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Abstract
Motivated by the potential of Artificial Intelligence (AI) in high-cost and

safety-critical applications, and recently also by the increasing presence of AI
in our everyday lives, Trustworthy AI has grown in prominence as a broad
area of research encompassing topics such as interpretability, robustness, ver-
ifiable safety, fairness, privacy, accountability, and more. This has created a
tension between simple, transparent models with inherent trust-related ben-
efits and complex, black-box models with unparalleled performance on many
tasks. Towards closing this gap, we propose and study an uncertain interpre-
tation of numerical data and apply it to tree-based models, resulting in a novel
kind of fuzzy decision tree called Kernel Density Decision Trees (KDDTs) with
improved performance, enhanced trustworthy qualities, and increased utility,
enabling the use of these trees in broader applications. We group the contribu-
tions of this thesis into three pillars.

The first pillar is robustness and verification. The uncertain interpretation,
by accounting for uncertainty in the data, and more generally as a kind of regu-
larization on the function represented by a model, can improve the model with
respect to various notions of robustness. We demonstrate its ability to improve
robustness to noisy features and noisy labels, both of which are common in
real-world data. Next, we show how efficiently verifiable adversarial robustness
is achievable through the theory of randomized smoothing. Finally, we discuss
the related topic of verification and propose the first verification algorithm for
fuzzy decision trees.

The second pillar is interpretability. While decision trees are widely con-
sidered to be interpretable, good performance from tree-based models is often
limited to tabular data and demands both feature engineering, which increases
design effort, and ensemble methods, which severely diminish interpretability
compared to single-tree models. By leveraging the efficient fitting and differ-
entiability of KDDTs, we propose a system of learning parameterized feature
transformations for decision trees. By choosing interpretable feature classes
and applying sparsity regularization,we can obtain compact single-tree models
with competitive performance. We demonstrate application to tabular, time
series, and simple image data.

The third pillar is pragmatic advancements. Semi-supervised Learning
(SSL) is motivated by the expense of labeling and learns from a mix of labeled
and unlabeled data. SSL for trees is generally limited to black-box wrapper
methods, for which trees are not well-suited. We propose as an alternative
a novel intrinsic SSL method based on our uncertain interpretation of data.
Federated Learning (FL) is motivated by data sharing limitations and learns
from distributed data by communicating models. We introduce a new FL al-
gorithm based on function space regularization, which borrows concepts and
methods from our formalism of uncertain interpretation. Unlike prior FL meth-
ods, it supports non-parametric models and has convergence guarantees under
mild assumptions. Finally, we show how our FL algorithm also provides a
simple utility for ensemble merging.
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Chapter 1

Introduction

1.1 The Case for Simplicity in Machine Learning

Machine Learning (ML) can be understood as a microcosm of the scientific method, as
the distillation of usable knowledge from observations, partially automated to relieve
the burden of the difficult and laborious search for a good explanatory hypothesis.
While there is no one universally agreed interpretation of the scientific method, if
you look on, e.g., Wikipedia, you will find the process paraphrased below, which we
correspond to the process of machine learning.

The Scientific Method Machine Learning
1. Define a question 1. Define a task
2. Gather information 2. Collect data
3. Form an explanatory hypothesis 3. Train a model
4. Test the hypothesis and collect ex-

perimental data
4. Validate the model on held-out

data
5. Analyze the data 5. Analyze performance metrics
6. Interpret the data, draw conclu-

sions, make new hypotheses
6. Optimize performance metrics via

model selection and tuning
7. Publish results and retest (usually

by other scientists)
7. Evaluate on test data, deploy, and

monitor the model

At step 3, there are always many equally explanatory hypotheses. This raises the
question: what makes a good explanatory hypothesis? The obvious answer is that it
must generalize, that is, it must pass steps 4 though 6, lest we return to step 3 and
try again. The No Free Lunch Theorem [188] tells us that no hypothesis selection
strategy is better than random without some kind of prior or assumptions, but both
science and machine learning tend to do quite a bit better than random guessing,
so there is something more at play. In science, this is often credited to the heuristic
of Occam’s Razor, also known as the principle of parsimony, that is, the somewhat
vague and subjective but nonetheless useful notion that “the simplest explanation
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is usually the best one”. Not only are hypotheses selected in accordance with this
principle more likely to hold up to experimental scrutiny, but they also tend to better
satisfy qualitative criteria for a hypothesis to be useful. On models that explain
physical phenomena, Stephen Hawking writes [90]:

A model is a good model if it:

1. Is elegant

2. Contains few arbitrary or adjustable elements

3. Agrees with and explains all existing observations

4. Makes detailed predictions about future observations that can dis-
prove or falsify the model if they are not borne out.

Similarly, Albert Einstein said “the supreme goal of all theory is to make the irre-
ducible basic elements as simple and as few as possible without having to surrender
the adequate representation of a single datum of experience.” Thomas Kuhn writes
also that “a theory should be fruitful of new research findings: it should, that is,
disclose new phenomena or previously unnoted relationships among those already
known” [106].

A good machine learning model exhibits many of the same properties. Beyond
making accurate predictions, it is lightweight, transferable, and transparent enough to
explain observations and predictions, provide insights in its application domain, and
spark further inquiry. There was a time when the Occam’s Razor paradigm, whether it
was viewed as such or not, was valued in the field. A combination of domain expertise
and statistical techniques applied to data preparation minimized the knowledge gap
to be filled by simple models with well-understood learning algorithms. Decision trees
in particular exemplify the paradigm. In their most essential form, rather than fix
the model complexity and search for the best fit, they fix the level of fit and search
for the least complex model. Perhaps it can be partially credited to this paradigm
that classical methods, despite their limitations in representation power compared
to modern methods, have remained popular in high-cost-of-failure domains such as
healthcare, military, and finance, and tree-based methods remain state-of-the-art for
tabular data problems [81].

However, the incredible developments in deep learning have shifted values in the
ML community, particularly among researchers, towards large, complex end-to-end
models. Without the prior of simplicity, tactics like overparameterization, stochastic
optimization, and immense training set size broadly achieve good generalization while
removing the need to carefully balance simplicity vs. expressivity. While there has
been some progress understanding on a fundamental level why these can effectively
replace the Occam’s Razor principle to achieve generalization, it has been outpaced
by the rapid development of methods. Moreover, this approach comes at the cost of
much of the simplicity, elegance, and fruitfulness that, like a scientific theory, make
a model good.
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Now we see another shift in popular values toward trustworthy models with prop-
erties such as interpretability, robustness, verifiable safety, fairness, privacy, account-
ability, and more. These are challenging topics that largely become tractable if the
model itself is simple. We therefore posit that, in an age when ML is under more
scrutiny than ever before, the field is well-positioned to benefit from a return to the
values of parsimony that propel the principled practice of science. It is a challenging
course; it is often the case that, the simpler a solution (in this case, a model), the
more complex the process of finding it. Da Vinci is believed to have said “simplicity
is the ultimate sophistication”. It is a difficult road, but one worth traveling. We
must not forget that, despite popular perceptions among ML researchers, classical
methods and the problems they are well-suited to solve are ubiquitous in the real-
world application of ML, and there is ample room for innovation. Especially in light
of advancements in ML research and computing technology, there are numerous low-
hanging fruit. As for problems where classical methods are not well-suited, there is
hope that, however large the gap between simple and complex models may be, it can
be closed. We already see the gap narrowing through a combination of works that,
on one hand, simplify and improve the trustworthiness of deep models, and on the
other hand, advance the utility of classical and classically-inspired models.

This work belongs to the latter category. By introducing a formalism of interpret-
ing data with uncertainty during learning and inference, we advance both the trust-
worthiness and utility of models with a particular emphasis on decision trees. Beyond
their exemplification of the principle of parsimony, trees are widely applied and famil-
iar to users with various backgrounds, they offer inherent trust-related benefits such as
interpretability, and their structure is simple, compact, and sparsely-activated. The
last point makes them amenable to methods and analyses that would be prohibitively
costly or require approximations for more complex models. We hope that this work
will serve as the foundation of continued research to squeeze the trustworthiness gap
in ML ever smaller.

1.2 Thesis Overview

In Chapter 2, we introduce our formalism for interpreting data with uncertainty and
its interpretations. Among these, we highlight that it is a form of regularization of
the function represented by a model itself, making it applicable to any model class,
not just parametric models. We propose algorithms for the efficient application of
this formalism to Decision Trees (DTs), resulting in a novel form of Fuzzy Decision
Tree (FDT) called Kernel Density Decision Trees (KDDTs), and show their superior
performance over conventional DTs. We also discuss its potential application to other
models.

In Chapter 3, we discuss robustness and verification, two pillars of Trustworthy
AI (TAI). We show that, compared to conventional decision trees, KDDTs have
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• reduced sensitivity to small changes in the data

• improved robustness to additive feature noise

• improved robustness to label noise

• improved robustness to adversarial perturbation of features, with efficient lower
bounds on the robustness of individual predictions.

Together, these help to explain why KDDTs outperform DTs and understand best
practices for their application. Finally, we cover the closely related topic of verifica-
tion, that is, the automated process of proving or finding counterexamples to safety
properties, such as adversarial robustness, of models. We show that verification of
FDTs, like for most model classes, is NP-Complete, propose the first algorithm for
verification of FDTs, and demonstrate its practicality despite theoretical inefficiency
in the worst case.

In Chapter 4, we focus on interpretability, another pillar of TAI. KDDTs are
unique in that they efficiently fit an inherently differentiable tree by conventional
greedy tree growth. We leverage this to alternatingly fit a tree to transformed features
and use the gradient of the impurity function to optimize the feature transformation.
This enables the learning of trees with more expressive decision rules, such as Oblique
Decision Trees (ODTs), which have linear decision rules. By choosing the class of
feature transformation and regularizing it to meet domain-specific interpretability
needs, we can learn interpretable tree-based models with both small size and good
performance. Our approach is more flexible than previous methods, yields smaller
trees with better performance, and maintains familiarity and favorable structural
properties of the tree since KDDT fitting is a generalization of the classic CART
fitting algorithm. We demonstrate its application to the interpretable classification
of tabular, image, and time series data.

In Chapter 5, we apply the uncertain interpretation paradigm to advance the
utility of decision trees, improving their viability where existing methods focus on
parametric models and non-parametric models such as trees fall short. First, we pro-
pose a method for Semi-supervised Learning (SSL), that is, learning from both labeled
and unlabeled data, where there are few existing methods for decision trees. Next,
we introduce a new method of Federated Learning (FL) by regularizing models for
agreement in function space. Unlike prior methods, which are limited to parametric
models, it is model-agnostic. Moreover, since loss functions are generally convex in
function space, it has convergence guarantees with mild assumptions; when combined
with our uncertain interpretation formalism and a quadratic loss function, we have
fast convergence close to the consensus optimum. As a result, our approach learns
performant models in very few iterations with none of the vulnerability to client het-
erogeneity that plagues other FL algorithms. Finally, we show that a natural utility
arising from our FL algorithm is merging ensemble models into a single model and
demonstrate its utility with decision trees.

4



In Chapter 6, we summarize the contributions and conclusions of this work, reit-
erate its most important limitations, and lay the foundations for future work to build
upon it.

In Appendix A, we define acronyms used throughout the text. When viewing this
document digitally, each acronym is a link to its definition in Appendix A.

In Appendix B, we present lengthy proofs omitted from the main text.
In Appendix C, we describe additional details of experiments for the purpose of

reproducibility.
In Appendix D, we provide additional experiment results.
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Chapter 2

Uncertain Interpretation of Data

2.1 Definition

In machine learning based on Empirical Risk Minimization (ERM), given hypothesis
space H of predictive functions h : X → Y , probability distribution pX ,Y over X ×Y ,
and loss function ℓ : Y × Y → R, we aim to find a hypothesis h ∈ H that minimizes
the risk R[h] = Ex,y∼pX ,Y [ℓ(h(x),y)]. For this work, we assume X ⊆ Rp and Y ⊆ Rq;
categorical features and class labels are one-hot encoded. In reality, pX ,Y is unknown,
and instead we observe samples x1, . . . ,xn, y1, . . . ,yn drawn from pX ,Y that comprise
the training data; the distribution of such samples is the empirical distribution p̂X ,Y .

Then we choose h to minimize the empirical risk R̂[h] = Ex,y∼p̂X ,Y [ℓ(h(x),y)] =
1
n

∑
i ℓ(h(xi),yi).

Our uncertain interpretation formalism further interprets each observed feature
vector xi as a random variable xi ∼ k(·,xi) for some chosen k. This gives the
empirical distribution p̂k with density p̂k(x,y) = 1

n

∑
i 1{y = yi}k(x,xi). With

this interpretation, the marginal distribution p̂k(x) = 1
n

∑
i k(x,xi) is Kernel Density

Estimation (KDE), a popular method for estimation of the true distribution of feature
values x given observations drawn from it. Therefore, we refer to k as a kernel. Then
the empirical risk is

R̂k[h] = Ex,y∼p̂k [ℓ(h(xi),yi)] =
1

n

∑
i∈[n]

∫
X
ℓ(h(z),yi)k(z,xi) dz (2.1)

and, at inference time, the input x is optionally also interpreted as random, resulting
in the prediction

f(x) = Ex∼k(·,x)[h(x)] =

∫
X
h(z)k(z,x) dz. (2.2)

To summarize, we choose the hypothesis that minimizes the risk on a kernel density
estimate, then optionally smooth predictions using the same kernel.
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This notion of a “kernel” comes purely from KDE and should not be confused
with the kernels used for the “kernel trick” in learning algorithms such as kernel
Support Vector Machine (SVM). The kernel trick formulates a learning algorithm
such that its only dependency on the training data is only through inner products.
Then, by replacing the inner product with a kernel function, one implicitly learns in
a higher-dimensional or even infinite-dimensional space. There is no such implication
in this work.

2.2 Interpretations

There are several different ways of interpreting the uncertain interpretation formalism
defined in this section. These help to connect it to related concepts and research, and
will also help to motivate its various uses throughout this work.

Modeling uncertainty. In Section 2.1, we define the formalism as interpreting
the inputs to a model with uncertainty. This could, for example, model uncertainty
in an observation due to known sources of noise. Another way to view it is that we
estimate the underlying distribution using the KDE, rather than the usual empirical
risk, to account for uncertainty resulting from random sampling of training data from
the underlying distribution.

Function regularization. This formalism is a kind of regularization. Unlike typ-
ical regularization, which is applied to the parameters, this regularization is applied
directly to the function itself represented by a model. Like parameter regularization,
it can

• prefer simple (smooth) models

• reduce overfitting and improve robustness to noise

• reduce the variance of the estimate while introducing bias (shrinkage).

We study these topics in greater depth throughout the thesis. In particular, in Sec-
tion 2.3.6, we benchmark the effect of this regularization on the performance of de-
cision trees, and throughout Chapter 3, we study the the impact of this regularizing
effect on various notions of model robustness. We also extend this concept of function
regularization to penalize the difference of models, which we apply to decentralized
federated learning in Section 5.2 and ensemble merging in Section 5.3.

Increasing margins. In classification, the term “margin” is sometimes used to
refer to the distance from a point to the decision boundary. Large-margin predictions
are usually desirable and associated with good generalization to unseen data. How-
ever, besides notable exceptions such SVM, most learning algorithms have no explicit
objective to promote large-margin predictions, instead relying on low-power hypoth-
esis classes (e.g. linear models), optimization tricks such as over-parametrization and
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randomized optimization (e.g. neural networks), or ensemble algorithms such as bag-
ging and boosting (e.g. tree ensembles). By spreading the risk over a locality of
each training data point, we penalize any case where the decision boundary passes
through that locality, creating a kind of large-margin objective. This can be for-
malized using the randomized smoothing framework, a technique for achieving and
computing the adversarial robustness (large margin) of predictions. We study this
topic in Section 3.4.

Smoothing models. The uncertain interpretation, especially during prediction,
directly enforces smoothness of the model. If the kernel is stationary, that is, depends
only on the difference between inputs, then the model is effectively smoothed by
convolution with the kernel, a common strategy for smoothing of, for instance, image
and time series data. Smooth models are useful in many ways. The scores output by a
classifier are often interpreted as a probability distribution over the classes, indicating
a kind of confidence of the prediction; if the highest score is close to 1, then the
prediction is very confident, whereas if it is lower, and especially if it is close to the
next-highest score, then the prediction is not confident. However, powerful models
can tend to be overconfident when interpreted in this way. Neural networks are known
to tend toward overconfidence [83]; decision trees, when fully grown, always predict
with full confidence unless there are differently-labeled data with identical features in
the training set, and even with pruning, the predicted score at a given leaf is discrete
and often based on few samples. Smoothness means a continuous, gradual change in
confidence when moving through the space, potentially tempering overconfidence and
enforcing the idea that similar inputs should have similar predictions. Smoothness
also ensures that a model is differentiable, and that the gradient is locally descriptive
of the model, which improves its utility.

2.3 Decision Trees

Decision Trees (DT) are the most natural candidate for the first application of the un-
certain interpretation formalism and are the focus of much of the content of this thesis.
We apply our uncertain interpretation to define a generalization of Classification and
Regression Trees (CART) [25] that we call KDDTs and propose accompanying fitting
and prediction algorithms. This section describes KDDTs as originally published in
[77] with some added discussion.

2.3.1 Background and Motivation

Decision trees are among the oldest and most universally known and implemented
model classes for both classification and regression in machine learning. They offer
numerous benefits: they are fast to train and make predictions without any specialized
hardware, relatively small in memory usage, easy to apply and tune, flexible in their
non-parametric, variable-resolution structure, easy to verify for robustness and safety
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a KDDT with box kernels.
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(c) Predicted value transi-
tions smoothly in the bands.

Figure 2.1: An example to illustrate how KDDTs differ from crisp decision trees.

properties, and intuitive to humans, both holistically as a hierarchical partition of
their input space and on the prediction level as a series of simple decision rules.

However, basic trees are rarely used in practice due to several weaknesses, fore-
most of which is their sensitivity to randomness of sampling and noisy observation,
resulting in a tendency to overfit to training data. Moreover, they are limited in their
compatibility with modern machine learning methods because of, for example, their
non-parametric nature, their lack of meaningful differentiability, and their general
limitation to tabular data.

The first limitation, at least, is typically resolved using ensembles of trees, which
are a modern staple of tabular machine learning. These include ensembles with ran-
domization strategies to reduce overfitting, such as random forests [26] and ExtraTrees
[68], and boosted ensembles of small trees, such as AdaBoost [62], and XGBoost [35].
The tradeoff of ensembles is that their increased complexity results in longer training
time, larger memory requirements, reduced interpretability, and slower safety verifi-
cation (shown to be NP-Complete by [100]).

We propose KDDTs to augment, and sometimes even replace, these methods while
relaxing additional limitations of tree-based models, providing trust-related benefits,
and improving the practical usability of trees, as studied throughout the rest of this
thesis. KDDTs belong to a less well-known family of tree-based methods wherein
a decision may take multiple paths and a prediction is a weighted combination of
leaves, variously called fuzzy decision trees, soft decision trees, differentiable decision
trees, and neural decision trees. We use Fuzzy Decision Tree (FDT) as an umbrella
term. Most use soft partitions at each node that smoothly transition the allocation
of the decision from one subtree to another based on a learned splitting function.
Many grow a tree using a standard DT algorithm, then replace splits with fuzzy
splits. Depending on the algorithm, it may also freeze the tree structure, replace
the splits with parametric splitting models, and train the parameters using gradient-
based optimization. Many support fuzzy data, and some require it; prior methods can
find optimal splits only for fuzzy categorical data because, unlike when fitting crisp
trees, the gain for fuzzy splits on numerical data is continuous in the threshold value,
ruling out exhaustive search for finding the optimal threshold. Alongside the KDDT
formalism, we propose a fuzzy generalization of CART that is the first algorithm for
efficiently finding optimal splits on continuous features for FDTs, including but not
limited to KDDTs.
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2.3.2 Related Work: Fuzzy Decision Trees

FDTs, unlike standard decision trees, are based on partitions that allocate a decision
partially to multiple subtrees rather than wholly to one. The allocation is typically
based on a learned splitting function. Starting with [32], many variations of the con-
cept have been proposed over the years. We focus on those that build a tree greedily
as with crisp trees and refer the reader to [36, 6, 161] for overviews of work in this area.
In particular, we mention a few paradigms for fitting to highlight the difference in our
approach. Most methods are based on fuzzy sets and only handle categorical features
natively, so continuous data must be discretized [129]. Other approaches instead add
fuzziness to partitions selected by algorithms for crisp trees [31] or fuzzify a crisp tree
after it is completely fitted [41]. Our approach uses kernels to naturally represent
fuzziness of continuous features without need for discretization and efficiently finds
optimal partitions for the estimated distributions of data. The fuzziness is native to
the learning process; there is no separate step to add it afterwards.

We also mention that there are numerous works learning fuzzy decision trees
with a variety of splitting functions using gradient-based optimization. For example,
Oblique Decision Trees (ODTs) use linear splits. These are less relevant to vanilla
KDDTs; see Section 4.1.1 for more.

There are a few cases where KDE has been integrated with decision trees, but
not to define fuzzy trees as in KDDTs. [159] propose a technique whereby prediction
paths in a conventionally trained decision tree are used to choose features for KDE-
based classification. This produces continuous predicted class probabilities (like KDE
classifiers) and resists performance degradation due to the curse of dimensionality (like
decision trees). [96] use one-dimensional KDE as features for training decision trees
for one-class classification, which is used for tasks like outlier or anomaly detection.
Other works use KDE only in the leaves and not to determine partitions [179, 135].
Our approach, unlike these, modifies the basic decision tree to fit directly to the
density estimate and optionally make kernel-smoothed predictions.

2.3.3 Algorithms for Fuzzy Decision Trees

Recall that, given training data x1, . . . ,xn,y1, . . . ,yn, we aim to fit a model that
minimizes the risk on the class-dependent kernel density estimate

p̂k(x,y) =
1

n

n∑
i=1

1{y = yi}k(x,xi)

where k is a chosen kernel. We propose here a generalization of CART for fitting to
p̂k. It is a generalization in the sense that, if we let k(z,x) = δ(z − x), then the
fitting algorithm is just standard CART. Here δ is the Dirac delta function in Rp,
which has value zero everywhere except at zero, and which has integral 1 over Rp. We
call such k the “delta kernel” or “δ kernel”. It can also be viewed as a generalization
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of CART in the sense that it constructs the tree we would get in the limit as the
number of samples approaches infinity by sampling from p̂k and fitting using CART.

In order to do this efficiently, we make the following assumptions.

Assumption 2.1. For all x ∈ Rp, the function k(·,x) is a probability distribution
on Rp, that is, k(z,x) ≥ 0 for all z and

∫
Rp k(z,x) dz = 1.

Assumption 2.2. For all x ∈ Rp, the distribution k(·,x) is isotropic, that is, it can
be written in terms of its marginal distributions kj as

k(z,x) =

p∏
j=1

kj(zj,x).

To meet these assumptions, we typically use the following marginal kernels with
a bandwidth parameter h:

• Delta kernel kj(zj,x) = δ(zj − xj). This interprets an observation xj without
uncertainty and results in the conventional CART algorithm.

• Box kernel kj(zj,x) ∝ 1{zj ∈ [xj − h, xj + h]}. This interprets an observation
xj as a uniform random variable U [xj − h, xj + h].

• Gaussian kernel kj(zj,x) ∝ exp
(

−(zj−xj)
2

2h

)
. This interprets an observation xj

as a normal random variable N (xj, h).

Marginals kj and their respective bandwidths can be mixed and matched to form the
multidimensional kernel k.

For fitting, but not for prediction, we need one additional assumption.

Assumption 2.3. For all x ∈ Rp, j ∈ [p], kj(·,x) is piecewise-constant.

Assumption 2.3 motivates the notion of using different kernels for fitting and
prediction. For example, one may use a histogram approximation of a Gaussian
kernel for fitting, then an equivalently scaled Gaussian kernel for prediction. One
may also use, for instance, a box kernel for fitting and a delta kernel for prediction if
they require unsmoothed predictions.

General Fuzzy Decision Trees

Before specifying the fitting and prediction algorithms, we define a more general
notion of FDTs with which our algorithms are compatible. It encompasses both
KDDTs and the majority of prior formulations of FDTs.

An FDT T is a hierarchical set nodes where each internal node i is characterized
by the following:

• a left child ℓi ∈ [|T |]
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• a right child ri ∈ [|T |]

• a splitting function σi : Rp → [0, 1]

• a value vi ∈ Rq.

Each leaf node has only a value.
The splitting function determines the allocation of the decision to each subtree at

a split. The tree’s prediction is defined recursively as

fi(x) =

{
(1− σi(x))fℓi(x) + σi(x)fri(x) i is internal

vi i is a leaf
(2.3)

with recursion starting at the root. For conventional crisp decision trees, the splitting
function is σi(x) = 1{xai > ti} for attribute index ai ∈ [p] and threshold ti ∈ R.

A common type of FDT, like conventional trees, uses a single feature and threshold
at each node, but makes the transition of the decision allocation gradual. These
axis-aligned FDTs typically have a single base splitting function σ : R → [0, 1], for
example, a sigmoid function, and define the node splitting functions as σi(x) = σ(xai−
ti). As for KDDTs, for a node i with lower and upper bounds l,u ∈ (R∪{−∞,+∞})p
defined by its ancestors’ splits,

σi(x) =
Kj(ti,x)−Kj(li,x)

Kj(ui,x)−Kj(li,x)
(2.4)

where Kj(·,x) is the Cumulative Distribution Function (CDF)

Kj(t,x) =

∫ t

−∞
kj(z,x) dz

of kj(·,x). Since the bounds l and u depend on the splits of ancestor nodes, KDDTs
have a dependency between splitting functions not seen in other FDTs.

FDTs can also be represented using membership functions µi : Rp → [0, 1]. Let
Ai be the set of ancestor nodes of i; further, let Aℓ,i be the ancestors of which i is
a left descendent and Ar,i the ancestors of which i is a right descendent. Then the
membership function is defined

µi(x) =
∏

j∈Aℓ,i

(1− σj(x))
∏

j∈Ar,i

σj(x) (2.5)

and indicates the degree of membership of input x to node i. Accordingly, it is easily
shown that

∑
i∈leaves µi(x) = 1 for all x.

For KDDTs, the membership value is the probability of membership in a node
for a conventional decision tree given the uncertain interpretation of the input. In
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particular, for a node i with lower and upper bounds l,u ∈ (R ∪ {−∞,+∞})p,

µi(x) = Px∼k(·,x)[x ∈ Ri]

=

∫
Ri

k(z,x) dz

=
∏
j∈[p]

Kj(uj,x)−Kj(lj,x).

(2.6)

where Ri is the (possibly unbounded) hyperrectangle

Ri = (l1, u1]× · · · × (lp, up]. (2.7)

Thus the isotropic k, as in Assumption 2.2, makes computation of membership values
efficient.

Given the membership value, the predictions can be written simply as

f(x) =
∑

i∈leaves

µi(x)vi (2.8)

as an equivalent alternative to Equation 2.3.

Fitting Fuzzy Decision Trees

Here we present an efficient algorithm for fitting FDTs with a generalization of CART.
While we present it generally, it is easily adapted for KDDTs using the equivalence
specified in Equations 2.4 and 2.6.

Given training data x1, . . . ,xn,y1, . . . ,yn and stopping conditions on tree growth,
the goal is to construct a tree and assign features a and thresholds t to minimize an
impurity function, used like a risk functional, as

R[h] =
1

n

∑
i∈leaves

wiImpurity(vi) (2.9)

for tree-based hypothesis h, where wi is the sample weight

wi =
∑
j∈[n]

µi(xj). (2.10)

For now, it is sufficient to assume that node values are always assigned as the weighted
mean

vi =
1

wi

∑
j∈[n]

µi(xj)yj. (2.11)

This is actually a consequence of the equivalence this impurity minimization scheme
to ERM, as discussed in Section 2.3.5. For KDDTs, this gives the identity vi =
Ex,y∼p̂k [y | x ∈ Ri] with Ri as in Equation 2.7.

14



Common impurity functions for classification are the Gini impurity

Gini(v) = 1−
∑
j∈[p]

v2j (2.12)

and entropy

Entropy(v) = −
∑
j∈[p]

vj log vj. (2.13)

For regression, the typical impurity function is Mean Squared Error (MSE) impurity,
which cannot be written in terms of v alone, but as formalized in this work, it is
equivalent to the Gini impurity up to constants, so Gini impurity can be used for the
sake of optimization.

As in CART, a tree is constructed using a greedy top-down algorithm whereby, at
each node i, the feature ai and threshold ti are chosen to minimize the total impurity.
This is usually described in terms of the maximization of the gain

Gain(a, t) = Impurity(vi)−
wℓi

wi

Impurity(vℓ)−
wri

wi

Impurity(vr) (2.14)

where the weights and values of the child nodes depend on a and t. This proceeds
until one of several possible stopping conditions is met.

In CART, for each a ∈ [p], a set of candidate thresholds is generated by bisecting
each consecutive pair of data values, then the total of each target value on either
side of each candidate threshold is computed using a cumulative sum. This allows
the efficient evaluation of every possible partition of the training data. However, for
FDTs, where σi is also given, the gain may be continuous, and such an exhaustive
evaluation is generally not possible. To tackle this, we make the following assumption,
which is implied by the more specific Assumption 2.3 for KDDTs.

Assumption 2.4. Each splitting function σi(xj; a, t) is continuous and piecewise-
linear in t. In particular, it is linear on intervals (−∞, cj,1), [cj,1, cj,2], . . . , [cj,ri ,∞).

We also make an assumption about the impurity function. Entropy, Gini, and
MSE all satisfy this condition.

Assumption 2.5. The Hessian of the impurity is negative semidefinite everywhere.

Then Theorem 2.1, which we prove in [77], provides a set of candidate thresholds.

Theorem 2.1. If Assumptions 2.4 and 2.5 hold, then given a feature a ∈ [p], a
threshold t ∈ R that maximizes Gain(a, t) is in {cj,k | j ∈ [n], k ∈ [ri]}.
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Now that we have a set of candidate thresholds, Since the membership values µi

are linear in t, we can iterate over the ordered candidates (t1, t2, . . . ) as in CART and
keep a running sum of target values

sℓi =
∑
j∈[n]

µℓi(xj)yj (2.15)

using the update

sℓi(a, tk+1) = sℓi(a, tk) + (tk+1 − tk)s′ℓi(a, tk) (2.16)

where the rate of change is updated

s′ℓi(a, tk+1) = s′ℓi(a, tk) + (σ′(a, cj,m,xj)− σ′(a, cj,m−1,xj))µi(xj)yj (2.17)

where cj,m is the partition bound corresponding to threshold candidate tk+1. When
p is out of range, the term is omitted. Then we compute gain using Equation 2.14
with the identities vi = si/wi, wri = wi − wℓi , and sri = si − sℓi .

Stopping Conditions

Various stopping conditions are possible. The following are straightforward to imple-
ment in a recursive fitting algorithm:

• maximum depth

• minimum sample weight allowed in any node

• Cost-Complexity Pruning (CCP) α, the minimum gain, weighted by the pro-
portion of samples at the current node, required to create a new split

• timeout.

If splits are added to the tree in order of highest gain, for example, using a priority
queue, additional stopping conditions are possible:

• maximum number of nodes

• maximum number of leaves.

In the absence of equal-gain splits, these are equivalent to CCP, but offer more
transparent control of tree size. All of the above stopping conditions are supported
in our published implementation of KDDTs.
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Computational Complexity

The threshold search for a single node in CART with n incoming samples iterates
over n thresholds for each of p features, computing impurity on q targets for each,
resulting O(npq). Our FDT algorithm multiplies the number of threshold candidates
by the number of splitting function pieces r minus one and adds constant additional
computation to each step, resulting in O(npqr). In the context of KDDTs, the com-
plexity of CART is multiplied by the number of pieces in the fitting kernel. For simple
kernels like a box kernel, the additional cost is negligible. For approximated kernels,
such as a histogram approximation of a Gaussian kernel, the number of bins (pieces)
can be set as a tradeoff of runtime vs. fidelity.

Another factor to consider is that, in classic CART, a sample may only belong
to one path, that is, one node at any depth level of the tree. This means that, for
balanced trees, the complexity of fitting the entire tree is O(npq log|T |), as opposed
to O(npq|T |) for highly unbalanced trees. Meanwhile, in FDTs, data may belong to
multiple paths, and in the worst case, all of them. This worst case gives O(npqr|T |) for
any tree shape. However, in reality, it is a spectrum. In the context of KDDTs, using
a small bandwidth results in sparse membership; as kernel bandwidth approaches
zero, the worst-case runtime approaches O(npqr log|T |) for balanced trees. Using
large bandwidth results in dense membership, with worst-case runtime approaching
O(npqr|T |). Indeed, in practice, we see that fitting kernel bandwidth has a dramatic
effect on fitting time.

Likewise, for prediction, classic CART is O(log|T |) for balanced trees and O(|T |)
for highly unbalanced trees, whereas FDT prediction ranges from O(log|T |) to O(|T |)
depending on membership sparsity for balanced trees.

2.3.4 Visualization on Toy Data

Figures 2.2 and 2.3 visualize tree-based classifiers and regressors, respectively, on
synthetic 2-dimensional toy data sets, each with 50 samples, then 1000 samples. The
DTs have size selected via the CCP-α parameter by 10-fold cross-validation, and the
KDDTs use a box kernel with bandwidth likewise selected by cross-validation.

KDDTs tend to have smoother decision boundaries with larger margins. They
also tend to grow larger when size is selected in this way, but can often be pruned
without significantly affecting predictions.

2.3.5 Tree Growth as Empirical Risk Minimization

Decision tree growth is often understood to be a fundamentally different learning
process from the typical ERM since it aims to maximize gain functions, such as Gini
gain or information gain, that are uniquely defined for trees. However, these processes
can actually be viewed through the lens of ERM with common loss functions, as
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Data Decision Random KDDT
Tree Forest smoothed unsmoothed

Figure 2.2: Visualization of tree-based classifiers on toy data.
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Data Decision Random KDDT
Tree Forest smoothed unsmoothed

Figure 2.3: Visualization of tree-based regressors on toy data.
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full name short name labels features samples
Iris iris 3 4 150
Wine wine 3 13 178
Glass Identification glass 6 9 214
Optical Recognition of Handwritten Digits optdigits 10 64 5620
Ionosphere ionosphere 2 34 351
Pen-Based Recognition of Handwritten Digits pendigits 10 16 10992
Image Segmentation segmentation 7 19 210
Letter Recognition letter 26 16 20000
Yeast yeast 10 8 1484
Spambase spambase 2 57 4601
Connectionist Bench (Sonar, Mines vs. Rocks) sonar 2 60 208
Statlog (Landsat Satellite) satimage 6 36 6435

Table 2.1: Information about data sets.

established by the following theorems. These will be used throughout this work. See
Appendix B for the proofs.

Theorem 2.2. For KDDTs, Gini impurity is equivalent to Mean Squared Error
(MSE) risk on the smoothed empirical distribution p̂k.

Theorem 2.3. For KDDTs, Entropy impurity is equivalent to cross-entropy risk on
the smoothed empirical distribution p̂k.

Since conventional DTs are a subclass of KDDTs, we get the following corollaries
by letting k(z,x) = δ(z − x).

Corollary 2.1. For DTs, Gini impurity is equivalent to MSE risk on the empirical
distribution p̂X ,Y .

Corollary 2.2. For DTs, Entropy impurity is equivalent to cross-entropy risk on the
empirical distribution p̂X ,Y .

From these, we conclude that tree fitting to maximize Gini gain and Information
gain minimizes empirical MSE and cross-entropy risk, respectively.

Furthermore, through this framing of tree fitting as risk minimization, it is straight-
forward to show that the risk-minimizing leaf values are as in Equation 2.11 for both
cross-entropy and MSE. However, this it may be different for other loss functions.

2.3.6 Benchmarks

We compare KDDTs to conventional decision trees in the form of basic Decision
Trees (DTs), Random Forests (RFs), and ExtraTrees (ET). We include Extreme
Gradient Boosting (XGB) [35] as a representative of boosted ensemble methods, but
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decision tree random forest ExtraTrees boost

model DT KDDT DT KDDT DT KDDT XGB
smoothed - yes no - yes no - yes no -

iris 94.0 96.7 97.3 94.0 94.7 95.3 95.3 95.3 96.0 94.0
wine 88.2 97.7 94.3 97.7 98.9 98.9 98.3 98.3 98.3 96.0
glass 71.0 73.3 71.0 78.6 80.9 77.6 77.1 76.7 76.3 78.1
optdigits 90.8 97.7 94.9 98.3 98.6 98.6 98.5 98.6 98.6 97.8
ionosphere 87.8 92.3 93.2 93.7 94.9 94.9 94.3 94.3 94.3 93.2
pendigits 96.3 98.9 98.0 99.1 99.3 99.3 99.4 99.4 99.3 99.1
segmentation 88.6 89.5 89.0 91.9 92.9 92.4 91.4 92.9 91.9 87.6
letter 88.1 94.5 88.1 96.8 96.6 96.6 97.4 97.5 97.4 96.5
yeast 58.6 61.3 60.2 61.9 61.3 62.3 60.9 61.5 60.5 59.4
spambase 92.1 93.5 92.2 95.4 95.6 95.3 96.0 95.6 95.5 95.6
sonar 72.0 83.1 78.3 83.6 86.0 89.4 88.0 89.4 89.4 84.6
satimage 87.4 90.6 88.7 92.0 91.7 91.7 91.8 91.7 91.6 92.1

Table 2.2: 10-fold cross-validation accuracy for tree-based models. Best in category
is bold. Best overall is underlined.

do not implement boosted KDDTs. We also include as baselines Linear (or Logis-
tic) Regression (LR) and a small Multi-Layer Perceptron (MLP). The data are the
most popular tabular classficiation data sets with continuous features from the UCI
Machine learning Repository [49] at the time of writing. Data sets are summarized
in Table 2.1. We report accuracy from 10-fold cross validation, and hyperparameters
including kernel bandwidth and CCP-α are selected for each fold by an additional
10-fold cross validation. We also set a minimum sample weight of 1 for all models.
The KDDT-based models use a simple box kernel, that is, a uniform distribution on
a hypercube centered at the input. Additional details are available in Appendix C.2.

The results are shown in Table 2.2. They show that KDDTs are a powerful
enhancement of conventional trees, usually providing a significant boost to single-tree
performance or a modest boost to random forest performance. There is less evidence
of benefit to ExtraTrees models, where the altered choice of threshold value is mostly
lost due to random threshold selection. KDDTs outperform decision trees on every
data set and come close to or exceed the conventional tree ensembles on several, a
notable feat for single trees with feature-aligned splits. With random forests, KDDTs
outperform standard trees on 10 data sets. With ExtraTrees, they outperform on 6
and tie on 3. A model using KDDTs outperforms all baseline models on 9 data sets
and ties on 1. Usually, KDDT performance is better with smoothed predictions than
without.
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2.3.7 Discussion

KDDTs offer a simple and efficient way to improve the generalization of decision
trees by interpreting inputs as uncertain, or viewed differently, by regularizing the
predictive function they represent through smoothing. This significantly boosts the
performance of single-tree models, sometimes coming close to or matching ensemble
performance, and can slightly increases the performance of tree-ensembles.

The regularizing effect also improves various aspects of the robustness of trees, as
we explore in Chapter 3. Moreover, the use of prediction kernels augments KDDTs
with the additional utilities of smooth prediction and differentiability, which we apply
for gradient-based learning in Chapter 4 and semi-supervised learning in Section 5.1.
Finally, the KDDT fitting algorithm is generally useful for fitting trees to any kind
of piecewise-constant distribution, not just smoothed empirical risk. We explore its
application toward decentralized federated learning and ensemble merging in Sec-
tions 5.2 and 5.3, respectively.

The main limitations are the following. First, there are limitations on the kernel
choice. For both fitting and prediction, we require that the kernel is isotropic, that is,
that it has diagonal covariance, and for fitting, we require the marginal distributions
to be piecewise-constant. Second, the possibility for samples to take multiple paths
increases computational cost; if the kernel support is large, the data membership
in tree nodes becomes dense and the computation cost becomes very high. Third,
KDDTs introduce a rather complex design choice in the shape and size of the kernel.
We find that, in the general case, the best strategy is usually to choose a simple,
symmetrical kernel such as a box kernel or Gaussian kerenl and select bandwidth
from a set of candidate values, usually in the range of .01 to 1 for normalized data, by
cross-validation. Of course, tuning the bandwidth by cross-validation also increases
the cost of applying the models; however, since tree ensembles and cross-validation
are easily parallelizable, and since trees have a small memory footprint and do not
require any special hardware such as a GPU, KDDTs still remain practical to apply.

2.4 Other Models

We briefly discuss the potential for application of this uncertain interpretation for-
malism to a number of other model classes besides trees.

2.4.1 Partitioning Models

The key to applying the formalism to trees is that trees partition the domain and have
constant value on each subdomain, so the smoothing reduces to integrating the kernel
on each subdomain. Under certain assumptions on the model structure and kernel,
the integral is efficient to compute. For trees, we rely on axis-aligned splits, that is,
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hyperrectangular partitioning, and isotropic kernels. Other partitioning models are
also promising candidates for efficient application.

There are various generalizations of decision trees that use different decision rules
from the typical feature-threshold rules. We discuss some of these in Section 4.1. A
popular example is Oblique Decision Trees (ODTs), where the decision rules compare
a linear combination of features to a threshold. Then the resulting subdomains are
convex polytopes. Even if the kernel is uniform on a convex polytope such that
the integral reduces to computing the measure of a convex polytope, it is hard to
compute [51], but fast approximations have been developed [66, 53, 30]. This does
not guarantee, however, that they can be used effectively for fitting ODTs, for which
there are several methods.

There are various algorithms for learning logical rule-based models, of which trees
are just one example. Like trees, they are often valued for their intuitive logic-based
decision making, and like trees, they are good candidates for efficient application
of our uncertain interpretation formalism, particularly with simple feature-threshold
rules. Though they are among the oldest kinds of learned models, innovation on rule-
based models and learning algorithms continues to this day; recent examples include
[195, 140]. Some, such as certain types of rule lists, are special cases of trees or tree
ensembles. [124] recently survey explainability and interpretability in machine learn-
ing and include a section on rule-based models. [117] broadly study the intersection of
rule-based systems and machine learning. [59] survey genetic algorithms for learning
rule-based models, including trees.

A particularly interesting class of models are those based on Directed Acyclic
Graphs (DAGs), of which trees are a special case. DAGs allow a node to have multiple
parents, meaning that they can be much more compact and computationally efficient
than trees by consolidating redundant structures. As an extreme example, consider
the mapping x 7→ 1{

∏
i∈[p] xi ≥ 0}. While a decision tree takes O(2p) nodes to

represent this mapping, a DAG with similar feature-threshold rules can represent it
in just O(p) nodes. Meanwhile, the node membership computation strategy we use
for smoothing trees can be applied efficiently to more general DAGs with very little
modification. Much of the literature in DAG is toward building Bayesian networks.
However, these model discrete data, whereas the focus of this work is continuous data.
Though we are not aware of any, if there exists work viewing DAGs as an alternative
to decision tree learning, particularly learning algorithms based on a greedy heuristic
similar to CART for learning trees, then it is possible that our KDDT fitting algorithm
could be generalized for DAGs.

2.4.2 Linear Models

We begin with linear regression, which has the form h(x) = Ax + b for some A ∈
Rq × p, b ∈ Rq. The usual loss function is mean squared error. Consider the risk for
one output component i ∈ [q] for training sample x,y. If we reasonably assume that
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Ex∼k(·,x)[x] = x, then the risk is

Ex∼k(·,x)[(A
⊤
i x + bi − yi)

2] = Ex∼k(·,x)[A
⊤
i x + bi − yi]

2 + Varx∼k(·,x)[A
⊤
i x + bi − yi]

= (A⊤
i x + bi − yi)

2 + A⊤
i ΣAi

where Σ is the covariance matrix Σi,j = Covx∼k(·,x)(xi,xj). This is just squared error
with regularization on the coefficients Ai; in particular, if Σ = λI, then it is a standard
L2 regularization with coefficient λ. This reflects the notion that our formalism is a
kind of regularization. At inference time, fi(x) = Ex∼k(·,x)[A

⊤
i x + bi] = A⊤

i x + bi, so
the smoothing has no effect.

For logistic regression, the use of the softmax function to map the linear function
into [0, 1]q for classification makes computation of the expectation over the kernel
difficult.

2.4.3 Kernel Trick Models

The “kernel trick” writes a model in terms of inner products with the training data,
then replaces the inner products with a kernel function that represents an inner
product in a higher or even infinite dimensional transformation of the data. The best
known example is the kernel Support Vector Machine (SVM), which is used for binary
classification only with output dimension q = 1; differently from our usual notation,
this means that labels yi are scalars −1 or 1 instead of the usual indicator vector.
In particular, kernel SVM has the form h(x) =

∑
i aiyik(x,xi) + b for some learned

parameters a ∈ Rn, b ∈ R and chosen kernel k. While typically soft-margin SVM is
interpreted as a margin maximization problem, it can also be viewed through the lens
of ERM with hinge loss ℓ(ŷ, y) = max(0, 1 − ŷy). Suppose we apply our formalism
with another kernel k′. Then we have

R̂k′ [h] =
1

n

∑
i∈[n]

∫
X

max

0, 1−
∑
j∈[n]

ajyiyjk(z,xj)

 k′(z,xi) dz

and there is no obvious efficient and precise way to compute this. This highlights
the difference between the kernel trick and our formalism despite some surface-level
similarity.

2.4.4 Black-box Models

For model classes where there is no efficient deterministic approach for applying our
uncertain interpretation formalism, Monte Carlo methods can be applied. The most
basic approach is to sample points from k(·,x) to compute unbiased estimates of the
expected risk and smoothed predictions during training and inference, respectively.
For instance, during minibatch optimization of a neural network, one can replace
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each instance x in a batch with a random sample from k(·,x), and when making a
prediction at an input x, the output can be averaged over many samples from k(·,x).
This is ultimately a kind of data augmentation. While Monte Carlo methods are
simple and general, they are of course approximate, and there is a tradeoff of sample
size (and therefore computational cost) vs. variance of the approximation.

Another approach is multidimensional numerical integration, for which Monte
Carlo methods are one family of methods that do not suffer so much as others from
a curse of dimensionality, which is important in this context. Viewed through the
lens of numerical integration, there may be methods, Monte Carlo or otherwise, that
better take advantage of the characteristics of a particular model class and kernel.

2.5 Choosing Kernels

The choice of the size and shape of the kernel is important and nontrivial. Even if we
fix the shape and choose just the size, too small results in little or no difference from
the default, unsmoothed model, and too large over-smooths the model and causes it
to underfit. In reality, one must also choose the shape of the kernel, including the
possibility for different scaling along different features.

In short, the best approach we have found that requires no input from the user
is to simply choose a simple, general kernel shape (we use box kernels because they
are efficient with KDDTs), then select the bandwidth from a candidate list using
cross-validation. This requires that either the data is normalized or the bandwidth is
scaled by some measure of variation for each feature. Usually, for data with standard
deviation 1, a good range of bandwidths is on the order of 0.01 to 1.0.

This approach, despite being the best balance of practicality and efficacy, has
some important limitations. First, cross-validation increases the cost of model design,
and for very large models and/or data, or when fitting very many models as in
experimental settings, this can become a practical challenge. Second, though it may
be reasonable to choose different bandwidths for different features, especially for
e.g. tabular data where different features may have completely different properties,
it is not practical to choose different bandwidths for different features using this
exhaustive cross-validation approach because the number of combinations increases
exponentially with the number of features. This motivates exploration into other
strategies for kernel selection. We will overview the approaches we have considered
so far, as well as the benefits and limitations of each.

First, there is a huge amount of research into kernel selection for KDE that we may
leverage to kernels in a model-agnostic fashion. Some examples include the following.

• Rules of thumb such as Silverman’s [156] for bandwidth selection. These are an
extremely low-cost option that may give a starting point for cross-validation,
but rarely achieve the best performance on their own.
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• Likelihood maximization methods, that is, choosing a kernel that maximizes
cross-validation or leave-one-out likelihood of the KDE. While this still involves
cross-validation, it can be significantly faster in practice than cross-validation
involving fitting a model.

