent’s frontier of
past experience, because otherwise the model would have exhibited low uncertainty.
These discovered states are then used as goals to train a goal-reaching policy in the
world model’s imagination, which enables the agent to perform user-defined tasks.

Environment and Agent Centric Objectives: Real robot deployment requires an
exploration algorithm with greater sample e�ciency. We enable this in Chapter 3 by
decoupling environment-centric and agent-centric exploration. The former relates to
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changes in visual features of objects in the world (computed using the segmentation
mask of the robot), and is independent of learning progress made by the agent,
while the latter corresponds to the agent’s internal model of the world. Robots
that prioritize actions resulting in changes in the environment will encounter richer
contact interactions, which is very useful for acquiring manipulation skills. However,
just relying on this environment-centric signal is not su�cient, as it is constant for
a given state-action pair and does not evolve with the agent’s behavior. For agent-
centric exploration, we encourage the robot to be curious about the environment change,
using the approach described in Chapter 2. This will cause it to try to interact with
objects in di�erent ways, preventing stagnation of robot exploration behavior. Using
this approach, a Franka robot learns to perform di�erent tasks such as picking up a
knife, opening shelves and cabinets with only around 100 trajectories in 1-2 hours in
two distinct play kitchens, without any human rewards.

1.2.2 Generalist Explorers using Prior Video

We extract a�ordances from human videos for deployment on robots, and investigate
using the shared action space for training joint human-robot world models. We also
study e�ciently adapting generations from pretrained video di�usion models.

A�ordances fromHumanVideos: The utility of human video data has been rec-
ognized in the robot learning community, and there have been recent e�orts to endow
robots with pretrained visual representations [355, 273, 241, 429, 309, 436]. However,
since the state space complexity grows exponentially with actions, we wanted to
extract actionable representations from human video for robot control. In Chapter 4,
we approached this by learning visual a�ordances [20], which characterize ways in
which objects can be interacted with. We use a robotics-first approach, extracting
what to focus on in a scene, and how to interact with it. This is represented by a
heat-map which indicates regions in the scene where the human hand likely makes
contact, and key-points for the subsequent post-contact trajectory. This provides a
very e�cient action space for exploration, for the robot end-e�ector to operate in.
The robot collects real-world samples in this space to refine its uncertainty estimate
of the contact and post-contact directions, based on task reward. We extensively
evaluate this a�ordance representation on a Franka arm and a Stretch robot across 8
di�erent manipulation tasks, for di�erent robot-learning paradigms including data
collection for imitation, goal-reaching and unsupervised exploration.

Joint Human-Robot World Models: To move towards generalist robots, we
wanted to build a system that can leverage the commonality between di�erent tasks.
In Chapter 5, we trained a single joint world model, which is first pretrained on
diverse video of human hands performing various tasks, and then fine-tuned with
very few robot trajectories. The key idea that enables this shared world model
is to use the common a�ordance action space, which we developed in Chapter 4.
Defining this common shared action space allows the model to capture how hands
and robot end-e�ectors grasp and interact with various objects. The interaction
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trajectories for fine-tuning do not require any task supervision and can be obtained
simply by exploring in the visual a�ordance space. We note that both pretraining
on human videos and fine-tuning the world model on robot data do not make
any assumption on rewards, and this unsupervised setting allows us to utilize data
relevant for di�erent tasks. Hence, we can train a single world model on all the data,
thus enabling generalist agents. After fine-tuning, the world model can be used to
perform specific robot tasks indicated via goal images simply by planning through
the model, using image feature distance as reward.

Video Di�usion Alignment: Given the utility of world models for enabling
generalists, we study likely future implementations that leverage recent advances.
This includes internet-scale video di�usion models, that can generate future image
frames, capture scene and concept generalization, and aspects of interaction physics
between di�erent complex objects [39, 137]. One way for such models to be used for
robotics is to e�ciently adapt video generation to depict how to reach a particular
desired goal configuration. The predominant approach for this for language and
image generation has been supervised fine-tuning [312, 38], but the required dataset
collection is much more costly for videos. Furthermore, the process needs to be
repeated for every new video generation task. In Chapter 6, we use reward models
evaluated on the video generations, specifically by backpropogating gradients. This
allows the model to be updated very e�ciently in terms of compute and the number
of queries needed to the reward model. In language and image domains, utilization
of reward models is mostly gradient-free [31, 219], but we find the e�ciency gap
becomes very large in the video setting, making it crucial to use reward gradients.

1.2.3 Autonomous Explorers with Mobile Manipulators

Mobile manipulation systems enable greater autonomy for robot exploration due to
their extended reach, and larger set of resettable states. Furthermore, they enable
attempting tasks involving larger or heavier objects, as well as those outside the lab.

Autonomous Spot RL: In Chapter 7, we present a general approach for con-
tinuously improving mobile manipulation skills directly in the real world with
autonomous RL, with minimal human intervention. We enable higher-quality data
collection by guiding exploration toward object interactions using o�-the-shelf visual
models. This leads the robot to search for, navigate to, and grasp objects before
learning how to manipulate them. We preserve state diversity to prevent robot stag-
nation by extending the approach of goal-cycles to mobile tasks andwith multi-robot
systems. For sample e�cient policy learning, we combine RL with behavior priors
that contain basic task knowledge. These priors can be planners with a simplified
incomplete model, or procedurally generated motions. For rewards without instru-
mentation or human involvement, we combine semantic information from detection
and segmentation models with low-level depth observations for object state esti-
mation. Our approach enables a Spot robot to continually improve in performance
on a set of 4 challenging mobile manipulation tasks, including moving a chair to a
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goal with the table in the corner or center of the playpen, picking up and vertically
balancing a long-handled dustpan, and sweeping a paper bag to a target goal region.

Open-World Door Opening: In Chapter 8, we present a full-stack approach for
taking robots out of the lab to manipulate real-world doors, cabinets, drawers, and
refrigerators in open-ended unstructured environments, building our own low-cost
mobile manipulation platform. In order to e�ectively manipulate objects in open-
world settings, we use an adaptive learning approach, where the robot keeps learning
from online samples collected during interaction. Consider the manner in which
people typically approach operating articulated objects such as doors. This generally
first involves reaching towards a part of the object, such as a handle, and establishing
a grasp. We then execute constrained manipulation like rotating, unlatching, or
unhooking, where we apply arm or body movement to manipulate the object. In
addition to this high-level strategy, there are also lower-level decisions made at each
step regarding exact direction of movement, extent of perturbation and amount of
force applied. Inspired by this, we use a hierarchical action space for our controller,
where the high-level action sequence follows the grasp, constrained manipulation
strategy. These primitives are parameterized by learned low-level continuous values,
which needs to be adapted to operate diverse articulated objects. To further bias the
exploration of the system towards reasonable actions during online sampling, we
collect a dataset of expert demonstrations on 12 training objects, including doors,
drawers and cabinets to train an initial policy via behavior cloning.

1.2.4 Scaling Robot Learning

Orthogonal to the question of exploration, we study approaches for obtaining com-
petent initial policies, via low-cost teleoperation for very high-dimensional bimanual
dexterous systems, and procedural scene generation in simulation to train policies
for motion planning. This brings us closer to robot systems that can be deployed.

Bimanual Dexterous Teleoperation: General purpose robots will need to operate
in environments built around humans, and execute tasks that correspond to activities
that people can perform. Hence, one approach to building such systems is to use a
hardware form factor that resembles humans with two arms each equipped with
a dexterous multi-fingered hand. In Chapter 9, we present BiDex, a system for
dexterous low-cost teleoperation for bimanual hands and arms, in-the-wild, in any
environment. Wu et al. [426] show that a low-cost 3D printed scaled teacher arm
model that has the same kinematic link structure of a large robot arm can be used for
accurate and e�ective arm tracking, by obtaining supervision in joint-angle space.
However, this only provides one degree for freedom (DOF) for finger tracking
instead of the twenty two plus DOF of the human hand. Meanwhile, wearable
gloves have been increasingly used in recent years [408, 362, 246] for hand tracking
which record the fingertip position of the human hand using EMF sensors. Our key
insight is to combine kinematic link structure for arm tracking along with a motion
capture fingertip glove for tracking finger movements accurately and reliably. The
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data collected by the system can be used to train e�ective policies using imitation
learning, afterwhich the system can perform the task autonomously. We compare the
accuracy and speed of data collection to virtual reality based teleoperation systems.

Neural Motion Planning: Previous approaches to motion planning [215, 33,
185, 318, 346, 154, 226, 200] are often slow at producing solutions since they largely
plan from scratch at test time, re-using little to no information outside of the current
problem and what is engineered by a human designer. In Chapter 10, we show
that large scale data generation in simulation can enable training generalist policies
that can be successfully deployed for real-world motion planning tasks. We build a
large number of complex environments by combining procedural, programmatic
assets with models of everyday objects sampled from large 3D datasets. These are
used to collect expert data from state-of-the-art (SOTA) motion planners [380],
which we then distill into a reactive, generalist policy. Since this policy has seen
data from 1 million scenes, it is capable of generalizing to novel obstacles and scene
configurations that it has never seen before, including variation across poses, objects,
obstacles, backgrounds, scene arrangements, in-hand objects, and start/goal pairs.

1.3 Publications
List of publications included in this thesis:

Chapter 2: Discovering and Achieving Goals via World Models. NeurIPS
2021 [250].

Chapter 3: Autonomously Exploring Robotic Agents in the Real World. ICRA
2023 [251].

Chapter 4: A�ordances from Human Videos as a Versatile Representation for
Robotics. CVPR 2023 [20].

Chapter 5: Structured World Models from Human Videos. RSS 2023 [252].

Chapter 6: Video Di�usion Alignment via Reward Gradients. In Submission [298].

Chapter 7: Continuously Improving Mobile Manipulation with Autonomous
Real-World RL. CoRL 2024 [253].

Chapter 8: Adaptive Mobile Manipulation for Articulated Objects In the Open
World. In Submission [432].

Chapter 9: Bimanual Dexterity for Complex Tasks. CoRL 2024 [363].

Chapter 10: Neural MP: A Generalist Neural Motion Planner. In Submission [75].
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Chapter 2

Discovering and Achieving Goals
via World Models

2.1 Motivation

Environment

World Model Environment
without rewards

Explorer

Achiever

Replay Buffer

Achiever (frozen)

Random Goal Image

User Goal Image

Unsupervised Interaction

Zero-Shot Evaluation

Figure 2.1: LEXA learns a world model with-
out any supervision, and leverages it to train
two policies in imagination. The explorer finds
new images and the achiever learns to reliably
reach them. Once trained, the achiever reaches
user-specified goals zero-shot without further
training at test time.

How can we build an agent that learns
to solve hundreds of tasks in complex
visual environments, such as rearrang-
ing objects with a robot arm or complet-
ing chores in a kitchen? While tradi-
tional reinforcement learning (RL) has
been successful for individual tasks, it
requires a substantial amount of human
e�ort for every new task. Specifying
task rewards requires domain knowl-
edge, access to object positions, is time-
consuming, and prone to human errors.
Moreover, traditional RL would require
environment interaction to explore and
practice in the environment for every
new task. Instead, we approach learning
hundreds of tasks through the paradigm
of unsupervised goal-conditioned RL,
where the agent learns many diverse
skills in the environment in the com-
plete absence of supervision, to later
solve tasks via user-specified goal im-
ages immediately without further train-
ing [181, 341, 8].
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Figure 2.2: We benchmark LEXA across four visual control environments. A representative
sample of the test-time goals is shown here. RoboYoga features complex locomotion and
precise control of high-dimensional agents, RoboBins manipulation with multiple objects,
and RoboKitchen a variety of diverse tasks that require complex control strategies such as
opening a cabinet.

Challenges: Exploring the environment and learning to solve many di�erent tasks
is substantially more challenging than traditional RL with a dense reward function
or learning from expert demonstrations. Existing methods are limited to simple
tasks, such as picking or pushing a puck [97, 271, 295] or controlling simple 2D
robots [414]. The key challenge in improving the performance of unsupervised RL is
exploration. In particular, previous approaches explore by either revisiting previously
seen rare goals [109, 99, 457] or sampling goals from a generative model [271, 295].
However, in both these approaches, the policy as well as the generative model are
trained on previously visited states from the replay bu�er, and hence the sampled
goals are either within or near the frontier of agent’s experience. Ideally, we would
like the agent to discover goals much beyond its frontier for e�cient exploration,
but how does an agent generate goals that it is yet to encounter? This is an open
question not just for AI but for cognitive science too [348].

Approach: To rectify this issue, we leverage a learned world model to train a
separate explorer and achiever policy in imagination. Instead of randomly sampling
or generating goals, our explorer policy discovers distant goals by first planning
a sequence of actions optimized in imagination of the world model to find novel
states with high expected information gain [230, 366, 349]. It then executes those
imagined actions in the environment to discover interesting states without the need
to generate them. Note these actions are likely to lead the agent to states which are
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several steps outside the frontier because otherwise the model wouldn’t have had
high uncertainty or information gain. Finally, these discovered states are used as
diverse targets for the achiever to practice. We train the achiever from on-policy
imagination rollouts within the world model and without relying on experience
relabeling, therefore leveraging foresight over hindsight. After this unsupervised
training phase, the achiever solves tasks specified as goal images zero-shot without
any additional learning at deployment. Unlike in the conventional RL paradigm [258,
386], our method is trained once and then used to achieve several tasks at test time
without any supervision during training or testing.

Contributions: We introduce Latent Explorer Achiever (LEXA), an unsupervised
goal reaching agent that trains an explorer and an achiever within a shared world
model. At training, LEXA unlocks diverse data for goal reaching in environments
where exploration is nontrivial. At test time, the achiever solves challenging lo-
comotion and manipulation tasks provided as user-specified goal images. Our
contributions are summarized as follows:

• We propose to learn separate explorer and achiever policies as an approach to
overcome the exploration problem of unsupervised goal-conditioned RL.

• We show that forward-looking exploration by planning with a learned world
model substantially outperforms previous strategies for goal exploration.

• To evaluate on challenging tasks, we introduce a new goal reaching benchmark
with a total of 40 diverse goal images across 4 di�erent robot locomotion and
manipulation environments.

• LEXAoutperforms priormethods, being the first to show success in the Kitchen
robotic manipulation environment, and achieves goal images where multiple
objects need to be moved.

2.2 Latent Explorer Achiever (LEXA)

Our aim is to build an agent that can achieve arbitrary user-specified goals after
learning in the environment without any supervision. This presents two challenges -
collecting trajectories that contain diverse goals and learning to achieve these goals
when specified as a goal image. We introduce a simple solution based on a world
model and imagination training that addresses both challenges. The world model
represents the agent’s current knowledge about the environment and is used for
training two policies, the explorer and the achiever. To explore novel situations,
we construct an estimate of which states the world model is still uncertain about.
To achieve goals, we train the goal-conditioned achiever in imagination, using the
images found so far as unsupervised goals. At test time, the achiever is deployed to
reach user-specified goals. The training procedure is in Algorithm 1.
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Figure 2.3: Latent Explorer Achiever (LEXA) learns a general world model that is used to
train an explorer and a goal achiever policy. The explorer (left) is trained on imagined latent
state rollouts of the world model st:T to maximize the disagreement objective ret = Var(s0).
The goal achiever (right) is conditioned on a goal g and is also trained on imagined rollouts
to minimize a distance function d(st, eg). Goals are sampled randomly from replay bu�er
images. For training a temporal distance, we use the imagined rollouts of the achiever and
predict the number of time steps between each two states. By combining forward-looking
exploration and data-e�cient training of the achiever, LEXA provides a simple and powerful
solution for unsupervised reinforcement learning.

2.2.1 World Model

To e�ciently predict potential outcomes of future actions in environments with high-
dimensional image inputs, we leverage a Recurrent State Space Model (RSSM) [145]
that learns to predict forward using compact model states that facilitate planning
[417, 43]. In contrast to predicting forward in image space, the model states enable
e�cient parallel planning with a large batch size and can reduce accumulating errors
[340]. The world model consists of the following components:

Encoder: et = enc�(xt) Posterior: q�(st | st�1, at�1, et)

Dynamics: p�(st | st�1, at�1) Image decoder: p�(xt | st)

The model states st contain a deterministic component ht and a stochastic com-
ponent zt with diagonal-covariance Gaussian distribution. ht is the recurrent state
of a Gated Recurrent Unit (GRU) [66]. The encoder and decoder are convolutional
neural networks (CNNs) and the remaining components are MLPs. The world
model is trained end-to-end by optimizing the evidence lower bound (ELBO) via
stochastic backpropagation [196, 323] with the Adam optimizer [195].
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Algorithm 1 Latent Explorer Achiever (LEXA)
1: initialize: World modelM, Replay bu�er D,
2: Explorer ⇡e(at | zt), Achiever ⇡g(at | zt, g)
3: while exploring do
4: TrainM on D

5: Train ⇡e in imagination of M to maximize exploration rewards
P

t r
e
t

6: Train ⇡g in imagination of M to maximize
P

t r
g
t (zt, g) for images g ⇠ D.

7: (Optional) Train d(zi, zj) to predict distances j � i on the imagination data
from last step.

8: Deploy ⇡e in the environment to explore and grow D.
9: Deploy ⇡g in the environment to achieve a goal image g ⇠ D to grow D.
10: end while
11: while evaluating do
12: given: Evaluation goal g
13: Deploy ⇡g in the world to reach g.
14: end while

2.2.2 Explorer

To e�ciently explore, we seek out surprising states imagined by theworldmodel [343,
384, 366, 349, 42], as opposed to retrospectively exploring by revisiting previously
novel states [28, 285, 44, 30]. As the world model can predict model states that
correspond to unseen situations in the environment, the imagined trajectories contain
more novel goals, compared to model-free exploration that is limited to the replay
bu�er. To collect informative novel trajectories in the environment, we train an
exploration policy ⇡e from the model states st in imagination of the world model to
maximize an exploration reward:

Explorer: ⇡e(at | st) Explorer Value: ve(st)

To explore the most informative model states, we estimate the epistemic un-
certainty as a disagreement of an ensemble of transition functions. We train an
ensemble of 1-step models to predict the next model state from the current model
state. The ensemble model is trained alongside the world model on model states
produced by the encoder q�. Because the ensemble models are initialized at random,
they will di�er, especially for inputs that they have not been trained on [210, 287]:

Ensemble: f(st, ✓
k) = ẑkt+1 for k = 1..K

Leveraging the ensemble, we estimate the epistemic uncertainty as the ensemble
disagreement. The exploration reward is the variance of the ensemble predictions
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averaged across dimension of the model state, which approximates the expected
information gain [22, 349]:

ret (st)
.
=

1

N

X

n

Var{k}
⇥
f(st, ✓k)

⇤
n

The explorer ⇡e maximizes the sum of future exploration rewards ret using the
Dreamer algorithm [146], which considers long-term rewards into the future by
maximizing �-returns under a learned value function. As a result, the explorer is
trained to seek out situations are as informative as possible from imagined latent
trajectories of the world model, and is periodically deployed in the environment
to add novel trajectories to the replay bu�er, so the world model and goal achiever
policy can improve.

2.2.3 Achiever

To leverage the knowledge obtained by exploration for learning to reach goals,
we train a goal achiever policy ⇡g that receives a model state and a goal as input.
Our aim is to train a general policy that is capable of reaching many diverse goals.
To achieve this in a data-e�cient way, it is crucial that environment trajectories
that were collected with one goal in mind are reused to also learn how to reach
other goals. While prior work addressed this by goal relabeling which makes o�-
policy policy optimization a necessity [8], we instead leverage past trajectories via
the world model trained on them that lets us generate an unlimited amount of
new imagined trajectories for training the goal achiever on-policy in imagination.
This simplifies policy optimization and can improve stability, while still sharing all
collected experience across many goals.

Achiever: ⇡g(at | st, eg) Achiever Value: vg(st, eg)

To train the goal achiever, we sample a goal image xg from the replay bu�er
and compute its embedding eg = enc�(xg). The achiever aims to maximize an
unsupervised goal-reaching reward rg(st, eg). We discuss di�erent choices for this
reward in Sec. 2.2.4. We again use the Dreamer algorithm [146] for training, where
now the value function also receives the goal embedding as input.

In addition to imagination training, it can also be important to perform practice
trials with the goal achiever in the true environment, so that any model inaccuracies
along the goal reaching trajectories may be corrected. To perform practice trials,
we sample a goal from the replay bu�er and execute the goal achiever policy for
that goal in the environment. These trials are interleaved with exploration episodes
collected by the exploration policy in equal proportion. We note that the goal achiever
learning is entirely unsupervised because the practice goals are simply images the
agent encountered through exploration or during previous practice trails.
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2.2.4 Latent Distances

Training the achiever policy requires us to define a goal achievement reward rg(st, eg)
that measures how close the latent state st should be considered to the goal eg. One
simple measure is the cosine distance in the latent space obtained by inputting
image observations into the world-model. However, such a distance function brings
visually similar states together even if they could be farther apart in temporal manner
as measured by actions needed to reach from one to other. This bias makes this
suitable only to scenarios where most of pixels in the observations are directly
controllable, e.g., trying to arrange robot’s body in certain shape, such as RoboYoga
poses in Figure 2.2. However, many environments contain agent as well as the
world, such as manipulation involves interacting with objects that are not directly
controllable. The cosine distance would try matching the entire goal image, and
thus places a large weight on both matching the robot and object positions with the
desired goal. Since the robot position is directly controllable it is much easier to
match, but this metric overly focuses on it, yielding poor policies that ignore objects.
We address this is by using the number of timesteps it takes to move from one image
to another as a distance measure [181, 155]. This ignores large changes in robot
position, since these can be completed in very few steps, and will instead focus more
on the objects. This temporal cost function can be learned purely in imagination
rollouts from our world model allowing as much data as needed without taking any
steps in the real world.

Cosine Distance: To use cosine distance with LEXA, for a latent state st, and a
goal embedding eg, we use the latent inference network q to infer sg, and define the
reward as the cosine similarity [455]:

rgt (st, eg)
.
=

X

i

stisgi, where st = st/kstk2, sg = sg/ksgk2,

i.e. the cosine of the angle between the two vectors st, sg in the N�dimensional
latent space.

Temporal Distance: To use temporal distances with LEXA, we train a neural net-
work d to predict the number of time steps between two embeddings. We train it
by sampling pairs of states st, st+k from an imagined rollout of the achiever and
predicting the distance k. We implement the temporal distance in terms of predicted
image embeddings êt+k in order to remove extra recurrent information:

Predicted embedding: emb(st) = êt ⇡ et Temporal distance: d!(êt, êt+k) ⇡ k/H,
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Goal Image LEXA zero-shot evaluation trajectory time

Figure 2.4: Successful LEXA trajectories. When given a goal image from the test set, LEXA’s
achiever is used in the environment to reach that image. On RoboKitchen, LEXAmanipulates
up to three di�erent objects together from a single goal image (kettle, light switch, and
cabinet). On RoboBins, LEXA performs temporally extended tasks such as picking and
placing two objects in a row.

where H is the maximum distance equal to the imagination horizon. Training
distance function only on imagination data from the same trajectory would cause
it to predict poor distance to far away states coming from other trajectories, such
as images that are impossible to reach during one episode. In order to incorporate
learning signal from such far-away goals, we include them by sampling images
from a di�erent trajectory. We annotate these negative samples with the maximum
possible distance, so the agent prefers images that were seen in the same trajectory.

rgt (st, eg) = �d!(êt, eg), where êt = emb(st), eg = enc�(xg)

The learned distance function depends on the training data policy. However,
as the policy becomes more competent, the distance estimates will be closer to the
optimal number of time steps to reach a particular goal, and the policy converges to
the optimal solution [155]. LEXA always uses the latest data to train the distance
function using imagination, ensuring that the convergence is fast.

2.3 Experiments

Our evaluation focuses on the following scientific questions:

1. Does LEXA outperform prior work on previous benchmarks and a new chal-
lenging benchmark?

2. How does forward-looking exploration of goals compare to previous goal
exploration strategies?
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Figure 2.5: Coincidental goal success achieved during the unsupervised exploration phase.
The forward-looking explorer policy of LEXA results in substantially better coverage com-
pared to SkewFit, a popular method for goal based exploration.

3. How does the distance function a�ect the ability to reach goals in di�erent
types of environments?

4. Can we train one general LEXA to control di�erent robots across visually
distinct environments?

5. What components of LEXA are important for performance?

We evaluate LEXA on prior benchmarks used by SkewFit [295], DISCERN [414],
and Plan2Explore [349] in Sec. 2.3.3. Since these benchmarks are largely saturated,
we also introduce a new challenging benchmark shown in Figure 2.2. We evaluate
LEXA on this benchmark is Sec. 2.3.2.

2.3.1 Experimental setup

As not many prior methods have shown success on reaching diverse goals from
image inputs, we perform an apples-to-apples comparison by implementing the
baselines using the same world model and policy optimization as our method.

• SkewFit: SkewFit [295] uses model-free hindsight experience replay and
explores by sampling goals from the latent space of a variational autoencoder
[196, 323]. Being one of the state-of-the-art agents, we use the original imple-
mentation that does not use a world model or explorer policy.

• DDL: Dynamic Distance Learning [155] trains a temporal distance function
similar to our method. Following the original algorithm, DDL uses greedy
exploration and trains the distance function on the replay bu�er instead of in
imagination.
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• DIAYN: Diversity is All You Need [102] learns a latent skill space and uses
mutual information between skills and reached states as the objective. We
augment DIAYN with our explorer policy and train a learned skill predictor
to obtain a skill for a given test image [67].

• GCSL: Goal-Conditioned Supervised Learning [123] trains the goal policy
on replay bu�er goals and mimics the actions that previously led to the goal.
We also augment GCSL with our explorer policy, as we found no learning
success without it.

Our new benchmark defines goal images for a diverse set of four existing envi-
ronments as follows:

• RoboYoga: We use the walker and quadruped domains of the DeepMind
Control Suite [391] to define the RoboYoga benchmark, consisting of 12 goal im-
ages that correspond to di�erent body poses for each of the two environments,
such as lying down, standing up, and balancing.

• RoboBins: Based on MetaWorld [448], we create a scene with a Sawyer
robotic arm, two bins, and two blocks of di�erent colors. The goal images spec-
ify tasks that include reaching, manipulating only one block, andmanipulating
both blocks.

• RoboKitchen: The last benchmark involves the challenging kitchen envi-
ronment from [134], where a franka robot can interact with various objects
including a burner, light switch, sliding cabinet, hinge cabinet, microwave, or
kettle. The goal images we include describe tasks that require interacting with
only one object, as well as interacting with two objects.

Method Kitchen RoboBins Quadruped Walker

DDL 0.00 35.42 22.50 40.00
DIAYN 0.00 13.69 13.81 0.28
GCSL 0.00 7.94 15.83 1.11
SkewFit 0.23 15.77 5.52 0.01

LEXA + Temporal (Ours) 37.50 69.44 31.39 36.72
LEXA + Cosine (Ours) 6.02 45.83 56.11 73.06

Table 2.1: Performance on our new challenging benchmark, spanning across the four
domains shown in Figure 2.2. The number are goal success rates, averaged over test goals
within each environment.
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Figure 2.6: Evaluation of goal reaching agents on our four benchmarks. A single agent is
trained from images without rewards and then evaluated on reaching goal images from
the test set (see Figure 2.1). Both LEXA agents solve many of the tasks and significantly
outperform prior work. SkewFit andDLL struggle with exploration, while DIAYN andGCSL
use our explorer but still are not able to learn a good downstream policy. Refer table 2.1 for
final success percentage (averaged across tasks) for each method and benchmark domain.

2.3.2 Performance on New Benchmark

We show the results on our main benchmark in Figure 2.6 and include heatmaps that
show per-task success on each of the evaluation tasks from the benchmarks in the
Appendix. Further, we report success averaged across tasks for each domain at the
end of training in Table 2.1. We visualize example successful trajectory executions
for tasks that require manipulating multiple objects in Fig. 2.4.

RoboYoga: The environments in this benchmark are directly controllable since
they contain no other objects except the robot. We recall that for such settings we
expect the cosine distance to be e�ective, as perceptual distance is quite accurate.
Training is thus faster compared to using learned temporal distances, where the
metric is learned from scratch. From Table 2.1 and Figure 2.6 we see that this is
indeed the case for these environments (Walker and Quadruped), as LEXA with
the cosine metric outperforms all prior approaches. Furthermore with temporal
distances LEXA makes better progress compared to prior work on a much larger
number of goals as can be seen from the per-task performance (Figures L.2, L.3),
even though average success over goals looks similar to that of DDL.

RoboBins: This environment involves interaction with block objects, and thus is
not directly controllable, and so we expect LEXA to perform better with the temporal
distance metric. From Table 2.1 and Figure 2.6, we see that LEXA gets higher average
success than all prior approaches. Further from the per-task performance in 2.7,
LEXA with the temporal distance metric is the only approach that makes progress
on all goals in the benchmark. The main di�erence in performance between using
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Figure 2.7: Success rates on RoboBin. In line with the prior literature, previous methods are
successful at reaching and sometimes pushing. LEXA pushes the state-of-the-art by picking
and placing multiple objects to reach challenging goal images. Analogous heat maps for the
other domains are included in the appendix.

temporal and cosine distance can be seen in the tasks involving two blocks, which are
the most complex tasks in this environment (the last 3 columns of the per-task plot).
The best performing prior method is DDL which solves reaching, and can perform
simple pushing tasks. This method performs poorly due to poor exploration, as
shown in Figure 2.5. We see that while other prior methods make some progress on
reaching, they fail on harder tasks.

RoboKitchen: This benchmark involves diverse objects that require di�erent ma-
nipulation behavior. From Tab. 2.1 and Figure 2.6 we find that LEXA with temporal
distance is able to learn multiple RoboKitchen tasks, some of which require sequen-
tially completing 2 tasks in the environment. All priormethods barelymake progress
due to the challenging nature of this benchmark, and furthermore using the cosine
distance function makes very limited progress. The gap in performance between
using the two distance functions is much larger in this environment compared to
RoboBins since there are many more objects not as clearly visible as the blocks.

Single Agent Across All Environments: In the previous sections we have shown
that our approach can achieve diverse goals in di�erent environments. However,
we trained a new agent for every new environment, which doesn’t scale well to
large numbers of environments. Thus we investigate if we can train a train a single
agent across four environments in the benchmark. From Figure L.6 we see that our
approach with learned temporal distance is able to make progress on tasks from
RoboKitchen, RoboBins Reaching, RoboBins Pick & Place and Walker, while the best
prior method on the single-environment tasks (DDL) mainly solves walker tasks
and reaching from RoboBin.
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2.3.3 Performance on Prior benchmarks

Table 2.2: Goal distance for SkewFit goals [295].

Method Pusher Pickup

RIG [271] 7.7cm 3.7cm
RIG + HER [8] 7.5cm 3.5cm
Skew-Fit [295] 4.9cm 1.8cm
LEXA + Temporal 2.3cm 1.4cm

To further verify the results obtained
on our benchmark, we evaluate LEXA
on previously used benchmarks. We
observe that LEXA significantly outper-
forms prior work on these benchmarks,
and is often close to the optimal policy.

SkewFit Benchmark: SkewFit [295]
introduces a robotic manipulation benchmark for unsupervised methods with sim-
ple tasks like planar pushing or picking. We evaluate on this benchmark in Tab. 2.2.
Baseline results are taken from [295]. LEXA significantly outperforms prior work
on these tasks.

Table 2.3: Success for DISCERN goals [414].

Task LEXA DISCERN

Cup 84.0% 76.5%
Cartpole 35.9% 21.3%
Finger 40.9% 21.8%
Pendulum 79.1% 75.7%
Pointmass 83.2% 49.6%
Reacher 100.0% 87.1%

DISCERN Benchmark: We attempted to
replicate the tasks described in [414] that
are based on simple two-dimensional robots
[391]. While the original tasks are not re-
leased, we followed the procedure for gen-
erating the goals described in the paper. De-
spite following the exact procedure, wewere
not able to obtain similar goals to the ones
used in the original paper. Nevertheless, we
show the goal completion percentage results
obtained with our reproduced evaluation
compared to DISCERN results from the original paper. LEXA results were obtained
with early stopping, and shows our agent solving many tasks in the benchmark.

Table 2.4: Zero-shot return,P2E tasks [349].

Task LEXA P2E DrQv2
Zero-Shot 3 3* 7

Walker Stand 957 331 968
Hopper Stand 840 841 957
Cartpole Bal-
ance

886 950 989

Cartpole Bal. Sparse996 860 983
Pendulum Swing Up788 792 837
Cup Catch 969 962 909
Reacher Hard 937 66 970

Plan2Explore Benchmark: We provide a
comparison on the standard reward-based
DM control tasks [391] in Tab. 2.4. To com-
pare on this benchmark, we create goal im-
ages that correspond to the reward functions.
This setup is arguably harder for our agent,
but is much more practical. Note our agent
never observes the reward function and only
observes the goal at test time. Plan2Explore
adapts to new tasks but it needs the reward
function to be known at test time, while
DrQV2 is an oracle agent that observes the
reward at training time. Baseline results are
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taken from [349, 441]. LEXA results were obtained with early stopping. LEXA
outperforms Plan2Explore on most tasks and even performs comparably to state of
the art oracle agents (DrQ, DrQv2, Dreamer) that use task rewards for training.

2.3.4 Analysis

Figure 2.8: Ablations on RoboBins. A sepa-
rate explorer is crucial for most tasks. Training
temporal distance on negative samples speeds
up learning, and both negative sampling and
training in imagination as opposed to real data
are important for the hardest tasks.

Prior work: Most work we compared
against struggles with exploration, such
as SkewFit and DLL methods. DIAYN
is augmented with our explorer, but still
fails to leverage the exploration data to
learn a diverse set of skills. GCSL strug-
gles to fit the exploration data and pro-
duces behavior that does not solve the
task, perhaps because the exploration
data is too diverse. We observed that all
baselines make progress on the simple
reaching task, but struggle with other
tasks. We have experimented with sev-
eral versions and improvements to the
baselines and report the best obtained
performance.

Ablation of di�erent components:
We ablated components of LEXA on the
RoboBins environment in Figure 2.8. Us-
ing a separate explorer policy crucial as
without it the agent does not discover
the more interesting tasks. Without negative sampling the agent learns slower,
perhaps because the distance function doesn’t produce reasonable outputs when
queried on images that are more than horizon length apart. Training the distance
function with real data converges to slightly lower success than using imagination
data, since real data is sampled in an o�-policy manner due to its limited quantity.

Exploration performance: Due to importance of exploration, we further examine
the diversity of the data collected during training. We log the instances where the
agent coincidentally solves an evaluation task during exploration, for the RoboK-
itchen and RoboBins environments. In Figure 2.5, we see that our method encounters
harder tasks involving multiple objects much more often.
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2.4 Related Work

Learning to Achieve Goals: The problem of learning to reach many di�erent goals
has been commonly addressed with model-free methods that learn a single goal-
conditioned policy [181, 341, 8]. Recent work has combined these approaches with
various ways to generate training goals, such as asymmetric self-play [382, 275] or
by sampling goals of intermediate di�culty [109, 99]. These can achieve remarkable
performance in simulated robotic domains, however, they focus on the settings
where the agent can directly perceive the low-dimensional environment state.

A few works have attempted to scale these model-free methods to visual goals by
using contrastive [414] or reconstructive [271, 295] representation learning. How-
ever, these approaches struggle to performmeaningful exploration as no clear reward
signal is available to guide the agent toward solving interesting tasks. Some works
[55, 393] avoid this challenge by using a large dataset of interesting behaviors. Other
works [295, 457] attempt to explore by generating goals similar to those that have
already been seen, but do not try to explore truly novel states.

A particularly relevant set of approaches used model-based methods to achieve
goals via planning [107, 97] or learning model-regularized policies [286]. However,
these approaches are limited by short planning horizons. In contrast, we learn long-
horizon goal-conditioned value functions which allows us to solve more challenging
tasks. More generally, most of the above approaches are limited by simplistic ex-
ploration, while our method leverages model imagination to search for novel states,
which significantly improves exploration and in turn downstream capabilities.

Learning Distance Functions: A crucial challenge for visual goal reaching is the
choice of the reward or the cost function for the goal achieving policy. Several
approaches use representation learning to create a distance in the feature space
[417, 271, 414, 48]. However, this naive distance may not be most reflective of
how hard a particular goal is to reach. One line of research has proposed using
the mutual information between the current state and the goal as the distance
metric [130, 102, 1, 67], however, it remains to be seen whether this approach can
scale to more complex tasks.

Other works proposed temporal distances that measure the amount of time it
takes to reach the goal. One approach is to learn the distance with approximate
dynamic programming using Q-learning methods [181, 110, 103]. Our distance
function is most similar to [155], who learn a temporal distance with supervised
learning on recent policy experience. In contrast to [155], we always train the distance
on-policy in imagination, and we further integrate this achiever policy into our latent
explorer achiever framework to discover novel goals for the achiever to practice on.
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2.5 Conclusion
We presented Latent Explorer Achiever (LEXA), an agent for unsupervised RL
that explores its environment, learns to achieve the discovered goals, and solves
image-based tasks in a zero-shot way. By planning for novelty in imagination,
LEXA prospectively explores to discover meaningful behaviors in substantially more
diverse environments than considered by prior work. Further, LEXA is able to solve
challenging downstream tasks specified as images without any supervision such
as rewards or demonstrations. By proposing a challenging benchmark and the first
agent to achieve meaningful performance on these tasks, we hope to stimulate future
research on unsupervised agents, which we believe are fundamentally more scalable
than traditional agents that require human design for tasks and rewards.

Many challenges remain for building unsupervised agents. Many tasks in our
benchmark are still unsolved and there remains room for progress on the algorithmic
side both for the world model and policy optimization. Further, it is important to
demonstrate the benefits of unsupervised agents on real-world systems to verify
their scalability. Finally, for widespread adoption, it is crucial to design methods
that act on goals that are easy to specify, such as via natural language. We believe
LEXA will enable future work to tackle these goals e�ectively.
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Chapter 3

ALAN: Autonomously Exploring
Robotic Agents in the Real World

3.1 Motivation

!Agent

!EnvWorld Model

Figure 3.1: We present ALAN, an approach
for real world robotic exploration in challeng-
ing manipulation environments.

Autonomous robots will need to per-
form a diverse range of tasks in the
real world. Due to the challenges of
dealing with uncertainty, deep learning
has emerged as a promising approach
[221, 294, 182] for robotics. A critical
challenge for scaling learning based ap-
proaches to more complex settings is
the task specification problem. Prior
works require heavy reward engineer-
ing or human demonstrations, which is
cumbersome to obtain for performing
large numbers of tasks [283, 317, 176].
This also requires knowledge of the environment, which might be hard to obtain
for every domain. Instead, if robots can collect their own data using task-agnostic
objectives, they can autonomously explore their environments to learn skills.

In the absence of explicit task definitions, the agent should have an e�cientway to
use all its collected experience for learning. Worldmodels [140, 146] provide ameans
of learning an e�ective low dimensional representation of raw image observations.
Furthermore, if there are certain states where prediction for the world model is
di�cult, then it likely needsmore data for the corresponding part of the environment.
This gives rise to a natural intrinsic objective of maximizing model uncertainty
[287, 349, 250] for exploration. While this does lead to the discovery of interesting
behavior, there has been di�culty in scaling such approaches to real world settings
since collecting samples on real hardware is very time-intensive. We ask if there is a
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Figure 3.2: We propose Autonomous Learning Agents (ALAN) that can enable robots to
collect rich data from their environment e�ciently. The agent utilizes environment change,
both directly as an environment-centric signal, as well as modelling the change and taking
actions that maximize uncertainty in change space, which provides agent-centric signal.

di�erent task-agnostic objective that can enable robots to more e�ciently explore?
In order to address the above question, we present ALAN, an e�cient au-

tonomous real robot explorer. Our key insight is that interesting behavior for robots
in the manipulation setting mostly involve interactions with objects, which cause changes
in the visual features of the observations. Thus, seeking to maximize the change in
these visual features can be a useful objective for robots to optimize. Furthermore, if
agents learned to model the change in the environment, they can take actions to max-
imize uncertainty in the object space of the environment, as opposed to the full space
consisting of both the robot body and the surrounding environment. Seeking to
maximize information related to objects in the environment will lead to much more
e�cient exploration, since the robot will prioritize actions that lead to richer contact
interactions. We note that maximizing model uncertainty, (whether in the object
space or full image space) is ‘agent-centric’, since it is dependent on the agent’s belief,
as opposed to simply maximizing the environment change which is ‘environment
centric’. The latter is a constant signal agnostic of the agent’s internal mental model.
We show that leveraging both these objectives can enable a real robot to explore
multiple challenging real-world environments, and then perform tasks of interest.

The main contribution of this work is ALAN, an e�cient real world exploration
algorithm, that seeks to take actions that maximize change in the environment,
and maximize uncertainty about its internal model of how changes occur in the
environment. This approach encourages the robot to interact with objects, and collect
data relevant to learning manipulation skills faster. We show that our approach
enables a Franka Emika robot to e�ectively explore without any supervision signal in
two di�erent, challenging play-kitchen environments using less than 150 trajectories.
The robot can then perform user-specified tasks via goal images in a zero-shot
manner, including picking up a knife, and opening a cabinet, fridge or shelf.
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3.2 Related Work

Exploration: In reinforcement learning (RL), exploration has been studied in
various contexts ranging from tabular settings to high-dimensional continuous
spaces. For simple discrete settings, analysis of exploration has included state
visitation counts [379] and probability distributions over visited states [96, 296]. For
high-dimensional input spaces such as images, previous works have used neural
networks to approximate state counts [28, 277, 390] and for sampling goals [457, 295].
Another approach to describe intrinsic reward for exploration is to use either the
error [285] or uncertainty [240, 276] in prediction about how the environment and
agent would interact. Pathak et al. [287] proposes a di�erentiable intrinsic reward
which measures disagreement using the variance of the prediction of an ensemble of
models. Sekar et al. [349] leverages a similar disagreement-based intrinsic reward,
but explores in the imagination space of a learned world model [145, 146].
Autonomous Learning in the Real World: Training agents in the real world is
challenging for a host of reasons, and one of these is the di�culty of providing
supervision to the agent. Some prior approaches have designed task specific re-
wards [220, 221]. However, it is infeasible to define all of the tasks that are possible
for the robot to perform, and further there is no guarantee that the designed rewards
will allow for the task to be solved e�ciently and robustly. There are a number of
approaches that provide self-supervision for agents based on mutual information
objectives [102, 358, 414], which enables the learning of skill-spaces. However, many
of these learned skills are not semantically di�erent and have been di�cult to apply
to real-world manipulation. Other approaches involve selecting goals from expe-
rience. This can directly come from previously seen states [8], from a generative
model [271, 295, 457], or from the imagination space of a world-model [250]. While
these approaches have shown better results for real-world manipulation, they are
still limited in scope, since they require lots of samples for learning. A key reason
is that it is di�cult for the robot to know what to focus on while exploring. E�orts
have been made to initialize such approaches from priors of human behavior, such
as from internet data [357, 19, 56], however, such methods are not able to learn in an
autonomous fashion. Our approach provides an e�ective new metric that enables
e�cient self-supervision, and also leverages visual priors to focus on parts of the
scene that are more interesting for exploration and discovery of useful skills.