• Adaptive kernel methods, that is, methods where properties of the kernel, such
as the bandwidth, are chosen locally. See for example [150] for an in-depth
study.

Some of these scale unfavorably with the size of the data and may not be practical
for large data sets. But the main problem with these methods is that they ignore the
model completely, which can be harmful. For instance, with KDDTs, the tree acts
as a kind of automatic local dimension reduction. This is beneficial; it eliminates the
curse of dimensionality issue present in purely kernel-based models, helps to generalize
out of distribution, and makes even small kernels useful. However, it means that
bandwidths chosen in a pure KDE context, where there is no dimension reduction,
become increasingly too large. Indeed, we find that likelihood maximization and
nearest-neighbor based adaptive methods work exceedingly well in low-dimensional
data, but for even moderately many features, the selected bandwidth is always too
large and the tree badly underfits. While trees may be an extreme example, we expect
to see some degree of this issue in any model class. This can be partially addressed
by scaling heuristics, for instance, dividing the bandwidth by the square root of the
number of features, but this is generally unreliable. The main takeaway is that an
ideal kernel selection method must consider the model.

There is one model-agnostic method that, while not ideal, is sometimes useful
because it does not suffer from the issue of selecting overly large bandwidth as the
dimensionality increases: selecting the bandwidth independently for each feature,
for instance, using a likelihood maximizing method. In particular, when using a
kernel with piecewise-constant marginal distributions, as required by KDDT fitting,
it is possible to compute the leave-one-out likelihood for a sample in linear time;
the density at each point can be computed by a running sum over the kernel pieces
as in the KDDT threshold search. This can select a bandwidth much faster than
cross-validation while also enabling different bandwidth for each feature, sometimes
even outperforming the cross-validation approach while generally being less reliable.
The main limitation here, besides that it is still model-agnostic, is that it treats the
features as completely independent, which is usually not a reasonable assumption.

It is not possible to learn the kernel size and shape using training loss; just as
increasing a regularization coefficient does not decrease loss, it is the same for kernel
size. For instance, it is straightforward to see that, in KDDTs, increasing the kernel
bandwidth never decreases the impurity. As a result, any loss-minimizing approach
will just shrink the kernel toward size zero.

One last approach is to leverage expert knowledge to guide the kernel selection
process. There are often known sources of noise in data, such as quantization, sensor
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error, or inherent randomness of the observed process. In some cases, the noise model
may be understood; in the best case, the exact range or distribution of uncertainty
may be known. In this case, the kernels can be designed to model these specific
sources of noise to make the model aware of them during training and prediction. In
Section 3.2.1, we add noise to data and study its effect on the kernel bandwidth that
maximizes performance; usually, the optimal kernel bandwidth increases linearly with
the amount of noise, suggesting that knowledge of the noise distribution can indeed
inform kernel choice.
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Chapter 3

Robustness and Verification

Robustness refers generally to the ability to remain consistent in the presence of
adverse conditions. In machine learning, it is core to the trustworthiness of a model
to perform reliably in real-world deployment. There are various adverse conditions to
which we expect a good model to be robust, depending on the application context.
Examples include missing values, noisy features or labels, adversarial perturbation of
features, distribution shift, class or group imbalance, data poisoning, and confounding
patterns in the data. Several recent works [61, 184, 24] broadly discuss the various
notions of robustness in ML and their importance for models to be reliable, safe,
predictable, and generally trustworthy.

In this chapter, we examine the effect of using KDDTs on the robustness of de-
cision trees to a number of adverse conditions. We begin in Section 3.1 by showing
that KDDTs reduce the well-known sensitivity of trees to small, random changes in
the data. Next, in Sections 3.2 and 3.3, we show how KDDTs improve robustness
to noisy features and noisy labels, respectively. In Section 3.4, we study the robust-
ness of KDDTs and their ensembles to adversarial perturbation. While adversarial
perturbations are not actually present in most applications, it is a useful framework
for analyzing the robustness of models when the natural perturbation distribution is
unknown. Since these kinds of data issues are common, these help to better under-
stand why KDDTs can so greatly outperform decision trees and better inform their
application.

Finally, in Section 3.5, we discuss the related topic of verification, that is, the
process of proving or finding counterexamples to safety properties of models, of which
the most popular property among researchers is adversarial robustness. We propose
the first verification algorithm for FDTs that is sound and complete in finite precision
and show that, despite the NP-Completeness of the verification task, it scales to
reasonably sized models in practice.
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Figure 3.1: Test set prediction variance of KDDTs trained on 100 bootstrap samples,
relative to that of DTs, for 12 data sets. Average over data sets in high opacity.

3.1 Decision Tree Stability

One of the main drawbacks of decision trees is that they are unstable or sensitive
to small changes in the training data [113, 144, 89]. Since the growth algorithm is
greedy, and since each subtree depends on its ancestor splits, a change in split can
result in an entirely different subtree. This is one interpretation of why bagging is
so effective with trees; by averaging over randomized trees, it reduces the variance to
zero as the ensemble grows large.

One of the known effects of regularization is to reduce the variance of a learning
algorithm at the cost of increased bias, which motivates the question of to what extent
our uncertain interpretation formalism, which we view as a kind of regularization,
has this effect on trees. To test this hypothesis, we split each of the 12 data sets
summarized in Table 2.1 into 50% training and 50% test data, then fit DTs and
KDDTs with box kernels of various bandwidth to 100 bootstrap samples of each
training set, as if fitting a random forest but without feature randomization. Then
we measure the variance of the predicted scores over the 100 trees, averaged over
the samples in the test set. In Figure 3.1, we show the evolution of the average
prediction variance of the KDDTs relative to that of the DTs. As the bandwidth
increases, the variance of the predictions reduces, especially when using smoothing
during prediction. This is evidence that our uncertain interpretation formalism is a
kind of regularization, and that KDDTs are effectively regularized decision trees with
improved robustness to the inherent randomness of sampled data.
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3.2 Feature Noise

For any data set, various sources of noise that are not informative of the target value,
whether it be a class label or regression target, may affect the observed feature values.
These can range from sensor error to precision issues to the inherent randomness of
the process under observation. In some cases, the noise model may be understood; for
instance, sensors may have known noise distributions and failure modes, and random
physical processes, such as radiation, may be well-understood. In other cases, sources
of error may be unknown. The relationship between feature noise and performance is
well-studied with numerous works showing a steady decrease in performance as the
noise severity increases. See [84] for a survey of such works.

Trees in particular can be vulnerable to feature noise. When fully grown, they are
highly vulnerable to overfitting. In addition, they are known to be sensitive to small
changes in the data, as demonstrated in Section 3.1; even a small change, especially
if it affects the choice of split early in the tree, can have a butterfly effect on the rest
of tree that depends on it. Since KDDTs interpret data features with uncertainty,
we expect them to be more robust to feature noise if the size and shape of the kernel
accurately reflect the noise present in the data. This can also be seen more generally
as a regularizing effect that reduces overfitting to noisy data. In this section, we test
these hypotheses by evaluating KDDTs trained on data with random noise added to
the features.

3.2.1 Experiments

We study the effect of KDDTs on the robustness of decision trees to feature noise.
The data is described in Table 2.1. For each data set, we apply additive uniform or
Gaussian noise to features, and for the KDDTs, we test with box and Gaussian ker-
nels. We test combinations of noise scaling and kernel bandwidth with both ranging
from 0 to 1 in increments of 0.1. When the kernel and noise distributions match and
the noise scaling is equal to the bandwidth, then the noise distribution is identical
to the kernel. Additional details are in Appendix C.3. For each trial, we measure
accuracy on a 20% test split which is also affected by the same additive feature noise.

Figures 3.2 and 3.3 show the results for Uniform and Gaussian noise, respectively.
Figures 3.4 and 3.5 show a breakdown of performance by bandwidth for each noise
level, relative to the best performance of the respective noise level, for smoothed
KDDTs. Additional results of this type are in Appendix D.1.

Performance

In figures 3.2 and 3.3 we see that, across all data sets and at all noise levels, we
see that KDDTs outperform conventional decision trees, and that smoothed KDDTs
outperform unsmoothed KDDTs. On most data sets, we also see that the gap widens
as the magnitude of feature noise increases.
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Figure 3.2: Performance of tree-based models on data where the features are each
normalized to standard deviation 1, then random noise is added from a uniform
distribution with radius shown on the x-axis.
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Figure 3.3: Performance of tree-based models on data where the features are each
normalized to standard deviation 1, then random noise is added from a Gaussian
distribution with standard deviation shown on the x-axis.
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Figure 3.4: Test accuracy relative to best of each noise level (marked with x) for
KDDTs trained on the data with added uniform noise.
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Figure 3.5: Test accuracy relative to best of noise level (marked with x) for KDDTs
trained on the data with added Gaussian noise.
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Kernel Size

In figures 3.4 and 3.5, we see that performance is highly dependent on kernel band-
width and deviation from the optimal bandwidth steadily reduces performance. Sen-
sitivity to choice of bandwidth is generally greater with more noise. In most cases,
the more noise present in the data, the higher the bandwidth that achieves the best
performance, and the relationship between noise level and best bandwidth is approx-
imately linear. In the other cases, the optimal bandwidth does not depend much
on noise; there are no cases where the optimal bandwidth clearly gets smaller with
more noise. This is consistent with the interpretation of KDDTs as accounting for
uncertainty in the input. This suggests that there is merit in the idea of setting
bandwidths based on knowledge of noise in the data; for instance, one might set a
very large bandwidth for a feature that is known to be dominated by noise and a
small bandwidth for a feature that is known to be precise.

Kernel Shape

The KDDT results shown in this section use box kernels. We also ran a smaller
number of trials with Gaussian kernels for comparison and found near-identical per-
formance across the board, regardless of whether the added noise was uniform or
Gaussian. This suggests that, while the kernel size may be important, the shape is
not important for these kinds of noise.

3.3 Label Noise

In classification, labels are often provided by humans via expert annotation or crowd-
sourcing, and while most ML methods assume that labels are clean and correct, errors
are actually common. Recently it has been estimated that public research data sets
contain an average of 3% and up to 10% label errors [134]. Moreover, such label errors
are generally more harmful to a trained model than feature noise [205], motivating
the study of techniques for detecting and improving robustness to label errors.

While neural network robustness to label errors has received a great deal of at-
tention [88, 160], work on decision trees remains limited. Some show trees’ innate
theoretical resilience to certain kinds of label errors in the sample limit, for example,
[71]; however, such work does not provide actionable methods for improving robust-
ness in real applications. Others focus on ensemble methods such as random forests
[193, 203] or gradient boosting [127], which are not applicable to single trees.

In this section, we provide some no-go theory that shows that popular loss design
techniques used in deep learning for robustness to label noise are not applicable to
decision trees. This motivates the use of methods specialized for decision trees. We
show that the regularizing effect of KDDTs improves robustness to certain kinds of
label noise. We also adapt and enhance a specialized noise-robust impurity criterion
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from prior work.

3.3.1 Types of Noisy Labels

For each random sample x,y, we assume that the observed label ỹ may differ from y
due to noise. Label noise is categorized by the nature of the conditional probability
P(ỹ | x,y). We described types of label noise as follows. If P(ỹ | x,y) = η for all
ỹ ̸= y, then it is called uniform label noise. More generally, if P(ỹ | x,y) = Ty,ỹ for
some T ∈ [0, 1]p×p, then it is called class-dependent label noise with transition matrix
T . If P(ỹ | x,y) depends on x, then it is called feature-dependent label noise. While
a variety of successful methods improve robustness to uniform and class-dependent
noise, feature-dependent noise is more challenging.

3.3.2 No-go Results for Loss Design Methods with Trees

A popular method for improving robustness to label noise in parametric machine
learning is to modify the loss function to achieve theoretical noise tolerance. While it
is not usually considered possible to apply such methods to non-parametric models
like trees, the equivalence of tree fitting to ERM, as we show in Section 2.3.5, provides
a framework by which to plug in loss design methods to decision trees. However, we
find that two popular methods, when analyzed this way, turn out not to be useful
for trees. As in Section 2.3.5, we prove these results for KDDTs, but since DTs are
a subclass of KDDTs, the conclusions apply to conventional trees as well. Proofs are
in Appendix B.

Symmetric Losses

Symmetric loss functions are known to be noise-tolerant to various types of label
noise under mild assumptions and improve robustness to noise labels in practice
[123, 72, 70, 33]. Adopting the definition from [70] into our notation, a loss function
ℓ is symmetric if there exists some constant c such that, for any prediction ŷ ∈ [0, 1]q,∑

i∈[q] ℓ(ŷ, ei) = c. Recall that q is the number of classes and ei is the indicator of
class i, which is how we represent class labels consistently with regression targets in
this work. Put differently, a symmetric loss is one where the sum of loss values over
every possible ground-truth label is constant over all possible predictions. Examples
include 0-1 loss and Mean Absolute Error (MAE) loss.

Theorem 3.1 shows that, when using any symmetric loss to fit a decision tree,
the plurality indicator, that is, a one-hot vector with 1 in the position of the most
frequent label, is always an optimal leaf value. This frequently results in cases where,
despite high impurity, both children of every possible split have the same leaf value,
resulting in zero gain and terminating tree growth early. This is why, for instance,
we do not use accuracy as an objective for tree growth. Consequently, symmetric loss
functions are not suitable for tree growth.
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Theorem 3.1. For any decision tree and symmetric, non-negative loss function, there
exist loss-minimizing leaf values that are plurality indicators.

Loss Correction

Loss correction [137] is a method for class-dependent noise robustness that assumes
knowledge of the transition matrix T and incorporates it into the loss so that, in
expectation, the risk minimizer is the same as if training on clean data. In particular,
forward correction uses corrected loss ℓT (ŷ,y) = ℓ(T ŷ,y). Theorem 3.2 shows that
this has no effect on the structure of a learned tree. Therefore, one may simply learn
a tree with the loss ℓ, then correct the leaf values. However, if the correct label is
observed most frequently, a reasonable assumption, then this is unlikely to change
the plurality label at many leaves. This reflects trees’ inherent tolerance to certain
kinds of noise. As in [137], we assume T is invertible.

Theorem 3.2. The learned structure of a decision tree is invariant to forward loss
correction.

There is also a related method called backward correction. Unlike forward cor-
rection, this can result in a different tree structure; however, we show empirically in
[166] that this has no influence on the performance of trees.

3.3.3 Credal Impurity for Fuzzy Trees

Credal decision trees [1, 122] augment the C4.5 tree fitting algorithm by incorporating
imprecise probabilities into the splitting criterion. This method is shown by [122] to
improve robustness to noisy labels. Here we generalize the method for FDTs and the
CART fitting algorithm.

Credal sets are convex sets of categorical distributions estimated from data based
on Walley’s Imprecise Dirichlet Model [177]. Let n = (n1, . . . , nq) be the number of
samples in each class, where q is the total number of classes, and N =

∑
i ni the total

number of samples. Then the credal set is

C(n) =

p ∈ [0, 1]q

∣∣∣∣∣∣ pi ∈
[

ni

N + s
,
ni + s

N + s

]
∀i ∈ [q],

∑
i∈[q]

pi = 1

 (3.1)

where s ∈ R≥0 is a hyperparameter with larger s leading to more conservative in-
ference. One can think of a credal set as the set of distributions one could achieve
by adding s additional labeled samples to a population. This has the property that
larger sample sizes yield a smaller, more confident range of probabilities.

Credal decision trees simply replace the impurity function with its maximum over
the credal set formed by the samples at a given node. In particular, for a node value
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v and total sample weight w as defined in Equations 2.10 and 2.11, the resulting
imprecise impurity is

ImpreciseImpurity(v, w) = max
p∈C(wv)

Impurity(p). (3.2)

Notice that the impurity now depends on sample size (weight) w in addition to the
node value v; for very small sample weights, the impurity is always high, but as the
weight increases, the imprecise impurity converges to standard impurity. Imprecise
impurity also creates the possibility that a split may have negative gain, so it may be
used as a stopping condition for tree growth.

While the adaptation of this definition for FDTs is simple, amounting only to
allowing sample counts to be non-integer, the computation of imprecise impurity is
more complicated. Standard application, as in [122], relies on a simple solution to
the maximization in Equation 3.2 when the sample counts are integer and s ∈ (0, 2].
We propose an efficient method for computing imprecise impurity for integer or non-
integer sample counts and any s ∈ R≥0. The efficiency is particularly important for
tree fitting based on CART, which supports continuous numerical features and may
require the evaluation of very many candidate splits for each node.

The problem of selecting the optimal distribution from the credal set can be viewed
as the allocation of s sample weight to each of q categories to maximize the impurity.
Put differently, it is a perturbation of the probability distribution of limited magnitude
to maximize impurity. Consider the gradient of common impurity functions as defined
in Equations 2.12 and 2.13.

∇Gini(v) = 1− 2v (3.3)

∇Entropy(v) = −1− log v (3.4)

From these, it is evident that for any vi < vj, increasing vi and decreasing vj increases
the impurity. Then the optimal perturbation allocates the sample weight to the
lowest-weight class(es). This can be accomplished efficiently by sorting the values,
iterating with a cumulative sum to determine at which point the s sample weight is
fully allocated, assigning the new values, and restoring the values to their original
order. The process is outlined in Algorithm 1.

This has O(q) cost, asymptotically no greater than computing impurity. In prac-
tice, the loop can be replaced with efficient cumulative sum operations, and the whole
procedure can be vectorized over candidate thresholds, resulting in negligible practical
cost.

3.3.4 Experiments

We study the effect of KDDTs and credal impurity on the robustness of decision trees
to labeling errors. The data is described in Table 2.1. For each data set, we apply
uniform label noise with the probability of mislabeling η ranging from 0 to 0.3. We
also test a selection of the s parameter for credal impurity from 0 (normal impurity)
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Figure 3.6: Performance of trees with label noise in the training data. The hyperpa-
rameter s is for credal impurity.
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Algorithm 1 Compute the maximum-impurity member of a credal set.

Input: Node value v ∈ [0, 1]q, sample weight w ∈ R>0, credal set parameter s ∈ R≥0

Output: Maximal-impurity node value v ∈ [0, 1]q

1: v ← wv/(w + s) ▷ Scale so that final result is a distribution
2: s← s/(w + s) ▷ Scale so that final result is a distribution
3: v ← Sort(v) ▷ Ascending order
4: t← 0 ▷ Total cumulative allocation
5: i← 1 ▷ Class index
6: while ti < s do
7: ti+1 ← ti + i(vi+1 − vi) ▷ Compute new total allocation
8: i← i + 1 ▷ Increment class index

9: α← (s− ti−1)/(ti − ti−1) ▷ Interpolate to correct total allocation
10: p← (1− α)vi−1 + αvi
11: for j ∈ [i− 1] do ▷ Set perturbed ratios
12: vj ← p

13: v ← RestoreOrder(v) ▷ Revert the sort on line 3

to 10. For context, [122] use s = 2. Additional details are in Appendix C.4. For each
trial, we measure accuracy on a 20% test split that is clean, that is, not affected by
label noise.

The results are shown in Figure 3.6. KDDTs universally outperform DTs and
nearly always show less degradation in performance as the label noise increases. On a
few data sets, namely optdigits, pendigits, and letter, the KDDTs are hardly affected
by label noise at all.

Despite some intial results indicating that the credal impurity could improve ro-
bustness, in these results, there not strong evidence that it is beneficial except maybe
in some cases for very strong noise. If s is too large, it usually worsens performance.
We suspect the reason is that, here, the tree size is tuned by cross-validation. This
reduces overfitting to noise and appears to largely negate the benefits of credal im-
purity.

3.4 Adversarial Perturbation

It was discovered in 2013 by [165] that neural networks are vulnerable to impercepti-
bly small, but intentional perturbations of the input that cause a change in prediction.
Examples are shown in Figure 3.7. These became known as adversarial examples or
adversarial perturbations and spurred a lot of research in model verification, which
is used to find, among other safety-related properties, Minimum Adversarial Pertur-
bation (MAP), that is, the minimum-magnitude change in an input to change the
prediction. It has also motivated research into building models that are robust to such
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(a) An adversarial example from a neural network, from [78].

(b) An adversarial example from a random forest, from [74].

Figure 3.7: Adversarial examples with imperceptibly small perturbation.

perturbations. Random forests and other tree-based models are also vulnerable to
adversarial perturbation [74], but have received relatively little attention despite their
widespread application, motivating the development of adversarially robust methods
for tree-based models.

Randomized smoothing [38] is a model-agnostic method for efficiently training
robust models and lower-bounding the robustness of predictions. It is known mainly
as the state-of-the-art approach for L2 adversarial robustness, that is, robustness to
perturbation bounded by the L2 norm; it is also useful for L1 adversarial robustness,
but its practicality diminishes for p-norms with p > 2, especially the popular L∞ norm
[194]. To train a model with randomized smoothing, choose a smoothing distribution
(usually Gaussian for L2 robustness), then train the model on data with random
augmentations sampled from the smoothing distribution; then, average predictions
over many augmentations from the same distribution. Then the average prediction
can be used to compute a high-probability lower bound on the radius of adversarial
robustness. This useful because verifying adversarial robustness of a prediction is NP-
Hard for popular models, including neural networks [100] and tree ensembles [98]. We
show in Section 3.5.3 that robustness verification is also NP-Hard for FDTs.

Our uncertain interpretation formalism is very similar; the only difference is that
we smooth the predicted scores instead of the predicted class. Therefore, by simply
smoothing predictions instead, our formalism produces adversarially robust models
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with an efficient means of estimating robustness. In particular, if smoothing predic-
tions is deterministic as in KDDTs, that is, the smoothed prediction can be computed
exactly (see Section 2.3), then there is no need for randomization. As a result, there
is no inefficiency from sampling many random augmentations, and the robustness
bounds are guaranteed to hold rather than holding with high probability.

This capability of trees was first discovered by [93], who dubbed it (De-)Randomized
Smoothing (DRS) and showed that deterministic smoothing reduces cost and provides
larger robustness bounds due to the exponential need for random samples. Lacking
a suitable deterministic tree fitting algorithm, their approach is limited to ensembles
of decision stumps, that is, trees with only a single split; this both simplifies fitting
and makes it possible to smooth the predictions of the ensemble as a whole. Here
we show how the KDDT fitting algorithm can be used for DRS of more general tree-
based models, propose improved methods for ensemble smoothing, and demonstrate
the certifiable adversarial robustness achieved in this manner.

3.4.1 (De-)Randomized Smoothing with KDDTs

Like [93], we will focus on L1 and L2 adversarial robustness by smoothing with box-
uniform and Gaussian distributions, respectively1.

Let ϕ : Rp → R be a smoothing distribution and f : Rp → [0, 1]q a classifier,
and write ŷ(x) = arg maxi∈[q] fi(x) the class predicted by f at x. Then define the
smoothed predictor p : Rp → [0, 1]q as

pc(x) = Pϵ∼ϕ[ŷ(x + ϵ) = c] =

∫
Rp

1{ŷ(x + ϵ) = c}ϕ(ϵ) dϵ

for each output index c ∈ [q]. If f is a tree, then p is a KDDT with kernel k(x,x′) =
ϕ(x′ − x) where each leaf value is set to its argmax indicator after fitting. Then, by
the following theorems adapted from [38, 194], we have certified robustness bounds
for KDDTs with Gaussian and box kernels.

Theorem 3.3. Let ϕ ∼ N (0, σI) and ∥ϵ∥2 ≤ r. Then, for all c,

pc(x + ϵ) ≥ Φ
(

Φ−1(pc(x))− r

σ

)
(3.5)

where Φ is the Gaussian CDF.

For a model smoothed with an isotropic Gaussian distribution, this provides a
means of computing a radius of certified L2 robustness given a smoothed prediction.

Theorem 3.4. Let ϕ ∼ U[−λ,λ]p and ∥ϵ∥1 ≤ r. Then, for all c,

pc(x + ϵ) ≥ pc(x)− r

2λ
. (3.6)

1See [194] for a broader discussion of perturbation norms and smoothing distributions; as usual,
we can use any isotropic distribution as a KDDT kernel.
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For a model smoothed with a isotropic uniform distribution, this provides a means
of computing a radius of certified L1 robustness given a smoothed prediction.

Moreover, for Gaussian smoothing, [110] provides the following.

Theorem 3.5. Let ϕ ∼ N (0, σI) and ∥ϵ∥2 ≤ r. Then, for all c,

pc(x + ϵ) ≥ Φ
(

Φ−1(a + pc(x))− r

σ

)
− Φ

(
Φ−1(a)− r

σ

)
(3.7)

where a is the (unique) solution to

Φ′(Φ−1(a))− Φ′(Φ−1(a + pc(x))) = −σ∥∇p(x)∥2. (3.8)

For a model smoothed with an isotropic Gaussian distribution, this provides a
means of computing a larger radius of certified L2 robustness given both a smoothed
prediction and the gradient of the smoothed model at that input.

These provide a practical method for obtaining bounds on the robust radius of
KDDT predictions. While setting the leaf values to indicators is not required for these
bounds to hold, it does result in larger bounds and has little effect on the natural
accuracy, so it is recommended.

3.4.2 Certification of Ensembles

While the KDDT prediction algorithm offers an efficient mechanism for DRS of single-
tree models, it does not offer such a mechanism for ensembles. It is safe to simply use
the average smoothed prediction, since it is equivalent to the smoothed prediction
of the averaged models, but this can result in very poor bounds. As a worst-case
example, consider an ensemble of 2n+1 classifiers in which n classifiers always predict
class 0 and n+1 classifiers always predict class 1; then, as n grows large, their average
prediction approaches 0.5, so the certifiable robust radius approaches 0. However, the
true robust radius is infinite for all n. Figure 3.8 shows an example of this gap on
the moons data set. Despite nearly identical predictions, the RF has poor certifiable
robustness due to averaging of predictions. If we were able to smooth the predicted
label and not the predicted score of the ensemble, this gap would vanish. Though a
tree ensemble is piecewise-constant, the number of pieces is at worst exponential in
the number of trees, so there is no general, efficient way to accomplish this. In fact,
we show that the problem of smoothing tree ensembles is NP-Hard by reduction from
3-SAT. This is proven in Appendix B.

Theorem 3.6. Computing the smoothed prediction of a tree ensemble is NP-Hard.

This motivates the development of a better approach for computing robustness
bounds when it is efficient to smooth predictions of individual models, but not ensem-
bles. We propose the following. Write the smoothed ensemble p(x) = 1

n

∑
i∈[n] p

(i)(x)
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Figure 3.8: Several L2 robustness bounds computed using Equation 3.5 for a KDDT
DT and KDDT RF trained on the moons data set. Despite their near-identical
predictions, the certifiable robustness bounds are smaller for the RF because of the
averaging of its trees’ predictions.

for smoothed constituents p(i), i ∈ [n]. For a given input x and class c, let ρ(i)(r)

denote the lower bound on p
(i)
c (x + ϵ) for ∥ϵ∥ ≤ r. Then we have ensemble bound

ρ(r) ≥ 1

n

∑
i∈[n]

ρ(i)(r) (3.9)

where each ρ(i) is nonincreasing in r and efficient to evaluate. Therefore we can
simply use binary search over r to determine at what radius the ensemble prediction
is tightly bounded above a decision threshold (typically 0.5). In general, this approach
makes no difference if the ensemble predictions are similar, but improves the bound
more and more as the variance of the ensemble predictions increases, as shown in
Figure 3.9. In the example given at the beginning of this section, where the naively
computed robustness bound is arbitrarily poor, this approach completely recovers the
true level of robustness for Gaussian smoothing, showing that there is potential to
greatly improve the provable bounds for ensembles.

Despite this, there are significant limitations. First, the fact that Equation 3.6 is
linear means that this method rarely makes a difference when smoothing with box
kernels; it simply informs the bound computation that any tree cannot predict a
value less than zero. Moreover, when using gradients, it can actually yield a worse
bound compared to the naive method of averaging predictions and gradients and
using Equation 3.7. Consider an ensemble of two trees with equal predictions and
maximum-magnitude gradients in opposite directions; then our proposed method can-
not use the gradients to improve the bound. However, the naive method leverages the
fact that the average gradient is zero to improve the bound. Another example is when
ensemble constituents are vulnerable to perturbation, but in orthogonal directions.
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Figure 3.9: Change in certified radius by using Equation 3.9 with 3.5 for 1000 sets of
5 uniformly random predictions.

In both cases, the ensemble is more robust than its most robust constituent, but it is
clear from Equation 3.9 that this approach can never certify that an ensemble is more
robust than its most robust constituent, whereas the naive approach potentially can.

These cases demonstrate that there is still room for improvement, particularly by
incorporating gradient directions. One approach to accomplish this would be to make
the perturbation bound directional: for direction vector v ∈ Rp with ∥v∥ = 1, let
ρ(i)(r,v) lower bound pc(x+ ϵv) for ϵ ∈ [0, r]. If each ρ(i)(r, ·) is convex or log-convex,
then at each r in the binary search, one can solve for the direction v that minimizes
the ensemble bound. We conjecture that such a bound exists for the smoothing
distributions discussed here, but leave their discovery to future work.

3.4.3 Experiments

To evaluate our approach, we imitate the experimental setup of [93], who first pro-
posed DRS with trees. In particular, we use five binary classification data sets and,
for each, train models for L1 robustness with box kernel with radius λ and for L2
robustness with Gaussian kernel with standard deviation σ, as shown in Table 3.1.
Additional details are in Appendix C.5. We omit standard random forests as a base-
line because L1 and L2 robustness verification is difficult.
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Data Set n p λ (L1) σ (L2)
Breast Cancer Wisconsin (Diagnostic) 683 9 2.00 0.25

Pima Indians Diabetes Database 768 8 0.28 0.15
MNIST 1 vs. 5 14,000 784 4.00 0.25
MNIST 2 vs. 6 14,000 784 4.00 0.25
FMNIST Shoes 14,000 784 4.00 0.25

Table 3.1: Description of data sets and smoothing parameters, from [93].

Comparison against Decision Stump Ensembles

We first compare against Decision Stump Ensemble (DSE) [93], to our knowledge the
only existing method using DRS with trees. We evaluate using the same two metrics:
first, the Average Certified Radius (ACR), that is, the average certifiable radius of
predictions on the test set, where incorrect predictions have radius 0; second, the
certified accuracy at several radii, that is, the percentage of test data at which the
prediction is correct and the certifiable robust radius is sufficiently large. The results
are shown in Table 3.2.

If we compare KDDT-based methods to DSE, for L1 robustness, KDDTs achieve
higher certified accuracy than DSE at all the examined radii, but sometimes fall
slightly short in ACR. For L2 robustness, KDDT-based methods achieve higher
certified accuracy at smaller radii, but lower at larger radii, and their ACR is much
lower on the MNIST data sets. KDDTs also achieve better clean accuracy across
the board. From these observations, we conclude that KDDTs achieve better robust
performance at small to moderate radius, but robust performance drops off at the
“tails” of the smoothing distribution. If a higher average radius is desired, one can
simply make the smoothing kernel larger. The fact that this effect is more severe in the
L2 cases is likely due to the approximation of the smoothing kernel used for fitting,
where the tails of the Gaussian distribution are truncated. Using a less truncated
kernel with more pieces would improve it, but increase fitting cost, which is already
fairly high due to the large kernels being used.

If we compare KDDT trees and forests, we see that they are usually close in
performance; this is consistent with our understanding of the regularizing effect of
smoothing, which reduces model variance and decreases the need for ensemble meth-
ods, as discussed in Section 3.1. This is a particularly extreme case where, since the
kernels are larger than one would use when optimizing for clean accuracy, the gap be-
tween trees and ensembles becomes very small. The forests are also at a disadvantage
since their predictions cannot be smoothed in the ideal sense, as established by The-
orem 3.6. We see that trees always match or outperform forests in the L1 robustness
experiments, but forests often take the lead in the L2 robustness experiments.

The standard decision tree always has very poor certified accuracy, but sometimes
has higher clean accuracy than any of the robust models, pointing to an accuracy-
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Norm Data Set Method ACR
Certified Accuracy at Radius

0.00 0.10 0.25 0.50 1.00

L1

Breast Cancer

DT 0.255 94.2 87.6 20.4 9.5 0.0
KDDT DT 1.601 100. 100. 98.5 92.7 81.0
KDDT RF 1.596 100. 100. 98.5 92.7 81.0

DSE 1.396 95.2 94.1 92.1 87.1 72.8

Diabetes

DT 0.079 77.9 36.4 4.5 0.0 0.0
KDDT DT 0.149 74.0 59.7 33.8 0.0 0.0
KDDT RF 0.146 73.4 59.1 29.2 0.0 0.0

DSE 0.153 73.7 58.3 30.1 0.0 0.0

MNIST 1 vs. 5

DT 0.066 98.9 38.9 0.0 0.0 0.0
KDDT DT 3.632 98.7 98.7 98.6 98.4 97.5
KDDT RF 3.532 98.4 98.4 97.9 97.7 97.1

DSE 3.425 96.2 95.9 95.4 94.7 93.0

MNIST 2 vs. 6

DT 0.152 98.2 46.7 17.8 7.6 0.0
KDDT DT 3.032 97.5 97.3 97.0 96.2 94.1
KDDT RF 2.888 96.6 96.5 96.1 95.5 92.0

DSE 3.243 95.7 95.5 95.1 94.5 92.8

FMNIST-Shoes

DT 0.057 95.2 16.4 0.4 0.1 0.0
KDDT DT 2.517 89.5 89.0 88.2 86.4 82.2
KDDT RF 2.447 87.4 86.7 85.8 83.8 79.8

DSE 2.731 84.4 83.8 83.1 81.7 79.1

L2

Breast Cancer

DT 0.221 94.2 80.3 18.2 8.0 0.0
KDDT DT 0.631 100. 98.5 95.6 82.5 3.6
KDDT RF 0.610 100. 99.3 96.4 81.8 2.9

DSE 0.653 93.3 90.6 87.3 73.8 15.5

Diabetes

DT 0.070 77.9 31.8 0.6 0.0 0.0
KDDT DT 0.153 73.4 58.4 27.9 0.0 0.0
KDDT RF 0.150 74.0 59.7 27.9 0.0 0.0

DSE 0.124 72.7 53.0 15.6 0.0 0.0

MNIST 1 vs. 5

DT 0.066 98.8 39.5 0.0 0.0 0.0
KDDT DT 0.691 99.6 99.4 98.7 95.0 0.3
KDDT RF 0.664 99.5 99.4 98.9 92.2 0.0

DSE 1.720 95.3 94.8 94.0 92.3 87.9

MNIST 2 vs. 6

DT 0.088 98.0 30.5 1.2 0.6 0.0
KDDT DT 0.664 98.8 98.4 97.3 91.1 0.0
KDDT RF 0.594 99.4 99.2 97.7 79.5 0.0

DSE 1.613 95.5 94.9 93.9 91.7 84.9

FMNIST Shoes

DT 0.047 95.0 8.8 0.1 0.0 0.0
KDDT DT 0.486 94.4 92.6 86.2 58.0 0.0
KDDT RF 0.459 94.0 92.3 84.0 49.4 0.0

DSE 1.334 85.0 83.7 81.5 78.1 68.6

Table 3.2: Comparison of robust accuracy. DSE results from [93].
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(a) Without gradient (Equation 3.5). (b) With gradient (Equation 3.7).

Figure 3.10: Change in certified radius by using our method, normalized by band-
width.

robustness tradeoff when using heavy smoothing. The enormous gap in certified
accuracy highlights the efficacy of the smoothed models.

Improvement of Ensemble Smoothing

We next report the distribution of the difference in certified radius over the test
set, normalized by the smoothing kernel bandwidth, by using our method based on
Equation 3.9. As this mainly benefits L2 bounds with Gaussian kernels, we focus on
those, both with and without incorporating gradients. The results are in Figure 3.10.

As expected, without using gradients, we see that our method improves the bound
for most samples, sometimes by quite a lot. In particular, the benefit is potentially
large for the many-featured MNIST data sets, but smaller for the tabular data sets.

Also as expected, we see that with gradients, our approach can either improve the
bound, or make it worse, since it discards gradient direction and only uses gradient
magnitude, as discussed in Section 3.4.2. However, the benefit is still large for a
nontrivial number of samples, so it is best used to supplement, but not replace, the
conventional approach for computing a bound.

3.5 Verification

While robustness methods aim to improve a model’s conformity to very specific safety
specifications, verification is the more general problem of proving or finding counterex-
amples, usually by framing as a satisfiability problem, for a wide variety of specifica-
tions. These often include robustness properties, particularly adversarial robustness,
where general verification algorithms are a popular approach for precisely measuring
robustness. Others include application-specific safety properties; for instance, [100]
verify properties of neural networks for aircraft collision avoidance, such as if the
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intruder is near and approaching from the left, the network advises “strong right”.
These have since become a benchmark for neural network verification algorithms.

This kind of verification task is often inherently intractable; it was discovered that
verification is NP-Complete for tree ensembles [98] and for neural networks [100],
two of the most common model classes in modern machine learning. However, it is
understood that satisfiability problems with an underlying structure are often much
faster to solve in practice than the worst case, and a huge amount of work by the
ML verification & validation research community has made it possible to verify both
kinds of models at fairly large scale in practice.

In particular, abstraction-refinement is a verification paradigm whereby an effi-
cient over-approximation of the model, that is, an upper and lower bound on the
model that are easier to analyze than the model itself, is used to check a property. If
the approximation fails to conclusively determine the truth of the property, usually
due to a spurious counterexample, the approximation is refined and checked again.
This can speed up verification of some models [169] and can make possible the ver-
ification of models that are not amenable to non-approximating strategies, such as
neural networks with activation functions that are not piecewise linear [141].

Such is also the case for Fuzzy Decision Tree (FDT)s, as we show in this work.
FDTs are a strong candidate for trustworthy AI applications; their continuous decision
allocation can improve the expressiveness of a single tree, enable smooth regression,
reduce overfitting, and provide differentiability, enabling both fully gradient-based
optimization as in [163] and hybrid strategies, as we propose in Chapter 4. Compared
to neural networks, such trees have fewer design choices since the architecture can
be chosen automatically, and they can be less sensitive to hyperparameters [155]. In
addition, FDTs leveraging oblique splits consisting of a linear combination of features
can be both smaller and more performant than axis-aligned trees [197, 121, 158, 75].
Less complex models are also generally faster to verify. However, prior to our work,
there has been no practical method for verification of FDTs, creating a major gap in
their trustworthy application.

FDTs are superficially similar to neural networks; both propagate values through
a layered graph structure and can backpropagate to get loss gradients and update
parameters, and the splitting functions of FDTs resemble activation functions of neu-
ral networks. However, neural networks directly transform their input, while FDTs
instead partition it using soft boundaries. As a result, verification of FDTs presents
different challenges compared to verification of neural networks. A neural network is
a composition of its activation functions, whereas an FDT is a product of its splitting
functions. This means that, for example, a neural network with piecewise-linear acti-
vations is piecewise linear, whereas an FDT with piecewise-linear splitting functions
is piecewise-polynomial with degree up to the tree depth, which is relatively difficult
to analyze. As a result, while the hardness of verification of ReLU networks and
tree ensembles is a result of combinatorial challenges, the hardness of verification of
FDTs arises from both combinatorial challenges and their ability to directly represent
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non-convex functions. We discuss these challenges in Section 3.5.3 and show that, as
a result, verification of FDTs is NP-Complete, similarly to other learned models.

In this section, we propose an iterative abstraction-refinement algorithm that can
refine upper and lower bounds of the extreme value of an FDT in a given region until
the desired property is determined, as originally published in [76]. Specifically, given
an FDT f : Rp → Rq, convex domain D ⊆ Rp, a ∈ Rq, and b ∈ R, by iteratively
partitioning D, it can

1. prove a⊤f(x) ≤ b or a⊤f(x) < b for all x ∈ D, or find a counterexample

2. find maxx∈D a⊤f(x) within given tolerance or timeout.

The first is our form for verification, which can be applied to prove or disprove a variety
of safety properties, including the popularly studied property of local adversarial
robustness; additional properties can be verified by manually altering f , as discussed
in the Additional Properties subsection of 3.5.2. The latter is a utility that arises
naturally from the verification methodology. In finite precision, the algorithm is
sound and complete, that is, guaranteed to terminate with a correct result in finite
time.

We demonstrate the usefulness of our algorithm by benchmarking time for two
verification tasks: finding minimum adversarial perturbation and testing global adver-
sarial robustness. For the minimum adversarial perturbation tests, we also compare
against a Satisfiability Modulo Theories (SMT) solver. Since SMT queries with non-
linear arithmetic are not necessarily decidable, SMT is generally both limited to FDTs
with piecewise-linear splitting functions and incomplete for FDT verification, but due
to the lack of prior work in FDT verification, it is the best baseline available for this
task. As an additional baseline, we use a variation of our algorithm with a refinement
strategy based on the most similar methods for neural network verification. We use
a selection of 10 public data sets with varying sizes and complexities. Ultimately, we
find that our method is much faster than the baselines, even when comparing only
on cases where the baselines terminate with a solution. Our implementation and
experiment code is publicly available2.

3.5.1 Related Work: Abstraction-Refinement Algorithms

As we cover related work in FDTs in Section 2.3.2 and 4.1.1, here we will cover work
related work in the verification of machine learning models, specifically, those based
on the abstraction-refinement paradigm.

Most of such work has focused on neural networks. As one of the first works in
machine learning verification as a whole, [141] are also the first to apply abstraction-
refinement to neural networks. Their approach partitions the domain of the activation
function into intervals of equal size and uses constant bounds on each interval to

2https://github.com/autonlab/fdt_verification
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enable an MLP to be represented as Boolean combinations of arithmetic constraints
and checked with the solver HySAT. If a counterexample is found, it is checked against
the real model and, if it does not actually violate the property, the interval size is
decreased, refining the approximation, and the procedure repeated until the property
is proven or a true counterexample is found. The approach is only demonstrated on
extremely small networks.

Starting in 2018, in response to the limited scalability of complete, satisfiability-
based methods such as [100], many abstraction methods were developed to scale to
larger networks. [67] leverage extensive work in abstract interpretation and propose
the use of abstract domains, such as boxes, zonotopes, and polyhedra, with abstract
transformers for common neural network structures, including feedforward and con-
volutional layers with ReLU activations as well as max pooling layers. [128] adapt
this concept to be used during training to produce networks that are more verifiably
robust compared to approaches using projected gradient descent to find adversarial
examples for training. [7] then introduce optimization techniques to automatically
refine the abstraction. The algorithm is shown to be δ-complete, meaning that for a
given δ, any returned counterexample is within δ of a true counterexample. [171] pro-
pose to represent domains as star sets, which enables both complete verification and
less conservative over-approximation compared to zonotopes. [170] then introduce Im-
ageStars, a variant of star sets for representing sets of images, for the verification of
convolutional neural networks. [172] use zonotopes as an efficient overapproximation
of star sets in a pre-filtering process, effectively introducing an abstraction-refinement
strategy and improving the scalability of the star set approach, and extends star
set methods to a wider class of piecewise-linear activation functions. [10] introduce
data structure and algorithmic changes, including several optimizations, achieving
unprecedented performance on verification benchmarks.

Another family of methods, which has come to be called LiRPA (Linear Relaxation
Perturbation Analysis), admit general activations by bounding them with simpler
functions, usually linear. [199] and [157] are optimized for the fast, but incomplete
setting. [190] extend LiRPA to general architectures such as convolutional layers.
[191] then introduce refinement by combining the approach with existing branch-
and-bound methods, with the result being both complete and faster than existing
complete methods based on branch-and-bound. Similarly, [182] improve over [199]
by eliminating the need for LP solvers and adding an optimization-based refinement
capability. They demonstrate superior speed in the complete setting and tightness of
bound in the incomplete setting.

Differently from any of the aforementioned abstraction approaches, [52] perform
abstraction by merging neurons to form a smaller network that over-approximates the
original network and refinement by splitting the merged nodes, with the choice guided
by spurious counterexamples. The smaller network is then used with other verification
methods, thereby introducing an abstraction-refinement capability. The authors use
their method with the toolset proposed by [102], a more recent satisfiability-based
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verifier based on [100].

With the greatest resemblance to our approach, [181] use constant upper and lower
bounds of activation functions, like [141], but instead of producing constraints to a
solver, computes network bounds directly, an approach they call symbolic interval
analysis. The approximation is refined by bisecting the input range. They show
that the process converges in finite steps for Lipschitz continuous networks. [180]
combine this symbolic interval analysis with linear rather than constant bounds, called
symbolic linear relaxation. They also propose an alternative iteration approach that
refines the approximation at the most over-approximated nodes. For FDTs, we use
constant, rather than linear, bounds on the splitting function; since the model consists
of successive multiplications of these functions, bounding the output is difficult even
with a linear relaxation.

In the domain of tree ensemble verification, where the main challenge is the com-
binatorial explosion resulting from the number of trees, [169] propose an abstraction-
refinement approach that refines a hyperrectangle approximation by splitting the
input region in such a way that a tree can be eliminated from the ensemble. In the
worst case, this continues until no trees remain, resulting in a list of input hyperrect-
angles and associated output values, which fully specifies the tree ensemble and can
be checked exhaustively for the property of interest.

We are aware of no prior work addressing the verification of FDTs. We believe
that this is because they are not as commonly applied as the very popular neural net-
works and tree ensembles, and, more importantly, because the problem of verifying
them presents unique challenges. For example, the multiplication of splitting func-
tions means that linear relaxations are not clearly useful, and it causes SMT-based
approaches, a popular branch of complete verification methods for neural networks, to
be incomplete even for linear splitting functions. Our overall framework is most sim-
ilar to that of [181] in that both approaches use approximations of individual model
components to directly compute overall output bounds, then split the input to refine
those bounds, making them easily parallelizable. What makes our approach unique
is our novel, flexible, and theoretically grounded methods for computing the bounds
and selecting the split for FDTs, which have fundamentally distinct structure from
neural networks, as well as the accompanying theory and analysis. In particular, we
(1) introduce an efficient interval approximation for FDTs, whereas [181] propose an
approximation for neural networks; (2) propose a method for choosing linear domain
splits that maximally reduce overapproximation under worst-case structural assump-
tions, whereas [181] use a heuristic splitting rule that bisects on the feature with the
largest gradient; (3) support any convex domain for verification, enabling robustness
verification for any p-norm, whereas [181] use hyper-interval domains, limiting ro-
bustness verification to L∞ only; (4) support any nondecreasing splitting function,
whereas [181] as proposed supports only a few piecewise-linear activation functions;
and (5) provide a flexible framework for verifying complex properties involving modi-
fications to both the input and output, such as global adversarial robustness, whereas

53



[181] do not.

3.5.2 Fuzzy Decision Tree Verification Algorithm

Here we consider a subclass of the FDTs specified in Section 2.3.3 where splits are
based on a linear combination of features and a threshold, which encompasses axis-
aligned FDTs with a single feature and threshold at each node. In particular, given
a nondecreasing splitting function σ, the decision allocation function σi at each node
i is defined as

σi(x) = σ(a⊤
i x + bi)

for learned parameters ai ∈ Rp and bi ∈ R. We do not actually require that σ be
the same at all nodes, but this is the common practice, so we present it as such. The
prediction is then as in Equations 2.3 and 2.8. When the structure is fixed, the model
is parametric and differentiable and therefore can be trained using gradients. The
structure and initial parameters are usually taken from a trained crisp tree.

Our overall procedure first uses an efficient abstraction to bound the output of f on
a domain D. If the bound is sufficiently precise, we are finished; otherwise, we refine
the approximation by splitting D into two subdomains and repeat until the required
precision is attained. In the case of verification of the property “a⊤f(x) ≤ b for all
x ∈ D”, this occurs when either the upper bound is at most b for all subdomains of D
and the property is proven, or the lower bound is greater than b for some subdomain
and a counterexample is found. Likewise for properties of the form “a⊤f(x) < b for all
x ∈ D”. The following sections describe the processes of abstraction and refinement,
then discuss properties of the problem and algorithm to justify the approach.