3.3 Background

Model-Based RL and Planning: A Markov Decision Process (MDP) is defined by
a set of states S, actions A, transition probabilities between states conditioned on
actions, T (st+1|st, at), a initial state distribution S0, a reward function R(st, at). The
goal of a model based RL algorithm is to learn a function f✓(st+1|st, at) which best
approximates the the true transition dynamics T of the MDP. While planning, the
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Figure 3.3: Visualizations of the object detections, using [462]. The masks selected to study
exploration are the knife, pan and rightcabinet handle from kitchen1 (left), and the topshelf,
fridge handles and pot from kitchen2 (right).

Cross-Entropy Method (CEM) can be used to find the best set of actions a1:T , which
produce the highest reward under the trained dynamics model f✓.
Intrinsic Motivation: When learning a dynamics model of the world,
f✓(st+1|st, at), it is possible to use the quality of the model as an intrinsic
reward. For instance, Pathak et al. [285] use model prediction error as reward

rt = ||f✓(st+1|st, at)� st+1||

However, this formulation is dependent on environment dynamics, and thus needs a
policy-gradient approach to optimize it, since future states need to be observed before
this metric can be computed. Instead, [287] proposes to minimize the disagreement
between an ensemble of dynamics model f✓(k) for k = 1, ...,M , which is a fully
di�erentiable objective in terms of the current state and action, which we utilize in
our work. The disagreement reward can be described as:

Est,at,st+1⇠⇢(s)[Vark(f✓(k))]

3.4 Autonomous Real World Robot Learning
Intelligent agents should be able to perform diverse tasks in complex, real world
environments. There are three major challenges to this: (1) There is a large space of
possible interactions, especially in continuous control. (2) It is di�cult to obtain any
reward signal without human supervision. (3) There is a large cost for collecting
data with real hardware.

To this end, we propose ALAN, an autonomous robot learning algorithm that is
able to e�ciently explore in the real world, and learn useful manipulation skills for
various objects. ALAN defines a novel intrinsic exploration objective for the agent
to direct its behavior. This novel objective has an environment-centric component
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and an agent-centric component. Moreover, we use o�ine visual data to reduce the
search space for the robot, by identifying the locations of potential interesting and
complex interactions for the robot.

3.4.1 World Model

The robot observations consist of a stream of high-dimensional raw RGB images.
These can be e�ectively processed using world models [140, 344, 343], which learn
compact low-dimensional latent spaces that contain temporal information and en-
able e�cient forward prediction. We use the Recurrent state-space model (RSSM),
from [145, 146, 147], which learns latent features with deterministic and stochastic
components to model long-range dependencies and uncertainty in the environment
respectively. Specifically, the world model has the following networks:

Image Encoder ht = enc✓(xt)
Dynamics Prior p✓(st+1|st, at)

Image Decoder f✓(xt|st)

Dynamics Posterior q✓(st+1|st, at, ht+1)

Embed Decoder g✓(et|st)

The latent features are trained to reconstruct image observations, while also
preserving dynamics information using variational inference and the ELBO loss
[323, 196]. In addition to providing useful representations for control, world models
also provides a means for agents to drive their own behavior in the absence of
supervision. This involves taking actions that maximize the uncertainty of model
predictions [287, 349, 250], leading to information gain for the agent. Since this
is dependent on the agent’s internal belief, we call this kind of exploration ‘agent-
centric’. In the next section we first consider a di�erent source of signal which is
environment-centric, and then discuss how it can be used to augment agent-centric
exploration as well.

3.4.2 Environment Change

Seeing as how interesting manipulation behavior often involves changes in ob-
ject states, and how this corresponds to change in visual features, we seek to au-
tonomously estimate environment change from observed data. To capture environ-
ment interaction, the change metric should ignore di�erences in the robot’s position,
and only highlight movement of objects in the scene [19]. How then can we extract
these ground truth change images from incoming image observations?

Our source of signal is assuming knowledge of the visual appearance of the robot,
using which we train a segmentation modelm�(.) to mask out the robot from the
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scene. Training this model is a one time cost, since the robot appearance is invariant
across multiple tasks in the environment and even across di�erent domains. We can
use this model to measure the environment change fc between an image pair xi, xj :

fc(xi, xj) = f(||m�(xi)�m�(xj)||2,

|| (m�(xi))� (m�(xj))||2)
(3.1)

Algorithm 2 ALAN : Exploration
Require: Robot segmentation modelm�

Require: O�-policy RL algorithm A

Require: Visual Priors (3.4.3)
1: Initialize: World Model W , Biasing policy ⇡,
2: Initialize: Dataset RD

3: while Sampling do
4: Run ⇡withW in imagination to get {ât}H
5: RunCEMwithW using Eqs.(3.2, 3.3),and

initial proposal {ât}H , to get trajectory T

6: Label T with ct = fc(xt, x0) (Eq. L.1)
7: Add T to RD

8: end while
9: while Training do
10: SD = Top NA trajs in RD, based on

P
ct

11: Update ⇡ using A on SD
12: Update W using RD

13: end while

Here the heuristic function
f takes into account pixel dis-
tance, blurring to remove shad-
ows and reflective surface arti-
facts, and  denotes visual fea-
tures from a pretrained segmen-
tation network [158], and re-
turns a binary image indicat-
ing the pixels where change has
been detected. We further ap-
ply a threshold for the change
image, in order to minimize
false detections. We don’t re-
quire this change function to be
fully accurate, and have found
that our approach is robust to
some error in the change im-
age. For an image xt from a
trajectory T , the correspond-
ing change ct can be defined as
fc(xt, xt�1) or fc(xt, x0), where x0 is the first image in T . We found the latter pro-
duced better exploration, likely because the change between consecutive image
frames is very small and is di�cult to reliably detect.

Figure 3.4: Change image extracted from a pair of
images, as described in Eq. L.1. This is a binary image
that detects pixels where change has occurred.

Env-centric exploration: Us-
ing the norm of the change im-
age as a metric, we can use o�-
policy RL [289, 272, 203] ap-
proaches to train a policy for
control. The approach we use
is to incorporate the metric into
a world model by training the
features st to also predict the
change in the environment be-
tween observation ot and the
initial observation of the trajectory o0, by adding an additional change predictor mod-
ule r✓(ct|st). This is optimized by maximizing E[log p(ct|st)], similar to the image
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decoder, where ct is the change image. Specifically, we optimize:

arg max
a1..aT

Es⇠⇢(s)[
X

(r✓(ct+1|st+1)
��st, at)] (3.2)

Change-space agent-centric exploration: Since the agent now models the envi-
ronment change in its internal belief, it can leverage errors in this model to direct
exploration. Just as previous exploration approaches maximize uncertainty of next
state using the model [287, 349] the agent can maximize uncertainty over the change
prediction. Thus, the agent will collect data that leads to information gain specifically
about how the objects in the environment move, avoiding being stuck gathering
information pertaining to the robot’s own body. Thus the agent will collect data that
includes more information about object interactions. Specifically, we implement this
by training an ensemble of models for p(ct+1|ct, at), where ct and at are the predicted
change and action at time t respectively. To maximize uncertainty in change space,
we optimize for actions that maximize the variance of the ensemble prediction (here
st is a latent sampled from the world model) :

arg max
a1..aT

Es⇠⇢(s)[Vark(p (k)(r✓(ct+1|st+1))
��r✓(ct|st), at)] (3.3)

Control: Now that the features of the world model are trained to predict environ-
ment change, we can explore by planning through the model adding the objectives
from 3.3 and 3.2. We use the Cross entropy method [332] for planning, where we
sample action proposals from an initial distribution, pick the top trajectories based
on reward and refit the sampling distribution. Further, we train AdvantageWeighted
Regression (AWR) on the collected o�ine trajectories to maximize the environment
change in the feature space of the world model. When sampling, given an obser-
vation, we first run the learned AWR policy through the model in imagination to
get a sequence of actions. We use this as the mean of the initial normal sampling
distribution for CEM, to bias the optimization procedure towards trajectories that are
likely to have high environment change. We summarize the full exploration method
in Alg. 2, including both sampling and training which are run asynchronously.

3.4.3 Leveraging Visual Priors

While environment change and ensemble disagreement can provide useful signal for
driving behavior, the large work spaces in the real world pose a major challenge for
robots. Explorationmethods often spend a lot of time in free space, and collect a large
number of samples without interacting with any objects. This is undesirable since
this data contributes little to learning manipulation skills. Our approach to avoiding
this is to leverage visual priors from o�ine data, helping understand what to explore.
One instance of this is to leverage object-detectors to initialize the robot near regions
of interest. Recent models [462] are quite robust and can identify objects even in
cluttered scenes. Using RGBD cameras and homography calibration for the robot
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with the cameras, we can then initialize the robot end e�ector close to the center of
the object point-cloud, thus ensuring that data-collection is more likely to see object
interactions. This approach does not preclude training on undetected objects, since
the robot can always randomly sample points in the full workspace to initialize at
later, and will likely be more proficient after it has learned skills e�ciently on all the
detected objects. For a image that has k detected masks M1, ...,Mk, the robot can
arbitrarily pick any mask for initialization every episode. However, in order to study
exploration for independent objects separately, we enforce that the robot needs to
reset to the same mask each time, and since this choice can be arbitrary, we also
specify which mask should be selected, so that di�erent methods can be evaluated
on the same objects. We use the same visual prior for the baselines and ablations to
make the exploration space feasible.

3.4.4 Achieving goals

Given the contact-rich data collected by the exploration controllers, how can we use
this data to perform useful tasks? It is possible for the agent to sample goals from
previously seen exploration data. Since the agent sees interesting data, any possible
state can be a goal. Concretely, given some human sampled goal images, xg, we
leverage recent advances in goal-conditioned imitation learning, especially methods
that leverage Nearest Neighbor-based techniques in a self-supervised representation
space [279]. Our policy, ⇡knn scans through image features [273] in the exploratory
data, and selects the top trajectory matches:

⌧? = argmini min
xj2⌧i

||�(xg)� �(xj)||2 (3.4)

Since our method sees interesting trajectories, it is more likely to see semantically
useful goals, and when a human provided goal xgh is given, more likely to reach it.

3.5 Experimental Setup
In our experiments, we ask the following questions : 1) Does our system enable
autonomous exploration and discovery of interesting states in complex real world
environments? 2) How does the quality of this data compare to that of current
SOTA approaches? 3) Is it possible to use this data to reach human specified goals
to perform useful tasks?
Real World Setup: We tested our system on a Franka Panda 7-DOF robot, and
on two di�erent real-world kitchen play-sets, which have many diverse objects
and possible manipulation tasks, comprising a very large search space (both
are about 100cm X 100cm X 100cm). Specifically, we investigate 6 object regions
across two kitchens detected by our visual prior approach [462], as shown in
Figure 3.3. Namely, these are the knife, cabinet and the hanging pan from the first
kitchen, and the top shelf, fridge and pot from the second kitchen (Figure 3.5).
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Figure 3.5: We explore on 6 settings across two
play kitchens. Top: cabinet, knife, pan (kitchen1).
Bottom: top shelf, pot, fridge (kitchen2).

Training Procedure: For each
of the regions, we first collect
a random dataset of 25 trajecto-
ries. All collected trajectories are
20 timesteps long. The world mod-
els in all methods use an RSSM
[145], and the image encoders and
decoders use the NVAE architec-
ture [400]. To extract the envi-
ronment centric metric, we train a
Mask RCNN model [158] on 200
images from both play kitchens.
Baselines: We compare against
LEXA[250], a state-of-the art self-
supervised exploration approach for continuous control in manipulation settings.
LEXA outperforms various other self-supervised approaches, [295, 102, 155] on a
complex simulated kitchen environment both in terms of the exploratory data seen,
and the success rate of reaching discovered goal images. We provide this baseline
with the same world model architecture as ALAN. Next, we ablate the need of our
agent-centric module, which explores in the change space. This is to test our hy-
pothesis that the robot should continually collect data where the model predictions
regarding environment change are inaccurate. We test if this ability is crucial, by
running the environment-centric exploration model, which only uses the intrinsic
reward described in Equation L.1. We run two versions of this, ECwhich uses the
model for planning, and AWRwhich just uses the trained AWR policy.

3.6 Results

3.6.1 Exploration

We need a metric to evaluate the quality of the exploration data. While the change
image norm is a good proxy for measuring object interaction, it does not consider
if the di�erent states are semantically interesting. Thus we define a metric that
measures the number of successful interactions, which are are determined by a
human operator, as follows :

• Cabinet, fridge, shelf doors - has been opened or closed

• Knife - lifted up

• Pan - unhooked, fully removed from hanger

• Pot - pushed/lifted/knocked over
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(b) Cabinet
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(c) Pan
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(d) Fridge
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(e) Top Shelf
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(f) Stovepot

Figure 3.6: Coincidental success for exploration on our six tasks, where the robot reaches
a semantically meaningful state while collecting data during exploration. We can see that
ALAN performs consistently well across tasks, and that just maximizing the change metric
AWR, EC also yields much better data than previous state of the art approach LEXA.

Using this success criteria, we present evaluation of the exploratory data collected, in
Figure 3.6. For each task we run about 100-150 trajectories, and plot the cumulative
number of successful exploration trajectories against the total number of trajectories
seen during the exploration phase.

We can see that ALAN (red) outperforms or matches all other approaches in five
out of six tasks, and also sees large number of successes for the top shelf. Further,
we see that just maximizing the environment-change metric using EC or AWR leads to
much better performance than LEXA, the previous state-of-the-art self-supervised
exploration approach. We find that because the robot arm takes up a large portion
of the observation, LEXA tries to collect data to resolve modelling inaccuracies of the
arm. This is especially the case for tasks where random interactions are less likely
to produce significant changes in the object, such as the particularly challenging
knife task where LEXA never sees the picking up behavior. On this task, having the
agent-centric module which maximizes uncertainty in change space significantly
improves performance over EC and AWR. For tasks like the top shelf which require less
precise control, simply maximizing environment change is su�cient to collect high-
quality data. However, even with slightly more involved control, such as the fridge
task which requires the same object motion but has the robot in a more constrained
position, addressing modelling inaccuracies in the change prediction is more critical.
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Cabinet Knife Fridge Top Shelf

LEXA [250] 0.20 0.00 0.00 0.00
EC 0.70 0.00 0.50 0.90
AWR [289] 0.50 0.00 - -

ALAN (ours) 1.00 0.60 0.70 0.80

Table 3.1: Success rate for goal reaching. ALAN is the only approach to get success on the
challenging knife pick-up task, and just maximizing change (EC) is also stronger than LEXA.

3.6.2 Achieving Goals

(a) Cabinet (b) Knife

(c) Top Shelf (d) Fridge

Figure 3.7: Goals used for zero-shot evaluation,
after the completion of the exploration phase.

Given the exploration data col-
lected, can it be used to perform
useful human specified tasks? For
this, we use the nearest-neighbor
(kNN) approach outlined in section
3.4.4, paired with model-based re-
finement to reach di�erent human-
specified goals. Specifically, once
the kNN approach finds a trajectory,
we use the action sequence as the
mean of the initial sampling distri-
bution of the CEM optimizer. The
goals consist of a fully open fridge,
cabinet or shelf, and a picked-up
knife, as shown in Figure 3.7. Since
AWR has almost identical results for
exploration and goal-reaching to EC

on the first kitchen, and since they
both optimize the same objective,
we did not run it on the second kitchen. For each task, we run kNN on the ex-
ploratory data, in a visual feature space [273] and select the best trajectory to execute
conditioned on the start and goal images. We execute the top two trajectories five
times each, collecting 10 di�erent trials and present average success rates in Table 3.1.
Without the agent-centric module, there is no success on the di�cult knife task, and
performance across the remaining tasks is worse in terms of robustness. Moreover
these results show the e�ectiveness of the environment change metric, since LEXA
shows no success for three of the four tasks.
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3.7 Discussion and Limitations
We present ALAN, an autonomously exploring agent that can e�ciently explore
in challenging real world environments. Our approach computes change in the
environment, and utilizes it both directly as an environment-centric signal, as well as
modelling the change and taking actions that maximize uncertainty in change space,
which provides agent-centric signal. This reward in the absence of true task rewards
helps our agent autonomously discover manipulation skills and perform useful tasks
without any supervision. In the future, we hope to investigate distilling exploration
data into a general goal-achieving policy, and studying continual learning across
di�erent tasks using a joint world model.
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Part II

Generalist Explorers using Prior
Video
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Chapter 4

A�ordances from Human Videos as
a Versatile Representation for
Robotics

Deployment on RobotLearning Visual Affordances

Figure 4.1: We leverage human videos to learn visual a�ordances that can be deployed on
multiple real robot, in the wild, spanning several tasks and learning paradigms.

The meaning or value of a thing consists of what it a�ords... what we
perceive when we look at objects are their a�ordances, not their qualities

J.J. Gibson (1979)

4.1 Motivation
Imagine standing in a brand-new kitchen. Before taking even a single action, we
already have a good understanding of how most objects should be manipulated.
This understanding goes beyond semantics as we have a belief of where to hold
objects and which direction to move them in, allowing us to interact with it. For
instance, the oven is opened by pulling the handle downwards, the tap should be
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Learning Visual Affordances Deployment on Robot

Trajectory Network

contact point 
heatmap trajectory

Affordance 
Model

Affordance Model

Scene
encoder

trajectorycontact 
points

Figure 4.2: VRB Overview: First, we learn an actionable representation of visual a�or-
dances from human videos: the model predicts contact points and trajectory waypoints with
supervision from future frames. For robot deployment, we query the a�ordance model and
convert its outputs to 3D actions to execute.

turned sideways, drawers are to be pulled outwards, and light switches are turned
on with a flick. While things don’t always work as imagined and some exploration
might be needed, but humans heavily rely on such visual a�ordances of objects to
e�ciently perform day-to-day tasks across environments [124, 125]. Extracting such
actionable knowledge from videos has long inspired the vision community.
More recently, with improving performance on static datasets, the field is increas-
ingly adopting a broader ‘active’ definition of vision through research in egocentric
visual understanding and visual a�ordances from videos of human interaction.
With deep learning, methods can now predict heatmaps of where a human would
interact [267, 128] or segmentation of the object being interacted with [356]. Despite
being motivated by the goal of enabling downstream robotic tasks, prior methods for
a�ordance learning are tested primarily on human video datasets with no physical
robot or in-the-wild experiments. Without integration with a robotic system, even
the most basic question of how the a�ordance should be defined or represented
remains unanswered, let alone evaluating its performance.
On the contrary, most robot learning approaches, whether imitation or reinforcement
learning, approach a new task or a new environment tabula rasa. At best, the visual
representation might be pretrained on some dataset [355, 273, 241, 429, 309, 436].
However, visual representations are only a small part of the larger problem. In
robotics, especially in continuous control, the state space complexity grows expo-
nentially with actions. Thus, even with perfect perception, knowing what to do is
di�cult. Given an image, current computer vision approaches can label most of the
objects, and even tell us approximately where they are but this is not su�cient for
the robot to perform the task. It also needs to know where and how to manipulate
the object, and figuring this out from scratch in every new environment is virtually
impossible for all but the simplest of tasks. How do we alleviate this clear gap
between visual learning and robotics?
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In this chapter, we propose to rethink visual a�ordances as a means to bridge vision
and robotics. We argue that rich video datasets of humans interacting can o�er a lot
more actionable information beyond just replacing ImageNet as a pretrained visual
encoder for robot learning. Particularly, human interactions are a rich source of how
awide range of objects can be held andwhat are useful ways tomanipulate their state.
However, several challenges hinder the smooth integration of vision and robotics. We
group them into three parts. First, what is an actionableway to represent a�ordances?
Second, how to learn this representation in a data-driven and scalable manner? Third,
how to adapt visual a�ordances for deployment across robot learning paradigms?
To answer the first question, we find that contact points and interaction directions are
excellent robot-centric representations of visual a�ordances, as well as modeling the
inherent multi-modality of possible interactions. We make e�ective use of egocentric
datasets in order to tackle the second question. In particular, we reformulate the data
to focus on frames without humans for predicting contact points and the interaction
directions. To extract free supervision for this prediction, we utilize o�-the-shelf
tools for estimating egomotion, human pose, and hand-object interaction. Finally,
we show how to seamlessly integrate these a�ordance priors with di�erent kinds of
robot learning paradigms. We thus call our approach Vision-Robotics Bridge (VRB)
due to its core goal of bridging vision and robotics.
We evaluate both the quality of our a�ordances and their usefulness for 4 di�erent
robotic paradigms – imitation and o�ine learning, exploration, visual goal-reaching,
and using the a�ordance model as a parameterization for action spaces. These are
studied via extensive and rigorous real-world experiments on physical robots which
span across 10 real-world tasks, 4 environments, and 2 robot hardware platforms.
Many of these tasks are performed in-the-wild outside of lab environments (see
Figure 4.1). We find that VRB outperforms other state-of-the-art human hand-object
a�ordancemodels, and enables high-performance robot learning in the wild without
requiring any simulation. Finally, we also observe that our a�ordance model learns
a good visual representation for robotics as a byproduct. We highlight that all the
evaluations are performed in the real world spanning several hundred hours of
robot running timewhich is a very large-scale evaluation in robotics.

4.2 Related Work

A�ordance and Interaction Learning from Videos: Given a scene, one can predict
interactions using geometry-based rules for objects via 3D scene understanding
[156, 459, 264], estimating 3D physical attributes [100, 25, 132, 465] or through
segmentation models trained on semantic interactions [330, 339], and thus require
specialized datasets. More general interaction information can be learned from
large human datasets [223, 76, 77, 238, 80, 129], to predict object information [466,
119] (RGB & 3D) [29], graphs [91] or environment information [268, 111] such
as heatmaps [128, 267]. Approaches also track human poses, especially hands
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[356, 233, 329, 77, 236, 49, 443]. Similarly, in action anticipation and human motion
forecasting, high-level semantic or low level actions are predicted using visual
history [201, 324, 121, 171, 166, 405, 105, 76, 81, 172, 40, 117, 212, 404, 129, 118, 256,
249, 126]. Since our observations only have robot arms and no human hands, we
adopt a robot-first formulation, only modeling the contact point and post-contact
phase of interaction for our a�ordances.

Visual Robot Learning: Learning control from visual inputs directly is an important
challenge. Previous works have leveraged spatial structures of convolutional net-
works to directly output locations for grasping and pushing from just an image of
the scene [294, 452, 453], which can limit the type of tasks possible. It is also possible
to directly learn control end-to-end [221, 182] which while general, is quite sample
ine�cient in the real world. It has been common to introduce some form of prior
derived from human knowledge, which could take the form of corrective interactions
[139, 239, 84], structured policy spaces [274, 73, 319, 299, 7, 174, 18, 18, 357, 438],
o�ine robotics data [98, 208, 207, 245, 311], using pretrained visual representations
[355, 281, 273, 429, 436] or human demonstrations [351, 56, 19, 370, 360, 357].

Learning Manipulation from Humans: Extensive work has been done on Learning
from Demonstrations (LfD) where human supervision is usually provided through
teleoperation (of a joystick or VR interface) [376, 456, 259] or kinesthetic teaching,
where a user physically moves the robot arm [299, 46, 69, 101, 243].With both these
approaches, collecting demonstrations is tedious and slow. Recently, works have
shown alternate ways to provide human demonstrations, via hand pose estimation
and retargeting [369, 12, 442, 361, 302] in robot hands, but are mostly restricted to
tabletop setups. First and third person human demonstrations have been used to
train policies directly, transferred either via a handheld gripper [375, 446, 279] or
using online adaptation [19]. In contrast to directly mimicking a demonstration,
we learn robot-centric a�ordances from passive human videos that provide a great
initialization for downstream robot tasks, unlike previous work which require in-
domain demonstrations.

4.3 A�ordances from Human Videos (VRB)

Our goal is to learn a�ordance priors from large-scale egocentric videos of human
interaction, and then use them to expedite robot learning in the wild. This requires
addressing the three questions discussed in Sec. 4.1 about how to best represent a�or-
dances, how to extract them and how to use them across robot learning paradigms.

4.3.1 Actionable Representation for A�ordances

A�ordances are only meaningful if there is an actor to execute them. For example, a
chair has a sitting a�ordance only if it is possible for some person to sit on it. This
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Figure 4.3: Robot Learning Paradigms: (a) O�ine Data Collection – Used to investigate
the quality of the collected data. (b) Exploration – The robot needs to use intrinsic rewards
to improve (c) Goal-Conditioned Learning – A desired task is specified via a goal image,
used to provide reward. (d) Action Spaces – Reduced action spaces are easier to search and
allow for discrete control.

property makes it clear that the most natural way to extract human a�ordances
is by watching how people interact with the world. However, what is the right
object-centric representation for a�ordances: is it a heatmap of where the human
makes contact? Is it the pre and postcondition of the object? Is it a description of
the human interaction? All of these are correct answers and have been studied in
prior works [267, 236, 156]. However, the a�ordance parameterization should be
amenable to deployment on robots.
If we want the robot to a priori understand how to manipulate a pan (Fig. 4.1, 4.4)
without any interaction, then a seemingly simple solution is to exactly model human
movement from videos [236], but this leads to a human-centric model and will not
generalize well because human morphology is starkly di�erent from that of robots.
Instead, we take a first-principles approach driven by the needs of robot learning.
Knowledge of a robot body is often known, hence reaching a point in the 3D space
is feasible using motion planning [213, 214, 185]. The di�culty is in figuring out
where to interact (e.g. the handle of the lid) and then how to move after the contact
is made (e.g., move the lid upwards).
Inspired by this, we adopt contact points and interaction directions as a simple
actionable representation of visual a�ordance that can be easily transferred to robots.
We use the notation c for a contact point and ⌧ for interaction direction, both in the
pixel space. Specifically, ⌧ = f(It, ht), where It is the image at timestep t, ht is the
human hand location in pixel space, and f is a learned model. We find that our
a�ordance representation outperforms prior formulations across robots. Notably,
the c and ⌧ abstraction makes the a�ordance prior agnostic to the morphological
di�erences across robots.
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4.3.2 Learning A�ordances from Egocentric Videos

The next question is how to extract c and ⌧ from human videos in a scalable data-
driven manner while dealing with the presence of human body or hand in the visual
input. VRB tackles this through a robot-first approach.

4.3.2.1 Extracting A�ordances from Human Videos

Consider a video V , say of a person opening a door, consisting of T frames i.e.
V = {I1, ..., IT }. We have a twofold objective — find where and when the contact
happened, and estimate how the hand moved after contact was made. This is used
to supervise the predictive model f✓(It) that outputs contact points and interaction
directions. To do so, we utilize awidely-adopted hand-object detectionmodel trained
on human video data [356]. For each image It, this produces 2D bounding boxes of
the hand ht, and a discrete contact variable ot. Using this information, we filter for
frames where ot indicates a contact in each video, and find the first timestep where
contact occurs, tcontact.
The pixel-space positions of the hand {ht}t

0
tcontact constitute the interaction direction

(⌧). To extract contact points c, we use the corresponding hand bounding box,
and apply skin color segmentation to find all points at the periphery of the hand
segment that intersect with the bounding box of the object in contact. This gives
us a set of N contact points {ci}N , where N can di�er depending on the image,
object, scene and type of interaction. How should the contact points be aggregated
to train our a�ordance model (f✓)? Some options include predicting the mean of
{ci}N , or randomly sampling ci. However, we seek to encourage multi-modality
in the predictions, since a scene likely contains multiple possible interactions. To
enable this, we fit a Gaussian mixture model (GMM) to the points. Let us define a
distribution over contact points to be p(c). We fit the GMM parameters (µk, ⌃k) and
weights ↵k.

p(c) = argmax
µ1,...,µK ,⌃1,...,⌃K

NX

i=1

KX

k=1

↵kN (ci|µk,⌃k) (4.1)

We use these parameters of the above defined GMMwithK clusters as targets for
f✓. To summarize, 1) we find the first timestep where contact occurs in the human
video, tcontact 2) For c, we fit a GMM to the contact points around the hand at frame
Itcontact , parameterized by µk, ⌃k and 3) we find the post-contact trajectory of the 2D
hand bounding box {ht}t

0
tcontact for ⌧ .

Accounting for Camera Motion over Time: Consider a person opening a door. Not only
do the person’s hands move but their body and hence their head also move closer
to the handle and then away from it. Therefore, we need to compensate for this
egomotion of the human head/camera from time tcontact to t0. We address this by
using the homography matrix at timestep t, Ht to project the points back into the
coordinates of the starting frame. We obtain the homography matrix by matching
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features between consecutive frames. We then use this to produce the transformed
trajectory ⌧ = Ht � {ht}t

0
tcontact .

Addressing Human-Robot Visual Domain Shift: The training videos contain human
body or hand in the frame but the human will not be present in downstream robotics
task, generating domain shift. We deal with this issue with a simple yet elegant trick:
we extract a�ordances in the frames with humans but then map those a�ordances
back to the first frame when human was yet to enter the scene. For videos in which
a human is always in frame, we either crop out the human in the initial frame if
there is no interaction yet or discard the frame if the human is always in contact. We
compute the contact points and interaction directions with respect to this human-less
frame via the same homography procedure described above. This human-less frame
is then used to condition our a�ordance model.

4.3.2.2 Training A�ordance Model

Conditioned on the input image, the a�ordance model is trained to predict the
extracted labels for contact points and interaction directions. However, naive joint
prediction does not work well as the learning problem is inherently multi-modal.
For instance, one would pick up a cup di�erently from a table depending on whether
the goal is to pour it into the sink or take a sip from it. We handle this by predicting
multiple heatmaps for interaction points using the same model, building a spatial
probability distribution.
For ease of notation, we use (·)✓ as a catch-all for all parameterized modules and use
f✓ to denote our complete network. Fig. 4.2 shows an overview of our model. Input
image It is encoded using a ResNet [157] visual encoder gconv✓ to give a spatial latent
representation zt, i.e., gconv✓ (It) = zt. We then project this latent zt intoK probability
distributions or heatmaps using deconvolutional layers; concretely, Ht = gdeconv✓ (zt).
Using a spatial softmax, �2D, we get the estimation of the labels for GMM means,
i.e., µk. We found that keeping the covariance matrices fixed gave better results.
Formally, the loss for contact point estimation is:

Lcontact =
���µi � �2D

⇣
gdeconv✓ (gconv✓ (It))

⌘���
2

(4.2)

To estimate interaction direction, we train a trajectory prediction network, T✓, based
on the latent representation zt. We find that it is easier to optimize for relative shifts,
i.e., the direction of movement instead of absolute locations, assuming that the
first point ŵ0 is 0, since the contact points are already spatially grounded. Based
on the success of Transformers for sequential prediction, we employ self-attention
blocks [402] and train to optimize Ltraj = k⌧ � T✓(zt)k2. In a given scene, there are
many objects a human could interact with, which may or may not be present in
the training data. We tackle this uncertainty and avoid spurious correlations by
sampling local crops of It around the contact points. These serve as the e�ective
input to our network f✓ and enables better generalization.

44



Figure 4.4: Qualitative a�ordancemodel outputs for VRB, HOI [236], Hotspots [128] and HAP
[128], showing the predicted contact point region, and post-grasp trajectory (green arrow
for VRB, red for HOI [236]). We can see that VRB produces the most meaningful a�ordances.

4.3.3 Robot Learning from Visual A�ordances

Instead of finding a particular way to use our a�ordance model for robotics, we show
that it can bootstrap existing robot learning methods. In particular, we consider four
di�erent robotics paradigms as shown in Fig. 4.3.

A. Imitation Learning from O�ine Data Collection: Imitation learning is con-
ventionally performed on data collected by human demonstrations, teleoperation,
or scripted policies – all of which are expensive and only allow for small-scale data
collection[447, 19, 360, 10, 41, 221]. On the other hand, using the a�ordance model,
f✓(·) to guide the robot has a high probability of yielding ‘interesting’ interactions.
Given an image input It, the a�ordance model produces (c, ⌧) = f✓(It), and we
store {(It, (c, ⌧))} in a dataset D. After su�cient data has been collected, we can
use imitation learning to learn control policies, often to complete a specific task. A
common approach for task specification is to use goal images that show the desired
configuration of objects. Given the goal image, the k-Nearest Neighbors (k-NN)
approach involves filtering trajectories inD based on their distance to the goal image
in feature space. Further, the top (filtered) trajectories can be used for behavior cloning
(BC) by training a policy, ⇡(c, ⌧ |It). We run both k-NN and behavior cloning on
datasets collected by di�erent methods in Sec. 4.4.1. Using the same IL approach
for di�erent datasets is also useful for comparing the relative quality of the data.
This is because higher relative success for a particular dataset implies that the data
is qualitatively better, given that the same IL algorithm achieves worse performance
on a di�erent dataset. This indicates that the goal (or similar images) were likely
seen during data collection.
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B. Reward-Free Exploration: The goal of exploration is to discover as many
diverse skills as possible which can aid the robot in solving downstream tasks.
Exploration methods are usually guided by intrinsic rewards that are self-generated
by the robotic agent, and are not specific to any task [28, 285, 277, 390, 232, 295,
173, 313, 251]. However, starting exploration from scratch is too ine�cient in the
real world, as the robot can spend an extremely large amount of time trying to
explore and still not learn meaningful skills to solve tasks desired by humans. Here
our a�ordance model can be greatly beneficial by bootstrapping the exploration
from the predicted a�ordances allowing the agent to focus on parts of the scene
likely to be of interest to humans. To operationalize this, we first use the a�ordance
model f✓(.) for data-collection. We then rank all the trajectories collected using a
task-agnostic exploration metric, and fit a distribution h to the (c, ⌧) values of the top
trajectories. For subsequent data collection, we sample from hwith some probability,
and otherwise use the a�ordance model f . This process can then be repeated, and
the elite-fitting scheme will bootstrap from highly exploratory trajectories to improve
exploration even further. For the explorationmetric in our experiments, wemaximize
environment change EC(Ii, Ij) = ||�(Ii) � �(Ij)||2, (similar to previous exploration
approaches [19, 280]) between first and last images in the trajectory, where �masks
the robot and the loss is only taken on non-masked pixels.

C. Goal-Conditioned Learning: While exploring the environment can lead to
interesting skills, consider a robot that already knows its goal. Using this knowledge
(e.g. an image of the opened door), it supervise its policy search. Goal images are
frequently used to specify rewards in RL [416, 127, 271, 286, 123, 8, 270, 464, 254].
Using our a�ordance model can expedite the process of solving goal-specified tasks.
Similar to the exploration setting, we rank trajectories and fit a distribution h to the
(c, ⌧) values of the top trajectories, but here the metric is to minimize distance to the
goal image Ig. The metric used in our experiments is to minimize EC(IT , Ig), where
IT is the last image in the trajectory, or to minimize || (Ig)�  (IT )||22, where  is a
feature space. Akin to exploration, subsequent data collection involves sampling
from h and the a�ordance model f .

D. A�ordance as an Action Space: Unlike games with discrete spaces like Chess
and Go where reinforcement learning is deployed tabula rasa, robots need to operate
in continuous action spaces that are di�cult to optimize over. A pragmatic alternative
to continuous action spaces is parameterizing them in a spatial manner and assigning
a primitive (e.g. grasping, pushing or placing) to each location [454, 452, 364]. While
this generally limits the type of tasks that can be performed, our a�ordance model
already seeks out interesting states, due to the data it is trained on. We first query the
a�ordance model on the scene many times to obtain a large number of predictions.
We then fit a GMM to these points to obtain a discrete set of (c, ⌧) values, and now
the robot just needs to search over this space.
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Figure 4.5: Exploration: Coincidental success of VRB in comparison to random exploration
or the exploration based on HAP [128].

4.4 Experimental Setup and Results

Through the four robot learning paradigms, shown in Fig. 4.3, we seek to answer
the following questions: (1) Does our model enable a robot to collect useful data
(imitation from o�ine data)?, (2) Howmuch benefit does VRB provide to exploration
methods?, (3) Can our method enable goal-conditioned learning?, and (4) Can our
model be used to define a structured action space for robots? Finally, we also study
whether our model learns meaningful visual representations for control as a byproduct
and also analyze the failure modes and how they di�er from prior work.
Robotics Setup: We use two di�erent robot platforms - the Franka Emika Panda
arm and the Hello Stretch mobile manipulator. We run the Franka on two distinct
play kitchen environments and test on tasks that involve interacting with a cabinet,
a knife and some vegetables, and manipulation of a a shelf and a pot. The Hello
robot is tested on multiple in-the wild tasks outside lab settings, including opening
a garbage can, lifting a lid, opening a door, pulling out a drawer, and opening a
dishwasher (Fig. 4.1). We also provide support for a simulation environment on the
Franka-Kitchen benchmark [114].
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Cabinet Knife Veg Shelf Pot Door Lid Drawer
k-Nearest Neighbors:

HOI 0.2 0.1 0.1 0.6 0.0 0.4 0.0 0.6
HAP 0.3 0.0 0.3 0.0 0.1 0.2 0.0 0.1
Hotspots 0.4 0.0 0.1 0.0 0.5 0.4 0.3 0.5
Random 0.3 0.0 0.1 0.3 0.4 0.2 0.1 0.2
VRB (ours) 0.6 0.3 0.6 0.8 0.4 1.0 0.4 1.0
Behavior Cloning:

HOI 0.3 0.0 0.3 0.0 0.1 0.2 0.0 0.1
HAP 0.5 0.0 0.4 0.0 0.3 0.1 0.0 0.1
Hotspots 0.2 0.0 0.0 0.0 0.8 0.1 0.0 0.7
Random 0.1 0.1 0.1 0.0 0.2 0.1 0.0 0.0
VRB (ours) 0.6 0.1 0.3 0.3 0.8 0.9 0.2 0.9

Table 4.1: Imitation Learning: Success rate for k-NN and Behavior Cloning on collected
o�ine data using various a�ordance models. We find that VRB vastly outperforms prior
approaches, indicating better quality of data.

Observation and Action space: For each task, we estimate a task-space image-crop
using bounding boxes [462], and pass random sub-crops to f✓. The prediction for
contact points c andpost-contact trajectory ⌧ is in pixel space, which are projected into
3D for robot control using a calibrated robot-camera system (with an Intel RealSense
D415i). The robot operates in 6DOF end-e�ector space – samples a rotation, moves
to a contact point, grasps, and then moves to a post-contact position (see Sec. 4.3.1).
Baselines and Ablations: We compare against prior work that has tried to predict
heatmaps from human video : 1) Hotspots [267] 2) Hands as Probes (HAP) [128], a
modified version for our robot setup of Liu et al. [236] that predicts contact region
and forecast hand poses: 3) HOI [236] and 4) a baseline that samples a�ordances at
random (Random). HAP and Hotspots only output a contact point, and we randomly
select a post-contact direction.

4.4.1 Quality of Collected Data for Imitation
We investigate VRB as a tool for useful data collection. We evaluate this on both our
robots across 8 di�erent environments, with results in Tab. 4.1. These are all unseen
scenarios (not in train set). Tasks are specified for each environment using goal
images (eg - open door, lifted pot etc), andweuse the data collected (30-150 episodes)
for two established o�ine learning methods: (1) k-Nearest Neighbors (k-NN) and
(2) Behavior Cloning. k-NN [279] finds trajectories in the dataset that are close (via
distance in feature space [273]) to the goal image. We run the 10-closest trajectories
to the goal image and record whether the robot has achieved the task specified in
the goal image. For behavior cloning, we train a network supervised with (image,
waypoint) pairs from the collected dataset, and the resulting policy is run 10 times

48



on the real system. With both k-NN and BC, our method outperforms prior tasks
on 7 out of 8 tasks, with an average success rate of 57 %, with the runner-up method
(Hotspots [267]) only getting 25 %. This shows that VRB leads to much better data
o�ine data quality, and thus can lead to better imitation learning performance. We
additionally test for grasping held-out rare objects such as VR remotes or staplers,
and find that VRB outperforms baselines.

4.4.2 Reward-Free Exploration

Here we study self-supervised exploration with no external rewards. We utilize
environment change, i.e., change in the position of objects as a task-agnostic metric
for exploration [19]. For improved exploration, we bias sampling towards trajectories
with a higher environment change metric. To evaluate the quality of exploration
data, we measure how often does the robot achieves coincidental success i.e. reach
a goal image configuration without having access to it. As shown in Fig. 4.5, we
obtain consistent improvements over HAP [128] and random exploration raising
performance multiple fold – from 3⇥ to 10⇥, for every task.

4.4.3 Goal-Conditioned Learning

The previous settings help robots improve their behaviors with data without an
external reward or goal. Here we focus on goal-driven robot learning. Goals are
often specified through images of the goal configuration. Note that goal images are
also used in Sec. 4.4.1 but as part of a static dataset to imitate. Here, the robot policy
is updated with new data being added to the bu�er. We sample this dataset for
trajectories that minimize visual change with respect to the goal image. As shown in
Fig. 4.6, VRB learns faster and better HAP [128] and Random on this robot learning
paradigm, over six diverse tasks.

4.4.4 A�ordance as an Action Space

VRB R3M [273]

microwave 0.16 0.10
slide-door 0.84 0.70
door-open 0.13 0.11

Table 4.2: Imitation with VRB
vs. R3M [273] representation.

We utilize visual a�ordances to create a discrete ac-
tion space using a set of contact points and interac-
tion directions. We then train a Deep Q-Network
(DQN) [258] over this action space, for the above
goal-conditioned learning problem.In Fig. 4.7, we see
that with VRB, the robot experiences more successes
showing that a greater percentage of actions in the
discretized action space correspond to meaningful
object interactions.
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Figure 4.6: Goal-conditioned Learning: Success rate for reaching goal configuration for six
di�erent tasks. Sampling via VRB leads to faster learning and better final performance.
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Figure 4.7: Action Space: Success using DQNwith the discretized action space, for reaching
a specified goal image.

4.4.5 Analyzing Visual Representations

Beyond showing better utility for robot learning paradigms, we analyze the quality of
visual representations of the encoder learned in VRB. Two standard evaluations for
this are (1) if they can help for downstream tasks and (2) how meaningful distances
in their feature spaces are.
Fine-tuning: To investigate if the visual representations are e�ective for control, we
directly fine-tune a policy on top of the (frozen) visual encoder. We evaluate on
three simulated Franka environments, as shown in Tab. 4.2, and we see that VRB
outperforms R3M on all tasks. We fine-tuned the policy only for 2K steps, instead of
20K in the R3M paper.
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Figure 4.8: Feature space distance: Distance to goal in feature space for VRB decreases
monotonically for door opening.

Feature space distance: We record the distance in feature space between the current
and goal image for every timestep in the episode, for both VRB and R3M [273] on
successful cabinet opening trajectories. As shown in Fig. 4.8, the distance for VRB
decreases almost monotonically which correlates well with actual task progress.

4.4.6 Failure Modes
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Figure 4.9: Failure mode analysis

While VRB and the baselines see qualita-
tively similar successes, VRB in general sees
a larger number of them and the average case
scenario for VRB ismuch better. For the cab-
inet opening task, we classify each collected
episode into three categories: “Failure”,
“Partial Success” and “Success”. While VRB
has a higher number of successful trajecto-
ries compared to the baselines (almost 2⇥),
the number of partial successes ismore than
6⇥ (Fig. 4.9).

4.5 Conclusion
We propose Vision-Robotics Bridge (VRB), a scalable approach for learning useful
a�ordances from passive human video data and deploying them on many di�er-
ent robot learning paradigms (such as data collection for imitation, reward-free
exploration, goal-conditioned learning, and parameterizing action spaces). Our
a�ordance representation consists of contact points and post-contact trajectories.
We demonstrate the e�ectiveness of this approach on the four paradigms and 10
di�erent real-world robotics tasks, including many that are in the wild. We run
thorough experiments, spanning over 200 hours, and show that VRB drastically
outperforms prior approaches.
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Chapter 5

Structured World Models from
Human Videos

5.1 Motivation

Robot

World Model

EnvironmentHuman Data
Robot

World Model

Environment

Human Data

Figure 5.1: We present SWIM, an ap-
proach for learning manipulation tasks
with only a handful of trajectories.

A truly useful home robot should be gen-
eral purpose, able to perform arbitrary ma-
nipulation tasks, and get better at perform-
ing new ones as it obtains more experience.
How can we build such generalist agents?
The current paradigm in robot learning is
to train a policy, in simulation or directly
in the real world, with engineered rewards
or demonstrations directly constructed for
the environment. While this has shown
successes in lab-based tasks [182, 294, 221],
learning is heavily dependent on the struc-
ture of the reward. This is not scalable as it
is very challenging to transfer to new tasks, with di�erent objectives. Often, it is also
di�cult to obtain ground truth objectives for a task in the real world. For a robot to
succeed in the wild, it must not only learn many tasks at a time but also get better as
it sees more data. How can we build an agent that can take advantage of large-scale
experience and multi-task data?
We aim to build world models to tackle this challenge. One key observation is that
there is commonality between many tasks performed by humans on a daily basis.
Even across diverse settings, the environment dynamics and physics share a similar
structure. Learning a single jointworld model, that predicts the future consequences
of actions across diverse tasks can thus enable agents to extract this shared structure.
While world models enable learning from inter-task data, they require action in-
formation to make predictions about the future. Furthermore, for planning in an
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Figure 5.2: Overview of SWIM. We first pre-train the world model on a large set of human
videos. We finetune this on many robot tasks, in an unsupervised manner, and deploy
at test-time in the real world to achieve a given goal. Videos can be found at https://
human-world-model.github.io

environment, the actions need to be relevant to the particular robot. Consequently,
world models for robotics have mostly been trained only on data collected directly
by a robot [97, 421, 216, 82, 98]. However, the quantity of this data is limited, which
is very expensive and cumbersome to collect in the real world. Thus, the benefits
of using large datasets as seen in other machine learning areas such as computer
vision and language [40, 308] have not been realized for robotics, as no such dataset
exists for robotics. However, there is an abundance of human videos, performing
a very large set of tasks, on the internet. Is there a way to leverage this abundant
data to learn world models for robotics, that will enable the robot to predict the
consequences of its actions in any environment, enabling general-purpose learning?
Due to the large morphology gap between robots and humans, it is challenging to
obtain actions from human videos. Thus, previous approaches have mostly focused
on learning visual representation features [273, 429] from observations alone. Using
internet human videos to train robots requires us to define an action space that is
applicable both in the human video domain and for robots. Consider the task of
picking up a mug. To perform this task, the low-level signals sent to a person’s arm
compared to that of a robot would be completely di�erent, and so predictive models
in low-level joint space will not transfer well. If the action space instead required
predicting the target pose and orientation of the mug handle, with low-level control
abstracted away, then target poses used by humans could be utilized by robots aswell.
Thus, we learn high-level structured action spaces that are morphology invariant.
For manipulation tasks, predicting a grasp location and post-grasp waypoints is
an e�ective action space since it encourages object interaction. We can train visual
a�ordance networks that produce these locations given videos leveraging techniques
in computer vision [236, 128, 356, 267, 20].
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We propose StructuredWorldModels for Intentionality (SWIM), which utilizes
large-scale internet data to train world models for robotics using structured action
spaces. Training the world model in the common high-level structured action space
allows it to capture how human hands interact with objects when trying to grasp and
manipulate them. This model can then be fine-tuned for robotics settings with only
a handful of real-world interaction trajectories. This is because the world model can
leverage the actionable representations it was pre-trained with due to the similarity
in how the human hands from video data and robot grippers interact with the world.
Furthermore, these interaction trajectories for fine-tuning do not require any task
supervision and can be obtained simply by executing the visual a�ordance actions.
We note that both pre-training on human videos and finetuning the world model on
robot data do not make any assumption on rewards, and this unsupervised setting
allows us to utilize data relevant for di�erent tasks. This allows the robot to train
a single world model on all the data, thus enabling us to train generalist agents. In
our experiments, we show that we can train such joint world models through two
distinct robot systems operating in real-world environments. Finally, we can deploy
the fine-tuned world model to perform tasks of interest by specifying a goal image.
The world model then plans in the a�ordance action space to find a sequence of
actions to manipulate objects as required by the task.
To summarize, SWIM trains world models for robot control and consists of three
stages: 1) Leveraging internet videos of human interactions for pre-training the
model, 2) Finetuning the model to the robot setting using reward-free data, 3)
Planning through the model to achieve goals. We evaluate this framework on two
robot systems – a Franka Arm, and a Hello Stretch robot. SWIM is able to learn
directly, is trained on data from multiple settings and gets better with data from
more tasks. We perform a large-scale study across multiple environments and robots
and find that SWIM achieves higher success (⇠ 2X) than prior approaches while
being very sample e�cient, requiring less than 30 minutes of real-world data.

5.2 Related Work

E�cient Real World Robot Learning: Deploying learning-driven approaches
on hardware is challenging and requires either large engineering e�orts to collect
demonstrations [37, 176], many hours of autonomous interactions [182, 183], or
simulations [9, 395, 206]. A major constraint of continuous control is the extremely
large action space. Priormethods have focused on reducing this search space by using
skills or options in a hierarchical manner [73, 284, 17, 387, 78, 78], physical inductive
biases [261, 292, 202, 381, 199, 18, 248]. It is also possible to visually ground the action
space, by parameterizing each observed location by a 2D [453, 452, 364, 175] or 3D
[365] action. While these can speed up learning, our structured action space based
on human-centric visual a�ordances allows us to not only perform manipulation
e�ciently but also leverage out-of-domain human/internet videos.
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Figure 5.3: World Model Training: Images and actions are encoded into a learned feature
space that has temporal structure, following the approach from [147]

Model-based learning: To tackle the sample e�ciency problem in robot learning,
prior methods have proposed learning dynamics models, which can later be used to
optimize the policy [86, 87, 145, 70, 265, 266]. Such approaches mostly operate and
learn in state space, which tends to be low dimensional. In order to deal with the
highly complex visual observations from real-world settings, prior methods have
usedWorld Models [140], which capture dynamics of the agent and its environment.
Suchmodels can plan in image space [107, 97] or fully in imagination space [418, 146,
145, 217]. Such world models have been shown to be useful on a large set of tasks
[321], including on hardware [425]. We argue that world models can be helpful in
modeling the real world, especially if they can understand how the environment
will behave at a high level and model the intentions of the agent.

Visual and Action Pre-Training for Robotics: In order to learn more generalizable
and actionable representations, prior methods have learned visual encoders from
large-scale human video data, either via video-language contrastive learning [273]
or through inpainting masked patches [429, 309]. These representations have been
shown to be useful for dynamics models as well [153]. Such approaches focus on the
visual complexity of the world but do not encode any behavior information. Some
works have incorporated low-level actions from human videos into the learning loop
[244, 302, 12, 361], but these are fixed for a specific morphology and use a direct
mapping to the robot. In contrast, our approach is able to learn a world model from
human videos, incorporating action information, and works in multiple settings.
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Figure 5.4: We evaluate SWIM on six di�erent real-world manipulation tasks on two
di�erent robot systems (shown on the left). On the right, we show a sample of the visual
a�ordances from the visual a�ordance model G .

5.3 Background and Preliminaries

World Models: These are used to learn a compact state space for control given
high-dimensional observations like images. The learned states preserve temporal
information, which enables e�ective prediction and planning [140, 344, 343]. In this
work, we use the model structure and training procedure from Dreamer [145, 146,
147], which has the following components:

encoder: et = enc�(xt)

posterior: p(st|st�1, at�1, et)

dynamics: p(st|st�1, at�1)

decoders: p(xt|st), p(rt|st)

Here xt, at, rt denote the observation, action, and reward at time t, and st denotes the
learned state space. Note that all these components are parameterized using neural
networks. The model is trained by optimizing the ELBO as described in Dreamer,
where the learned features are trained to reconstruct images and rewards and are
regularized with a dynamics prior. The reward head decoder is not trained if rt is
not provided. For more details, we refer the readers to [147].

Hand-Object Interactions from Human Videos: In this work, leverage human
videos to learn world models. Throughout the chapter, we will refer to a set of
visual a�ordances. These visual a�ordances comprise of the hand trajectory ht in
image space (normalized to a 0-1 range), and object locations (ot). We obtain human
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hand-object information (ht, ot) for each frame using the 100 Days of Hands [356]
detector model, trained on many hours of youtube videos. These can then be used
to identify where on the object the hand makes contact pg, and we sample the hand
position from a later frame in the video to obtain ppg. Here pg and ppg denote the
grasp and post-grasp pixel respectively and specify the visual a�ordance space.

5.4 World Models from Human Videos

5.4.1 Visual A�ordances as Actions

One of the key challenges is defining what the actions should be from human videos,
most of which just contain image observations. Action information is essential for
world models since they are required to learn dynamics and make predictions about
the future. Furthermore, we need to define actions in a manner that is transferable
from the human video domain to robot deployment settings. Following previous
work that studies human-to-robot transfer for manipulation [19, 357, 56, 430, 370,
361, 360, 350, 451], we use the human hand motion in the videos to inform the action
space. This is because we are focused on performing manipulation tasks, and how
humans interact with objects using their hands contains useful information that can
be transferred to robot end-e�ectors.

Structured Actions from Videos: We note that the videos of humans interacting
with objects often consist of the hand moving to a point on the object, performing
a grasp, and then manipulating the object. After obtaining the grasp pixel pg and
post-grasp pixels ppg, using computer vision techniques similar to [128, 236, 267]
from the video clip, we use these to train G�, which distills these labels into a neural
network model conditioned on the first frame of the video clip. This model thus
learns a�ordances associated with objects in the scene, by modeling how humans
interact with them. This follows the a�ordances described in [20], but our work can
also be combined with other a�ordance-learning approaches.

Transfer to Robot Scene: When dealing with 2D images, there is an inherent
ambiguity regarding depth, which is required to map to a 3D point. To overcome
this, we utilize depth camera observations to obtain the depth dgt at the image-
space point pgt , and also sample the post-grasp depth dpgt within some range of the
environment surface. This can then be projected into 3D coordinates in the robot
frame, using hand-eye calibration, and the robot can attempt to grasp andmanipulate
objects by moving its gripper to these locations. The a�ordance action at time t can
thus be expressed as ut = [pt, dt], where dt is the depth corresponding to pixel pt.

Hybrid Action Space: While visual a�ordances help structure the action space to
increase the likelihood of useful manipulation and allow us to learn from human
video, they impose restrictions on the full space of end-e�ector motion. Hence, we
adopt a hybrid action space that has the option to execute both the aforementioned
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(b) Imagination rollouts at deployment(a) World Model pre-training reconstructions 

Figure 5.5: a) World Model pre-training reconstructions on Epic-Kitchens dataset [76].
b) Model imagination rollouts for high-reward trajectories. We can see that SWIM can
imagine plausible and successful trajectories, for both human and robot data. The first image
(highlighted in red) is the original observation by the robot.

visual a�ordance, as well as arbitrary end-e�ector Cartesian actions. We append
a mode index to denote which type of action should be executed. This enables
the robot to benefit both from the structured pixel-space visual a�ordance actions
and the pre-training data in mode (m) 0, and make adjustments using arbitrary
end-e�ector delta actions in mode 1. An action can be described by the following:

at = [mt, ✓t, ut,�yt] (5.1)

Here mt denotes the mode, ✓t is the rotation of the gripper, ut is the image-space
action (ut = [pt, dt], where pt are pixel coordinates in the image and dt is depth), and
�yt is the Cartesian end-e�ector action. At a particular timestep, only one out of the
image action and Cartesian actions can be executed. Ifmt = 0, this corresponds to
the a�ordance mode, and so pt is executed. If mt = 1, then the robot is operating in
the Cartesian control mode, and �yt is used. Due to our hybrid action space, we
can seamlessly switch between training with the visual a�ordance and Cartesian
end-e�ector action spaces. This allows the robot to leverage the structure from
human video and also make adjustments if required using Cartesian actions which
are useful for fine-grain control.

Algorithm 3 Human Video Data Training
Require: Human Video Dataset D
1: initialize: World model W , A�ordance model G
2: Process D into video clips C0, ...CT

3: Obtain grasp pg and post grasp ppg pixels for each Ck.
4: Create actions at using eq. 5.1, with mode mt = 0, and randomly sampling

depth dt and rotation ✓t
5: Train G�(ag, apg|Ik0 ), where Ik0 is the first frame of Ck

6: Train W on trajectory sequences {(Ik0 , ag, Ikt1, apg, Ikt2)}
7: return W,G
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Cabinet Veg Knife Drawer Dishwasher Can Average

No world model:

BC-Affordance 0.32 0.48 0.16 0.56 0.20 0.44 0.36
BC-Pix 0.16 0.40 0.00 0.24 0.08 0.12 0.17

No human-centric a�ordance-based actions:

MBRL-single [147] 0.00 0.28 0.20 0.00 0.04 0.00 0.09
MBRL-Pix-single 0.52 0.36 0.16 0.00 0.04 0.04 0.19

No pre-training from human videos:

MBRL-Affordance-single 0.68 0.16 0.40 0.84 0.20 0.36 0.44
MBRL-Affordance-joint 0.12 0.36 0.36 0.08 0.20 0.04 0.19

SWIM 0.84 0.76 0.72 0.92 0.84 0.68 0.79
SWIM-single 0.88 0.80 0.60 0.96 0.68 0.56 0.75

Table 5.1: Success rates of SWIM and baselines on 6 manipulation tasks, over 25 trials.

5.4.2 Structured A�ordance-based World Models for Robotics

The overall approach is outlined in Alg. 4. We now describe each of the three phases
- 1) World model pre-training on human videos, 2) Unsupervised finetuning with
robot data, and 3) Robot deployment to perform a task given a goal image.

Training from Passive Human Videos: We first use a large set of human videos,
obtained from Epic-Kitchens [76] to both train the world modelW , and obtain the
visual a�ordance model G�. This dataset includes around 50k egocentric videos
of people performing various manipulation tasks in kitchens. We first process this
dataset into a set of short video clips (around 3 seconds). After obtaining the grasp
pixel pg and post-grasp pixels ppg from the video clip, we convert them to our action
space (specified in eq. 5.1), and train G�, as previously described in section 5.4.1.
For video clip k, let Ikt denote an image frame from the clip at time t. We collect
images Ikt1 and Ikt2 , where t1 is the time of the grasp, and t2 is when the hand is at
ppg. W is then trained on the trajectory sequences:

{Ik0 , a
gIkt1 , a

pgIkt2} (5.2)

This procedure is outlined in Alg. 3. As described in section 5.4.1, there are two
modes for the actions - either in pixel space or end-e�ector space. In order to train
on human videos, we consistently set mt = 0 and thus use the image space actions.
Since image depth and robot rotation information are not present in the video, we
randomly sample values for these components. We include visualizations of the
world model predictions on the passive data in Figure 5.5, and see that the model is
able to capture the structure of the data.
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Algorithm 4 Overview of SWIM
1: Get W ,G = Human Video Data Pre-Training (Alg. 3)
2: Finetuning: Query G for N0 iterations to collect robot dataset RD to trainW .
3: Task Deployment: (Given goal Ig)
4: Rank trajs in RD using Ig . Fit GMM g.
5: for traj 1:K do
6: Query N proposals from G, {ag, apg}1..N
7: Query M proposals from g
8: Select best proposal using CEM through W

9: Execute on the robot to reach Ig
10: end for

Finetuning with Robot Data: To use the world model W for control, we need to
collect some in-domain robot data for finetuning. We do so by running the visual
a�ordance model G to collect a robot dataset RD, which is then used to train W .
We emphasize that this step does not require any supervision in the form of task
rewards or goals. Hence, we can collect data from diverse tasks in the finetuning
step. We see in Fig. 5.8 that SWIM enables the world model to pick up on the salient
features of the robot environment very quickly as compared to models that do not
use pre-training on human videos.

Task Deployment: After the world model has been fine-tuned on robot domain
data, it can be used to perform tasks specified through goal images. The procedure
for doing so is outlined in the Task Deployment section in Alg. 4. We collect two
sets of action proposals. The first set is obtained by querying the visual a�ordance
model G on the scene. We also want to leverage our knowledge of trajectories in RD
that reach states close to the goal. For this, we create a second set of proposals by
fitting a Gaussian Mixture Model to the top trajectories in RD and sampling from it.
We then use the world model to optimize for an action sequence using the standard
CEM approach [331], where the initial set of plans is set to be the combined set of
action proposals. Ranking the trajectories inRD and running CEM requires rewards,
and we can obtain this by measuring the distance to the goal in the world model
feature space:

rt = cosine(fW(Ig), ft)

where ft is the world model feature, and fW is the learned feature space of the model.
For ranking trajectories in RD, ft = fW(Ik) for image k in the dataset. For planning,
ft corresponds to the predicted feature state. In our experiments, we use cosine
distance to goal in the feature space from Nair et al. [273] to provide reward for
model-free baselines, since they do not have a model, and so we also add this term to
our reward by training a reward prediction head to get feature space [273] distance
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to goal from ft. In our experiments we run an ablation where we use only the world
model feature space, and find that performance for our approach is about the same.

5.5 Experimental Setup

5.5.1 Environments

Our real-world system consists of two di�erent robots, evaluated over six tasks.
Firstly, we use the Franka Emika arm, with end-e�ector control. This robot acts in a
play kitchen environment with multiple tasks that mimic a real kitchen. Specifically,
the robot needs to open a cabinet, pick up one of two toy vegetables from the counter
and lift a knife from a holder. Note that the knife task is very challenging as it
requires fine-grained control from the robot. In order to test SWIM in the wild we
also deploy it on a mobile manipulator, the Stretch RE-1 from Hello-Robot. This is a
collaborative robot designed with an axis-aligned set of joints and has suction cups
as fingertips. We run this robot in real-world kitchens to perform di�erent tasks,
including opening a dishwasher, pulling out a drawer, and opening a garbage can.
The garbage can task is challenging as the area for the robot to grasp onto is quite
small. We show images of the environments in Figure 5.4.

5.5.2 Baselines and Ablations

In order to compare di�erent aspects of SWIM, we run an extensive of baselines and
ablations. All world-model-based approaches directly use code from Dreamer [147].

• MBRL-Affordance: An important contribution of SWIM is pre-training on
human videos. This baseline is similar to SWIM but does not use any human
video pre-training, allowing us to test our hypothesis that using human video
is important for learning a generalizable world model.

• MBRL-Pix: Secondly, we would like to test how much the a�ordance action
space helps the robot. This approach uses the same world model control
procedure as SWIM, but does not sample actions using the visual a�ordance,
G . Instead grasp and post grasp locations are randomly sampled from an
image crop around the object.

• MBRL: This baseline further removes structure from the action space, and
only uses cartesian end-e�ector actions, without any pixel-space structure,
thusmt = 1 (described in section 5.4.1) for every timestep t. In order to help
with sample e�ciency, we use a simple heuristic to bootstrap this baseline: we
initialize the robot each episode near the center of the detected object, using
Detic [462], a state-of-the-art object detector.
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Figure 5.6: Comparison of SWIM and MBRL-Affordance for both the single task and jointly
trained model. We see a large drop in success when removing pre-training on human videos,
especially when dealing with diverse robot tasks.

• BC-Affordance: We would like to test if using world models is critical to
performance, or if a simple behavior cloning approach can be e�ective. This
baseline employs a filtered-behavior cloning [289, 291] strategy, in which the
top trajectories based on reward (in our case distance to goal) are selected.
Since there is no learned world model, we use distance in the feature space
from the R3Mmodel [273]. After selecting the top trajectories, we fit a gaussian
mixture model and sample from it to obtain actions. These are in the same
visual a�ordance action space used by our approach.

• BC-Pix: Uses behavior cloning in the same way as BC-Affordance. The
only di�erence is the action space - this approach randomly samples locations
and does not use G to obtain actions.

5.5.3 Implementation details

Human Video Data Pre-training: In order to pre-train the world model on human
videos, we use the Epic-Kitchens [76] dataset. The dataset is divided intomany small
clips of humans performing semantic actions. We use the 100 Days of Hands [356]
detector to find when an object has been grasped and find post grasp waypoints.
Around 55K such clips are used to train the world model. Since we do not have
depth or 3D information available, we randomly sample ✓t and the depth component
of the image space action pt.
A�ordance Model: We show some qualitative examples of the a�ordances of the
human-a�ordance model (G ) we use in Figure 5.4. This model has a UNet style
encoder-decoder architecture, with a ResNet18 [157] encoder. The final output of
the model is ht and gt, where gt is a set of keypoints obtained from a spatial softmax
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Figure 5.7: Continuous improvement (a-b): SWIM continues to improve with online
training, achieving high success. (c) Ablating the need for external feature space goal
distance at test time.

over the network’s heatmap outputs, representing the grasp point, and ht is the
post-grasp trajectory of the detected hand.
World Model: We use the world model from [147]. However, in order to handle
high-dimensional image inputs we employ NVAE [400] as a stronger visual encoder.
While not necessary to train the reward model qr when finetuning, we empirically
found that it added stability to the filtering setup a test time. We leave distilling the
latent features into a neural distance function as future work.
Robot Deployment Setup: To capture videos and imageswe use an Intel Realsense
D415, to get RGBD images. For each task we collect either 25 or 50 iterations of
randomly sampled actions (in human-a�ordance, random image or Cartesian space),
which takes about 30 minutes, finetuning the model on collected data. We obtain
feature distance w.r.t. to image goals using the ResNet18 encoder from [273]. We
sample around 2K action proposals and use the output ofW� to prune these. The
model outputs are then evaluated (25 times). A human measures success based on
a pre-defined metric (i.e. the cabinet should be fully open, etc).

5.6 Results

In our experiments we ask the following questions (i) Can we train a single world
model jointly with data coming from diverse tasks? (ii) Does training the world
model on human video data help performance? (iii) How important is our structured
action space, based on human visual a�ordances? (iv) Are world models beneficial for
learning manipulation with a handful of samples? (v) Can our approach continually
improve performance with iterative finetuning?
We present a detailed quantitative analysis in Table 5.1. Across environment settings
and robots SWIM achieves an average success rate of about 80% when using joint
models (trained separately for Franka andHello robot tasks). We also observe strong
performance when SWIM is trained on individual tasks, getting an average success
of 75%, compared to the next best approaches which only get around 40% success.
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Joint WorldModel: A big benefit of SWIM is that it can deal with di�erent sources
of data. SWIM-single employs a model trained individually for each task. We see
that overall the performance improves when sharing data, from the last two rows of
Table 5.1. This is likely because there are some similarities across tasks that themodel
is able to capture. We find this encouraging and hope to scale to more tasks in the
future. Further, we see that for the best baseline, MBRL-Affordance-single, using
all the data jointly to train the world model leads to a major drop in performance
(from 44% to 19%). We show this visually in the bar chart in Figure 5.6, where
the e�ect of pre-training a model on human videos is amplified when dealing with
all of the data from all the tasks. This shows that when dealing with a large set
of tasks and diverse data, it is crucial to incorporate human-video pre-training for
better performance and generalization. Hence we do not run joint world model
experiments for MBRL and MBRL-Pix since the performance is already low (around
10 - 20 %) when the model is trained just on single task data.

No Pre-
Training

Ours

Ground-
Truth

Figure 5.8: Image reconstruction using world
model features in early training stages for SWIM
and MBRL-Affordance (which has no pre-training),
showing that SWIM can e�ectively transfer repre-
sentations from human videos. Note that for our
experimentswe usemodels trained to convergence.

Human Video Pre-Training: As
noted in the previous section, pre-
training on human videos is criti-
cal to being able to e�ectively train
joint world models on multi-task
data, as seen in Figure 5.6. For
MBRL-Affordance we saw that in
many cases the model collapses
quickly to a sub-optimal control so-
lution when trained on multiple
tasks jointly. To investigate this fur-
ther, we visualize the image recon-
structions from W within the first
minute of training and find that the
outputs of SWIM were already very
realistic, as compared to those of
MBRL-Affordance. This can be seen
in Figure 5.8, where the outputs
of MBRL-Affordance are very pixe-
lated while those of SWIM already capture important aspects of the ground truth,
indicating the usefulness of pre-training on human videos.

Human-A�ordance Action Space: How does the choice of action space a�ect
performance? For this we compare the (single task) model based and BC approaches
separately. Comparing MBRL-single and MBRL-Affordance-single in Table 5.1, we
can see that there is a clear benefit in using structured action spaces, with over 5X
the success compared to cartesian end-e�ector actions. This fits our hypothesis, as it
is very di�cult for methods that use low-level actions to find successes in a relatively
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small number of interaction trajectories. The few successes that MBRL-single does
see are due to the initialization of the robot close to the object using Detic. Further-
more, we note that this benefit is not simply because the a�ordance actions are in
image space. In both the filtered-BC and world model case, the success rate with the
a�ordance action space is roughly double than that of acting in pixel space, where
target locations are sampled from a random crop around the object. This shows that
picking the right action space and acting in a meaningful way to collect data can
bootstrap learning and lead to e�cient control.

Role of WorldModel: How important is using a world model, and can we achieve
good performance by just using the a�ordance action space? From Table 5.1, we
see that the average performance of BC-Affordance is not too far behind that of
MBRL-Affordance-single. However, without a world model, the controller cannot
leverage multi-task data, both for the pre-training stage to use human videos and
for learning the shared structure across multiple robot domains by training a joint
world model. Due to these critical reasons discussed previously, SWIM outperforms
the best filtered-BC approach by more than a factor of 2.

Continual Improvement: Next, we investigate if SWIM can keep improving using
the data that it collects when planning for the task. Since the world model can learn
from all the data, we want to test if it can improve its proficiency on the task. Thus,
after evaluatingW once, we retrain on the newly collected data (as well as the old
data), and re-evaluate the model. We present the learning curves in Figure 5.7. We
see that SWIM is able to e�ectively improve performance, and achieves success of
over 90%, which is far better than the performance of BC-Affordance even after
continual training. This is an encouraging sign that SWIM can scale well since it can
keep improving its performance with more data to continually learn. In the future,
we hope to not only continually finetune, but also add new tasks and settings.

Reward Model: In Figure 5.7 c) we examine the e�ect of removing the reward
prediction module on planning and find that only using distance in world model
feature space is fairly competitive with using both the feature distance and predicted
reward. We hypothesize that for the veggies task, it was harder to estimate reward
accurately because the free objects tend to move around a lot during training, thus it
might take more samples to learn consistent features.

5.7 Conclusion
In this chapter, we present SWIM, a simple and e�cient way to perform many
di�erent complex robotics tasks with just a handful of trials. We aim to build
a single model that can learn many tasks, as it holds the promise of being able
to continuously learn and improve. We turn to a scalable source of useful data:
human videos, from which we can model useful interactions. In order to overcome
the morphology gap between robot and human videos, we create a structured
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action space based on human-centric a�ordances. This allows SWIM to pre-train
a world model on human videos, after which it is fine-tuned using robot data
collected in an unsupervised manner. The world model can then be deployed to
solve manipulation tasks in the real world. The total robot interaction samples for the
system can be collected in just 30 minutes. Videos of SWIM can be found at https:
//human-world-model.github.io. While SWIM provides a scalable solution and
shows encouraging results, some limitations are in the types of actions and tasks
that can be performed, as they currently only include quasi-static setups.
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Chapter 6

Video Di�usion Alignment via
Reward Gradients

“A child painting in an art class, using 
watercolors and a brush on paper.”

“A joyful dog playing in the snow, leaving paw prints and 
trying to catch snowflakes on its nose.”

“A shark playing chess.”

“A fairy tends to enchanted, glowing 
flowers.”

“A raccoon drumming on bongos under a starry night sky.”

“A snow princess stands on the balcony of her ice castle, her hair 
adorned with delicate snowflakes, overlooking her serene realm.”

Figure 6.1: Generations from video di�usion models after adaptation with VADER using
reward functions for aesthetics and text-image alignment. More visualization results are
available at https://vader-vid.github.io

6.1 Motivation

We would like to build systems capable of generating videos for a wide array of
applications, ranging from movie production, creative story-boarding, on-demand
entertainment, AR/VR content generation, and planning for robotics. The most
common current approach involves training foundational video di�usion models on
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extensive web-scale datasets. However, this strategy, while crucial, mainly produces
videos that resemble typical online content, featuring dull colors, suboptimal camera
angles, and inadequate alignment between text and video content.
Contrast this with the needs of an animator who wishes to bring a storyboard to
life based on a script and a few preliminary sketches. Such creators are looking
for output that not only adheres closely to the provided text but also maintains
temporal consistency and showcases desirable camera perspectives. Relying on
general-purpose generative models may not su�ce to meet these specific require-
ments. This discrepancy stems from the fact that large-scale di�usion models are
generally trained on a broad spectrum of internet videos, which does not guarantee
their e�cacy for particular applications. Training these models to maximize likeli-
hood across a vast dataset does not necessarily translate to high-quality performance
for specialized tasks. Moreover, the internet is a mixed bag when it comes to content
quality, and models trained to maximize likelihood might inadvertently replicate
lower-quality aspects of the data. This leads us to the question: How can we tailor
di�usion models to produce videos that excel in task-specific objectives, ensuring
they are well-aligned with the desired outcomes?
The conventional approach to aligning generative models in the language and image
domains begins with supervised fine-tuning [312, 38]. This involves collecting a tar-
get dataset that contains expected behaviors, followed by fine-tuning the generative
model on this dataset. Applying this strategy to video generation, however, presents
a significantly greater challenge. It requires obtaining a dataset of target videos, a
task that is not only more costly and laborious than similar endeavors in language
or image domains, but also significantly more complex. Furthermore, even if we
were able to collect a video target dataset, the process would have to be repeated for
every new video task, making it prohibitively expensive. Is there a di�erent source
of signal we can use for aligning video di�usion, instead of trying to collect a target
dataset of desired videos?
Reward models play a crucial role [345, 427, 211] in aligning image and text genera-
tions. These models are generally built on top of powerful image or text discrimi-
native models such as CLIP or BERT [26, 308, 396]. To use them as reward models,
people either fine-tune them via small amounts of human preferences data [345] or
use them directly without any fine-tuning; for instance, CLIP can be used to improve
image-text alignment or detectors can be used to remove objects in images [297].
This begs the question, how should reward models be used to adapt the generation
pipeline of di�usion models? There are two broad categories of approaches, those
that utilize reward gradients [297, 71, 433], and others that use the reward only as a
scalar feedback and instead rely on estimated policy gradients [31, 219]. It has been
previously found that utilizing the reward gradient directly to update the model can
be much more e�cient in terms of the number of reward queries, since the reward
gradient contains rich information of how the reward function is a�ected by the
di�usion generation [297, 71]. However, in text-to-image generation space, reward
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gradient-free approaches are still dominant [336], since these can be easily trained
within 24 hours and the e�ciency gains of leveraging gradients are not significant.
In this work, we find that as we increase the dimensionality of generation i.e transi-
tion from image to video, the gap between the reward gradient and policy gradient
based approaches increases. This is because of the additional amount and increased
specificity of feedback that is backpropagated to the model. For reward gradient
based approaches, the feedback gradients linearly scale with respect to the gener-
ated resolution, as it yields distinct scalar feedback for each spatial and temporal
dimension. In contrast, policy gradient methods receive a single scalar feedback
for the entire video output. We test this hypothesis in Figure 6.6, where we find
that the gap between reward gradient and policy gradient approaches increases
as we increase the generated video resolution. We believe this makes it crucial to
backpropagate reward gradient information for video di�usion alignment.
We propose VADER, an approach to adapt foundational video di�usion models
using the gradients of reward models. VADER aligns various video di�usion models
using a broad range of pre-trained vision models. Specifically, we show results of
aligning text-to-video (VideoCrafter, OpenSora, and ModelScope) and image-to-
video (Stable Video Di�usion) di�usion models, while using reward models that
were trained on tasks such as image aesthetics, image-text alignment, object detection,
video-action-classification, and video masked autoencoding. Further, we suggest
various tricks to improve memory usage which allow us to train VADER on a single
GPU with 16GB of VRAM. We include qualitative visualizations that show VADER
significantly improves upon the basemodel generations across various tasks. We also
show that VADER achieves much higher performance than alternative alignment
methods that do not utilize reward gradients, such as DPO or DDPO. Finally, we
show that alignment using VADER can easily generalize to prompts that were not
seen during training. Our code is available at https://vader-vid.github.io.

6.2 Related Work

Denoising di�usion models [373, 160] have made significant progress in generative
capabilities across variousmodalities such as images, videos and 3D shapes [161, 162,
235]. These models are trained using large-scale unsupervised or weakly supervised
datasets. This form of training results in them having capabilities that are very
general; however, most end use-cases of these models have specific requirements,
such as high-fidelity generation [345] or better text alignment [427].
To be suitable for these use-cases, models are often fine-tuned using likelihood
[32, 38] or reward-based objectives [31, 297, 71, 433, 219, 93, 106]. Likelihood objec-
tives are often di�cult to scale, as they require access to the preferred behaviour
datasets. Reward or preference based datasets on the other hand are much easier
to collect as they require a human to simply provide preference or reward for the
data generated by the generative model. Further, widely available pre-trained vision

69

https://vader-vid.github.io


models can also be used as reward models, thus making it much easier to do reward
fine-tuning [31, 297]. The standard approach for reward or preference based fine-
tuning is to do reinforcement learning via policy gradients [31, 407]. For instance,
the work of [219] does reward-weighted likelihood and the work of [31] applies
PPO [347]. Recent works of [297, 71], find that instead of using policy gradients,
directly backpropagating gradients from the reward model to di�usion process
helps significantly with sample e�ciency.
A recent method, DPO [312, 407], does not train an explicit rewardmodel but instead
directly optimizes on the humanpreference data. While thismakes the pipelinemuch
simpler, it doesn’t solve the sample ine�ciency issue of policy gradient methods, as
it still backpropagates a single scalar feedback for the entire video output.
While we have made significant progress in aligning image di�usion models, this
has remained challenging for video di�usion models [32, 411]. In this work, we take
up this challenging task. We find that naively applying prior techniques of image
alignment [297, 71] to video di�usion can result in significant memory overheads.
Further, we demonstrate howwidely available image or video discriminative models
can be used to align video di�usion models. Concurrent to our work, InstructVideo
[450] also aligns video di�usionmodels via human preference; however, thismethod
requires access to a dataset of videos. Such a dataset is di�cult to obtain for each
di�erent task, and becomes di�cult to scale especially to large numbers of tasks. In
this work, we show that one can easily align video di�usionmodels using pre-trained
reward models while not assuming access to any video dataset.

6.3 Background

Di�usion models have emerged as a powerful paradigm in the field of generative
modeling. These models operate by modeling a data distribution through a sequen-
tial process of adding and removing noise.
The forward di�usion process transforms a data sample x into a completely noised
state over a series of steps T . This process is defined by the following equation:

xt =
p
↵̄tx+

p
1� ↵̄t✏, ✏ ⇠ N (0,1), (6.1)

where ✏ represents noise drawn from a standard Gaussian distribution. Here, ↵̄t =Qt
i=1 ↵i denotes the cumulative product of↵i = 1��i, which indicates the proportion

of the original data’s signal retained at each timestep t.
The reverse di�usion process reconstructs the original data sample from its noised
version by progressively denoising it through a learned model. This model is repre-
sented by ✏✓(xt; t) and estimates the noise ✏ added at each timestep t.
Di�usion models can easily be extended for conditional generation. This is achieved
by adding c as an input to the denoising model:
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whereD0 denotes a dataset consisting of image-conditioning pairs. This loss function
minimizes the distance between the estimated noise and the actual noise, and aligns
with the variational lower bound for log p(x|c).
To sample from the learned distribution p✓(x|c), one starts with a noise sample
xT ⇠ N (0,1) and iteratively applies the reverse di�usion process:

xt�1 =
1
p
↵t

✓
xt �

�t
p
1� ↵̄t

✏✓(xt, t, c)

◆
+ �tz, z ⇠ N (0,1), (6.3)

The above formulation captures the essence of di�usion models, which highlights
their ability to generate structured data from random noise.

6.4 VADER: Video Di�usion via Reward Gradients

xT xt xt�1 x0

Reward 
Model Loss

Send GradientsReverse Diffusion

��Loss

Figure 6.2: VADER aligns various pre-trained video di�usion models by backpropagating
gradients from the reward model, to e�ciently adapt to specific tasks.

We present our approach for adapting video di�usion models to perform a specific
task specified via a reward function R(.).
Given a video di�usion model p✓(.), dataset of contexts Dc, and a reward function
R(.), we seek to maximize the following objective:

J(✓) = Ec⇠Dc,x0⇠p✓(x0|c)[R(x0, c)]

To learn e�ciently, both in terms of the number of reward queries and compute time,
we seek to utilize the gradient structure of the reward function, with respect to the
weights ✓ of the di�usion model. This is applicable to all reward functions that are
di�erentiable in nature. We compute the gradientr✓R(x0, c) of these di�erentiable
rewards, and use it to update the di�usion model weights ✓. The gradient is :

r✓R(x0, c) =
TX

t=0

@R(x0, c)

@xt
·
@xt
@✓

.
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Algorithm 5 VADER
Require: Di�usion Model weights ✓
Require: Reward function R(.)
Require: Denoising Scheduler f
Require: Gradient cuto� step K
1: while training do
2: for t = T,..1 do
3: pred = ✏✓(xt, c, t)
4: if t ¿ K then
5: pred = stop grad(pred)
6: end if
7: xt�1 = f .step(pred, t, xt)
8: end for
9: g = r✓R(x0, c)
10: ✓  ✓ � ⌘ ⇤ g
11: end while

VADER is flexible in terms of the de-
noising schedule, we demonstrate re-
sults with DDIM [374] and EDM solver
[186]. To prevent over-optimization,
we utilize truncated backpropagation
[389, 297, 71], where the gradient is back
propagated only for K steps, where K ¡ T,
where T is the total di�usion timesteps.
Using a smaller value of K also reduces
the memory burden of having to back-
propagate gradients, making training
more feasible. We provide the pseu-
docode of the full training process in Al-
gorithm 5. Next, we discuss the type of
reward functions we consider for align-
ing video models.
Reward Models: Consider a di�usion
model that takes conditioning vector c as
input and generates a video x0 of length

N , consisting of a series of images ik, for each timestep k from 0 to N . Then the
objective function we maximize is as follows:

J✓ = Ec,i0:N [R([i0, i1...ik...iN�1], c)]

We use a broad range of reward functions for aligning video di�usion models. Below
we list down the distinct types of reward functions we consider.
Image-Text Similarity Reward: The generations from the di�usion model correspond
to the text provided by the user as input. To ensure that the video is aligned with
the text provided, we can define a reward that measures the similarity between the
generated video and the provided text. To take advantage of popular, large-scale
image-text models such as CLIP[308], we can take the following approach. For the
entire video to be well aligned, each of the individual frames of the video likely need
to have high similarity with the context c. Given an image-context similarity model
gimg, we have:

R([i0, i1...ik...iN�1], c) =
X

k

R(ik, c) =
X

k

gimg(ik, c)

Then, we have J✓ = Ek2[0,N ]

⇥
gimg(ik, c)

⇤
, using linearity of expectation as in the

image-alignment case. We conduct experiments using the HPS v2 [427] and
PickScore [198] reward models for image-text alignment. As the above objective
only sits on individual images, it could potentially result in a collapse, where the pre-
dicted images are the exact same or temporally incoherent. However, we don’t find
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this to happen empirically, we think the initial pre-training su�ciently regularizes
the fine-tuning process to prevent such cases.
Video-Text Similarity Reward: Instead of using per image similarity model gimg, it
could be beneficial to evaluate the similarity between the whole video and the
text. This would allow the model to generate videos where certain frames deviate
from the context, allowing for richer, more diverse expressive generations. This
also allows generating videos with more motion and movement, which is better
captured by multiple frames. Given a video-text similarity model gvid we have
J✓ = E [gvid([i0, i1...ik...iN�1], c)]. In our experiments, we use a VideoMAE[396]
fine-tuned on action classification, as gvid, which can classify an input video into one
of a set of action text descriptions. We provide the target class text as input to the
text-to-video di�usion model, and use the predicted probability of the ground truth
class from VideoMAE as the reward.
Image Generation Objective: While text similarity is a strong signal to optimize,
some use cases might be better addressed by reward models that only sit on the
generated image. There is a prevalence of powerful image-based discriminative
models such as Object Detectors and Depth Predictors. These models utilize the
image as input to produce various useful metrics of the image, which can be used
as a reward. The generated video is likely to be better aligned with the task if the
reward obtained on each of the generated frames is high. Hence we define the
reward in this case to be the mean of the rewards evaluated on each of the individual
frames, i.e R([i0, i1...ik...iN�1], c) =

P
k R(ik). Note that given the generated frames,

this is independent of the text input c. Hence we have, J✓ = Ek2[0,N ] [R(ik)] =
Ek2[0,N ] [M�(ik)] via linearity of expectation, where M� is a discriminative model
that takes an image as input to produce a metric, that can be used to define a reward.
We use the Aesthetic Reward model [345] and Object Detector [104] reward model
for our experiments.
Video Generation Objective: With access to an external model that takes in mul-
tiple image frames, we can directly optimize for desired qualities of the gener-
ated video. Given a video metric model N�, the corresponding reward is J✓ =
E [N�([i0, i1, ..ik...iN�1])].
Long-horizon consistent generation: In our experiments, we adopt this formulation
to enable a feature that is quite challenging for many open-source video di�usion
models - that of generating clips that are longer in length. For this task, we use Stable
Video Di�usion [32], which is an image-to-video di�usion model. We increase
the context length of Stable Video Di�usion by 3x by making it autoregressive.
Specifically, we pass the last generated frame by the model as input for generating
the next video sequence. However, we find this to not work well, as the model was
never trained over its own generations thus resulting in a distribution shift. In order
to improve the generations, we use a video metric model N� (V-JEPA [26]) that
given a set of frames, produces a score about how predictive the frames are from
one another. We apply this model on the autoregressive generations, to encourage
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VideoCrafter VADER (Ours)

“The raccoon is wearing a red coat and holding a snowball.”