Abstraction

Given an FDT f , vector a, and bounded convex domain D, we aim to find upper and
lower bounds of a⊤f(x) on x ∈ D that are ideally close to the true minimum and
maximum while remaining efficient to compute. To do this, we first find the extreme
values of σi on D for each node.

σmin
i = min

x∈D
σi(x) = σ

(
min
x∈D

a⊤
i x + bi

)
σmax
i = max

x∈D
σi(x) = σ

(
max
x∈D

a⊤
i x + bi

) (3.10)
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Figure 3.11: Geometry of bounding at an internal node. The gray band shows the
output range given the childrens’ output ranges.

These can be computed by convex optimization. Then a straightforward recursion
determines the lower bound li and upper bound ui from the children ℓi and ri of i.

lmin
i = (1− σmin

i )lℓi + σmin
i lri

lmax
i = (1− σmax

i )lℓi + σmax
i lri

umin
i = (1− σmin

i )uℓi + σmin
i uri

umax
i = (1− σmax

i )uℓi + σmax
i uri

li = min(lmin
i , lmax

i )

ui = max(umin
i , umax

i )

(3.11)

Here lmin
i and lmax

i are lower bound candidates computed using the minimum and
maximum split value, respectively, and likewise for umin

i and umax
i . These will be

used again later since the difference in each pair indicates the contribution of the
node’s split to the overall range of the bound. For leaves, the output is constant, so
li = ui = a⊤vi. A geometric interpretation of this bounding scheme is illustrated in
Figure 3.11.

Refinement

The overapproximation error in the abstraction comes from using a constant bound
of σi at each node. To reduce the error, we split the domain such that, for some
node i, the range of (σmin

i , σmax
i ) becomes smaller on the new subdomains, thereby

improving the approximation, as shown in Figure 3.12. In particular, we split along
a hyperplane satisfying x⊤ai + bi = c, where σ(c − ϵ) ≤ σ̄i ≤ σ(c + ϵ) for all ϵ > 0
and

σ̄i =
1

2
(σmin

i + σmax
i ). (3.12)
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Figure 3.12: Splitting the domain refines the approximation.

This formulation is designed to account for non-invertible σ; if σ is invertible, then
we can simply use c = σ−1(σ̄i). Splitting at σ̄i causes the resulting subdomains to
have equal approximation errors at node i.

To select at which node to perform the split, we define v(i, j) that measures the
amount of variation in the approximation at node i coming from internal j.

v(i, j) =


1
2

(∣∣lmin
i − lmax

i

∣∣+
∣∣umin

i − umax
i

∣∣) if i = j

(1− σ̄i)v(ℓi, j) if j ∈ Tℓi \ Tri

σ̄iv(ri, j) if j ∈ Tri \ Tℓi

(1− σ̄i)v(ℓi, j) + σ̄iv(ri, j) if j ∈ Tℓi ∩ Tri

(3.13)

Here Ti is the set of nodes in the subtree rooted i. We include Tℓi ∩ Tri even
though this is not possible in trees to support DAG models that enable verification
of additional properties, as discussed in the Additional Properties section. With v
defined, we refine our approximation by splitting D at the node j where v(i, j) is
maximized when i is the root. Theorem 3.8 justifies this strategy.

Since we are interested in the maximum value of a⊤f(x) on D, we keep a set of
the subdomains partitioning D (which initially contains only D), remove the one with
the highest upper bound, split it, bound on the resulting domains, and add them back
to the set. Prioritizing domains with the highest upper bound allows us to efficiently
hone in on the maximum over D. The set is implemented as an efficient priority queue
such as a max heap. During the process, bounds on maxx∈D a⊤f(x) are continuously
updated and the refinement is repeated until a stopping condition is met. This could
be a desired tolerance, a timeout, a number of iterations, or a property a⊤f(x) ≤ b
or a⊤f(x) < b to be proven or disproven. Such a property is disproven by finding a
domain with lower bound greater than (or equal to, depending on the property) b, so
a counterexample can be produced by taking any point in that domain, or the domain
itself can be interpreted as a counterexample. If more counterexamples are desired,
refinement can be allowed to continue. The process is outlined in Algorithm 2.

The bounding scheme involves optimizing linear functions on convex domains
many times at each refinement, which is the vast majority of the computation time
spent by the algorithm. To reduce this as much as possible, we use a strategy that
redefines the model’s subtree split to allow dynamic pruning by allowing splits to
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Algorithm 2 Refine bounds of maxD a⊤f(x).

1: H ← max heap
2: l, u← Bound(f,D)
3: while stopping condition on l, u is not met do
4: D−, D+ ← Split(f,D)
5: l−, u− ← Bound(f,D−)
6: l+, u+ ← Bound(f,D+)
7: Push(H, u−, D−)
8: Push(H, u+, D+)
9: l← max(l, l−, l+)
10: u,D ← Pop(H)

have value exactly 0 or 1, if they can not already.

σi(x) =


0 if σ(a⊤

i x + bi) < ϵ

1 if σ(z⊤
i x + bi) > 1− ϵ

σ(a⊤
i x + bi) otherwise

Here ϵ is a small chosen value. Defined as such, subtrees that have exactly zero weight
within a domain can be removed and the resulting pruned tree stored along with the
domain in the priority queue, reducing computation for future bounds. The greater
the threshold chosen, the greater the potential to save time by pruning, but too large
a value may negatively affect the performance of the FDT.

Additional Properties

Though the presented algorithm can only verify properties of the form a⊤f(x) ≤ b
or a⊤f(x) < b directly, we can actually verify a much broader class of properties
by constructing a new tree that contains f as a subtree, then verifying it. In fact,
we can generalize further by, within the constructed part, allowing a node to have
multiple parent nodes, resulting in a Directed Acyclic Graph (DAG) containing one or
more copies of f . We refer to this kind of structure as a Fuzzy Decision DAG (FDD).
Though there are similar decision DAG models used for prediction, here we use it only
as a tool to verify more complex properties of FDTs; an FDD can efficiently represent
a broader class of functions than an FDT by avoiding exponential size increase due to
redundant subtrees. The only necessary change to the methodology to verify FDDs is
to ensure that the bounds and the v values are computed with memoization, a strategy
of storing intermediate results to avoid redundant computation. This extension is the
purpose of the j ∈ Tℓi ∩ Tri case in the definition of v.

In each constructed node, we may choose whatever σ, ai, and bi we want, as
long as σ is nondecreasing and defined on R. It need not be the same at every
node, and unlike the σ in the learned model, its range is not restricted to [0, 1].
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Figure 3.13: Basic structures for combining FDTs and FDDs.

Theorem 3.7 describes building blocks for functions that can be represented in this
way, Figure 3.13 gives a visual summary, and our public code includes functions to
construct FDDs according to these operations and demonstrations of their use. We
note that Theorem 3.7 additionally implies that our method can verify ensembles of
FDTs.

Theorem 3.7. Given FDDs g and h, for any ap ∈ Rp, aq ∈ Rq, and σ : R → R,
there exist FDDs f(x) = σ(a⊤

p x)g(x), f(x) = g(x)+h(x), and f(x) = (a⊤
q g(x))h(x)

with size O(size(g) + size(h)).

Proof. Construct f(x) = σ(a⊤
p x)g(x) by creating root node i with ai = ap, bi = 0,

splitting function σ, left child the zero leaf, and right child g. This introduces two
additional nodes for total size O(size(g)).

Construct f(x) = g(x) +h(x) by creating root node i with σi(x) = 1/2, left child
2g, and right child 2h, with 2g and 2h constructed as above. This introduces five
additional nodes for total size of O(size(g) + size(h)).

Construct f(x) = (a⊤
q g(x))h(x) by changing each leaf i of g into an internal node

with σi(x) = a⊤
q vi, left child the zero leaf, and right child h. Now f is a DAG. This

adds one node for a total size of O(size(g) + size(h)).

This may seem not to include verification of properties with operations such as
division and non-integer exponents. We indeed cannot maximize such functions,
but we often can verify them by manipulating the property itself. For example,
(a⊤

1 f(x))/(a⊤
2 f(x)) ≤ b can be verified as (a1−ba2)

⊤f(x) ≤ 0, and (a⊤f(x))c1/c2 ≤ b
for positive integers c1 and c2 can be verified as (a⊤f(x))c1 ≤ bc2 . Examples of func-
tions that cannot be precisely represented are irrational exponents or functions whose
computation by these operations demands an infinite series, such as exponentials or
trigonometry functions. Moreover, properties that require a very large FDD to rep-
resent may be prohibitively slow to verify.

This method also enables verification of a property spanning multiple models. For
instance, one might verify that two trained FDTs g and h are sufficiently similar on
a domain by constructing f1 = g − h and f2 = h− g and verifying that each output
of f1 and f2 is small on the domain.
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We can analyze yet additional properties by augmenting the input space with
additional dimensions. This approach could, for instance, compare properties of an
FDT at multiple different inputs. Consider the concept of global adversarial robust-
ness defined by [100], an extension of the concept of local adversarial robustness: f
is globally robust for given δ and ϵ if, for any x1,x2 ∈ Rp with ∥x1 − x2∥ ≤ δ,
∥f(x1) − f(x2)∥ ≤ ϵ. We can verify global robustness of an FDT under any convex
norm on a bounded convex domain D ⊂ Rp as follows. Let f1 and f2 be copies of f
with input dimension 2p, where f1 operates on the first p input values and f2 operates
on the last p input values. Construct g = f1 − f2 and, for each class index i, verify
e⊤
i g(x) ≤ ϵ on the domain {x ∈ R2p | x1:p ∈ D, xp+1:2p ∈ D, ∥x1:p − xp+1:2p∥ ≤ δ},

where ei is the indicator of i with 1 at position i and 0 elsewhere. If this holds for
all i ∈ [q], then f is globally robust on the domain. Otherwise, a counterexample to
global robustness is the pair of inputs (x1:p,xp+1:2p), where x is a counterexample to
the verification of g at any i.

3.5.3 Theoretical Results

We provide a theoretical analysis of our verification algorithm and the problems it
addresses. Proofs not in the main text are in Appendix B. First, we focus on the
algorithm. Let ei = ui− li be the size of the bounds at node n, a worst-case notion of
approximation error. Lemma 3.1 shows how e can be expressed in terms of v, where
v(i, j) measures the amount of variation in the approximation at node i coming from
node j. Ti is the subtree rooted at node i.

Lemma 3.1. For any node i, ei =
∑

j∈Ti
v(i, j).

Theorem 3.8 justifies the choice to split the node that maximizes v. Here we
assume a simplified worst-case setting where any node-aligned split of the domain
results in a reduction of the splitting value range at only that node, which is possible,
for example, if ai ⊥ aj for all i ̸= j and the original domain’s boundaries are either
parallel or orthogonal to each ai. In this sense, v indicates the optimal split in the
worst case.

Theorem 3.8. If splitting the domain affects only the chosen node, then choosing to
split at the node that maximizes v(i, ·), where i is the root, minimizes error summed
over the resulting subdomains.

Theorem 3.9 shows that the refinement reaches an approximation of given preci-
sion in finite steps. Because of machine precision, this implies that the verification
methodology always eventually terminates and is complete in practice, but it does not
necessarily imply efficient convergence; the number of domains increases at each step,
so it may take an extreme number of steps before all domains have small enough error.
However, we do not need good approximation everywhere, but only good enough to
verify the desired property, which is why we prioritize domains with the highest upper
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bound. The splitting of the domains also naturally enables parallel computation by
allowing several processes to each take from and place onto the queue while simul-
taneously computing bounds for different domains, which helps make verification of
complex models practical.

Theorem 3.9. For any ϵ > 0, an approximation with error at most ϵ is produced in
finite steps.

Next, we shift focus to the complexity of the problems addressed by this algo-
rithm. Lemma 3.2 shows that an FDT can represent a specific polynomial used in
the argument by [149] that quadratic programming is NP-Hard. Lemma 3.3 shows
that an FDT can represent any 3-SAT formula. Theorems 3.10 and 3.11 then show
that the problems addressed by this algorithm are NP-Complete and NP-Hard, re-
spectively. This means that, similarly to verification of neural networks and standard
tree ensembles, we can never expect FDT verification to scale efficiently in the worst
case; however, in practice, models trained on real data with meaningful structure
rarely result in the worst case, and a good algorithm can finish in reasonable time for
a considerable range of problems, as shown in Section 3.5.4.

We prove Theorems 3.10 and 3.11 each using Lemma 3.2, then using Lemma 3.3.
The interesting implication of this is that the hardness of optimizing and verifying
FDTs can be viewed as resulting from two different challenges: in Lemma 3.2, the
constructed FDT represents a single polynomial on the domain, with the challenge
arising from a nonconvex function and not combinatorial explosion; in Lemma 3.3,
however, the constructed FDT is piecewise-constant, with the challenge arising only
from combinatorial explosion. In practice, both challenges may be present. This is
as opposed to, for instance, tree ensembles and ReLU networks, which are piecewise-
constant and piecewise-linear, respectively, and thus only present the challenge of
combinatorial explosion.

Lemma 3.2. An FDT with σ(z) = max(0,min(1, z)) can be constructed to represent
the polynomial

∑k
i=1 xi(xi − 1) +

∑k
i=1 xisi for 0 ≤ xi ≤ 1, si ∈ R in O(k2) time.

Lemma 3.3. An FDT with σ(z) = 1
2
(1+ sign(z)) can be constructed to represent any

3-SAT formula with m variables and n clauses in O(mn) time.

Theorem 3.10. Verification of an FDT f : Rp → Rq as defined in this work, that
is, determining whether a property a⊤f(x) ≤ b or a⊤f(x) < b holds for all x ∈ D
for convex D, is NP-Complete.

Proof. We first show that it is NP. A witness to the decision that a property does not
hold is a counterexample x. It is verified by computing f(x) and checking it against
the property. The required time is at most linear in the size of f .

We next show that it is NP-Hard via Lemma 3.2 by reduction from the subset
sum problem in a slight modification of the argument from [149]. The subset sum
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problem is a well-known NP-Complete problem to determine whether some subset of
S = {s1, . . . , sk}, si ∈ Z sums to M ∈ Z. Construct an FDT f(x) =

∑k
i=1 xi(xi −

1) +
∑k

i=1 xisi on 0 ≤ xi ≤ 1 as in Lemma 3.2. Next, let D be the domain described

by 0 ≤ xi ≤ 1,
∑k

i=1 xisi ≤M and check whether f(x) < M for all xD. If the subset
sum problem has a solution, then a counterexample x exists with xi = 1 if si is in
the sum and xi = 0 otherwise; likewise, since xi(xi − 1) < 0 when xi is not 0 or 1,
any x returned as a counterexample by the verification must consist of integers and
therefore represents a solution to subset sum. We thus conclude that FDT verification
is NP-Hard by polynomial-time reduction from subset sum.

We show again that it is NP-Hard, now via Lemma 3.3, by reduction from the
3-SAT satisfiability problem. Construct an FDT to represent the 3-SAT formula
as in Lemma 3.3. Next, let D be [−1, 1]m, with m the number of variables, and
verify −f(x) < 0. If this holds, then there is no x ∈ D such that f(x) = 0, so
by Lemma 3.3, the 3-SAT formula is unsatisfiable; otherwise, the counterexample
generates a satisfying assignment as described in Lemma 3.3. Thus FDT verification
is NP-Hard by polynomial-time reduction from 3-SAT

Theorem 3.11. Maximizing an FDT on convex domain is NP-Hard.

Proof. We first show reduction from the subset sub problem via Lemma 3.2. The
subset sum problem reduces to maximizing

∑k
i=1 xi(xi − 1) +

∑k
i=1 xisi subject to∑k

i=1 xisi ≤M , 0 ≤ xi ≤ 1 with si ∈ Z, M ∈ Z as shown by [149]. By Lemma 3.2, an
FDT can efficiently represent this function on this domain, so maximizing an FDT is
also NP-Hard by polynomial-time reduction from subset sum.

We next show reduction from 3-SAT via Lemma 3.3. Construct an FDT to repre-
sent the 3-SAT formula as in Lemma 3.3. Next, let D be [−1, 1]m, with m the number
of variables, and maximize −f(x) on D. If the maximum is less than 0, then there is
no x ∈ D such that f(x) = 0, so by Lemma 3.3, the 3-SAT formula is unsatisfiable;
otherwise, the maximum value is 0 and the maximizing input generates a satisfy-
ing assignment as described in the proof of Lemma 3.3. Thus FDT maximization is
NP-Hard by polynomial-time reduction from 3-SAT.

3.5.4 Experiments

We present two sets of experiments: the first benchmarks our method and compares
against alternatives to find Minimum Adversarial Perturbation (MAP) at test points
on a selection of data sets from OpenML; the second tests global adversarial robust-
ness for the same FDTs. Since scalability is the main limitation of verification, we
are mainly interested in measuring the time taken to complete the tasks.

The OpenML data sets used for these tests are chosen to include a variety of
number of features and labels. For each, we randomly select 90% of the samples to
train FDTs with both sigmoid and linear splitting functions. The linear split here
is defined as σ(z) = max(0,min(1, (z + 1)/2)) so that it transitions from 0 to 1 on
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OpenML data set FDT size acc. (sig) acc. (linear)
ID name feat label depth nodes train test train test

40685 shuttle 9 7 4 13 99.83 99.81 99.85 99.83
1036 sylva agnostic 216 2 7 25 99.85 99.44 99.80 99.51
1497 wall-robot-nav 24 4 8 33 97.72 94.50 98.15 95.96
1462 banknote-auth 4 2 6 39 99.84 99.27 99.43 100.0

41169 helena 27 100 7 49 28.12 26.45 29.48 27.72
1120 MagicTelescope 11 2 7 57 87.03 88.16 88.00 88.64
182 satimage 36 6 11 107 93.28 90.65 93.17 89.25

40499 texture 40 11 14 163 99.76 100.0 99.80 100.0
375 JapaneseVowels 14 9 12 251 99.06 97.99 99.01 97.79

1479 hill-valley 100 2 59 305 65.78 59.50 70.18 66.12

Table 3.3: Information about data sets and their corresponding FDTs.

[−1, 1]. The other 10% of the samples are test data from which we randomly draw
100 points for the minimum adversarial perturbations. Each verification is run with a
3600 second timeout. Information about each data set and the corresponding FDTs
is displayed in Table 3.3. To help associate results with FDT size, all tables and
figures order the data sets by the number of nodes in the corresponding FDT.

We use CVXPY [48, 3] for convex optimization, which adds some overhead to
the time to solve, but acts as a convenient interface to many different convex op-
timization solvers. For these experiments, we choose Gurobi, which is robust to
solver failures on the more complex data sets, but which we find to take about
twice as long as other solvers such as ECOS for this application. All experiments
use ϵ = 10−2 for dynamic pruning. We train FDTs by first initializing from a fit-
ted sklearn.tree.DecisionTreeClassifier [138] with ccp alpha=1e-3 and then
training using PyTorch’s Adam optimizer with batch size 500 and learning rate 10−3

for 5000 epochs. No special effort was made to individually tune these parameters for
each data set since achieving the best possible prediction performance is not important
to these experiments. However, we do report prediction accuracy in Table 3.3 to show
that the FDTs are indeed resonably fitting the data. For the sake of benchmarking
times, we did not parallelize the verification algorithm.

Our verification code is available on GitHub3 along with Jupyter notebooks that
demonstrate its features and run the experiments. We also include the saved FDT
models and the test points used for experiments, with the data normalized to mean
0 and standard deviation 1, as well as the full results of the verifications run for the
experiments.

3https://github.com/autonlab/fdt_verification
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Ours (sigmoid splitting) Adapted from ReluVal (linear splitting)

data set
failed all cases failed all cases Z3 succeeded
of 100 mean median of 100 mean median mean median

shuttle 0 4.65 4.09 5 299.92 31.48 331.48 26.66
sylva agnostic 3 256.76 61.27 97 3520.16 3600.00 - -
wall-robot-nav 0 12.40 8.20 33 1396.74 315.89 15.21 11.39
banknote-auth 0 20.71 14.03 3 167.43 26.17 8.89 6.91
helena 0 112.59 90.08 42 1997.78 2369.87 988.37 508.50
MagicTelescope 2 256.34 54.30 43 1845.36 1836.69 604.36 6.57
satimage 4 224.08 31.72 91 3307.17 3600.00 1211.21 21.58
texture 2 385.24 163.96 92 3352.58 3600.00 - -
JapaneseVowels 0 186.28 33.87 61 2364.41 3600.00 137.73 48.89
hill-valley 2 175.04 46.64 99 3564.18 3600.00 - -

Ours (linear splitting) Z3 (linear splitting)

data set
failed all cases Z3 succeeded failed all cases Z3 succeeded
of 100 mean median mean median of 100 mean median mean median

shuttle 0 4.65 4.44 4.50 4.29 12 720.82 242.48 328.20 174.32
sylva agnostic 2 321.59 102.80 - - 100 3600.00 3600.00 - -
wall-robot-nav 0 7.53 4.51 2.64 2.66 74 2669.90 3600.00 22.69 10.88
banknote-auth 0 43.02 16.05 3.54 2.66 94 3416.31 3600.00 538.42 5.01
helena 1 129.13 76.42 56.62 62.92 52 2358.17 3600.00 1012.86 1042.01
MagicTelescope 0 29.64 10.50 1.13 1.08 94 3387.87 3600.00 64.27 7.78
satimage 0 146.32 48.24 4.57 4.59 97 3501.48 3600.00 315.99 57.04
texture 3 462.93 196.27 - - 100 3600.00 3600.00 - -
JapaneseVowels 0 50.28 25.43 9.39 7.80 96 3463.40 3600.00 185.03 177.94
hill-valley 0 35.76 14.74 - - 100 3597.93 3600.00 - -

Table 3.4: Time in seconds and and number of failed cases for the MAP experiments.

Minimum Adversarial Perturbation

Minimum Adversarial Perturbation (MAP) is the problem of finding the minimal
perturbation of a data point x to change the model’s prediction

arg min
x′
∥x− x′∥p s.t. arg max f(x) ̸= arg max f(x′)

where p is usually 1, 2, or∞. Here we use p =∞, but our algorithm can verify any of
these because they are all convex. We choose MAP for benchmarking our algorithm
because it is commonly studied and generally applicable, and because it eliminates the
arbitrary choice of radius for the strictly easier problem of local adversarial robustness,
that is, determining whether a perturbation of limited magnitude can change the
prediction.

Minimum adversarial perturbation is found by verification of local adversarial
robustness combined with binary search over the radius. Here we search until a
tolerance of 10−3 is reached. For each radius, local robustness is checked for each
other label; that is, if arg max f(x) = i, then to check local robustness at x with
radius r, we verify (ej − ei)

⊤f(x′) < 0 for ∥x−x′∥∞ ≤ r for every j ̸= i, where ei is
the indicator with 1 at position i and 0 elsewhere, and likewise for ej.

We benchmark against two alternatives. First, we use a variant of our algorithm
that replaces the choice of domain splitting with the strategy from ReluVal [181]. In
particular, this bisects along the feature with the highest smear value, which is based
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Figure 3.14: Distributions of time in seconds to find minimum adversarial perturba-
tions. Timeouts are shown as the time limit, 3600 seconds.
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on an upper bound of the magnitude of the gradient. As a result, it is limited to
hyperrectangle domains, and for simplicity we implement the gradient bounding only
for linear splitting functions, similarly to how [181] considers only ReLU activations.
Second, we compare against the SMT solver Z3, a tool that is generally limited to
linear arithmetic. Therefore, we apply it only to models with linear splitting functions,
but even in this case, it can sometimes fail due to multiplications of these functions.

The results are shown in Table 3.4, which includes the number of failed cases as
well as the mean and median time to find MAP for each data set and corresponding
FDTs. All failed cases are due to timeouts except for one case where Z3 failed before
the timeout on hill-valley. For comparison with Z3, the statistics of the subpopulation
of samples where Z3 succeeds are also given for the FDTs with linear splitting; the
“all cases” columns consider timeouts to have a value of 3600 seconds (the time limit).
Figure 3.14 shows the distributions of the times. Based on the results, the time taken
by our method appears to depend on some combination of the number of features
(FDT inputs), number of labels (FDT outputs), and the size of the FDT. As is
often the case in machine learning model verification, the majority of cases take a
reasonable amount of time to complete, but a few cases take notably longer, with
there being at least one timeout on many of the data sets. The distributions of times
appear to be approximately symmetric on the logarithmic scale. In most cases, the
times to verify FDTs with sigmoid splitting and with linear splitting are similar.

Across all data sets, the variant of our algorithm using the splitting approach
from ReluVal [181] takes substantially longer than our proposed method, and Z3
takes substantially longer than that. Because of the limitations of SMT solvers, Z3
sometimes fails even on the simplest FDTs and data sets, and it cannot verify FDTs
with sigmoid splitting at all. Moreover, the rightmost columns of Table 3.4 show that,
even when we compare only cases where Z3 does succeed, our method is consistently
faster.

Global Adversarial Robustness

Global adversarial robustness is a generalization of the local robustness concept; a
model is globally robust if similar inputs always produce similar outputs. Specifically,
given δ and ϵ, f is globally robust if and only if, for all x, x′ in some input domain,
∥x − x′∥p ≤ δ implies ∥f(x) − f(x′)∥p ≤ ϵ. Note that, unlike local robustness, this
considers the raw predicted scores rather than the label prediction; otherwise global
robustness over the entire model domain would not be possible because there would
always be violations near the decision boundary. For experiments, we consider the
entire domain of the model and again use p = ∞. Since considering two inputs
effectively doubles the dimension of the search space, and since it considers every
possible input to the model, this is a far more difficult problem than local robustness.
It is limited to very small neural networks [101] and has only recently been verified
for realistically sized tree ensembles [74]. The way of encoding and verifying global
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shuttle

δ, ϵ 0.2 0.4 0.6 0.8

10−3 1858 50 10 5
10−2 12 170 174 13
10−1 4 4 6 10
100 5 7 14 24

sylva agnostic

δ, ϵ 0.2 0.4 0.6 0.8

10−3 - - 909 56
10−2 - - 1492 45
10−1 852 202 - -
100 193 253 419 765

wall-robot-navigation

δ, ϵ 0.2 0.4 0.6 0.8

10−3 - - - 585
10−2 - - - -
10−1 - - - -
100 410 410 427 457

banknote-authentication

δ, ϵ 0.2 0.4 0.6 0.8

10−3 - 1023 202 57
10−2 - 1253 229 57
10−1 - - 1718 156
100 12 12 12 40

helena

δ, ϵ 0.2 0.4 0.6 0.8

10−3 85 68 68 68
10−2 71 67 67 70
10−1 69 67 66 66
100 69 66 67 67

MagicTelescope

δ, ϵ 0.2 0.4 0.6 0.8

10−3 - - 3055 22
10−2 - - - 26
10−1 - - - 2340
100 135 163 290 539

satimage

δ, ϵ 0.2 0.4 0.6 0.8

10−3 - - - 350
10−2 - - - 550
10−1 570 2905 - -
100 155 180 264 391

texture

δ, ϵ 0.2 0.4 0.6 0.8

10−3 - - - 1029
10−2 - - - 1379
10−1 - - - -
100 302 366 454 553

JapaneseVowels

δ, ϵ 0.2 0.4 0.6 0.8

10−3 - - - 1730
10−2 - - - -
10−1 182 213 274 357
100 181 217 273 348

hill-valley

δ, ϵ 0.2 0.4 0.6 0.8

10−3 - - - -
10−2 - - - -
10−1 - - - -
100 1161 1609 2162 3046

Table 3.5: Time in seconds for global adversarial robustness tests. White cells indicate
a result of robust, lightly shaded cells not robust, and darkly shaded cells timeout.

robustness in our system is explained in the Additional Properties subsection of 3.5.2.

Results are shown in Table 3.5. Here, since we do not compare to Z3, we test
our method only on FDTs with sigmoid splitting. As global robustness is a more
difficult problem, there are many cases where the 3600 second timeout is reached,
especially for small δ and ϵ and on the more complex models. Unsurprisingly, it
also seems that there is a positive association between the time required to verify
and the closeness to the boundary between robust and not robust in (δ, ϵ)-space.
This concretely manifests in Table 3.5 in that the dark gray is always on the border
between white and light gray. It is also unsurprising that, without a training algorithm
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that has global robustness as an objective, of which none exist to our knowledge, a
strong degree of global adversarial robustness (robustness with high δ and low ϵ) is
not seen in complex models. Regardless, verification tools such as ours are still useful
to identify and isolate violations of global adversarial robustness.

Notably, the results suggest that, for a given model, the difficulty of verifying
global robustness is not closely related to the difficulty of verifying local robustness.
For example, while local robustness was fast to verify for wall-robot-navigation, many
tests for global robustness timed out; this may be because complex regions far from the
data are considered by global, but not local robustness. For helena, local robustness
was slow to verify, but global robustness was relatively fast; here the very large
number of labels, combined with the relatively low accuracy, may indicate that the
output range for any given class’s score is generally small, meaning that the values
of ϵ used here are large by comparison, making global robustness verification easier.
This brings up the concern that global robustness can be achieved without affecting
accuracy by simply shrinking the model’s output range, that is, making its predictions
less confident, which is usually not desirable. This suggests that perhaps a more useful
definition of global robustness can be devised.

3.5.5 Discussion

While the past decade has been fruitful in the development of verification methodolo-
gies for neural networks and tree ensembles, this is, to the best of our knowledge, the
algorithm for the verification of FDTs. We show that this is a complex problem result-
ing both from combinatorial explosion and the ability of FDTs to directly represent
non-convex functions, unlike, for example, ReLU networks and tree ensembles, where
the complexity of verification results from combinatorial challenges alone. Thus, de-
spite the similarities to both of the aforementioned model classes, FDTs with their
unique structure present additional challenges for verification, and therefore have mo-
tivated an approach that, while it fits into the paradigm of abstraction-refinement,
differs in its formulation and theory from previous approaches. We are optimistic
that our framework may lay the groundwork for verification of other kinds of models
with similar challenges.

The main limitation, as in all machine learning verification methodologies, is in
scalability with the complexity of the model. Larger input size necessitates more
constraints and slows the convex optimization, larger output size causes properties like
robustness to require more individual verification calls, and trees with more nodes take
longer to traverse and potentially more iterations to verify. For various reasons, it is
difficult to compare the scalability of our approach with the verification of other model
types, such as neural networks and tree ensembles. One difficulty is that all such
problems are NP-Complete, so all solutions are inherently not scalable in the worst
case, but most achieve reasonable speed in practice by using smart heuristics, and
because models trained on real data are usually more structured than the worst case.
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This means comparisons are necessarily empirical, which is complicated by the wide
variety of constantly evolving verification methodologies as well as differences in the
models, data, implementations, hardware, choice of benchmarks, and more. There is
no universal standard for benchmarks; local robustness problems are standard, but the
choice of norm and radius are not. This is one of the reasons we chose to benchmark
using minimum adversarial perturbation: it eliminates the choice of radius and is
strictly more difficult than checking robustness at a given radius. Similarly, there is a
set of safety properties in an aircraft collision avoidance setting first used by [100] that
have become standard benchmarks for verification of neural networks, but only the
neural networks themselves and not the training data are publicly available, so this
benchmark cannot be used for tree ensemble or FDT verification. Additionally, there
is always a tradeoff of model complexity (which is related to accuracy) vs. verifiability;
for example, neural network verification scales poorly with the size of the network,
with many algorithms limiting architecture choices, tree ensemble verification scales
poorly with the number of trees, and our approach to FDT verification scales poorly
with the dimensionality of the problem, which depends on the number of features and
number and level of interdependence of tree nodes. Design choices come into play;
for instance, we initialized our FDTs from fitted crisp trees for simplicity, but since
oblique trees can be smaller than conventional trees, this initialization results in a
larger FDT than necessary for good performance. Some models simply require less
complexity than others to represent different kinds of data. Because of all this, it is
difficult to perform a comprehensive, fair, and meaningful cross-model comparison of
the scalability of verification. For these reasons, a general analysis of the scalability of
verifying different model classes and the choice of which is best for a given application
is left to future work.

Other than scalability, a notable limitation of our algorithm is the kinds of prop-
erties it can analyze. First, as described in the Additonal Properties subsection of
3.5.2, we cannot represent certain properties using FDDs. We are not aware of any
commonly studied machine learning safety properties that cannot be verified using
our system, but such cases could potentially arise among domain-specific safety prop-
erties. We are also limited to analysis on domains on which some solver can efficiently
optimize a linear function4, though more complex domains can be verified by covering
them with convex domains. Additionally, performing optimization on small domains
resulting from successive splitting can cause problems for solvers that are sensitive to
numerical stability.

We also make a few points in favor of FDTs and our algorithm. We are able to find
minimum adversarial perturbations in reasonable time on a wide range of data and
model complexities, and we are among the first to show limited verification of global
adversarial robustness on realistic models. While many verification methodologies
rely on strict model design assumptions, such as ReLU activations in neural network

4See section “Choosing a solver” at https://www.cvxpy.org/tutorial/advanced/index.html
for examples.
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verification, we require no such assumptions. Our domain splitting and queueing
approach is naturally well-suited to highly parallel computation. The necessity of
solving convex optimization problems makes massive parallelization through dedi-
cated hardware such as GPUs difficult, but such optimizations may still be feasible;
in particular, if the domain boundaries and node splits are pairwise parallel or orthog-
onal, then convex optimization is not needed at all and GPU usage is straightforward.
We support non-linear convex domains, enabling constraints using functions such as
the L2 norm. The refinement process can be stopped at any point and, even if the
property is not determined, information can be gleaned from the current bounds for
approximate but extremely fast solutions. It also offers utility by finding regions of
counterexamples rather than a single point, and it can be run longer to expand that
region; the splitting partitions the original domain into regions that are fully safe,
fully unsafe, or a mix of safe and unsafe, and by continuing to split the “mix” re-
gions, it can, given enough time, produce arbitrarily precise descriptions of the true
safe and unsafe regions. And finally, FDTs themselves offer benefits. They are train-
able end-to-end with gradients, their architecture can be designed automatically, they
are compact compared to tree ensembles, and their hierarchical partitioning approach
is relatively interpretable compared to neural networks.

Finally, we note that, while the formulation of FDTs we verify in this section is
quite general, it unfortunately does not include KDDTs due to their unique inter-
dependence of splitting functions, and an adaptation of this algorithm for KDDTs
remains elusive. While the inherent certifiable adversarial robustness of KDDTs dis-
cussed in Section 3.4 covers one very popular use case of verification, verification
algorithms can be applied to a much wider class of safety properties, so we hope that
this work may be an important step toward verification of not only KDDTs, but for
smoothed models in general.
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Chapter 4

Interpretability

One of the foremost trust-related aspects of a model is its ability to be understood by
users, particularly those without expertise in machine learning. For example, predic-
tors that assist medical diagnosis are more useful and more likely to be appropriately
trusted if the reasoning behind their predictions is easily understood by medical per-
sonnel. Beyond trust, interpretable methods can aid in diagnosis of issues with the
model and data and sometimes even lead to insights about the domain of application.

We argue that we should strive for the ideal of intrinsic interpretability, that is,
the transparency of the model itself, as opposed to post-hoc explainability that only
produces an interpretable approximation of the model through a separate process.
While this may be more difficult to achieve, we have an ethical imperative as de-
velopers of machine learning models and methods to be as transparent as possible.
The goal of interpretable methods is not to gain the blind trust of users through an
impression of understanding; it is to elucidate the model in all its merits and flaws,
earn trust where it is deserved and suspicion where it is warranted, and illuminate
the path toward models more deserving of trust. After all, as the famous saying goes,
all models are wrong, but some are useful.

Interpretability is highly subjective and application-dependent by nature, and
there is no universal standard of what makes a system highly interpretable. However,
there are some generally agreed-upon rules of thumb; for example, smaller models
are considered more interpretable than structurally similar but larger ones, sparse
parametric expressions are considered more interpretable than dense ones, and rule-
based logical representations such as decision trees are considered more interpretable
than complex arithmetic “black box” models such as neural networks.

Decision trees in particular are often used as the quintessential example of in-
trinsically interpretable ML; they can be interpreted holistically (also called global
interpretation) as a hierarchical partitioning of the input based on simple decision
rules, and individual predictions can be interpreted (also called called local interpre-
tation) as a series of such rules on a path from the tree’s root to a leaf. Conventionally,
these decision rules consist of a simple feature value and threshold, but many other
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(a) A DT is
complex and
generalizes poorly.

(b) A RF is very
complex and
generalizes better,
but not perfectly.

(c) After rotation,
a DT is simple and
generalizes
perfectly.

(d) Other data
requires a different
transformation.

Figure 4.1: A toy example to motivate learning feature transformations. Points are
sampled uniformly in the dashed bands.

decision rules are possible. For example, rules of the form a⊤x < b for some a, b are
called oblique splits, and the trees using them Oblique Decision Trees (ODTs).

In practice, however, there are major barriers to the practical application of de-
cision trees as interpretable models. First, as discussed throughout Chapter 3, con-
ventional decision trees fall short in various aspects of robustness, most importantly
in their generalization to yet-unseen data; while this can be somewhat alleviated by
pruning, the most effective and popular solution is to use large ensembles with strate-
gies such as bagging as in Random Forests [26], random thresholds as in ExtraTrees
[68], or boosting as in XGBoost [35]. In addition, decision trees often grow quite deep
and use many decision rules for any given prediction, even for extremely simple data.
Together, these make both global and local interpretation much more difficult.

While we have established KDDTs as an effective means to improve the robustness
of single-tree models, they generally do not make it possible to meaningfully reduce
the size of trees, and they sometimes even necessitate larger trees. We posit that
the tree size barrier results from greedy construction and simple decision rules, of
which the key limitation is the latter; even if we replace greedy construction with a
perfect tree learner, simple distributions can nonetheless require an arbitrarily large
axis-aligned tree to fit. However, after a transformation of that distribution, even a
greedy algorithm can produce a small tree, as shown in Section 4.3. Figure 4.1 gives a
motivating example of a case where trees do poorly as interpretable learners on simple
data, but succeed after a transformation. This sensitivity to the feature representation
is also related to other limitations of tree-based models, such as their dependence on
features hand-crafted using expert knowledge to achieve good performance on some
problems, and their overall weakness on other problems, such as image classification.

This motivates the idea of learning transformations of the input features, or equiv-
alently, more expressive decision rules such as oblique splits. This can reduce the size
of trees, and by choosing the type of transformation and its regularization during
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learning, once can control the tradeoff of complexity of the rules and complexity of
the tree structure. It can also increase the performance of single-tree models and
make them performant in modalities where trees are not typically well-suited, such
as time series and image classification, by essentially transforming them into tabular
data. These modalities are ubiquitous in critical domains such as clinical decision
support where interpretability is highly motivated.

However, the problem of learning more complex splits is not easy; axis-aligned de-
cision rule learning, as in the popular CART algorithm [25], is only practical because
the search is restricted to a finite set of candidate rules that is efficiently exhaus-
tively searchable. Finding even optimal oblique splits, which are among the simplest
decision rules, is NP-Hard [85], and even oblique splits may not be considered inter-
pretable unless they are sparse, that is, having few nonzero coefficients.

Nonetheless, methods have been developed to learn such trees, either by heuristi-
cally choosing splits in a tree construction process, or by constructing an axis-aligned
tree and then optimizing the parameters of the splits (see Section 4.1.1 for examples).
However, the former suffer from greedy, suboptimal choice of split, and the latter suf-
fer from keeping the original structure of the tree. These are also usually restricted
to a certain kind of split, such as oblique splits.

Here we propose a novel, flexible framework that is the first to alternate opti-
mization of feature transformation parameters with complete regrowth of the tree,
which is made possible by the efficiency, stability, and inherent differentiability of
KDDTs. Refitting the tree completely throughout training reshapes the tree and
moves thresholds as needed; it also maintains the property that each splitting rule is
maximally informative given the available features and data. Together these result
in smaller, more interpretable trees for a given level of performance. Moreover, this
framework simplifies the application of decision trees to modalities such as images and
time series, where transformation into a tabular format is required for the effective
application of tree-based models.

This section covers work originally published in [75], as well as additional methods
and demonstrations for image and time series data.

4.1 Related Work

4.1.1 Decision Trees as Interpretable Models

Decision trees have a long history of being chosen for their interpretability. In this sec-
tion, we cover various work developing the use of trees toward interpretable modeling
with an emphasis on those most similar to this work.

There is extensive work using decision trees extracted from more complex models
either to entirely replace the model, or as an interpretable proxy. Examples include
[40, 152, 175, 11, 133, 148, 82, 21].
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Other work attempts to improve the interpretability of decision trees themselves
by introducing new decision rules. These rules are more complex than the axis-aligned
threshold rules, but compensate by improving performance of single-tree models while
reducing their size. For example, [20] uses a branch-and-bound algorithm to search for
bivariate splits. [54, 55, 73] use parallel coordinates, which incorporate information
from multiple data features while being easy to visualize. [47] uses bilevel optimization
to find nonlinear splits for growing trees.

The most common augmented decision rule is linear splits, that is, splitting using
arbitrary hyperplanes rather than axis-aligned hyperplanes. These are often called
oblique splits, and the trees that use them Oblique Decision Trees (ODTs). Algo-
rithms for growing ODTs are first proposed along with CART [25]. [130] later dis-
cusses the difficulty of finding optimal linear splits due to local minima and proposes
a heuristic using randomization and deterministic hill climbing.

Another approach is to grow an axis-aligned tree, fix the structure, then treat
it as a parametric model in order to learn coefficients for linear splits. This can be
made possible using Fuzzy Decision Trees (FDTs), wherein a decision is a weighted
combination of both subtrees rather than wholly one or the other, to make the tree
differentiable. In the case of ODTs, a splitting function such as sigmoid is used to
map a linear combination of feature values to the weight of each subtree. [163] is the
first to train globally optimized trees in this way. Later, [105] proposes ensembles of
such trees, both as standalone models and as the final layer of a neural architecture,
[121] presents various improvements such as balance and sparsity regularizations and
dynamic learning rate adjustments, and [155] applies them to reinforcement learning.

Tree Alternating Optimization (TAO) is a recent and successful ODT learning
algorithm that initializes similarly, but unlike FDTs, uses a linear discriminator at
each node, such as logistic regression or linear SVM, then alternates optimization
over each depth level of the tree. It can be used with a sparsity penalty to produce
sparse ODTs, that is, where many or most of the coefficients are 0, making linear
splits more interpretable. While it is shown that this alternating optimization never
causes the loss to increase, there are no convergence or approximation guarantees. It
was initially proposed for classification [28], then extended in various ways, including
regression ensembles [201]; boosted ensembles [65]; clustering [64]; semi-supervised
learning [202]; interpretable image classification [158]; interpretable natural language
processing [87]; and as a tool for understanding parts of neural networks [86].

Our approach is different from any existing work in that we consider a broader
scope of feature types, but more importantly, in that we continually and completely
refit the decision tree throughout the learning process. This allows dynamic restruc-
turing of the tree as the input features change, but requires an efficient from-scratch
learning algorithm for differentiable decision trees; and KDDTs are ideal for this pur-
pose. In addition to efficiency and differentiability, the kernel representation has the
benefit of avoiding redundant splitting that may occur in other FDT formalisms be-
cause repeating similar splits can make the division less “fuzzy” and therefore reduce
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loss by inflating the tree size. Our approach is also unique in that we allow the re-use
of the same transformed feature throughout the tree, reducing the number of separate
concepts needed to understand the model. Moreover, our approach uniquely weights
the regularization of each feature by its usage within the tree on the training data,
resulting in a more balanced enforcement of sparsity throughout the tree.

4.1.2 Interpretable Time Series Classification

For an overview of methods for time series classification, we refer the reader to [185,
9, 95].

Time series shapelets [196] are the most prominent approach for interpretable
featurization of time series. Countless works have proposed or made use of variations
of shapelets, so we will cover only a selection of highly-cited and relevant works.
Shapelets are subsequences of time series; given a shapelet and a time series input, a
feature value is computed as the distance between the shapelet and the best-matching
subsequence of the input time series. [196] first used shapelets to construct a decision
tree in the traditional top-down greedy growth method by, at each split, exhaustively
searching over all possible combinations of shapelets mined from the training data and
distance thresholds values. In large data sets with long time series, there may be a very
large number of shapelets and thresholds to search over, so several subsequent works
improve the efficiency of the search process. For instance, [142] apply a heuristic based
on symbolic representation and random projection to improve scalability without
impacting performance. Others, starting with [92], learn discriminative shapelets
independently of the model, calling it a shapelet transform, then fit various models to
achieve better performance than a decision tree. Shapelets can also be directly learned
as parametric components of a differentiable model, such as logistic regression [80]
or neural network [126], using gradient-based optimization of the loss, eliminating
the need for exhaustive search and improving predictive performance. We also learn
parametric shapelets (and other interpretable feature types) using gradient-based
optimization, but as components of differentiable decision trees in order to improve
performance without giving up the interpretability and practical benefits of single-tree
models. To our knowledge, we are the first to do so.

Multivariate shapelets, designed for multivariate or multi-channel time series,
pose greater challenges than univariate shapelets [111]. [69] first apply multivari-
ate shapelets in trees using a distance threshold for each channel. [29] train one
shapelet tree on each channel, then combine them into a voting ensemble. [22] more
broadly consider notions of independent (separate features for each time series chan-
nel), multidimensional dependent (with aligned time), and multidimensional inde-
pendent (with independent time) shapelets for general shapelet transforms, finding
that multidimensional dependent performs best on benchmarks. [126] use parameter-
ized multidimensional dependent shapelets as a neural network layer. We apply the
same style of shapelet as input to a differentiable decision tree, but with additional
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weighting parameters in the distance calculation that allow shapelets to be sparse
and ignore irrelevant channels, time spans, etc.

4.1.3 Interpretable Image Classification

Image classification is dominated by neural networks, which have low inherent inter-
pretability. A large amount of research has been dedicated to explaining the pre-
dictions of neural networks. There are countless surveys; for recent examples, see
[200, 57, 151, 147].

A popular paradigm for interpretable image classification is image prototypes,
a template-matching unit used in neural networks for image classification inspired
by traditional approaches such as “bag-of-visual-words”. As a sliding-window best-
match method, they can be understood as a two-dimensional analog of time series
shapelets. However, unlike with shapelets, the image is not compared with a template
directly; instead, both are processed by a convolutional neural network, which is
itself not interpretable, before the comparison is made in the resulting latent space.
Image prototypes are originally proposed by [34], who incorporate them as part of a
neural architecture called prototypical part network (ProtoPNet). The prototypes are
identical to patches of images in the training set, but unlike traditional methods, they
select the patches as part of the network. Several subsequent works make adjustments
to the architecture and prototype selection [178, 146, 145, 192, 131]. One relevant
example is ProtoTree [132], which incorporates image prototypes into a fixed-structure
soft decision tree trained by gradient-based optimization.

4.2 Methods

4.2.1 Alternating Optimization of Trees and Features

Given training data x1, . . . ,xn,y1, . . . ,yn, we aim to learn parameters θ ∈ Rd of
feature transformation gθ : Rp → Rp′ and a decision tree f : Rp′ → Rq to minimize
empirical risk for the composed predictive model f ◦gθ. The tree is typically subject to
constraints such as a max depth, minimum sample weight per node, or cost-complexity
pruning.

Viewed within this framework, the prevailing approach in prior work is equivalent
to the following process: (1) initialize θ such that gθ is identity; (2) with θ fixed,
optimize f using a greedy tree growth strategy such as CART; (3) with f fixed,
optimize θ using gradient-based optimization. Some methods use a growing and/or
pruning heuristic during (3) so that the structure of the tree may change.

Instead, we propose an approach inspired by alternating optimization, a common
strategy to pragmatically solve difficult optimization problems, whereby we alternate
fitting a differentiable tree as in (2) with one or more gradient-based updates to θ as
in (3). In this case, alternating allows us to use different optimization strategies for
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the feature transform parameters θ and the non-parametric decision tree f . This is
summarized in Algorithm 3.

Algorithm 3 Learn a decision tree with transformed features.

Input: Training data x1, . . . ,xn,y1, . . . ,yn, feature transformation architecture gθ
with parameters θ ∈ Θ, loss function ℓ, penalty function p : Θ→ R≥0.