“A dog playing a slide guitar on a porch during a gentle rainstorm.”

“A strong lion and a graceful lioness resting together in the shade of a big tree on a wide grassland.”

“A peaceful deer eating grass in a thick forest, with sunlight filtering through the trees.”

“A dog strumming an acoustic guitar by a lakeside campfire under the stars.”

“The fox is wearing a red hat and playing with leaves.”

Figure 6.3: Text-to-video generation results for VideoCrafter and VADER. We show results
for VideoCrafter Text-to-Video model on the left and results for VADER on the right, where
we use VideoCrafter as our base model. The reward models applied are a combination
of HPSV2.1 and Aesthetic model in the first three rows, and PickScore in the last three
rows. The videos in the third and last rows are generated based on prompts that are not
encountered during training.

these to remain consistent with the earlier frames. Training the model in this manner
allows us to make the video clips temporally and spatially coherent.
Reducing Memory Overhead: Training video di�usion models is very memory
intensive, as the amount of memory linearly scales with respect to the number of
generated frames. While VADER significantly improves the sample e�ciency of
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fine-tuning these models, it comes at the cost of increased memory. This is because
the di�erentiable reward is computed on the generated frame, which is a result of
sequential de-noising steps.
(i) Standard Tricks: To reduce the memory usage we use LoRA [164] that only
updates a subset of the model parameters, further we use mixed precision that stores
non-trainable parameters in fp16. To reduce memory usage during backpropagation
we use gradient checkpointing and for the long horizon tasks, o�oad the storage of
the backward computation graph from the GPU memory to the CPU memory.
(ii) Truncated Backprop: Additionally, In our experiments we only backpropagate
through the di�usion model for one timestep, instead of backpropagating through
multiple timesteps [297], and have found this approach to obtain competitive results
while requiring much less memory.
(iii) Subsampling Frames: Since all the video di�usion models we consider are
latent di�usion models, we further reduce memory usage by not decoding all the
frames to RGB pixels. Instead, we randomly subsample the frames and only decode
and apply loss on the subsampled ones. We conduct our experiments on 2 A6000
GPUS (48GB VRAM), and our model takes an average of 12 hours to train. However,
our codebase supports training on a single GPU with 16GB VRAM.

Before VADER (Ours)

“A book and a cup of tea on a blanket in a sunflower field.”

“A book and a cup of hot chocolate on a windowsill with a snowy view.”

“A book and a cup of coffee on a rustic wooden table in a cabin.”

Figure 6.4: Object removal using VADER. Left: Base model (VideoCrafter) generations,
Right: VADER generations after fine-tuning to not display books using an object detector
as a reward model. VADER e�ectively removes book and replaces it with some other object.

6.5 Results

In this work, we focus on fine-tuning various conditional video di�usion models,
including VideoCrafter [57] , Open-Sora [461] , Stable Video Di�usion [32] and
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ModelScope [411], through a comprehensive set of reward models tailored for
images and videos. These include the Aesthetic model for images [345], HPSv2
[427] and PickScore [198] for image-text alignment, YOLOS [104] for object removal,
VideoMAE for action classification [396], and V-JEPA [26] self-supervised loss for
temporal consistency. Our experiments aim to answer the following questions:

• How does VADER compare against gradient-free techniques such as DDPO or
DPO regarding sample e�ciency and computational demand?

• To what extent can the model generalize to prompts that are not seen during
training?

• How do the fine-tuned models compare against one another, as judged by
human evaluators?

• Howdoes VADER perform across a variety of image and video rewardmodels?

This evaluation framework assesses the e�ectiveness of VADER in creating high-
quality, aligned video content from a range of input conditioning.

Baselines: We compare VADER against the following methods:

• VideoCrafter [57],Open-Sora 1.2 [461], andModelScope [411] are current
state-of-the-art (publicly available) text-to-video di�usion models. We serve
them as base models for fine-tuning and comparison in our experiments in
text-to-video space.

• Stable Video Di�usion [32] is the current state-of-art (publicly available)
image-to-video di�usion model. In all our experiments in image-to-video
space, we use their base model for fine-tuning and comparison.

• DDPO [31] is a recent image di�usion alignment method that uses policy gra-
dients to adapt di�usion model weights. Specifically, it applies PPO algorithm
[347] to the di�usion denoising process. We extend their code for adapting
video di�usion models.

• Di�usion-DPO [407] extends the recent development of Direct Preference
Optimization (DPO) [312] in the LLM space to image di�usion models. They
show that directly modeling the likelihood using the preference data can
alleviate the need for a reward model. We extend their implementation to
aligning video di�usion models, where we use the reward model to obtain the
required preference data.
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Reward models: We use the following reward models to fine-tune the video di�u-
sion model.

• Aesthetic Reward Model: We use the LAION aesthetic predictor V2 [345],
which takes an image as input and outputs its aesthetic score in the range of
1-10. The model is trained on top of CLIP image embeddings, for which it uses
a dataset of 176,000 image ratings provided by humans ranging from 1 to 10,
where images rated as 10 are classified as art pieces.

• Human Preference RewardModels: We use HPSv2 [427] and PickScore [198],
which take as input an image-text pair and predict human preference for the
generated image. HPSv2 is trained by fine-tuning CLIP model with a vast
dataset of 798,090 instances of human preference rankings among 433,760
image pairs, while PickScore [198] is trained by fine-tuning CLIP model with
584,000 examples of human preferences.

• Object Removal: We design a reward model based on YOLOS [104], a Vision
Transformer based object detectionmodel trained on 118,000 annotated images.
Our reward is one minus the confidence score of the target object category,
from which video models learns to remove the target object category from its
video generation.

• Video Action Classification: While the above reward models sit on individual
images, we employ a rewardmodel that takes in the whole video as input. This
can help with getting gradients for the temporal aspect of video generation.
Specifically, we consider VideoMAE [396], which is fine-tuned for the task of
action classification on Kinetics dataset [190]. Our reward is the probability
predicted by the action classifier for the desired behavior.

• Temporal Consistency via V-JEPA: While action classification models are
limited to a fixed set of action labels, here we consider a more general reward
function. Specifically, we use self-supervised masked prediction objective as a
reward function to improve temporal consistency. Specifically, we use V-JEPA
[26] as our reward model, where the reward is the negative of the masked
autoencoding loss in the V-JEPA feature space. Note that we employ exactly
the same loss objective that V-JEPA uses in their training procedure.

Prompts: We consider the following set of prompt datasets for reward fine-tuning
of text-to-video and image-to-video di�usion models.

• Activity Prompts (Text): We consider the activity prompts from the DDPO
[31]. Each prompt is structured as ”a(n) [animal] [activity],” using a collection
of 45 familiar animals. The activity for each prompt is selected from a trio of
options: ”riding a bike”, ”playing chess”, and ”washing dishes”.
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Before VADER (Ours)

“a man in a trendy suit taking a selfie in a city square, surrounded by modern buildings and a fountain.”

“A bear enjoying a slice of cake at a picnic.”

Open-Sora

“A shark riding a bike.”

“A bear playing chess.”

ModelScope

Figure 6.5: Aligning Open-Sora 1.2 and ModelScope with VADER. The left column shows
results from the base models, while results from VADER are demonstrated on the right. The
first two rows use Open-Sora as the base model, and the last two rows use ModelScope. The
reward models applied are PickScore in the first row, HPSv2.1 in the second row, HPSv2 in
the third row, and the Aesthetic reward model in the last row.

• HPSv2 Action Prompts (Text): Here we filter out 50 prompts from a set of
prompts introduced in the HPS v2 dataset for text-image alignment. We filter
prompts such that they contain action or motion information in them.

• ChatGPT Created Prompts (Text): We prompt ChatGPT to generate some
vivid and creatively designed text descriptions for various scenarios, such as
books placed beside cups, animals dressed in clothing, and animals playing
musical instruments.

• ImageNet Dog Category (Image): For image-to-video di�usion model, we
consider the images in the Labrador retriever andMaltese category of ImageNet
as our set of prompts.

• Stable Di�usion Images (Image): Here we consider all 25 images from Stable
Di�usion online demo webpage.
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6.5.1 Sample and Computational E�ciency

Figure 6.6: Reward obtained vs resolution of
generated video for di�erent methods. We re-
port the reward achieved after 100 steps of op-
timization. As the resolution of the generation
increases, the reward gap between VADER
and DDPO significantly increases.

Training of large-scale video di�usion
models is done by a small set of entities
with access to a large amount of comput-
ing; however, fine-tuning of these mod-
els is done by a large set of entities with
access to a small amount of computing.
Thus, it becomes imperative to have fine-
tuning approaches that boost both sam-
ple and computational e�ciency.
In this section, we compare VADER’s
sample and computational e�ciency
with other reinforcement learning ap-
proaches such as DDPO and DPO. In
Figure 6.7, we visualize the reward
curves during training, where the x-axis
in the upper half of the figure is the num-
ber of reward queries and the one in the
bottom half is the GPU-hours. As can
be seen, VADER is significantly more e�cient in terms of sample and computation
than DDPO or DPO. This is since we send dense gradients from the reward model
to the di�usion weights, while the baselines only backpropagate scalar feedback.

6.5.2 Generalization Ability

Method Aes (T2V) HPS (T2V) ActP Aes (I2V)

Train. Test. Train. Test. Train. Train. Test.

Base 4.61 4.49 0.25 0.24 0.14 4.91 4.96
DDPO 4.63 4.52 0.24 0.23 0.21 N/A N/A
DPO 4.71 4.41 0.25 0.24 0.23 N/A N/A

Ours 7.31 7.12 0.33 0.32 0.79 7.83 7.64

Table 6.1: Reward on Prompts in train & test. We split the prompts into train and test sets,
such that the prompts in the test set do not have any overlap with the ones for training. We
find that VADER achieves the best on both metrics.

A desired property of fine-tuning is generalization, i.e. the model fine-tuned on a
limited set of prompts has the ability to generalize to unseen prompts. In this section,
we extensively evaluate this property across multiple reward models and baselines.
While training text-to-video (T2V) models, we use HPSv2 Action Prompts in our
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Figure 6.7: Training e�ciency comparison. Top: Sample e�ciency comparison with DPO
and DDPO. Bottom: Computational e�ciency comparison with DPO and DDPO. It can be
seen that VADER starts converging within at most 12 GPU-hours of training, while DPO or
DDPO do not show much improvement.

training set, whereas we use Activity Prompts in our test set. We use Labrador dog
category in our training set for training image-to-video (I2V) models, while Maltese
category forms our test set. Table 6.1 showcases VADER’s generalization ability.

6.5.3 Human Evaluation

Method Fidelity Text Align

ModelScope 21.0% 39.0%
VADER (Ours) 79.0% 61.0%

Table 6.2: Human Evaluation results for
HPS reward model, where the task is
image-text alignment.

We carried out a study to evaluate human
preferences via Amazon Mechanical Turk.
The test consisted of a side-by-side compar-
ison between VADER and ModelScope. To
test how well the videos sampled from both
the models aligned with their text prompts,
we showed participants two videos gener-
ated by both VADER and a baseline method,
asking them to identify which video better
matched the given text. For evaluating video quality, we asked participants to com-
pare two videos generated in response to the same prompt, one from VADER and
one from a baseline, and decide which video’s quality seemed higher. We gathered
100 responses for each comparison. The results, illustrated in Table 6.2, show a
preference for VADER over the baseline methods.
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6.5.4 Qualitative Visualization

In this section, we visualize the generated videos for VADER and the respective
baseline. We conduct extensive visualizations across all the considered reward
functions on various base models.

HPS Reward Model: In Figure 6.3, we visualize the results before and after fine-
tuning VideoCrafter using both HPSv2.1 and Aesthetic reward function together
in the top three rows. Before fine-tuning, the raccoon does not hold a snowball,
and the fox wears no hat, which is not aligned with the text description; however,
the videos generated from VADER does not result in these inconsistencies. Further,
VADER successfully generalizes to unseen prompts as shown in the third row of
Figure 6.3, where the dog’s paw is less like a human hand than the video on the left.
Similar improvements can be observed in videos generated from Open-Sora V1.2
and ModelScope as shown in the second and third rows of Figure 6.5.

Aesthetic Reward Model: In Figure 6.3, in the top three rows we visualize the
results before and after fine-tuning ModelScope using a combination of Aesthetic
reward function and HPSv2.1 model. Also, we fine-tune ModelScope via Aesthetic
Reward function and demonstrate its generated video in the last row in Figure 6.5.
We observe that Aesthetic fine-tuning makes the generated videos more artistic.

PickScore Model: In the bottom three rows of Figure 6.3, we showcase videos
generated by PickScore fine-tuned VideoCrafter. VADER shows improved text-video
alignment than the base model. In the last row, we test both models using a prompt
that is not seen during training time. Further, video generated from PickScore
fine-tuned Open-Sora is displayed in the first row of Figure 6.5.

Object Removal: Figure 6.4 displays the videos generated by VideoCrafter after
fine-tuning using the YOLOS-based objection removal reward function. In this
example, books are the target objects for removal. These videos demonstrate the
successful replacement of books with alternative objects, like a blanket or bread.

Video Action Classification: In Figure 6.8, we visualize the video generation
of ModelScope and VADER. In this case, we fine-tune VADER using the action
classification objective, for the action specified in the prompt. For the prompt, ”A
person eating donuts”, we find that VADER makes the human face more evident
along with adding sprinkles to the donut. Earlier generations are often misclassified
as baking cookies, which is a di�erent action class in the kinetics dataset. The
addition of colors and sprinkles to the donut makes it more distinguishable from
cookies leading to a higher reward.
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ModelScope VADER (Ours)

“A person playing
Piano”

“A person eating
Donuts”

Figure 6.8: Video action classifiers as reward model. We use VideoMAE action classification
model as a reward function to fine-tune ModelScope’s Text-to-Video Model. We see that
after fine-tuning, VADER generates videos that correspond better to the actions.

Stable Video 
Diffusion

VADER  
(Ours)

Stable Video 
Diffusion

VADER  
(Ours)

Figure 6.9: Improving temporal and spatial consistency of Stable Video Di�usion (SVD)
Image-to-Video Model. Given the leftmost frame as input, we use autoregressive inference
to generate 3*N frames in the future, where N is the context length of SVD. However, this
su�ers from error accumulation, resulting in corrupted frames, as highlighted in the red
border. We find that VADER can improve the spatio-temporal consistency of SVD by using
V-JEPA’s masked encoding loss as its reward function.

V-JEPA reward model: In Figure 6.9, we show results for increasing the length of
the video generated by Stable Video Di�usion (SVD). For generating long-range
videos on SVD, we use autoregressive inference, where the last frame generated by
SVD is given as conditioning input for generating the next set of images. We perform
three steps of inference, thus expanding the context length of SVD by three times.
However, as one can see in the images bordered in red, after one step of inference,
SVD starts accumulating errors in its predictions. This results in deforming the teddy
bear, or a�ecting the rocket in motion. VADER uses V-JEPA objective of masked
encoding to enforce self-consistency in the generated video. This manages to resolve
the temporal and spatial discrepancy in the generations as shown in Figure 6.9.
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6.6 Conclusion
We presented VADER, which is a sample and compute e�cient framework for fine-
tuning pre-trained video di�usion models via reward gradients. We utilized various
reward functions evaluated on images or videos to fine-tune the video di�usion
model. We further showcased that our framework is agnostic to conditioning and
can work on both text-to-video and image-to-video di�usion models. We hope our
work creates more interest towards adapting video di�usion models.
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Part III

Autonomous Exploration for
Mobile Manipulation
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Chapter 7

Continuously Improving Mobile
Manipulation with
Autonomous Real-World RL

Figure 7.1: Real World Autonomous Learning: We enable a legged mobile manipulator to
learn a variety of tasks such as moving chairs (top, left and right), righting a dustpan (top,
middle), and sweeping (bottom) via autonomous practice in the real world.

7.1 Motivation
How dowe build generalist systems capable of executing a wide array of tasks across
diverse environments, withminimal human involvement? While visuomotor policies
trained with reinforcement learning (RL) have demonstrated significant potential
to bring robots into open-world environments, they often first require training in
simulation [72, 394, 6, 144, 439, 61]. However, it is challenging to build simulations
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that capture the unbounded diversity of real-life tasks, especially involving complex
manipulation. What if learning instead occurs through direct engagement with the
real world, without extensive environment instrumentation or human supervision?
Prior work on real-world RL for learning new skills has been shown for locomo-
tion [371, 425], and in manipulation for pick-place [182, 183, 383, 159] or dexter-
ous in-hand tasks [135, 434, 266] in stationary setups. Consider a complex, high-
dimensional system like a legged mobile manipulator learning in open spaces. The
feasible space of exploration is much larger than in constrained tabletop setups.
Autonomous operation of such a complex, high-dimensional robots often does not
result in data that has useful learning signal. For example, we would like to avoid
the robot simply waving its arm in the air without interacting with objects. Further-
more, even after making some progress on the task, the robot should not stagnate
near goal states. While prior work has explored using goal cycles [150, 135, 136]
to help maintain state diversity, this has not been shown for mobile systems. Such
systems also need to learn more complex skills, involving constrained manipula-
tion of larger objects and moving beyond pick and place, making sample-e�cient
learning critical. Finally, reward supervision using current RL approaches often
requires physical instrumentation using specialized sensors [437, 342] or humans in
the loop [113, 368, 231, 370], which is di�cult to scale to di�erent tasks.
Our approach tackles each of these issues of autonomy, e�cient policy learning, and
reward specification. We enable higher-quality data collection by guiding exploration
toward object interactions using o�-the-shelf visual models. This leads the robot to
search for, navigate to, and grasp objects before learning how to manipulate them.
We preserve state diversity to prevent robot stagnation by extending the approach
of goal-cycles to mobile manipulation tasks. For sample e�cient policy learning,
we combine RL with behavior priors that contain basic task knowledge. These priors
can be planners with a simplified incomplete model, or procedurally generated
motions. For rewards without instrumentation or human involvement, we combine
semantic information from detection and segmentation models with low-level depth
observations for object state estimation.
The main contribution of this work is a general approach for continuously learning
mobile manipulation skills directly in the real world with autonomous RL. The
main components of our approach involve: (1) task-relevant autonomy for collecting
data with useful learning signals, (2) e�cient control by integrating priors with
learning policies, and (3) flexible reward specification combining high-level visual-
text semantics with low-level depth observations. Our approach enables a Spot robot
to continually improve in performance on a set of 4 challenging mobile manipulation
tasks, including moving a chair to a goal with the table in the corner or center of the
playpen, picking up and vertically balancing a long-handled dustpan, and sweeping
a paper bag to a target region. Our experiments show that our approach gets an
average success rate of about 80% across tasks, a 4⇥ improvement over using either
RL or the behavior prior individually with our task-relevant autonomy component.

86



7.2 Related Work

Autonomous Real-World RL: Previous work for real-world RL mostly involves ei-
ther manipulation for table-top pick-place settings [182, 183, 425], in-hand dexterous
manipulation [266, 135, 434] or locomotion behavior [142, 372, 425]. Approaches
for automated resets needed for continual practice include instrumented environ-
ments [182, 183], forward-backward policies [359], graph structure of sub-tasks
that serve as resets for one another [135, 434], or pre-trained, reliable reset policies
[371]. For mobile manipulation, real-world RL has been limited to pick and place
tasks [383, 159, 177], or operating small cabinets/ drawers [163]. There is also in-
teresting work in using the legs of quadrupeds as manipulators [11, 60], but this is
limited by the restricted degree of possible manipulation. In our work, we extend
the RL framework to learn challenging manipulation skills such as sweeping and
moving chairs for a mobile system. For e�cient learning on these complex tasks, we
leverage behavior priors, which have some basic task knowledge. Moreover, task
specification is a big challenge [463] for real-world learning. Current approaches of-
ten require physical instrumentation using specialized sensors [437, 342] or humans
in the loop [113, 368, 231, 370], which is di�cult to scale to di�erent tasks. There
has been some work on completely self-supervised learning systems with some
extensions to robotics [295, 251], but these approaches are challenging to deploy
on complex tasks due to intractability, underspecification, and misalignment. We
extend the approach of using language goals and combining these with large-scale
visual models [197], conditioned on open-vocabulary prediction [449, 222, 27], to
obtain object states, which can be used to compute reward.

Mobile Manipulation: In the 2015 DARPA Robotics Challenge Finals, mobile ma-
nipulation solutions primarily relied on pre-built object models and task-specific
engineering to enable mobile manipulation [204]. More recent work modulariz-
ing tasks into skill primitives and interacting with those primitives using flexible
planners, including large language models, has enabled more generalization out-
side of pre-coded tasks [424, 422, 383, 21]. Imitation learning approaches to mobile
manipulation enable joint reasoning over manipulation and navigation actions and
generalize across broad sets of tasks [133, 37, 5, 353, 116]. However, imitation learn-
ing requires an expensive collection of expert trajectories. In contrast, RL methods
can learn from experiencewithout requiring extra human labor for each new task. De-
composing the action space over which the RL policy operates enables more tractable
and e�cient learning of long-horizon mobile manipulation skills [428, 131, 242, 445].
In our work, we move beyond tasks that involve picking and placing to instead learn
skills that require coordination between the legs and arms, e.g., moving chairs or
sweeping paper bags with a broom.
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Prior

Efficient Control

+ Policy

Task-relevant Autonomy

Multi-goal

Multi-robot

Flexible Supervision

Text + Segment + Depth

SAM

Dino
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Auto-grasp

Goal-cycles

Figure 7.2: Method Overview: The main components of our approach for robots to contin-
ually practice tasks in the real world. Left: Task-relevant autonomy to ensure collection of
useful data via object interaction, and maintaining state diversity via automated resets using
multi-goal and multi-robot setups. Center: E�cient control by aiding policy learning with
basic task knowledge present in behavior priors in the form of planners with a simplified
model or automated behaviors. Right: Flexible reward supervision that combines human-
interpretable detection-segmentation with low-level, fine-grained depth observation.

7.3 Continuously Improving Mobile Manipulation via Real-
world RL

Algorithm 6 Autonomous Mobile Manipulation
Require: Detection-segmentation models M(.)
Require: Behavior prior P (.)
1: Initialize Data bu�er D, RL policy ⇡✓
2: Initialize task goal state gT
3: Initialize trajectories per taskK, horizon H
4: while training do
5: for trajectory 1:K do
6: Deploy Auto-grasp/nav
7: for timestep 1:H do
8: Deploy policy ⇡✓(.)with prior P (.)
9: Compute reward rt usingM(ot)
10: Add (ot, at, ot+1, rt) 7! D

11: Sample batch � ⇠ D

12: Update ⇡ with � via RL
13: end for
14: (optional) If dist(x, gT )  ✏, break
15: end for
16: Switch task goal gT
17: end while

We design our approach to al-
low robots to autonomously prac-
tice and e�ciently learn new
skills without task demonstra-
tions or simulation modeling,
and with minimal human in-
volvement. The overview of the
approach we use is presented
in Alg.6. Our approach has
three components, as depicted in
Fig 7.2: task-relevant autonomy,
e�cient control using behavior
priors, and flexible reward spec-
ification. The first ensures the
data collected is likely to have
learning signal, the second uti-
lizes signal from data to collect
even better data to quickly im-
prove the controller, and the third
describes how to define learning
signal for tasks. This allows learn-
ing di�cult manipulation tasks,
including tool use and constrained manipulation of large and heavy objects.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.3: TaskGoals: States that define goal-cycles for our 4 tasks, showing target position
and orientation for the object of interest - (a-b): Chair Moving with a corner table, (c-d):
Chair Moving with a middle table, (e-f): Long Handled Dustpan Standup, (g-h): Sweeping.
Each setting requires the robot to alternate the object of interest (chair/dustpan/paper bag)
between the pair of goal states.

7.3.1 Task-Relevant Autonomy

Auto-Grasp/Auto-Nav: For safe autonomous operation, we first create a map by
walking the robot around the environment. This map is used by the robot to avoid
collisions during its autonomous learning process. To ensure data collected involves
object interaction, every episode begins with the robot estimating, moving to, and/or
grasping the object of interest for the task. The object state is estimated using
detection and segmentation models along with depth observations, as described in
section 7.3.3. The robot then navigates towards the object position using RRT* to plan
in SE(2) space using the collision map, and optionally deploys the grasping skill
from the Boston Dynamics Spot SDK depending on the task. This grasp is generated
via a geometric algorithm that fits a grasp location with a geometric model of the
gripper, scores di�erent possible grasps, and picks the best one. We do not constrain
the grasp type, or on which portion of the object the grasp is performed. This allows
the robot to keep practicing regardless of which position or orientation the object
might end up in as a result of continual interaction.
Goal-Cycles: To prevent robot stagnation near goal states, we set up ’goal-cycles’
within tasks, which serve as automated task resets. We show the di�erent goal states
used in each of the 4 tasks we consider in Fig.7.3. In the case of the chair moving
tasks (Fig.7.3: a-d), the robot alternates between goals that are far apart in the x-y
plane, and for the dustpan stand-up task (Fig.7.3 e,f), the robot needs to pickup the
fallen dustpan and vertically orient and balance it. For the sweeping task (Fig.7.3:
g-h), we use a multi-robot setup for the goal cycle, where one robot holds the broom
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and needs to sweep the paper bag into the target region (denoted by the blue box),
while the other needs to pick up the bag and drop it back into the region where it
can be swept. Since we only need learning for the sweeping skill, the robot that picks
up the bag runs the previously described auto-grasp procedure.

7.3.2 Prior-guided Policy Learning

Incorporating Priors: We enable e�cient learning by leveraging behavior priors
that utilize basic knowledge of the task. This removes the burden from the learning
algorithm from having to rediscover this knowledge and instead focus on learning
additional behavior needed to solve the task. For example, an RRT* planner with a
simplified 2D model can help an agent move between two points in the x-y plane
while avoiding obstacles. Starting with this prior, using RL can help the robot learn
to recover from collisions and deal with dynamic constraints not represented in the
model. Concretely, the prior is a function P (.) that takes in an observation ot and
produces an action at, similar to a policy ⇡(at|ot). We can deploy the prior and the
policy in the following ways:
1. Separate: Trajectories are collected using either the prior {P (a0|o0), . . . , P (aT |oT )}
or the policy {⇡(a0|o0), . . . ,⇡(aT |oT )}. Instead of learning entirely from scratch, we
incorporate the (potentially) suboptimal data from the prior into the robot’s data
bu�er to bootstrap learning. Intuitively, the prior is likely to see a higher reward
than a completely randomly initialized policy, especially for sparse reward tasks.
We make no assumptions on the optimality of the prior, and bootstrap learning
via incorporating its data. In practice, we first collect trajectories using the prior, to
initialize the data bu�er for training the online RL policy ⇡(.).
2. Sequential: In addition to providing data with better signal to the learning process,
priors can reliably make reasonable progress on a task. This is because they often
generalize well, for example, an SE(2) planner will make reasonable progress in
moving a robot between any two points in the x-y plane, even when it performs
constrained manipulation. We would need to sample many times from the prior to
distill this information purely via the data bu�er. Hence, a more direct approach
is to utilize the prior along with the policy for control. We do this by sequentially
executing the prior, followed by the policy. That is, trajectories collected in this
manner take the form:

{P (a0|o0), .., P (aL|oL),⇡(aL+1|oL+1), ..,⇡(aT |oT ).} (7.1)

Thus, the prior structures the policy’s initial state distribution, making learning
easier. The data collected by the prior is added to the data bu�er, allowing the policy
to learn from these transitions.
3. Residual: In certain cases, the prior might not be robust enough to deploy directly
but nonetheless provide reasonable bounds on what actions should be executed. For
example, for sweeping an object, the robot’s base should roughly be in the vicinity
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of the trash being swept, but this does not prescribe what exact actions to take. Such
a prior can be used residually, where a policy adjusts the actions of the prior at every
time step before being executed. These trajectories take the form:

{P (a0|o0) + ⇡(a0|o0), . . . , P (aT |oT ) + ⇡(aT |oT )} (7.2)

RL Policy Training: The RL objective is learn parameters ✓ of a policy ⇡✓ to maximize
the expected discounted sum of rewards R(st, at):

J(⇡✓) = E s0⇠p0
at⇠⇡✓(at|st)

st+1⇠P(st+1|st,at)

"
TX

t=0

�tR(st, at),

#
(7.3)

where p0 is the initial state distribution, P is the transition function and � is the
discount factor. For sample e�cient learning that e�ectively incorporates prior data,
we use the state-of-the-art model-free RL algorithmRLPD [23]. RLPD is an o�-policy
method based on Soft-Actor Critic (SAC) [143], which samples from a mixture of
data sources for online learning. Like REDQ [59], RLPD uses a large ensemble of
critics and in-target minimization over a random subset of the ensemble to mitigate
over-estimation common in TD-Learning. Since our observations consist of raw
images, we incorporate the image augmentations added by DrQ [440] to the base
RL algorithm.

7.3.3 Flexible Supervision via Text-Prompted Segmentation

For flexible reward supervision, we combine semantic high-level information from
vision and language models with low-level depth observations. Each task is defined
by a desired configuration of some object of interest, so we derive a reward function
by comparing the estimated state of the object at a given time to this desired state
(see Section 7.4 for task-specific details). To estimate the state of the object, we start
by using an open-vocabulary detectionmodel Detic [462] to obtain the bounding box
corresponding to the object of interest. We then obtain the corresponding objectmask
by conditioning a segmentation model, Segment-Anything [197], on the bounding
box. Finally, using depth observations and the calibrated camera system for either
the egocentric or fixed third-person cameras, we get a point cloud. Although this
estimation is noisy, we find it su�cient to enable learning e�ective control policies via
real-world RL. This system is flexible enough to handle di�erent objects of interest,
such as the chair, long handled dustpan for vertical orientation, or the paper bag
for sweeping. Full details on the prompts, detection and segmentation models, and
reward functions for each task in the supplemental materials.

7.4 Experimental Setup
For our experiments, we run continual autonomous RL using the Spot robot and arm
system in a playpen of about 6⇥5 meters, enclosed with metal railings for safety. The
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playpen is mapped before autonomous operation to ensure the robot stays within
bounds and doesn’t collide with the railings. The navigation aspect of task autonomy
involves searching for objects of interest. Since the main focus of this work is on
learning complex manipulation skills, we do not use learning for the search problem;
instead, we rely on a fixed camera in the scene. In addition to this, we also use the 5
egocentric body cameras of the Spot while searching for objects.

Prior Policy mode Reward Sparse

Chair-tablecorner RRT* Sequential Chair-goal distance False
Chair-tablemiddle RRT* Sequential Chair-goal distance False
Dustpan Standup Scripted Separate Handle height True
Sweeping Distance constraint Residual Bag-goal distance False

Table 7.1: We list the choice of prior, how it is combined
with the policy, how reward relates to the object state, and
whether the reward is sparse.

The chair-moving task
requires the robot to
grasp a chair and move
it between goal locations.
We consider two variants,
chair-tablecorner (Fig.7.3
a-b ) and chair-tablemiddle
(Fig.7.3 c-d ). The latter
is more challenging since
collisions between the chair
and table base are much more frequent and the robot has to operate in a much
tighter space. The dustpan standup task involves lifting up the long handle of a
dust-pan (Fig.7.3-e), and then vertically balancing it so that it can stay upright on
its base (Fig.7.3-f). Sweeping involves two robots, where one of the robots holds a
broom in its gripper and needs to use it to sweep a paper bag into a goal region
(Fig.7.3-g). The other robot does not use learning, instead using the auto-grasp
procedure to reset the paper bag by picking it up and dropping it close to the initial
position(Fig.7.3-h). For each task, we specify success criteria for task completion,
which corresponds to reaching the goal states in Fig.7.3. We list the choice of the
prior, its combination with the policy, the state measurements used for reward, and
reward sparsity in Table 7.1.
The observation space for RL policy training for all tasks consists of three 128X128
RGB image sources: the fixed, third-person camera and two egocentric cameras on
the front of the robot. Additionally, we use the body position, hand position, and
target goal. The action space for the chair and sweeping tasks is 5 dimensional,
with base (x, y, ✓) control and (x, y) control for the hand relative to the base. The
dustpan stand-up task is 3 dimensional, consisting of (z, yaw, gripper) commands
for the hand, where the gripper open action terminates the episode. We use the
same network architectures for image processing, critic functions, policy, etc., for
all comparisons. Please see supplementary materials for more details on the full
reward functions, success criteria, procedural functions for priors, hyper-parameters
for learning, and network details.
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Figure 7.4: Continual training improvement: Success rate vs number of samples for ours,
only RL and only prior. Note that we use our task-relevant autonomy approach with all
methods. We see that our approach continuously improves with experience across tasks,
learning much faster than RL without priors, and attaining significantly higher performance
than just using the prior.

7.5 Results

Our real-world experiments test whether autonomous real-world RL can enable
robots to continuously improve mobile manipulation skills for performing various
tasks. Specifically, we seek to answer the following questions: 1) Can a real robot
learn to perform tasks that require both manipulation and mobility in an e�cient
manner? 2) Does performance continually improve as the robot collects more data?
3) How does the approach of structured exploration using priors along with RL,
compare to solely using the prior, or using only RL? 4) How does the policy learned
via autonomous training perform when evaluated in test settings?
Task-relevant Autonomy: Running the robot without auto-grasp or goal-cycles,
with the full action space comprising base and arm movement to any position in the
playpen does not lead to any meaningful change in task progress even over long
periods of time. Further, such operation is unsafe since the robot arm can get stuck in
the enclosure railings, or strike the wall in an outstretched configuration. Hence, all
the experiments we conduct, including those for baselines, utilize the task-relevant
autonomy component so that the robot can make some progress on the task.
Continual Improvement via Practice: Given our task autonomy procedure, how
e�ective is our proposed approach of combining real world RL with behavior priors,
as opposed to using either only the prior or RL? From Fig.7.4, we see that our
approach learns significantly faster than using only RL, and attains much superior
performance than the prior, for each of the tasks. On the especially challenging
sweeping task which involves tool use of the broom with a deformable paper bag,
using only the prior or only RL leads to almost no progress, while our method is
able to learn the task. Each robot training run takes around 8-15 hours, with the
variation in time owing to di�erent goal reset strategies across tasks and variance
in how often the robot retries grasping objects for task-relevant autonomy. Hence,
for fair comparisons across methods, we use the number of real-world samples
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collected to measure e�ciency. The system also needs to be robust to many di�erent
factors in order to learn these tasks. The training area is exposed to sunlight, and the
robot keeps collecting data and learning throughout the day with varying degrees
of illumination. Object starting positions and grasps can vary widely, which a�ects
the resulting object dynamics when practicing the task.

Figure 7.5: Training mean reward: Mean
reward vs number of samples for the chair
moving tasks. The negative average reward
for RL without priors indicates that the robot
is often far from the goal location.

RLwithout Prior: For some tasks, using
RL without the prior does improve in
performance, but at a much slower rate
than our method. Without the prior, RL
often spends samples exploring parts of
the state that are far from the goal. To il-
lustrate this, we plot the average reward
over each trajectory for the chair tasks
(Fig.7.5). The reward for this task is of
the form �x + e�x, where x is the dis-
tance of the chair to the goal position of
the chair. The negative mean reward for
RLwithout the prior implies that the dis-
tance x to the goal is quite large, mean-
ing that the robot is often far from the
goal. On the other hand, since our method executes the prior and policy sequentially
for the chair task, our policy always starts out reasonably close to the goal, and can
thus can pick up on high reward signal more often, leading to faster learning. We
observe a similar pattern for the sweeping task, where using only RL leads the robot
to wander around the playpen, greatly decreasing the likelihood of interacting with
the paper bag and obtaining high reward.
Prior without RL: While the behavior priors are e�ective at bootstrapping learning,
they are not su�cient on their own. This is because they do not adapt or learn
from experience, and so keep repeating the same mistakes without improvement
over time. We illustrate a qualitative failure example of the behavior prior for the
chair moving task in Fig.7.6, where the robot following the RRT* planner runs into
a collision state due to the simplified model being used. In contrast, our approach
adapts the policy based on its experience to improve its performance, avoiding such
collisions. For some tasks like sweeping the behavior prior is much simpler, only
providing a constraint not to move too far away from the paper bag, which does not
specify how the robot should sweep.
Final Policy Evaluation: We evaluate the final policies obtained after autonomous,
continual practice and find that our approach obtains an average success rate
of 80% across tasks from Table 7.2. For comparisons between our method
and using only RL, we evaluate models obtained with the same number of
real world samples. For evaluation, we use the deterministic policy instead
of sampling from the stochastic distribution, which is used during training.
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Figure 7.6: Left: The prior (RRT* with incomplete model) gets stuck in a collision with the
table and is unable to recover as the planner does not have a model of chair-table interaction
dynamics. Right: Our approach e�ectively recovers from collisions to complete the task.

Ours Only RL Only Prior O�ine RL

Chair-tablecorner 100% 20% 22% 10%
Chair-tablemiddle 80% 50% 38% 20%
Dustpan Standup 60% 20% 18% 60%
Sweeping 80% 0% 5% 10%

Table 7.2: Evaluation Comparison: The success rate of
the final policy evaluated on di�erent tasks. For evalua-
tion, we use the deterministic policy instead of sampling
from the stochastic distribution like in training. Our ap-
proach gets an average success rate of 80%, about 4⇥
improvement over using only the prior or only RL.

Further, we set the initial state
of the objects to be close to the
opposite goal in the goal cycle.
For instance, in the sweeping
task, we initialize the paper bag
roughly in the location shown
in Fig.7.3-h. This is di�erent
from training, where the paper
bag could end up in any loca-
tion, and success is continually
evaluated. We note that on the
particularly hard task of sweep-
ing, none of the other methods
are successful, while our approach gets 80% success.
Prior Data Quality: The behavior prior helps our approach in two ways, by structur-
ing exploration for online learning, and also by providing higher quality data than
random search, containing higher reward. To test the quality of the data obtained
by the prior, we run o�ine RL on the dataset collected by the prior. This utilizes the
reward of transitions to learn a policy, without any online rollouts. From Table 7.2,
we see that on the chair and sweeping tasks, the behavior prior data quality is much
worse, with an average success rate of 13%. The case of dustpan standup is notable
since o�ine RL performs on par with our method, getting about 60% success. While
the numerical performance is similar, there is a considerable qualitative di�erence
in the behavior learned. Our approach learns strategies that are very di�erent from
the behavior prior, through exploration. This involves raising the robot’s arm and
dropping the dustpan, such that it lands upright. On the other hand, o�ine RL
sticks close to the successful examples from the behavior prior generations.
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7.6 Discussion and Limitations
We have presented an approach for continuously learning new mobile manipulation
skills. This is enabled using task-relevant autonomy, e�cient real-world control using
behavior priors, and flexible reward definition. The current approach uses learning
primarily for acquiring low-level manipulation skills after objects are grasped. Using
automated procedures for navigation and search making use of a fixed third-person
camera is a current limitation. This can be addressed by adding learning for the
higher-level search problem too, which would allow the robot to rely just on its
egocentric observations. This would allow learning in more unstructured, open-
ended environments.
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Chapter 8

Adaptive Mobile Manipulation for
Articulated Objects in the Open
World

Figure 8.1: Open-World Mobile Manipulation System: We use a full-stack approach to
handle articulated objects such as real-world doors, cabinets, drawers, and refrigerators in
open-ended unstructured environments.

8.1 Motivation

Deploying robotic systems in unstructured environments, such as homes has been
a long-standing research problem. Recently, significant progress has been made
in learning-based systems [19, 206, 54, 354] towards this goal. However, this
progress has been largely made independently either in mobility or in manipu-
lation, while a wide range of practical robotic tasks require dealing with both as-
pects [116, 353, 37, 439]. The joint study of mobile manipulation paves the way for
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generalist robots which can perform societally useful tasks [377] in open-ended
unstructured environments, as opposed to being restricted to controlled laboratory
settings focused primarily on tabletop manipulation. However, developing and
deploying such robot systems in the open-world with the capability of handling un-
seen objects is challenging for a variety of reasons, ranging from the lack of capable
mobile manipulator hardware systems to the di�culty of operating objects in diverse
scenarios. Consequently, most of the recent mobile manipulation results end up
being limited to pick-move-place tasks[444, 159, 383, 234], which is arguably repre-
sentative of only a small fraction of problems in this space. We focus on operating
everyday articulated objects, such as doors, drawers, refrigerators, or cabinets in
open-world environments with a mobile manipulation robot. This is a common and
essential task encountered in everyday life, and is a long-standing problem in the
community [15, 85, 24, 65, 170, 269, 293].
The primary challenge is handling unseen objects across diverse varieties in unstruc-
tured open-world environments, rather than tabletop manipulation in a constrained
lab setup. In this project, we take a full-stack approach to address this challenge. First,
we provide a simple and intuitive solution to build a mobile manipulation hardware
platform, enabling the transition from tabletop manipulation to mobile manipula-
tion. The hardware follows two main principles - (1) versatility and agility which is
essential to e�ectively operate diverse objects with di�erent physical properties in
potentially challenging environments, and (2) a�ordability and rapid-prototyping,
since the system is assembled with o�-the-shelf components, it is accessible and can
readily be used by most research labs costing less than 25, 000USD. We motivate our
learning approach by considering how people typically approach operating articu-
lated objects like doors: this process generally starts with reaching towards a part of
the object, such as a handle, and establishing a grasp, then follows by constrained
manipulation primitives such as rotating, unlocking, or unhooking, where arm or
body movements are applied to operate the object. In addition to this high-level
strategy, there are also lower-level decisions made at each step regarding the exact
direction of movement, extent of perturbation, and amount of force applied. Inspired
by this, we introduce primitives as APIs for e�cient learning in our framework, which
includes a grasp primitive API utilizing pretrained visual models, and a constrained
mobile-manipulation primitive API. These primitives are parameterized by learned
parameters, which need to be adapted online to operate diverse articulated objects.
We start by initializing a single policy using a set of expert demonstrations through
behavior cloning (BC). The policy takes visual inputs and outputs the parameters
of the primitive APIs, as shown in the Figure 8.6. The central challenge we face is
operating with objects that fall outside the BC training domain. For instance, with
visually ambiguous objects, it can be di�cult to determine whether a door needs to
be ‘pulled’ or ‘pushed’ based solely on visual observation. Furthermore, if all the
doors in the expert demonstrations are ’pull’ doors, the behavior cloning policy may
struggle to generalize to ’push’ doors that it has not previously encountered.
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To address this, we develop a system capable of fully autonomous online adaptation
using reinforcement learning (RL), allowing the robot to keep on improving its
performance without any human intervention. In our online adaptation, we use
safety aware exploration, where we monitor the robot arm joint current to avoid
unsafe actions, and leverage this to create negative rewards. Learning requires real-
world reward specification, using vision language models (VLMs). For autonomous
practice we use a self-reset mechanism, where we employ visual odometry to enable
the robot to navigate back to its initial position.
In this Chapter, we present Open-World Mobile Manipulation System, a full-stack
approach to tackle a challenging problem: mobilemanipulation of diverse articulated
objects in unstructured open world environments. To validate the e�ectiveness and
practicality of our system, we conducted a field test of 8 novel testing objects ranging
across 4 buildings on a university campus to test the e�ectiveness of our system, and
found adaptive learning boosts system performance after the online adaptation.