Output: Learned feature transformer gθ and tree f .
1: Initialize θ ▷ See Section 4.2.3 for examples
2: while stopping conditions are not met do ▷ E.g. number of epochs
3: Fit a KDDT f to minimize empirical risk 1

n

∑
i ℓ(f(gθ(xi)),yi)

4: for some number of iterations do
5: Update θ using 1

n

∑
i∇ℓ(f(gθ(xi)),yi) +∇p(θ) ▷ E.g. minibatch SGD

We use KDDTs as the differentiable tree for this learning procedure. They are
well-suited because they are fit as inherently differentiable models, rather than fitting
a tree, then making it differentiable like many prior methods. Moreover, their efficient
fitting is crucial since this process involves frequent repeated fitting. At the end, we
can use the smoothed or unsmoothed KDDT for inference. The latter has better
interpretability when predictions would otherwise take multiple paths, but can result
in a small drop in performance.

Trees are fitted using an information gain based on an impurity measure, so the
same impurity should be used as the loss function for feature learning. For clas-
sification, we use the Gini impurity; as shown by Theorem 2.2, this is equivalent
to mean squared error loss. Likewise, if using entropy impurity, it is equivalent to
cross-entropy loss, as shown by Theorem 2.3.

4.2.2 Kernel choice

In this context, the kernel is mainly used as a smoother to make the tree differentiable,
so the choice of shape is not crucial. A good choice is the box kernel, which is efficient
for fitting and enables sparse tree node membership without truncation. However,
the size of the kernel relative to the scale of the input is important; we adopt the term
bandwidth from kernel density estimation to describe kernel scaling. If the bandwidth
is too small, a KDDT is very close to a conventional decision tree, and the loss
gradient is either zero or highly unstable because it results from very few data near
split boundaries; if the bandwidth is too large, however, splits are very soft, the tree
grows large, the discriminative power is weak, and computation is slow due to dense
membership of data in leaves. To control the bandwidth, we use one of two strategies:
(1) design the feature transform so that the output range is limited, for example, to
[0, 1], and choose an appropriate kernel bandwidth; or (2) use a regularization on the
feature transform parameters to automatically scale the feature outputs appropriately
relative to the kernel. We generally find the latter approach to be more effective and
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describe the use of regularizations in detail in Section 4.2.4. With this approach we
also recommend scaling the parameters of the feature transform after initialization
so that the standard deviation of the output on the training data is 1, resulting in a
consistent initial bandwidth.

4.2.3 Parameterized Feature Transforms

In principle, any differentiable parameterized class of feature transforms can be used,
ranging from simple linear transforms as in ODTs to expressive classes of functions
such as MLPs that have high discriminative power on their own. Generally, more ex-
pressive feature transforms result in smaller trees, but are probably less interpretable,
depending on the application. The goal then is to choose expressive feature classes
that remain interpretable in the desired context when conjoined into a rule list, as in
the decision path of a tree.

In this work, we focus primarily feature transformations that are fully transparent
and propose a few. These can be composed, or their outputs concatenated so different
kinds of transforms can be used together in the tree.

Before describing the primitives, we note a general consideration for features used
with decision trees: conventional decision trees consider only the order of inputs and
not the distance between values. That is, if one modifies the feature values in the
data, but does not change the order of the training samples when sorted according to
each feature, the resulting tree is functionally the same. However, as mentioned in the
previous section, for fuzzy decision trees such as KDDTs, the this is not necessarily
the case, and monotonic transformations of input do matter, but only on a local scale,
so it may be preferable to avoid this kind of unnecessary complexity. Tree learning,
whether crisp or fuzzy, is also completely shift invariant, so there is no reason to, for
example, include a bias term on a linear transformation.

Identity. It may be beneficial to include the original, unmodified features along
with transformed features so that the simplest possible rules are considered during
construction of the tree. This also, in some sense, safeguards against situations where
transformed features may actually be less informative than the original features.

Element-wise transformation. As noted above, element-wise monotonic trans-
formations on their own are not very important in trees, but they can be useful if com-
posed with other transforms. For example, the composition of element-wise square
with linear transformation allows for conic decision rules. Some element-wise map-
pings worth considering have no parameters, such as x 7→ exp(x) and x 7→ log(x);
others have parameters to be learned, such as x 7→ xα. A notable option is the
element-wise two-parameter Box-Cox transformation

x 7→

{
(x+α)λ−1

λ
if λ ̸= 0

log(x + α) if λ = 0
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which is used to alter distribution shape, typically to make values more normally
distributed.

Linear transformation. The linear transformation is x 7→ Ax+b with weights
A and bias b. The bias is used only if composing with another primitive due to
the shift invariance of tree learning. Using only a linear transformation results in
an ODT. These can be initialized randomly, as identity, or using a linear dimension
reduction strategy such as principal component analysis.

Distance to prototype. Another feature type maps a point to its distance
to each of k prototypes pi; in this sense, a decision rule d(x,pi;Si) < t can be
interpreted simply as “is x sufficiently similar to pi”. We use Mahalanobis distance
d2(x,pi;Si) = (x−pi)

TS−1
i (x−pi), where the learnable parameters are prototypes pi

and inverse covariance matrices S−1
i . The covariance matrix can be reparameterized

in various ways to restrict the measurement of distance1, for example, by making it
diagonal, or by using the same for all prototypes. It should also be parameterized such
that it is positive semidefinite; otherwise hyperbolic decision rules may be learned and
the distance interpretation no longer applies. S−1

i can be regularized for sparsity so
that the distance is based on few features. If desired, the prototypes pi can also be
regularized to be similar to the training data; otherwise, they may not be similar
to real instances, and in the most extreme case, they may become very distant,
essentially collapsing into linear rules. The parameters can be initialized randomly, by
selecting samples from the training data, or by using a mixture modeling or clustering
algorithm.

Fuzzy cluster membership. Clustering partitions data into k clusters with
high internal similarity; usually each cluster i is defined by a center ci, and each
point belongs to the cluster with the closest center. Conventional clustering is not
differentiable, so we instead use fuzzy clustering, a variant that assigns a degree
of membership to each cluster, with the membership values summing to 1. Given
distance functions di, i ∈ [k], the membership in cluster i is

wi(x) =
1∑k

j=1

(
d(x,ci;Si)
d(x,cj ;Sj)

) 2
m−1

with m ∈ (1,∞) a hyperparameter determining the “softness” of the cluster assign-
ment, usually just set to 2, and d the Mahalanobis distance as defined previously. In
this way, soft clustering can be viewed as a transformation of the “distance to proto-
type” features so that the resulting transformed features are interdependent and sum
to 1; a decision rule wi(x) > t is interpreted as “x is sufficiently closer to ci than
the other centers”. The parameters can be initialized randomly or by using a fuzzy
clustering algorithm such as fuzzy c-means [50, 15] with all Si initialized as identity.

1For examples of different covariance types, see https://scikit-learn.org/stable/modules/
mixture.html.
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Sliding-window features. For modalities with ordered data, such as time series
and images, and particularly when the input size is variable or there is some shift or
misalignment between instances, one may use a sliding-window version of a feature
transformation followed by some aggregation. For instance, a sliding window with a
linear transformation is a convolution; a sliding window with a distance-to-prototype
applied to time series is a time series shapelet, and this is easily generalized to two
dimensions to create an image shapelet. For shapelets, we typically use distance
with identity or diagonal covariance. Identity covariance is useful for simple inter-
pretation. Diagonal covariance is useful because it increases expressiveness without
severely affecting interpretability. It allows the weight of features to go to zero in
the computation of distance, enabling the automatic adaptation of the size of the
shapelet. It also can and frequently does result in sparsely computed distance when
learned with a sparsity-promoting regularization. One may also regularize the pro-
totypes pi for sparseness and/or smoothness along the ordered axes (time axis for
time series, or x and y axes for images) to improve interpretability. To aggregate the
result of the convolution into a single value, one may for example take the average or
the minimum or maximum; the minimum is standard for shapelets since it indicates
a “best match” to the template. In addition to other options, shapelets may also be
initialized by model-agnostic algorithms for learning a shapelet transform, such as
the one proposed by [92].

4.2.4 Regularization

For each transformed feature i ∈ [p′], the parameters θi ⊆ θ used to compute the ith
transformed feature may be subject to a regularization weighted by the total usage of
feature i, that is, the sum of total training sample weights over nodes that split using
feature i. This weighting serves to balance the effects of the loss and regularization; a
feature used in the decisions for relatively few data will have a relatively smaller loss
gradient, and so should have a proportionally smaller regularization, and vice versa.

One reason to apply regularization is to improve the interpretability of features.
The L1 regularization increases the sparsity of parameters, which can reduce the
complexity of interpretation. Other regularizations might improve interpretability in
an application-specific way, for instance, the smoothing of prototypes or shapelets
for time series and images. Weighting by feature usage also ensures that often-used
features are the most interpretable, whereas the opposite will tend to be the case with
unweighted regularization.

Another reason to apply regularization is to automatically regulate kernel band-
width. By using regularization that shrinks the output range of the features, such
as a L1 or L2 regularization on a linear transformation, we effectively increase the
bandwidth; meanwhile, minimizing the loss function shrinks the effective bandwidth
because a smaller bandwidth allows fewer data to have split decision paths, resulting
in purer leaves. This makes the actual choice of kernel bandwidth relative to regular-
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data LR MLP DT RF ET XGB ours: linear ours: proto
n, p (one-hot), q fuzzy crisp fuzzy crisp

iris [60] 0.960 0.953 0.947 0.947 0.953 0.947 0.960 0.960 0.947 0.927
150, 4 (4), 3 - - 6.4 7.2e2 2.1e3 4.3e2 6.1 7.6 6.5 2.9

heart-disease [97] 0.822 0.792 0.707 0.802 0.795 0.792 0.812 0.812 0.793 0.779
303, 13 (20), 2 - - 13.9 4.8e3 1.1e4 7.9e2 21.6 19.4 5.0 3.9

dry-bean [104] 0.925 0.934 0.912 0.923 0.921 0.928 0.920 0.913 0.915 0.901
13611, 16 (16), 7 - - 99.8 6.7e4 2.0e5 1.3e4 1.1e2 45.8 1.6e2 94.2

wine [2] 0.983 0.989 0.904 0.977 0.989 0.955 0.983 0.983 0.961 0.961
178, 13 (13), 3 - - 8.5 9.4e2 3.3e3 2.4e2 2.0 2.0 2.3 2.3

car [19] 0.926 0.992 0.977 0.964 0.971 0.994 0.991 0.992 0.980 0.979
1728, 6 (21), 4 - - 95.3 2.3e4 3.1e4 4.5e3 29.0 29.0 59.5 55.9

wdbc [187] 0.974 0.975 0.935 0.965 0.970 0.968 0.972 0.972 0.961 0.961
569, 30 (30), 2 - - 13.0 1.9e3 6.0e3 2.7e2 1.3 1.3 6.4 5.0

sonar [153] 0.755 0.879 0.735 0.826 0.880 0.855 0.818 0.799 0.798 0.817
208, 60 (60), 2 - - 14.1 2.0e3 5.6e3 3.0e2 5.7 3.9 10.3 10.3

pendigits [5] 0.952 0.994 0.964 0.993 0.994 0.991 0.981 0.976 0.950 0.931
10992, 16 (16), 10 - - 3.2e2 3.8e4 9.8e4 8.5e3 2.6e2 2.4e2 3.1e2 3.1e2

ionosphere [154] 0.875 0.917 0.892 0.934 0.943 0.943 0.932 0.920 0.920 0.909
351, 34 (34), 2 - - 15.5 2.2e3 5.9e3 3.4e2 3.9 5.5 10.0 6.3

Table 4.1: 10-fold cross-validation accuracy and average number of splits for tree-
based models. Best in bold.

ization strength so that one can always use the same kernel bandwidth and just tune
the regularization strength. To some extent, it also automatically adapts effective
bandwidth individually for each feature, and overall improves performance compared
to using a fixed effective bandwidth.

4.3 Demonstration and Evaluation

Here we benchmark the proposed learning algorithm and demonstrate it and the
resulting models’ interpretation on several data sets. Additional experiment details
are in Appendix C.6 and comprehensive results are in Appendix D.2.

4.3.1 Benchmarks on Tabular Data

We compare various configurations of our algorithm against popular tree-based base-
lines including decision trees, random forests, and ExtraTrees. We report 10-fold
cross validation accuracy and average number of splits in the model.

The data sets are selected from among the the most viewed tabular classifica-
tion data sets on the UCI machine learning repository [49] at the time of writing.
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Categorical attributes are one-hot encoded, and the data is normalized to mean 0
and standard deviation 1; this is good for training and makes interpretation unit-
less. For our models, we show results for linear features and distance-to-prototype
features with diagonal inverse covariance. Each is regularized with L1 coefficient
λ1 = .01 to promote sparsity. Our models and the conventional decision trees have
cost-complexity pruning α selected by cross-validation. Other hyperparameters are
fixed and described in Appendix C.6.1.

Results are shown in Table 4.1. Results for additional experimental configurations
with additional metrics, including average decision path length, feature sparsity, and
inference time are shown in Appendix D.2.1. On every data set, at least one of
our models matches or comes close to the best baseline accuracy while being much
smaller. Also note that, since we choose the pruning parameter α by cross-validation,
there are many cases where a smaller tree than the one reported performs similarly.
Especially for data sets where the ensembles greatly outperform the basic decision
tree, the reduction in size for a performant model by using our method is huge. This
carries the additional benefit that inference is much faster for our models. Models
with linear features are often the best for a given dataset, while prototype features
lag slightly behind, suggesting that prototype features are best used to supplement
linear features rather than on their own. We also note that these benchmarks all
use the same hyperparameters; this shows that good performance does not require
great tuning effort, but such effort will probably result in a better model for most
applications.

We also separately show results on MNIST and fashion-MNIST; these experiments
are described in Section 4.3.3 and the results are shown in Table 4.2.

4.3.2 Interpreting a Wine Classifier

We show two examples of interpretation for trees trained on the wine data set. Both
are trained with α = 0.01 as in the benchmarks and achieve 97.2% accuracy on a 20%
test split.

A tree with linear features is shown in Figure 4.2a. It has a stronger sparsity
regularizer λ1 = 0.1 compared to the benchmarks. Wines with low flavanoids, protein
concentration, and hue are classified as type 3. There is also a smaller relationship
between type 3 and high color intensity. Of the remaining wines, those with low
proline and alcohol are type 2, and the rest are type 1. Similarly, there is also a
smaller relationship between ash content and type 1 that may be important if the
decision is not clear based on proline and alcohol.

A tree with prototype features is shown in Figure 4.2b. Here we use simple
Euclidean distance for decision rules. Each prototype defines a certain wine profile;
for instance, prototype 1 is high in alcohol and proline and close to average in other
attributes. Wines similar to prototype 1 are type 1; wines similar to prototype 2 are
type 2; wines similar to prototype 3 are type 3; the rest are type 2.
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(a) With sparse linear
features.

feature p1 p2 p3
alcohol 2.03 -1.66 -0.15
malic acid 0.85 -0.35 1.15
ash 0.06 -1.00 -0.62
alcalinity of ash -1.16 0.11 0.22
magnesium 0.95 -2.06 -0.08
total phenols 1.27 0.70 -1.46
flavanoids 0.04 2.69 -0.54
nonflav. phenols -0.86 -0.33 0.29
proanthocynanins 0.74 -0.24 0.57
color intensity 0.70 -1.95 2.51
hue 0.43 1.10 -1.05
OD280/OD315 0.51 0.50 -1.31
proline 1.91 -1.55 -1.06

(b) With distance-to-prototype features.

Figure 4.2: Interpretable trees for wine classification.

MNIST Fashion-MNIST

α fuzzy acc. crisp acc. splits path len. fuzzy acc. crisp acc. splits path len.

10−2 .9226 .9219 9 4.33 .8059 .8024 8 3.97
10−3 .9500 .9419 36 5.91 .8439 .8364 20 4.69
10−4 .9664 .9610 162 7.68 .8669 .8586 98 6.24
10−5 .9708 .9602 1659 10.05 .8675 .8472 2209 11.55

RF N/A .9697 500524 1700 N/A .8767 496819 1822

Table 4.2: Test accuracy and tree size for MNIST trees with linear features.

4.3.3 Interpreting MNIST Classifiers

Next we fit models to MNIST and Fashion-MNIST to demonstrate performance and
interpretability on simple image classification. The performance and size of models for
various cost-complexity pruning α are shown in Table 4.2, and the smallest MNIST
model is shown in Figure 4.3. Larger models, as well as Fashion-MNIST models, are
shown in Appendix D.2.2. Here we use linear features. Each internal node shows the
feature’s weight image, with negative values in blue and positive in red. Each leaf
shows the average of the training data belonging to it.

We use some extra constraints to improve interpretability. First, in addition to a
L1 regularization to promote sparsity, we use a smoothness regularization which pe-
nalizes the average squared difference of each weight with its neighbors, not including
diagonal neighbors. The idea is that a weight image with smooth shapes is easier
to understand than one with just a sparse handful of pixels, while also being more
expressive. We notice that this smoothing can also reduce overfitting. We constrain
the tree’s threshold values to be zero to ease local interpretation. In this way, we
can interpret a decision rule by overlaying the digit onto the weight image and asking
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(a) The entire model. (b) Interpretation of a
correct prediction.

(c) Interpretation of an
incorrect prediction.

Figure 4.3: An interpretable MNIST classifier with 92.19% test accuracy.

simply “Do the pen strokes better match the blue, or the red?” For example, in the
root node in Figure 4.3a, we see that digits with ink primarily in a small near-vertical
stroke in the center are classified as 1, whereas those with more ink in the closely
surrounding space are other digits. Complete predictions are shown Figures 4.3b and
4.3c. In the case of the incorrect prediction, we can easily see that the error occurs
in the root node, where the large serifs on the handwritten 1 overlap with too much
blue in the weight image and result in the decision that this digit is not a 1. It is
reasonable to assume, then, that the model will always predict incorrectly on similar
large-serif 1 images, and that such digits might be underrepresented in the data. This
demonstrates how interpretability can be used as a diagnostic tool.

For reference, Table 4.2 also shows performance and size for standard decision
trees and random forests. As the size of our tree grows large, performance matches
the random forest on MNIST and comes very close on Fashion-MNIST. Moreover,
though our trees may seem large, they are still hundreds of times smaller than a
comparable random forest, and the average decision path length, that is, the average
number of nodes involved in the interpretation of a prediction, is thousands of times
smaller. To separate 10 classes, our largest models require only 10.05 or 11.55 decision
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Figure 4.4: An interpretable Fashion-MNIST classifier. The tree automatically learns
a hierarchy of fashion items.

rules on average for MNIST and Fashion-MNIST, respectively.
Testing on MNIST allows us to make some comparison of our models to TAO

[28], which seems to be the best existing method for learning trees with sparse linear
features. Ultimately, while their smallest model achieves 89.81% test accuracy with
16 splits, our smallest achieves 92.19% with just 9 splits. Likewise, their overall
best-performing model achieves 94.31%, whereas ours achieves 96.10% without fuzzy
splitting or 97.08% with it. This shows that our proposed approach can achieve
state-of-the-art status for learning sparse oblique decision trees while also having
greater flexibility to choose different features and adapt them to application-specific
interpretability needs.

4.3.4 Learned Class Hierarchy in Fashion-MNIST

An additional property of our models is that, differently from other ODT learning
algorithms such as TAO, we continually refit the tree using a generalization of CART,
which greedily chooses the most informative splits first. Each subtree’s class labels
are thus as pure as possible, and classes that are easy to separate are separated first.
By contrast, in a tree which is trained globally without this greedy splitting, any
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particular split may not actually result in improvement in label purity, as long as it is
informative to splits further down the tree. We argue that this characteristic of our
trees is useful for interpretability.

A compelling example is shown in Figure 4.4, which shows the tree trained on
Fashion-MNIST with α = 10−3. The tree forms an intuitive hierarchy of visual
similarity of fashion items. Tops, bottoms, shoes, and bags are separated early.
Within shoes, there is a separation of high vs. low shoes, then open vs. closed shoes.
Within tops, there is separation of long vs. short tops; within short tops, there is
separation of long vs. short sleeves; then, within long sleeves, there is separation of
tops with a collar vs. tops without a collar. This allows us to understand decision rules
and interpret predictions just by examining the populations at each leaf, without even
knowing the transformed features. A similar structure of visually cohesive subtrees is
observed in our MNIST trees, as in Figure 4.3a, but it is less obvious and intuitive
since we do not tend to cognitively group digits by visual similarity like we might
with fashion items. We do not observe this property in other ODTs; for example, in
[158], a TAO tree fitted to Fashion-MNIST does not exhibit this visual hierarchy.

4.3.5 Interpreting Time Series Shapelets

Heartbeat Classification

We demonstrate classification with time series shapelets on the ECG5000 data set
from the UCR archive [43]. This consists of a 20 hour ECG of a patient with severe
congestive heart failure segmented into single heartbeats and interpolated into a fixed
length. 500 training and 4500 test samples are randomly selected and annotated as
either normal or one of several irregularities. The task is to classify a heartbeat
according to this annotation.

Since the heartbeats are segmented to have the same shift and scale, shapelets
without sliding window are an appropriate feature choice. The resulting tree is shown
in Figure 4.5. Here the red and blue heatmaps show the distribution of training data at
each node, that is, dark red shows where many waveforms are present, white where a
moderate number are present, and dark blue where none are present. The shapelet at
each node is shown in green. The opacity corresponds to the weight at each time step,
and since we regularize the shapelets for sparsity, the green areas are small, indicating
that only a small portion of the waveform is used in each decision. Data sufficiently
similar to the shapelet go left down the tree, and others go right. Within each
internal node is also shown the distribution of transformed feature values (distances
to the shapelet) colored by class label, as well as the tree’s decision threshold and the
transition region of the fuzzy split. Within each leaf node is also shown the weight
of data for each label; the leaf predicts the label with the highest weight. Based on
this representation and the small tree size, it is very clear how decisions are made.
For instance, we can see from the shapelets of the root node and its left child that
the model labels waveforms with a prominent U-shaped curve on the right side as
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Figure 4.5: A shapelet-based tree for heartbeat classification.

class 1. Though we can see from the leaves that class 1 also exhibits a small dip in
the waveform in the middle-left area, we can tell from the shapelets that this is less
important to the model’s decision.

This model has 97.2% training and 92.8% test accuracy; slightly better test accu-
racy can be achieved with a change of hyperparameters, but the resulting model is
larger and less interpretable. For context, in a benchmark of deep learning for time
series classification by [95], the best model on ECG5000 is “Encoder” with an average
test accuracy of 94.1%. Meanwhile, our tree of just three interpretable splits matches
the performance of MLP and CNN at 92.8% and 92.9% test accuracy, respectively,
and outperforms some deep architectures such as t-LeNet and TWIESN.

Gun Detection

Next, we demonstrate classification with time series shapelets on the GunPoint data
set from the UCR archive [43]. In this data set, an actor is filmed in profile either
pointing a finger or raising a replica gun and the x-coordinate of the hand is recorded
as a time series. The task is to determine whether the actor is pointing a finger or
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(a) Without sliding window: 86.7%. (b) With sliding window: 96.0%.

Figure 4.6: Shapelet-based trees on the GunPoint data set and their test accuracy.

raising a gun.

Figure 4.6 shows trees trained with shapelet-based features, both with and with-
out sliding window. See the previous subsection on heartbeat classification for a
description of this kind of visualization In the sliding window case, the window size is
100, where the time series are of length 150. We can see from the distribution of time
series in the root node of Figure 4.6a, which shows the whole training set, that there
is some seemingly random time shift in the data, making the resulting tree complex
and prone to overfitting. However, with the sliding window, as shown in Figure 4.6b,
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where each time series is shown aligned to its best match with the shapelet, the slid-
ing window is able to effectively align the data, resulting in a simpler tree with much
better generalization. For other data, one might also consider scale invariance as in
dynamic time warping, as well as shift and/or scale invariance of the value, that is,
the y-axis of the time series. For context, [95] report an average test accuracy of
100% for FCN, but the majority of the remaining deep architectures perform below
our interpretable model’s score of 96.0%.

4.4 Discussion

We have proposed a new system for learning small, interpretable decision trees and
shown examples under several notions of interpretability, including sparse linear
combinations, similarity to prototypes, visual matching, and class-based hierarchies.
Compared to ensembles and deep models, our single-tree models are interpretable
because they are small, use sparse features, have a sparsely activated hierarchical
representation based on logical rules, and work by simply partitioning the data. We
use size and sparsity as rules of thumb for interpretability and design our demon-
strations accordingly, but ultimately, interpretability is highly subjective, and this is
not the best for every user and application. For instance, in some cases, high-level
conceptual interpretability, such as the “this looks like that” interpretation of im-
age prototypes [34], may be preferred over the detailed low-level interpretations we
present in this work. Our methods are highly flexible to customize feature types to
meet interpretability needs, especially as more diverse feature types are implemented,
and towards this capability, ongoing work is developing a platform for interactive
visualization and design of these models. Since there is no universally applicable
quantification of interpretability, an ideal evaluation of interpretability will include
user studies.

One tradeoff is that the models can take relatively long to train due to repeated
fitting of fuzzy trees, though this can be alleviated by controlling the number of
features output by the feature transformation; for instance, if using a linear transfor-
mation with MNIST as in our demonstrations, using the transformation to map the
784 features of MNIST down to just 10 to 20 transformed features, which is sufficient
for a small tree, allows training to complete in mere minutes. Another tradeoff is
that, while our results show that good models can be obtained without extensive
hyperparameter tuning, the absolute best model for a given scenario certainly may
require careful design of the feature transformation architecture and tuning of several
hyperparameters.

A promising future direction for this work is to incorporate more feature types that
may achieve good performance in more applications. One example is long, variable
length time series where a “best match” feature may be insufficient, or time series
where frequency information, which is not easily captured by the feature types covered
here, is important. One might also consider possibilities for interpretable featurization
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of text so that this work can be extended to text classification.
Another potential application of new feature types is broader image classifica-

tion. The methods demonstrated here with linear and prototype features with op-
tional sliding window are well-suited to data such as MNIST that is inherently two-
dimensional and highly structured. However, more natural image data capturing
three-dimensional objects with occlusions, variable lighting, etc. is more challenging.
We find that, while our methods using the features proposed in this work can signif-
icantly improve the performance of trees on this kind of data, it still falls short of
modern performance expectations, and the models can be difficult to interpret. One
way to approach this would be to use CNN-based image prototypes as described in
Section 4.1.3, which would result in rules based on visual similarity to a template,
though the determination of similarity is made by a black-box. While this moves
away from the ideal of full transparency, it may nonetheless improving interpretabil-
ity compared to the current state-of-the-art.

90



Chapter 5

Pragmatic Advancements

Much of current ML research commonly focuses strictly on parametric models, and
so many topics advanced by recent research are not applicable to non-parametric
models such as trees. Tree-based models in particular still achieve state-of-the-art
performance on tabular problems [81] and are widely used due to their practical
advantages, so gaps in their applicability are a crucial weakness in ML application.

In this chapter, we apply the uncertain interpretation paradigm towards clos-
ing some of these gaps. First, we propose an intrinsic tree-based method for Semi-
supervised Learning (SSL), that is, learning from both labeled and unlabeled data,
where there are few existing methods for decision trees. Next, we introduce a new
model-agnostic method of Federated Learning (FL), a field dominated by parame-
ter aggregation and regularization methods, by regularizing models for agreement in
function space. Since loss functions are generally convex in function space, it has
convergence guarantees with mild assumptions; when combined with our uncertain
interpretation formalism and a quadratic loss function, we have fast convergence close
to the consensus optimum. This kind of function space regularization can naturally
also be used for other applications involving measuring and minimizing model dis-
agreement. As an example, we demonstrate the merging of tree ensembles into a
single tree.

5.1 Semi-supervised Learning

In applications of supervised machine learning, there is often copious data available,
but labeling the data accurately is expensive. This motivates Semi-supervised Learn-
ing (SSL), which combines strategies from supervised and unsupervised learning to
learn a predictive model from labeled and unlabeled data. It does this by leveraging
some underlying assumption that informs the use of unlabeled data, such as cluster-
ability, smoothness, or separability of the data. Effective SSL can greatly reduce the
amount of labeled data needed to achieve a particular level of performance.

Most SSL methods are designed for parametric models. As a result, despite the
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(a) Fit a tree to minimize
semi-supervised impurity.

(b) Assign smoothed leaf
values.

(c) Or assign robust leaf val-
ues.

Figure 5.1: An overview of our SSL algorithm. Gray data are unlabeled.

popularity and utility of tree-based models, SSL methods for trees are largely limited
to model-agnostic wrapper methods such as self-training [173], for which tree-based
models are not even well-suited [174]. This lack of options also limits the choice of
assumption that drives the SSL process.

The main function of the few SSL algorithms specialized for decision trees [118,
119, 109] is choosing splits in a semi-supervised way; they do not propagate labels
across regions of dense unlabeled data, limiting expressiveness. To fill this gap, we
leverage KDDTs and their uncertain interpretation of input to introduce natural and
efficient SSL algorithms based on a choice of two grounded assumptions:

• Smoothness assumption: inputs with similar feature values are likely to have
similar labels.

• Robustness assumption: there exists a large-margin (on average) boundary be-
tween classes.

We first grow a tree using a semi-supervised splitting criterion that leverages fuzzy
membership; unlike prior methods, it allows leaves to contain no labeled data, in-
creasing expressiveness since trees may grow large even with very few labeled data.
We then assign leaf values according to one of the above assumptions by constructing
a similarity graph over the leaves and using a graph algorithm. As usual, the final
model can be fuzzy or a conventional crisp tree. Figure 5.1 motivates this kind of
approach and highlights the two leaf assignment strategies. Previous tree-based SSL
methods do not propagate labels across leaves, so they cannot learn a good boundary
in this example.

Ultimately, semi-supervised learning algorithms perform largely based on how well
their underlying assumption(s) describe the data; by introducing two new assump-
tions for tree-based models—assumptions which are grounded, reasonable, and used
in SSL for other models—we improve performance on data where other tree-based
methods fall short, as shown by our experiment results in Section 5.1.3.
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5.1.1 Related Work: Semi-supervised Learning

Over many years, numerous SSL algorithms with various underlying assumptions
have been proposed for a wide range of models. We refer the reader to [174] for a
comprehensive overview. We highlight two taxonomic distinctions: first, a method is
inductive if it produces a predictive model, or transductive if it only assigns labels
or pseudo-labels to the unlabeled training data; second, an inductive method is a
wrapper method if it is agnostic to the predictive model used, or intrinsic if it is
specialized for a particular class of models. The algorithm presented in this work is
thus an intrinsically semi-supervised method for induction of decision trees.

Wrapper methods were once the only option for semi-supervised learning of de-
cision trees and remain a popular approach. Foremost are variants of self-training
[173], an iterative process whereby the model is fitted to labeled data, then the most
confidently predicted among the unlabeled data are labeled and added to the training
pool for the next iteration. Despite its widespread use with trees, tree-based models
are actually not well-suited for self-training due to poor calibration and overconfident
predictions [174]. As a result, works such as [112, 108, 44, 167, 120] propose strategies
to improve self-training of tree-based models.

A few intrinsic methods have been proposed for decision trees. By assigning
pseudo-labels to unlabeled data using posterior probability computed from kernel den-
sity with reduced dimension on the labeled data, [118] and [119] choose better oblique
splits using unlabeled data. Similarly, by using impurity of the features in addition
to impurity of the labels as a splitting criterion for tree construction, [109] propose
Semi-supervised Learning Predictive Clustering Trees (SSL-PCTs) that choose better
conventional axis-aligned splits using unlabeled data. Our method of tree growth is
similar in that it uses a semi-supervised splitting criterion, but our unsupervised im-
purity is based on fuzzy membership stead of feature variance and has linear rather
than quadratic computational complexity in the number of features.

Graph-based SSL is a family of transductive methods that constructs a similarity
graph over the data and uses a graph algorithm to assign pseudo-labels. We mention
two that are relevant to this work. First, label propagation [204] solves a linear
system such that each pseudo-label is a combination of its neighbors’ labels or pseudo-
labels, weighted by similarity. Second, graph min-cut approaches [17, 18] use min-cut
algorithms to separate the data into classes such that the inter-class similarity is
minimized.

5.1.2 Semi-supervised Learning with KDDTs

Our SSL algorithm has two phases. First, the tree structure is grown using a semi-
supervised variation of KDDT fitting. Next, a similarity graph over the leaves is
constructed and used to assign leaf values. This assignment, differently from previous
work, propagates labels across leaves, so all leaves can be assigned a value even if only
a few contain labeled data. The tree growth and assignment approaches are described
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(a) 10 leaves (0.05 seconds). (b) 100 leaves (0.4 seconds). (c) 1000 leaves (4 seconds).

Figure 5.2: Trees of varying size with robust leaf assignment and their training time.

in the following sections. A visual summary is provided in Figure 5.1.

Semi-supervised Tree Growth

We grow trees in a semi-supervised manner using a simple adaptation of supervised
splitting criteria; compute the semi-supervised impurity by assigning each unlabeled
point its own unique label. This will cause the tree to separate unlabeled data points,
but for crisp trees, it is otherwise uninformative, that is, it does not influence the
optimal split. However, for fuzzy decision trees, it prioritizes splits which are the
least fuzzy, that is, most unlabeled data belongs entirely to one side or the other,
resulting in well-separated subgroups. For KDDTs, this means prioritizing splits far
away from most data, with the resulting leaves containing data that is more difficult to
separate, and thus more similar in feature values. This is similar to SSL-PCTs [109],
but whereas the computation of feature variance in the construction of SSL-PCTs
makes the cost of split search quadratic in the number of features, ours remains
linear since each unlabeled data point contributes independently to the impurity. See
Figure 5.1a for a toy example of tree fitting.

Recall that we write µi(x) the membership of x at node i and wi the total weight
of training data as defined in Equations 2.6 and 2.10. The semi-supervised Gini
impurity at node i can be written

Gini(i) = 1− 1

w2
i

∥∥∥∥∥∑
j∈DL

µi(xj)yj

∥∥∥∥∥
2

2

+
∑
j∈DU

µi(xj)
2

 (5.1)

for labeled data indices DL and unlabeled data indices DU .
By writing the impurity in terms of the selected decision threshold and using a

Taylor expansion of the unsupervised term, a straightforward extension of the KDDT
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(a) The 1000-leaf model
from Figure 5.2c.

(b) Pruned to 10 leaves by
leaf impurity.

(c) Merged same-label leaves
down to 75 leaves.

Figure 5.3: Two methods for pruning a tree based on the assigned leaf values.

threshold search makes it possible to compute this in constant time for each candidate
threshold, preserving the original asymptotic cost of threshold search.

As always, KDDTs can grow extremely large unless a growth stopping condition
is set, and this is especially true with the semi-supervised criterion. An example of
size variation on a toy data set with 500 samples is given in Figure 5.2. Generally a
good choice to limit tree growth is a Cost-Complexity Pruning (CCP) parameter α.
However, with our the semi-supervised criterion, the tree size can be very sensitive
in a small range of α values that depends on, among other things, the number of
unlabeled data; therefore, as a more clear and consistent hyperparameter, we instead
set a maximum number of leaves and grow the tree in order of highest gain until
reaching that number of leaves, or until no split results in any gain. This constructs
the same tree that could be attained by choosing some particular CCP-α value, but
allows one to choose the size directly. Other growth stopping conditions, such as
maximum depth or minimum sample weight in a leaf, are also options.

If needed, a fitted tree with its leaf values assigned can be post-pruned according
to the assigned leaf values to obtain a much smaller model for prediction, as demon-
strated in Figure 5.3. One option is to prune according to supervised impurity, such
as conventional Gini impurity, calculated using the assigned leaf values, as shown in
Figure 5.3b. Compared to the equally sized tree in Figure 5.2a, which is grown to
that size, the tree in Figure 5.3b, which is grown larger and then pruned down, fits
the data better. Another option is to merge contiguous leaves with the same plu-
rality label, as shown in Figure 5.3c. If either the tree is crisp or the leaf values are
one-hot, as in our robust leaf value assignment method, this will never change the
predicted class; compare, for example, Figures 5.3a and 5.3c. Otherwise, it may alter
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the prediction in rare cases, but the model remains largely the same. Both strategies
can produce better final models for a given size at the cost of more time spent fitting.

Smooth leaf value assignment

As a result of the smoothing induced by the uncertain input interpretation defin-
ing KDDTs, a natural SSL approach emerges by simply writing the predictions for
unlabeled data and using the resulting system to solve for leaf values. Recalling
Equations 2.8 and 2.11, a KDDT f makes prediction

f(x) =
∑

i∈leaves

µi(x)vi =
∑

i∈leaves

µi(x)
1

wi

∑
j∈D

µi(xj)yj

for training data D = DL ∪DU .
For j ∈ DU , yj is unknown; instead substitute the predicted f(xj). Then we have

vi =
1

wi

∑
j∈DL

µi(xj)yj +
∑

i′∈leaves

(
1

wi

∑
j∈DU

µi(xj)µi′(xj)

)
vi′

which, by stacking over each i, forms a linear system

V = V ′ + AV (5.2)

which we use to solve for the unknown matrix V of leaf values. Here each row
is the corresponding leaf’s value Vi,: = vi , V ′ is similarly the known matrix of
leaf value components from labeled data only V ′

i,: = 1
wi

∑
j∈DL

µi(xj)yj, and Ai,i′ =
1
wi

∑
j∈DU

µi(xj)µi′(xj) indicates the weight of shared unlabeled samples for each pair
of leaves i, i′. A can be interpreted as a similarity graph over the leaves.

Equivalence to label propagation

Given a kernel k : Rp × Rp → R≥0, label propagation [204] assigns pseudo-labels YU

by solving the linear system YU = KUUYU + KULYL where

K =

[
KLL KLU

KUL KUU

]
with Ki,j = k(xi,xj)/

∑
ℓ k(xi,xℓ) is the row-normalized kernel matrix split into

blocks corresponding to labeled data DL and unlabeled data DU .
A semi-supervised KDDT f with smoothed leaf value assignment makes predic-

tions on its training data matching the labels assigned by label propagation with
kernel

kf (x,x′) =
∑

i∈leaves

µi(x)µi(x
′)

wi

.
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This is easily verified by observing that Equation 5.2, which is used to solve for leaf
values, is equivalent to the system

f(xj) =
∑

i∈leaves

µi(xj)vi =
∑
ℓ∈DL

kf (xj,xℓ)yℓ +
∑
ℓ∈DU

kf (xj,xℓ)f(xℓ)

for i ∈ DU . Noting that
∑

ℓ∈D kf (xj,xℓ) = 1 for all j ∈ D, the above is equivalently
YU = KUUYU + KULYL where YU = f(X) and K is defined by kf .

As a result, we can view this method as label propagation on a partition of the
domain rather than the data themselves. A finer partition (larger tree) yields a more
expressive model, but is potentially more vulnerable to the curse of dimensionality of
kernel-based methods.

Robust leaf value assignment

Another leaf value assignment strategy uses graph min-cut to maximize a notion of
adversarial robustness, that is, distance from the decision boundary, thereby plac-
ing the boundary in low-density regions. This is based on the innate adversarial
robustness of KDDTs via the theory of randomized smoothing as explored in-depth
in Section 3.4. In this sense, the predicted value of a KDDT is directly linked to
the robustness of the prediction. For example, for Gaussian smoothing, the robust
radius at x is lower bounded by r = σΦ−1(fmax(x)), where Φ−1 is the inverse Gaus-
sian CDF, σ is the standard deviation of the smoother, and fmax(x) is the highest
predicted class probability at x [38]. By maximizing

∑
j∈D fmax(xj), we maximize a

robustness objective
∑

j∈D Φ(rj/σ), where each rj lower bounds the robust radius for
sample j. A similar notion exists for box kernels and L1 robustness; see Section 3.4 for
details. An objective like this makes sense because, regardless of practical concerns,
we cannot maximize the robust radii

∑
j rj directly since it is not upper-bounded.

Thus we define a semi-supervised objective
∑

j∈DL
y⊤
j f(xj) +

∑
j∈DU

fmax(xj) for the
model to be robustly correct on labeled data and robust on unlabeled data.

This is still difficult to optimize, so we relax the objective to instead maximize∑
j∈DL

y⊤
j f(xj)+

∑
j∈DU

f(xj)
⊤f(xj), which lower bounds the original objective and

is equal at the extremes fmax(x) = 1 and fmax(x) = fj(x) ∀j ∈ [q]. This objective
is equivalently written as Tr(V ′Tdiag(w)V + V ⊤M⊤MV ) with V and V ′ as in
Equation 5.2, diag(w) a matrix with vector w = (wi)i∈leaves on the diagonal and 0
elsewhere, and M the membership matrix Mj,i = µi(xj). Since MTM is positive
semidefinite, the objective is convex. Moreover, each row of V must sum to 1 to
represent a valid probability distribution over the class labels. This constitutes the
maximization of a convex function subject to linear constraints, so at least one max-
imizer must exist at a corner point; that is, there is some maximizing V with only
one nonzero element, which has value 1, in each row.

Let A = MTM . For each leaf i, let ci denote the index such that Vi,cL = 1,
that is, ci is the index of the class predicted at leaf i. Rewrite maximization of the
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objective as minimization of the following loss.

ℓ(V ) =|DL|+ |DU | − Tr(V ′⊤diag(w)V + V ⊤AV )

=
∑
i

wi

∑
c

V ′
i,c +

∑
i,i′

Ai,i′ −
∑
i

wiV
′
i,ci
−
∑
i,i′

1{ci = ci′}Ai,i′

=
∑
i,c

1{c ̸= ci}wiV
′
i,c +

∑
i,i′

1{ci ̸= ci′}Ai,i′ .

We can construct a graph such that this loss is the value of a k-terminal cut, also
called a multiway cut. This is a generalization of the min-cut problem where there
may be many terminals, whereas standard min-cut has only two—a source and a
sink. Given nodes N = {s1, . . . , sk, n1, n2, . . . }, a k-terminal cut is a partition of
the nodes into k sets C1, . . . , Ck such that s1 ∈ C1, s2 ∈ C2, etc. The value of the
cut is defined as the total weight of edges removed to separate the nodes into sets:∑

C ̸=C′
∑

n∈C
∑

n′∈C′ w(n, n′).
The graph is constructed as follows. For each class c, define node sc, and for each

leaf i, define node ni. Set edge weights w(sc, ni) = wiV
′
i,c and w(ni, n

′
i) = Ai,i′ . Then,

given a cut C1, . . . , Ck, for each i, set Vi,ci = 1 such that ni ∈ Cci . Then the value
of the cut is exactly ℓ(V ), and so the minimum such cut provides leaf values V that
minimize the loss.

For k = 2, the problem is simply called min cut or max flow, and there are
many algorithms to solve it with various complexity. The problem of finding the
minimum k-terminal cut for k ≥ 3 is NP-Hard; however, a simple heuristic achieves
an approximation of 2 − 2/k by solving the standard minimum cut problem in a
one-vs-rest fashion k times [42]. We use this heuristic.

In practice, a model fitted in this way may sacrifice correctness on labeled data
for greater robustness on unlabeled data; in the worst case, if there are relatively few
labeled samples and the unlabeled data is not easily separable, it is possible that the
most robust model always predicts the global majority label. In this case, simply
increase the weight of the labeled samples relative to the unlabeled samples.

Model selection

There are two important hyperparameters that must be selected: the tree size and
the kernel bandwidth. One may wish to select these automatically to maximize
performance. We find that, despite the limited number of labeled data in the semi-
supervised setting, cross-validation of a supervised metric is the best approach for
hyperparameter selection. Rather than accuracy, we select using Mean Absolute
Error (MAE) since it is less coarse when the number of labeled data is small. For
classification, MAE is 1

n

∑
i 1 − y⊤

i f(xi). To tune tree size, one can simply grow
the tree to the largest size and prune it back down to get smaller sizes, so the tree
need only be grown once. The tree must be re-fit from scratch, however, for different
bandwidths. Since the tree growth phase dominates the run time, for experiments,
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we grow the tree just once on all data, then perform k-fold cross validation over
the labeled part of the data by redoing the leaf assignment phase only. This is cost
effective, but if cost is not a concern, it is of course better to completely re-fit the
model during cross validation.

Ensembles

and while KDDTs can generalize better than standard decision trees, they also ben-
efit from ensemble approaches; see Section 2.3.6. For some ensemble methods, the
extension to SSL is straightforward. Random forests [26], perhaps the most popular
tree ensemble, use bagging, where each model is trained on a bootstrap sample of the
data, and at each split, only a random subsample of features is considered. We follow
the precedent of [109] and adapt this to semi-supervised learning by bootstrap sam-
pling from the union of the labeled and unlabeled data, then train the semi-supervised
trees on each bootstrap sample with feature subsampling. Another popular tree en-
semble algorithm, ExtraTrees [68], only changes the tree fitting process by selecting
thresholds at random, and can be used for SSL without modification. Boosted tree
ensembles, however, including algorithms such as AdaBoost [63] and XGBoost [35],
use a supervised loss function, so the adaptation to SSL is not so straightforward.
We leave this topic to future work.

Computational cost

The complexity of tree growth with the semi-supervised criterion is the same as for
standard KDDT fitting; see Section 2.3.3 for details. In practice, we observe that tree
growth dominates the total run time.

For leaf value assignment, computing a dense leaf similarity graph is quadratic
in the number of leaves; however, when using a bounded or truncated kernel, the
sparse membership of data in leaves makes the leaf graph itself also sparse, so the
computation should be done with sparse matrices. Next, the complexity of computing
leaf values is the same as the related graph-based methods with sparse graphs, namely
label propagation and min-cut SSL, but the size of the graph is the number of leaves
instead of the number of data. Therefore, for fixed tree size, our methods’ total cost
scales linearly with the number of data, better than purely graph-based SSL. Using
sparse representations, we observe that leaf value assignment is a relatively small
portion of the total run time.

5.1.3 Experiments

We benchmark our methods in random forests against baselines including supervised
random forests, self-trained random forests, and SSL-PCT random forests [109]. Our
methods include the two proposed leaf assignment strategies as well as fully supervised
KDDT random forests and a “naive” strategy where we use our semi-supervised tree
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(a) Random selection of labeled data. (b) Cluster-based selection of labeled data.

Figure 5.4: Comparison of performance of SSL methods implemented as random
forests. Ours are solid lines, and baselines are dashed.
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growth, but typical supervised leaf value assignment; this method necessarily con-
strains tree growth such that each leaf contains at least one labeled sample. For data,
we select the most viewed data sets from the UCI Machine Learning Repository [49]
at the time of writing, with filters to classification tasks and numerical features, skip-
ping any that have missing values or actually contain categorical features. For each,
we repeat the following 5 times with different random seeds: randomly split the data
into 80% train, 20% test, then sample various subsets of the training data to use as
labeled, with the rest used as unlabeled. To sample labeled data, we use two strate-
gies. The first, as in [109], selects a fixed number of data uniformly at random to be
labeled, so that the labeled and unlabeled data are from the same distribution. The
second clusters the data into 32 clusters using k-means, then randomly selects a fixed
number of clusters to be labeled. This strategy has the labeled data coming from a
different distribution than unlabeled data and tests a SSL method’s ability to propa-
gate labels across regions of unlabeled data. Hyperparameter and data preprocessing
details are in Appendix C.7. Figure 5.4 shows the results.

For uniformly random selection of labeled data (Figure 5.4a), the KDDT-based
methods outperform the crisp tree methods; however, our semi-supervised methods
are very similar to supervised KDDTs, sometimes performing slightly better and
sometimes slightly worse. Our robust method has the best average rank and the
highest rate of achieving rank 1 when the number of labeled data is 25 or 50. For
the other numbers of labeled data, the supervised KDDT forest is the best at both.
The natural conclusion is that KDDTs are simply very good at generalizing with
low training sample count, to the point that none of the tested SSL methods offer
consistent or substantial improvement.