8.2 Related Work

Adaptive Real-world Robot Learning: Prior work has demonstrated how robots
acquire novel behavior by using real-world reinforcement learningwith rewards [220,
221, 182, 183], and evenwith unsupervised exploration [295, 251, 20]. Another line of
research has been dedicated to utilizing real-world online data to infer environmental
parameters or latent representations for adapting policies [315, 322, 225, 62, 263].
More recently, there have been approaches that use RL to fine-tune initialized o�ine
learning policies [149, 148, 435, 290]. Other methods aim to do so without access
to demonstrations on the test objects, and pretrain using other sources of data -
either using o�ine robot datasets [209], simulation [371] or human video [252,
184, 431, 430] or a combination of these approaches [159]. We operate in a similar
setting, without any demonstrations on test objects, and focus on demonstrating RL
adaptation on mobile manipulation systems that can be deployed in open-world
environments, bootstrapping from a set of demonstrations on a training set.

Learning-based Mobile Manipulation Systems: In recent years, the setup for
mobile manipulation tasks in both simulated and real-world environments has been
a prominent topic of research [422, 445, 377, 338, 420, 257, 460, 115, 116, 37, 165].
Notably, several studies have explored the potential of integrating Large Language
Models into personalized home robots [424, 5, 37]. While these systems display
impressive long-horizon capabilities using language for planning, these assume
fixed low-level primitives for control. In our work, we seek to learn low-level con-
trol parameters via interaction. Furthermore, unlike the majority of prior research
which predominantly focuses on pick-move-place tasks [444], we consider operating
articulated objects in unstructured environments.
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Door Manipulation: Research in door opening has a rich history in the robotics
community [65, 170, 269, 293]. A significant milestone was the DARPA Robotics
Challenge (DRC) finals in 2015 [15, 85, 24]. Nevertheless, prior to the deep learning
era, the primary impediment was the robots’ perception capabilities [333]. Recent
approaches using deep learning to address vision challenges include Wang et al.
[410], which leverages synthetic data to train keypoint representation for the grasp-
ing pose estimation and Qin et al. [303], which proposed an end-end point cloud
RL framework for sim2real transfer. The prospect of large-scale RL combined with
sim-to-real transfer holds great promise for generalizing to a diverse range of doors
in real-world settings [399, 138, 303]. However, such policies might struggle when
faced with an unseen door with physical properties, texture, or shape di�erent from
the training distribution. Our approach can keep on learning via real-world online
samples, and can learn to adapt to di�culties faced in operating new unseen doors.

8.3 Open-world Mobile Manipulation Systems

In this section, we detail our full-stack approach, which includes hardware integration,
and the adaptive learning framework. This enables our mobile manipulation system
to learn adaptively in open-world environments, allowing it to operate everyday
articulated objects such as cabinets, drawers, refrigerators, and doors. More details
and all the hyperparameters we used are provided in the supplementary materials.

8.3.1 Hardware
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Figure 8.2: Mobile Manip-
ulation Platform: A cost-
e�ective and user-friendly
hardware platform for re-
search.

The transition from tabletop manipulation to mobile
manipulation is challenging not only from algorithmic
studies but also from the perspective of hardware. In
this project, we provide a simple and intuitive solu-
tion to build a mobile manipulation hardware platform.
Everyday articulated objects like doors exhibit a wide
range of physical properties, including weight, friction,
and resistance. To handle these e�ectively, we specifi-
cally look for a platform with high payload capabilities
to interact with heavy doors, which requires versatility
and agility. Additionally, we aimed to develop a human-
sized platform with an omnidirectional base capable
of maneuvering across various real-world doors in un-
structured and narrow environments. The platform
is designed to be low-cost and employs o�-the-shelf
components, which enables rapid prototyping.
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Figure 8.4: Adaptive Learning Framework: We begin by initializing a single policy using
a set of expert demonstrations through behavior cloning. The policy takes visual inputs
and outputs continuous and discrete parameters sampled by Gaussian and categorical
distributions. To enable e�cient learning, primitive APIs are utilized. They take the sampled
parameters as input and instantiate action executions. To address new objects that fall outside
the training domain, we develop a system capable of fully autonomous Reinforcement
Learning (RL) adaptation to keep on improving the system’s performance.

8.3.2 Task Definition
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Figure 8.3: Articulated Objects: Visualiza-
tion of the 12 training and 8 testing objects we
used, with type labeled, and with indicators
corresponding to locations.

In this project, we consider a set of artic-
ulated objects that consist of three rigid
parts: a base part, a frame part, and a
handle part. The base and frame are
connected by either a revolute joint (as
in a cabinet) or a prismatic joint (as in
a drawer). The frame is connected to
the handle by either a revolute joint or
a fixed joint. This covers objects such
as doors, cabinets, drawers, and fridges.
As shown in Figure 8.3, we identify four
major types of the articulated objects:
Handle articulations commonly include
levers (Type A) and knobs (Type B). For cases where handles are not articulated,
the frame part can either revolve around a hinge using a revolute joint (Type C), or
slide back and forth along a prismatic joint, for example, drawers (Type D). This
categorization covers a wide variety of everyday articulated objects.

8.3.3 Adaptive Learning Framework

We start by initializing a single policy using a limited set of expert demonstrations of
the four types of articulated objects through behavior cloning. The central challenge
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we face is operating with new objects that fall outside the BC training domain. To ad-
dress this, we develop a system capable of fully autonomous online adaptation using
reinforcement learning (RL), allowing the robot to keep on improving its performance
without any human intervention.

8.3.3.1 Primitives as APIs

Inspired by the prior works of e�cient policy learning with manipulation primitive
priors [274, 141], we prebuilt a set of expressive primitives. Each primitive is a
functional API that takes learned parameters as the input to instantiate an action
execution. A trajectory of fixed horizon is executed in an open-loop manner: a
grasping primitive followed by a sequence of N constrained mobile-manipulation
primitives, denoted as: {Is, G(g), {M(Ci, ci)}Ni=1, If , R} , where Is is the initial ob-
served image, G(g), M(Ci, ci)) denote the parameterized grasp and constrained
manipulation primitives respectively, If is the final observed image, and r is the
reward for the trajectory.
Grasp Primitive with Passive Visual Models: We structure a vanilla
6D grasp pose by using passive visual models of detection and segmenta-
tion [462, 197], as shown in the ”Primitives as APIs” block of Figure 8.6.

Grasp

Unlock

Rotate

Open

Figure 8.5: Primitives: We
show visualization of the prim-
itives we used in our adaptive
learning framework.

Given a text prompt of ”handle”, the open-
vocabulary detection model reliably returns a 2D
bounding box of the handle. We use a heuristic to for-
mulate the orientation of the grasp pose: If the width
of the 2D bounding box is smaller than the length of
the bounding box, we determine it is a vertical han-
dle; otherwise, it is a horizontal handle. The grasp
orientation is further determined using the surface
normal estimation of the door frame, the vertical-
horizontal type of the handle, and the direction of
gravity. For XYZ position of the grasp pose: we draw
a middle line to locate the center point of the seg-
mentation mask of the handle. We then compute the
x,y,z potion in camera frame with depth. The camera
frame is calibrated with robot base frame, so we can
transform the x,y,z position to the robot base frame.
However, passive detection and segmentation mod-
els are insu�cient to predict a robust grasp pose for all handle types. For our grasp
primitive, we introduce a 3-dimension continuous low-level parameter ranging from
�1 to 1 as the grasp primitive input, which is then rescaled to the grasp residuals
ranging from �d to d. This is beneficial since our grasp residuals can be adjusted
to diverse handles via online adaptation. We denote the grasping primitive API as
G(.), which is parameterized by the parameter g.
Constrained Mobile-Manipulation Primitive: As shown in Figure.8.2, we de-
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fine two coordinate frames in the mobile manipulation system, a base frame,
and an arm end-e�ector frame. The arm end-e�ector frame is defined relative
to (i.e. with respect to) the base frame. With a 3-DOF motion for the base
(in the SE(2) plane), and a 6-DOF arm (with respect to the base frame), we
have a 9-dimensional vector – (vx, vy, vz, vyaw, vpitch, vroll, Vx, Vy, V!) . The first
6 dimensions correspond to velocity control for the arm end-e�ector, and the
last three are the velocity control for the base. The primitives we use impose
contraints on this space as follows - Unlock : (0, 0, vz, vyaw, 0, 0, 0, 0, 0); Rotate :
(0, 0, 0, vyaw, 0, 0, 0, 0, 0); Open : (0, 0, 0, 0, 0, 0, Vx, 0, 0); as shown in the ”Primi-
tives as APIs” block of Figure 8.6. The constrained mobile-manipulation API
takes two parameters, a discrete parameter C to select one of these primitives
to take, and a continuous parameter c to determine the low-level control of the
selected primitive. More details are provided in the supplementary materials.

Algorithm 7 Adaptive Learning
Require: Grasping primitive G(.) taking param g
Require: Constrained manipulation primitives

M(.), taking parameter C and c.
1: Initialize primitive classifier ⇡�({Ci}

N
i=1|I)

2: Initialize conditional policy network
⇡✓(g, {ci}Ni=1|I, {Ci}

N
i=1)

3: Collect a dataset D of expert demos
{I, g, {Ci}

N
i=1, {ci}

N
i=1}

4: Train ⇡� and ⇡✓ onD using Imitation Learning
5: for online RL iteration 1:Niter do
6: for sampling rollout 1:Nrol do
7: Obtain observation image Is
8: Sample {Ci}

N
i=1 ⇠ ⇡�(.|Is)

9: Sample (g, {ci}Ni=1) ⇠ ⇡✓(.|Is)
10: Execute traj {G(g), {M(Ci, ci)}Ni=1}

11: end for
12: Update policies ⇡� and ⇡✓ using RL
13: end for

8.3.3.2 BC Pretraining

Imitation learning has been
proven e�ective in a va-
riety of robotics applica-
tions [431, 430, 116, 19]. In this
project, we start by initializing
our policy using a limited set of
expert demonstrations through
behavior cloning. Given an
initial observation image Is,
we use a primitive classifier
⇡�({Ci}

N
i=1|I) to predict a

sequence of N discrete param-
eters {Ci}

N
i=1 for constrained

mobile-manipulation, and a
conditional policy network
⇡✓(g, {ci}Ni=1|I, {Ci}

N
i=1) which

produces the continuous
parameters of the grasping
primitive and the constrained
mobile-manipulation primitives. We start by initializing our policy using a small set
of expert demonstrations via behavior cloning. We collect an o�ine demonstration
dataset by teleoperating the mobile manipulation robot in the open world. We
type the keyboard to select the primitives and long-press the keyboard bottom to
instance the low-level parameters. The imitation learning objective is to learn ⇡✓,�
that maximize the likelihood of the expert actions. Specifically, given a dataset of
image observations Is, and corresponding actions {g, {Ci}

N
i=1, {ci}

N
i=1}, the imitation
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learning objective is: max�,✓
⇥
log ⇡�({Ci}

N
i=1 | Is) + log ⇡✓(g, {ci}Ni=1 | {Ci}

N
i=1, Is)

⇤
.

We include 3 objects from the 4 category in the BC pretraining dataset, collecting 10
demonstrations for each object, producing a total of 120 trajectories. We pretrain a
single BC policy with all the 120 training objects. We also have 2 held-out unseen
objects from each category as testing objects for experiments. The training and
testing objects di�er significantly in visual appearance (eg. texture, color), physical
dynamics (eg. if spring-loaded), and actuation (e.g. the handle joint might be
clockwise or counter-clockwise). We include visualizations of all objects used in
train and test sets in Fig. 8.3.

8.3.3.3 Online RL Adaptation

Generalizing to unseen objects using a vanilla behavior cloning (BC) model is
extremely challenging. To address such out-of-distribution scenarios, we en-
able the policy to keep on improving via online adaptation. Specifically, for
each testing object, we fine-tune the pre-trained BC policy with online sam-
pled data. This corresponds to maximizing the expected sum of rewards un-
der the policy: max✓,� E⇡✓,�

hPT
t=0 r(st, at)

i
. Since we utilize a highly struc-

tured action space with primitives as described previously, we can optimize
this objective using a fairly simple RL algorithm. Specifically we use the
REINFORCE objective [419]: r✓,�J(✓,�) = E⇡✓,�

hPT
t=0r✓ log ⇡(at|st) · rt

i
=

E⇡�,✓ [(r� log ⇡�(Ci|I) +r✓ log ⇡✓(g, ci|Ci, I)) ·R], where R is the reward provided
at the end of trajectory execution. Note that we only have a single time-step transition,
all actions are determined from the observed image Is, and executed in an open-loop
manner. We use a weighted objective to avoid overfitting during fine-tuning, where
the overall loss is Loverall = Lonline + ↵ ⇤ Lo�ine. Note that we train separate RL
policies for each testing object; we leave the lifelong learning scheme for future work.
The learning procedure is concluded in the algorithm 7.
Safety Aware Exploration: Deploying our system with online sampling necessitates
the avoidance of dangerous actions. We use a safetymechanism based onmonitoring
the robot arm’s joint current during online sampling. If the robot samples an action
that causes the joint current to meet its threshold, we terminate the episode and
reset the robot to prevent potential self-damage. Additionally, we leverage this to
provide negative rewards to disincentivize such actions.
Real-WorldReward Specification: Anaive approach to reward specification involves
a human operator providing a binary reward, where the reward is +1 if the robot
successfully opens the doors, and 0 if it fails or if a safety violation occurs. Manual
reward annotation is feasible since the system requires very few samples for learning.
However, to enable a fully autonomous learning system, we aim to remove the
bottleneck of relying on human presence in the loop. We investigate leveraging large
vision language models (VLMs) as a source of automatic reward. Specifically, we
utilize CLIP [308] to compute the probability of the encoded visual features of an
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image input matching the encoded text features of two text prompts: ”door that is
closed” and ”door that is open”. We then record the probability of ”door that is open”
for the input image and denote it as the door opening score. We capture two images
from the same camera viewpoint: one at the start of the online sampling rollout
and another at the end. If the door opening score of the last image is higher than
that of the start image (indicating an actually open door, which always holds true in
our experimental findings), we assign the robot a positive reward of 1. If a safety
protection is triggered, the reward is -1; otherwise, it is 0.
Self-Reset Mechanism: The robot employs visual odometry, utilizing a realsense
T265 tracking camera mounted on its base, enabling it to navigate back to its initial
position. At the end of every episode, the robot releases its gripper, and moves back
to the original SE(2) base position, and takes an image of If for computing reward.
We then apply a random perturbation to the SE(2) position of the base. Furthermore,
if the reward is 0, where the door is still closed, the robot goes to the next episode. If
the reward is 1, where the door is open, the robot base uses a script policy where
the robot base moves forward and gently closes the door by making contact with it.

8.3.4 Model Parameterization

In our setup, the policy includes a primitive classifier ⇡�, and a conditional policy
network ⇡✓. They share a frozen visual backbone, which is a ResNet-18 [157] pre-
trained on ImageNet [90]. We begin by cropping the handle from the RGB image
and padding the cropped image into a square shape with zero-padding. The visual
backbone takes this processed RGB image as the input. The primitive classifier out-
puts discrete actions sampled from categorical distributions, determining a sequence
of primitive types, and the conditional policy network takes both visual inputs and
the discrete actions from the primitive classifier, and outputs continuous parameters,
sampled from gaussian distributions for the respective primitives, together instanti-
ating a sequence of primitives. To ensure that the action sequence produced by the
open-loop policy maintains a fixed horizon, we have introduced a blank primitive
during policy learning, which allows for the skipping of action execution.

8.4 Experimental Results

We conduct an extensive field study involving 12 training objects and 8 testing objects
across four distinct buildings on the university campus to test the e�cacy of our
system. In our experiments, we seek to answer the following questions: 1) Can the
system improve performance on unseen objects via online adaptation across diverse
object categories? 2) How does this compare to simply using imitation learning on
provided demonstrations 3) Can we automate providing rewards using o�-the-shelf
vision-language models?
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Figure 8.6: Online Improvement: Our adaptive approach is able to improve in performance,
while the imitation policy has limited generalization. For the iteration axis, 0 means the
pretrained BC model evaluation success rate. We conduct online sampling and model
updating from iteration 1 to 5, and report the success rate of the online sample data in the
graph. The last success rate data point of iteration 6 in the graph is the evaluation success
rate of the final fine-tuned model.

8.4.1 Online Improvement

time

BC

Adapt

BC

Adapt

Figure 8.7: Online Improvement Visualization: In the
third row, the pretrained BC policy completely fails to open
the ”push” door. With continual practice, the robot is able
to achieve a high success rate after online adaptation in the
fourth row. For doors with knobs, in the first row, using
the vanilla grasp does not establish a robust grasp pose, our
adaptation method enables the robot to adjust the grasp
pose through online adaptation.

We evaluate our approach
on 4 categories of held-out
articulated objects, two test
objects from each category.
We define a successful artic-
ulated object opening roll-
out as one where a suf-
ficient gap is created be-
tween the frame part and
the base part to ensure that:
1) Human experts can visu-
ally confirm the presence of
a gap. 2) For door opening,
the robot base can traverse
through the door under hu-
man teleoperation.
At the testing time, the
robot is initialized ran-
domly in front of the
objects. Given the RGBD
image of the scene obtained from the realsense camera, we use o�-the-shelf visual
models [462, 197] to obtain the mask of the door frame using just text prompts.
Furthermore, since the door is a flat plane, we can estimate the surface normals of
the door using the corresponding mask and the depth image. This is used to move
the base close to the door and align it perpendicularly, to start the policy rollout.
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We first evaluate the pretrained BC model on the unseen testing objects. We report
the the success rate of 5 rollouts as shown in the dotted line in Fig. 8.6. Then we go
to the online adaptation stage, where we fine-tune the pretrained BC model with the
online samples collected on the testing objects using human labeled reward, which
is a score from �1 to 1. We report continual adaptation performance in Fig. 8.6.
From Fig. 8.6, we see that our approach improves the average success rate across
all objects from 50 to 95 percent. Hence, continually learning via online interaction
samples is able to overcome the limited generalization ability of the initial behavior
cloned policy. In cases where the BC policy is reasonably performant, such as Type
C and D objects with an average success rate of around 70 percent, RL is able to
perfect the policy to 100 percent performance. Furthermore, RL is also able to learn
how to operate objects even when the initial policy is mostly unable to perform the
task. This can be seen from the Type A experiments, as visualized in Fig. 8.7, where
the pretrained BC policy completely fails to open the ”push” door (Object2). That
is because all the BC training objects do not require ”push” (Vx > 0) in the open
primitive. With continual practice, RL is able to achieve a success rate of 80 percent.
This shows that RL can explore actions that are potentially out of distribution from
the BC pretraining dataset, and learn from them, allowing the robot to learn how
to operate novel unseen articulated objects. We also observed that for doors with
knobs, as shown in Figure 8.7, using detection and segmentation models does not
provide the robot with an ideal grasping pose. Our adaptation method enables the
robot to adjust the grasp pose through online interactions, significantly increasing
the success rate from 45% to 90%.

8.4.2 Action-replay baseline
Action-Replay Comparison

KNN-open KNN-close BC-0 Adapt-GT
Success Rate B1 (knob) 10% 0% 30% 80%
Success Rate A2 (lever) 0% 0% 0% 80%

Figure 8.8: Comparisons of the
adaptation policies and BC policies
with KNN baselines.

We introduce a baseline that involves replaying
trajectories from the closest object in the train-
ing set. This closest object can be found us-
ing k-nearest neighbors with some distance met-
ric [279]. This approach is likely to perform well
especially if the distribution gap between train-
ing and test objects is small, allowing the same
actions to be e�ective. We run this baseline for two objects that are particularly
hard for behavior cloning, one each from Type A and B categories (lever and knob
handles respectively). The distance metric we use to find the nearest neighbor in the
training set is Euclidean distance of the the CLIP encoding of observed images. We
evaluate this baseline both in an open-loop and closed-loop manner. In the former
case, only the first observed image is used for comparison and the entire retrieved
action sequence is executed, and in the latter we search for the closest neighbor after
every step of execution and perform the corresponding action. From Table 8.8 we
see that this approach is quite ine�ective, further underscoring the distribution gap
between the training and test objects in our experiments.

107



8.4.3 Autonomous reward via VLMs
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Figure 8.9: Online Adaptation
using CLIP rewards, showing
fully autonomous adaptation.

We investigate whether we can replace the human
operator with an automated procedure to provide re-
wardswithVLMs to enable fully autonomous adapta-
tion. We see that online adaptationwith VLM reward
achieves a similar performance as using ground-
truth human-labeled reward, with an average of 80
percent compared to 90 percent. We report the per-
formance after every iteration of online adaptation
in Fig. 8.9. Removing the need for a human operator
to be present in the learning loop opens up the pos-
sibility for autonomous training and improvement.
We also observed a drop in performance over iter-
ation 1, 2, 3 in Fig. 8.9. This can be attributed to the
high variance of reinforce algorithm, which typically leads to unstable training in
performance, further exacerbated by a small sample size.

8.5 Limitations and Conclusion
The success of a door opening task relies on the initial accuracy of handle detection.
However, when multiple handles are present in a scene, the detection model fails to
accurately identify the specific handle of interest. Real-world door-opening tasks
are challenging, as we discovered in our experiments where hardware proved to
be one of the bottlenecks. 5 kg end-e�ector payload is a minimum requirement for
common doors in everyday life. We present a full-stack system for operating various
articulated objects in the open world. Our approach is able to keep on improving its
performance across diverse articulated objects from di�erent buildings across the
university campus. The system can also learn using rewards from VLMs without
human intervention, allowing for fully autonomous adaptation.
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Part IV

Scaling Data for Robot Learning
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Chapter 9

Bimanual Dexterity for Complex
Tasks

Figure 9.1: Bimanual Dexterity: Our teleoperation data collection system can perform
various complex tasks including pouring, hammering, chopstick picking, hanger picking,
picking up basket, drilling, plate pickup and pot picking, using a bimanual dexterous system.

9.1 Motivation

General-purpose robots that are deployed to perform everyday tasks will need
to perform a wide variety of challenging manipulation tasks. This ranges from
intricate movements like screwing in small objects, to cutting vegetables, to being
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able to move large objects like furniture. These are tasks built around humans, and
correspond to activities that people can perform. The versatility of human hands in
particular is essential for finer-grained tasks ranging from writing and creating art
to typing on keyboards. Hence one approach to building such systems is to use a
hardware form factor that resembles humans with two arms each equipped with a
dexterous multi-fingered hand. With the advent of data-driven machine learning
methods and low-cost hardware there has been renewed interest in humanoids and
dexterous hands. There is great promise for machine learning approaches to enable
e�ective control for high-dimensional robot systems using large amounts of data
[221, 6, 168, 206, 182]. A key question remains: how do we go about collecting this
high-quality data for bimanual robots? The key characteristics for an e�ective data
collection system include being low-cost, easy to setup and use, low-latency and
most importantly accurate enough, such that the data collected can be used to train
robots to perform complex tasks of interest.
To address this problem, VR headsets have become increasingly prevalent due to
their easy-to-use internal closed-source body tracking systems [92, 282]. However
we find that wrist tracking is often jittery and the finger tracking is inaccurate. To
mitigate this, SteamVR [401] uses LiDAR which provides less noisy estimates, but
requires external tracking devices which doesn’t allow for data collection for mobile
robot setups. For even higher fidelity readings, there iswork that usesmotion capture
and reflective marker-based approaches such as Vicon or Optitrack[403] but they are
extremely expensive and di�cult to setup, and su�er from the same fixed-location
problem as SteamVR since they require many external cameras. An aspect of motion
capture technology that has been used in robot learning in recent years are wearable
gloves [408, 362, 246] for hand tracking which records the fingertip position of the
human hand using EMF sensors. We use the Manus glove as part of our system,
which is a professional Mocap glove with great accuracy and reliability.
For arm tracking, researchers in the robotics community have been recently using
joint-level teleoperation for 2-finger grippers. [458, 426]. Wu et al. [426], find that
a low-cost 3D printed scaled teacher arm model that has the same kinematic link
structure of a large robot arm can be used for accurate and e�ective teleoperation.
These methods only provide one DOF of finger tracking instead of the twenty two
plus DOF of the human hand. Our key insight is to develop a system that combines
this joint-based arm tracking along with a Mocap fingertip glove to achieve accurate
low-cost teleoperation of an arm and hand system.
Ourmain contribution is BiDex, a system for dexterous low-cost teleoperation system
for bimanual hands and arms in-the-wild in any environment. To operate, the user
wears two motion capture gloves and moves naturally to complete everyday dexter-
ous tasks. The gloves captures accurate finger tracking to map motions naturally to
the robot hands and the GELLO [426] inspired arm tracking accurately tracks the
human wrist position and joint angles for the robot arm. The data collected by the
system can be used to train e�ective policies using imitation learning, after which the
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bimanual robot system can perform the task autonomously. BiDex costs around $5k
for a pair of Manus gloves and few hundred dollars for the arm teleoperation which
works for many existing robot arms. Even including the robot arms and robot hands
used in our demonstration, the total cost is around $30k. We compare the accuracy
and speed of data collection to other systems: the VR headset and SteamVR.

9.2 Related Work

Robot Arm Teleop: Many common approaches to teleoperation include using
joysticks, space mouses, vision-based methods, [320], and VR headsets [13, 282, 92]
which control arms with inverse kinematics. Joint based teleoperated control has
been used in areas such as kinesthetic teaching, Brantner and Khatib [35], ABB YuMi
[224] and Da Vinci Machines [112], and recently [458, 116] introduced a low-cost
version of this with mirroring Trossen Robot arms. GELLO [426] uses light and
inexpensive teacher arms that are 3D printed to control full size robot arms, a system
we use in our BiDex due to its lost-cost, accurate, portable design.
Robot Hand Teleop: The high dimensionality makes tracking human hands par-
ticularly di�cult. To control robot hands, many vision-based techniques such as
[151, 304, 369] do not require specialized equipment but are not that accurate.
Shadow Hand developed a professional system that uses SteamVR and two gloves
to control two Shadow Hands [352]. Recently, bimanual robot hands and tracking
have become accessible for academic labs. Dexcap uses LEAP Hand and tracks the
human with gloves and a SLAM-based robot camera. [408] Hato uses a VR headset
and controller to control two 6 DOF Psyonic Hands [227, 300]. A key question in
controlling robot hands is how to map the human hand configuration to robot hand
joints. These papers introduce inverse kinematics based methods that optimize
pinch grasps between the human and robot hands [408, 151, 369, 304].
Motion Capture: Motion capture and graphics contributions often are useful in the
robotic teleoperation domain. Outside-in mocap approaches use external sensing
technology to track the human body or other objects in the scene. SteamVR uses
external lasers and worn wireless laser receivers. [401] Vicon-based systems use
reflective balls and external cameras to track. Inside-out approaches such as XSens
[260] or Rokoko suit rely on IMUs on the body but these often drift over time and
require recalibration [326, 227]. For hand data, many vision-based approaches such
as Frankmocap [329] return MANO [328] parameters which can be converted to
robot hand joint angles.
Learning from Expert Demonstrations: Recently the robot learning community has
seen notable success in learning from demonstrations driven by the development of
imitation learning algorithms [245, 63]. Complementing these advances, significant
e�orts have been made to scale up robotic datasets to facilitate more capable robotic
systems [82, 278, 192, 406]. Despite these e�orts, acquiring robotics data remains
an expensive and challenging endeavor. To address these issues, developments
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in low-cost hardware have been instrumental in democratizing access to robotic
technology, enabling more widespread research and application [375, 458, 116, 64].
However, these systems are primarily focused on simple gripper functionalities; and
the challenge of achieving more intricate dexterity and intuitive control in robotic
systems motivates our bimanual dexterous teleop system.

9.3 Bimanual Robot Hand and Arm System

We introduce BiDex, a system designed to enable an operator to naturally teleoperate
any bimanual robot hand and arm setup. BiDex is exceptionally precise, low-cost,
low-latency, portable and can control any human-like pair of dexterous hands even
with over 20 degrees of freedom. It achieves this accurate tracking of the human
hand by utilizing a Manus VR glove based-system [247] and the human arm using
a GELLO-inspired system [426]. We present the full process by which we send
commands using our system for controlling bimanual hands with dexterous hands
in Alg.8. Crucially, our solution is tailored to operate seamlessly in both tabletop
and mobile environments because it does not need any external tracking devices and
is very portable. In Section 10.5 we find that our system is highly intuitive, precise,
and cost-e�ective compared to many commonly used approaches today such as the
VR headset and SteamVR for both the tabletop and mobile manipulation settings on
two di�erent pairs of robot hands.

9.3.1 Multi-fingered Hand Tracking

A hand tracking approach must return skeleton information about the human hand
which has over 20 degrees of freedom with low-latency. Many vision-based tracking
systems today based on FrankMocap[329, 288] or VR headsets su�er from significant
inaccuracies when there are occlusions and changes in lighting as found in Section
10.5. On the other hand, recent motion capture gloves using EMF sensors are sig-
nificantly more accurate without being that expensive. They do not not su�er from
occlusions like many vision-based techniques and return rich data about the skeleton
joint-structure of the human hand. Furthermore, they can be worn comfortably on
the human hand without impeding motion. In BiDex we choose the Manus Glove
[247] as it has shown to provide accurate tracking readings, and does not overheat
or face as many calibration issues as other alternatives such as the Rokoko gloves
[326, 227]. However, controlling a robot hand from this human hand data is still
challenging due to the morphology gap between these two hands. How can we map
commands from the fingers of the human operator to the robot hand which can have
a di�erent kinematic structure?
If the robot hand kinematic structure is roughly human-like, one option would
be to map joint angles directly between the human finger joints and robot hand
joints. While these gloves do not have true joint angles, they can calculate joint
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angles by an inverse kinematics solver onto a default human skeleton. However, if
the robot fingers have di�erent proportions and sizes to human fingers, then the
motions will not match properly. The human thumb in particular has a complicated
joint configuration that many robot hands do not perfectly emulate, making it very
di�cult to have intuitive thumb control. The pinch grasps will not be accurate
which will adversely a�ects the ability to perform tasks reliably, since manipulation
critically relies on the relative positions between fingertips.

Algorithm 8 Teleoperation Data System
Require: Two robot arms Al,Ar
Require: Two robot multi-fingered hands Hl,Hr
Require: Kinematic models for two armsKl,Kr
Require: Gloves with fingertip trackers Gl,Gr
Require: IK model for robot fingertips Ql,r()
Require: RGB workspace cameras {Ic}
Require: Number of trajectories to be collected N
1: Initialize Data bu�er D
2: for trajectory 1:N do
3: Initialize trajectory T = {}

4: while task not completed do
5: Read camera images {Ic}t
6: Read arm joints Alt, Art
7: Read robot hand joints Hlt, Hrt
8: Obs ot = {Alt, Art, Hlt, Hrt, {Ic}t}

9: Read kinematic arm model jointsKlt,Krt
10: Read glove fingertip positions Glt, Grt
11: Finger joints qlt = Ql(Glt), qrt = Qr(Grt)
12: Action at = {Klt,Krt, qlt, qrt}
13: Add (ot, at) 7! T

14: Set joints of Al using Klt and Ar usingKrt
15: Set joints of Hl using qlt and Hr using qrt
16: end while
17: Add T 7! D

18: end for
19: return Data bu�er D

Prior work [151, 369]
have gotten around this
issue by ensuring pinch
grasp is consistent be-
tween the human hand
and robot hands. Wang
et al. [408] has shown
that e�ective mapping
can be achieved by opti-
mizing for the joint posi-
tion of the fingertip po-
sitions as well as the
penultimate joint(DIP)
positions on each finger
with respect to the wrist
to be similar between
the human and robot
hand using a SDLS IK
solver. [45] We use the
Manus gloves [247] with
a similar inverse kine-
matics based approach
since it enables precise
pinch grasps and proper
thumb placement.

9.3.2 Arm Tracking

Our system must track
the human wrist pose ac-
curately to control two
robot arms. Traditionally, there are many approaches from both the motion capture
community and robotics community alike. However, many of these approaches rely
on calibrated external tracking devices which either are costly or have high latency.
These external tracking devices are also non-portable, making it hard to scale to
mobile systems. Instead, we leverage key insights from Zhao et al. [458], Wu et al.
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Figure 9.2: Mobile bimanual teleoperation system. Left: An operator strapped into
BiDex.Right: Our bimanual robot setup including two xArm robot arms, two LEAP Hands
[362] and three cameras on an AgileX base.

[426] which both use lighter teacher arms attached to the human arm to control a
robot arm and hand system. Specifically we follow the GELLO system from Wu
et al. [426] to teleoperate a full size robot arms. A key question is how to mount this
arm-tracking system on a human wrist and hand. If the robot hand is mounted on
the arm in a human-like way, then the glove needs to be mounted in a human-like
way on the GELLO to match. However, this orientation means that the human arm
will be parallel with the GELLO and constantly collide with it. This is jarring for the
operator and uncomfortable. In BiDex, we mount the robot hands underneath the
arms in the same orientation as if it were a gripper as in Figure 9.2. When mirroring
this in the GELLO, the human arm and GELLO output are perpendicular to each
other and do not collide which is more comfortable. Because of the weight of the
motion capture glove, we must adjust the GELLO to be more robust. This includes
adding a strong bearing to the base joint of the GELLO and adding rubber bands to
bias additional joints back to the center of the joint range. We will release this CAD
along with the rest of the code on our website to use this system.

9.3.3 Robot Configurations

Tabletop Manipulation: For our tabletop setup, the robotic arms are positioned to
face each other, while theGELLO teaching armsmirror this configuration. Compared
to a side-by-side configuration, this setup has three main benefits: 1) the human
operators avoid collisions with the GELLO arms; 2) the setup allows better visibility
of the workspace, which will be otherwise occluded by a side-by-side robot arm
configuration; 3) and finally, the robot arms have a wider shared workspace.
Mobile Manipulation: BiDex does not require external tracking systems and is
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Figure 9.3: All Tasks: Teleoperation of the mobile robot systems with BiDex. Top: Picking
up trash from a table and discarding it into a bin. Bottom: Grasping a chair and moving it
to align with a table.

very lightweight so it can easily be used in the mobile setting. The teacher arms
are instead mounted onto a compact mobile cart. Our cameras are all egocentric,
one is mounted on the torso and two others are mounted on each of the wrists.
For the mobile robot, we mount two robot arms onto an articulated torso that can
move up towards high objects and down towards the ground similar to PR2 [34] as
seen in Figure 9.2. The robotic assembly, including arms and torso, is mounted on
an AgileX Ranger Mini enabling movement in any SE(2) direction required by the
task [4]. A secondary operator manages the mobile base with a joystick, manages
the task resets, and handles the data. Future implementations might include the
addition of encoders, Dynamixel motors, or a SLAM camera to enhance tracking
and maneuverability, inspired by Mobile Aloha [116].

9.4 Experiment Setup

9.4.1 Baseline Teleoperation Approaches

Vision based VR Headset: In recent years, the accessibility of low-cost VR headsets
using multi-camera hand tracking has made them popular for teleoperation such as
in [92, 282] As a baseline we use the Apple Vision Pro which returns both finger data
similar to MANO parameters [288] and wrist coordinate frame data. The finger data
is used in the same way as with BiDex through inverse kinematics-based retargeting
and commanded onto the robot hands. The wrist data is reoriented, passed through
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inverse kinematics and the final joint configuration is commanded to the arms.
SteamVR Tracking: SteamVR, commonly used in the video gaming community
has also seen recent interest in the robotics community from industry [352] and
academia alike. [246, 3] It uses active powered laser lighthouses that must be
carefully placed around the perimeter of the workspace. Wearable pucks with IMUs
and laser receivers are worn on the body of the operator. In our experiment the
operator wears one tracker on each wrist and one tracker on their belly. The wrist
location is calculated with respect to the belly pose, mapped to the robot arm and
the joint angles are calculated using inverse kinematics. The hand tracking gloves
are the same as BiDex.

9.4.2 Choice of Dexterous End-E�ectors

Leap Hand: LEAP Hand, introduced by Shaw et al. [362] is a low-cost, easy-to-
assemble robot hand with 16 DOF and 4 fingers. LEAP Hand introduces a novel
joint configuration that optimizes for dexterity as well as human-like grasping. We
use this hand for many experiments as it is a readily available dexterous hand
available for comparison studies.
DLA Hand: We would like a hand that is smaller and more compliant than LEAP
Hand. DLA Hand is crafted to mimic the suppleness and strength of the human
hand with fingers that have a 3D-printed flexible outer skin paired with a sturdy
inner framework resembling bones. These fingers do not break but instead bend
and flex upon impact. We also introduce an active articulated palm which integrates
two motorized joints, one spanning the fingers and another for the thumb, enabling
natural tight grasping. DLA Hand contains 21 degrees of freedom and is sized
to resemble a human hand, easy to assemble and is economical. Because of the
human-like size and kinematics, it is easy to retarget to and can complete many more
dexterous tasks successfully.

9.4.3 Task Descriptions

Tabletop: We show three tasks in the tabletop setting for all the teleoperation
methods. In Handover, the robot picks up a pringles can and passes it from its right
hand to its left hand in the air. In Pour, the robot pours from a glass bottle in one
hand into a plastic cup held by the other hand. In Tabletop Cup Stack the agent stacks
one cup into another cup in the other hand.
Mobile: The next three tasks we consider are in the mobile setting. In Transport Box,
the agent moves a box from one table to another table using two hands. InMobile
Chair Push, the agent needs to grasp a chair, and then align it with a table. In Clear
Trash, the robot clears trash from the table into a dustbin. We visualize the chair
push and clear trash tasks in Figure 9.3.
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Completion Rate Time Taken

Handover Cup Stacking Bottle Pouring Handover Cup Stacking Bottle Pouring

Vision Pro VR 60 40 70 21.6 38.8 35.5
SteamVR 80 85 60 17.5 16.5 15.5

BiDex 95 75 85 6.5 15.5 14.9

Table 9.1: Tabletop Teleoperation: We compare BiDex on the handover, cup stacking, and
bottle pouring tasks to two baseline methods, SteamVR and Vision Pro. BiDex enables more
reliable and faster data collection, especially for harder tasks like bottle pouring.

9.5 Results

We investigate BiDex teleoperating in both the tabletop scenario and in the mobile
in-the-wild scenario against a few baselines. For these comparisons, we use LEAP
Hand by Shaw et al. [362] because it is an open source easy to assemble baseline
robot hand that is readily attainable by any robotics lab. We also use BiDex with the
more recent DLA Hand, which is made of a combination of rigid and soft material
and capable of performing more complex tasks.

9.5.1 Bimanual Dexterous Teleoperation Results

BiDex provides more stable arm tracking: Because the teacher arm system is wired,
BiDex is very reliable and does not fail. There is almost no jitter and very little
latency which makes it ideal for arm tracking. The GELLO is very light and does
not get in the way of the user more than the weight of the gloves. The kinematic
feedback of arm resistance is very light but it helps the operator feel andwork around
arm singularities naturally. As seen in Table 9.1 and Table 9.2, BiDex achieves a
higher completion rate while requiring less time for teleoperators. The Vision Pro
often has jittery arm tracking which makes it di�cult to teleoperate more di�cult
tasks. Low-pass filtering can help somewhat, but the latency added is undesirable.
Occasionally the system will stop working completely which is jarring for the user.
The SteamVR system is wireless so the user can be untethered and it is fairly ac-
curate in its tracking. However, it can su�er from short periods of high latency or
disconnections every 5-10 minutes that is jarring to the user. Significantly, we cannot
use SteamVR outside in the mobile setting due to the external tracking lighthouses
that must be setup around the teleoperation environment.
BiDex provides more accurate hand tracking: With BiDex, the fingertip tracking is
very accurate with the Manus glove. When mapping to di�erent robots, the inverse
kinematics only has to be tuned slightly with each operator if their hand size is
significantly di�erent. The abduction-adduction of the MCP side joint is also very
accurate in any condition. These advantages are especially apparently in DLA Hand
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Completion Rate Time Taken

Chair Pushing Box Carry Clear Trash Chair Pushing Box Carry Clear Trash

Vision Pro VR 75 75 50 15.0 33.7 79.8

BiDex 95 95 75 16.4 29.7 74.6

Table 9.2: Mobile Teleoperation: Completion rate and time taken averaged across 20 trials
using amobile bimanual systemwith LEAPHand [362], for di�erent tasks. BiDex is versatile
and compact enough to be adopted to successfully collect data for mobile tasks.
where these accuracies are very important in doing more complex tasks.
With the Vision Pro, the hand size often changes slightly with di�erent lighting
conditions which makes it di�cult to retarget to the robot hands. The abduction-
adduction estimation for the fingers also changes with occlusions which makes it
di�cult to do more complex tasks. The latency is noticeable but this is not an issue
when teleoperating for quasi-static tasks.

9.5.2 Training Dexterous Visuomotor Policies with BiDex

To ensure that the data that is collected by our system is high quality and useful
for machine learning we train single task closed loop behavior cloning policies.

Can Handover Cup Stacking Bottle Pouring

Leap Hand 7/10 14/20 16/20

Table 9.3: Imitation learning: We trainACT from [458]
using data collected by BiDex and find that our system
can performwell even in this 44 dimension action space.
This demonstrates that our robot data is high quality
for training robot policies.

Specifically, we train an ac-
tion chunking transformer from
[458] with a horizon length
of 16 at 30hz using pretrained
weights from [83] on around
50 demonstrations. The state
space is the current joint angles
of the robot hand and the im-
ages from the camera. The ac-
tion space in the case of LEAPHand is 16 dimensions for each hand and 6 dimensions
for each arm for a total of 44 dimensions. During rollouts, the behavior of the policies
are very smooth, exhibiting the high quality of the teleop data. In tasks such as the
YCB Pringles can [47] handover, we even see good generalization of the policy to
di�erent initial locations of the can.

9.5.3 Extreme Dexterity using DLA Hand

To push BiDex to its dexterous limits, we use DLA Hand: an extremely dexterous
21 DOF hybrid soft-rigid hand which is explained in Section 9.4.2. To do this, we
show a variety of very challenging tasks as in Figure 9.1 and Figure 9.4. These tasks
include pouring, scooping, hammering, chopstick picking, hanger picking, picking
up basket, drilling, plate pickup and pot picking. In these experiments we find that
BiDex scales well to this high DOF hand and it feels very natural to control this
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Figure 9.4: Clearing the Dishes: In this task, we use BiDex to perform a long horizon task
to place bowls and spoons into a drying rack and lift the drying rack away from the table.

robot hand. We provide video results in the supplemental and on our website at
https://bidex-teleop.github.io

9.6 Discussion and Limitations
In this Chapter, we introduce BiDex, a portable, low-cost and extremely accurate
method for teleoperating a bimanual, human-like robot hand and arm system. We
demonstrate the system’s applicability to both a tabletop and a mobile setting and
show its e�ciency in performing bimanual dexterous tasks in comparison to alter-
native approaches including SteamVR and Vision Pro. Nevertheless, our BiDex is
not without limitations. Due to the lack of haptic feedback, the human operator has
to rely on visual feedback for teleoperation and cannot feel what the robot hand
is feeling. Additionally, they cannot exert intricate force control and can only con-
trol the kinematics of the robot hand and arm which can make it challenging for
fine-grained manipulation tasks. A promising direction in the future would be to
integrate haptic feedback into our system which will unlock further potential for
collecting extreme dexterity data.
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Chapter 10

Neural MP: A Generalist Neural
Motion Planner

Figure 10.1: Neural Motion Planning at Scale in the Real World. We train a single neural
network policy to solve motion planning problems across diverse tabletop setups enabling it
to generate collision freemotions for entirely unseen tasks such as placing books in bookcases,
transferring items from shelves to microwaves, rearranging electronics from a drawer into a
cabinet and moving irregular items between bins.
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10.1 Motivation

Motion planning is a longstanding problem of interest in robotics, with previ-
ous approaches ranging from potential fields [191, 415, 305], sampling (RRTs and
Roadmaps) [189, 215, 33, 185, 205, 120, 380], search (A*) [154, 226, 200] and trajec-
tory optimization [318, 346, 95]. Despite being ubiquitous, these methods are slow
at producing solutions since they largely plan from scratch at test time, re-using little
to no information outside of the current problem andwhat is engineered by a human
designer. On the other hand, humans can generate motions in a closed loop manner,
move quickly, react to various dynamic obstacles, and generalize across a wide
distribution of problem instances. Notably, this ability improves with experience.
Consider an example of a person learning a new sport, like tennis. Initially, they
might reason carefully about the form of their shots, but over time with repeated
practice, they play faster, smoother and more e�ortlessly. Hence, practice distills
planning into muscle memory. Can we enable such data-driven learning for robots
to solve motion planning problems with ease?
The main challenge in training data-driven motion planning is the data collection
itself, as scaling robotic data collection in real-world requires significant human
time and e�ort. In recent years, there has been a concerted e�ort to scale up data
collection for robot tasks [278, 192]. However, the level of diversity of scenes and
arrangement of objects is still quite limited, especially for learning obstacle avoidance
behavior needed to solve motion planning problems. Constructing such setups with
diverse obstacle arrangements with numerous objects is prohibitively expensive in
terms of cost and labor.
Instead, we look to leverage simulation, which has shown great promise in recent
years in enabling policy learning for high-dof robots [218, 467, 61, 206, 144]. We build
a large number of complex environments by combining procedural, programmatic
generation with models of everyday objects sampled from large 3D datasets. These
are used to collect expert data from state-of-the-art motion planners [380], which
is then distilled into a reactive generalist policy. Because this policy has seen data
from over 1 million scenes, it is able to generalize to novel obstacles and scene
configurations that it has never seen before. However, deploying policies in the real
world might be unsafe for the system due to the potential of collisions. We mitigate
this by using simple forward samplers to predict future states the robot will end up
in, and run lightweight optimization to find a safe path.
Our core contribution is a simple, scalable approach to training and deploying fast,
general purpose neural motion planners: 1) large-scale procedural scene genera-
tionwith diverse environments in realistic configurations, 2)multi-modal sequence
modeling for fitting to sampling-based motion planning data and 3) lightweight
test-time optimization to ensure safe, reliable deployment in the real world. Further-
more, for each component, we propose concrete improvements to enable the overall
method to perform well, namely an algorithm for producing diverse scenes via
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Figure 10.2: Visualization of Diverse Simulation Training Environments: We train Neural
MP on a wide array of motion planning problems generated in simulation, with significant
pose, procedural asset, and mesh configuration randomization to enable generalization.

mixing programmatic assets and complex meshes, using simple, scalable and fast-
to-deploy LSTM policies with Gaussian Mixture Models for fitting to multi-modal
data, and test-time optimization via SDF-based collision checking of predicted policy
trajectories. To our knowledge, Neural MP is the first to demonstrate that a neural
policy trained in simulation can generalize to a broad set of out-of-distribution of
real-world environments, generalizing across tasks with significant variation across
poses, objects, obstacles, backgrounds, scene arrangements, in-hand objects, and
start/goal pairs. We execute a first-of-its-kind real-world empirical study of motion-
planning methods, evaluating our approach on 64 real world motion planning tasks
across four diverse environments, demonstrating a motion planning success rate
improvement of 23% over sampling-based, 17% over optimization-based and 80%
over state-of-the-art neural motion planning methods.

10.2 Related Work
Approaches for TrainingGeneral-Purpose Robot Policies: Prior work on large scale
imitation learning using expert demonstrations [37, 36, 278, 74, 365, 192] has shown
that large models trained on large datasets can demonstrate strong performance
on challenging tasks and some varying levels of generalization. On the other hand,
sim2real transfer of RL policies trained with procedural scene generation has demon-
strated strong capabilities for producing generalist robot policies in the locomotion
regime [206, 467, 2, 61, 398]. In this work, we combine the strengths of these two
approaches to produce powerful neural motion planning policies. We propose a
method for procedural scene generation in simulation and combine it with large
scale imitation learning to produce strong priors which we transfer directly to over
50 motion planning problems in the real world.
Procedural Scene Generation for robotics: Automatic scene generation and syn-
thesis has been explored in vision and graphics [412, 53, 52, 325] while more recent
work has focused on embodied AI and robotics settings [88, 413, 187, 74]. In par-
ticular, methods such as Robogen [413] and Gen2sim [187] use LLMs to propose
tasks and build scenes using existing 3D model datasets [89] or text-to-3D [] and
then decompose the tasks into components for RL, motion-planning and trajectory
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optimization to solve and are limited to simulation only results. Our method is
instead rule-based rather than LLM-based, is designed specifically for generating
data to train neural motion planners (this involves answering questions such as how
one should generate a diverse of poses to train such a planner - see Sec. 10.3.1), and
demonstrates that policies trained on its data can indeed be transferred to the real
world. MotionBenchmaker [51], on the other hand, is similar to our data generation
method for motion planning in that it autonomously generates scenes using pro-
grammatic assets. However, the datasets generated by MotionBenchmaker do not
contain significant realism: with floating robots, a single major obstacle per scene
and primitive objects such as cuboids, spheres and cylinders that are spaced far
apart. By comparison, the scenes and data generated by our work (Fig. 10.2) are
considerably more diverse, containing additional programmatic assets that incorpo-
rate articulations (microwave, dishwasher), multiple large obstacles per scene (up
to 5), complex meshes sampled from Objaverse [89], and tightly packed obstacles
that are as close as possible.
Neural Motion Planning: Finally, there is a large body of recent work [306, 108,
307, 50, 169, 335, 167] focused on imitating motion planners in order to accelerate
planning. MPNet [306, 180, 307] trains a network to imitate motion planners, then
integrates this prior into a search procedure at test time. Our method trains a
stronger prior by instead leveraging large scale scene generation and architectural
improvements, allowing a simpler optimization process at test time while obtaining
strong results across a diverse set of tasks. M⇡Nets [108] trains the state of the art
neural motion planning policy using procedural scene generation and demonstrates
transfer to the real world. We adopt a similar approach, with 1) significantly more
diverse scenes via programmatic asset generation and complex real-world meshes,
2) a more powerful learning architecture using sequence modeling and multi-modal
Gaussian Mixture Model output distributions and 3) the incorporation of a test-time
optimization technique to improve performance at deployment time.

10.3 Neural Motion Planning

Our approach enables generalist neural motion planners, by leveraging large
amounts of training data generated in simulation via expert planners. The poli-
cies can generalize to out-of-distribution settings due to the diverse conditions and
settings simulated, and using powerful deep learning architectures. To further
improve the performance of these policies at deployment, we leverage test time
optimization to select the best path out of a number of options. We now describe
each of these pieces in more detail.
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Figure 10.2: Method Overview: We present Neural Motion Planners, which consists of 3
main components. Left: Large Scale data generation in simulation using expert planners
Middle: Training deep network models to perform fast reactive motion planning Right:
Test-time optimization at inference time to improve performance.

10.3.1 Large-scale Data Generation

One of the core lessons of the deep learning era is that the quality and quantity of
data is crucial to train broadly capable models. We leverage simulation to generate
very large datasets for training robot policies. Our approach generates assets using
programmatic generation of primitives and by sampling from diverse meshes of ev-
eryday objects. These assets are then combined to create complex scenes resembling
real world scenarios the robot might encounter (Fig. 10.2). , as described in Alg. 9.
Procedural generation fromprimitives: Howdowe generate a large enough number
of diverse environments to train a generalist policy? Hand designing each environ-
ment is tedious, requiring significant human e�ort per scene, which doesn’t scale
well. Instead, we take the approach of procedural scene generation, using a set of six
parametrically variable categories - shelves, cubbies, microwaves, dishwashers, open
boxes, and cabinets. These categories are representative of a large set of objects in
everyday scenarios that robots encounter and have to avoid colliding with. Each
category instance is constructed using a combination of primitive cuboid objects
and is parameterized by category specific parameters which define the asset. Specif-
ically a category instance g is comprised of N cuboids g = {x0..xi...xN}, which
satisfy the category level constraint given by C(g). For controlled variation within
each category, we make use of parametric category specific generation functions
X(p) = {x0..xi.xN}, s.t. C(X(p)), where p specifies the size and scale of each of the
cuboids, their relative positions, and specific axes of articulation. The constraint C(.)
relates to the relative positions, scales and orientations of the di�erent cuboids, e.g
for the microwave category the constraint ensures each of the walls are of the same
height, and that the microwave has a hinge door.
Objaverse assets for everyday objects: While programmatic generation can create
a large number of scenes using the defined categories, there are a large number of
everyday objects the robot might encounter that lie outside this distribution. For
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example, a robot will need to avoid collisions with potted plants, bowls and utensils
while moving between locations, as shown in Fig .10.1. To better handle these
settings, we augment our dataset with objects sampled from the recently proposed
large-scale 3D object dataset, Objaverse [89]. This dataset contains a wide variety
of objects that the neural planner is likely to observe during deployment, such as
comic books, jars, record players, caps, etc. We sample these Objaverse assets in the
task-relevant sampling location of the programmatic asset(s) in the scene, such as
between shelf rungs, inside cubbies or within cabinets.

Algorithm 9 Complex scene generation
Require: Asset category generators

{Xi(p)}0,1..G
Require: Number of scenes N
Require: Max objects per sceneK
Require: Collision checker Q
1: for scene 1: N do
2: Initialize scene S = {}

3: Sample number of assets k ⇠ [1, ...K]
4: for asset 1:k do
5: Sample asset category g ⇠ [0, ..N ]
6: Sample asset parameter p
7: Sample asset x ⇠ Xg(p)
8: while Q(S, x) do
9: for each asset si in S do
10: ni = collision normal b/n x

and si
11: end for
12: E�ective collision normal n =P

ni

13: Update p so Xg(p) center is
shifted along n

14: end while
15: Add asset x to scene S
16: end for
17: yield scene S
18: end for

Complex scene generation: The
scenes we use comprise combina-
tions of the procedurally generated
assets built from primitives, and the
Objaverse assets arranged on a flat
tabletop surface. A naive approach
to constructing realistic scenes is to
use rejection-sampling based on col-
lision. This involves iteratively sam-
pling assets on a surface, and re-
sampling those that collide with the
current environment. However, as
the number, size and type of objects
increases, so does the probability of
sampling assets that are in collision,
making such a process prohibitively
expensive to produce a valid config-
uration. In addition, this is biased
towards simple scenes with few as-
sets that are less likely to collide,
which is not ideal for training gen-
eralist policies. Instead, we propose
an approach that iteratively adds as-
sets to a scene by adjusting their po-
sition using the e�ective collision
normal vector, computed from the
existing assets in the scene. Please
see Alg. 9 for the full procedure and
the Appendix for additional details.
Motion Planning Experts: To collect expert data in the diverse generated scenes,
we leverage state-of-the-art sampling-based motion planners due to their (relative)
speed as well as ease of application to a wide array of tasks. Specifically, we use
Adaptively Informed Trees [380] (AIT*), an almost-surely asymptotically optimal
sampling-based planner to produce high-quality plans using privileged information,
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namely access to a perfect collision checker in simulation. How do we ensure that
the planner is evaluated between points in the scene that require it to maneuver
around obstacles? We generate tight-space configurations by sampling end-e�ector
poses from specific locations (e.g., inside a cubby or microwave) and by using inverse
kinematics (IK) to derive the joint pose. Tight-space configurations are sampled
50% of the time, to ensure that we collect trajectories where the robot moves around
obstacles, as opposed to taking straight line paths between nearby free space points.
Additionally, we spawn objects grasped in the end-e�ectors, with significant random-
ization including boxes, cylinders, spheres or even Objaverse meshes. Importantly,
we found that naively imitating the output of the planner performs poorly in practice
as the planner output is not well suited for learning. Specifically, plans produced
by AIT* often result in way-points that are far apart, creating large action jumps
and sparse data coverage, making it di�cult for networks to fit the data. To address
this issue, we perform smoothing using cubic spline interpolation while enforcing
velocity and acceleration limits. We found that smoothing is crucial for learning
performance as it ensures action size limits for each time-step transition.

10.3.2 Generalist Neural Policies

We would like to obtain agents that can use diverse sets of experiences to plan
e�ciently in new settings. In order to build generalist neural motion planning
policies, we need an observation space amenable to sim2real transfer, and utilize an
architecture capable of absorbing vast amounts of data.
Observations: Webegin by addressing the sim2real transfer problem, which requires
considering the observation and action spaces of the trained policy. With regards to
observation, point-clouds are a natural representation of the scene for transfer, as
they are 3D points grounded in the base frame of the robot and hence view agnostic,
and are largely consistent between sim and real. This has also been demonstrated
in prior work for sim2real transfer in a variety of tasks using point-clouds [108, 68,
179, 58, 423]. We include proprioceptive and goal information in the observations,
consisting of the current joint angles qt, the target joint angles g, in addition to the
point-cloud PCD.
Network Architecture: We utilize an architecture capable of scaling with data
while performing well on a multi-modal sequential control problem such as motion
planning. To that end, we design our policy ⇡ (visualized in Fig. 10.2) to be a
sequence model to imitate the expert using a notion of history which is useful
for fitting privileged experts using partially observed data [74]. In principle, any
sequencemodeling architecture could be used, but in this work, we opt for LSTMs for
their fast inference time and comparable performance to Transformers on our datasets
(see Appendix). We operate the LSTM policy over joint embeddings of PCDt, qt,
and g with a history length of 2. We encode point-clouds using PointNet++ [301],
which is an e�cient and e�ective point-cloud processing architecture that performs
well in practice, while we use MLPs to encode qt and gt. For each timestep, we
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concatenate the embeddings of each of the observations together into one vector and
then pass them into the LSTM for action prediction. For the output of the model,
note that sampling-based motion planners such as AIT* are heavily multi-modal: for
the same scene they may give entirely di�erent plans for di�erent runs. As a result,
our policy requires an expressive, multi-modal distribution to e�ectively capture
such data, for which we use a Gaussian Mixture Model (GMM) distribution for the
policy. Specifically, Neural MP predicts a distribution over delta joint angles (�qt+1),
which are used to compute the next target joint waypoint during deployment: qt+1 =
qt+�qt+1. We minimize the negative log-likelihood of the GMMdistribution, which
outperforms the PointMatch loss from Fishman et al. [108] (Sec. 10.5).

10.3.3 Deploying Neural Motion Planners

Test time Optimization: While our base neural policy is quite capable of solving a
wide array of challenging motion planning problems, we would still like to ensure
that these motions are safe to be deployed in real environments. We enable this
property by combining our learned policy with a simple light-weight optimization
procedure at inference time. This relies on a simple model that assumes the obstacles
do not move and the controller can accurately reach the target way-points. Hence,
given state s, the predicted state s0 = s+ âwhere â is the policy prediction. With this
forward model, we can sample N trajectories from the policy using the initial scene
point-cloud to provide the obstacle representation and estimate the number of scene
points that intersect the robot using the linear forward model. We then optimize for
the path with the least robot-scene intersection in the environment, using the robot
Signed Distance Function (SDF). Specifically, we optimize the following objective at
test time:

min
⌧⇠⇢⇡✓

t=TX

t=1

k=KX

k=1

{SDFqt(PCDk
O) < ✏}, T = 100,K = 4096, ✏ = 0.01 (10.1)

in which ⇢⇡✓ is the distribution of trajectories under policy ⇡✓ with a linear model as
described above, PCDk

O is the kth point of the obstacle point-cloud and SDFqt is the
SDF of the robot at the current joint angles. In practice, we optimize this objective
with finite samples in a single step, computing the with minimal objective value by
selecting the path with minimal objective value across 100 trajectories. We include a
detailed analysis of the properties of our proposed test-time optimization approach
in the Appendix.
Sim2real and Deployment: For executing our method on a real robot, we predict
delta joint way-points which we then linearly interpolate and execute using a joint
space controller. Our setup includes four extrinsically calibrated Intel RealSense
cameras (two 435 and two 435i) positioned at the table’s corners. To produce
the segmented point cloud for input to the robot, we compute a point-cloud of
the scene using the 4 cameras, segment out the partial robot cloud using a mesh-
based representation of the robot to exclude points. We then generate the current
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robot and target robot point clouds using forward kinematics on the mesh-based
representation of the robot and place them into the scene. For real-world vision-
based collision checking, we calculate the SDF between the point cloud and the
spherical representation of the robot, enabling fast SDF calculation (0.01-0.02s per
query), though this method can lack precision for tight spaces.

10.4 Experimental Setup

(a) Sampling-based planners struggle with
tight spaces, a regime in which Neural MP
performs well.

(b) Our method is able to motion plan with
objects in-hand, a crucial skill for manipula-
tion.

(c) Our policy has not been trained on this
bookcase, yet it is able to insert the book into
the correct location.

Figure 10.3: Emergent Capabilities

In our experiments, we consider mo-
tion planning in four di�erent realworld
environments containing obstacles (see
Appendix). Importantly, these are not
included as part of the training set, and
hence the policy needs to generalize to
performwell on these settings. We begin
by describing our environment design,
then each of the environments in detail,
and finally our evaluation protocol and
comparisons.
Environment Design: We evaluate our
motion planner on tabletopmotion plan-
ning tasks which we subdivide into envi-
ronments, scenes, and configurations. We
evaluate on four di�erent environments,
with each environment containing 1-2
large receptacles that function as the pri-
mary obstacles. For each environment,
we have four di�erent scenes which in-
volve significant pose variation (over the
entire tabletop) of the primary obstacles,
table height randomization, as well as
randomized selection, pose and orien-
tation of objects contained within the
receptacles. For each environment, we
have two scenes with obstacles and two without obstacles. For each scene, we eval-
uate on four di�erent types of start (q0) and goal (g) angle pairs: 1) free space to
free space, 2) free space to tight space 3) tight space to free space 4) tight space to
tight space. Free space configurations do not have an obstacle in the vicinity of the
end-e�ector, while tight space configurations generally have obstacles on most sides
of the end-e�ector.
Our four environments are 1) Bins: moving in-between, around and inside two
di�erent industrial bins 2) Shelf: moving in-between and around the rungs of a
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black shelf 3) Articulated: moving inside and within cubbies, drawers and doors
4) In-hand: moving between rungs of a shelf while holding di�erent objects. For
detailed descriptions of environment setups, we refer the reader to the Appendix.
Evaluation Protocol: We evaluate all methods on open loop planning performance
for fairness, though our method, just like M⇡Nets, is capable of executing trajectories
in a closed loop manner. For neural planners such as our method and M⇡Nets, this
involves generating an open loop path by passing the agent’s predictions back into
itself using a linear model for the next state, as described in Sec. 10.3.3. We then
execute the plans on the robot, recording the success rate of the robot in reaching
the goal, its collision rate and the time taken to reach the goal. We follow M⇡Nets’
definition of success rate: reachingwithin 1cm and 15 degrees of the goal end-e�ector
pose of the target goal configuration while also not colliding with anything in the
scene. In practice, our policies achieve orientation errors significantly below this
threshold, 2 degrees or less.
Comparisons: We propose three primary baselines for comparisons, that evaluate
di�erent aspects of our methods capability. We compare against sampling-based
motion planning in the real world, which is expensive to run but has strong guaran-
tees on performance. The first baseline is the expert we use to train our model, AIT*
with 80 seconds of planning time. We run this planner with the same vision-based
collision checker used by our method in the real world. AIT*-80s is extremely expen-
sive and impractical to deploy in most settings due to its significant planning time.
Hence, we additionally compare to AIT* with 10 seconds of planning time, which
uses comparable planning time to our method (4s). We use AIT* with 10s of plan-
ning time as with 4s of planning time it was unable to find a plan for any real-world
task. Next, we compare against Curobo [385], a state-of-the-art motion-generation
method which performs GPU-parallelized optimization and is orders of magnitude
faster than AIT*. We run this baseline with a voxel-based collision checker and
optimize its voxel resolution per task due to its sensitivity to that parameter. Finally,
we compare against the state-of-the-art neural motion planning approach, M⇡Nets,
which operates over the same visual point-cloud input as our method.

10.5 Experimental Results

To guide our experimental evaluation, we pose a set of experimental questions.
1) Can a single neural policy trained in simulation learn to solve complex motion
planning problems in the real world? 2) How does our neural planner compare
to state-of-the-art neural planning, sampling-based and trajectory optimization
planning approaches? 3) How well does Neural MP extend to motion planning
tasks with objects in hand? 4) What are the impacts key ingredients of Neural MP
have on its performance?
Free Hand Motion Planning: In this set of experiments, we evaluate motion plan-
ning when there is no object in the robot’s hand. The base policy on its own performs

130



well, achieving performance close to AIT*-80s with only 1 second of planning time.
When we include test-time optimization, we find that across all three tasks, Neural
MP achieves the best performance with a 95.83% success rate. In general, we find
that Bins is the easiest task, with the sampling-based methods performing well, Shelf
is a bit more di�cult as it requires simultaneous vertical and horizontal collision
avoidance, while Articulated is the most challenging task as it contains a diverse
set of obstacles and tight spaces. Neural MP performs well across each task as it is
trained with a diverse set of parametric objects that cover the types of real-world
obstacles we encounter and it also incorporates complex meshes which cover the
irregular geometries of the additional objects we include.

Bins Shelf Articulated Average
Sampling-based Planning:

AIT*-80s [380] 93.75 75.0 50.0 72.92
AIT*-10s (fast) [380] 75.0 37.5 25.0 45.83
Optimization-based Planning:

Curobo [385] 93.75 81.25 62.5 79.17

Neural:

M⇡Nets [108] 18.75 25.0 6.25 16.67

Ours-Base Policy 81.25 75.0 43.75 66.67
Ours 100 100 87.5 95.83

Figure 10.4: Neural MP performs best across each
scene free-hand motion planning task, demonstrating
greater improvement as the task complexity grows.

M⇡Nets performed poorly on
our tasks across the board. We
attribute this finding to the fact
that M⇡Nets is only trained
on data in which the expert
goes from tight spaces to tight-
spaces, which means the net-
work has not observed joint an-
gles that are in-free space and
so it does not generalize well
to such scenarios and the end-
e�ector point matching loss in
M⇡Nets fails to distinguish be-
tween 0 and 180 degree rota-
tions of the end-e�ector, so the
network has not learned how to match the target end-e�ector pose when there is
ambiguity. If we change the success rate metric for M⇡Nets to count 180 degree
flipped end-e�ector poses as successes as well, the average success rate of M⇡Nets
improves by 12.5% to 29.17%, yet it is still far below the other methods. Meanwhile
failure cases for AIT* and Curobo were tight spaces for which vision-based collision
checking is inaccurate and the probability of sampling/optimizing for a valid path is
low. Our method performs well in practice, generalizing to 48 di�erent unseen envi-
ronment, scene, obstacle and joint configuration combinations, outperforming both
versions of AIT*(80s and 10s) as well as M⇡Nets by 23%, 50% and 79% respectively.
In HandMotion Planning: In this experiment, we extend our evaluation to settings
which are more task relevant: motion planning with objects in hand. We evaluate
Neural MP against running the neural policy without test time optimization and
without including any Objaverse data, achieving 81% performance vs. 31% and
44%. We visualize an example trajectory in Fig. 10.3. Our method performs well on
in-distribution objects such as the book and board game, but struggles on more out
of distribution objects such as the toy sword, which is double the size of objects at
training time. We additionally deploy our method on significantly out of distribution
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objects such as the bookcase, and find that Neural MP generalizes well, capably
inserting the book at the desired pose. This experiment also serves as an ablation
of our method, demonstrating the utility of test time optimization on challenging
out of distribution scenarios, which improves the performance of our method by
a wide margin, 50%, on in hand motion planning. For this task, the base policy
performance results in a large number of collisions as two of the in-hand objects
are out of distribution (sword and board game), but the optimization step is able
to largely remove them and produce clean behavior that reaches the target without
colliding. In addition, we find that the Objaverse data is crucial for the success of
our method on this task. The task setup contains a large number of diverse objects,
which is not present in the dataset without Objaverse objects. As a result, a model
trained only on the parametric assets consisting of cuboids will not generalize well
to such complex meshes. This experiment confirms the utility of including complex
meshes when generating scenes for distilling motion planning.

Global Hybrid Both Average

MPNet [306]

Hybrid Expert 41.33 65.28 67.67 58.09
M⇡Nets [108]

Global Expert 75.06 80.39 82.78 79.41
Hybrid Expert 75.78 95.33 95.06 88.72
EDMP [335]

Global Expert 71.67 82.84 82.79 79.10
Hybrid Expert 75.93 86.13 85.06 82.37

Ours

Global Expert 77.93 85.50 87.67 83.70
Hybrid Expert 76.33 97.28 96.78 90.13

Figure 10.5: Performance compari-
son of neural motion planning meth-
ods across 5400 test problems in the
M⇡Nets dataset in simulation. Neu-
ral MP achieves the state-of-the-art
results on these tasks.

Comparisons to Learning-based Motion Plan-
ners: We next evaluate how Neural MP com-
pares to two additional learning-based meth-
ods, MPNets [306] and EDMP [335] as well
as M⇡Nets [108] in simulation. We compare
these three neural motion planning methods in
simulation trained on the same dataset (from
M⇡Nets) of 3.27 million trajectories. We train
policies on the Global expert data and the Hy-
brid datasets and then evaluate on 5400 test prob-
lems across theGlobal, Hybrid and Both solvable
subsets. We include numerical results Tab. 10.5,
with numbers for the baselines taken from the
EDMP and M⇡Nets papers. We find that across
the board, Neural MP is the best learning-based
motion planning method, outperforming both
EDMP and M⇡Nets on the test tasks provided
in the M⇡Nets paper. We attribute this to the use of sequence modelling in the form
the RNN, the ability of the GMM to fit multimodal data and test-time optimization.
Data Scaling: We evaluate the scaling of our method with data in order to under-
stand how performance changes with dataset size. To do so, we train 3 additional
models, with 1K trajectories, 10K trajectories and 100K trajectories. In these ex-
periments, we train with subsets of our overall dataset and evaluate on held out
simulation environments which are not sampled from the training distribution.
While performance with a thousand trajectories is weak (15%), we find rapid im-
provement as we increase the orders of magnitude of data, with the model trained
on 1M trajectories achieving 80% success rate on entirely held out tight-space shelf
and bin configurations, showing that our method scales and improves with data.
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Additional Ablations: We run ablations of components of our method (training
objective, observation composition) in simulation to evaluate which have the most
impact. For each ablation we evaluate performance on held out scenes. For training
objective, we find that GMM (ours) outperforms L2 loss, L1 loss, and PointMatch
Loss (M⇡Nets) by (7%, 12%, and 24%) respectively. We find that including both
q and g vectors is crucial for performance as we observe a 62%, 65%, and 75%
performance drop when using only g, only q and neither q nor g respectively. We
refer the reader to the Appendix for further analysis, discussion and results.

10.6 Discussion and Limitations
In this work, we present Neural MP, a method that builds a data-driven policy for
motion planning by scaling procedural scene generation, distilling sampling-based
motion planning and improving at test-time via refinement. Our model demonstra-
bly improves over the sampling-based planning in the real world, operating 2.5x-20x
faster than AIT* while improving by over 20% in terms of motion planning success
rate. Notably, our model generalizes to a wide distribution of task instances and
demonstrates favorable scaling properties. At the same time, there is significant
room for future work to improve upon, our model 1) is susceptible to point-cloud
quality, which may require improving 3D representations via implicit models such
as NeRFs [255], 2) does not still handle tight spaces well, a capability which could be
potentially acquired via RL fine-tuning of the base policy and 3) is slower than simply
running the policy directly due to test-time optimization, which can be addressed
by leveraging learned collision checking [262, 79].
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Chapter 11

Conclusions, Discussion and
Future Work

11.1 Summary

In this thesis, we discussed how to enable exploration for continually improving
robots. We first consider exploration objectives, even in the absence of rewards
or demonstrations. In Chapter 2, we show an explorer-achiever framework that
uses a world model to estimate the uncertainty of action sequences, and practices
reaching goals in imagination. We further improve sample e�ciency by decoupling
environment and agent-centric objectives in Chapter 3 for real robot deployment,
prioritizing actions that lead to changes in the visual features of objects. Next, we
ask how to build generalist explorers using prior video. In Chapter 4, we present an
approach for representing a�ordances from human videos that focus onwhere in the
scene to interact, and how to move after contact. We utilize this shared action space
in Chapter 5 to build joint human-robot world models, that can perform multiple
tasks. For future instantiations of world models, we look to video di�usion models,
and in Chapter 6 study e�cient adaptation of these models using reward gradient
information. The third question we ask is how to enable greater autonomy via
mobile manipulation systems. In Chapter 7, we present a real-world RL framework
that enables a Spot robot with an arm to autonomously learn skills like sweeping
with a broom or moving chairs, via task-relevant autonomy, policy learning that
leverages behavior priors, and flexible reward specification using segmentation and
detection models. We build our own custom low-cost mobile manipulator system in
Chapter 8 for operating various articulated objects such as doors, drawers, cabinets
across campus, using interactive online learning. Finally, we study approaches
for scaling data collection for enabling stronger initial policies for deployment. In
Chapter 9, we build a low-cost teleoperation system for a bimanual dexterous system
with robot arms and multi-fingered hands, by combining kinematic link structure
models for arm tracking along with a motion capture fingertip glove for tracking
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finger movements accurately and reliably. In Chapter 10, we use simulation for large
scale procedural scene generation for training neural motion planners, which can
generalize to many out of distribution real world scenarios.

11.2 Discussion, Lessons Learned and Future Work

Exploration as a combination of top-down and bottom-up processes: Over the
course of my work in exploration, a major theme has been improving sample e�-
ciency. This has been important for real-world improvement, since it enables the
agent to learn skills in a reasonable time frame. My earlier work started out using
purely bottom-up exploration [250], which utilized statistical uncertainty to drive
actions. While this is a powerful framework for discovering new skills, the large
number of samples required precludes real world deployment. For faster learning
I have incorporated top-down conditioning, which provides useful priors on what
actions are likely to provide useful learning signal. I have experimented with this in
di�erent forms, gradually adding stronger forms of top-down signal for exploration.
First, we investigated the idea of environment change, which incentivizes actions
that cause changes in the visual features of objects [251]. This leverages the prior
that object interactions are beneficial for learning manipulation skills, and is not
driven purely by bottom-up statistical considerations. Next, we sought to learn
data-driven representations for an e�cient exploration action space, using human
videos [20, 252]. Here the top-down signal is stronger, since it communicates entire
trajectory information of how objects are likely to be manipulated by humans. For
mobile manipulation, we used task-specific action priors for our work that learn
to operate articulated objects [432], inspired by how humans open doors. We also
presented a more general framework for learning multiple tasks, where we use
pre-existing navigation and grasping skills along with segmentation and detection
models to maintain control over an object of interest before attempting to learn policy
behavior [253]. Furthermore, we utilize behavior priors that provide better learning
signal when training policies. Across all these di�erent works, we see the common
thread of injecting top-down signal for structuring the exploration space, to make
improvement via online learning feasible in a short time-span.
Going forward, a more general way to incorporate this top-down information for
directing exploration for autonomous agents might be to leverage powerful, general-
purpose language and vision foundation models (LLMs/VLMs) [40, 392]. These
models have been shown to have impressive reasoning capabilities and can provide
a lot of prior information that is useful for robotics. There is already exciting work
that demonstrates their application for autonomous agents in simulated domains to
explore and learn skills for games such as minecraft [409]. So far, their application
for robotics has been limited due to lack of su�ciently strong spatial reasoning for
images, fine-grained understanding of object geometry and interaction dynamics,
and consistent identification of di�erent objects across time. However, these short-
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comings will likely be addressed in future iterations, especially if these models also
incorporate video training, which contains important multi-frame temporal informa-
tion. It is important to reiterate that bottom-up signal is still crucial for discovering
and learning robot skills, since a large variety of tasks require low-level control which
LLMs/VLMs are not directly trained for. Furthermore, bottom-up signal driven
purely by environment interaction allows discovering new behaviors not represented
by top-down priors. Recent work has sought to directly integrate these by proposing
Vision-Language-Action models [193], that utilize internet-trained representations
from language/vision and are fine-tuned for action prediction. Future formulations
that better preserve semantic reasoning capabilities of LLMs/VLMs and can also
incorporate low-level control, while allowing for rapid online learning of new skills
present promising directions of study.
Contextualizing exploration in the current robot learning landscape: The guid-
ing goal of this thesis has been to enable robots to improve their capabilities via
interaction, and we have demonstrated promising results along this direction. We
are currently in a very exciting time for machine learning, with scaling data and
compute demonstrating remarkable results in the fields of language, vision and
video [40, 392, 314, 39], to the degree that models have begun to be deployed for
real-world use cases. There is now concerted e�ort in industry as well as academia
to replicate this success of data-driven learning for robotics. While I would like
the systems we deploy to ultimately keep improving in capability via exploration,
there is currently a di�erent immediate priority. This involves building policies
that are powerful enough to be deployed in some limited settings, for performing
useful tasks. My view of moving towards a future with general-purpose robots
now involves a bootstrapping process, where we first get data-driven policies that
are quite capable, albeit for a restricted class of tasks, to the point that they can be
deployed. Once policies begin to be deployed, and the robot fleet size increases, and
robot systems are engineered to operate autonomously for long hours with minimal
human intervention, then improvement via exploration for discovery will enable
these robots to expand their range of skills. This view is driven by the need for data to
drive learning, for without a su�ciently large number of robots that autonomously
practice and explore, engineering e�ort is better invested in enabling competent
initial policies that will be instrumental in increasing deployment fleet size. Even-
tual large scale interactive learning will also require careful system orchestration,
involving safety constraints for real world sampling, reward specification, real time
updates of the model and transfer of newly collected robot data. There are currently
two predominant approaches for enabling strong initial deployment policies, both of
which we have touched upon in the final section of the thesis - imitation learning and
large-scale simulation training. There is currently the exciting possibility that larger
scale execution of these ideas with greater compute and hardware manufacturing
investments coupled with scalable data modelling techniques from vision/language
domains will yield robots that can be deployed, setting o� a data flywheel.
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Simulation as a playground for emergent discovery: Of the aforementioned
approaches for enabling the first version of deployment policies, I am particularly
optimistic about simulation, specificallywhen combinedwith reinforcement learning.
This has already shown amazing results for learning policies for locomotion for
quadrupeds [206, 2] and humanoids [310], bipeds to learn how to play soccer [144],
drones to navigate challenging courses [188], and in-handmanipulation [152, 6]. The
application to quadruped locomotion has now even enteredmainstream deployment
in industry. While tackling open-world manipulation using simulation remains an
open challenge, utilizing reinforcement learning with domain randomization holds
the promise of discovering very robust high-frequency reactive policies, which is
crucial for generalizing to various perturbations during deployment and dealing
with environment uncertainty. Furthermore, with su�ciently powerful simulations
that depict various scenes and environments with high degree of complexity, we can
deploy exploration algorithms in simulators to discover skills for agents. Key ideas
we have discussed of formulating objectives, learning from videos, utilizing priors to
shape exploration can all be investigated now with a massive virtual fleet of robots.
Hence, we can revisit our ideas of discovery and continually expanding repertoire
of skills, but without the high cost of direct real world interaction. However, for
such policies to be transferable to the real world, it is likely that simulators would
have to very closely resemble the real world in terms of interaction physics and
photorealism. There is some argument on whether domain randomization with
approximate modelling is su�cient, but even this would require a very strong prior
on the approximate feasible range of physics parameters. Most current simulators
utilize hand-written rules and diverge from real-world physics in significant ways,
hence mitigating this gap will be important.
World models as data-driven sims for generalist control: To solve the simulator
modelling problem, we can resort to the tried and tested approach of utilizing
data-driven learning. This has already been discussed in this thesis in the form of
world models [140, 145], which predict future outcomes in a learned latent space
(Chapters 2, 3, 5). These world models were trained for a particular environment
(using human video pretraining in Chapter 5), but generalist simulators will need
to utilize all the data available. A promising direction for this is to build o� work in
video modelling, which captures some important conceptual aspects and physics
information present in videos [39], and we presented an approach for adapting
such internet-pretrained models using reward information in Chapter 6. However,
these video models currently also often hallucinate and produce generations that
do not obey real-world physics. Nevertheless, this presents an interesting avenue
for research. There have also been alternate formulations for world models, which
learn representations that are not grounded in visual pixel reconstruction [14, 122].
A data-driven simulator that can predict outcomes in many di�erent environments
for various action sequences can then be used to learn skills with RL.
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Chapter L

Appendix

L.1 Discovering and Achieving Goals via World Models

L.1.1 Experimental Details

Environments: The episode length is 150 for RoboBin and RoboKitchen and 1000
for RoboYoga. We show all goals in Figure L.1. For both Walker and Quadruped,
the success criterion is based on the largest violation across all joints. The global
rotation of theQuadruped is expressed as the three independent Euler angles. Global
position is not taken into account for the success computation. RoboBin. The success
criterion is based on placing all objects in the correct position within 10 cm. For
reaching task, the success is based on placing the arm in the correct position within
10 cm. RoboKitchen uses 6 degrees of freedom end-e�ector control implemented
with simulation-based inverse kinematics. The success criterion is based on placing
all objects in the correct position with a threshold manually determined by visual
inspection. Note that this is a strict criterion: the robot needs to place the object in
the correct position, while not perturbing any other objects.

Evaluation: We reported success percentage at the final step of the episode. All
experiments on our benchmark as well as on the SkewFit benchmark were ran
3 seeds. Due to large required compute, DISCERN and Plan2Explore results for
LEXA were only run with one seed. The DISCERN and Plan2Explore results should
therefore not be used for rigorous comparisons, but are nevertheless indicative of the
simplicity of these benchmarks. Plots were produced by binning every 3e5 samples.
Heatmap shows performance at the best timestep. Each model was trained on a
single high-end GPU provided by either an internal cluster or a cloud provider. The
training took 2 to 5 days. The final experiments required approximately 100 training
runs, totalling approximately 200 GPU-days of used resources.
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Implementation: Webase our agent on theDreamer implementation. For sampling
goals to train the achiever, we sample a batch of replay bu�er trajectories and sample
both the initial and the goal state from the same batch, therefore creating amix of easy
and hard goals. To collect data in the real environment with the achiever, we sample
the goal uniformly from the replay bu�er. We include code in the supplementary
material. The code to reproduce all experiments is available at https://github.

com/orybkin/lexa

Hyperparameters: LEXA hyperparameters follow Dreamer V2 hyperparameters
for DM control (which we use for all our environments). For the explorer, we use
the default hyperparameters from the Dreamer V2 codebase [147]. We use action
repeat of 2 following Dreamer. LEXA includes only one additional hyperparameter,
the proportion of negative sampled goals for training the distance function. It is
specified in Tab. L.5. The hyperparameters were chosen by manual tuning due to
limited compute resources. The base hyperparameters are shared across all methods
for fairness.

DIAYN baseline: We found that this baseline performs best when the reverse
predictor is conditioned on the single image embedding e rather than latent state
s. We use a skill space dimension of 16 with uniform prior and Gaussian reverse
predictor with constant variance. For training, we produce the embedding using
the embedding prediction network from Sec. 2.2.4. We observed that DIAYN can
successfully achieve simple reaching goals using the skill obtained by running the
reverse predictor on the goal image. However, it struggles with more complex tasks
such as pushing, where it only matches the robot arm.

GCSL baseline: We found that this baseline performs best when the policy is
conditioned on the single image embedding e rather than latent state s. This baseline
is trained on the replay bu�er images and only uses imagined rollouts to train an
explorer policy. For training, we sample a random image from a trajectory and
sample the goal image from the uniform distribution over the images later in the
trajectory following [123]. We similarly observe that this baseline can perform simple
reaching goals, but struggles with more complex goals.
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Reach Left Reach Right Push Front Push Back Push Both Front Push Both Back

Lie Back Lie Front Legs Up Lunge Side Angle Stand

Burner Light Slide Hinge Microwave Kettle

Lean Back Boat Bridge Stand One Feet Head Stand Arabesque

Lie Back Stretch Lie Back 2 Legs Up Lie Side Lie Side 2 Stand Stand 2 Point Attack Balance Balance 2

Light + Slide Light + Hinge Light + Kettle Slide + Hinge Slide + Kettle Hinge + Kettle

Place Front Place Both Front

Figure L.1: All goals for the four environments that we consider. Our benchmark further
includes an additional set of even harder goals, available in the repository.

Algorithm From Pixels Zero-Shot Exploration Planning

CTS [28], Curiosity [285], RND [44] 3 7 3 7

Plan2Explore [349] 3 7 3 3

HER [8] 7 3 7 7

Visual Foresight [97] 3 3 7 3

Actionable Models [55] 3 3 7 7

DIAYN [102] 7 3 3 7

Asymmetric Self-Play [275] 7 3 3 7

SkewFit [295] 3 3 3 7

Go-Explore [99] 3 3 3 7

LEXA (Ours) 3 3 3 3

Table L.1: Conceptual comparison of unsupervised reinforcement learning methods. LEXA
combines forward-looking exploration by planning with achieving downstream tasks zero-
shot while learning purely from pixels without any privileged information.
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Figure L.2: RoboYoga Walker Benchmark. Left: success rates averaged across all 12 tasks.
Right: final performance on each specific task, ranging from light green (0) to dark blue
(100%). We observe that the simple latent cosine distance function works well on this task,
substantially outperforming other competing agents. In the heatmap, most agents can solve
the easy tasks, but only LEXAmakes progress on solving a majority of the tasks and achieves
good performance.