However, for cluster-based selection of labeled data (Figure 5.4b), there is a greater
need for semi-supervised modeling, and accordingly, there are many cases where the
semi-supervised methods show a clear advantage over supervised methods. In par-
ticular, our proposed method with robust leaf value assignment stands out, with a
clear advantage over other methods on multiple cluster counts for several data sets,
including Iris, Glass Identification, Optical Recognition of Handwritten Digits, Seeds,
and Connectionist Bench. This may be because, of our two methods, the robust leaf
value assignment is better able to propagate labels far across regions of unlabeled
data, whereas the smoothed method tends to have the confidence of predictions fade
over long distance from labeled data. The latter trait may be desirable in some appli-
cations. The robust method has the best average rank when the number of clusters is
1, 2, or 4, and the highest rate of achieving rank 1 when the number of clusters is 1,
2, 4, or 8. For the other cluster counts, the supervised KDDT random forest achieves
the respective bests, except for the 32 cluster case where all data is labeled and our
semi-supervised methods are equivalent to standard supervised KDDT fitting, so the
differences in rank of KDDT-based methods are random.

There are also cases where a semi-supervised method performs much worse than
supervised methods; see, for example, self-training on Optical Recognition of Hand-
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written Digits with uniformly sampled labeled data, or our robust method on Yeast
with cluster-based label data selection. Semi-supervised methods are based on an
assumption about the distribution of data and labels, and if the assumptions do not
adeqeuately describe the data, it is possible that the method reduces performance
compared to supervised methods, so it is expected to observe this on some data sets.

5.1.4 Discussion

We proposed a novel intrinsic method for semi-supervised learning of decision trees.
It efficiently constructs tree structures using a semi-supervised impurity based on
fuzzy splitting. Then, it uses graph-based semi-supervised concepts to propagating
label information across similar leaves; however, unlike graph-based approaches, it
scales well with the size of the data and produces a predictive model that has all
the practical benefits of decision trees. It also implements different assumptions
from previous tree-based SSL methods and, as a result, performs well on many data
sets where those methods fall short. Our experiments, in particular, show superior
performance from the robust leaf assignment strategy, and additionally demonstrate
that just using supervised KDDTs is competitive with dedicated SSL methods in
many cases.

The method is limited in that it implements particular kinds of assumptions for
SSL, which will not usefully describe all data sets. It also requires some hyperparame-
ter tuning for good performance. Future work may investigate the proposed approach
for regression tasks and consider its adaptation to other tree-based models, such as
boosted ensembles.

5.2 Decentralized Federated Learning in Function

Space

Federated Learning (FL) trains models across a network of devices or silos, called
clients, that provide data. Examples include smartphones, edge servers, IoT devices,
or institutional data centers. Unlike traditional centralized approaches, where data is
collected and processed on a central server, FL assumes that the data must remain on
the clients without being transmitted or shared. This addresses a wide range of real-
world limitations that would otherwise prevent the application of machine learning
or render it difficult, such as prohibitions on data sharing, privacy concerns, or data
storage or transfer limitations.

Broadly speaking, FL methods are either centralized or decentralized. Centralized
methods make use of a central server that does not contribute any data, but does ag-
gregate information from clients, often in the form of model updates, and coordinates
the learning process. For example, the most prominent FL algorithm, federated aver-
aging (FedAvg) [125], averages the weights of client models on the central server, then
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sends the average model back to clients to continue training. Centralized approaches
are simple, relatively easy to implement and analyze, and widely used. However, a
central server can be detrimental in some situations. It is a bottleneck for communi-
cation and computation; as a single point of failure, it is a vulnerability in the system;
and it may be impractical or infeasible in cases involving unreliable networks, field
communications, or particular privacy concerns.

In contrast, Decentralized Federated Learning (DFL) methods such as decentral-
ized federated averaging (DFedAvg) [164] do not depend on a central server and rely
instead on peer-to-peer communication. Such approaches can alleviate the bottleneck,
improve robustness to system failures, and enhance practicality in resource-limited
settings. Comparing and optimizing various frameworks for decentralized FL, each
with unique features and tradeoffs such as privacy, fairness, rates of convergence, and
robustness, is an ongoing area of research [14].

In this section, we adopt the functional view of models applied throughout this
thesis to lay the foundations for a new approach to DFL that views the optimization
and enforcement of consensus of distributed models in function space. In particu-
lar, our approach is an iterative process in which clients exchange models with their
neighbors and then learn a model on their data with a Function Space Regular-
ization (FSR), which penalizes disagreement between its model and its neighbors’
models. This update can be analyzed as a proximal gradient method, a well-studied
algorithm for convex optimization. The regularization requires computing inner prod-
ucts and norms of functions, which is expensive in general. However, where it can be
efficiently applied, it unlocks a few advantages and useful capabilities not available
when optimizing from a strictly parametric perspective:

• Support for non-parametric models. Non-parametric models often offer advan-
tages such as less burden of architecture design and hyperparameter choice,
efficient optimization with no special hardware requirements, small memory
footprint, or reliable performance on certain problems. Existing FL methods
generally aggregate models or enforce agreement by some operation on their
parameters, and are therefore incompatible with non-parametric models.

• Broadly applicable theoretical convergence. In parametric machine learning, the
objective function is often non-convex in the parameters, making convergence
analysis challenging. However, virtually all learning objectives are convex in
function space, guaranteeing convergence of the federated learning iteration so
long as the local learning problems are solved near-optimally.

• Robustness to client heterogeneity. A key limitation of FL algorithms is their
vulnerability to client heterogeneity [198, 186, 14], particularly to differences
in their local data distributions. The negative effect of client heterogeneity
on the convergence of FedAvg is well-studied both theoretically and empiri-
cally [115, 183, 114, 99]. Our function space approach is relatively robust to
client heterogeneity, performing even in the most adverse cases possible.
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• Low communication cost. Another key limitation of FL algorithms is the poten-
tially huge communication cost [198, 186, 14]. Convergence may require many
iterations, and it is common practice to use very large models due to their fa-
vorable convergence properties for local learning. Thanks to the convexity of
the federated component of the learning process, our function space method can
learn a performant model in relatively few iterations. In addition, where they
are applicable, non-parametric models can provide more options to minimize
communication requirements at each iteration; for example, decision trees have
adaptive size and a very small minimal representation.

5.2.1 Related Work: Decentralized Federated Learning

For a recent review of DFL, see [14]. They provide an in-depth comparison between
centralized and decentralized approaches, and also designate some methods as semi-
decentralized. Among others, they highlight client data heterogeneity and efficiency
of computation, storage, and communication as open challenges.

The prominent FedAvg algorithm has a decentralized variant called Distributed
Federated Averaging with Momentum (DFedAvgM) [164]. Each client performs a
fixed number of gradient updates with momentum, then broadcasts its model. Clients
then average the model parameters they receive from their neighbors and begin a new
round of gradient updates.

Similarly to ours, some prior methods are based on a regularization that pe-
nalizes disagreement between neighboring models. While ours penalizes distance in
function space, prior work penalizes distance in parameter space. [176] propose a
method of asynchronous model propagating and updates with convergence in expec-
tation to the optimal solution for convex quadratic objectives. For more general
convex objectives, they propose a similar method based on the Alternating Direction
Method of Multipliers (ADMM) [23], a popular method for distributed convex opti-
mization. This approach additionally communicates a set of dual variables with the
same structure as the model parameters. [4] propose the Distributed Jacobi Asyn-
chronous Method (DJAM), which similarly has clients asynchronously update and
communicate models, but is based on a block-coordinate descent paradigm. They
show convergence with probability 1 for strongly convex objectives and empirically
demonstrate similar convergence rates to the ADMM variant of [176] without the
need to tune a hyperparameter. These methods are presented as learning person-
alized models since the regularization encourages similarity of neighbor models, but
does not require exact consensus, with the tradeoff of agreement and personaliza-
tion determined by a hyperparameter. Our approach can be used similarly, but we
generally seek an optimal consensus model.

Among such penalty-based methods, with a similar optimization algorithm to
ours, [12] uses the Distributed Proximal Gradient Method (DPGM) for the syn-
chronous distributed optimization of the sum of strongly convex smooth functions
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and possibly nonsmooth convex functions of scalar input. They frame the penalized
objective as a relaxation of the consensus-constrained objective and show convergence
to a neighborhood of the constrained optimum, including for an inexact variant where
the updates are assumed to be subject to error with limited expected magnitude.

If our method is used in parameter space instead of function space, it is similar
to a synchronous variant of DJAM, or a special case of a multidimensional DPGM.
We make similar assumptions with similar convergence guarantees; however, ours is
applicable to a much wider range of realistic learning problems since most learning
objectives are convex in function space, even if they are non-convex in parameter
space. We also provide an approach for increasing the penalty to achieve convergence
to the constrained solution itself.

Recently [91] survey tree-based methods in DFL. These methods rely on boosting,
and sometimes other ensemble methods. Our framework is model-agnostic, and it is
particularly pragmatic for single-tree models, which can maximize interpretability
and minimize communication cost.

5.2.2 Proximal Gradient Method in Function Space

We first formalize the notion of learning viewed in function space, then describe the
proposed framework for decentralized federated learning, its convergence properties,
and its application to a few model classes.

A hypothesis h : X → Y is a function mapping input values to a prediction. The
goal of a learning algorithm is to select an optimal hypothesis h∗ from a hypothesis
space H that minimizes an objective function or “risk” R : H → R. The term “risk”
is used to describe an expected loss, usually estimated empirically using the training
data. Here for convenience we use the term “risk” and the symbol R to encompass
the entire learning objective, including both the empirical risk and other components
such as regularization.

We assume that the hypothesis space H is a (real, separable) Hilbert space
equipped with an inner product ⟨·, ·⟩H : H × H → R and associated norm ∥h∥2H =
⟨h, h⟩H. A useful example is the space of L2-integrable functions from X ⊆ Rp to
Y ⊆ Rq, where the commonly associated inner product is

⟨h, g⟩H =

∫
X
⟨h(x), g(x)⟩Y dx (5.3)

and ⟨·, ·⟩Y is the usual vector inner product on Rq. This is by no means the only
possible Hilbert space or inner product, but it is simple and practical for learning
applications, so it is the main focus of the empirical evaluation in this work. When h
is a model, this inner product may be difficult to compute exactly or even approximate
efficiently; we discuss this challenge in Section 5.2.4.

Though most model classes do not exactly form a Hilbert space, many are rea-
sonable to analyze as such. For instance, neural networks and decision trees have
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a “universal approximator” property; they can approximate any function in L2 with
arbitrary precision, given enough size. Other classes, such as linear models, are them-
selves a subspace of L2.

In a decentralized federated learning setting, each client i ∈ [n] has a sample of
training data that define its local risk Ri, which it can use to learn a local model
hi. We focus primarily on consensus learning, where the goal is to select a consensus
model h∗ that minimizes the aggregate risk

R̄[h] =
∑
i

Ri[h]. (5.4)

It is assumed that the clients may not communicate data, so each risk Ri may only
be evaluated at client i, and clients communicate by exchanging models. Thus we
write an equivalent optimization problem in terms of local models with an agreement
constraint

H∗ = arg min
h∈Hn

∑
i∈[n]

Ri[hi]

s.t. hi = hj ∀i, j
(5.5)

where H∗ ⊆ Hn is the set of optimal consensus models and h∗ = (h∗, . . . , h∗) ∈ H∗.
Let L ∈ Rn×n be a symmetric Laplacian of the communication graph with Li,j < 0

if i and j are neighbors that may directly communicate and Li,i = −
∑

j ̸=i Li,j. To
make optimization possible in a distributed network, we relax the agreement con-
straint in (5.5) to a disagreement penalty 1

2
λ
∑

i ̸=j −Li,j∥hi − hj∥2 for some penalty
coefficient λ > 0. The relaxed optimization problem can then be written

H̃ = arg min
h∈Hn

∑
i∈[n]

Ri[hi] +
1

2
λ⟨h,Lh⟩Hn (5.6)

where L is a positive operator (Lh)i =
∑

j Lijhj on Hn, which is itself a Hilbert space

with inner product ⟨h,g⟩Hn =
∑

i⟨hi, gi⟩H, and H̃ is the solution set.
To solve this, we use an iterative process initialized by each client minimizing

its local risk: h
(0)
i = arg minh Ri[h]. Then the clients exchange models with their

neighbors on the network and the proximal gradient method, a convex optimization
algorithm to minimize the sum of a smooth, differentiable function and a possibly
nonsmooth function, yields the separable iterative update

hk+1
i = arg min

hi∈H
Ri[hi] +

1

2γ
∥hi − hk

i ∥2 + λ
∑
j∈[n]

Li,j⟨hi, h
k
j ⟩H (5.7)

for proximal gradient parameter γ, which is analogous to a learning rate. This depends
only on information available to client i at iteration t and is solved using a local
learning algorithm augmented with a function space regularization.
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Figure 5.5: Visualization of the first two iterations of our algorithm applied to learn
trees (without smoothed error) on the two moons data set, split into clients by class.
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An example of decision trees learned on toy data in this way is shown in Figure 5.5.
Here we use the inner product (5.3), which penalizes disagreement uniformly over the
bounding box. The data is split into two clients by class, which is considered a very
difficult case in FL due to high client heterogeneity. As a result, each client’s initial
model, which is just fit to its own data, is a single-leaf tree that always makes the same
prediction. Then the first iteration begins: the clients exchange their initial models
and bounding boxes and fit again. Essentially, whenever a client fits a model, it is
targeting the average of its own previous model and its neighbors’ previous models,
except where its own local data is present. The influence of local data causes changes
to the model that are then propagated to its neighbors in the next iteration, allowing
them to learn from other clients’ data without actually seeing it directly. In this
simple case, just one iteration achieves perfect global accuracy at both clients. As
the iterations proceed, the two clients’ models become more similar.

5.2.3 Convergence Analysis

We analyze the convergence of iteration (5.7) and the proximity of its solution set
H̃ to the consensus solution set H∗. We then discuss some practical considerations
related to the theoretical convergence. See Appendix B for omitted proofs.
Notation.

• On a vector in Hilbert space such as H or Hn, ∥·∥ denotes the norm induced by
the corresponding inner product. On a matrix or linear operator, ∥·∥ denotes
its spectral norm.

• Given v and nonempty set S, d(v, S) = infs∈S∥v − s∥ is the shortest distance
from v to S. For sets S and T , d(S, T ) = infs∈S,t∈T∥s−t∥ is the shortest distance
between them.

• E is the operator such that (Eh)i = 1
n

∑
j hj for all i, projecting h ∈ Hn to

consensus.

• Given a linear operator L, σ(L) denotes the spectrum of L. We say L has
spectral gap when there exists ν > 0 s.t. σ(L) ∩ (0, ν) = ∅.

• Given a linear operator L, we say L is positive if L is positive semi-definite and
self-adjoint.

Assumption 5.1. The client risks Ri are convex and have a minimum on H.

While convexity is a strong assumption in parameter space, virtually all commonly
used loss functions are convex in function space, making this broadly applicable.

Assumption 5.2. The communication graph represented by L is connected.
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The smallest eigenvalue of a graph Laplacian is always zero. Let ν be the second-
smallest eigenvalue of L; ν is known as the algebraic connectivity of the communica-
tion graph and Assumption 5.2 implies that ν > 0. Moreover, it is straightforward to
show that σ(L) consists of the eigenvalues of L, so L has spectral gap and ∥L∥ = ∥L∥.

Assumption 5.3. The proximal gradient parameter γ satisfies 0 < γ < 1
λ∥L∥ .

Then the proximal gradient method converges weakly to a solution of the relaxed
optimization problem (5.6) [39, Theorem 3.4 (i)]. However, under stronger assump-
tions, we can show fast convergence to a neighborhood of the solution set of the
original constrained optimization problem (5.5).

Assumption 5.4. For each i, Ri is convex quadratic; in particular, there exist posi-
tive operators Ai : H → H, ai ∈ H, and αi ∈ R such that Ri[h] = 1

2
⟨h,Aih⟩+⟨ai, h⟩+

αi. Moreover, Ai have spectral gap at least µ > 0 and commute with each other.

Assumption 5.4 implies that R is quadratic, in particular, R[h] = 1
2
⟨h,Ah⟩ +

⟨a,h⟩ + α with (self-adjoint) A satisfying (Ah)i = Aihi, ai = ai, and α =
∑

i αi.
Thus R is differentiable and ∇R is Lipschitz continuous with constant ∥A∥, and
σ(A) =

⋃
i σ(Ai), so σ(A) ∩ (0, µ) = ∅. The commutativity of Ai, Aj further implies

σ(
∑

i Ai) ∩ (0, µ) = ∅. Lemma 5.1 shows that these gaps in the spectra establish a
growth rate of the respective quadratic functions.

Lemma 5.1. Let φ be a quadratic function φ(h) = 1
2
⟨h,Ah⟩+ ⟨a, h⟩+α on a Hilbert

space H with a minimum value φ∗. If A is positive with spectral gap σ(A)∩ (0, c) = ∅,
then

∥∇φ[h]∥ ≥ cd(h, arg minφ) (5.8)

φ[h] ≥ φ∗ +
1

2
cd2(h, arg minφ) (5.9)

for any h ∈ H.

Next, Lemma 5.2 establishes the existence of spectral gap in the operator defining
the quadratic objective of the relaxed optimization problem (5.6).

Lemma 5.2. There exists some c > 0 such that σ(A + λL) ∩ (0, c) = ∅.

With these, Theorem 5.1 establishes linear convergence of iteration (5.7).

Theorem 5.1. The distance of the clients’ local hypotheses to the relaxed solution
set is bounded by

d(hk+1, H̃) ≤ 1√
1 + γc

d(hk, H̃). (5.10)
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Proof. Let φ[h] = R[h] + 1
2
λ⟨h,Lh⟩ denote the minimization objective of the relax-

ation (5.6) and φ∗ = minh∈Hn φ[h]. By [13, Lemma 2.3, Remark 2.1], we have the
following bound for any h̃ ∈ H̃.

φ[hk+1]− φ∗ ≤ − 1

2γ
∥hk+1 − hk∥2 − 1

γ
⟨hk − h̃,hk+1 − hk⟩

=
1

2γ

(
∥hk − h̃∥2 − ∥(hk+1 − hk) + (hk − h̃)∥2

)
=

1

2γ

(
∥hk − h̃∥2 − ∥hk+1 − h̃∥2

)
.

Next Lemmas 5.1 and 5.2 imply that φ[hk+1] ≥ φ∗ + 1
2
cd2(hk+1, H̃). Applying this

to the above inequality,

1

2
cd2(hk+1, H̃) ≤ 1

2γ

(
∥hk − h̃∥2 − ∥hk+1 − h̃∥2

)
.

Since d2(hk, H̃) = infh∈H̃∥hk − h∥2, for any ϵ > 0, there exists h̃ ∈ H̃ such that

∥hk − h̃∥2 ≤ d2(hk, H̃) + ϵ. Then

1

2
cd2(hk+1, H̃) ≤ 1

2γ

(
d2(hk, H̃) + ϵ− d2(hk+1, H̃)

)
for any ϵ > 0, and the claim follows.

Now Theorem 5.2 shows that this solution is within O(1/λ) of the consensus
optimal solution set H∗.

Theorem 5.2. For a given λ, for any h̃ ∈ H̃,

d(h̃, H∗) ≤ ∥A∥
λν

√
∥A∥
µ

(
1 +

n∥A∥
µ

)
d(H∗, arg minR) ∈ O(1/λ). (5.11)

Together, these theorems tell us that the iteration converges quickly to the relaxed
optimum, and moreover, that as we increase the penalty coefficient λ, the relaxed
optimum approaches the consensus optimum, that is, the solution to the original
problem (5.5) of finding a globally optimal hypothesis.

Smoothed Squared Error

While quadratic loss functions are common, using a quadratic loss is not sufficient
to satisfy Assumption 5.4 (quadratic risk) because typical pointwise empirical risk
cannot be expressed as quadratic using the inner product (5.3). Fortunately, the
smoothed risk (2.1) induced by the uncertain input interpretation introduced in this
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thesis, combined with a quadratic loss, does satisfy Assumption 5.4 when the kernel
k has a minimum nonzero value.

In particular, suppose each client i has data xj ∈ Rp, yj ∈ Rq, j ∈ [Ni], and let
k : Rp × Rp be a symmetric smoothing kernel that integrates to 1 over the domain.
Then define risks as the smoothed sum squared error

Ri[hi] =
∑
j

Ex∼k(·,xj)∥hi(xj)− yj∥2

=
∑
j

∫
z

k(z,xj)∥hi(z)− yj∥2 dz

=
∑
j

∫
z

k(z,xj)(hi(z)⊤hi(z) + y⊤
j yj − 2hi(z)⊤yj)dz

=
1

2

〈
hi, 2

∑
j

k(·,xj)hi

〉
+

〈
−2
∑
j

k(·,xj)yj,hi

〉
+
∑
j

y⊤
j yj

where the spectrum of the positive linear operator hi 7→
(∑

j k(·,xj)
)
hi(·) is the es-

sential range of
∑

j k(·,xj). Then µ = 2 minj,z|k(z,xj)>0 k(z,xj) and ∥Ai∥ is bounded
by ∥Ai∥ ≤ 2

∑
j maxz k(z,xj); if we assume k(·,xj) is the same at each j, then µ and

∥A∥ are simply twice its minimum nonzero value and up to 2N times its maximum,
respectively, suggesting the use of uniform kernels.

Here we have intentionally defined the risk as the sum, rather than the mean, of
loss values at the training samples so that, when the risks are summed over the clients
as in the objective (5.6), all samples are equally weighted. This also prevents µ from
depending on the number of samples.

This error smoothing is often important to achieve good performance. Without
it, it is possible that, as optimization proceeds, both local risk and disagreement
approach zero, but average global accuracy, that is, the accuracy on the union of all
training sets, averaged over client models, does not improve. We sometimes observe
this in practice when not using error smoothing, especially for moderate to high
dimensional data where the coverage of the data over the domain is poor. However,
for simple cases with good coverage of the domain, such as the example in Figure 5.5,
it can perform just fine without error smoothing.

With Bounded Errors

Suppose update (5.7) is carried out with additive error ek ∈ Hn as

hk+1
i = eki + arg min

hi∈H
Ri[hi] +

1

2γ
∥hi − hk

i ∥2 + λ
∑
j∈[n]

Li,j⟨hi, h
k
j ⟩. (5.12)

This error can account for imperfect learning algorithms, hypothesis spaces that
are not Hilbert spaces but are a ε-cover of one, etc. Incorporating this into Equa-
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tion (5.10) via the triangle inequality, we have

d(hk+1, H̃) ≤ 1√
1 + γc

d(hk, H̃) + ∥ek∥ (5.13)

and, if ∥ek∥ is bounded by a constant for all k, then the accumulation of error is
bounded by a convergent geometric series. This means we can expect convergence
close to the optimum even if the learning algorithm cannot solve (5.7) perfectly, which
is the case for both neural networks and trees of bounded size.

5.2.4 Local Learning in Function Space

We next discuss how the optimization problem in iteration (5.7) can be solved by in-
corporating function space regularization with learning algorithms. We give a model-
agnostic strategy using a Monte Carlo method to approximately compute the inner
product (5.3) as well as better model-specific methods for a non-exhaustive list of
prominent model classes.

Model-agnostic Approximations

The inner product (5.3) and associated norm can be estimated by a Monte Carlo
method arising naturally from the equalities

⟨h, g⟩H = m(X )Ex∼UX [⟨h(x), g(x)⟩Y ] (5.14)

∥h∥H = m(X )Ex∼UX [∥h(x)∥Y ] (5.15)

where UX is the uniform distribution on X and m(X ) is the Lebesgue measure, or
p-volume, of X ⊆ Rp. This, of course, demands that m(X ) is finite, but this is of little
practical consequence. A similar strategy can be employed for other inner products.
If the risk is based on mean squared error, as is recommended by our convergence
theory, then this strategy applied to (5.7) can be reduced to simply incorporating a
number of appropriately-weighted random samples from UX into the training set with
labels the outputs from other models.

While this is simple and general, it is the least desirable approach overall. The
quality of the approximation depends on the number of samples, and as the dimension
of X increases, so does the number of samples required to achieve reasonable coverage.
Depending on the model, it may be expensive to compute the output of several models
on very many data, and some learning algorithms may not handle very large training
sets efficiently. This motivates future work to improve sample efficiency, either by
modifying the inner product or using a more efficient sampling strategy.

Neural Networks

Neural networks are typically trained using a minibatch gradient-based optimization
algorithm. This motivates a variation of the above model-agnostic concept where
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new samples are taken at each batch. Recall that we recommend a smoothed squared
error loss and defining local risk as the sum, rather than mean, of loss on local data.
Then at client i, the normalized loss for a batch (x1, y1), . . . , (xb, yb) is

1

bq

b∑
i=1

∥h(xi + ϵi)− yi∥2

+
m(X )

Nb′q

b′∑
i=1

[
1

2γ
∥h(zi)− hk

i (zi)∥2 + λ
∑
j ̸=i

−Li,j∥h(zi)− hk
j (zi)∥2

] (5.16)

where b is the batch size, b′ is the penalty batch size, N is the local training set size,
each ϵi is sampled from k(·, xi), and each zi is sampled from UX . For classification,
where Y = [0, 1]q, this scaling places the first (risk) term in [0, 1] and the second

(penalty) term in [0, m(X )
N

( 1
2γ

+ λLi,i)].

Decision Trees

Decision trees are an ideal model class for the application of this framework. Not
only are they non-parametric, making them compatible with function space but not
parametric FL methods, but the KDDT fitting algorithm provides an efficient fitting
mechanism for both smoothed squared error and regularization to other models.

We assume the domain X is a hyperrectangle, for example, a bounding box of the
data. Then a tree can be represented as a collection of hyperrectangles Ri ⊆ X for
leaf nodes i and associated values vi ∈ Y . The leaves form a partition of X , and the
tree as a function is written

h(x) =
∑
i

1{x ∈ Ri}vi (5.17)

and, for a second tree g with nodes Sj and values wj, inner product (5.3) is

⟨h, g⟩ =
∑
i

∑
j

m(Ri ∩ Sj)⟨vi,wj⟩ (5.18)

with m the Lebesgue measure, which is easy to compute for the intersection of hy-
perrectangles. By traversing one tree and tracking the intersecting subtrees of the
other, one can avoid computing the zero-measure terms, which are the majority if h
and g are similar trees; if h and g are identical, then the number of nonzero terms is
just the number of leaves. Since our algorithm penalizes disagreement, the trees are
usually similar in practice. However, in the worst case, every term may be nonzero,
and the computational cost is proportional to the size of h times the size of g.

Now we have that trees are a collection of hyperrectangles with associated values,
and we have a means of extracting those hyperrectangles on a domain. As described
in Section 2.3 and Theorem 2.2, the KDDT fitting algorithm with Gini impurity can
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fit a tree to minimize squared error uniformly over hyperrectangle inputs; this is the
same as normal fitting with box kernels, except that the boxes each have different
dimensions from the others. Thus the KDDT algorithm is straightforwardly applied
to solve (5.7) with smoothed squared error.

If using unsmoothed squared error with regularization to other trees, fitting is
more complicated. By a straightforward generalization of Theorem 1 of [77], during
the search for an optimal split, for each training index i and feature index f ∈ [p],
both zf < xi,f and zf ≤ xi,f , where z is an input to the tree, are candidates for the
optimal decision rule. This is achievable with an alteration of the KDDT fitting al-
gorithm, but it introduces the strange phenomenon of leaves that have zero measure,
which are completely absent in the computation of function inner products. Thus
two trees may have zero disagreement in function space, but make completely differ-
ent predictions on the data. It can be circumvented by setting a stopping condition
for tree fitting that prevent zero-measure leaves, but simply using smoothed squared
error is simpler, better motivated in the context of function space disagreement regu-
larization, and likely to result in better performance anyway, as demonstrated by the
superior performance of KDDTs over DTs in Section 2.3.6.

It should also be noted that the KDDT algorithm is only useful when the choice
of inner product and smoothing are compatible with its assumptions as specified in
Section 2.3.3. If not, we would need a more general fitting algorithm, or lacking that,
revert to model-agnostic approximations.

Linear Models

In Section 2.4.2, we establish an equivalence of error smoothing, a kind of function
space regularization, to parameter regularization for linear models. Since the differ-
ence of linear models is linear, this also implies that the function space regularization
of the difference of linear models is equivalent to a regularization on the difference of
parameters. Thus the proposed function space DFL framework, as we apply it in this
work, is equivalent to a parameter space method for linear models. For this reason,
we omit linear models from our empirical evaluation.

5.2.5 Experiments

To demonstrate the proposed algorithm, we benchmark our method applied to KDDTs
and a small MLP on the 12 data sets summarized in Table 2.1. To compare against
the most similar parametric method, we use as a baseline a synchronous variant of
DJAM which we call Parameter Space Regularization (PSR). We initially included
DFedAvgM as a baseline, but since it trains only for a handful of updates per com-
munication iteration, whereas the other methods fully train a model, it was not able
to achieve meaningful performance in the 20 iterations in our experiments, so we omit
it from the results.
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For each data set, we randomly split it into 50% train, 50% test, then split the
training data into clients by using k-means to group the features into two clusters.
This is a split with high client heterogeneity. We also split the data by class, that
is, such that there is one client per class, and each client sees only one class. This is
the most extreme case of client heterogeneity. To define the communication graph,
we sample a random ring (2-regular) graph. Additional experiment details are in
Appendix C.8.

For our FSR methods, we use smoothed squared error with a box kernel with
radius δ, that is, k(z,x) ∝ 1{∥z − x∥∞ ≤ δ}. We select λ and δ by training models
with a range of values for each and selecting the ones that result in the highest final
average global training accuracy. As a result, this is more of a proof-of-concept than
a demonstration of best-case practical utility, and we leave the problem of efficient
hyperparameter selection in a distributed setting to future work.

The results for the cluster-based data split are shown in Figure 5.6. On most data
sets, we see that the FSR-based methods learn faster than PSR, sometimes reaching
their best accuracy in just one or two rounds of communication. They also often out-
perform PSR in final accuracy. The FSR KDDT and FSR MLP predictably perform
differently, with each outperforming the other about half the time. In these experi-
ments, the tree size is not tuned by cross-validation, and the other hyperparameters
are selected by training accuracy, so the trees sometimes overfit more than the MLPs.

On a few data sets, the FSR-based methods fall short in performance. The worst
cases are optdigits and pendigits, image data where the number of informative features
is likely to be high; this is consistent with our expectations for the limitations of the
method in its current form, but ongoing efforts show promise towards improving the
resilience of the method to higher-dimensional data.

The results for the class-based data split are shown in Figure 5.6. This is the most
extreme possible heterogeneous split and, unsurprisingly, the PSR method is unable
to learn anything in these experiments. For FSR, the results vary, but it is clearly
learning in all cases, which is a significant feat for this kind of data split, especially in
so few iterations. In most cases, convergence is slower compared to the cluster-based
split. This is due in part to the fact that, for data sets with more than two classes, the
ring graph means that it takes longer for information to propagate across all clients.
It is also due to to the inherent challenge of the class-based split itself. In simple,
low-dimensional examples such as Iris, our methods perform very well, still reaching
good performance in few iterations. In the more challenging cases, learning is slower
and the accuracy is sometimes unstable across iterations.

It is interesting to note that, despite the simple Monte Carlo method used to
apply our FSR method when training the MLP (we use 1000 uniformly random
samples for regularization per minibatch, which is very reasonable), stable learning
is possible even on moderately-dimensional data where sampling random noise would
seem not to cover the domain well. In these cases, the (randomized) error smoothing
is crucial: there are cases where, without error smoothing, the disagreement penalty
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Figure 5.6: Results for FL experiments with data split by clustering.
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Figure 5.7: Results for FL experiments with data split by class.

117



does nothing to improve accuracy compared to local learning alone; however, with it,
performance is very good.

5.2.6 Limitations and Future Directions

Limitations

The most important limitations of the proposed framework are as follows.

Hyperparameter selection. Our algorithm introduces hyperparameters in the
form of the regularization coefficient λ and, if using smoothed error, the size and shape
of the kernel. We discuss kernel choice in Section 2.5. As for λ, while the convergence
theory suggests setting λ based on µ, µ may be very large; for instance, with box
kernel with radius δ in p dimensions, µ is proportional to (2δ)p. Learning algorithms
are not likely to work well with extremely strong penalties like this. Hyperparameter
selection is further complicated by the distributed setting, where tuning efforts cost
valuable iterations and bandwidth, and where computing global performance metrics
without exchanging data may not be straightforward.

Computational cost. While our approach is promising for reducing the total
communication cost and iterations needed to learn a model, the need to compute
or approximate a function inner product can significantly increase the cost of the
local learning problem at each iteration, depending on the model, inner product,
connectivity of the network, and other factors. Moreover, our method, like DJAM,
fully solves a local optimization problem at each iteration, and therefore has higher
computational cost per iteration compared to methods like DFedAvgM that only
perform a fixed number of updates at each iteration.

Curse of dimensionality. When using the basic function inner product (5.3),
agreement is enforced uniformly over the domain, which might not be well-aligned
with the risk for high-dimensional data, which is often assumed to lie on a low-
dimensional manifold. The increasingly large penalty with the dimension as suggested
by our convergence theory, as mentioned above, is one way this manifests. Moreover,
the Monte Carlo approximation of the inner product, which we use with neural net-
works, suffers from poor sample complexity for high-dimensional domains. Further
innovation is required for the proposed framework to competitively learn models for
high-dimensional information.

Future Directions

This work lays the theoretical foundation and and gives an empirical proof of concept
for the proposed method; there are many possible directions for future development
and study.

Comprehensive application and benchmarking. This work proposes the
foundation for a new paradigm of decentralized federated learning, and accordingly,
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the evaluation is a proof-of-concept focusing on comparison against similar founda-
tional methods from the parametric paradigm. It is left to future work to benchmark
the method against more complex state-of-the-art methods with strategies that aim
to address specific challenges, such as client heterogeneity and the necessity of asyn-
chronous updates. Where possible, the strategies that augment parametric methods
should also be incorporated into our function space approach. It is also left to fu-
ture work to apply the framework to various other learning tasks such as regression,
unsupervised and self-supervised learning, etc.

Asynchronous updates. Synchronous methods can only proceed as quickly as
the slowest participant. In a dynamic or unreliable network with clients of vary-
ing computational power and availability, an asynchronous approach is preferable.
Asynchronous methods are common in the literature, and several of the most related
methods to ours are asynchronous as covered in Section 5.2.1, so we are optimistic
that an asynchronous variant of our method can be developed and analyzed.

Increasing λ. Theorem 5.1 shows that, to a point, convergence is faster when λ
is smaller; however, Theorem 5.2 shows that the relaxation is closer to the constrained
solution when λ is larger. This motivates a strategy for increasing λ during optimiza-
tion to achieve fast convergence to H∗. Such a strategy may also mitigate the burden
of choosing λ. An ideal method would update λ frequently, even every iteration; to
avoid the overhead of coordinating synchronous updates to λ across the network, one
might, for example, allow each client to have its own local λ that is updated and
exchanged with neighbors each iteration. An ideal method should also be sensitive
to changes such as the introduction of new clients or data. While these adaptations
would be practically ideal, convergence analysis may be more challenging.

Broader support for specific models. This work covers efficient deterministic
learning with function space regularization for a couple specific model classes, but
such methods surely exist for others, and further study into such methods would
improve the efficiency and performance of those models when used in this framework
compared to black-box approximations. Promising places to start would be tree
ensembles, which can extend the analysis of this work, and unsupervised methods
such as clustering and mixture modeling, which open the door to a new application
of the algorithm and are promising candidates for a precise and efficient function
space inner product.

Improved model-agnostic methods. The model-agnostic Monte Carlo method
proposed in Section 5.2.4 for computing function space inner products and norms is
simple to implement, but suffers from poor sample efficiency as the dimensionality
of the domain grows large. Methods for reducing the number of samples required
to adequately approximate the inner products and norms would reduce the com-
putational burden to solve (5.7) and, ultimately, make better models achievable on
higher-dimensional data in practice.

Improved inner products for high-dimensional input. This work uses a ba-
sic, common function inner product, but it is certainly not the only possible option.
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Others may better align with the risk for different problems. Most critically, high-
dimensional data is usually assumed to exist on some lower-dimensional manifold;
thus an inner product that implicitly assumes an approximately uniform distribution
is naive. A concrete example is images, where the sampling-based approximation of
the basic inner product is ultimately enforcing agreement on random noise images,
which are not representative of real images. One possibility is to use inner prod-
ucts weighted by density: given some probability density estimate p : X → R≥0,
⟨f, g⟩ =

∫
X p(x)⟨f(x), g(x)⟩ dx is a valid inner product that is better aligned with the

global risk. For some pairs of density model and prediction model, such as diagonal-
covariance Gaussian mixtures and trees, exact computation of the inner product is
possible; otherwise, for a model-agnostic Monte Carlo approximation, it reduces to
simply sampling from p instead of UX , permitting, for instance, the use of a gener-
ative model for the regularization of image, audio, or text models. Another simi-
lar approach would be to use some shared dimension reduction or low-dimensional
latent-space embedding to process the data, perhaps from a foundation model, then
use function space regularization to learn the mapping from the embedding to the
prediction. This has the potential to improve the performance and sample efficiency
of function space algorithms on high-dimensional data of various modalities.

Robustness on dynamic and unstable networks. There are various ways
that a network may be unstable and evolve over time, ranging from the introduction
of new clients and data to shifting network connections to the varying availability
of clients to participate to the permanent loss of some clients. For example, [14]
highlight military and vehicular applications as a domain where these challenges are
especially prevalent. Our method’s inherent fast convergence and low communication
cost are a good start, but it would be even stronger if combined with methods to
improve robustness to specific challenges such as these. Many existing works address
these challenges for other distributed optimization algorithms, and it is likely that
many can be adapted for use with ours.

Networks with heterogeneous models. An interesting feature of the function
space interpretation is that two models need not have the same architecture, or even
belong to the same model class, to compute the inner product and learn with function
space regularization. This unlocks the possibility of using different kinds of models
at different clients, for example, to accommodate different computational resources.
This would be most applicable for personalized models, as strictly enforcing consensus
might limit all models to whatever is expressible by all of them, including the least
powerful among them. An exploration of the use cases and practicality of this concept
would be well-motivated.

Privacy. Privacy, that is, the protection of client data from leakage, is a primary
motivation for using FL in many applications. Privacy depends partially on the
model, partially on the distributed learning algorithm, and partially on the method
of communication. It is left to future investigation to study the privacy implications of
the proposed algorithm, as well as the models it introduces as candidates for federated
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(a) Random forest (7870 nodes). (b) Merged tree (89 nodes).

Figure 5.8: A random forest trained on the two moons data set and a merged tree.

learning, such as decision trees.

Other applications of function space regularization. Outside decentralized
federated learning, there are other areas of machine learning research where function
space regularization of disagreement between models may be used in place of parame-
ter regularization to achieve convexity, compatibility with non-parametric models, or
other benefits. Examples include model distillation, ensemble merging, and continual
learning.

5.3 Ensemble Merging

The hardware limitations, energy costs, and transparency needs of various applica-
tions motivate the topic of model compression [27], that is, the reduction of the size
or complexity of a trained model with minimal reduction in performance. A com-
mon paradigm for model compression is knowledge distillation, where a small student
model learns from a large teacher model, or ensemble of teacher models. See [37, 45]
for surveys on model compression and [79] for knowledge distillation.

The vast majority of recent work focuses on the compression of large neural net-
works to reduce hardware and energy demands. However, the compression of tree
ensembles by merging into a single tree, despite less recent focus, is particularly well-
motivated due to the widespread application of tree ensembles. A good merging
algorithm may achieve the best of both, that is, the reliable good performance of tree
ensembles and the compactness, efficient inference, and interpretability of single-tree
models.

Algorithms for solving local learning problems with function space regularization
as discussed in Section 5.2.4 can also be applied directly as knowledge distillation
algorithms by simply fitting with regularization to teacher model(s) without any local
data. Since tree ensemble merging is especially well-motivated, and since the KDDT
fitting algorithm easily generalizes to an efficient, deterministic algorithm for learning
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trees with function space regularization to other trees, we study in this section the
application of this algorithm for merging tree ensembles. A visual example is shown
in Figure 5.8.

A number of prior works focus on the merging of tree ensembles. [107] recently
surveys tree aggregation, including both the selection of a representative tree from
a set and the merging of trees, noting the relevance of these topics to federated
learning. They further subdivide methods of merging decision trees into those that
1. aggregate decision regions, 2. aggregate hierarchical structures, and 3. aggregate
logical rules. Our approach is best aligned with category 1., as we essentially interpret
trees as a collection of hyperrectangular regions and use the KDDT fitting algorithm,
a generalization of CART, to fit to them. Recent work in this category includes the
following. [56] interpret a tree ensemble as the set of hyperrectangles formed by the
overlap of a leaf from each tree. They propose a procedure to construct a tree to
partition these regions, thereby exactly representing the ensemble, then prune it to
reduce size without affecting classification accuracy. [8] take a similar approach, but
use a set of heuristic criteria to merge the regions to combat the exponential explosion
of their quantity. [162] explicitly computes all regions, weights them importance based
on one of several aggregations of the amount of data in the leaves of which the region
is the intersection, merges contiguous same-class regions, and constructs a tree to
represent the final list of regions.

Compared these methods, our approach is simple and easy to understand and
implement as a natural extension of universally understood tree fitting methods. It
is fully deterministic, requires no held out data, and enables intuitive control of the
tradeoff of tree size vs. fidelity through typical tree growth stopping conditions. It
never explicitly represents overlapping leaf regions like prior work, and since it stops
tree construction early rather than post-pruning to the desired size, growing small
trees is very efficient. On the opposite end of the spectrum, if allowed to fully grow, the
merged tree exactly matches the ensemble. Like all region-based methods, however, it
suffers from a curse of dimensionality where the number of overlapping regions grows
at worst exponentially with the dimension of the input. While our method avoids
the associated exponential increase in cost for a given tree size, it cannot avoid the
increase in the size of tree required to approximate an ensemble with a useful level of
fidelity.

5.3.1 Experiments

We demonstrate the application of this approach to ensemble merging on random
forests trained on the 12 data sets described in Table 2.1. We start by training DTs
and RFs of 100 trees, both with tree size selected by 5-fold cross-validation, then
merge trees with size up to four times the size of the DT or the average size of trees
in the RF, whichever is larger. Additional details in Appendix C.9.

The results are shown in Figure 5.9, which shows test accuracy vs. tree size aver-
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Figure 5.9: Results of ensemble merging experiments. For RFs, the average tree size
is reported; the total model size is much larger.
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aged over 5 trials. For random forests, we show the average tree size. As expected, for
low-dimensional data, we are able to achieve a merged tree of reasonable size that out-
performs a tree trained directly on the data. However, for even moderate-dimensional
data, it is clear that a very large merged tree is often needed to approximate the en-
semble well. This may still be useful if, for example, fast single-thread inference is
needed, which is faster with a large tree than a similarly sized or even somewhat
smaller ensemble.
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Chapter 6

Conclusions

6.1 Contributions

In this thesis, towards the development of trustworthy methods in machine learning,
we adopt of a functional view of models and introduce a formalism for uncertain
interpretation of input that can be viewed as a kind of functional regularization. We
develop methods for its efficient application to decision trees, a staple model class
with inherent trust benefits that has fallen behind in the modern ML landscape. The
resulting model class, a novel FDT called KDDTs, offer a variety of general and
trust-related enhancements over conventional trees.

We test the KDDTs, as a form of regularized decision tree, against various notions
of robustness. Compared to conventional decision trees, they have reduced sensitiv-
ity to small changes in data, better robustness to noisy features, better robustness
to noisy labels, and an efficient mechanism for achieving and verifying adversarial
robustness through the theory of randomized smoothing. We also propose the first
verification algorithm for FDTs along with theoretical results and benchmarks show-
ing its practicality and superiority to existing approaches.

We leverage the efficient fitting and differentiability of KDDTs to propose the
first algorithm for gradient-based learning of feature transformations for trees that
continually refits the tree throughout the process, retaining the adaptability, size
minization, and information hierarchy of the classic CART algorithm while greatly
reducing the size and increasing performance of single-tree models. When combined
with domain-appropriate feature class selection and regularization, the results achieve
an unprecedented balance of performance and interpretability. It also opens the door
to more practical application of tree-based methods to modalities such as time series
and images.

We enhance the utility of trees, which have fallen behind due to the focus of
modern research on parametric models. We propose a method for Semi-supervised
Learning (SSL), where there are few existing methods for decision trees, that leverages
the unique capabilities of KDDTs. We introduce a new method of Federated Learning
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(FL) in function space that is model-agnostic, theoretically and empirically fast to
converge, and resilient to client heterogeneity. We furthermore introduce an ensemble
merging method based on the FL algorithm that is efficient, simple, and effective for
sufficiently low-dimensional data.

Tree-based models are everywhere, from retail to finance to sciences to healthcare.
Anywhere they are applied, KDDTs can be swapped in with little effort, enhancing
performance, utility, and trustworthy qualities. Our implementation of KDDTs and
related methods covered in this thesis, including demonstration of its application, is
publicly available at https://github.com/autonlab/kddt.

In particular, there are certain conditions where KDDTs shine most. Our bench-
mark results in Section 2.3.6, as well as the study of robustness in Chapter 3, suggest
that KDDTs outperform alternatives the most when a single tree is preferable to an
ensemble, the training set size is small, the features or labels are noisy, or there is
possibility of adversarial perturbation. In particular, the results in Figures 3.4 and
3.5 suggest that, if the noise in the data is understood, then that knowledge may
be leveraged toward kernel design to achieve better performance than by automatic
kernel design. KDDTs are also uniquely useful when interpretability is a priority,
both by improving single-tree performance and enabling ensemble merging, and also
by making it possible to learn transformations of features that result in small, perfor-
mant trees, as shown in Chapter 4. These also reduce featurization effort that would
otherwise be required to effectively apply trees to time series and simple images, and
future work may extend it further. Finally, the unique SSL and federated learning
capabilities enabled by KDDTs are useful in applications with limited labeled data
and restrictions on data sharing, respectively. In particular, the federated learning
capability outperforms alternatives when the clients are highly heterogeneous, when
fast convergence with low communication cost is a priority, or when tree-based models
are preferred for their interpretability and utility.

6.2 Key Takeaways

We restate some of the themes and lessons learned from this work in hopes that they
may inspire future endeavors towards the development of trustworthy AI.

A model that is simple and embraces uncertainty enables trust. We
spoke at length in the introduction of this thesis about the connection between ma-
chine learning and science and how a good model, like a good scientific theory, is
simple. In this work, we have demonstrated that, by combining simple models with
an interpretation of data as uncertain, we can make strides towards trustworthy AI.
These models are robust. They are transparent: their merits and flaws are evident, ac-
celerating iterative improvement and calibrating trust; they are directly interpretable
without the need for post-hoc approximate explanation; and they may even lead to
insights in their domains of application. They are practical and high in utility. More-
over, models with these attributes are better inclined to tackle other complex and
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computationally difficult problems in Trustworthy AI.
Both classical and modern perspectives are important. This work takes

inspiration from modern perspectives and recent developments in areas such as neural
network verification, randomized smoothing, nonconvex gradient-based optimization,
and decentralized federated learning and applies them to decision trees, a flagship
of classical machine learning. This blend of perspectives inspires methods that are
more efficient, performant, or trustworthy than achievable by either perspective in-
dividually. We believe that opportunities like these are abundant, and the work is
important; despite perceptions arising from the limitations of classical methods, they
and the problems they are well-suited to address are abundant, and these problems
are by no means completely solved. We consistently see ML practitioners and a sub-
community of researchers that value this work. However, for this kind of work to
truly flourish, mainstream values in ML research must expand to embrace both sides
of the field. With enough time and effort, we may see the gap close and achieve the
best of both.

Models are not just parameters. To speak on one particular difference in
perspective, much of the research in ML, especially recently, focuses exclusively on
parametric models. In our opinion, this tips too far in the direction of exploitation of
successful ideas at the cost of exploration of new ones. In this work, we have shown
that core concepts like regularization, differentiation, and model similarity that are
normally associated with model parameters need not be. In this case, we achieve
these by adopting a functional perspective of models, introducing different benefits
and drawbacks; for instance, the functional perspective on federated learning can
benefit neural network learning, even though they are parametric. It of course also
enables compatibility with non-parametric models like trees.