Figure L.3: RoboYoga Quadruped Benchmark. Left: success rates averaged across all 12
tasks. Right: final performance on each specific task, ranging from light green (0) to dark
blue (100%). We observe that the simple latent cosine distance function works well on this
task, substantially outperforming other competing agents. In the heatmap, most agents can
solve the easy tasks, but only LEXA makes progress on solving a majority of the tasks and
achieves good performance.
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Figure L.4: RoboBin Benchmark. Left: success rates averaged across all 8 tasks. Right: final
performance on each specific task. While cosine distance works on simple goals, temporal
distance outperforms it on tasks requiring manipulating several blocks (last three columns),
as this distance focuses on the part of the environment that’s hardest to manipulate. Prior
agents only solve the easiest reaching tasks, struggling either with exploration or learning
the downstream policy.

Figure L.5: RoboKitchen Benchmark. Left: success rates averaged across all 12 tasks. Right:
final performance on each specific task. RoboKitchen is challenging both for exploration
and downstream control, with most prior agents failing all tasks. In contrast, LEXA is able
to learn both an e�ective explorer and achiever policy. Temporal distance helps LEXA focus
on small parts such as the light switch, necessary to solve these tasks. LEXA makes progress
on four out of six base tasks, and is even able to solve combined goal images requiring e.g.
both moving the kettle and opening a cabinet.

Table L.5: Hyperparameters for LEXA over the Dreamer default hyperparameters.

Hyperparameter Value Considered values

Action repeat (all environments) 2 2
Proportion of negative samples 0.1 0, 0.1, 0.5, 1
Proportion of explorer:achiever data collected in real environment 1:1 1:1
Proportion of explorer:achiever training imagination rollouts 1:1 1:1
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Figure L.6: Single agent trained across Kitchen, RoboBin, Walker, with final performance
on each specific task. LEXA with temporal distance is able to make progress on tasks from
all environments, while LEXA+cosine and DDL don’t make progress on the kitchen tasks.

Visual Pusher Visual Pickup Table L.2: Results on SkewFit tasks [295].

Method Visual Pusher Visual Pickup

LEXA + temporal 0.023 0.014
Skew-Fit [295] 0.049 0.018
RIG [271] 0.077 0.037
RIG + Hazan et al. 0.059 0.039
RIG + HER [8] 0.075 0.035
DISCERN [414] 0.094 0.039
RIG + Goal GAN [109] 0.088 0.039
RIG + DISCERN-g 0.07 0.032
RIG + # Exploration 0.088 0.04
RIG + Rank-Based 0.067 0.035

Figure L.7: Final goal reaching error in meters on tasks from SkewFit [295]. Example
observations are provided on the left. Baseline results are taken from [295]. LEXA signifi-
cantly outperforms prior work on these tasks. Pushing and picking up blocks from visual
observations is largely solved, so future work will likely focus on harder benchmarks such
as the one proposed in our work.
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Pendulum ReacherPointmass

Ball in Cup FingerCartpole

Table L.3: Results on DISCERN
tasks* [414].

LEXA DISCERN* [414]

Ball in cup 84% 76.5%
Cartpole 35.9% 21.3%
Finger 40.9% 21.8%
Pendulum 79.1% 75.7%
Pointmass 83.2% 49.6%
Reacher 100% 87.1%

Figure L.8: Goal success rate on the tasks replicated from [414]. Example observations are
provided on the left. *While the original tasks are not released, we followed the procedure
for generating the goals described in [414]. Despite following the exact procedure, we were
not able to obtain similar goals to the ones used in the original paper. Nevertheless, we show
the goal completion percentage results obtained with our reproduced evaluation compared
to DISCERN results from the original paper. We see that our agent solves many of the tasks
in this benchmark and performs better on this comparison.

Pendulum Swingup

Reacher HardCup Catch

Walker Stand

Cartpole Balance

Hopper Stand

Table L.4: Results on zero-shot DeepMind control tasks
from Plan2Explore [349].

Method LEXA P2E [349] DrQv2 [441]
Zero-Shot 3 3* 7

Walker Stand 957 331 968
Hopper Stand 840 841 957
Cartpole Balance 886 950 989
Cartpole Balance 996 860 983
Sparse
Pendulum 788 792 837
Swingup
Cup Catch 969 962 909
Reacher Hard 937 66 970

Figure L.9: Final return on DM control tasks [391]. Example goals achieved by LEXA are
provided to the left. Baseline results taken from [349, 441]. Plan2Explore adapts to new tasks
but it needs the reward function to be known at test time while LEXA does not require access
to rewards. To compare on the same benchmark, we create goal images that correspond to
the reward functions. Our agent even performs comparably to state of the art oracle agents
(DrQ, DrQv2, Dreamer) that use true task rewards during training.
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L.2 A�ordances from Human Videos as a
Versatile Representation for Robotics

L.2.1 A�ordance Model Setup

Data Extraction: Our training setup involves learning from EpicKitchens-100 Videos
[76]. This dataset contains many hours of videos of humans performing di�erent
kitchen tasks. Weuse each sub-action video (such as ‘opendoor’ or ‘put cup on table’)
as training sequences. Consider a video (V ) consisting of T frames, V = {I1, ..., IT }.
Using 100 DOH annotations [356] (available alongside the dataset), we find all of
the hand-object contact points and frames for each hand in the video. As mentioned
in Section 3, let model output fhand(It) = {hlt, h

r
t , o

l
t, o

r
t}, where ol, or are the contact

variables and hl, hr are the hand bounding boxes. We find the first contact timestep
and select the active hand (left or right) as the hand side to consider for the whole
trajectory. This is found by first binning ot and looking for all types that have contact
with ‘Portable’ or ‘Fixed’ objects. These are assigned 1, while all others are assigned
0. We smooth the set of contact variables using a Savitzky–Golay filter [337] using
a threshold of 0.75 (with window size 7). This should eliminate any spurious
detections. We use the skin segmentation approach from [236], to find the contact
points, {ci}N , at the contact timestep around the active hand. We then fit a GMM
with k = 5 to the set of contact points to determine µ1, ..., µ5. We found that learning
without a covariance, ⌃, was more stable thus we only aim to learn the µ1. The input
image becomes the first image before the contact where the hand is not visible. If the
contact points or trajectory are not in the frame of this initial image (if the camera
has moved), we then discard the trajectory. We use crops of size 150x150 (full image
size is 456 x 256), which improves robustness at test time. We train on around 54K
image-trajectory-contact point tuples. We include visualizations of the a�ordance
model outputs on the VRB website.
Architecture: Weuse the ResNet18 encoder from [273] as g�, as our visual backbone.
Our model has two heads, a trajectory head and a contact point head. We use the
spatial features from the ResNet18 encoder (before the average pooling layer) as an
input to three deconvolutional layers and two convolutional blocks with kernel sizes
of 2 and 3 respectively, and channels: [256, 128, 64, 10, 5]. We use a spatial softmax
to obtain m̂uk for where k = 1, ..., 5. Our trajectory network is a transformer encoder
with 6 self-attention layers with 8 heads each, and uses the output of the ResNet18
encoder (flattened), which has dimension 512. The output of the transformer encoder
is used to predict a trajectory of length 5, using an MLP with two layers with hidden
size 192.
Training: We train our model for 500 Epochs, using a learning rate of 0.0001 with
cosine scheduling, and the ADAM [195] optimizer. We train on 4 GPUs (2080Ti) for
about 18 hours.
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L.2.2 Robotics Setup

Hardware setup: For all the tasks we assume the following structure for robot
control for each trajectory. We first sample a rotation configuration for the gripper.
The arm then moves to the contact point c, closes its gripper, and moves to the points
in the post-contact trajectory ⌧ . For the initial rotation of the Franka, joints 5 and 6
can take values in [0, 30, 45] degrees, while joint4 is fixed to be 0 degrees. For the
Hello-Robot, the roll of the end-e�ector is varied in the range of [0, 45, 90] degrees.
Once the orientation is chosen for the trajectory, we perform 3DOF end-e�ector
control to move between points. Given two points a and b, we generate a sequence
of waypoints between them to be reached using impedance control for the Franka.
The Hello-Robot is axis aligned and has a telescoping arm, thus we did not need
to build our own controller. We do not constrain the orientation to be exactly the
same as what was selected in the beginning of the trajectory, since this might make
reaching some points infeasible. For all tasks and methods we evaluate success
rate by manual inspection of proximity to the goal image after robot execution (for
imitation learning, goal reaching and a�ordance as an action space), and evaluate
coincidental success for exploration using manual inspection of whether the objects
noticeably move over the course of the robot’s execution trajectory.
A�ordance Model to Robot Actions: Reusing terminology from Section 3, the
a�ordance model output is f✓(It) = p̂c, ⌧̂ , where p̂c =

PK
k=0 ↵kN (µ̂k, ⌃̂k), and

⌧̂ = {wi}
M . We can convert this into a 3D set of waypoints using a hand-eye

calibrated camera, and obtain a 3D grasp point from p̂c, and a set of 3D waypoints
from ⌧̂ .
Imitation from O�ine Data Collection: We use our a�ordance model to collect
data for di�erent tasks, and then evaluate whether this data can be used to reach
goal images using k-NN and Behavior cloning.

Cabinet Knife Veg Shelf Pot Door Lid Drawer
N0 150 100 50 50 50 50 30 40
Ns 50 50 30 30 30 50 30 40

Table L.6: Number of trajectories collected for vari-
ous tasks, for Initial Data Collection (N0) and for each
subsequent fitting iteration for either goal reaching or
exploration (Ns)

Asmentioned in Sec 3.3.1, given
an image It, the a�ordance
model produces (c, ⌧) = f✓(I).
In addition to storing It, c and
⌧ , we also store the sequence of
image observations (queried at
a fixed frequency) seen by the
robot when executing this tra-
jectoryO1:k, where k is the total
number of images in the trajectory. k varies across di�erent trajectories (since it
depends on c and ⌧). These intermediate images Oi enable us to determine how
close a trajectory is to the given goal image. For each trajectory, the distance to goal
image Ig is given by mini || (Ig)�  (Oi)||22, where  is the R3M embedding space.
We then use this distance to produce a set of K trajectories with smallest distances to
the goal Ig. For k-NN, we simply run (c, ⌧) from each of these filtered trajectories.
For Behavior cloning, we first train a policy that predicts (c, ⌧) given image I using
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(a) VRB - Cabinet (b) HAP - Cabinet (c) VRB - Veggies (d) HAP - Veggies

Figure L.10: Visualization for A�ordance as an Action Space for VRB and HAP [128], on
the Cabinet and Veggies Tasks

this set of trajectories, and then run the policy ⇡ on the robot. We summarize this is
Algorithm 10. We fix the number of top trajectories K to be 10 for k-NN and 20 for
behavior cloning. The number of trajectories for initial data collection used for each
task is listed in L.6.

Object VRB Hotspots

VR Controller 0.27 0.13
Chain 0.33 0.20
Hat 0.07 0.20
Tape 0.13 0.00
Cube 0.00 0.00

Sanitizer 0.27 0.20
Stapler 0.53 0.20
Shoe 0.33 0.13
Mouse 0.27 0.00

Hair-Clip 0.47 0.20

Table L.7: VRB for grasping held-out objects

For k-NN, the success is averaged across
all K runs on the robot. For behavior-
cloning, we parameterize the policy ⇡
using a CVAE, where the image is the
context, the encoder and decoder are 2
layer MLPs with 64 hidden units and
the latent dimension is 4. During infer-
ence, we sample from the CVAE given
the current image as context, and report
success averaged across 10 runs. The
quality of data collected by the robot us-
ing VRB which is used for imitation can
be in seen on the VRB website.
Although many of our household ob-
ject categories might be present in the
videos of Epic-Kitchens [76], specific in-
stances of objects do not appear in train-
ing, thus every object our approach is
evaluated on is new. To test generalization to “rare” (held-out) objects and evalu-
ate the grasping success using VRB’s a�ordances, see Table L.7. VRB consistently
outperforms our most competitive baseline, Hotspots [267].
Exploration & Goal Reaching: We apply our a�ordance model in the paradigms
of exploration as well as goal reaching, where the robot uses the collected data to
improve its behavior. As described in Section 3.3, we use a environment change visual
model to obtain intrinsic reward for exploration, while for goal-reaching we use
distance to the goal in a feature space like the R3M embedding space. For exploration,
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Algorithm 10 Imitation from O�ine Data Collection
Require: Dataset of trajectories {(It, O1:k, c, ⌧)}
Require: Number of top trajectories K
Require: Goal Image Ig
Require: R3M embedding space  
1: For each trajectory T , compute
2: dT = mini || (Ig)�  (Oi)||22
3: Rank trajectories in ascending order of dT . Create set K = {(c, ⌧)} of the top K

ranked trajectories.
4: if k-NN then
5: Execute K on the robot.
6: else
7: Assert behavior cloning
8: Train a policy ⇡(c, ⌧ |I) using K.
9: Execute c, ⌧ ⇠ ⇡(.|I) on the robot.
10: end if

we want to maximize the change between the first and last images of the trajectory,
since greater perturbation of objects can lead to the discovery of useful manipulation
skills. For goal-reaching, we minimize the distance between the trajectory and the
goal image, since this achieves the desired object state. In each case (exploration and
goal-reaching), we rank the trajectories in the dataset using the appropriate metric,
and then fit (ĉ, ⌧̂) to the {(c, ⌧)} values of the top ranked trajectories. For subsequent
data collection iterations, we use the a�ordance model f✓ with some probability
p, but otherwise use (ĉ, ⌧̂) for execution on the robot. The newly collected data is
then aggregated with the dataset, and the entire process repeated. We present this
procedure in Algorithm 11. The number of initial trajectories N0 and trajectories for
subsequent iterations Ns for di�erent tasks are listed in L.6. For all experiments, we
set p = 0.35, K = 10, J = 2. We include videos on the VRB website. which show that
as our system sees more data, its performance improves for both exploration and
goal-reaching.
Intrinsic Reward Model: We train a visual model which given a pair of images
(Ii, Ij), produces a binary image that captures how objects move, and is not a�ected
by changes in the robot arm or body position. Specifically, this model comprises the
following -

�(Ii, Ij) = g(||m(Ii)�m(Ij)||2,

|| (m(Ii))� (m(Ij))||2)
(L.1)

Here m is a masking network which removes the robot from the image. We train
this using around 100-200 hand-annotations of the robot in various scenes, and use
this data to fine-tune a pretrained segmentation model  [158]. We evaluate the l2-
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Algorithm 11 Exploration / Goal Reaching
Require: Number of iterations J
Require: Number of top trajectories K
Require: Number of initial trajectories N0,
1: and for subsequent fitting iterations Ns

Require: A�ordance model f✓
Require: Tradeo� probability p
Require: Visual change model � (only for exploration)
Require: R3M embedding  (only for goal reaching)
Require: Goal Image Ig (only for goal reaching)
2: initialize: World modelM, Replay bu�er D,
3: Execute (c, ⌧) = f✓(I) on the robot for N0 iterations to collect initial dataset D =

{(I , O1:k, c, ⌧)}
4: for iteration 1:J do
5: For each trajectory T0:k, compute
6:
7: if exploring then
8: compute ECT = ||�(O1)� �(Ok)||2
9: Rank trajectories in descending order of ECT
10: else
11: Assert goal reaching
12: compute dT = mini || (Ig)�  (Oi)||2
13: Rank trajectories in ascending order of dT
14: end if
15: Create set K = {(c, ⌧)} of top K ranked trajectories.
16: Compute ĉ, ⌧̂ = mean(K)
17: For Ns iterations, set (c, ⌧) = f✓(I) with probability p, otherwise set (c, ⌧) =

(ĉ, ⌧̂).
18: Execute (c, ⌧) on the robot and append data to D

19: end for

losses above only on non-masked pixels. Further, we also take into account distance
in the feature space of the segmentation model to reduce sensitivity to spurious
visual artifacts. The function g applies heurestics including gaussian blurring to
reduce e�ects of shadows, and a threshold for the change at each pixel, to limit false
positives.
A�ordance as an Action Space: For this learning setup, we parameterize the action
space for the robot with the output distribution of our a�ordance model. We first
query the model a large number of times, and then fit Gaussian Mixture Models
(GMMs) separately to the c and ⌧ predictions, with Nc and N⌧ centers respectively.
We then define a discrete action space of dimension Nc*N⌧ , where each action maps
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Algorithm 12 A�ordance as Action Space
Require: A�ordance Model f✓
Require: Number of initial queries q
Require: Number of clusters for c, Nc and for ⌧ , N⌧

Require: Goal Image Ig
Require: RL algorithm with discrete action-space RLA
Require: R3M embedding space  
1: Query f✓ on the image of the scene q times
2: to obtain a dataset {(c, ⌧}
3: Fit a GMM Gc with Nc centers to {c}, and
4: a GMM G⌧ and N⌧ centers to {⌧}
5: Create mapping M from A = [1..Nc*N⌧ ] to values in the cross-product space of

the centers of Gc and G⌧

6: Initialize Dataset D = {}, and RLA with discrete action space A and random
policy ⇡.

7: Run Sampling and Training asynchronously
8: while Sampling do
9: Run ⇡ on the image to get ad.
10: (c, ⌧) = M(ad), execute on the robot and collect initial and final images I0

and IT
11: Compute reward r = || (IT )�  (Ig)||2.
12: Store ( (I0), ad, (IT ), r) in D

13: end while
14: while Training do
15: Sample data ⇠ D, pass to RLA for
16: training and updating ⇡.
17: end while

to a value in the cross-product space of the centers of the twoGMMs. We can nowuse
discrete action-space RL algorithms. We asynchronously sample from the discrete
action-space policy, and train it using the RL algorithm. This procedure is described
in Algorithm 12. We note that it is important to reset the environment so that images
the policy sees are close to the initial image for which the action space was defined.
Across experiments we set Nc = N⌧ = 4, q = 2000. For the RL algorithm RLA we
use the DQN [258] implementation from the d3rlpy [388] library. We include a
visualization of the action space by plotting the (c, ⌧) values in the cross-product
space of the centers of the two GMMs, for VRB and HAP [128] in Figure L.10. For
VRB, a larger number of the discretized actions are likely to interact with objects.
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L.2.3 Baselines and Ablations

Baselines: The baselines we compare to include the approaches from from Liu et
al. [236] (HOI), Goyal et al. [128] (HAP) and Natarajan et al., (Hotspots) [267]. In
each of these baselines, we used the provided pretrained model. Specficially, for
Hotspots [267], we employ the model trained on EpicKitchens [76], as this is what
our approach is also trained on. Similarly, for HAP [128] we use the trained model
on EpicKitchens also. HOI predicts both a contact point and trajectory, which we
execute at test time. The other two approaches predict likely contact regions, from
which we sample, as well as a random post contact trajectory.

Visual Representation Analysis (Fine-tuning): For the visual representation fine-
tuning experiments we performed in Section 4.5, we use the Imitation Learning
Evaluation Framework from R3M [273], which aims to evaluate the e�ectiveness of
frozen visual representations for performing behavior cloning for robotic control
tasks. Following their procedure, we evaluate on three simulated tasks from the
Franka Kitchen environment: (1) microwave, (2) slide-door, and (3) door-open. We
train the policy using left camera images from their publicly available demonstration
dataset, which is collected by an expert state-based reinforcement learning agent and
then rendered as image observations. For behavior cloning with the R3M encoder,
we freeze the pretrained R3M encoder (which uses a ResNet50 base architecture)
and fine-tune a policy on top of it. For behavior cloningwith the VRB encoder, we use
an R3M model which was fine-tuned for 400 steps with a�ordance model training
as in Section 3.2. fine-tuning was performed separately from behavior cloning, and
during policy learning our representations are also frozen before being used as
input for the downstream policy. For both R3M and VRB, we concatenate the visual
embedding and pro-prioceptive data for input to the downstream policy, and then
use a BatchNorm layer followed by a 2-layer MLP to output an action, and use a
learning rate of 0.001 and a batch size of 32 for 2000 steps.

Method Light Microwave Kettle

Random 0.20 0.15 0.20
HAP 0.30 0.20 0.45
HOI 0.60 0.45 0.40

Hotspots 0.35 0.35 0.25

VRB 0.75 0.60 0.55

Table L.8: VRB on simulation benchmarks.

Visual Representation Analy-
sis (Feature space distance):
For the feature space distance
experiments, we compare an
R3M model with a VRB model.
Both use a ResNet50 base archi-
tecture, and the VRB model is
obtained by fine-tuning an R3M
model for 100 steps using a�or-
dance model training as in Sec-
tion 3.2. The distances in Figure
8 are computed as the (squared) L2 distances between the features produced by
each model for the goal image and current image.
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L.2.4 Simulation

We also provide a simulation environment benchmark to test our a�ordances. This
is modeled after the Franka-Kitchen environment from the D4RL [114]. In this
benchmark, the robot observes images and predicts 3D positions to manipulate,
in the exact same way as we deploy the robot in the real world. There are three
di�erent tasks: turning the light on, opening the microwave and lifting the kettle.
These are standard tasks in the D4RL benchmark [114]. We run Paradigm 1 (o�ine
data collection) and provide the success rates for VRB and baselines in Table L.8.

L.2.5 Codebases

We use the following codebases:

• epic-kitchens/epic-kitchens-100-hand-object-bboxes for extracting detections
from 100 DOH [356] for EpicKitchens [76].

• stevenlsw/hoi-forecast for Skin segmentation code and HOI baseline [236].

• uiuc-robovision/hands-as-probes for HAP baseline [128].

• Tushar-N/interaction-hotspots for Hotspots baseline [267].

• facebookresearch/r3m for R3M visual features [273].

• wkentaro/labelme for getting masks for robot and

• Torchvision tutorial for a Mask-RCNN [158] implementation.

• takuseno/d3rlpy [388] for DQN [258] implementation.

• facebookresearch/polymetis [229] as the base for the controller for the Franka
Arm.
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L.3 Structured World Models from Human Videos

L.3.1 Robot Setup

We use two robots: Franka Emika and Stretch RE1 from Hello-Robot. Both robots
are controlled in end-e�ector space as well as a rotation (roll for the Stretch, and
roll + pitch for the Franka). The Franka roll and pitch, as well as the Stretch roll are
sampled from [0,�⇡

4 ,�
⇡
2 ] (randomly at first). The robots run open loop trajectories.

The camera observations are coming from D415 Intel Realsense RGBD cameras. We
use a low-level impedance controller for the Franka to reach the desired high level
actions.

L.3.2 Tasks and Environments

Our setup consists of six tasks, three (veggies, knife and cabinet) of which are
in a Play Kitchen from Ebert et al. [98], and we have three in the wild tasks that
involve opening the dishwasher, lifting the garbage can handle or pulling out a
drawer. These are everyday tasks that we found. Videos of each task can be seen at
https://human-world-model.github.io.

L.3.3 Data Collection

We perform data collection by executing the a�ordance model G at first, and then
set modemt = 1, and use �yt as Cartesian end-e�ector deltas. These are sampled
fromN (0, 0.05). We sample from G in the followingmanner: we obtain the 2D pixel
from the model, and find the depth at that point. For the grasp part of the a�ordance,
we simply pass this depth to our controller (which has hand-eye calibration). For
post grasp trajectory, we sample a depth with d as the center, with a bias towards
moving away from the surface (as we usually have a wall right behind the object, or
the depth camera). For each of the baselines, we use the underlying action space
to sample actions, and append �yt to the end. Our trajectory, during the robot
sampling stage, consists of 3-4 actions with mt = 0, and 6-10 actions with mt = 1.
The overall data collection process takes about 25 to 45 minutes depending on how
long resets takes.

L.3.4 Human Videos

Our human video dataset is obtained from Epic-Kitchens [76]. We take semantically
pre-annotated action clips, and apply the 100 Days of Hands (100 DoH) [356] hand-
object model to get annotations for when and where the contact happened, and
how the hand moved post contact, all in normalized (0, 1) pixel space. To obtain
the contact points, we use a similar pipeline to Liu et al. [236], where we find the
intersection of the hand bounding box and the interacted object’s bounding box,
and look for skin outline in that region. We use a skin segmentation (similarly to
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Liu et al. [236]) to get the external grasp points. We obtain about 55K such clips to
train on. Each sequence is of length 4, with mt = 0 for all t. For the rotation and the
depth values, we randomly sample these values during training, from one of the
feasible rotations, or within 50cm of the environment surface respectively. We train
a ResNet18 based encoder-decoder architecture for our grasp point prediction. We
perform a spatial softmax on the decoder deconvolutional output to obtain the grasp
keypoints. The post-grasp trajectory head is a Transformer [402] with 6 self-attention
layers that have 8 heads, inspired from Liu et al. [236].

L.3.5 World Model

Our world model architecture is the same as that of Hafner et al. [147], excluding
the visual encoders or decoders. We do not tune any of the world model hyper-
parameters, and use the default Dreamer[147] settings. We use the NVAE [400, 16]
encoder and decoder used in FitVid [16] to better handle high dimensional image
prediction. We use only one cell per block instead of two, due to GPU memory
restrictions and to train with larger batch sizes. We do not have any residual connec-
tions between the encoder and the decoders, to force the latent of the world model,
z, to be an information bottleneck. The dimension of z is 650 (the deterministic
component of the RSSM[147] is size 600, and the stochastic component is size 50).
The model is trained in Tensorflow, and each image is of the size 128x128x3. In the
experiments that use reward prediction, we regress qr (the reward decoder) to the
distance to goal in the space of R3M [273] features (the ResNet18 [157] version)
of the weights. The reward predictor network consists of a 2 layer MLP with 400
hidden units which takes the world model feature z as input.

L.3.6 Baselines

Every baseline that uses a world model uses the same code as SWIM, with either a
di�erent pre-training setup or di�erent action space.

• MBRL-Affordance: This is the same exact setup as SWIM in terms of the world
model and the execution of the a�ordance model, but we do not use any
pre-trained weights when training on robot data.

• MBRL-Pix: The action type is the same as MBRL-Affordance, but the pixel
locations are chosen at random, and not from the human-centric a�ordance
model. The actions are sampled uniformly in the 2D crop around the object.

• MBRL: Here all of the actions are withmt = 1.

• BC-Affordance: This is a filtered-behavior cloning [289, 291] strategy. We
rank trajectories based ondistance in R3M [273] space to goal. Wefit aGaussian
Mixture Model with 2 centers to the top actions, and sample from those, at
execution time.

154



• BC-Pix: We fit a GMM top trajectories just like BC-Affordance. The sam-
pling space is uniform in the crop around the object.

L.3.7 Training, Finetuning and Deployment

For training the world model, W�, in each iteration we train on 100 batches of data,
where each batch consists of an entire trajectory sequence. These sequences are
of length 2, 3 and 10 for the human video, Hello robot and Franka robot settings
respectively. We first train a model on the human data for about 6000 such iterations
with a batch size of 80, which takes about 96 hours on a single RTX 3090 GPU (using
24GB of VRAM). We then fine-tune this model for 300 epochs on robot data for the
joint model, and 200 iteration for the single-task models using a batch size of 24,
on a RTX 3090, which takes about 3-4 hours of training. The batch size for robot
data is smaller because the model needs to deal with longer sequences consisting
of hybrid actions (both the a�ordance actions and cartesian end-e�ector actions).
For the continual learning experiments we subsequently train on the aggregated
datasets for an additional 50 iterations. When deploying the model to perform a
task, we use CEM for planning at the beginning of the trajectory, and then execute
the optimized action sequence in an open-loop manner. We use 3 iterations of CEM,
and 2000 action proposals. Further, in all our experiments, we fix M = 1400 and N

= 600 (M and N are defined in Alg. 2), for fixing the ratio of biasing the proposals
sent to the model for planning.

L.3.8 Evaluation

We evaluate our world model by executing the trajectory it outputs in the real world
using open-loop control. We use goal images that indicate objects are manipulated
in specific ways, for example an open cabinet, vegetables picked up and in the air,
the knife should be lifted up, the drawer pulled out, the garbage can and dishwasher
opened. We evaluate for each method/ablation 25 times, presenting the average.

L.3.9 Codebases

• https://github.com/danijar/dreamerv2 [147] for the world model code

• https://github.com/ddshan/hand_object_detector-100DoH model [356]

• https://github.com/epic-kitchens for Epic-Kitchens [76] processing

• https://github.com/facebookresearch/r3m for R3M [273] model

• https://github.com/facebookresearch/fairo/tree/main/polymetis

[229] for the end-e�ector control code for the Franka

• https://github.com/orgs/hello-robot/repositories for Stretch RE-1
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L.4 Continuously Improving Mobile Manipulation with
Autonomous Real-World RL

L.4.1 Policy Training

For our experiments we run DrQ implemented in the o�cial RLPD codebase open-
sourced by Ball et al. [23]. Since we run image-based real robot experiments, we
use learning algorithm hyperparameters (including for the image encoders) from
Stachowicz et al. [378], which deployed RLPD for race car driving. The observations
are first encoded into a latent space (separately for the actor and critic), and the
processed latent is used by the critic ensemble or the actor. Details of the architecture
for each of these, in addition to hyperparameters for training is provided in Table L.9.
We use both image and vector observations for learning. Each of these is processed
by an image encoder or a 1-layer dense encoding for vector observations, and the
corresponding latents are all concatenated together and then used as input for the
actor or critic. Note that we use separate encoders for the critic and the critic. We
use the architecture from Stachowicz et al. [378] for encoding each image source,
without using any pre-trained embeddings, the network is retrained from scratch
for each new experiment. There are 4 RGB image sources. The network encoders
are provided with the last 3 frames for each image source, except for the goal image,
since this remains fixed for the episode. The image sources are -

• Egocentric front-left image

• Egocentric front-right image

• Third-person fixed-cam current image

• Third-person fixed-cam goal image

We use (128,128) spatial resolution for the egocentric images, and (256,256) for the
images from the third person camera. The latter uses a higher resolution since it is
further away from the scene and objects appear smaller/less clear.
In addition, we have two vector observations -

• Body pose - We compute the (x,y,✓) position of the robot body in the
SE(2) plane relative to the calibrated playpen frame (calibration details in
section L.4.6). The input to the network is 4 dimensional, consisting of
(x, y, cos(✓), sin(✓)). We use sin, cos transforms for the angle to avoid disconti-
nuities in input, since �⇡ and ⇡ represent the same orientation.

• Hand pose - This contains the 6-dof end e�ector orientation of the hand relative
to the base position.

There are certain learning parameters that are tuned separately for each environment,
which we list in Table L.10. This was mainly to balance the exploration-exploitation
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Table L.9: Hyperparameters used in the experiments

Category Hyperparameter Value

Training Batch size 256
Update to Sample Ratio 4

Actor/Critic Actor learning rate 3e-4
Critic learning rate 3e-4
Actor network architecture 2x256
Critic network architecture 2x256
Critic ensemble size 10

Image Encoder Layer count 4
Convolution size 3x3
Stride 2
Hidden channels 32
Output latent dim 50

trade-o� for learning new behavior, and pertain to the weight placed on entropy
maximization in DrQ (temperature and target entropy), or to handle sparse rewards
(number of min Q functions). We use a maximum episode length of 16 for the chair
and sweeping tasks, and 8 for the dustpan task, since it has sparse reward.

Table L.10: Environment-tuned Hyperparameters

Env #MinQ Temp LR Init Temp Target Entropy

Chair 2 1e-4 0.5 -2
Dustpan 1 1e-3 0.1 -2
Sweeping 2 1e-4 0.1 -4

L.4.2 Detection-Segmentation

For each task, there is an object of interest, the state of which is used to com-
pute the reward. We specify the object using a text prompt, which is used by
the detection model to obtain a bounding box. This is then used to condition
the Segment Anything [197] model to obtain a 2D object mask, as shown in
Fig.L.11. For text-based detectionwe use either Grounding-Dino [237] or Detic [462].
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Figure L.11: Grounded SAM/Detic Visualization: Vi-
sualization of the object masks obtained from Segment
Anything for chair moving(left) and sweeping (right).

For Grounding-Dino, we ap-
pend the task-specific prompt
to the list of class names in
COCO [228] (to avoid cases of
false positive detection), and
we use Detic with objects365

vocabulary class names. The
task-specific text prompts we
use are ’chair’ for the chair
tasks, ’red broom’ for the
dustpan standup task, and

’box.bag.poster.signboard.envelope.tag.clipboard.street sign’ for the sweeping task.
The object of interest in the sweeping task is a paper bag being swept and we use
many di�erent possible matching text descriptions since it is detected as di�erent
classes due to its deformable nature. We list the detection model and the confidence
threshold for a detection to be accepted for each task in Table L.11.

Table L.11: Detection Settings

Env Detection Model Confidence Threshold

Chair Grounding-Dino 0.4
Dustpan Grounding-Dino 0.2
Sweeping Detic 0.1

Once we obtain object masks, we can obtain the corresponding object point-cloud
using depth observations. Some detections are rejected based on estimated position,
eg: if there is a detection of an object outside the playpen. This filtering is essential
since the robot often picks up on known infeasible objects, eg: the box in the middle
of the playpen, or some chairs outside the railings.

L.4.3 Reward Function

Chair-moving tasks: For this task, we compute reward at every timestep of the
episode. Given the estimated chair point cloud using the detection-segmentation
system along with depth observations, we estimate the center of mass xt and the
yaw rotation wt. Given the goal position g and orientation gw (extracted from the
goal image), we compute position xdi� and yaw di�erence wdi� norms. Then the
reward is given by :
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rposition = �xdi� + e(�xdi�) + e(�10·xdi�)

rori = e(�wdi�) + e(�10·wdi�)

Total Reward = rposition + rori

Dustpan Standup: In this task, it is di�cult to provide reward when the robot
is interacting with the dustpan, since the detection model fails to pick up on the
dustpan from the third person or egocentric image observations. We can measure
reward at the end of the episode (when the robot has released its grasp) to detect
the dustpan and estimate the center of the handle xT , and provide a large bonus if
the height of the handle (z component of xT ) is above a set threshold. To prioritize
faster task completion, we use an alive penalty of -0.1. The robot can terminate the
episode earlier by releasing its gripper and letting go of the handle.

rpenalty = �0.1

rbonus = 10 if xt height � thresh

Total Reward =

(
rpenalty, if timestep t < T

rbonus, if end of episode, timestep T

Sweeping: Similar to the chair task, we compute reward at every timestep of the
episode. We estimate the point cloud of the paper bag, let its center of mass be
denoted by xt. The target region is a rectangle, denoted by Gr. Let d(x,Gr) denote
the distance from position x to the closest corresponding point on the rectangle
given by Gr. Then the reward is given by:

rdistance = �0.2 · d(xt, Gr) + e(�10·xdi�)

rprogress = 10 ·max(0, d(xt�1, Gr)� d(xt, Gr))

rbonus =

(
10, if d(xt, Gr) = 0

0, else
Total Reward = rdistance + rprogress + rbonus

L.4.4 Success Criteria

The results we show for continual improvement during training, as well as the
evaluation of the final policies report success rate. Success is defined for an episode
in the following manner for each of the tasks -
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• Chair tasks - If the max reward obtained in the epsiode is above 1. This implies
the chair is very close to its target.

• Dustpan Standup - If the episode ends with a reward of 10 (indicating the
dustpan is standing up).

• Sweeping - If the episode ends with a reward of 10 (indicating the paper bag
is swept into the goal region).

For the quantitative results in Fig 4 and 5, we compute the success/mean reward
for each trajectory from a single run on the real robot system. These trajectories are
then binned, with 20 trajectories per bin. We then compute the mean and standard
error within each bin, and then plot against the corresponding number of real world
interaction samples.

L.4.5 Priors

Algorithm 13 Prior generation for Dustpan
Standup
1: Initialize Prior data bu�er D
2: Initialize Uniform noise distribution U

with limits :
3: (�0.1,�0.1,�1)! (0.1, 0.1, 1)
4: for N = 1 to Number of episodes do
5: Initialize action list A = []
6: Set yaw hand rotation ! to +/-0.5
7: for t = 1 to episode len do
8: Set vertical hand action z to +/-0.2
9: Add (z,!, 0) + (n ⇠ U) to A

10: end for
11: Add (�0.2,!, 0) + (n ⇠ U) to A

12: Execute A on the robot, record obser-
vations, add to D

13: end for
14: return Prior data bu�er D

For the chair moving tasks we use
RRT* for planning a path in SE(2)
space with a simplified model that
only has 2D occupancy of the top
surface of the table, and is not aware
of the chair, or robot-chair or chair-
table interactions. This generates a
set of way-points for the target po-
sition of the center of mass of the
robot in SE(2) space, in global co-
ordinates. We use coordinate trans-
forms to convert these targets to be
in the robot’s body frame in order
to use the same action space as the
reactive RL policy. We are able to
perform this computation since we
know the robot’s body position in
global coordinates. Specifically, we
have Wbody = Wglobal ⇤ T

�1, where
Wf denotes the way-point with re-
spect to frame f and T is the matrix transform of the robot body center of mass with
respect to the global coordinates.
For sweeping, the prior is simply to stay within 0.5m of the last detected location of
the paper bag. For dustpan standup we use a simple procedural function to generate
trajectories to create a prior dataset, which we detail in Algorithm 13
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L.4.6 Map Calibration

Figure L.12: Collision map
of the playpen used for safety
and navigation. The table is
added to this map when in-
cluded in experiments.

We use the GraphNav functionality provided in the
SpotSDK by Boston Dynamics for Spot robots for gen-
erating a map of the playpen. This involves walking
the robot around with some fiducials (we use 5) in the
arena. This needs to be performed only once, and is
used to obtain a reference frame to localize the robot,
which is useful to record body pose information and
also to implement safety checks to make sure the robot
is not executing actions that collide with the playpen
railings. While Spot has inbuilt collision avoidance we
implement an additional safety layer using the map to
clip unsafe actions that wouldmove the robot too close
to the playpen railings. For navigation we use RRT* to

plan in SE(2) space given the obstacles, using the collision map of the playpen as
shown in Fig. L.12. The red region denotes the estimate of the robot’s position in the
x-y plane, with the blue marking denoting its heading.

L.4.7 System Overview

We use a workstation with a single A5000 GPU to run RLPD online, which requires
about 20GB GPU memory, mostly owing to all the image inputs that need to be
processed. The detection and segmentation models are run on cloud compute on
a single A100 GPU. The fixed third person camera images from the Realsense are
streamed to a local laptop. Communication between the laptop, workstation and
cloud server is facilitated via GRPC servers, and the main program script is run on
the workstation, which also controls the robot. Commands are issued to the robot
over wifi using the SpotSDK provided by Boston Dynamics.
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L.5 Adaptive Mobile Manipulation for Articulated Objects
in the Open World

L.5.1 Grasp Primitive

Grasp

Unlock

Rotate

Open

Figure L.13: Primitives: We show visualiza-
tion of the primitives we used in our adaptive
learning framework.

At the testing time, the robot is ini-
tialized randomly in front of the ob-
jects. Given the RGBD image of the
scene obtained from the realsense cam-
era, we use o�-the-shelf visual models
[462, 197] to obtain themask of the door
frame using just text prompts. Further-
more, since the door is a flat plane, we
can estimate the surface normals of the
door using the corresponding mask and
the depth image. This is used to move
the base close to the door and align it
perpendicularly.
We further obtain a naive grasp pose of
the handles from the detection and seg-
mentation models [462, 197]. As shown
in fig:door- L.13, given a text prompt of
”handle”, the open-vocabulary detection model [462] returns a 2D bounding box
of the handle. As shown in the left image of the grasp examples in fig:door- L.13,
if the width of the 2D bounding box is smaller than the length of the bounding
box, we determine it is a vertical handle. Otherwise, it is a horizontal handle. The
grasp orientation is determined by the surface normal of the door frame, the vertical-
horizontal type of the handle, and the direction of gravity. We draw a dotted middle
line to find the center point of the segmentation mask of the handle, and then it is
projected into 3d coordinates using camera calibration and depth. However, passive
detection and segmentation models are insu�cient to predict a robust grasp pose
for all handle types. For the grasp primitive, we introduce a 3-dimension continuous
low-level parameter ranging from �1 to 1 as the grasp primitive input, which is
then rescaled to the grasp o�set ranging from �d to d. This is beneficial since our
adjusted grasp can be adapted to diverse handles via online adaptation.
An important aspect of the design of our gripper is that it enables compliant grasps.
This is due to its hooked shape, as shown in Fig L.14 which allows for dynamically
adjustable grasps as opposed to rigid immovable fixed grasps. Consider for example,
the execution of the open primitive. The contact point between the door handle and
the hooked-shaped finger shifts as the base steps back. This passive compliance
allows the robot to manipulate the door with a force that changes direction, despite
applying a simple base velocity command along the X axis of the base frame. It is
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time

Figure L.14: Compliant Grasp: We design a hooker-shaped finger to allow a compliant
grasp. As shown in the annotated red box, the contact point between the door handle and
the hooker-shaped finger shifts as the robot base steps back, enabling passive compliance.

worth noting that di�erent objects need di�erent learned low-level parameters to
determine how much to move, while avoiding unsafe primitive execution.

L.5.2 Constrained mobile manipulation primitive

We introduce three primitives, including unlock, rotate, and open. Each primitive is a
functional API that takes a low-level parameter as the input to instantiate constrained
mobile-manipulation action executions. We define two coordinate frames in the
mobile manipulation system. We have a base frame, and an arm end-e�ector frame.
The end-e�ector frame is defined relative to (i.e. with respect to) the base frame.
With a 3-DOF motion for the base (in the SE(2) plane), and a 6-DOF arm (with
respect to the base frame), we have a 9-dimensional vector -

(vx, vy, vz, vyaw, vpitch, vroll, Vx, Vy, V!)

The first 6 dimensions correspond to velocity control for the arm end-e�ector, and
the last three are the velocity control for the base. The primitives we use impose
contraints on this space as follows -

Unlock : (0, 0, vz, vyaw, 0, 0, 0, 0, 0)

Rotate : (0, 0, 0, vyaw, 0, 0, 0, 0, 0)

Open : (0, 0, 0, 0, 0, 0, Vx, 0, 0)

The velocities of these primitives are a fixed value, and the low-level parameters are
continuous one-dimension values ranging from �1 to 1, which is then rescaled to
the primitive execution time ranging from �T to T .

L.5.3 Extensive Evaluation with Enhanced Primitive
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stiff

compliant

Figure L.15: Enhanced Primitives with Force Torque Sensors: The original open primitive
struggles with articulating oven objects because it only controls the velocity of the base in
SE(2), and a sti� arm cannot exert su�cient force with a changing direction to operate the
oven. To enhance the open primitive, we install a force torque sensor on the robot end-e�ector
to provide passive compliance. As shown in the annotated red box, the passive compliance
allows the arm to align with the force direction of the articulation, while the robot base
moves backward.

Oven 1 Oven 2 

E E

Figure L.16: Ovens used for evaluation

For better compliance involving control
of the arm, we also experiment with us-
ing force torque sensors. In this section,
we evaluate the e�ectiveness of our pre-
defined primitives on a broader set of ob-
jects, specifically ovens, where the joint
connecting the base part to the frame
part remains perpendicular to the direc-
tion of gravity, as shown in Fig. L.16. We report the success rate of the open primitive
on two oven objects using the pre-trained BC model conditional upon a successful
grasp, as detailed in Table L.12.

Open Primitive Success Rate

oven A oven B
with FT-Sensor 5/5 5/5

w/o FT-Sensor 0/5 1/5

Table L.12: E�ect of using Force Sensors.

The ”open” primitive struggles with
handling oven objects because it only
controls the velocity of the base in SE(2),
and a sti� arm cannot exert su�cient
force with a changing direction to oper-
ate the oven. To address this, we install
a force sensor torque on the end-e�ector
of the arm and apply impedance con-
trol, which provides passive compliance.
This compliance allows the arm to align with the force direction of the articulation
while the robot base moves backward, enhancing its e�ectiveness (Fig. L.15).
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L.5.4 Model Parameterization Details

Hyperparameters Table

Hyperparameter Symbol Value
Mobile Manipulation Primitives Sequence N 2

Number of Mobile Manipulation Primitives Np 4

Number of parameter dimension M 3

BC Learning Rate lrBC 1e� 3

Online Adaptation Learning Rate lrAdp 1e� 4

Constrained mobile manipulation primitive execution Time T 2.5s

Unlock velocity vz 10cm/s

Rotate velocity vyaw 25 � /s

Open velocity Vx 20cm/s

Grasp o�set d 2.5cm

Batch size B 16

Number of iteration during sample Niter 5

Number of rollout during sample Nrol 5

Overall loss function hyperparameter ↵ 0.2

Table L.13: System hyperparameters

We introduce a hierarchical pol-
icy framework that includes
a primitive classifier, denoted
as the high-level, and a condi-
tional policy network, denoted
as the low-level policy. The
high-level policy takes as input
cropped RGB images and pro-
duces logits that parameterize
a discrete categorical distribu-
tion PD. The low-level policy
takes the same image as well
as a discrete sample from dis-
tribution PD, and produces the
mean and standard deviation of
a Gaussian distribution, which
parameterizes the continuous parameter distribution PC . In this section, we provide
further details on the parameterization of the policymodel. Additionally, we provide
a list of all related hyperparameters in Table L.13.

L.5.5 Hierarchical Open-loop Policy

In our setup, we introduce a hierarchical policy consisting of both a high-level policy
and a low-level policy. The high-level policy takes visual inputs and outputs discrete
actions, determining a sequence of primitive types. Meanwhile, the low-level policy
takes both visual inputs and the discrete actions from the high-level policy, and
outputs continuous parameters for the respective primitives. The high-level policy
generates discrete actions, and the low-level policy outputs continuous parameters,
together instantiating a sequence of primitives. The robot executes this sequence in
an open-loopmanner. To ensure that the action sequence produced by the open-loop
policy maintains a fixed horizon, we have introduced a blank primitive during policy
learning, which allows for the skipping of action execution.

L.5.6 Network Architecture and Policy Parameterization

Both the high-level and low-level policies share a frozen visual backbone, which is
a ResNet-18 [157] pretrained on ImageNet [90]. We begin by cropping the handle
from the RGB image and padding the cropped image into a square shape with zero-
padding. The visual backbone takes this processed RGB image to output encoded
visual features.
The high-level policy utilizes these encoded visual features to output a sequence

165



of N indices representing the types of constrained mobile manipulation primitives.
For example, [1, 3] corresponds to [Unlock, Open]. The high-level policy head
is composed of a three-layer multi-layer perceptron (MLP) that outputs action
logits sized [B, Np, N], where B is the batch size, Np is the number of constrained
mobile manipulation primitives, and N is the horizon of the mobile manipulation
primitives sequence. A softmax layer then transforms these logits into probabilities
for the categorical distribution. Discrete high-level actions are sampled from this
distribution using simple greedy sampling.
The low-level policy head takes the encoded visual features and the sampled action
from the high-level policy as input and outputs parameters sized N + 1⇥M , where
N+1 is the horizon of the primitive sequence (including both grasp and constrained
mobilemanipulation primitives), andM is the dimension of the low-level parameters.
The grasp primitive uses an M -dimensional parameter, where M is 3, while the
constrained mobile manipulation primitives use only a 1-dimensional parameter.
To manage batch tensor computations across primitives with di�erent parameter
dimensions, the low-level policy outputs a ”one size fits all” distribution over the
parameters. For execution, similar to Maple [274], the grasp primitive utilizes the
M -dimension parameter, but the other primitives only use the first dimension of this
parameter. In our implementation, the low-level policy head generates the mean and
standard deviation of Gaussian distributions for the primitives’ low-level parameters.
This head consists of a shared two-layer MLP, followed by separate fully connected
layers for calculating the mean and the standard deviation. Specifically, the mean
is processed through a third fully connected layer and then passed through a tanh
activation function, while the standard deviation is processed through its own third
fully connected layer and passed through a sigmoid activation function. Actions are
then sampled from these Gaussian distributions and clipped to a range from �1 to 1.

L.5.7 Pretraining-Finetuning-Testing

We start with BC pre-training, we employ an Adam [195] optimizer with a learning
rate of 1e� 3 and denote this pre-trained BC model as the base model, ⇡b. It takes
around 40 minutes to train the BC model using a 3090 Ti GPU. Following BC pre-
training, we fine-tune the BC model ⇡b using both the BC training data and the
online sample data collected on the testing object. We obtain the fine-tuned model
⇡f by using an Adam [195] optimizer, an overall loss function hyperparameter ↵ of
0.2, and a learning rate of 1e� 4. As detailed in Algorithm 7, we update the latest
⇡f after every Nrol rollouts. Collecting 25 rollouts takes around 45 minutes. And
fine-tuning model takes around 10 minutes using a 3090 Ti GPU. We evaluate both
the BC model and the fine-tuned model on the testing object.
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Hardware features comparison

Arm payload DoF arm omni-base footprint base max speed price
Stretch RE1 [439] 1.5kg 2 5 34 cm, 33 cm 0.6 m/s 20k USD
Go1-air + WidowX 250s [115] 0.25kg 6 3 59 cm, 22 cm 2.5 m/s 10k USD
Franka + Clearpath Ridgeback [194] 3kg 7 3 96 cm, 80 cm 1.1 m/s 75k USD
Franka + Omron LD-60 [316] 3kg 7 5 70 cm, 50 cm 1.8 m/s 50k USD
Xarm-6 + Agilex Ranger mini 2 (ours) 5kg 6 3 74 cm, 50 cm 2.6 m/s 25k USD

Table L.14: Comparison of di�erent aspects of popular hardware systems for mobile
manipulation

L.5.8 Hardware details

Among the commercially available options, we found the Ranger Mini 2 from AgileX
to be an ideal choice for robot base due to its stability, omni-directional velocity
control, and high payload capacity to mount robot arms. The system uses an xArm-6
for manipulation, which is an e�ective low-cost arm with a high payload (5kg), and
is widely accessible for research labs. The system uses a Nvidia Jetson computer to
support real-time communication between sensors, the base, the arm, as well as a
server that hosts largemodels. We use a D435 Intel Realsense cameramounted on the
frame to collect RGBD images as ego-centric observations and a T265 Intel Realsense
camera to provide odometry with visual slam, which is critical for resetting the robot
when performing trials for Reinforcement Learning. The gripper is equipped with
a 3D-printed hooker and an anti-slip tape. The overall cost of the entire system is
around 25, 000 USD, making it an a�ordable solution for most robotics labs. We
compare key aspects of ourmodular platformwith that of othermobilemanipulation
platforms in Table L.14. This comparison highlights advantages of our system such
as cost-e�ectiveness, reactivity, ability to support a high-payload arm, and a base
with omnidirectional drive.

a) Handle grasping point detection b) surface normal

Figure L.17: Detection robustness analysis: a) When multiple handles are present in a
scene, the detection model often fails to accurately identify the specific handle of interest. b)
Visualizes the surface normal estimation process.
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L.5.9 BC Model Failures

Generalizing to unseen objects with a pre-trained BC model poses significant chal-
lenges. As we discussed before, when encountering visually ambiguous objects,
it is di�cult to discern whether a door should be ’pulled’ or ’pushed’ using only
visual observation. Additionally, if the training data exclusively features ’pull’ doors,
the BC model may find it more challenging to articulate ’push’ doors, which it has
never encountered before. Thanks to continual practice, RL can explore actions that
deviate from those in the BC pre-training dataset and learn from these experiences.
Consequently, this enables the robot to learn how to manipulate novel objects.

L.5.10 Detection Model Failures

The success of a door-opening task relies heavily on the initial accuracy of handle
detection. However, we encounter several challenges in specific scenarios. As illus-
trated in the second row of the rightmost figure in Fig. L.17. when multiple handles
are present in a scene, the detection model fails to accurately identify the specific
handle of interest. We plan to address this issue in future work. Additionally, the
performance of depth sensors can be compromised by lighting conditions, leading
to grasping failures.
We also observed that for doors with knobs, as shown in Figure 8.7, it is challenging
to simply use detection and segmentation models to provide an ideal grasping pose.
Online adaptation enables the robot to adjust the grasp pose through real-world
interactions, which significantly increases the success rate.

L.5.11 Robustness VLM Reward Model

In the main experiment, we conducted experiments to validate the e�ectiveness of
the autonomous online adaptation with VLM reward models on only two objects.
Additionally, we discovered that the CLIPmodel [308] demonstrates high robustness
in classifying doors as open or closed across all the doors we tested and trained on.

L.5.12 Payload Limitation

Real-world door-opening tasks are challenging, as we discovered in our experiments
where hardware proved to be one of the major bottlenecks. Most robotic arms,
even including the xarm-6 with its 5 kg end-e�ector payload, are insu�cient for
opening extremely heavy doors. Moreover, the force torque sensors we utilized
have a payload capacity of only 1 kg, significantly restricting their e�ectiveness in
real-world door-opening applications.
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L.5.13 Hardware Capability

To successfully operate various articulated objects, the first question we need
to answer is: What is the right hardware platform for opening a real door?

Expert teleoperation success rate

lever B knob A
Stretch RE1 0/5 0/5

Ours 5/5 5/5

Figure L.18: Hardware Compar-
ison: Human expert teleoperation
success rate.

We compare against a di�erent popular mobile
manipulation system, namely the Stretch RE1
(Hello Robot). We test the ability of the robots to
be teleoperated by a human expert to open two
doors from di�erent categories, specifically lever
and knobdoors. Each objectwas subjected to five
trials. As shown in Table L.18, the outcomes of
these trials revealed a significant limitation of the
Stretch RE1: its payload capacity is inadequate
for opening a real door, even when operated by an expert, while our system succeeds
in all trials.
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L.6 Bimanual Dexterity for Complex Tasks

L.6.1 Detailed Cost Analysis

Please see Table L.15 and Table L.16 for a detailed Bill of Materials and breakdown
of the cost to create BiDex. While we assert that BiDex is low cost, we acknowledge
that it is still not a�ordable for everyone such as hobbyists. We believe that the price
of motion capture gloves will continue to decrease over time as technology improves
and demand increases in our field as well as other adjacent fields.

Object Quantity Total

Manus Meta Glove 1 $6000
Dynamixel XL330-M288 12 $300
U2D2 Control PCB 1 $20
5v 20A Power Supply 2 $25
14 AWG Cabling 1 $20
PLA Printer Plastic N/A $10

Total $6375

Table L.15: We present the bill of materials of BiDex for two arms and hands. The total cost
is around $6000, mostly due to the Manus Meta gloves.

Object Quantity Total

xArm 6 2 $18000
Ubuntu Laptop 1 $2000
Mobile Base 1 $6000
Zed Camera 3 $1200
LEAP Hand or DLA Hand 2 $4000

Total $31,2000

Table L.16: We present the bill of materials of the mobile robot setup. The robot and BiDex
costs around $35,000 which we believe is reasonable for a dexterous bimanual robot hand
setup with 50+ degrees of freedom.

170



L.6.2 Assembly Instructions and Software

The assembly instructions are available on the project website. The hardware system
and software will be a useful to recreate BiDex and create variants of it using high
quality motion capture gloves. Our high quality teacher arm teleoperation is based
o� of [426] but the strength is increased to allow for the weight of the gloves and its
mounting system.

L.6.3 About Manus Glove

We use the Manus Meta Quantum Metagloves [247] which is an $6000 tracking
Mocap glove. Each finger is tracked by the glove and returns the fingertip positions
as xyz-quaterion and also 4 di�erent angles for each finger ✓MCPside , ✓MCPfwd , ✓PIP, ✓DIP

using hall e�ect sensors with very high accuracy and at 120hz. We use theirWindows
API (Linux is not available at time of release) and will release our version of that
which sends the software to a Linuxmachine running ROS. These gloves are available
for purchase at https://www.manus-meta.com/.

L.6.4 SteamVR Baseline

For the wrist tracking SteamVR baseline, we use the Manus Meta SteamVR trackers
which connect to the gloves and seamlessly route the data through the aforemen-
tioned Windows API. They are wireless but require SteamVR Lighthouses setup
around the perimeter of the workspace. In our test we mount the 4 SteamVR track-
ers on the ceiling to avoid as many occlusions as possible. We also mount the 4
trackers in a 16ft square around where the teleoperator would stand which is the
recommended configuration. We will release this code for others to recreate in their
comparison study.

L.6.5 Apple Vision Pro Baseline

The Apple Vision Pro baseline is based o� of [282]. With this data, we control the
hand using the same inverse kinematics as with the Manus Glove. For the arm, we
scale, translate and rotate for the robot embodiment and then pass through inverse
kinematics to control the arm.

L.6.6 Behavior Cloning Policy Architecture and Hyperparameters

We illustrate our policy architecture in Figure L.19. Our behavior cloning policy
takes as input a RGB image and current hand joint angles (proprioception). We
obtain tokens for the image observation via a ViT [94] and a token for joint proprio-
ception via a linear layer. The weights of ViT is initialized from the Soup 1M model
from [83]. The tokens then pass through a action chunking transformer [458], a
encoder-decoder transformer, to output a sequence of actions.

171

https://www.manus-meta.com/


Hyperparameter Value

Behavior Policy Training

optimizer AdamW
base learning rate 3e-4
weight decay 0.05
optimizer momentum �1,�2 = 0.9, 0.95

batch size 64
learning rate schedule cosine decay
total steps 10000
warmup steps 500
augmentation GaussianBlur, Normal-

ize, RandomResized-
Crop

GPU RTX4090 (24 gb)
Wall-clock time ⇠ 1 hour

Visual Backbone ViT Architecture

patch size 16
#layers 12
#MHSA heads 12
hidden dim 768
class token yes
positional encoding sin cos

Action Chunking Transformer Architecture

# encoder layers 6
# decoder layers 6
#MHSA heads 8
hidden dim 512
feedforward dim 2048
dropout 0.1
positional encoding sin cos
action chunk 100

Table L.17: Hyperparameters for Behavior Cloning Policy Training
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…
Transformer

Encoder
Transformer

Decoder

ViT
Initialized with Soup 1M

Current Hand 
Joint Angles Linear

Positional Embedding

Action Sequence Prediction

…

Figure L.19: Behavior Cloning Policy Architecture

The action space is the absolute joint angles of two arms and two hands. A key
decision that greatly improves policy generalization is to exclude current arm joints
from the proprioception. Intuitively, this may force the model to extract object
information from image observations, rather than overfitting to predict actions close
to current arm states.
We list key hyperparameters for our behavior policy training Table L.17. In general,
we are able to obtain well-performing policies with 20-50 demonstrations and 1 hour
of wall-clock time training on a RTX4090. With our easy-to-use teleoperation system,
we are able to obtain diverse policies for complex bimanual dexterous tasks quickly.
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L.7 NeuralMP: A Generalist Neural Motion Planner

L.7.1 Detailed Free Hand Motion Planning Results

In this section we perform additional analysis of the free hand motion planning
results from the main Chapter. We include a more detailed version of Tab. 10.4 in the
Appendix shown below (Tab. L.20). In this table, we additionally include the average
(open loop) planning time per method and the average rate of safety violations.
Safety violations are defined to occur where there are collisions, the robot hits its
joint limits or there are torque limit errors. The open loop planning time for neural
methods such as ours or M⇡Nets involves simply measuring the total time taken for
rolling out the policy and test time optimization (TTO).We find that sampling-based
planners in general never collide when executed. If they produce a safety violation, it
is only because they find a trajectory that is infeasible for the robot to execute on the
hardware, due to joint or torque limit errors. Neural motion planning methods have
much higher collision rates, though Neural MP has a significantly lower collision
rate than M⇡Nets, which we attribute to test-time optimization pruning out bad
trajectories. We also note that not all collisions are created equal: some are slight,
lightly grazing the environment objects while still achieving the goal, while others
can be catastrophic, colliding heavily into the environment. In general, we found
that our method tends to produce trajectories that may have slight collisions, though
most of these are pruned out by TTO. With regards to planning time, M⇡Nets is the
fastest method, as our method expends additional compute rolling out 100x more
trajectories and then selecting the best one using SDF-based collision checking.

Bins (") Shelf (") Articulated (") Avg. Success Rate (") Avg. Planning Time (#) Avg. Safety Viol. Rate (#)
Sampling-based Planning:

AIT*-80s [380] 93.75 75 50.0 72.92 80 0
AIT*-10s (fast) [380] 75.0 37.5 25.0 45.83 10 2.1

Neural:

M⇡Nets [108] 18.75 25.0 6.25 16.67 1.0 18.75

Ours 100 100 87.5 95.83 3.9 4.2

Figure L.20: Neural MP performs best across tasks for free-hand motion planning, demon-
strating greater improvement as the task complexity grows.

L.7.2 Detailed In-hand Motion Planning Results

In this section, we extend the in-hand results shown in the main Chapter with
additional baselines (AIT*-80s, AIT*-10s and M⇡Nets). For this evaluation (see
Tab. L.21, we consider two of the four in-hand motion planning objects, namely
joystick and book. We find sampling-based methods are able to perform in-hand
motion planning quite well, matching the performance of our base policy as well as
our method without Objaverse data. We also see that M⇡Nets is unable to perform
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in-hand motion planning on any of the evaluated tasks. This is likely because that
network was not trained on data with objects in-hand, demonstrating the importance
of including in-hand data when training neural motion planners. Finally, there is
a significant gap in performance between our method with and without test-time
optimization; pruning out colliding trajectories at test time is crucial for achieving
high success rates on motion planning tasks.

Book (") Joystick (") Avg. Success Rate (") Avg. Planning Time (#) Avg. Safety Viol. Rate (#)
Sampling-based Planning:

AIT*-80s [380] 50 50 50 80 0
AIT*-10s (fast) [380] 25 50 37.5 10 0

Neural:

M⇡Nets [108] 0 0 0 1 37.5

Ours:

Ours (no TTO) 25 75 50 0.9 50
Ours (no Objaverse) 50 50 50 3.9 50
Ours 100 75 87.5 3.9 12.5

Figure L.21: Neural MP performs best across tasks for in-hand motion planning, demon-
strating greater improvement as the in-hand object becomes more challenging.

L.7.3 Test-time Optimization Analysis

Figure L.22: Test-time Optimization Analysis: For the Bins Scene 1 task, we plot the
number of points in collision across 100 sampled trajectories from the model. 25% of the
trajectories are completely collision free and we select a trajectory execute from that subset.

To analyze what the test-time optimization procedure is doing, we first note that the
base policy can sometimes produce slight collisions with the environment due to
the imprecision of regression. As a result, when sampling from the policy, it is often

175



likely that the policy will lightly graze objects which will count as failures when
motion planning. We visualize a set of trajectories sampled from the policy here on
our website for the real-world bins task. Observe that for some of the trajectories, the
policy slightly intersects with the bin which would cause it to fail when executing
in the real world, while for others it simply passes over the bin completely without
colliding. We estimate the robot-scene intersection of all of these trajectories by
comparing the robot SDF to the scene point-cloud and plot the range of values in
Fig. L.22. We observe that 25% of trajectories do not collide with the environment,
and we select for those. In principle, one could further optimize by selecting the
trajectory that is furthest from the scene (using the SDF). In practice, we did not
find this necessary and that selecting the first trajectory among those with the fewest
expected collisions performed quite well in our experiments.

L.7.4 Ablations
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Figure L.23: Ablation Results: We evaluate four di�erent components of Neural MP,
loss type (left), observation components (middle left), encoder sizes (middle right), and
RNN history length (right). We validate that our design decisions produce measurable
improvements in motion planning success rates.

We run additional ablations analyzing components of our method in simulation
using a subset of our dataset (100K trajectories) and include additional details for
experiments discussed in the main Chapter.
Loss Types: For training objective, we evaluate 4 di�erent options: GMM log like-
lihood (ours), MSE loss, L1 loss, and PointMatch loss (M⇡Nets). PointMatch loss
involves computing the l2 distance between the goal and the predicted end-e�ector
pose using 1024 key-points. We plot the results on held out scenes in Fig. L.23. We
find that GMM (ours) outperforms L2 loss, L1 loss, and PointMatch Loss (M⇡Nets)
by (7%, 12%, and 24%) respectively. One reason this may be the case is that sampling-
based motion planners produce highly multi-modal trajectories: they can output
entirely di�erent trajectories for the same start and goal pair when sampled multiple
times. Since Gaussian Mixture Models are generally more capable of capturing
multi-modal distributions, they can hence fit our dataset well. At the same time, the
PointMatch [108] loss struggles significantly on our data: it cannot distinguish be-
tween 0 and 180 degree flipped end-e�ector orientations, resulting in many failures
due to incorrect end-e�ector orientations.
Observation Components: We evaluate whether our choice of observation compo-
nents impacts the Neural MP’s performance. In theory, the network should be able
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to learn as well from the point-cloud alone as when the proprioception is included,
as the point-cloud contains a densely sampled point-cloud of the current and goal
robot configurations. However, in practice, we find that this is not the case. Instead,
removing either q or g or both severely harms performance as seen in Fig. L.23. We
hypothesize that including the proprioception provides a richer signal for the correct
delta action to take.
RNN History Length: In our experiments, we chose a history length of 2 for the
RNN, after sweeping over values of 2, 4, 8, 16 based on performance. From Fig. L.23
we see history length 2 achieves the best performance at 94%, while using lengths 4, 8
and 16 achieve progressively decreasing success rates (92.67, 68, 14.67). One possible
reason for this is that since point-clouds are already very dense representations that
cover the scene quite well, the partial observability during training time is fairly low.
A shorter history length also leads to faster training, due to smaller batches and
fewer RNN unrolling steps.
Encoder Size: Finally, we briefly evaluate whether encoder size is important when
training large-scale neural motion planners. We train 3 di�erent size models: small
(4M params), medium (8M params) and large (16M params). From the results in
Fig. L.23, we find that the encoder size does not a�ect performance by a significant
margin (94%, 93%, 92%) respectively and that the smallest model in fact performs
best. Based on these results, we opt to use the small, 4M param model in our
experiments.

Neural MP-MLP Neural MP-LSTM Neural MP-Transformer Neural MP-ACT

65.0 82.5 85.0 47.5

Table L.18: Ablation of di�erent architecture choices for the action decoder. We find that
LSTMs and Transformers comparably while LSTMs boast faster inference times.
Architecture Ablation: In this experiment, we evaluate how di�erent sequence
modelling methods (Transformers and ACT [458]) and simpler action decoders
such as MLPs compare against our design choice of using an LSTM. All methods
are trained with the same dataset (of 1M trajectories), with the same encoder and
GMM output distribution (with the exception of ACT which uses an L1 loss as
per the ACT paper). We then evaluate them on held out motion planning tasks
(Fig. L.18 which are replicas of our real-world tasks (Bins and Shelf). We note several
findings: 1) ACT performs poorly, largely due to its design choice of using an L1
loss which prevents it from handling planner multi-modality e�ectively, 2) Neural
MP with an MLP action decoder also performs significantly worse than LSTMs and
Transformers, as it is unable to use history information e�ectively to reason about
the next action 3) Transformers and LSTMs perform similarly, with the Transformer
variant performing marginally better, but with significantly slower inference time
(2x). Our method is amenable to any choice of sequence modeling architecture that
performs well and has fast inference.
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Neural MP-MotionBenchMaker Neural MP-M⇡Nets Neural MP

0 32.5 82.5

Table L.19: Comparing di�erent methods for generating datasets for motion planning. We
find that policies trained on our data generalize best to held out scenes.

Dataset Ablation: Finally, we evaluate the quality of di�erent dataset generation
approaches for producing generalist neural motion planners. We do so by training
policies on three di�erent datasets (Neural MP, M⇡Nets [108], and MotionBench-
Maker [51]) and evaluated on held out motion planning tasks in simulation. We
train each model to convergence for 10K epochs and then execute trajectories on
two held out tasks that mirror our real world tasks: RealBins and RealShelf. For
fairness, we do not include any Objaverse meshes in these tasks, since MPiNets
and MotionBenchMaker only have primitive objects. Still, we find that our dataset
performs best by a wide margin (Tab. L.19). In general, we found that policies
trained on MotionBenchMaker do not generalize well. As mentioned in the related
works section, this dataset lacks the realism and diversity necessary to train policies
that can generalize to held out motion planning scenes.

L.7.5 Procedural Scene Generation

We formalize our procedural scene generation as a composition of randomly gener-
ated parameteric assets and sampled Objaverse meshes in Alg. 9
Objaverse sampling details: The Objaverse are sampled in the task-relevant sam-
pling location of the programmatic asset(s) in the scene, such as between shelf rungs,
inside cubbies or within cabinets. Similar to the programmatic assets, these Obja-
verse assets are also sampled from a category generatorXobj(p). Here the parameter
p specifies the size, position, orientation of the object as well as task-relevant sam-
pling location of the object in the scene, such as between shelf rungs, inside cubbies
or within cabinets. As discussed in the main Chapter, we propose an approach
that iteratively adds assets to a scene by adjusting their position using the e�ective
collision normal vector, computed from the existing assets in the scene. We detail
the steps for doing this in Alg. 9.

L.7.6 Motion Planner Experts

We use three techniques to improve the data generation throughput when imitating
motion planners at scale.
Hindsight Relabeling: Tight-space to tight-space problems are themost challenging,
particularly for sampling-based planners, often requiring significant planning time
(up to 120 seconds) for the planner to find a solution. For some problems, the
expert planner is unable to find an exact solution and instead produces approximate
solutions. Instead of discarding these, note that we use a goal-conditioned imitation
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learning framework, where we can simply execute the trajectories in simulation and
relabel the observed final state as the new goal.
Reversibility: We further improve our data generation throughput by observing
that since motion planners inherently produce collision-free paths, the process is
reversible, at least in simulation. This allows us to double our data throughput by re-
versing expert trajectories and re-calculating delta actions accordingly. Additionally,
for a neural motion planner to be useful for practical manipulation tasks, it must be
able to generate collision free plans for the robot even when it is holding objects. To
enable such functionality, we augment our data generation process with trajectories
where objects are spawned between the grippers of the robot end e�ector. There are
transformed along with the end-e�ector during planning in simulation. We consider
the object as part of the robot for collision checking and for the sake of our visual
observations. In order to handle diverse objects that the robot might have to move
with at inference time, we perform significant randomization of the in-hand object
that we spawn in simulation. Specifically, we sample this object from the primitive
categories of boxes, cylinders or spheres, or even from Objaverse meshes of everyday
articles. We randomize the scale of the object between 3 and 30 cm along the longest
dimension, and sample random starting locations within a 5cm cube around the
end-e�ector mid-point between grippers.
Smoothing: Importantly, we found that naively imitating the output of the planner
performs poorly in practice as the planner output is not well suited for learning.
Specifically, plans produced by AIT* often result in way-points that are far apart,
creating large action jumps and sparse data coverage, making it di�cult to for net-
works to fit the data. To address this issue, we perform smoothing using cubic spline
interpolation while enforcing velocity and acceleration limits. The implementation
fromM⇡Nets performswell in practice, smoothing to a fixed 50 timesteps with amax
spacing of 0.1 radians. In general, we found that smoothing is crucial for learning
performance as it ensures action limits for each time-step transition.

L.7.7 Data Pipeline Parameters and Compute

In Table L.20, we provide a detailed list of all the parameters used in generating the
data to train our model.

Hyper-parameter Value
General Motion Planning Parameters

collision checking distance 1cm
tight space configuration ratio 50%
dataset size 1M trajectories
minimum motion planning time 20s
maximum motion planning time 80s

179



Hyper-parameter Value
General Obstacle Parameters

in hand object ratio 0.5
in hand object size range [[0.03, 0.03, 0.03], [0.3, 0.3, 0.3]]
in hand object xyz range [[-0.05, -0.05, 0.], [0.05, 0.05, 0.05]]
min obstacle size 0.1
max obstacle size 0.3
table dim ranges [[0.6, 1], [1.0, 1.5], [0.05, 0.15]]
table height range [-0.3, 0.3]
num shelves range [0, 3]
num open boxes range [0, 3]
num cubbys range [0, 1]
num microwaves range [0, 3]
num dishwashers range [0, 3]
num cabinets range [0, 3]

Objaverse Mesh Parameters
scale range [0.2, 0.4]
x pos range [0.2, 0.4]
y pos range [-0.4, 0.4]
number of mesh objects per programmatic asset [0, 3]
number of mesh objects on the table [0, 5]

Table Parameters
width range [0.8, 1.2]
depth range [0.4, 0.6]
height range [0.35, 0.5]
thickness range [0.03, 0.07]
leg thickness range [0.03, 0.07]
leg margin range [0.05, 0.15]
position range [[0, 0.8], [-0.6, 0.6]]
z axis rotation range [0, 3.14]

Shelf Parameters
width range [0.5, 1]
depth range [0.2, 0.5]
height range [0.5, 1.2]
num boards range [3, 5]
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Hyper-parameter Value
board thickness range [0.02, 0.05]
backboard thickness range [0.0, 0.05]
num vertical boards range [0, 3]
num side columns range [0, 4]
column thickness range [0.02, 0.05]
position range [[0, 0.8], [-0.6, 0.6]]
z axis rotation range [-1.57, 0]

Open Box Parameters
width range [0.2, 0.7]
depth range [0.2, 0.7]
height range [0.3, 0.5]
thickness range [0.02, 0.06]
front scale range [0.6, 1]
position range [[0.0, 0.8], [-0.6, 0.6]]
z axis rotation range [-1.57, 0.0]

Cubby Parameters
cubby left range [0.4, 0.1]
cubby right range [-0.4, 0.1]
cubby top range [0.85, 0.35]
cubby bottom range [0.0, 0.1]
cubby front range [0.8, 0.1]
cubby width range [0.35, 0.2]
cubby horizontal middle board z axis shift range [0.45, 0.1]
cubby vertical middle board y axis shift range [0.0, 0.1]
board thickness range [0.02, 0.01]
external rotation range [0, 1.57]
internal rotation range [0, 0.5]
num shelves range [3, 5]

Microwave Parameters
width range [0.3, 0.6]
depth range [0.3, 0.6]
height range [0.3, 0.6]
thickness range [0.01, 0.02]
display panel width range [0.05, 0.15]
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Hyper-parameter Value
distance range [0.5, 0.8]
external z axis rotation range [-2.36, -0.79]
internal z axis rotation range [-0.15, 0.15]

Dishwasher Parameters
width range [0.4, 0.6]
depth range [0.3, 0.4]
height range [0.5, 0.7]
control panel height range [0.1, 0.2]
foot panel height range [0.1, 0.2]
wall thickness range [0.01, 0.02]
opening angle range [0.5, 1.57]
distance range [0.6, 1.0]
external z axis rotation range [-2.36, -0.79]
internal z axis rotation range [-0.15, 0.15]

Cabinet Parameters
width range [0.5, 0.8]
depth range [0.25, 0.4]
height range [0.6, 1.0]
wall thickness range [0.01, 0.02]
left opening angle range [0.7, 1.57]
right opening angle range [0.7, 1.57]
distance range [0.6, 1.0]
external z axis rotation range [-2.36, -0.79]
internal z axis rotation range [-0.15, 0.15]

Table L.20: Data Generation Hyper-parameters. We provide a detailed list of hyper-
parameters used to procedurally generate a vast variety of scenes in simulation.

Compute: To collect a vast data of trajectories, we parallelize data collection across a
cluster of 2K CPUs. It takes around 3.5 days to collect 1M trajectories.

L.7.8 Network Training Details

We first describe additional details regarding our neural policy, and then discuss
how it is trained. Following the design decisions of M⇡Nets [108], we construct
a segmented point-cloud for the robot, consisting of the robot point-cloud, the
target goal robot point-cloud and the obstacle point-cloud. Here we note two key
di�erences from M⇡Nets: 1) our network conditioned on the target joint angles,
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Hyper-parameter Value
PointNet++ Architecture PointnetSAModule(

npoint=128,

radius=0.05,

nsample=64,

mlp=[1, 64, 64, 64],

)

PointnetSAModule(

npoint=64,

radius=0.3,

nsample=64,

mlp=[64, 128, 128, 256],

)

PointnetSAModule(

nsample=64,

mlp=[256, 512, 512],

)

MLP(

Linear(512, 2048),

GroupNorm(16, 2048),

LeakyReLU,

Linear(2048, 1024),

GroupNorm(16, 1024),

LeakyReLU,

Linear(1024, 1024)

)
LSTM 1024 hidden dim, 2 layers
Inputs qt, g, PCDt

Batch Size 16
Learning Rate 0.0001

GMM 5 modes
Sequence Length (seq length) 2

Point Cloud Parameters
Number of Robot / Goal Point-cloud Points 2048
Number of Obstacle Point-cloud Points 4096

Table L.21: Hyper-parameters for the model

while M⇡Nets only does so through the segmented point-cloud, 2) we condition
on the target joint angles, not end-e�ector pose, decisions that we found improved
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adherence to the overall target configuration. For in-hand motion planning, we
extend this representation by considering the object in-hand as part of the robot
for the purpose of segmentation. We include a hyper-parameter list for our neural
motion planner in Table L.21. We train a 20M parameter neural network across our
dataset of 1M trajectories. The PointNet++ encoder is 4M parameters and outputs
an embedding of dimension 1024. We concatenate this embedding with the encoded
qt and g vectors and pass this into the 16M parameter LSTM decoder. The decoder
outputs weights, means, and standard deviations of the 5 GMM modes. The model
is trained with negative log likelihood loss for 4.5M gradient steps, which takes 2
days on a 4090 GPU with batch size of 16.

L.7.9 Real Robot Setup

Algorithm 14Open-Loop NeuralMP Execution
1: Input: Neural MP ⇡✓, segmentor S, initial

angles q0, scene point-cloud PCDfull, goal
g, horizon H

2: Output: Executed trajectory on the robot
3: Initialize: Timestep t 0
4: Initialize: Trajectory ⌧  {}

5: PCD0  S(PCDfull) [ PCDq0 [ PCDg

6: while goal g not reached and t < H do
7: at ⇠ ⇡✓(qt�1, PCDt�1, g)
8: qt  qt�1 + at
9: PCDt  (PCDt1 \PCDqt�1)[PCDqt

10: t t+ 1
11: ⌧  ⌧ + at
12: end while
13: Execute the ⌧ open loop on the robot.

Hardware: For all of our exper-
iments, we use a Franka Emika
Panda Robot, which is a 7 degree
of freedom manipulator arm. We
control the robot using themanimo
library (https://github.com/AGI-
Labs/manimo) and perform all of
experiments using their joint posi-
tion controller with the default PD
gains. The robot is mounted to a
fixed base pedestal behind a desk
of size .762m by 1.22m with vari-
able height. For sensing, we use
four extrinsically calibrated depth
cameras, Intel Realsense 435 / 435i,
placed around the scene in order
to accurately capture the environ-
ment. We project the depth maps
from each camera into 3D and combine the individual point-clouds into a single
scene representation. We then post-process the point-cloud by cropping it to the
workspace, filtering outliers and denoising, and sub-sampling a set of 4096 points.
This processed point-cloud is then used as input to the policy.
Representation Collision Checking and Segmentation: In order to perform real
world collision checking and robot point-cloud segmentation, we require a repre-
sentation of the robot to check intersections with the scene (collision checking) and
to filter out robot points from the scene point-cloud (segmentation). While the
robot mesh is the ideal candidate for these operations, it is far too slow to run in real
time. Instead, we approximate the robot mesh as spheres (visualized in Fig. L.24)
as we found this performs well in practice while operating an order of magnitude
faster. We use 56 spheres in total to approximate the links of the robot as well as the
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end-e�ector and gripper. These have radii ranging from 2cm to 10cm and are defined
relative to the center of mass of the link. This representation is a conservative one:
it encapsulates the robot mesh, which is desirable for segmentation as this helps
account for sensing errors which would place robot points outside of the robot mesh.

Figure L.24: We visualize the spherical repre-
sentation on the left and overlay it on the robot
mesh on the right.

Robot Segmentation: In order to per-
form robot segmentation in the real
world, we use the spherical represen-
tation to filter out robot points in the
scene, so only the obstacle point-cloud
remains. Doing so requires computing
the Signed Distance Function (SDF) of
the robot representation and then check-
ing the scene point-cloud against it, re-
moving points from the point-cloud in
which SDF value is less than threshold
✏. For the spherical representation, the SDF computation is e�cient: for a sphere
with center C and radius r, the SDF of point x is simply ||x � C||2 � r. In our ex-
periments, we use a threshold ✏ of 1cm. We then replace the removed points with
points sampled from the robot mesh of the robot. This is done by pre-sampling a
robot point-cloud from the robot mesh at the default configuration, then performing
forward kinematics using the current joint angles qt and transforming the robot
point-cloud accordingly. Replacing the real robot point-cloud with the sampled one
ensures that the only di�erence between sim and real is the obstacle point-cloud.
Real-world Collision Checking: Given the SDF, collision checking is also straight-
forward, we denote the robot in collision if any point in the scene point-cloud (this
is after robot segmentation) has SDF value less than 1cm. Note this means that first
state is by definition collision free. Also, this technique will not hold if performing
closed loop planning, in that case this method would always denote the state as
collision free as the points with SDF value less than 1cm would be segmented out
for each intermediate point-cloud.
Open Loop Deployment: For open-loop execution of neural motion planners, we
execute the following steps: 1) generate the segmented point-cloud at the first frame,
2) predict the next trajectory way-point by computing a forward pass through the
network and sampling an action, 3) update the current robot point-cloud with mesh-
sampled point-cloud at the predicted way-point, and 4) repeat until goal reaching
success or maximum rollout length is reached. The entire trajectory is then executed
on the robot after the rollout. Please see Alg. 14 for a more detailed description of
our open-loop deployment method.
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L.7.10 Tasks

Bins: This task requires the neural planner to perform collision avoidance when
moving in-between, around and inside two di�erent industrial bins pictured in the
first row of Fig. L.25. We randomize the position and orientation of the bins over the
table and include the following objects as additional obstacles for the robot to avoid:
toaster, doll, basketball, bin cap, and white box. The small bin is of size 70cm x 50cm
x 25cm. The larger bin is of size 70cm x 50cm x 37cm. The bins are placed at two
sides of the table. Between tasks, we randomize the orientation of the bins between 0
and 45 degrees and we swap the bin ordering (which bin is on the left vs. the right).
The bins are placed 45cm in front of the robot, and shifted 60cm left/right.
Shelf: This task tests the agent’s ability to handle horizontal obstacles (the rungs of
the shelf) while maneuvering in tighter spaces (row two in Fig. L.25). We randomize
the size of the shelf (by changing the number of layers in the shelf from 3 to 2) as well
as the position and orientation (anywhere at least .8m away from the robot) with 0
or 30 degrees orientation. The obstacles for this task include the toaster, basketball,
baskets, an amazon box and an action figure which increase the di�culty. The shelf
obstacle itself is of size 35cm x 80cm x 95cm.
Articulated: We extend our evaluation to a more complex primary obstacle, the
cabinet, which contains one drawer and two doors and tight internal spaces with
small cubby holes (row three of Fig. L.25). We randomize the position of the entire
cabinet over the table, the joint positions of the drawer and doors and the sizes of the
cubby holes. The obstacles for this task are xbox controller box, gpu, action figure,
food toy, books and board game box. The size of the cabinet is 40cm x 75cm x 80cm.
The size of the top drawer is 30cm x 65cm x 12cm. The size of the cubbies is 35cm
x 35cm x 25cm. The drawer has an opening range of 0-30cm and the doors open
between 0 and 180 degrees.
In-HandMotion Planning: In this task (shown in row four of Fig. L.25), the planner
needs to reason about collisions with not only the robot and the environment, but the
held object too. We initialize the robotwith an object grasped in-hand and runmotion
planning to reach a target configuration. For this task, we fix the obstacle (shelf) and
its position (directly 80cm in front of the robot), instead randomizing across in-hand
objects and configurations. We select four objects that vary significantly in size and
shape: Xbox controller (18cm x 15cm x 8cm), book (17cm x 23cm x 5cm), toy sword
(65cm x 10cm x 2cm), and board game (25cm x 25cm x 6cm). For this evaluation,
we assume the object is already grasped by the robot, and the robot must just move
with the object in-hand while maintaining its grasp.
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(a) Bins Scene 1 (b) Bins Scene 2 (c) Bins Scene 3 (d) Bins Scene 4

(e) Shelf Scene 1 (f) Shelf Scene 2 (g) Shelf Scene 3 (h) Shelf Scene 4

(i) Articulated Scene
1 (j) Articulated Scene 2

(k) Articulated Scene
3

(l) Articulated Scene
4

(m) In Hand Object 1 (n) In Hand Object 2 (o) In Hand Object 3 (p) In Hand Object 4

Figure L.25: Images of our 16 evaluation scenes.
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L.7.11 Perception Visualization and Analysis

Figure L.26: Visualization of Sim and Real
point-clouds: We visualize point-clouds of
the Bins and Shelf task in sim and real, in the
same poses. Due to noise in depth sensing,
the real world point-clouds have significantly
more deformations, yet our policy generalizes
well to these tasks.

We compare point-clouds from simu-
lation and the real world for the Bins
and Shelf task and analyze their prop-
erties. We replicate Bins Scene 4 and
Shelf Scene 1 in simulation: simply mea-
sure the dimensions and positions of the
real world objects and set those dimen-
sions in simulation using the OpenBox
and Shelf procedural assets. As seen
in Fig. L.26, simulated point-clouds are
far cleaner than those in the real world,
which are noisy and perhaps more im-
portantly, partial. The real-world point-
clouds often have portions missing due
to camera coverage as for large objects
it is challenging to cover the scene well
while remaining within the depth cam-
era operating range. However, we find
that our policy is still able to able operate well in these scenes, as PointNet++ is
capable of handling partial point-clouds and is trained on a diverse dataset con-
taining many variations of boxes and shelves with di�erent types and number of
components as well as sizes, which may enable the policy to generalize to partial
boxes and shelves observed in the real world.
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