6.3 Limitations and Future Directions

Much of this work and its current limitations motivate future study. We highlight a
number of promising topics, ordered according to the relevant content in this thesis.

Kernel Selection. As described in Section 2.5, the choice of kernel shape and
size is crucial and nontrivial. Since its selection cannot be easily separated from
the model, the best approach we have so far is to choose a simple, general kernel
shape such as a box (uniform on a hypercube) or Gaussian kernel and choose a single
bandwidth for all features by cross-validation with the learned model. Selection
methods that achieve lower cost without a loss in performance would make KDDTs
and other models with the the uncertain interpretation more practical to learn in
resource-constrained settings. Moreover, cross-validation with the learning algorithm
is generally not practical for selecting from a larger space of kernels, such as kernels
with different bandwidth for each feature, or adaptive kernels with different size
and/or shape at different inputs. If such kernel selection methods can be developed,
it has the potential to reduce the cost of training and further improve the performance
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of the associated models.
KDDTs as Interpretable Intermediate Layers. In Chapter 4, we leverage

the differentiability of KDDTs so that they can function as the final layer of a multi-
layer gradient-based learning pipeline. However, it is not currently possible to use
them as an intermediate layer since they require labeled data for tree fitting; we can
not update or fit them using loss gradients alone.

If this capability can be developed, it would open up a world of possibilities for
the application of KDDTs as efficient, sparsely activated, interpretable components
at various points in a larger pipeline. As a few speculative examples, KDDTs could be
used as components of a neural architecture, as a fully tree-based layered architecture,
or as interpretable routers for mixture-of-experts.

We note that many works already train trees in a fully gradient-based fashion,
ranging from simple FDTs as in [163] to complex tree-shaped networks composed of
transformers, routers, and solvers, each potentially a deep architecture, as in [168].
The key ingredients that distinguish our method are the formalism for defining fuzzy
splitting and its efficient integration with the CART algorithm so that trees may be
grown in a differentiable setting, allowing adaptive tree structure as learning proceeds.
A good adaptation of our method should maintain these unique advantages.

More Expressive and Specialized Feature Transforms. In Section 4.2.3,
we propose a number of feature transformation primitives for use with our tree fea-
ture learning pipeline studied in Chapter 4. We selected these for their simplicity,
transparency, and general applicability. However, on complex and/or multimodal
data, more expressive and specialized features may improve performance at the cost
of some amount of transparency. Examples include the following.

• Template matching features with shift, scale, and/or rotation invariance.

• Image prototypes with a convolutional network for matching as in [34].

• Frequency-based features for time series.

• Featurization or other latent representation of text.

Though the interpretability of these varies, their use inside a tree-based partitioning
model may still be more interpretable than their use with, say, a neural network. See
the motivating discussion and Fashion-MNIST example in Section 4.3.4. Moreover, a
great deal of research has gone into post-hoc explainability for various components,
and the tree may serve to enhance the utility of such methods by breaking the expla-
nation down into a series of simpler steps.

Decentralized Federated Learning. The DFL framework proposed in Sec-
tion 5.2 is foundational and opens many avenues for future study. We discuss these
at length in Section 5.2.6.
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Appendix A

Acronyms

ACR Average Certified Radius

ADMM Alternating Direction Method of
Multipliers

AI Artificial Intelligence

CART Classification and Regression Trees

CCP Cost-Complexity Pruning

CDF Cumulative Distribution Function

DAG Directed Acyclic Graph

DFedAvgM Distributed Federated Aver-
aging with Momentum

DFL Decentralized Federated Learning

DJAM Distributed Jacobi Asynchronous
Method

DPGM Distributed Proximal Gradient
Method

DRS (De-)Randomized Smoothing

DSE Decision Stump Ensemble

DT Decision Tree

ERM Empirical Risk Minimization

ET ExtraTrees

FDT Fuzzy Decision Tree

FDD Fuzzy Decision DAG

FSR Function Space Regularization

FL Federated Learning

KDDT Kernel Density Decision Tree

KDE Kernel Density Estimation

LR Linear (or Logistic) Regression

MAE Mean Absolute Error

MAP Minimum Adversarial Perturbation

ML Machine Learning

MLP Multi-Layer Perceptron

MSE Mean Squared Error

ODT Oblique Decision Tree

RF Random Forest

SMT Satisfiability Modulo Theories

SSL Semi-supervised Learning

SSL-PCT Semi-supervised Learning Pre-
dictive Clustering Tree

SVM Support Vector Machine

TAI Trustworthy AI

TAO Tree Alternating Optimization

XGB Extreme Gradient Boosting
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Appendix B

Proofs

This section contains proofs omitted from the main text.

Theorem 2.2. For KDDTs, Gini impurity is equivalent to Mean Squared Error
(MSE) risk on the smoothed empirical distribution p̂k.

Proof. Begin by writing the empirical MSE for a KDDT classifier with underlying
tree h.

R[h] = Ex,y∼p̂k [∥y − h(x)∥22]

=
1

n

∑
i∈[n]

∫
Rp

k(z,xi)∥yi − h(zi)∥22 dz

=
1

n

∑
i∈[n]

∫
Rp

k(z,xi)(y
⊤
i yi + h(zi)

⊤h(zi)− 2y⊤
i h(zi)) dz

Substitute the crisp tree prediction h(x) =
∑

j∈leaves 1{x ∈ Rj}vj with Rj as in 2.7.

=
1

n

∑
i∈[n]

∫
Rp

k(z,xi)

(
y⊤
i yi +

∑
j,j′∈leaves

1{z ∈ Rj}1{z ∈ Rj′}v⊤
j vj′

− 2y⊤
i

∑
j∈leaves

1{z ∈ Rj}vj

)
dz

Leaves are non-overlapping, so 1{z ∈ Rj}1{z ∈ Rj′} = 0 when j ̸= j′.

=
1

n

∑
i∈[n]

∫
Rp

k(z,xi)

(
y⊤
i yi +

∑
j∈leaves

1{z ∈ Rj}v⊤
j vj

− 2y⊤
i

∑
j∈leaves

1{z ∈ Rj}vj

)
dz
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=
1

n

∑
i∈[n]

(
y⊤
i yi +

∑
j∈leaves

v⊤
j vj

∫
Rj

k(z,xi) dz − 2
∑

j∈leaves

y⊤
i vj

∫
Rj

k(z,xi) dz

)

Substitute Equation 2.6.

=
1

n

∑
i∈[n]

(
y⊤
i yi +

∑
j∈leaves

µj(xi)v
⊤
j vj − 2

∑
j∈leaves

µj(xi)y
⊤
i vj

)

Since
∑

i∈[n] y
⊤
i yi is constant, for the purpose of optimization, we can substitute it

for another constant n (when yi are indicators, they are actually equal).

=
1

n

(
n +

∑
i∈[n]

∑
j∈leaves

µj(xi)v
⊤
j vj − 2

∑
i∈[n]

∑
j∈leaves

µj(xi)y
⊤
i vj

)

=
1

n

(
n +

∑
j∈leaves

∑
i∈[n]

µj(xi)v
⊤
j vj − 2

∑
j∈leaves

∑
i∈[n]

µj(xi)y
⊤
i vj

)

Substitute using Equations 2.10 and 2.11.

=
1

n

(
n +

∑
j∈leaves

wjv
⊤
j vj − 2

∑
j∈leaves

wjv
⊤
j vj

)
=

1

n

(
n−

∑
j∈leaves

wjv
⊤
j vj

)

We have
∑

j∈leaves wj =
∑

j∈leaves
∑

i∈[n] µj(xi) =
∑

i∈[n] 1 = n.

=
1

n

∑
j∈leaves

wj(1− v⊤
j vj)

This is precisely the total Gini impurity as defined in Equations 2.9 and 2.12.

Theorem 2.3. For KDDTs, Entropy impurity is equivalent to cross-entropy risk on
the smoothed empirical distribution p̂k.

Proof. Begin by writing the empirical cross-entropy loss for a KDDT classifier with
underlying tree h.

R[h] = Ex,y∼p̂k [−y⊤ log h(x)]

= − 1

n

∑
i∈[n]

∫
Rp

k(z,xi)y
⊤
i log h(zi) dz
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Substitute the crisp tree prediction h(x) =
∑

j∈leaves 1{x ∈ Rj}vj with Rj as in 2.7.

= − 1

n

∑
i∈[n]

∫
Rp

k(z,xi)y
⊤
i log

∑
j∈leaves

1{z ∈ Rj}vj dz

Since leaves are a partition of Rp, the sum over j has exactly one nonzero term, so
we can take it out of the log.

= − 1

n

∑
i∈[n]

∫
Rp

∑
j∈leaves

1{z ∈ Rj}k(z,xi)y
⊤
i log vj dz

= − 1

n

∑
j∈leaves

∑
i∈[n]

y⊤
i log vj

∫
Rj

k(z,xi) dz

Substitute Equation 2.6.

= − 1

n

∑
j∈leaves

∑
i∈[n]

µj(xi)y
⊤
i log vj

Substitute using Equations 2.10 and 2.11.

= − 1

n

∑
j∈leaves

wjv
⊤
j log vj

This is precisely the total Entropy impurity as defined in Equations 2.9 and 2.13.

Theorem 3.1. For any decision tree and symmetric, non-negative loss function, there
exist loss-minimizing leaf values that are plurality indicators.

Proof. The loss at a single leaf is as follows.∑
i∈[n]

µ(xi)ℓ(v,yi)

Let wj =
∑

i∈[n] µ(xi)1{yi = ek} denote the weight of class j ∈ [q] at the leaf.
Without loss of generality, assume w1 ≥ wj for j > 1, that is, label 1 is a plurality
label.

=

q∑
j=1

wjℓ(v, ej)

= w1ℓ(v, e1) +

q∑
j=2

wjℓ(v, ej)
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= w1ℓ(v, e1) +

q∑
j=2

(wj + (w1 − w1))ℓ(v, ej)

= w1

q∑
j=1

ℓ(v, ej) +

q∑
j=2

(wj − w1)ℓ(v, ej)

= w1c +

q∑
j=2

(wj − w1)ℓ(v, ej) (ℓ is symmetric)

≥ w1c (ℓ is non-negative and w1 ≥ wj)

= w1

q∑
j=1

ℓ(e1, ej) (ℓ is symmetric)

≥
q∑

j=1

wjℓ(e1, ej) (w1 ≥ wj)

=
∑
i∈[n]

µ(xi)ℓ(e1,yi) (as above)

This is the loss with v = e1. Therefore this leaf value, the indicator of a plurality
label, is a minimizer of the loss.

Theorem 3.2. The learned structure of a decision tree is invariant to forward loss
correction.

Proof. With forward correction loss ℓT , we have the following optimal leaf value v
(T )
j

at leaf j.

v
(T )
j = arg min

v

n∑
i=1

µj(xi)ℓT (v,yi)

= arg min
v

n∑
i=1

µj(xi)ℓ(Tv,yi)

A change of variables gives

Tv
(T )
j = arg min

v

n∑
i=1

µj(xi)ℓT (v,yi)

= vj

from which get corrected optimal leaf value v
(T )
j = T−1vj. Plugging this in, the total

corrected loss is ∑
j∈leaves

∑
i∈[n]

µj(xi)ℓT (v
(T )
j ,yi)
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=
∑

j∈leaves

∑
i∈[n]

µj(xi)ℓ(TT−1vj,yi)

=
∑

j∈leaves

∑
i∈[n]

µj(xi)ℓ(vj,yi)

which is the same as the loss without forward correction. Therefore, the same splits
are chosen, and the same tree structure is learned.

Theorem 3.6. Computing the smoothed prediction of a tree ensemble is NP-Hard.

Proof. We show a polynomial reduction from 3-SAT. A 3-SAT formula F with m
variables and n clauses has the form C1 ∧ C2 ∧ · · · ∧ Cn. Each clause Ci for i ∈ [n]
has the form Li,1 ∨ Li,2 ∨ Li,3. Each literal Li,j for i ∈ [n], j ∈ [3] is either a variable
Xki,j or its negation ¬Xki,j for some ki,j ∈ [m]. We call these positive and negative
literals, respectively. An assignment maps each variable to true or false; an assignment
satisfies F if the mapping causes F to evaluate to true. The 3-SAT problem is to
determine whether a satisfying assignment exists.

For each Ci, construct a tree Ti with input x

Ri,1(x)

1Ri,2(x)

1Ri,3(x)

10

where each Ri,j is a decision rule

Ri,j(x) =

{
xki,j > 0, Li,j = Xki,j

xki,j ≤ 0, Li,j = ¬Xki,j

and proceed right if the rule evaluates to true, otherwise left. Then we see that, if we
let Xi ⇐⇒ xi > 0, then Ri,j(x) ⇐⇒ Li,j, so Ci ⇐⇒ Ti(x) = 1.

Next, construct an ensemble E of 4n − 1 trees, of which 2n are two each of the
trees constructed above and the remaining 2n−1 are single-node stumps that always
predict 0. Such an ensemble predicts 1 if and only if all 2n of the non-stump trees
predict 1; therefore E(x) = 1 ⇐⇒ ∀i ∈ [n] Ti(x) = 1 ⇐⇒ ∀i ∈ [n] Ci ⇐⇒ F .

Suppose F is unsatisfiable. Then E(x) = 0 for all x, and any smoothing of the
predictions of E yields 0.

Suppose F is satisfiable with an assignment X. Then any corresponding x with
Xi ⇐⇒ xi > 0 has E(x) = 1. Moreover, if we consider the domain D = [−1, 1]m,
then the set of such x on D has measure 1; therefore, if we smooth the predictions
of E on UD, it yields a value strictly greater than 0.
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Thus F is satisfiable if and only if smoothing E on UD yields a value greater
than zero. From this we conclude that smoothing the predictions of ensembles is
NP-Hard.

Lemma 3.1. For any node i, ei =
∑

j∈Ti
v(i, j).

Proof. By induction. The base case occurs when i is a leaf. Leaves have a constant
value and no children, so

∑
j∈Ti

v(i, j) = v(i, i) = 0 = ei.
For the inductive case, in which i is an internal node, we assume that the claim

holds for the descendants of i, that is,

eℓi =
∑
j∈Tℓi

v(ℓi, j)

eri =
∑
m∈Tri

v(ri, j).

The following equality is evident from the illustration in Figure 3.11; it can also be
derived from Equation 3.11.

2ei =
∣∣lmin
i − lmax

i

∣∣+
∣∣umin

i − umax
i

∣∣
+ (1− σmin

i )eℓi + σmin
i eri

+ (1− σmax
i )eℓi + σmax

i eri

Divide by two and substitute Equations 3.12 and 3.13.

ei = v(i, i) + (1− σ̄i)eℓi + σ̄ieri

Apply the inductive hypothesis.

= v(i, i) + (1− σ̄i)
∑
j∈Tℓi

v(ℓi, j) + σ̄i

∑
j∈Tri

v(ri, j)

Substitute Equation 3.13.

= v(i, i) +
∑

j∈Tℓi
∪Tri

v(i, j)

=
∑
j∈Ti

v(i, j)

The claim follows by induction.

Theorem 3.8. If splitting the domain affects only the chosen node, then choosing to
split at the node that maximizes v(i, ·), where i is the root, minimizes error summed
over the resulting subdomains.
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Proof. Suppose the split occurs at node k. The σ̄ for the new subdomains are

σ̄−
k =

1

2
(σmin

k + σ̄k)

σ̄+
k =

1

2
(σ̄k + σmax

k )

which gives
σ̄−
k + σ̄+

k = 2σ̄k. (B.1)

By the main assumption of this theorem, the σmin, σmax, and σ̄ values are not affected
at any other node.

Let v− and v+ denote the new v for the new subdomains. From Equations 3.11,
3.13, and B.1, one can derive

v−(k, k) = v+(k, k) =
1

2
v(k, k) (B.2)

which is also made clear by examining Figure 3.11.
By Lemma 3.1, we have the following summed root error e−i + e+i for the two

resulting domains.

e−i + e+i =
∑
j∈Ti

v−(i, j) +
∑
j∈Ti

v+(i, j)

We have v−(i, j) = v+(i, j) = v(i, j) for j ̸∈ Tk since these do not depend on values
from k.

= 2
∑

j∈Ti\Tk

v(i, j) +
∑
j∈Tk

[v−(i, j) + v+(i, j)]

By Equation 3.13, we can see that, for any j ∈ Tk, v(i, j) = v(i, k)v(k, j)/v(k, k).

= 2
∑

j∈Ti\Tk

v(i, j) +
∑
j∈Tk

[v−(i, k)v−(k, j)/v−(k, k) + v+(i, k)v+(k, j)/v+(k, k)]

We have v−(i, k)/v−(k, k) = v+(i, k)/v+(k, k) = v(i, k)/v(k, k) since v(i, k)/v(k, k)
does not depend on k.

= 2
∑

j∈Ti\Tk

v(i, j) +
∑
j∈Tk

[v−(k, j) + v+(k, j)]v(i, k)/v(k, k)

= 2
∑

j∈Ti\Tk

v(i, j)

+ [v−(k, k) + v+(k, k)]v(i, k)/v(k, k)
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+
∑
j∈Tℓk

[v−(k, j) + v+(k, j)]v(i, k)/v(k, k)

+
∑
j∈Trk

[v−(k, j) + v+(k, j)]v(i, k)/v(k, k)

To the second line, apply Equation B.2. To v− and v+ in the last two lines, apply
the recursive definition of v from Equation 3.13.

= v(i, k) + 2
∑

j∈Ti\Tk

v(i, j)

+
∑
j∈Tℓk

[(1− σ̄−
k )v−(ℓk, j) + (1− σ̄+

k )v+(ℓk, j)]v(i, k)/v(k, k)

+
∑
j∈Trk

[σ̄−
k v

−(rk, j) + σ̄+
k v

+(rk, j)]v(i, k)/v(k, k)

We have v−(ℓk, j) = v+(ℓk, j) = v(ℓk, j) and v−(rk, j) = v+(rk, j) = v(rk, j) since
they do not depend on k. Then, apply Equation B.1.

= v(i, k) + 2
∑

j∈Ti\Tk

v(i, j)

+ 2
∑
j∈Tℓk

(1− σ̄k)v(ℓk, j)v(i, k)/v(k, k)

+ 2
∑
j∈Trk

σ̄kv(rk, j)v(i, k)/v(k, k)

Next, apply some of the same identities again in reverse order.

= v(i, k) + 2
∑

j∈Ti\Tk

v(i, j)

+ 2
∑
j∈Tℓk

v(i, k)v(k, j)/v(k, k)

+ 2
∑
j∈Trk

v(i, k)v(k, j)/v(k, k)

= v(i, k) + 2
∑

j∈Ti\Tk

v(i, j) + 2
∑
j∈Tℓk

v(i, j) + 2
∑
j∈Trk

v(i, j)

= 2
∑
j∈Ti

v(i, j)− v(i, k)

Finally, again apply Lemma 3.1.

= 2ei − v(i, k)
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Therefore the summed error is minimized when k is chosen to maximize v(i, k).

Theorem 3.9. For any ϵ > 0, an approximation with error at most ϵ is produced in
finite steps.

Proof. Let depth(Ti) be the depth of the tree rooted at i, with a single-node tree
having depth 1, and dist(i, j) the distance from the root i to j. Define

ϕ =
∑
j∈Ti

[depth(Ti)− dist(i, j)]v(i, j).

Intuitively, ϕ measures the approximation error weighted according to its depth in
the tree, where deeper is lower weight. We show that, in the worst case, when a
split occurs, a portion of that error is moved deeper into the tree or removed, thus
decreasing ϕ.

Let v′ denote the function v for a subdomain after the split, and similarly for ϕ.
We make the following three remarks.

1. For any j ̸∈ Tk, v′(i, j) = v(i, j) since it does not depend on k.

2. v′(i, k) = 1
2
v(i, k), as shown in the proof of Theorem 3.8.

3.
∑

j∈Ti
v′(i, j) ≤

∑
j∈Ti

v(i, j). If this does not hold, based on statement 1 and
on Lemma 3.1, the reduction of splitting value range would result in an increase
in the total approximation error, which is not possible based on the calculation
of the bounds in Equation 3.11.

These show that v(i, k) is decreased by half and v(i, j) for deeper nodes j are increased
by no more than the same amount. Since the increased nodes have a greater depth
than k, they have lower weight in ϕ; thus ϕ′ ≤ ϕ− 1

2
v(i, k).

Moreover, because k was chosen to maximize v(i, k), we have

ϕ ≤ |Ti|depth(Ti)v(i, k),

where |Ti| is the number of nodes in Ti, and therefore

ϕ′ ≤
(

1− 1

2|Ti|depth(Ti)

)
ϕ.

Thus we have convergence to ϕ < ϵ in finite steps for any ϵ > 0. Moreover, from the
expression of ei from Lemma 3.1, we can conclude ei ≤ ϕ, so we also attain ei < ϵ in
finite steps.

Lemma 3.2. An FDT with σ(z) = max(0,min(1, z)) can be constructed to represent
the polynomial

∑k
i=1 xi(xi − 1) +

∑k
i=1 xisi for 0 ≤ xi ≤ 1, si ∈ R in O(k2) time.
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Proof. By induction. The base case is k = 0, where the polynomial is equal to 0 and
can be represented by a single leaf with value 0.

For the inductive case, we assume k > 0 and that we have an FDT g(x) =∑k−1
i=1 xi(xi − 1) +

∑k−1
i=1 xisi. Double the leaf values of g to get 2g and incorporate

it into a new tree f with internal node parameters (a, b) and leaf values as shown
below, where ei is the vector with 1 at position i and 0 elsewhere.

(0, 1/2)

2g (0, 1/2)

4si − 4 (ei, 0)

4− 4si (ei, 0)

0 4

With splitting function σ(z) = max(0,min(1, z)), This evaluates as follows.

f(x) = (1/2)(2g(x) + (1/2)((4si − 4)

+ (1− xi)(4− 4si) + xi(4xi)))

= g(x) + xi(1− xi) + xisi

=
k∑

i=1

xi(xi − 1) +
k∑

i=1

xisi

It follows by induction that an FDT can represent this polynomial for any k. Each
step adds 8 nodes, so there are O(k) nodes total. Each internal node requires O(k)
for the parameters, resulting in overall O(k2) for construction of the tree.

Lemma 3.3. An FDT with σ(z) = 1
2
(1+ sign(z)) can be constructed to represent any

3-SAT formula with m variables and n clauses in O(mn) time.

Proof. A 3-SAT formula F with m variables and n clauses has the form C1 ∧ C2 ∧
· · · ∧ Cn. Each clause Ci for i ∈ [n] has the form Li,1 ∨ Li,2 ∨ Li,3. Each literal Li,j

for i ∈ [n], j ∈ [3] is either a variable Xki,j or its negation ¬Xki,j for some ki,j ∈ [m].
We call these positive and negative literals, respectively. An assignment ϕ maps each
variable to true or false; ϕ satisfies F if the mapping causes F to evaluate to true.

Let ek be the indicator vector of length m with 1 at position k ∈ [m] and 0
elsewhere. Define

ai,j =

{
eki,j , Li,j = Xki,j

−eki,j , Li,j = ¬Xki,j

.

Construct an FDT f : Rm → R with splitting function σ(z) = 1
2
(1 + sign(z)) as

follows, with parameters (a, b) shown for internal nodes and values for leaf nodes.
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(0, 0)

(a1,1, 0)

(a1,2, 0)

(a1,3, 0)

0

0

01

(0, 0)

(a2,1, 0)

(a2,2, 0)

(a2,3, 0)

0

0

01

. . .

(0, 0)

(an,1, 0)

(an,2, 0)

(an,3, 0)

0

0

01

0

We now show that, for x ∈ Rm, f(x) = 0 if and only if the assignments in the set
Φ(x) = {ϕ | for all k, xk > 0 =⇒ ϕ(Xk), xk < 0 =⇒ ¬ϕ(Xk)} all satisfy F .

Each literal Li,j corresponds to the internal node with parameters (ai,j, 0). If Li,j

is positive, then

σ(ai,j⊤x) =


0, xki,j < 0
1
2
, xki,j = 0

1, xki,j > 0

.

If Lij is negative, then

σ(ai,j⊤x) =


1, xki,j < 0
1
2
, xki,j = 0

0, xki,j > 0

.

Thus, each node has splitting value 1 if and only if the corresponding literal is true
for all ϕ ∈ Φ(x).

Suppose f(x) = 0. Then every leaf with value 1 must have weight 0 in the
computation of f(x), that is, for every clause Ci, (1/2)i

∏
j∈[3](1 − σ(a⊤

i,jx)) = 0.

Thus, for each i, there is some j such that σ(a⊤
i,jx) = 1. It follows that, for each i,

there is some j such that Li,j is true, so every ϕ ∈ Φ(x) satisfies F .
Suppose instead f(x) ̸= 0. Then some leaf with value 1 must have positive weight

in the computation of f(x), that is, for some clause Ci, (1/2)i
∏

j∈[3](1−σ(a⊤
i,jx)) > 0.

Thus, for this i, σ(a⊤
i,jx) < 1 for all j. It follows that, for this i, there is some ϕ ∈ Φ(x)

such that Li,j is false for all j, so Ci is false and ϕ does not satisfy F .
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Together these prove that f represents F as previously claimed. There are 8n+ 1
nodes and each internal requires O(m) parameters, so construction is O(mn).

Lemma 5.1. Let φ be a quadratic function φ(h) = 1
2
⟨h,Ah⟩+ ⟨a, h⟩+α on a Hilbert

space H with a minimum value φ∗. If A is positive with spectral gap σ(A)∩ (0, c) = ∅,
then

∥∇φ[h]∥ ≥ cd(h, arg minφ) (5.8)

φ[h] ≥ φ∗ +
1

2
cd2(h, arg minφ) (5.9)

for any h ∈ H.

Proof. Since a and α only shift φ, we may assume a = 0 and α = 0 without loss of
generality.

By the spectral theorem for bounded operators [143, Theorem VII.3], A is unitarily
equivalent to a multiplication operator: there exists a finite measure space (X ,Σ, µ),
a bounded measurable f : X → R, and a unitary U : H → L2(X , µ) satisfying
U−1TfU = A where Tf is the multiplication operator [Tfg](x) = f(x)g(x). The
spectrum of Tf is the essential range of f .

We first show (5.8). For a given h ∈ H, let g = Uh. Denote the projection of g
onto the kernel of Tf by g∗ = PTf

g with h∗ = U−1g∗. Denoting the zero set of f by
Of , and since U is unitary,

∥∇φ[h]∥2 = ∥Ah∥2

= ∥U−1TfUh∥2

= ∥Tfg∥2

=

∫
X
|f(x)g(x)|2dµ(x)

=

∫
X\Of

|f(x)g(x)|2dµ(x)

Since unitary equivalence implies equal spectrum, the essential range of f is nonneg-
ative and takes no positive value less than c. Thus we have

∥∇φ[h]∥2 ≥ c2
∫
X\Of

|g(x)|2 dµ(x)

= c2∥g − g∗∥2

= c2∥h− h∗∥2.

Moreover, ∇φ[h∗] = Ah∗ = U−1TfUU−1g∗ = U−1Tfg
∗ = 0, so h∗ ∈ arg minφ

and (5.8) follows.
Next we show (5.9). Define g, g∗, and h∗ as above. Again since U unitary,

φ[h] =
1

2
⟨h,Ah⟩
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=
1

2
⟨h, U−1TfUh⟩

=
1

2
⟨Uh, TfUh⟩

=
1

2
⟨g, Tfg⟩

=
1

2

∫
X
f(x)g(x)g(x) dµ(x)

=
1

2

∫
X
f(x)|g(x)|2dµ(x).

Proceeding as in the proof of (5.8),

φ[h] ≥ c

2
∥h− h∗∥2

and the claim follows since φ∗ = 0 and h∗ ∈ arg minφ.

Lemma 5.2. There exists some c > 0 such that σ(A + λL) ∩ (0, c) = ∅.

Proof. Let h ⊥ ker(A + λL) with ||h|| = 1. By Courant-Fisher [116, Theorem 12.1],
it is enough to show that h satisfies ⟨(A+λL)h,h⟩ ≥ c > 0. Recall from assumptions
2 and 4 that both A and λL have spectral gaps. Letting PA, PL, P

⊥
A , P⊥

L denote the
projections onto kerA, kerλL, and their orthogonal complements, self-adjointness
and spectral gaps imply

⟨(A + λL)h,h⟩ = (B.3)

⟨A(PAh + P⊥
A h), (PAh + P⊥

A h)⟩+ λ⟨L(PLh + P⊥
L h), (PLh + P⊥

L h)⟩ = (B.4)

⟨AP⊥
A h, P⊥

A h⟩+ λ⟨LP⊥
L h, P⊥

L h⟩ ≥ cA||P⊥
A h||2 + λcL||P⊥

L h||2. (B.5)

ConsiderHn the quotient ofHn by ker(A+λL), with norm ||h||K = infg∈ker(A+λL) ||h−
g|| for h ∈ Hn. Recalling that A, λL are positive, note that ker(A+ λL) = ker(A)∩
ker(L). Define µ(h) =

(
1
n

∑n
j=1 hj

)
∈ H and consider k in Hn with all elements equal

to P0µ(h) for P0 the projection onto ∩nj=1 ker(Aj). Clearly k ∈ ker(A)∩ker(L) so that

||h− k||K = ||h−0||K = 1. Then by definition ||h−k||2 =
∑n

j=1 ||hj−P0µ(h)||2 ≥ 1,
implying

∑n
j=1 ||hj−P0µ(h)|| ≥ 1 by norm equivalence. Thus by the triangle inequal-

ity(
n∑

j=1

||hj − µ(h)||+ ||µ(h)− P0µ(h)||

)
=

(
n||µ(h)− P0µ(h)||+

n∑
j=1

||hj − µ(h)||

)
≥ 1.

By Lemma B.1, there must exist j such that n3/2||µ(h) − PAj
µ(h)|| +

∑
j ||hj −

µ(h)|| ≥ 1. Thus, again employing norm equivalence, we have that

n3/2
∑
j

||µ(h)−PAj
µ(h)||+

∑
j

||hj−µ(h)|| ≥ 1 =⇒ n2||P⊥
A PLh||+

√
n||P⊥

L h|| ≥ 1.
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If ||P⊥
L h|| ≥ 1

n
then we have that cA||P⊥

A h||2 + λcL||P⊥
L h||2 ≥ λcL

n2 . Otherwise we

must have that ||P⊥
A PLh|| ≥

1−
√
n||P⊥

L h||
n2 > 1−(1/

√
n)

n2 . Then it follows that

||PAh− PLh||2 =
n∑

j=1

||PAj
hj − µ(h)||2 =

n∑
j=1

||PAj
(hj − µ(h))||2 + ||P⊥

Aj
µ(h)||2

= ||PAP
⊥
L h||2 + ||P⊥

A PLh||2 ≥
(

1− (1/
√
n)

n2

)2

.

Again by the triangle inequality

||P⊥
A h||+ ||P⊥

L h|| ≥ ||P⊥
A h− P⊥

L h|| = ||(h− P⊥
A h)− (h− P⊥

L h)|| = ||PAh− PLh||

so that ||P⊥
A h||+ ||P⊥

L h|| ≥ 1− (1/
√
n)

n2

and ||P⊥
A h||2 + ||P⊥

L h||2 ≥ 1

2

(
||P⊥

A h||+ ||P⊥
L h||

)2 ≥ 1

2

(
1− (1/

√
n)

n2

)2

yielding cA||P⊥
A h||2 + λcL||P⊥

L h||2 ≥ min(cA, λcL)

2

(
1− (1/

√
n)

n2

)2

.

Lemma B.1. Assume Ai, Aj commute for all i, j and let PAj
and PA denote the

projection operators from H onto ker(Aj) and ∩nj=1 ker(Aj) respectively. Then ||f −
PAj

f || < ϵ for all j implies ||f − PAf || < ϵ
√
n.

Proof. Since Ai, Aj are self-adjoint and commute we must have that they are simulta-
neously diagonalizable [16, Theorem 6.5.1] (see also [58]): There exists a finite measure
space (X ,Σ, µ), bounded measurable ai, and unitary U : H → L2(X , µ) satisfying
U−1TajU = Ai for all j where Taj is the multiplication operator [Tajg](x) = aj(x)g(x).
Letting PTaj

and PT denote the projection operators from L2(X , µ) to ker(Taj) and

∩nj=1 ker(Taj), and using surjectivity of U ,

||f − PAj
f || = inf

{g∈H | U−1TajUg=0}
||f − g||

= inf
{h∈L2(X ,µ) | Tajh=0}

||f − U−1h||

= inf
{h∈L2(X ,µ) | Tajh=0}

||Uf − h|| = ||Uf − PTaj
Uf ||.

Similarly, we have ||f − PAf || = ||Uf − PTUf ||. Thus we see that it is enough to
show h ∈ L2(X,µ) satisfy ||h− PTaj

h|| < ϵ implies ||h− PTh|| < ϵ
√
n.

Consider the zero sets Oj = {x |aj(x) = 0}. Note that the projections have the
effect of zeroing out h on these sets:

||h− PTaj
h||2 = inf

{g∈L2(X ,µ) | g·aj=0}
||h− g||2

146



= inf
{g∈L2(X ,µ) | g·aj=0}

∫
X
|h(x)− g(x)|2dµ(x)

= inf
{g∈L2(X ,µ) | g·aj=0}

∫
Oj

|h(x)− g(x)|2dµ(x) +

∫
Oc

j

|h(x)− g(x)|2dµ(x)

=

∫
Oc

j

|h(x)|2dµ(x).

Similarly, we can show ||h − PTh||2 =
∫
(∩jOj)c

|h(x)|2dµ(x) =
∫
∪jOc

j
|h(x)|2dµ(x).

Thus ||h− PTh|| <
√
n||h− PTaj

h|| follows by induction since∫
Oc

i∪Oc
j

|h(x)|2dµ(x) ≤
∫
Oc

i

|h(x)|2dµ(x) +

∫
Oc

j

|h(x)|2dµ(x).

Lemma B.2. For a given λ, for any h̃ ∈ H̃,

∥h̃− h̄∥ ≤ 1

λ

∥A∥
ν

√
∥A∥
µ

d(H∗, arg minR) ∈ O(1/λ) (B.6)

where h̄ = Eh̃ is the projection of h̃ into consensus.

Proof. Since h̄ is the projection of h̃ onto the the minimizers of h 7→ ⟨h,Lh⟩, by
Lemma 5.1, we have the following.

∥h̃− h̄∥ ≤ 1

ν
∥Lh̃∥

By optimality of (5.6), ∇R[h̃] + λLh̃ = 0.

=
1

λν
∥∇R[h̃]∥

Recall that ∇R is ∥A∥-Lipschitz and ∇R[h] = 0 for h ∈ arg minR.

≤ ∥A∥
λν

d(h̃, arg minR)

=
∥A∥
λν

√
2

µ

(
1

2
µd2(h̃, arg minR)

)
Let R∗ = minR and apply Lemma 5.1.

≤ ∥A∥
λν

√
2

µ
(R[h̃]−R∗)
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Let h∗ ∈ H∗. Since ⟨h∗,Lh∗⟩ = 0 and h̃ minimizes (5.6), we have R[h̃] ≤ R[h∗].

≤ ∥A∥
λν

√
2

µ
(R[h∗]−R∗)

Again apply the ∥A∥-Lipschitzness of ∇R.

≤ ∥A∥
λν

√
2

µ

(
1

2
∥A∥d2(h∗, arg minR)

)
The claim follows by a simple manipulation.

Theorem 5.2. For a given λ, for any h̃ ∈ H̃,

d(h̃, H∗) ≤ ∥A∥
λν

√
∥A∥
µ

(
1 +

n∥A∥
µ

)
d(H∗, arg minR) ∈ O(1/λ). (5.11)

Proof. Let h̃ ∈ H̃, h̄ the projection of h̃ into consensus, and h∗ the projection of h̄
into H∗.

∥h̃− h∗∥ ≤ ∥h̃− h̄∥+ ∥h̄− h∗∥

Since both h̄ and h∗ are in consensus, their elements are equal.

= ∥h̃− h̄∥+
√
n∥h̄0 − h∗

0∥

By assumptions 5.1 and 5.4 with Lemma 5.1, since Ai commuting and having spec-
tral gap µ implies

∑
iAi has spectral gap µ, the consensus risk functional R̄[h] =

R[(h, . . . , h)] =
∑

i Ri[h] is also convex quadratic with minimum growth rate µ away
from its minimizers, of which h∗

0 is one.

≤ ∥h̃− h̄∥+

√
n

µ
∥∇R̄[h̄0]∥

= ∥h̃− h̄∥+
n

µ
∥E∇R[h̄]∥

By optimality of (5.6), ∇R[h̃] + λLh̃ = 0. Since L is a symmetric graph Laplacian,
its rows and columns sum to zero, so EL = LE = 0. Then E(∇R[h̃] + λLh̃) =
E∇R[h̃] = 0.

= ∥h̃− h̄∥+
n

µ
∥E∇R[h̄]− E∇R[h̃]∥

≤ ∥h̃− h̄∥+
n

µ
∥∇R[h̄]−∇R[h̃]∥
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≤ ∥h̃− h̄∥+
n∥A∥
µ
∥h̄− h̃∥

=

(
1 +

n∥A∥
µ

)
∥h̃− h̄∥

From here the result is proven by application of Theorem B.2.
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Appendix C

Experiment Details

Here we provide some experimental details omitted from the main text for the sake
of brevity. Unless otherwise noted:

• Trees are fitted with Gini impurity.

• When fitting KDDTs with a Gaussian kernel, a histogram approximation with
11 bins from −3 to 3 standard deviations is used.

• When predicting with a Gaussian kernel, it is truncated at the 1st and 99th
percentiles.

Details for specific experiments follow.

C.1 Data Normalization

For many experiments, we use the data described in Table 2.1. Unless otherwise
noted, we normalize these data sets by scaling each feature to have mean 0 and
standard deviation 1. For a few of them, we scale every feature by dividing by the
largest standard deviation among features, so that after scaling, the largest standard
deviation is 1 and the relative scaling is maintained. These include:

• Optical Recognition of Handwritten Digits

• Ionosphere

• Pen-Based Recognition of Handwritten Digits

• Yeast

• Connectionist Bench (Sonar, Mines vs. Rocks)

• Statlog (Landsat Satellite)
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C.2 KDDT Benchmarks

These are additional details for the experiments in Section 2.3.6.

All data features are normalized to have mean 0 and standard deviation 1. The
standard decision tree, random forest, and ExtraTrees implementations are from
scikit-learn [138]. For the scikit-learn decision tree, we select a cost-complexity prun-
ing α parameter from the log range of 10−5 to 100. For KDDTs, we select kernel
bandwidth from the log range of 10−2 to 100 by 10-fold cross-validation. This selects
the same bandwidth for each feature, which is why we normalized the data. All en-
sembles, including KDDT ensembles, use the default settings of scikit-learn with 100
trees, subsampling the features to the square root of the number of candidates at
each node, and bootstrapping data samples only for random forests.

C.3 Feature Noise

These are additional details for the feature noise experiments in Section 3.2.1.

The data are normalized as described in Appendix C.1. Uniform feature noise
is drawn from U[ − λ, λ] for each λ ∈ (0, 0.1, 0.2, . . . , 1.0). Gaussian noise is drawn
from N (0, σ) for each σ ∈ (0, 0.1, 0.2, . . . , 1.0). The kernels are box kernels with
bandwidths from the same set of values. For each data set, noise type, noise rate,
and kernel bandwidth, we run 5 trials with different seeds for data sets with at least
1000 samples, or 20 trials for data sets with less than 1000 samples. Each trial uses a
80% train, 20% test split. We also ran 1 trial, or 4 for data sets with less than 1000
samples, using Gaussian kernels with the same bandwidths and compared against the
corresponding trials with box kernels. We found negligible difference in performance.

As a growth stopping condition for the trees, we select by 5-fold cross-validation a
maximum number of leaves ⌊ς min(n, 1000)⌋ for ς ∈ (20, 2−1, . . . , 2−5). For the main
performance results, the bandwidth is selected from the candidate values by 5-fold
cross-validation.

C.4 Label Noise

These are additional details for the label noise experiments in Section 3.3.4.

The data are normalized as described in Appendix C.1. Uniform label noise is
applied for each error probability η ∈ (0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3). For each data
set and noise rate, we run 5 trials with different seeds for data sets with at least 1000
samples, or 20 trials for data sets with less than 1000 samples. Each trial uses a 80%
train, 20% test split.

As a growth stopping condition for the trees, we select by 5-fold cross-validation
a maximum number of leaves ⌊ς min(n, 1000)⌋ for ς ∈ (20, 2−1, . . . , 2−5). The KDDTs
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use a box kernel with bandwidth (radius) selected by 5-fold cross-validation from
(20, 2−1, . . . , 2−6). The impurity function is Gini impurity or credal Gini impurity.

C.5 Adversarial Perturbation

These are additional details for the adversarial perturbation experiments in Sec-
tion 3.4.3.

For the Breast Cancer data set, samples with missing values are removed, as in
[93]. The MNIST [46] and FMNIST [189] data sets are each a selection of two classes
from the original 10-class data sets. For the MNIST and FMNIST data sets, we use
the official training and test sets, and for the others, we use a 80% train, 20% test split
without shuffling to get the same split as [93]. We train KDDT trees and forests with
maximum number of leaves equal to the number of training data or 1000, whichever
is smaller. The forests have 100 trees. Since the robustness is more sensitive to
the fidelity of the smoothing, for the L2, models, we increase the number of pieces
in the histogram approximate Gaussian kernel used for fitting from our usual 11 to
15, and the unapproximated Gaussian kernels are not truncated for prediction. We
also include standard decision trees as a baseline with CCP-α selected using 5-fold
cross-validation in a 7-value log range from 10−5 to 10−2.

C.6 Feature Learning

These are additional details for the interpretability benchmarks and demonstrations
in Section 4.3.

C.6.1 Benchmarks on Tabular Data

In Section 4.3.1, our experiments compare decision trees, random forests, ExtraTrees,
and our proposed models with linear and distance-to-prototype features. All reported
statistics are the average of 10-fold cross-validation, and in the additional results in
Appendix D.2.1 we also report standard deviation.

All data sets were retrieved from the UCI Machine Learning Repository [49]. If
there were separate training and test sets, they were combined before creating the
random 10-fold split. Categorical attributes are one-hot encoded. All attributes are
normalized to mean 0 and standard deviation 1. This makes feature learning more
consistent, and it makes interpretation unitless.

For baseline models, we used implementations from scikit-learn [139], and our
methods are implemented using Python along with PyTorch [136] for automatic dif-
ferentiation. The splitting criterion for all tree-based models is Gini Index. Additional
details for each model type follow.
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• Decision tree. Using 10-fold cross validation (on the union of the 9 training folds
for the experimental layer of cross-validation), we select the cost-complexity
pruning α that results in the best accuracy. Our candidate α values include
0 and 15 evenly spaced values on the log scale from 10−8 to 10−1, that is,
{0, 1× 10−8, 3.16× 10−8, 1× 10−7, 3.16× 10−7, . . . , 1× 10−1}.

• Random forest. We use default settings from scikit-learn. The ensemble con-
tains 100 trees, each trained on a bootstrap sample with the same size as the
original data, and the features consider for each split are limited to a uniformly
sampled subset with size equal to the square root of the total number of features.
There is no pruning.

• ExtraTrees. We use default settings from scikit-learn. The ensemble contains
100 trees, the features consider for each split are limited to a uniformly sampled
subset with size equal to the square root of the total number of features, and
for each feature, one candidate threshold is sampled uniformly in the range of
data belonging to the current subtree. There is no pruning.

• Ours. For the KDDT, we use a box kernel with radius 0.1, that is, k(x) ∝∏p
i=1 1{|xi| ≤ 0.1}. Do not perform a split if it would result in a leaf with

total sample weight less than 1. We select cost-complexity pruning α from
[.0001, .0003, .001, .003, .01, .03, .1] by 10-fold cross-validation of accuracy. We
implement feature learning using PyTorch [136] for automatic differentiation
and stochastic optimization. The optimizer is Adam [103] with learning rate
0.01, and the optimization procedure uses minibatch gradient descent with batch
size 1024. Training runs for 10 epochs fitting the tree before each minibatch,
then 1000 epochs fitting the tree once every 10 epochs. For the dry-bean and
pendigits data sets, we instead train for 10 then 100 epochs because of their
much larger size. This process allows the tree structure changes to be respon-
sive early in training when the features are changing rapidly, then saves time
by fitting less frequently as the features converge. We apply either L1 or L2
regularization to the feature parameters, each with coefficient 0.01. The details
for each feature type follow.

– Linear features. We use a linear transformation without bias, with the
same number of outputs as inputs. We initialize either as identity or uni-
formly at random in the range ±

√
6/p, where p is the number of inputs

to the linear transformation. Results in the main paper use random ini-
tialization.

– Distance-to-prototype features. We use a number of prototypes equal to
the number of attributes in the data. Initialization is either random, with
prototypes being samples from the unit Gaussian and the inverse covari-
ance being identity, or by using the centers and inverse covariance matri-
ces from a fitted Gaussian Mixture model from scikit-learn, with matching

154



constraints on the covariance. Results in the main paper use random
initialization. We constrain that inverse covariance matrices be positive
definite so that the features represent distance. For these experiments, we
also constrain inverse covariance matrices to be diagonal for the sake of
easier interpretation, that is, so that it can be interpreted as Euclidean
distance with each input being scaled differently. Regularization is applied
only to the covariance parameters, although L1 regularization could also
be applied to the prototypes themselves to make them sparse in the sense
that they only sparsely differ from the global average. This may be useful
for data with many attributes, so that prototypes can be described by just
a few features.

C.6.2 MNIST and Fashion-MNIST

The data is scaled into [0, 1]. The KDDTs also use a box kernel with radius 1.
We used the Adam optimizer [103] with learning rate 0.001 and minibatch gradient
descent with batch size 1024. For 10 epochs, the tree is fitted once per batch to the
batch itself; the large batch size is chosen to ensure that the tree fitted to each batch
is representative enough of the tree for the entire training data, while being faster
than fitting to the entire MNIST training set at each batch. We then train for 100
epochs with the tree fitted to the entire training set once per epoch. The feature
transformation is a linear mapping from 282 = 784 to 784 features. For smaller
models, a smaller number of features would be fine and would speed up training. We
use L1 regularization with coefficient 0.3 and a weight image smoothing regularizer
with coefficient 0.03 for MNIST, and respectively 3 and 0.01 for Fashion-MNIST. The
smoothing penalty itself is calculated as the average squared difference of each pixel
with its neighbors (not including diagonal).

C.6.3 Time Series Shapelets

For the time series demos, the KDDTs use a box kernel with radius 0.1. We use 50
shapelet features initialized by choosing random training data instances (or random
subseries of instances in the case of sliding window shapelets) and setting the weights
uniformly across each shapelet, scaled such that the standard deviation of the output
on the training data is 1. We use a L1 regularization and smoothness regularization,
each with coefficient 0.01. Since these are small training sets, we use a batch size
equal to the size of the training set. We train for 1000 iterations, refitting the tree
every 5th iteration. For ECG5000, we use a learning rate of 0.001 and CCP-α of
0.003, and for GunPoint, a learning rate of 0.01 and CCP-α of 0.01.
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C.7 Semi-supervised Learning

These are additional detials for the semi-supervised learning experiments covered in
Section 5.1.3.

The data is preprocessed by standardizing all features to mean 0 and standard
deviation 1, with the exception of the Optical Recognition of Handwritten Digits
data set, where features, representing pixel values, are scaled into [0, 1] by dividing
all features by the global maximum value of 16. When we uniformly sample data to
be labeled in the training of models, we ensure that at least one instance of each class
is represented, that is, we sample one instance uniformly at random from each class,
then the rest uniformly at random (without replacement) from the entire remaining
data set. For cluster sampling, there is no such restriction.

The supervised random forest and self-trained random forest models are imple-
mentations from the popular machine learning package scikit-learn [138]. We are not
aware of any public implementation of SSL-PCTs, so we implement them as described
in [109]. Hyperparameters are as follows.

• Random forest. We use sklearn.tree.DecisionTreeClassifier with de-
fault hyperparameters. Each has 100 fully grown trees, and features to consider
for splitting are randomly subsampled to

√
p at each split. If a suitable split is

not found, the remaining features are searched.

• Self-training Random Forest. We use sklearn.tree.DecisionTreeClassifier
as above along with sklearn.semi supervised.SelfTrainingClassifier with
default hyperparameters.

• SSL-PCT random forest. There is a hyperparameter w used to control the
level of supervision. It is selected as described in [109] by 3-fold cross-validation
on the labeled data. The random forest hyperparameters are as above. In order
to have leaf values be defined, we set a minimum of 1 labeled sample per leaf.

• Our methods. Our KDDTs use a Gaussian kernel. For fitting, a piecewise-
constant kernel is required, so we use a histogram approximation of Gaussian
with 7 pieces truncated to 3 standard deviations. At leaf assignment and predic-
tions, we use an unapproximated Gaussian kernel, also truncated to 3 standard
deviations. We choose bandwidth (standard deviation of the Gaussian kernel)
from [0.01, 0.0215, .0464, 0.1]. We choose number of leaves as a proportion of
the number of samples in the training set, with candidate values being powers
of 2 from 20 to 2−6. During leaf assignment, we increase the weight of labeled
data to max(1, |DU |/|DL|). This gives at least as much total weight to labeled
data as unlabeled data to prevent collapse to the global majority if the data is
not easily separable.
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C.8 Federated Learning

These are additional details for the federated learning experiments covered in Sec-
tion 5.2.5.

The MLP, which is used for both PSR and FSR experiments, consists of two
hidden layers of size 50 with ReLU activations. We use batch size 200 and learning
rate 0.001 with the Adam optimizer [103]. We train for 10000 iterations (batches)
locally, then after each round of communication, train for another 1000 iterations with
disagreement penalty. For PSR, we use cross-entropy loss and penalize disagreement
as the sum of squared difference in parameters and use coefficient λ = 0.1, which we
observe to work well across data sets. For FSR, we use mean squared error loss and
penalize disagreement at 1000 inputs sampled uniformly at random from the domain
at each batch. Error smoothing is accomplished by, at each batch, adding random
noise sampled from the kernel to the training inputs.

The KDDT uses as growth stopping condition a maximum number of leaves equal
to the number of training samples summed over clients or 1000, whichever is smaller.

For FSR methods, λ and the box kernel radius δ are chosen to maximize average
global training accuracy. For MLPs, we select from λ ∈ [10, 100, . . . , 107] and δ ∈
[0.0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5]. For KDDTs, we select from λ ∈ [10, 100, . . . , 105]
and δ ∈ [0.05, 0.1, 0.2, 0.5]. These values for λ may seem large, but the convergence
theory suggests that sometimes they should actually be even higher. The best λ is
often based more on the local learning algorithm than the convergence of the federated
optimization.

In all FSR training, we scale the data such that its bounding box, including
smoothing, is [0, 1]p. Though we do this up-front for simplicity, it is also straightfor-
ward to accomplish this dynamically on a network by communicating data bounding
boxes along with models. This scaling is not theoretically necessary, but it makes the
choice of hyperparameters more consistent across data sets and prevents the measure
of the domain, which scales the disagreement penalty, from taking on extreme values
that may be computationally unfavorable.

C.9 Ensemble Merging

These are additional details for the ensemble merging experiments covered in Sec-
tion 5.1.3.

The random forests have 100 trees. As a growth stopping condition for the trees,
we select by 5-fold cross-validation a maximum number of leaves ⌊ς min(n, 1000)⌋ for
ς ∈ (20, 2−1, . . . , 2−5). The impurity function is Gini impurity or credal Gini impurity.
Each experiment is repeated 5 times, each with an independently sampled 80% train,
20% test split.
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Appendix D

Additional Experiment Results

Here we show some expanded experiment results that were too lengthy to include in
the main text.

D.1 Feature Noise

Additional results for the feature noise experiments in Section 3.2.1 are shown in
Figures D.1 through D.4.

D.2 Interpretability

The following are additional results and visualizations for benchmarks and demon-
strations in Section 4.3.

D.2.1 Benchmarks on Tabular Data

These results supplement Section 4.3.1. In these comprehensive experiment results,
we show the mean and standard deviation from 10-fold cross-validation with five
evaluation metrics:

1. Validation accuracy.

2. Total number of nodes.

3. Average length of a validation decision path.

4. Average Gini impurity (a good measure of sparsity [94], lower is sparser) of the
parameters for each feature, weighted by each feature’s usage on the respective
validation fold.

5. Total time for inference on the validation fold, in milliseconds.
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Figure D.1: Performance relative to best of noise level (marked with ‘x’) for smoothed
KDDTs with box kernels trained on data with added uniform noise.
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Figure D.2: Performance relative to best of noise level (marked with ‘x’) for un-
smoothed KDDTs with box kernels trained on data with added uniform noise.

161



Figure D.3: Performance relative to best of noise level (marked with ‘x’) for smoothed
KDDTs with box kernels trained on data with added Gaussian noise.
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Figure D.4: Performance relative to best of noise level (marked with ‘x’) for un-
smoothed KDDTs with box kernels trained on data with added Gaussian noise.
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For the proposed method, we include linear and distance-to-prototype features, each
with L1 and L2 regularization, random and non-random intialization, and crisp and
fuzzy inference. Each table shows results for every CCP-α value, which controls tree
size; smaller α yields larger trees. See Appendix C.6.1 for full details.

We make some observations based on the additional results:

• Random initialization more often results in better-performing models.

• Even when one of our models has many nodes, which may make global interpre-
tation difficult, the average path length grows much less, so local interpretation
is still simple.

• L1 regularization does result in sparser features compared to L2 regularization.
With L2 regularization, features are usually very dense, with Gini index near 1.

• Our models have faster inference time than similarly performing ensembles.

Baselines
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data metric LR MLP DT RF ET XGB
n, p, q
iris acc .960± .044 .953± .052 .947± .058 .947± .065 .953± .052 .947± .058
150, 4 (4), 3 nodes 0.0± 0.0 0.0± 0.0 6.4± 2.2 720.4± 50.7 2057.3± 109.7 432.6± 45.0

path len 0.00± 0.00 0.00± 0.00 2.48± 0.38 261.74± 17.31 449.09± 37.55 0.00± 0.00
gini .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000
time 0.7± 0.2 9.7± 26.6 0.6± 0.0 128.4± 45.5 34.2± 18.8 78.7± 63.7

heart-disease acc .822± .021 .792± .067 .707± .060 .802± .065 .795± .052 .792± .038
303, 13 (20), 2 nodes 0.0± 0.0 0.0± 0.0 13.9± 16.1 4827.2± 108.1 10648.6± 206.0 788.6± 20.1

path len 0.00± 0.00 0.00± 0.00 3.03± 1.71 584.43± 15.94 771.86± 30.70 0.00± 0.00
gini .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000
time 0.4± 0.2 0.4± 0.0 0.3± 0.0 6.4± 0.1 6.6± 0.1 3.3± 0.7

dry-bean acc .925± .007 .934± .005 .912± .008 .923± .006 .921± .007 .928± .006
13611, 16 (16), 7 nodes 0.0± 0.0 0.0± 0.0 99.8± 3.8 66504.9± 530.6 197338.7± 1264.0 12907.8± 166.2

path len 0.00± 0.00 0.00± 0.00 7.05± 0.14 1142.00± 7.96 1287.98± 12.75 0.00± 0.00
gini .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000
time 0.9± 0.2 1.4± 0.0 0.7± 0.0 38.3± 0.3 49.2± 0.3 4.3± 0.2

wine acc .983± .025 .989± .022 .904± .077 .977± .028 .989± .022 .955± .043
178, 13 (13), 3 nodes 0.0± 0.0 0.0± 0.0 8.5± 2.1 936.4± 19.5 3315.1± 43.1 242.1± 15.0

path len 0.00± 0.00 0.00± 0.00 3.30± 0.40 332.74± 6.59 579.64± 16.11 0.00± 0.00
gini .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000
time 0.6± 0.2 0.4± 0.0 0.3± 0.0 6.2± 0.2 6.2± 0.0 1.7± 0.2

car acc .926± .021 .992± .007 .977± .012 .964± .013 .971± .011 .994± .006
1728, 6 (21), 4 nodes 0.0± 0.0 0.0± 0.0 95.3± 6.6 23031.0± 243.0 31240.4± 330.8 4478.2± 48.9

path len 0.00± 0.00 0.00± 0.00 4.48± 0.27 610.58± 21.80 617.75± 23.81 0.00± 0.00
gini .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000
time 0.8± 0.1 1.1± 0.0 0.7± 0.1 16.4± 0.3 17.0± 0.5 3.7± 0.3

wdbc acc .974± .021 .975± .024 .935± .032 .965± .019 .970± .028 .968± .021
569, 30 (30), 2 nodes 0.0± 0.0 0.0± 0.0 13.0± 6.5 1881.4± 59.9 6045.5± 193.9 274.4± 8.2

path len 0.00± 0.00 0.00± 0.00 3.96± 1.25 462.02± 12.92 667.99± 21.11 0.00± 0.00
gini .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000
time 0.8± 0.1 0.8± 0.0 0.6± 0.0 7.7± 2.1 6.6± 0.1 2.0± 0.4

sonar acc .755± .094 .879± .064 .735± .096 .826± .104 .880± .058 .855± .063
208, 60 (60), 2 nodes 0.0± 0.0 0.0± 0.0 14.1± 6.7 2022.6± 16.4 5586.1± 77.9 301.1± 6.0

path len 0.00± 0.00 0.00± 0.00 3.86± 1.46 490.86± 10.09 708.90± 25.75 0.00± 0.00
gini .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000
time 0.4± 0.2 0.4± 0.0 0.3± 0.0 6.2± 0.2 6.4± 0.1 1.8± 0.2

pendigits acc .952± .005 .994± .003 .964± .004 .993± .002 .994± .002 .991± .002
10992, 16 (16), 10 nodes 0.0± 0.0 0.0± 0.0 322.0± 13.4 38475.5± 232.0 98345.3± 655.6 8464.5± 60.7

path len 0.00± 0.00 0.00± 0.00 10.13± 0.22 974.59± 5.43 1142.83± 7.26 0.00± 0.00
gini .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000
time 29.8± 37.4 36.1± 63.6 9.3± 13.0 271.2± 80.6 43.2± 0.8 4.6± 0.7

ionosphere acc .875± .069 .917± .062 .892± .048 .934± .056 .943± .049 .943± .053
351, 34 (34), 2 nodes 0.0± 0.0 0.0± 0.0 15.5± 9.0 2205.7± 88.3 5919.3± 267.2 335.4± 20.4

path len 0.00± 0.00 0.00± 0.00 5.17± 2.43 645.54± 39.76 889.93± 48.63 0.00± 0.00
gini .000± .000 .000± .000 .000± .000 .000± .000 .000± .000 .000± .000
time 0.4± 0.2 0.4± 0.0 0.3± 0.0 6.4± 0.3 6.5± 0.1 1.8± 0.2
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Ours: linear features, L2 regularization, non-random initialization, fuzzy
data metric 1e-1 3e-2 1e-2 3e-3 1e-3 3e-4 1e-4
iris acc .960± .044 .960± .044 .953± .043 .953± .052 .967± .033 .960± .044 .967± .033

nodes 2.0± 0.0 2.0± 0.0 3.8± 0.7 5.0± 0.9 8.7± 1.7 12.6± 1.5 16.1± 1.6
path len 1.67± 0.09 1.67± 0.09 2.28± 0.31 2.41± 0.22 2.82± 0.28 3.16± 0.40 3.66± 0.41
gini .618± .010 .618± .014 .458± .081 .500± .059 .548± .071 .565± .052 .561± .061
time 1.2± 0.0 4.3± 9.5 3.7± 7.6 1.5± 0.2 2.4± 0.4 3.3± 0.3 4.1± 0.4

heart acc .799± .053 .795± .028 .776± .043 .766± .051 .782± .058 .743± .041 .762± .058
nodes 1.0± 0.0 1.7± 0.5 5.7± 1.7 19.5± 3.3 21.7± 1.7 26.8± 2.6 27.1± 3.6
path len 1.00± 0.00 1.40± 0.28 2.67± 0.62 4.15± 0.51 4.84± 0.58 5.45± 0.63 6.00± 0.98
gini .888± .010 .881± .025 .862± .014 .824± .045 .830± .034 .814± .041 .836± .032
time 0.7± 0.0 0.9± 0.2 2.1± 0.5 3.9± 0.6 4.3± 0.3 5.4± 0.5 5.5± 0.7

dry-bean acc .792± .005 .913± .009 .919± .006 .918± .004 .920± .006 .925± .006 .925± .005
nodes 4.0± 0.0 6.0± 0.0 8.0± 0.0 9.9± 0.7 18.2± 1.0 41.2± 3.2 94.3± 3.5
path len 2.83± 0.03 3.22± 0.05 3.40± 0.08 3.61± 0.16 4.72± 0.13 6.13± 0.32 7.48± 0.33
gini .902± .002 .902± .003 .910± .002 .909± .003 .909± .002 .906± .003 .908± .002
time 3.3± 0.1 4.2± 0.1 5.4± 0.1 6.2± 0.3 10.2± 0.4 15.4± 1.2 31.1± 0.9

wine acc .961± .026 .972± .028 .972± .028 .972± .028 .966± .027 .977± .028 .972± .028
nodes 2.0± 0.0 2.0± 0.0 2.8± 0.4 2.7± 0.5 2.9± 0.3 2.8± 0.4 2.7± 0.5
path len 1.67± 0.09 1.67± 0.09 1.92± 0.15 1.90± 0.16 1.95± 0.15 1.96± 0.18 1.89± 0.18
gini .871± .011 .875± .009 .884± .011 .885± .007 .891± .005 .886± .009 .885± .009
time 0.6± 0.0 0.6± 0.0 0.7± 0.1 0.7± 0.1 0.7± 0.0 0.7± 0.1 0.7± 0.1

car acc .700± .044 .914± .034 .965± .013 .986± .009 .992± .012 .992± .009 .992± .009
nodes 0.0± 0.0 2.8± 0.4 5.0± 0.8 12.3± 1.6 18.8± 2.7 23.7± 2.1 24.5± 4.1
path len 0.00± 0.00 1.60± 0.16 1.90± 0.18 2.86± 0.34 3.23± 0.52 3.61± 0.29 3.70± 0.63
gini .000± .000 .905± .010 .897± .015 .902± .015 .902± .014 .903± .007 .901± .010
time 0.2± 0.0 1.2± 0.1 1.7± 0.2 3.6± 0.4 5.3± 0.7 6.6± 0.7 6.8± 1.2

wdbc acc .965± .025 .967± .023 .960± .027 .963± .021 .968± .025 .960± .024 .963± .024
nodes 1.0± 0.0 1.0± 0.0 1.0± 0.0 2.1± 0.9 5.9± 2.1 13.9± 4.2 19.6± 3.6
path len 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.59± 0.48 2.51± 0.31 3.76± 0.68 4.54± 0.39
gini .954± .003 .955± .003 .954± .003 .951± .003 .951± .003 .950± .003 .951± .004
time 0.5± 0.0 0.5± 0.0 0.5± 0.0 0.9± 0.3 1.8± 0.5 3.8± 1.0 5.3± 1.0

sonar acc .765± .093 .802± .043 .798± .080 .817± .088 .779± .074 .856± .038 .807± .063
nodes 1.0± 0.0 2.2± 0.6 4.5± 0.8 5.6± 0.9 6.8± 3.0 7.6± 2.1 8.0± 2.4
path len 1.00± 0.00 1.60± 0.24 2.53± 0.31 2.84± 0.50 3.34± 0.93 3.53± 0.70 3.54± 0.77
gini .971± .002 .972± .001 .973± .001 .950± .073 .973± .002 .973± .001 .973± .002
time 0.5± 0.0 0.9± 0.2 1.5± 0.2 1.7± 0.2 2.0± 0.7 2.2± 0.5 2.3± 0.6

pendigits acc .094± .003 .911± .022 .955± .011 .974± .006 .986± .003 .989± .003 .991± .002
nodes 0.0± 0.0 9.3± 0.5 12.1± 1.0 17.9± 1.7 27.4± 3.0 57.5± 6.6 125.9± 9.5
path len 0.00± 0.00 4.18± 0.32 4.46± 0.31 5.18± 0.23 5.64± 0.45 6.58± 0.42 8.19± 0.60
gini .000± .000 .891± .008 .892± .005 .891± .006 .896± .006 .899± .002 .897± .005
time 0.3± 0.0 4.5± 0.1 5.5± 0.5 7.7± 0.5 10.7± 1.0 19.6± 1.9 37.9± 2.6

ionosphere acc .857± .057 .932± .060 .932± .048 .935± .034 .934± .050 .929± .048 .946± .038
nodes 1.0± 0.0 2.1± 0.3 3.8± 0.4 4.8± 0.7 8.5± 1.9 9.5± 1.8 11.8± 2.0
path len 1.00± 0.00 1.77± 0.13 2.91± 0.24 3.52± 0.57 4.49± 0.51 4.70± 0.85 5.39± 0.79
gini .948± .003 .929± .012 .925± .005 .926± .005 .939± .005 .934± .007 .931± .004
time 0.7± 0.1 1.1± 0.1 1.7± 0.1 2.0± 0.3 3.4± 0.7 2.4± 0.4 3.0± 0.5
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Ours: linear features, L2 regularization, non-random initialization, crisp
data metric 1e-1 3e-2 1e-2 3e-3 1e-3 3e-4 1e-4
iris acc .960± .044 .960± .044 .953± .043 .967± .033 .960± .044 .960± .053 .933± .067

nodes 2.0± 0.0 2.0± 0.0 3.8± 0.7 5.0± 0.9 8.7± 1.7 12.6± 1.5 16.1± 1.6
path len 1.67± 0.09 1.67± 0.09 2.29± 0.33 2.38± 0.22 2.81± 0.25 3.15± 0.44 3.66± 0.42
gini .584± .103 .580± .111 .459± .078 .483± .082 .554± .039 .565± .054 .564± .047
time 0.7± 0.0 0.7± 0.0 1.1± 0.2 1.4± 0.2 2.1± 0.3 2.9± 0.3 3.6± 0.3

heart acc .799± .055 .795± .028 .776± .043 .763± .052 .782± .066 .749± .046 .762± .058
nodes 1.0± 0.0 1.7± 0.5 5.7± 1.7 19.5± 3.3 21.7± 1.7 26.8± 2.6 27.1± 3.6
path len 1.00± 0.00 1.41± 0.29 2.66± 0.63 4.12± 0.49 4.82± 0.58 5.45± 0.62 6.01± 1.01
gini .888± .010 .881± .024 .862± .014 .824± .045 .830± .034 .814± .041 .836± .032
time 0.6± 0.0 0.8± 0.1 1.9± 0.5 3.5± 0.5 3.6± 0.3 4.6± 0.5 4.8± 0.6

dry-bean acc .788± .007 .910± .007 .917± .007 .919± .006 .917± .008 .923± .005 .922± .006
nodes 4.0± 0.0 6.0± 0.0 8.0± 0.0 9.9± 0.7 18.2± 1.0 41.2± 3.2 94.3± 3.5
path len 2.84± 0.03 3.24± 0.05 3.40± 0.09 3.60± 0.17 4.74± 0.15 6.19± 0.34 7.62± 0.33
gini .902± .002 .902± .003 .910± .002 .909± .003 .909± .002 .906± .004 .908± .002
time 3.1± 0.1 3.9± 0.1 4.9± 0.1 5.6± 0.3 8.8± 0.3 12.7± 0.9 25.2± 0.7

wine acc .961± .026 .972± .028 .972± .028 .972± .028 .966± .027 .977± .028 .972± .028
nodes 2.0± 0.0 2.0± 0.0 2.8± 0.4 2.7± 0.5 2.9± 0.3 2.8± 0.4 2.7± 0.5
path len 1.67± 0.09 1.68± 0.09 1.92± 0.16 1.90± 0.16 1.95± 0.15 1.96± 0.18 1.89± 0.17
gini .871± .011 .875± .009 .884± .011 .885± .007 .891± .005 .886± .008 .885± .009
time 0.5± 0.0 0.5± 0.0 0.6± 0.1 0.6± 0.1 0.7± 0.0 0.6± 0.1 0.6± 0.1

car acc .700± .044 .908± .031 .965± .013 .986± .009 .992± .012 .992± .009 .992± .010
nodes 0.0± 0.0 2.8± 0.4 5.0± 0.8 12.3± 1.6 18.8± 2.7 23.7± 2.1 24.5± 4.1
path len 0.00± 0.00 1.60± 0.16 1.91± 0.18 2.86± 0.34 3.23± 0.52 3.61± 0.28 3.70± 0.64
gini .000± .000 .905± .010 .897± .014 .902± .015 .902± .014 .903± .007 .901± .009
time 0.2± 0.0 1.1± 0.1 1.6± 0.2 3.2± 0.4 4.7± 0.6 5.9± 0.6 6.0± 1.0

wdbc acc .965± .025 .967± .023 .960± .027 .965± .022 .967± .027 .951± .025 .961± .037
nodes 1.0± 0.0 1.0± 0.0 1.0± 0.0 2.1± 0.9 5.9± 2.1 13.9± 4.2 19.6± 3.6
path len 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.59± 0.48 2.52± 0.32 3.75± 0.69 4.51± 0.41
gini .954± .003 .955± .003 .954± .003 .951± .003 .951± .003 .950± .003 .951± .004
time 0.5± 0.0 0.5± 0.0 0.5± 0.0 0.8± 0.2 1.6± 0.4 3.4± 0.9 4.6± 0.7

sonar acc .760± .099 .817± .045 .788± .081 .813± .092 .775± .076 .856± .038 .807± .063
nodes 1.0± 0.0 2.2± 0.6 4.5± 0.8 5.6± 0.9 6.8± 3.0 7.6± 2.1 8.0± 2.4
path len 1.00± 0.00 1.59± 0.24 2.52± 0.32 2.87± 0.53 3.34± 0.94 3.55± 0.71 3.56± 0.75
gini .971± .002 .972± .001 .973± .001 .949± .074 .973± .002 .974± .001 .973± .002
time 0.5± 0.0 0.8± 0.2 1.3± 0.2 1.6± 0.2 1.8± 0.6 2.0± 0.4 2.1± 0.5

pendigits acc .094± .003 .910± .021 .953± .011 .971± .008 .983± .004 .987± .004 .988± .003
nodes 0.0± 0.0 9.3± 0.5 12.1± 1.0 17.9± 1.7 27.4± 3.0 57.5± 6.6 125.9± 9.5
path len 0.00± 0.00 4.18± 0.32 4.46± 0.31 5.18± 0.23 5.64± 0.45 6.59± 0.43 8.20± 0.61
gini .000± .000 .891± .008 .892± .005 .891± .005 .896± .006 .899± .002 .897± .005
time 0.3± 0.0 4.2± 0.1 5.0± 0.4 6.9± 0.5 9.3± 0.8 16.7± 1.5 32.2± 2.2

ionosphere acc .855± .054 .932± .060 .926± .048 .937± .036 .923± .048 .923± .051 .946± .039
nodes 1.0± 0.0 2.1± 0.3 3.8± 0.4 4.8± 0.7 8.5± 1.9 9.5± 1.8 11.8± 2.0
path len 1.00± 0.00 1.78± 0.14 2.95± 0.24 3.58± 0.62 4.58± 0.55 4.77± 0.89 5.50± 0.79
gini .948± .003 .929± .012 .925± .005 .927± .005 .939± .005 .934± .008 .931± .004
time 0.7± 0.0 1.0± 0.1 1.6± 0.1 1.9± 0.2 3.0± 0.6 2.2± 0.4 2.6± 0.4
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Ours: prototype features, L2 regularization, non-random initialization, fuzzy
data metric 1e-1 3e-2 1e-2 3e-3 1e-3 3e-4 1e-4
iris acc .927± .092 .933± .094 .953± .067 .967± .054 .947± .065 .947± .065 .947± .065

nodes 2.0± 0.0 2.0± 0.0 3.7± 1.0 4.9± 0.8 5.7± 0.9 5.6± 0.9 5.6± 0.9
path len 1.67± 0.09 1.67± 0.09 2.09± 0.25 2.23± 0.23 2.31± 0.26 2.28± 0.24 2.28± 0.24
gini .580± .024 .578± .023 .580± .030 .584± .038 .578± .034 .576± .032 .577± .032
time 1.1± 0.0 1.1± 0.0 1.6± 0.3 1.9± 0.2 2.2± 0.3 2.1± 0.3 2.1± 0.3

heart acc .756± .061 .746± .055 .776± .054 .765± .065 .766± .058 .729± .069 .749± .046
nodes 1.0± 0.0 1.1± 0.3 6.4± 0.9 25.0± 3.6 48.0± 4.3 51.4± 5.9 52.5± 5.8
path len 1.00± 0.00 1.04± 0.13 2.80± 0.25 4.41± 0.46 5.75± 0.52 5.94± 0.32 5.84± 0.41
gini .910± .007 .911± .007 .881± .011 .868± .014 .863± .011 .862± .016 .863± .016
time 0.9± 0.0 0.9± 0.1 2.5± 0.3 8.0± 1.1 14.4± 1.2 15.5± 1.6 15.8± 1.6

dry-bean acc .681± .119 .880± .016 .885± .016 .902± .007 .909± .003 .897± .010 .904± .013
nodes 3.2± 1.0 6.1± 0.3 8.4± 0.7 16.1± 2.1 31.0± 3.7 60.2± 5.9 172.5± 12.8
path len 2.37± 0.56 3.08± 0.15 3.37± 0.16 4.26± 0.30 5.38± 0.24 6.03± 0.29 7.53± 0.38
gini .858± .021 .832± .019 .737± .063 .658± .056 .619± .078 .729± .031 .714± .027
time 3.1± 0.7 4.5± 0.1 5.8± 0.4 9.5± 1.0 16.4± 2.1 20.2± 1.8 50.1± 3.2

wine acc .939± .052 .898± .056 .893± .047 .939± .068 .871± .066 .894± .084 .933± .054
nodes 2.0± 0.0 2.6± 0.7 6.1± 1.6 7.3± 2.5 8.9± 3.3 10.0± 2.6 8.8± 1.5
path len 1.69± 0.09 1.92± 0.28 2.99± 0.49 3.08± 0.60 3.31± 0.57 3.66± 0.69 3.47± 0.34
gini .861± .019 .862± .020 .789± .059 .792± .051 .766± .060 .763± .025 .765± .044
time 0.9± 0.1 1.1± 0.2 1.9± 0.4 2.2± 0.6 2.5± 0.7 2.8± 0.6 2.5± 0.3

car acc .700± .044 .700± .044 .701± .045 .780± .087 .794± .116 .825± .098 .821± .109
nodes 0.0± 0.0 0.2± 0.4 2.7± 1.9 13.9± 7.0 43.7± 27.1 96.5± 61.5 116.4± 67.0
path len 0.00± 0.00 0.20± 0.40 1.68± 1.06 3.63± 0.62 4.85± 0.70 6.30± 1.18 6.61± 1.10
gini .000± .000 .182± .363 .716± .358 .890± .016 .869± .015 .873± .015 .869± .017
time 0.3± 0.0 0.4± 0.2 1.3± 0.6 4.2± 1.8 11.2± 6.1 23.0± 13.6 27.5± 14.4

wdbc acc .930± .047 .946± .045 .951± .030 .933± .041 .931± .028 .930± .034 .910± .033
nodes 1.0± 0.0 1.0± 0.0 2.9± 0.7 9.6± 2.2 14.9± 3.8 19.5± 2.8 21.8± 3.0
path len 1.00± 0.00 1.00± 0.00 1.83± 0.31 3.65± 0.77 4.55± 0.92 5.35± 0.81 5.81± 0.47
gini .936± .011 .942± .011 .938± .008 .888± .018 .875± .023 .855± .034 .866± .016
time 0.7± 0.0 0.7± 0.0 1.2± 0.2 2.9± 0.6 4.2± 0.9 5.3± 0.7 5.9± 0.8

sonar acc .716± .111 .730± .050 .721± .052 .730± .088 .711± .114 .721± .089 .770± .075
nodes 1.0± 0.0 4.4± 1.0 11.3± 1.3 16.2± 3.1 18.0± 1.8 18.6± 2.7 18.0± 2.9
path len 1.00± 0.00 2.32± 0.35 4.11± 0.51 4.92± 0.82 5.06± 0.61 5.05± 0.75 5.14± 0.97
gini .888± .069 .929± .026 .921± .029 .908± .036 .911± .038 .902± .025 .905± .031
time 0.7± 0.0 1.6± 0.2 3.1± 0.3 4.3± 0.7 4.7± 0.4 4.8± 0.6 4.6± 0.7

pendigits acc .094± .003 .709± .031 .811± .017 .865± .015 .909± .011 .926± .011 .931± .007
nodes 0.0± 0.0 8.1± 0.7 15.6± 1.7 31.8± 2.3 75.5± 3.5 174.3± 12.1 402.2± 24.6
path len 0.00± 0.00 3.74± 0.20 4.60± 0.23 5.66± 0.25 6.79± 0.28 7.72± 0.25 9.76± 0.39
gini .000± .000 .558± .083 .428± .108 .348± .094 .299± .073 .283± .049 .241± .042
time 0.4± 0.0 4.4± 0.4 7.0± 0.7 12.0± 0.8 23.9± 1.1 48.5± 3.0 101.7± 6.1

ionosphere acc .878± .057 .889± .050 .923± .036 .903± .043 .903± .045 .903± .041 .900± .039
nodes 1.0± 0.0 1.9± 0.5 4.0± 1.3 9.9± 3.2 19.3± 3.8 20.6± 3.1 21.6± 4.1
path len 1.00± 0.00 1.65± 0.40 2.60± 0.55 3.92± 0.65 6.19± 1.03 6.44± 1.23 6.81± 1.56
gini .748± .009 .771± .047 .765± .023 .770± .037 .780± .026 .794± .023 .764± .047
time 0.9± 0.0 1.3± 0.2 2.0± 0.4 4.0± 1.1 5.1± 1.0 7.2± 1.0 7.3± 1.2
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Ours: prototype features, L2 regularization, non-random initialization, crisp
data metric 1e-1 3e-2 1e-2 3e-3 1e-3 3e-4 1e-4
iris acc .927± .092 .933± .094 .953± .067 .973± .044 .953± .060 .953± .060 .953± .060

nodes 2.0± 0.0 2.0± 0.0 3.7± 1.0 4.9± 0.8 5.7± 0.9 5.6± 0.9 5.6± 0.9
path len 1.67± 0.09 1.67± 0.09 2.09± 0.25 2.23± 0.23 2.31± 0.26 2.29± 0.24 2.29± 0.24
gini .580± .024 .578± .023 .580± .030 .584± .038 .578± .034 .576± .032 .577± .032
time 1.0± 0.0 1.0± 0.0 1.5± 0.3 1.8± 0.2 2.0± 0.2 2.0± 0.2 2.0± 0.2

heart acc .756± .061 .746± .055 .779± .055 .769± .060 .766± .065 .736± .069 .743± .051
nodes 1.0± 0.0 1.1± 0.3 6.4± 0.9 24.9± 3.5 48.0± 4.3 51.4± 5.9 52.5± 5.8
path len 1.00± 0.00 1.04± 0.13 2.80± 0.25 4.41± 0.46 5.75± 0.53 5.94± 0.32 5.84± 0.41
gini .910± .007 .911± .007 .881± .011 .868± .014 .863± .011 .862± .016 .863± .016
time 0.8± 0.1 0.8± 0.1 2.3± 0.3 7.1± 0.9 12.9± 1.1 20.5± 2.2 14.2± 1.4

dry-bean acc .680± .118 .877± .016 .883± .015 .894± .006 .902± .004 .894± .010 .902± .013
nodes 3.2± 1.0 6.1± 0.3 8.4± 0.7 16.1± 2.1 31.0± 3.7 60.2± 5.9 172.5± 12.8
path len 2.37± 0.57 3.08± 0.15 3.38± 0.16 4.26± 0.31 5.39± 0.24 6.03± 0.30 7.54± 0.39
gini .858± .021 .832± .019 .738± .063 .659± .057 .618± .080 .730± .032 .714± .027
time 2.9± 0.6 4.3± 0.1 5.2± 0.3 8.3± 0.9 13.5± 1.5 18.2± 1.4 43.6± 2.9

wine acc .933± .060 .898± .056 .893± .047 .939± .068 .882± .076 .894± .084 .933± .054
nodes 2.0± 0.0 2.6± 0.7 6.1± 1.6 7.3± 2.5 8.9± 3.3 10.0± 2.6 8.8± 1.5
path len 1.69± 0.09 1.92± 0.28 3.01± 0.49 3.07± 0.59 3.30± 0.59 3.68± 0.69 3.46± 0.35
gini .861± .019 .862± .020 .790± .057 .793± .051 .764± .062 .763± .026 .766± .044
time 0.9± 0.1 1.0± 0.1 1.7± 0.3 2.0± 0.5 2.3± 0.7 2.5± 0.5 2.3± 0.3

car acc .700± .044 .700± .044 .701± .045 .780± .087 .795± .118 .824± .096 .821± .114
nodes 0.0± 0.0 0.2± 0.4 2.7± 1.9 13.9± 7.0 43.7± 27.1 96.5± 61.5 116.6± 67.2
path len 0.00± 0.00 0.20± 0.40 1.68± 1.06 3.64± 0.62 4.85± 0.70 6.30± 1.18 6.60± 1.10
gini .000± .000 .182± .363 .716± .358 .890± .016 .869± .015 .873± .015 .869± .017
time 0.3± 0.0 0.4± 0.2 1.2± 0.6 3.8± 1.6 10.1± 5.5 20.2± 11.9 24.3± 12.9

wdbc acc .930± .047 .946± .045 .947± .029 .933± .041 .930± .027 .930± .034 .910± .033
nodes 1.0± 0.0 1.0± 0.0 2.9± 0.7 9.6± 2.2 14.9± 3.8 19.5± 2.8 21.8± 3.0
path len 1.00± 0.00 1.00± 0.00 1.83± 0.31 3.65± 0.78 4.55± 0.91 5.35± 0.81 5.82± 0.48
gini .936± .011 .942± .011 .938± .008 .888± .019 .876± .020 .855± .034 .865± .016
time 0.7± 0.0 0.7± 0.0 1.1± 0.2 2.6± 0.5 3.8± 0.9 4.8± 0.6 5.3± 0.6

sonar acc .716± .111 .730± .050 .716± .050 .730± .088 .716± .113 .730± .092 .770± .078
nodes 1.0± 0.0 4.4± 1.0 11.3± 1.3 16.2± 3.1 18.0± 1.8 18.6± 2.7 18.0± 2.9
path len 1.00± 0.00 2.32± 0.35 4.10± 0.51 4.92± 0.82 5.07± 0.62 5.07± 0.73 5.16± 0.96
gini .888± .069 .929± .026 .921± .029 .908± .036 .911± .038 .903± .024 .905± .031
time 0.7± 0.0 1.4± 0.2 2.8± 0.3 3.9± 0.6 4.2± 0.3 4.3± 0.5 4.2± 0.6

pendigits acc .094± .003 .708± .031 .809± .018 .864± .015 .908± .011 .925± .011 .930± .007
nodes 0.0± 0.0 8.1± 0.7 15.6± 1.7 31.8± 2.3 75.5± 3.5 174.3± 12.1 402.2± 24.6
path len 0.00± 0.00 3.74± 0.21 4.60± 0.23 5.66± 0.25 6.79± 0.28 7.72± 0.25 9.76± 0.38
gini .000± .000 .558± .083 .428± .108 .348± .094 .300± .073 .283± .049 .241± .042
time 0.3± 0.0 4.0± 0.3 6.4± 0.6 10.9± 0.7 21.5± 0.9 43.2± 2.7 89.6± 5.1

ionosphere acc .878± .057 .892± .049 .923± .036 .903± .043 .897± .048 .903± .041 .900± .039
nodes 1.0± 0.0 1.9± 0.5 4.0± 1.3 9.9± 3.2 19.2± 3.8 20.6± 3.1 21.6± 4.1
path len 1.00± 0.00 1.65± 0.40 2.60± 0.55 3.92± 0.65 6.20± 1.03 6.44± 1.23 6.80± 1.57
gini .748± .009 .771± .047 .765± .023 .770± .037 .782± .027 .794± .023 .764± .047
time 0.7± 0.0 0.9± 0.2 1.3± 0.2 2.6± 0.7 4.6± 0.8 6.6± 0.9 6.7± 1.2
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Ours: linear features, L1 regularization, non-random initialization, fuzzy
data metric 1e-1 3e-2 1e-2 3e-3 1e-3 3e-4 1e-4
iris acc .953± .043 .953± .043 .967± .033 .967± .033 .960± .033 .953± .043 .953± .043

nodes 2.0± 0.0 2.0± 0.0 3.7± 0.5 5.0± 1.2 9.5± 1.3 13.9± 2.2 18.8± 4.1
path len 1.67± 0.09 1.67± 0.09 2.25± 0.21 2.37± 0.34 3.09± 0.42 3.51± 0.45 3.86± 0.57
gini .067± .168 .072± .168 .106± .049 .077± .051 .095± .077 .082± .086 .077± .072
time 0.6± 0.0 0.7± 0.0 1.0± 0.1 1.6± 0.3 2.6± 0.3 3.6± 0.5 4.7± 0.9

heart acc .772± .056 .799± .052 .796± .065 .772± .036 .763± .074 .766± .082 .766± .096
nodes 1.0± 0.0 1.3± 0.5 6.4± 1.5 25.5± 3.8 36.2± 3.8 41.3± 3.2 42.9± 5.8
path len 1.00± 0.00 1.19± 0.30 2.62± 0.28 4.57± 0.35 5.20± 0.34 5.47± 0.44 5.65± 0.56
gini .432± .072 .505± .139 .347± .101 .220± .081 .164± .039 .182± .069 .165± .051
time 0.6± 0.0 0.7± 0.2 1.8± 0.5 6.4± 2.0 7.1± 0.7 8.1± 0.6 8.4± 1.1

dry-bean acc .636± .062 .902± .009 .914± .007 .912± .004 .915± .006 .920± .007 .920± .007
nodes 2.8± 0.4 6.0± 0.0 7.7± 0.5 12.1± 1.4 27.7± 2.0 59.6± 2.0 88.1± 10.7
path len 2.14± 0.25 3.13± 0.22 3.31± 0.12 3.83± 0.19 5.28± 0.23 6.37± 0.14 6.46± 0.31
gini .619± .031 .658± .019 .674± .026 .535± .076 .510± .043 .359± .042 .406± .033
time 2.6± 0.3 4.5± 0.1 5.3± 0.3 7.3± 0.7 14.5± 0.8 20.9± 0.7 51.1± 24.9

wine acc .972± .028 .989± .022 .972± .028 .960± .026 .966± .027 .983± .026 .978± .027
nodes 2.0± 0.0 2.1± 0.3 3.0± 0.4 3.0± 0.4 5.0± 1.5 9.1± 2.7 13.1± 3.0
path len 1.68± 0.08 1.72± 0.21 2.10± 0.18 2.03± 0.17 2.55± 0.36 3.39± 0.48 4.23± 0.57
gini .795± .015 .792± .034 .754± .043 .749± .062 .752± .060 .737± .033 .733± .025
time 0.6± 0.0 0.6± 0.0 0.8± 0.1 0.7± 0.1 1.1± 0.3 1.8± 0.5 2.5± 0.5

car acc .700± .044 .891± .032 .946± .038 .976± .013 .992± .006 .996± .006 .992± .006
nodes 0.0± 0.0 2.5± 0.8 5.9± 1.5 14.0± 2.4 29.8± 6.0 32.4± 3.7 39.3± 7.5
path len 0.00± 0.00 1.53± 0.29 2.08± 0.26 2.77± 0.14 3.39± 0.25 3.64± 0.42 3.64± 0.34
gini .000± .000 .580± .133 .566± .035 .542± .071 .580± .082 .572± .062 .507± .043
time 0.2± 0.0 1.1± 0.3 1.9± 0.4 4.0± 0.7 8.0± 1.7 8.6± 1.2 10.2± 1.5

wdbc acc .975± .020 .974± .021 .974± .016 .968± .015 .970± .019 .967± .029 .963± .030
nodes 1.0± 0.0 1.0± 0.0 1.0± 0.0 3.0± 0.0 7.2± 2.5 17.1± 4.4 31.5± 4.7
path len 1.00± 0.00 1.00± 0.00 1.00± 0.00 2.00± 0.00 2.79± 0.62 3.55± 0.63 4.67± 0.62
gini .816± .018 .812± .023 .810± .021 .824± .034 .933± .007 .936± .013 .937± .008
time 0.5± 0.0 0.5± 0.0 0.5± 0.0 1.1± 0.0 2.2± 0.6 3.2± 0.8 8.2± 1.5

sonar acc .711± .088 .769± .095 .822± .058 .783± .075 .803± .083 .851± .069 .836± .081
nodes 1.0± 0.0 2.5± 0.7 7.3± 1.2 7.2± 1.0 13.3± 3.8 18.7± 4.8 27.5± 6.2
path len 1.00± 0.00 1.75± 0.19 3.04± 0.25 3.15± 0.44 3.93± 0.51 4.90± 0.68 5.63± 0.63
gini .946± .008 .910± .028 .854± .043 .871± .037 .893± .041 .920± .022 .928± .018
time 0.5± 0.0 1.0± 0.2 2.1± 0.3 2.1± 0.3 3.6± 1.0 5.0± 1.3 5.9± 1.5

pendigits acc .094± .003 .888± .014 .942± .010 .964± .007 .974± .007 .977± .005 .984± .004
nodes 0.0± 0.0 9.1± 0.3 11.7± 0.9 18.6± 1.5 42.1± 5.0 120.7± 7.1 290.0± 12.9
path len 0.00± 0.00 3.83± 0.27 4.40± 0.39 5.08± 0.20 5.92± 0.29 7.49± 0.37 8.95± 0.31
gini .000± .000 .803± .013 .795± .027 .751± .014 .689± .042 .503± .029 .329± .032
time 0.3± 0.0 4.5± 0.1 5.5± 0.3 7.9± 0.5 15.2± 1.5 55.7± 12.3 142.1± 25.0

ionosphere acc .829± .044 .895± .057 .920± .038 .923± .034 .906± .056 .897± .069 .937± .031
nodes 1.0± 0.0 2.2± 0.4 4.4± 0.5 6.2± 1.2 14.9± 3.1 26.4± 4.8 30.4± 5.4
path len 1.00± 0.00 1.91± 0.32 3.43± 0.41 3.89± 0.44 5.51± 0.84 7.59± 0.87 8.98± 1.28
gini .447± .056 .640± .147 .532± .130 .657± .071 .691± .060 .772± .080 .781± .076
time 0.5± 0.0 0.9± 0.1 1.4± 0.1 1.8± 0.3 3.9± 0.8 6.3± 1.1 7.9± 1.5
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Ours: linear features, L1 regularization, non-random initialization, crisp
data metric 1e-1 3e-2 1e-2 3e-3 1e-3 3e-4 1e-4
iris acc .953± .043 .953± .043 .980± .031 .960± .033 .973± .033 .920± .065 .967± .033

nodes 2.0± 0.0 2.0± 0.0 3.7± 0.5 5.0± 1.2 9.5± 1.3 13.9± 2.2 18.8± 4.1
path len 1.67± 0.09 1.67± 0.09 2.25± 0.21 2.38± 0.33 3.05± 0.44 3.52± 0.45 3.87± 0.55
gini .063± .170 .071± .168 .101± .046 .079± .057 .091± .075 .079± .086 .063± .046
time 0.7± 0.0 0.7± 0.0 1.1± 0.1 1.4± 0.2 2.3± 0.3 3.1± 0.4 4.1± 0.8

heart acc .772± .056 .789± .056 .796± .061 .779± .034 .766± .078 .766± .078 .762± .095
nodes 1.0± 0.0 1.3± 0.5 6.4± 1.5 25.5± 3.8 36.1± 3.8 41.3± 3.2 42.9± 5.8
path len 1.00± 0.00 1.19± 0.30 2.61± 0.30 4.55± 0.37 5.21± 0.31 5.47± 0.42 5.61± 0.53
gini .432± .072 .505± .140 .346± .102 .220± .081 .165± .039 .181± .070 .165± .051
time 0.6± 0.0 0.7± 0.1 1.6± 0.5 6.0± 1.6 6.2± 0.6 7.1± 0.5 7.4± 1.0

dry-bean acc .632± .061 .891± .010 .910± .010 .905± .006 .906± .006 .913± .009 .908± .008
nodes 2.8± 0.4 6.0± 0.0 7.7± 0.5 12.1± 1.4 27.7± 2.0 44.1± 3.2 88.1± 10.7
path len 2.15± 0.25 3.15± 0.23 3.31± 0.12 3.85± 0.20 5.33± 0.25 5.57± 0.17 6.49± 0.32
gini .619± .031 .658± .019 .674± .026 .536± .076 .511± .044 .360± .038 .406± .033
time 2.4± 0.3 4.0± 0.1 4.8± 0.3 6.3± 0.5 11.5± 0.6 42.8± 15.5 50.7± 14.2

wine acc .972± .028 .989± .022 .972± .028 .955± .034 .961± .026 .978± .027 .972± .028
nodes 2.0± 0.0 2.1± 0.3 3.0± 0.4 3.0± 0.4 5.0± 1.5 9.1± 2.7 13.1± 3.0
path len 1.68± 0.07 1.73± 0.21 2.09± 0.18 2.03± 0.17 2.53± 0.37 3.41± 0.49 4.24± 0.58
gini .795± .015 .792± .033 .755± .042 .749± .062 .752± .063 .737± .034 .733± .025
time 0.5± 0.0 0.5± 0.0 0.7± 0.1 0.7± 0.1 1.0± 0.2 1.6± 0.4 2.2± 0.4

car acc .700± .044 .890± .033 .945± .038 .976± .013 .992± .006 .996± .006 .992± .006
nodes 0.0± 0.0 2.5± 0.8 5.9± 1.5 14.0± 2.4 29.8± 6.0 32.4± 3.7 39.3± 7.5
path len 0.00± 0.00 1.53± 0.29 2.09± 0.26 2.78± 0.14 3.39± 0.25 3.64± 0.42 3.65± 0.35
gini .000± .000 .580± .133 .566± .036 .542± .071 .580± .081 .573± .062 .507± .043
time 0.2± 0.0 1.0± 0.2 1.8± 0.4 3.6± 0.6 7.1± 1.5 7.6± 1.0 9.1± 1.5

wdbc acc .975± .020 .974± .021 .974± .016 .968± .015 .965± .025 .963± .035 .961± .028
nodes 1.0± 0.0 1.0± 0.0 1.0± 0.0 3.0± 0.0 7.2± 2.5 17.1± 4.4 31.5± 4.7
path len 1.00± 0.00 1.00± 0.00 1.00± 0.00 2.00± 0.00 2.80± 0.62 3.54± 0.66 4.71± 0.58
gini .816± .018 .812± .023 .810± .021 .824± .034 .933± .007 .936± .013 .937± .008
time 0.5± 0.0 0.5± 0.0 0.5± 0.0 1.0± 0.0 1.9± 0.5 2.8± 0.6 7.0± 1.2

sonar acc .712± .100 .769± .083 .812± .063 .774± .105 .818± .062 .846± .083 .822± .098
nodes 1.0± 0.0 2.5± 0.7 7.3± 1.2 7.2± 1.0 13.3± 3.8 18.7± 4.8 27.5± 6.2
path len 1.00± 0.00 1.77± 0.18 3.04± 0.27 3.16± 0.46 3.87± 0.53 4.84± 0.65 5.64± 0.61
gini .946± .008 .910± .028 .853± .044 .872± .036 .894± .042 .920± .023 .928± .019
time 0.5± 0.0 0.9± 0.2 1.9± 0.2 1.9± 0.2 3.2± 0.8 4.3± 1.1 5.2± 1.2

pendigits acc .094± .003 .885± .013 .938± .011 .960± .010 .968± .005 .969± .006 .976± .004
nodes 0.0± 0.0 9.1± 0.3 11.7± 0.9 18.6± 1.5 42.1± 5.0 120.7± 7.1 290.0± 12.9
path len 0.00± 0.00 3.83± 0.27 4.41± 0.39 5.08± 0.20 5.91± 0.29 7.49± 0.40 8.97± 0.34
gini .000± .000 .803± .013 .795± .027 .751± .014 .689± .042 .503± .029 .329± .032
time 0.3± 0.0 5.2± 0.2 6.3± 0.4 9.1± 0.6 17.4± 1.7 40.2± 2.4 86.1± 5.0

ionosphere acc .835± .044 .892± .057 .917± .043 .920± .038 .897± .054 .909± .055 .909± .069
nodes 1.0± 0.0 2.2± 0.4 4.4± 0.5 6.2± 1.2 14.9± 3.1 26.4± 4.8 30.4± 5.4
path len 1.00± 0.00 1.92± 0.32 3.51± 0.44 3.94± 0.44 5.54± 0.85 7.67± 0.90 9.23± 1.41
gini .447± .056 .640± .147 .533± .129 .658± .070 .691± .060 .772± .081 .781± .077
time 0.5± 0.0 0.8± 0.1 1.2± 0.1 1.6± 0.3 3.4± 0.6 5.8± 1.0 6.7± 1.2
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Ours: prototype features, L1 regularization, non-random initialization, fuzzy
data metric 1e-1 3e-2 1e-2 3e-3 1e-3 3e-4 1e-4
iris acc .940± .055 .940± .055 .933± .067 .933± .052 .927± .063 .900± .086 .920± .088

nodes 2.0± 0.0 2.0± 0.0 3.3± 0.8 5.3± 0.6 5.9± 0.9 6.3± 1.0 6.1± 0.8
path len 1.66± 0.09 1.66± 0.09 2.02± 0.30 2.24± 0.23 2.30± 0.14 2.34± 0.19 2.32± 0.22
gini .571± .025 .567± .024 .542± .042 .535± .029 .552± .045 .538± .045 .527± .046
time 1.1± 0.0 1.1± 0.0 1.3± 0.3 2.1± 0.2 2.2± 0.3 2.3± 0.3 2.3± 0.2

heart acc .756± .065 .743± .060 .759± .071 .786± .063 .746± .066 .753± .061 .736± .062
nodes 1.0± 0.0 1.3± 0.6 7.0± 2.2 27.3± 5.2 46.9± 6.7 52.4± 6.2 54.1± 6.2
path len 1.00± 0.00 1.13± 0.29 2.88± 0.57 4.73± 0.68 5.61± 0.69 6.27± 0.53 6.33± 0.62
gini .912± .009 .908± .015 .872± .022 .852± .019 .844± .017 .850± .014 .853± .015
time 0.9± 0.1 1.0± 0.2 2.7± 0.7 8.7± 1.5 11.0± 1.5 12.4± 1.4 12.6± 1.3

dry-bean acc .714± .086 .863± .007 .871± .014 .878± .010 .890± .010 .893± .009 .895± .010
nodes 3.6± 0.7 6.6± 0.5 8.5± 0.9 13.9± 1.8 26.0± 2.1 43.0± 7.4 97.5± 12.4
path len 2.36± 0.31 3.17± 0.17 3.50± 0.23 4.23± 0.29 5.07± 0.25 5.44± 0.30 6.73± 0.31
gini .830± .033 .806± .029 .719± .047 .583± .066 .524± .066 .516± .052 .509± .030
time 3.3± 0.4 4.9± 0.3 6.0± 0.6 8.4± 0.9 13.9± 1.3 70.2± 22.0 120.3± 23.2

wine acc .893± .030 .927± .051 .905± .050 .911± .051 .938± .047 .922± .044 .949± .060
nodes 2.0± 0.0 2.4± 0.5 5.7± 2.1 7.4± 1.9 8.1± 1.0 9.2± 2.4 10.7± 3.0
path len 1.67± 0.12 1.79± 0.21 2.77± 0.64 3.12± 0.37 3.21± 0.23 3.53± 0.39 3.73± 0.50
gini .815± .043 .811± .054 .729± .056 .699± .054 .677± .082 .685± .068 .680± .057
time 0.9± 0.1 1.0± 0.1 1.8± 0.5 2.2± 0.4 2.4± 0.2 2.6± 0.5 2.9± 0.7

car acc .700± .044 .700± .044 .740± .098 .780± .102 .800± .094 .806± .111 .790± .126
nodes 0.0± 0.0 0.3± 0.5 4.9± 3.2 15.4± 5.8 39.5± 23.4 83.5± 57.5 105.4± 59.8
path len 0.00± 0.00 0.30± 0.46 2.43± 1.05 4.16± 0.92 5.10± 0.92 6.22± 1.67 6.62± 1.34
gini .000± .000 .266± .407 .896± .015 .889± .012 .879± .014 .870± .015 .871± .012
time 0.3± 0.0 0.4± 0.2 1.9± 0.9 4.8± 1.4 10.4± 5.5 20.6± 13.0 25.3± 13.1

wdbc acc .937± .029 .942± .029 .942± .029 .928± .041 .928± .036 .924± .038 .930± .044
nodes 1.0± 0.0 1.1± 0.3 2.9± 0.8 10.0± 2.9 18.2± 1.6 22.2± 2.8 25.7± 2.5
path len 1.00± 0.00 1.04± 0.13 1.77± 0.37 3.37± 0.62 4.56± 0.60 5.03± 0.85 6.05± 0.94
gini .917± .022 .915± .022 .925± .012 .878± .025 .842± .023 .816± .027 .786± .054
time 0.7± 0.0 0.8± 0.1 1.2± 0.2 3.0± 0.8 5.0± 0.5 6.0± 0.7 6.9± 0.6

sonar acc .716± .102 .735± .085 .764± .052 .754± .084 .764± .118 .774± .084 .763± .089
nodes 1.0± 0.0 3.9± 0.7 11.6± 1.4 19.2± 2.7 18.7± 2.1 18.9± 2.2 19.5± 2.2
path len 1.00± 0.00 2.25± 0.20 4.01± 0.46 5.25± 0.55 5.10± 0.63 5.07± 0.65 5.07± 0.73
gini .888± .069 .921± .035 .890± .037 .875± .034 .891± .020 .888± .044 .886± .025
time 0.7± 0.0 1.5± 0.2 3.2± 0.3 4.9± 0.7 4.8± 0.6 4.8± 0.5 5.0± 0.5

pendigits acc .094± .003 .718± .041 .791± .024 .869± .018 .902± .011 .922± .010 .931± .006
nodes 0.0± 0.0 8.4± 0.9 15.0± 1.6 34.3± 2.2 78.0± 3.3 180.0± 12.1 408.8± 21.5
path len 0.00± 0.00 3.81± 0.27 4.46± 0.26 5.79± 0.17 6.77± 0.26 8.06± 0.30 9.26± 0.19
gini .000± .000 .527± .070 .407± .104 .317± .071 .294± .063 .295± .047 .288± .036
time 0.4± 0.0 5.6± 0.6 8.8± 0.8 17.0± 0.9 33.9± 1.2 78.3± 12.4 143.9± 8.4

ionosphere acc .875± .048 .903± .055 .914± .036 .906± .060 .903± .045 .912± .049 .897± .050
nodes 1.0± 0.0 1.9± 0.3 3.7± 1.4 10.5± 2.4 17.1± 4.1 22.3± 3.3 21.3± 3.0
path len 1.00± 0.00 1.64± 0.22 2.42± 0.49 4.20± 0.86 6.03± 1.07 7.26± 1.46 7.16± 1.34
gini .750± .009 .767± .040 .769± .031 .768± .038 .783± .042 .774± .045 .787± .045
time 0.7± 0.0 1.0± 0.1 1.3± 0.3 2.9± 0.6 4.5± 1.0 14.4± 2.0 7.4± 1.0
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Ours: prototype features, L1 regularization, non-random initialization, crisp
data metric 1e-1 3e-2 1e-2 3e-3 1e-3 3e-4 1e-4
iris acc .940± .055 .940± .055 .933± .067 .927± .055 .927± .063 .900± .086 .933± .067

nodes 2.0± 0.0 2.0± 0.0 3.3± 0.8 5.3± 0.6 5.9± 0.9 6.3± 1.0 6.1± 0.8
path len 1.66± 0.09 1.66± 0.09 2.02± 0.30 2.27± 0.22 2.30± 0.15 2.35± 0.18 2.27± 0.18
gini .571± .025 .569± .025 .542± .042 .524± .052 .552± .045 .539± .045 .535± .036
time 1.0± 0.0 1.0± 0.0 1.4± 0.2 1.9± 0.2 2.0± 0.2 2.1± 0.3 2.1± 0.2

heart acc .756± .065 .743± .060 .759± .071 .782± .066 .743± .073 .753± .060 .733± .059
nodes 1.0± 0.0 1.3± 0.6 7.0± 2.2 27.3± 5.2 46.9± 6.7 52.4± 6.2 54.1± 6.2
path len 1.00± 0.00 1.14± 0.29 2.88± 0.57 4.73± 0.68 5.60± 0.69 6.27± 0.53 6.34± 0.62
gini .912± .009 .908± .015 .872± .022 .852± .019 .844± .016 .850± .014 .853± .015
time 0.7± 0.0 0.8± 0.2 2.0± 0.5 6.1± 1.2 9.5± 1.2 10.6± 1.2 11.0± 1.1

dry-bean acc .713± .086 .863± .007 .870± .016 .876± .011 .886± .010 .890± .008 .891± .009
nodes 3.6± 0.7 6.6± 0.5 8.5± 0.9 13.9± 1.8 26.0± 2.1 43.0± 7.4 97.5± 12.4
path len 2.37± 0.31 3.17± 0.17 3.50± 0.22 4.23± 0.29 5.07± 0.25 5.45± 0.31 6.74± 0.32
gini .830± .033 .806± .029 .720± .047 .583± .066 .525± .066 .516± .052 .509± .030
time 3.0± 0.4 4.6± 0.3 5.5± 0.5 7.7± 0.8 12.4± 1.0 65.5± 21.2 75.9± 20.9

wine acc .899± .033 .927± .051 .905± .050 .905± .050 .938± .047 .911± .051 .949± .060
nodes 2.0± 0.0 2.4± 0.5 5.7± 2.1 7.4± 1.9 8.1± 1.0 9.2± 2.4 10.7± 3.0
path len 1.66± 0.12 1.78± 0.22 2.77± 0.64 3.12± 0.38 3.19± 0.22 3.54± 0.41 3.70± 0.49
gini .815± .043 .811± .054 .730± .056 .697± .050 .680± .075 .684± .069 .682± .055
time 0.9± 0.1 1.0± 0.1 1.7± 0.4 2.0± 0.4 2.1± 0.2 2.4± 0.5 2.6± 0.6

car acc .700± .044 .700± .044 .740± .098 .779± .103 .797± .096 .807± .111 .794± .126
nodes 0.0± 0.0 0.3± 0.5 4.9± 3.2 15.4± 5.8 39.5± 23.4 83.5± 57.5 105.4± 59.8
path len 0.00± 0.00 0.30± 0.46 2.43± 1.05 4.16± 0.92 5.10± 0.92 6.22± 1.67 6.62± 1.34
gini .000± .000 .266± .407 .896± .015 .889± .012 .879± .014 .870± .014 .871± .012
time 0.3± 0.0 0.4± 0.2 1.7± 0.8 4.3± 1.3 9.3± 4.9 18.5± 11.9 22.3± 11.6

wdbc acc .937± .029 .942± .029 .945± .032 .928± .041 .930± .037 .923± .036 .931± .046
nodes 1.0± 0.0 1.1± 0.3 2.9± 0.8 10.0± 2.9 18.2± 1.6 22.2± 2.8 25.7± 2.5
path len 1.00± 0.00 1.04± 0.13 1.77± 0.36 3.38± 0.61 4.56± 0.60 5.03± 0.85 6.05± 0.95
gini .917± .022 .915± .022 .925± .012 .878± .025 .842± .023 .815± .027 .786± .054
time 0.7± 0.0 0.7± 0.1 1.1± 0.2 2.7± 0.7 4.5± 0.4 5.4± 0.7 6.1± 0.6

sonar acc .716± .102 .735± .085 .769± .060 .754± .080 .759± .121 .778± .076 .763± .074
nodes 1.0± 0.0 3.9± 0.7 11.7± 1.5 19.2± 2.7 18.7± 2.1 18.9± 2.2 19.5± 2.2
path len 1.00± 0.00 2.24± 0.20 4.04± 0.46 5.23± 0.56 5.12± 0.63 5.07± 0.66 5.08± 0.75
gini .888± .069 .921± .035 .890± .036 .875± .034 .891± .020 .888± .045 .886± .025
time 0.7± 0.0 1.3± 0.2 2.9± 0.3 4.4± 0.6 4.3± 0.5 4.3± 0.5 4.5± 0.5

pendigits acc .094± .003 .718± .041 .790± .024 .868± .018 .901± .012 .921± .011 .930± .006
nodes 0.0± 0.0 8.4± 0.9 15.0± 1.6 34.3± 2.2 78.0± 3.3 180.0± 12.1 408.8± 21.5
path len 0.00± 0.00 3.81± 0.27 4.46± 0.26 5.79± 0.17 6.77± 0.26 8.06± 0.30 9.26± 0.19
gini .000± .000 .527± .070 .407± .104 .317± .071 .294± .063 .295± .047 .288± .036
time 0.4± 0.0 5.2± 0.5 6.3± 0.5 11.6± 0.6 22.3± 0.8 55.3± 3.1 114.9± 6.4

ionosphere acc .875± .048 .903± .055 .917± .037 .909± .058 .906± .041 .912± .049 .897± .050
nodes 1.0± 0.0 1.9± 0.3 3.7± 1.4 10.5± 2.4 17.1± 4.1 22.3± 3.3 21.3± 3.0
path len 1.00± 0.00 1.64± 0.22 2.42± 0.50 4.20± 0.87 6.05± 1.09 7.22± 1.46 7.18± 1.35
gini .750± .009 .767± .040 .769± .031 .768± .038 .783± .042 .774± .045 .787± .045
time 0.7± 0.0 0.9± 0.1 1.2± 0.3 2.6± 0.5 4.1± 0.9 6.8± 0.9 6.6± 0.9
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Ours: linear features, L2 regularization, random initialization, fuzzy
data metric 1e-1 3e-2 1e-2 3e-3 1e-3 3e-4 1e-4
iris acc .960± .044 .947± .065 .960± .053 .947± .050 .953± .043 .960± .033 .980± .031

nodes 2.0± 0.0 2.8± 0.4 2.4± 0.5 7.0± 1.9 10.6± 0.9 10.9± 1.5 19.0± 2.2
path len 1.67± 0.09 1.96± 0.23 1.79± 0.20 2.59± 0.31 2.91± 0.42 2.86± 0.28 3.82± 0.46
gini .627± .005 .602± .048 .611± .018 .681± .036 .681± .031 .601± .045 .633± .036
time 0.6± 0.0 0.8± 0.1 0.7± 0.1 1.8± 0.4 2.8± 0.2 2.9± 0.3 4.7± 0.5

heart acc .819± .048 .802± .066 .772± .048 .753± .078 .756± .066 .763± .039 .743± .063
nodes 1.0± 0.0 1.2± 0.4 6.2± 0.7 19.7± 2.2 22.6± 2.5 25.9± 2.5 26.1± 3.6
path len 1.00± 0.00 1.10± 0.21 3.12± 0.46 4.76± 0.98 5.82± 0.53 7.00± 0.70 6.12± 0.82
gini .924± .006 .925± .004 .920± .008 .921± .004 .919± .003 .919± .003 .920± .004
time 0.5± 0.0 0.6± 0.1 1.9± 0.2 5.1± 0.5 4.2± 0.4 4.7± 0.4 4.8± 0.6

dry-bean acc .668± .012 .906± .008 .917± .006 .918± .005 .920± .006 .923± .007 .924± .005
nodes 3.0± 0.0 6.0± 0.0 8.0± 0.0 10.0± 1.3 19.9± 1.4 28.4± 5.4 66.0± 7.9
path len 2.00± 0.00 2.95± 0.11 3.38± 0.04 3.71± 0.29 5.14± 0.43 4.88± 0.46 6.05± 0.37
gini .907± .005 .905± .003 .908± .002 .908± .003 .908± .004 .906± .003 .908± .002
time 2.6± 0.1 4.3± 0.1 5.4± 0.1 6.4± 0.7 11.3± 0.8 23.8± 6.3 66.0± 9.6

wine acc .966± .027 .961± .026 .960± .026 .960± .026 .966± .028 .966± .027 .966± .028
nodes 2.0± 0.0 2.0± 0.0 2.1± 0.3 2.2± 0.4 2.1± 0.3 2.1± 0.3 2.4± 0.7
path len 1.66± 0.10 1.66± 0.10 1.69± 0.14 1.72± 0.17 1.69± 0.14 1.68± 0.14 1.79± 0.25
gini .872± .009 .873± .009 .874± .007 .876± .010 .873± .010 .873± .011 .876± .013
time 0.6± 0.0 0.6± 0.0 0.6± 0.1 0.6± 0.1 0.6± 0.0 0.6± 0.1 0.6± 0.1

car acc .700± .044 .910± .025 .940± .022 .983± .011 .993± .009 .989± .011 .991± .006
nodes 0.0± 0.0 2.0± 0.0 4.1± 0.9 10.1± 1.8 17.6± 2.2 26.4± 4.8 25.8± 5.6
path len 0.00± 0.00 1.32± 0.04 1.68± 0.18 2.47± 0.21 3.04± 0.50 4.33± 0.86 3.99± 0.85
gini .000± .000 .921± .001 .914± .008 .905± .012 .904± .007 .915± .011 .909± .009
time 0.2± 0.0 0.9± 0.0 1.5± 0.3 3.0± 0.5 4.9± 0.6 7.4± 1.3 7.2± 1.5

wdbc acc .963± .025 .965± .024 .967± .025 .961± .023 .963± .025 .961± .030 .968± .028
nodes 1.0± 0.0 1.0± 0.0 1.0± 0.0 2.5± 1.4 5.2± 1.4 13.1± 2.8 19.6± 4.4
path len 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.54± 0.40 2.42± 0.38 3.53± 0.51 4.51± 0.63
gini .955± .003 .955± .002 .955± .003 .953± .002 .951± .003 .951± .002 .952± .002
time 0.5± 0.0 0.5± 0.0 0.5± 0.0 1.0± 0.4 1.7± 0.4 3.7± 0.8 5.3± 1.1

sonar acc .736± .109 .788± .070 .807± .058 .807± .089 .793± .118 .860± .034 .822± .081
nodes 1.0± 0.0 2.3± 0.5 4.8± 1.2 5.5± 1.0 5.7± 1.4 6.4± 2.2 6.5± 1.9
path len 1.00± 0.00 1.65± 0.21 2.65± 0.55 2.82± 0.54 2.81± 0.50 3.14± 0.69 3.16± 0.69
gini .976± .001 .975± .001 .975± .001 .974± .001 .974± .001 .974± .001 .974± .001
time 0.5± 0.0 0.9± 0.1 1.5± 0.3 1.7± 0.3 1.8± 0.4 1.9± 0.5 2.0± 0.4

pendigits acc .094± .003 .906± .025 .948± .012 .977± .007 .983± .004 .989± .003 .989± .003
nodes 0.0± 0.0 9.2± 0.6 12.4± 1.6 20.1± 2.0 31.5± 3.2 56.1± 6.0 123.5± 10.5
path len 0.00± 0.00 3.99± 0.12 4.74± 0.45 5.01± 0.42 5.80± 0.29 6.33± 0.36 8.10± 0.53
gini .000± .000 .908± .001 .900± .006 .899± .005 .898± .004 .900± .005 .897± .004
time 0.3± 0.0 4.6± 0.2 5.9± 0.6 8.6± 0.7 12.2± 1.0 25.6± 2.9 47.6± 4.0

ionosphere acc .843± .093 .909± .040 .912± .039 .923± .048 .926± .039 .935± .040 .926± .043
nodes 1.0± 0.0 2.8± 0.4 3.6± 0.7 4.5± 0.7 8.2± 1.8 12.4± 2.9 13.5± 3.6
path len 1.00± 0.00 2.25± 0.26 2.75± 0.49 3.28± 0.33 3.96± 0.61 5.22± 0.88 5.13± 0.85
gini .952± .004 .934± .007 .927± .010 .925± .004 .933± .011 .935± .007 .938± .005
time 0.5± 0.0 1.0± 0.1 1.2± 0.2 1.4± 0.2 2.3± 0.5 3.3± 0.7 3.6± 1.0
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Ours: linear features, L2 regularization, random initialization, crisp
data metric 1e-1 3e-2 1e-2 3e-3 1e-3 3e-4 1e-4
iris acc .967± .045 .953± .067 .960± .053 .953± .052 .953± .043 .967± .033 .980± .031

nodes 2.0± 0.0 2.8± 0.4 2.4± 0.5 7.0± 1.9 10.6± 0.9 10.9± 1.5 19.0± 2.2
path len 1.67± 0.09 1.95± 0.23 1.79± 0.20 2.62± 0.34 2.95± 0.50 2.90± 0.26 3.82± 0.48
gini .627± .005 .602± .048 .611± .018 .680± .037 .681± .030 .599± .044 .633± .036
time 0.7± 0.0 0.9± 0.1 0.8± 0.1 1.8± 0.4 2.5± 0.2 2.5± 0.3 4.1± 0.4

heart acc .815± .051 .802± .066 .762± .046 .753± .070 .753± .068 .762± .053 .746± .051
nodes 1.0± 0.0 1.2± 0.4 6.2± 0.7 19.7± 2.2 22.6± 2.5 25.9± 2.5 26.1± 3.6
path len 1.00± 0.00 1.11± 0.22 3.13± 0.46 4.78± 0.99 5.86± 0.54 7.10± 0.78 6.16± 0.79
gini .924± .006 .925± .004 .919± .008 .921± .004 .919± .003 .919± .003 .920± .003
time 0.5± 0.0 0.6± 0.1 1.7± 0.2 4.5± 0.5 3.7± 0.4 4.2± 0.4 4.2± 0.6

dry-bean acc .673± .011 .903± .009 .914± .006 .915± .007 .913± .008 .920± .008 .920± .006
nodes 3.0± 0.0 6.0± 0.0 8.0± 0.0 10.0± 1.3 19.9± 1.4 28.4± 5.4 66.0± 7.9
path len 2.00± 0.00 2.95± 0.12 3.38± 0.04 3.72± 0.30 5.17± 0.44 4.90± 0.48 6.09± 0.39
gini .907± .005 .905± .003 .908± .002 .908± .003 .908± .004 .906± .003 .908± .002
time 2.5± 0.1 4.0± 0.1 4.9± 0.1 5.8± 0.6 9.9± 0.7 36.6± 13.6 38.4± 9.7

wine acc .966± .027 .961± .026 .960± .026 .960± .026 .966± .028 .966± .027 .966± .028
nodes 2.0± 0.0 2.0± 0.0 2.1± 0.3 2.2± 0.4 2.1± 0.3 2.1± 0.3 2.4± 0.7
path len 1.66± 0.10 1.66± 0.10 1.68± 0.14 1.72± 0.17 1.68± 0.14 1.69± 0.14 1.79± 0.25
gini .872± .009 .873± .009 .874± .007 .876± .010 .873± .010 .873± .011 .876± .013
time 0.5± 0.0 0.5± 0.0 0.5± 0.0 0.5± 0.1 0.5± 0.1 0.5± 0.1 0.6± 0.1

car acc .700± .044 .897± .026 .937± .025 .983± .011 .993± .009 .989± .011 .991± .006
nodes 0.0± 0.0 2.0± 0.0 4.1± 0.9 10.1± 1.8 17.6± 2.2 26.4± 4.8 25.8± 5.6
path len 0.00± 0.00 1.32± 0.04 1.68± 0.18 2.48± 0.22 3.05± 0.50 4.33± 0.85 3.98± 0.84
gini .000± .000 .921± .001 .914± .008 .905± .011 .904± .007 .915± .011 .909± .009
time 0.2± 0.0 0.8± 0.0 1.3± 0.2 2.7± 0.4 4.4± 0.5 6.5± 1.1 6.3± 1.3

wdbc acc .961± .025 .963± .023 .967± .025 .961± .025 .960± .022 .961± .025 .963± .025
nodes 1.0± 0.0 1.0± 0.0 1.0± 0.0 2.5± 1.4 5.2± 1.4 13.1± 2.8 19.6± 4.4
path len 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.54± 0.41 2.42± 0.38 3.53± 0.53 4.53± 0.62
gini .955± .003 .955± .002 .955± .003 .953± .002 .951± .003 .951± .002 .952± .002
time 0.5± 0.0 0.5± 0.0 0.5± 0.0 0.9± 0.3 1.5± 0.3 3.2± 0.7 4.6± 0.9

sonar acc .731± .111 .783± .067 .807± .058 .803± .093 .789± .115 .851± .045 .817± .077
nodes 1.0± 0.0 2.3± 0.5 4.8± 1.2 5.5± 1.0 5.7± 1.4 6.4± 2.2 6.5± 1.9
path len 1.00± 0.00 1.65± 0.22 2.65± 0.56 2.79± 0.56 2.81± 0.50 3.15± 0.67 3.16± 0.70
gini .976± .001 .975± .001 .975± .001 .974± .001 .974± .001 .974± .001 .974± .001
time 0.5± 0.0 0.9± 0.1 1.4± 0.2 1.6± 0.2 1.6± 0.3 1.7± 0.4 1.8± 0.4

pendigits acc .094± .003 .905± .025 .946± .012 .974± .007 .980± .004 .987± .002 .989± .003
nodes 0.0± 0.0 9.2± 0.6 12.4± 1.6 20.1± 2.0 31.5± 3.2 56.1± 6.0 123.5± 10.5
path len 0.00± 0.00 3.99± 0.13 4.74± 0.45 5.01± 0.42 5.80± 0.28 6.33± 0.36 8.12± 0.53
gini .000± .000 .908± .001 .900± .006 .899± .005 .898± .004 .900± .005 .898± .004
time 0.3± 0.0 4.2± 0.2 5.3± 0.6 7.7± 0.6 10.8± 0.9 20.8± 2.1 41.1± 3.3

ionosphere acc .843± .093 .915± .042 .914± .042 .932± .053 .926± .043 .929± .041 .923± .051
nodes 1.0± 0.0 2.8± 0.4 3.6± 0.7 4.5± 0.7 8.2± 1.8 12.4± 2.9 13.5± 3.6
path len 1.00± 0.00 2.26± 0.26 2.79± 0.53 3.35± 0.37 4.02± 0.63 5.30± 0.91 5.22± 0.87
gini .952± .004 .934± .007 .928± .010 .925± .004 .934± .011 .935± .007 .938± .005
time 0.5± 0.0 0.9± 0.1 1.1± 0.1 1.3± 0.1 2.0± 0.4 3.0± 0.6 3.3± 1.0

175



Ours: prototype features, L2 regularization, random initialization, fuzzy
data metric 1e-1 3e-2 1e-2 3e-3 1e-3 3e-4 1e-4
iris acc .953± .043 .947± .065 .947± .050 .953± .043 .953± .043 .953± .052 .947± .040

nodes 2.0± 0.0 2.1± 0.3 3.2± 1.1 5.6± 1.9 10.5± 2.9 17.4± 3.1 22.1± 3.6
path len 1.67± 0.09 1.71± 0.17 2.01± 0.30 2.52± 0.24 2.96± 0.49 3.49± 0.34 3.97± 0.57
gini .674± .041 .666± .018 .670± .041 .664± .027 .670± .032 .670± .033 .679± .032
time 1.1± 0.0 1.2± 0.2 1.5± 0.3 2.2± 0.6 5.3± 1.3 8.4± 1.4 7.0± 1.1

heart acc .809± .038 .812± .035 .795± .041 .769± .034 .762± .059 .749± .061 .743± .035
nodes 1.0± 0.0 1.0± 0.0 4.5± 0.8 13.9± 2.0 37.8± 3.7 60.1± 5.3 85.7± 5.1
path len 1.00± 0.00 1.00± 0.00 2.40± 0.32 4.00± 0.43 5.30± 0.58 6.49± 0.53 7.67± 0.53
gini .935± .003 .937± .003 .931± .004 .916± .005 .904± .006 .894± .008 .894± .008
time 0.7± 0.1 0.7± 0.1 1.6± 0.2 3.8± 0.4 9.3± 0.7 14.2± 1.2 20.1± 1.2

dry-bean acc .665± .045 .875± .037 .905± .011 .911± .008 .913± .006 .913± .009 .915± .007
nodes 2.9± 0.3 5.6± 0.5 7.3± 0.8 14.1± 1.5 31.1± 2.5 56.0± 6.0 127.0± 9.0
path len 2.04± 0.26 2.77± 0.11 3.25± 0.26 4.17± 0.30 5.23± 0.27 5.94± 0.33 7.56± 0.53
gini .881± .004 .871± .005 .855± .017 .784± .027 .708± .040 .647± .041 .559± .056
time 2.9± 0.2 4.4± 0.3 5.4± 0.5 9.1± 0.8 17.3± 1.2 49.4± 7.9 67.0± 9.7

wine acc .955± .033 .978± .027 .967± .037 .960± .036 .961± .050 .956± .042 .949± .039
nodes 2.0± 0.0 2.0± 0.0 2.6± 0.5 4.9± 1.6 6.9± 2.4 12.2± 4.4 18.6± 6.7
path len 1.66± 0.10 1.66± 0.09 1.90± 0.25 2.51± 0.41 2.91± 0.47 3.75± 0.72 4.83± 0.80
gini .892± .004 .886± .005 .875± .011 .842± .033 .825± .032 .802± .050 .758± .031
time 0.9± 0.0 0.9± 0.0 1.1± 0.2 1.6± 0.4 2.1± 0.5 3.3± 1.0 4.7± 1.5

car acc .700± .044 .801± .060 .910± .028 .956± .018 .975± .016 .985± .015 .992± .009
nodes 0.0± 0.0 0.7± 0.5 4.5± 1.7 13.1± 4.5 24.4± 5.2 39.8± 5.9 55.1± 8.3
path len 0.00± 0.00 0.70± 0.46 2.00± 0.30 2.88± 0.50 3.36± 0.40 3.80± 0.63 3.65± 0.49
gini .000± .000 .644± .422 .896± .011 .875± .009 .839± .020 .803± .034 .775± .036
time 0.3± 0.0 0.7± 0.2 1.8± 0.6 3.9± 1.1 6.7± 1.3 10.2± 1.3 13.6± 2.0

wdbc acc .967± .012 .979± .017 .968± .013 .968± .022 .965± .026 .960± .029 .958± .033
nodes 1.0± 0.0 1.0± 0.0 1.8± 0.6 4.3± 1.0 11.6± 2.5 30.4± 4.2 52.9± 6.4
path len 1.00± 0.00 1.00± 0.00 1.42± 0.33 2.44± 0.36 3.80± 0.47 5.09± 0.77 6.08± 0.48
gini .942± .002 .942± .001 .931± .010 .930± .011 .902± .015 .845± .019 .841± .031
time 0.7± 0.0 0.7± 0.0 1.0± 0.2 1.5± 0.2 3.3± 0.7 8.0± 1.1 13.3± 1.6

sonar acc .534± .144 .821± .074 .889± .058 .826± .052 .822± .060 .860± .094 .812± .057
nodes 0.0± 0.0 2.6± 0.5 7.8± 1.2 12.3± 1.7 14.7± 2.5 20.4± 7.4 30.2± 7.4
path len 0.00± 0.00 1.99± 0.33 3.69± 0.45 4.54± 0.41 4.90± 0.44 5.69± 0.64 6.40± 1.05
gini .000± .000 .972± .001 .970± .001 .964± .003 .952± .009 .953± .007 .934± .012
time 0.3± 0.0 1.2± 0.1 2.3± 0.3 3.5± 0.6 4.0± 0.7 5.3± 1.7 8.1± 2.3

pendigits acc .094± .003 .855± .026 .898± .011 .913± .014 .935± .009 .949± .008 .962± .005
nodes 0.0± 0.0 8.7± 0.5 11.7± 1.0 21.2± 2.3 55.0± 6.0 135.4± 8.4 347.3± 25.0
path len 0.00± 0.00 4.81± 0.38 4.83± 0.28 5.05± 0.42 6.27± 0.29 7.58± 0.26 9.45± 0.48
gini .000± .000 .869± .011 .846± .022 .736± .027 .612± .046 .533± .042 .478± .030
time 0.4± 0.0 5.0± 0.2 6.2± 0.4 9.6± 0.9 20.2± 1.9 57.6± 9.5 135.9± 13.0

ionosphere acc .914± .057 .915± .059 .920± .046 .926± .062 .909± .049 .920± .033 .917± .047
nodes 1.5± 0.5 2.5± 0.8 4.2± 1.2 8.2± 2.6 16.4± 1.8 22.2± 4.0 22.9± 3.4
path len 1.24± 0.25 1.65± 0.40 2.25± 0.45 3.20± 0.54 4.90± 0.67 5.58± 1.09 5.53± 0.88
gini .953± .003 .950± .010 .952± .004 .935± .015 .872± .037 .842± .031 .820± .018
time 0.8± 0.1 1.0± 0.2 1.4± 0.3 2.4± 0.7 4.4± 0.5 9.9± 7.4 8.1± 1.1
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Ours: prototype features, L2 regularization, random initialization, crisp
data metric 1e-1 3e-2 1e-2 3e-3 1e-3 3e-4 1e-4
iris acc .953± .043 .947± .065 .947± .050 .947± .050 .967± .045 .933± .052 .953± .052

nodes 2.0± 0.0 2.1± 0.3 3.2± 1.1 5.6± 1.9 10.5± 2.9 17.4± 3.1 22.1± 3.6
path len 1.67± 0.09 1.71± 0.17 2.00± 0.29 2.51± 0.25 2.90± 0.46 3.49± 0.35 3.95± 0.57
gini .674± .041 .666± .017 .670± .041 .664± .027 .670± .032 .669± .032 .678± .032
time 1.0± 0.0 1.0± 0.1 1.3± 0.3 2.0± 0.5 3.2± 0.7 5.0± 0.8 6.1± 1.0

heart acc .805± .044 .809± .040 .782± .043 .753± .044 .749± .067 .733± .042 .716± .040
nodes 1.0± 0.0 1.0± 0.0 4.5± 0.8 13.9± 2.0 37.8± 3.7 60.1± 5.3 85.7± 5.1
path len 1.00± 0.00 1.00± 0.00 2.41± 0.32 4.03± 0.48 5.23± 0.51 6.49± 0.62 7.79± 0.50
gini .935± .003 .937± .003 .931± .004 .916± .006 .904± .006 .894± .008 .894± .008
time 0.7± 0.0 0.7± 0.0 1.5± 0.2 3.4± 0.4 8.0± 0.7 12.2± 1.0 17.1± 0.8

dry-bean acc .665± .039 .872± .037 .904± .012 .903± .008 .907± .006 .909± .006 .906± .010
nodes 2.9± 0.3 5.6± 0.5 7.3± 0.8 14.1± 1.5 31.1± 2.5 56.0± 6.0 127.0± 9.0
path len 2.04± 0.26 2.77± 0.12 3.25± 0.27 4.18± 0.31 5.26± 0.29 5.96± 0.38 7.70± 0.65
gini .881± .004 .871± .005 .855± .017 .784± .027 .708± .040 .647± .041 .560± .054
time 2.7± 0.2 4.0± 0.2 4.9± 0.4 7.8± 0.6 13.9± 0.9 24.5± 7.9 43.8± 4.6

wine acc .955± .033 .978± .027 .972± .028 .960± .036 .949± .052 .939± .058 .939± .039
nodes 2.0± 0.0 2.0± 0.0 2.6± 0.5 4.9± 1.6 6.9± 2.4 12.2± 4.4 18.6± 6.7
path len 1.66± 0.11 1.66± 0.10 1.90± 0.25 2.53± 0.41 2.93± 0.49 3.74± 0.75 4.89± 0.88
gini .892± .004 .886± .005 .875± .011 .842± .033 .825± .032 .802± .051 .757± .031
time 0.9± 0.1 0.8± 0.1 1.0± 0.1 1.5± 0.3 1.9± 0.5 2.9± 0.8 4.1± 1.2

car acc .700± .044 .765± .036 .906± .024 .955± .018 .975± .016 .984± .014 .991± .009
nodes 0.0± 0.0 0.7± 0.5 4.5± 1.7 13.1± 4.5 24.4± 5.2 39.8± 5.9 55.1± 8.3
path len 0.00± 0.00 0.70± 0.46 2.00± 0.30 2.89± 0.51 3.35± 0.42 3.80± 0.63 3.65± 0.48
gini .000± .000 .644± .422 .896± .011 .875± .009 .839± .020 .803± .034 .775± .036
time 0.3± 0.0 0.6± 0.2 1.6± 0.4 3.4± 1.0 6.0± 1.0 9.0± 1.1 11.8± 1.7

wdbc acc .967± .012 .979± .017 .968± .013 .968± .022 .951± .022 .954± .030 .947± .029
nodes 1.0± 0.0 1.0± 0.0 1.8± 0.6 4.3± 1.0 11.6± 2.5 30.4± 4.2 52.9± 6.4
path len 1.00± 0.00 1.00± 0.00 1.42± 0.33 2.44± 0.36 3.82± 0.49 5.12± 0.79 6.15± 0.52
gini .942± .002 .942± .001 .931± .010 .930± .011 .902± .015 .845± .019 .841± .031
time 0.7± 0.0 0.7± 0.0 0.9± 0.2 1.4± 0.2 2.9± 0.5 6.8± 0.9 11.1± 1.2

sonar acc .534± .144 .793± .073 .865± .061 .851± .063 .827± .069 .860± .066 .808± .053
nodes 0.0± 0.0 2.6± 0.5 7.8± 1.2 12.3± 1.7 14.7± 2.5 20.4± 7.4 30.2± 7.4
path len 0.00± 0.00 2.01± 0.33 3.73± 0.49 4.65± 0.48 4.93± 0.45 5.91± 0.84 6.55± 1.10
gini .000± .000 .972± .001 .970± .001 .964± .003 .952± .008 .953± .007 .934± .012
time 0.3± 0.0 1.1± 0.1 2.1± 0.2 3.1± 0.4 3.6± 0.5 4.8± 1.4 6.6± 1.5

pendigits acc .094± .003 .852± .026 .897± .012 .907± .015 .923± .012 .938± .008 .951± .007
nodes 0.0± 0.0 8.7± 0.5 11.7± 1.0 21.2± 2.3 55.0± 6.0 135.4± 8.4 347.3± 25.0
path len 0.00± 0.00 4.82± 0.38 4.84± 0.28 5.06± 0.43 6.28± 0.31 7.57± 0.27 9.46± 0.50
gini .000± .000 .869± .011 .846± .022 .736± .027 .612± .046 .533± .042 .478± .030
time 0.4± 0.0 4.5± 0.2 5.4± 0.3 8.3± 0.7 16.9± 1.5 43.9± 2.6 99.0± 6.9

ionosphere acc .917± .052 .917± .059 .917± .049 .923± .060 .900± .059 .906± .043 .900± .050
nodes 1.5± 0.5 2.5± 0.8 4.2± 1.2 8.2± 2.6 16.4± 1.8 22.2± 4.0 22.9± 3.4
path len 1.24± 0.25 1.65± 0.39 2.23± 0.47 3.22± 0.58 4.88± 0.69 5.66± 1.17 5.56± 0.91
gini .953± .003 .950± .010 .952± .004 .935± .016 .872± .037 .842± .030 .819± .019
time 0.8± 0.1 1.0± 0.1 1.3± 0.3 2.2± 0.5 3.9± 0.4 7.4± 2.0 6.8± 0.9
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Ours: linear features, L1 regularization, random initialization, fuzzy
data metric 1e-1 3e-2 1e-2 3e-3 1e-3 3e-4 1e-4
iris acc .953± .043 .960± .044 .967± .033 .960± .053 .960± .033 .967± .045 .960± .044

nodes 2.0± 0.0 2.0± 0.0 3.4± 1.0 5.9± 1.2 10.6± 1.7 17.1± 1.8 27.1± 1.8
path len 1.67± 0.09 1.67± 0.09 2.12± 0.35 2.55± 0.26 3.14± 0.40 3.28± 0.34 4.32± 0.48
gini .573± .032 .566± .018 .547± .078 .480± .074 .562± .049 .481± .016 .097± .035
time 0.7± 0.1 0.9± 0.0 2.4± 2.9 22.1± 40.2 14.7± 35.8 6.5± 1.0 36.9± 19.5

heart acc .819± .038 .828± .036 .802± .046 .789± .070 .812± .038 .766± .064 .786± .061
nodes 1.0± 0.0 1.2± 0.6 5.3± 1.7 19.3± 3.8 26.8± 5.0 39.7± 5.0 57.2± 6.8
path len 1.00± 0.00 1.10± 0.30 2.72± 0.44 4.74± 0.55 5.48± 0.53 5.57± 0.40 6.42± 0.58
gini .886± .017 .864± .056 .759± .062 .721± .056 .710± .045 .620± .079 .557± .064
time 0.6± 0.0 0.6± 0.2 1.7± 0.4 4.0± 0.7 4.1± 0.7 5.9± 0.7 8.4± 1.0

dry-bean acc .528± .008 .901± .009 .913± .006 .913± .005 .913± .008 .919± .006 .920± .007
nodes 2.0± 0.0 6.0± 0.0 7.8± 0.4 11.5± 1.1 28.0± 0.9 58.2± 2.9 139.2± 15.3
path len 1.59± 0.01 3.04± 0.20 3.37± 0.09 3.76± 0.19 5.41± 0.14 6.24± 0.26 7.93± 0.37
gini .753± .013 .676± .033 .677± .040 .540± .084 .470± .054 .387± .070 .398± .040
time 2.4± 0.1 5.9± 4.5 5.2± 0.2 6.8± 0.4 13.1± 0.4 23.6± 0.8 52.3± 6.2

wine acc .983± .025 .977± .028 .966± .037 .960± .036 .966± .027 .966± .027 .972± .028
nodes 2.0± 0.0 2.0± 0.0 2.5± 0.5 3.1± 0.7 4.7± 1.1 7.5± 1.8 13.2± 2.6
path len 1.67± 0.10 1.66± 0.10 1.86± 0.23 2.10± 0.32 2.46± 0.19 3.20± 0.42 4.11± 0.46
gini .818± .011 .789± .011 .814± .019 .775± .045 .779± .032 .756± .035 .740± .045
time 0.5± 0.0 0.5± 0.0 0.5± 0.1 0.6± 0.1 0.9± 0.2 1.3± 0.3 2.1± 0.4

car acc .700± .044 .700± .044 .949± .013 .977± .013 .990± .011 .991± .009 .990± .010
nodes 0.0± 0.0 0.0± 0.0 5.5± 1.0 15.6± 4.1 31.3± 3.1 36.1± 7.3 41.1± 9.8
path len 0.00± 0.00 0.00± 0.00 2.13± 0.25 2.98± 0.42 3.41± 0.46 3.50± 0.50 3.61± 0.69
gini .000± .000 .000± .000 .720± .019 .703± .045 .703± .032 .655± .033 .663± .031
time 0.3± 0.0 0.3± 0.0 2.0± 0.3 4.7± 1.1 8.8± 0.9 9.9± 2.0 11.3± 2.8

wdbc acc .970± .019 .970± .019 .974± .018 .968± .017 .979± .020 .968± .022 .979± .015
nodes 1.0± 0.0 1.0± 0.0 1.0± 0.0 3.2± 0.6 7.0± 3.0 17.4± 4.1 34.9± 8.9
path len 1.00± 0.00 1.00± 0.00 1.00± 0.00 2.01± 0.02 2.57± 0.49 3.93± 0.41 4.73± 0.60
gini .817± .019 .819± .022 .816± .019 .835± .045 .936± .008 .936± .006 .936± .007
time 0.6± 0.0 0.6± 0.0 0.6± 0.0 1.2± 0.2 2.3± 0.8 4.9± 1.1 9.2± 2.3

sonar acc .655± .169 .841± .074 .812± .070 .807± .078 .817± .074 .812± .084 .846± .076
nodes 0.9± 0.3 2.6± 0.7 5.6± 0.9 7.0± 1.6 12.6± 4.8 21.7± 3.7 28.9± 7.4
path len 0.90± 0.30 1.86± 0.28 2.73± 0.35 2.98± 0.29 3.95± 0.65 5.00± 0.84 5.67± 0.82
gini .849± .283 .939± .014 .899± .029 .899± .019 .915± .020 .933± .022 .923± .033
time 0.8± 0.1 1.4± 0.2 2.6± 0.3 3.1± 0.6 5.2± 1.8 8.4± 1.4 8.6± 3.1

pendigits acc .094± .003 .901± .008 .940± .011 .968± .002 .976± .004 .977± .005 .981± .003
nodes 0.0± 0.0 9.0± 0.0 11.9± 1.6 17.9± 1.6 42.2± 4.0 120.1± 7.1 298.2± 9.1
path len 0.00± 0.00 3.96± 0.04 4.55± 0.45 4.84± 0.26 5.91± 0.30 7.40± 0.18 8.89± 0.32
gini .000± .000 .809± .010 .813± .024 .764± .022 .696± .041 .492± .046 .320± .027
time 9.5± 8.9 7.6± 3.3 139.3± 83.5 109.5± 27.3 202.4± 82.2 392.0± 106.4 1032.4± 182.0

ionosphere acc .855± .079 .909± .062 .926± .038 .923± .054 .926± .050 .920± .064 .940± .035
nodes 1.0± 0.0 2.4± 0.5 3.4± 0.5 6.3± 1.6 15.7± 4.0 32.2± 4.6 52.3± 5.4
path len 1.00± 0.00 2.02± 0.33 2.73± 0.41 3.83± 0.55 5.60± 1.09 8.38± 0.77 11.72± 0.88
gini .910± .010 .828± .094 .699± .090 .663± .067 .712± .063 .785± .048 .853± .028
time 0.6± 0.0 1.0± 0.1 1.3± 0.1 2.0± 0.4 2.8± 0.8 5.1± 0.7 10.4± 2.9
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Ours: linear features, L1 regularization, random initialization, crisp
data metric 1e-1 3e-2 1e-2 3e-3 1e-3 3e-4 1e-4
iris acc .953± .043 .960± .044 .960± .033 .953± .052 .960± .044 .960± .044 .967± .045

nodes 2.0± 0.0 2.0± 0.0 3.4± 1.0 5.9± 1.2 10.6± 1.7 17.1± 1.8 27.1± 1.8
path len 1.67± 0.09 1.67± 0.09 2.12± 0.35 2.53± 0.26 3.14± 0.44 3.25± 0.35 4.45± 0.58
gini .573± .032 .566± .018 .547± .078 .469± .082 .563± .049 .480± .015 .099± .038
time 0.4± 0.0 0.4± 0.0 0.6± 0.1 0.9± 0.1 1.5± 0.2 2.2± 0.2 3.4± 0.2

heart acc .819± .039 .828± .036 .786± .051 .780± .066 .812± .037 .756± .071 .786± .064
nodes 1.0± 0.0 1.2± 0.6 5.3± 1.7 19.3± 3.8 26.8± 5.0 39.7± 5.0 57.2± 6.8
path len 1.00± 0.00 1.10± 0.30 2.72± 0.44 4.72± 0.53 5.49± 0.53 5.56± 0.42 6.42± 0.66
gini .886± .017 .864± .056 .760± .063 .720± .056 .709± .046 .618± .079 .559± .065
time 0.4± 0.0 0.5± 0.1 1.2± 0.3 3.6± 0.7 3.6± 0.6 5.1± 0.6 7.1± 0.8

dry-bean acc .530± .007 .892± .012 .909± .007 .905± .008 .907± .007 .913± .007 .910± .005
nodes 2.0± 0.0 6.0± 0.0 7.8± 0.4 11.5± 1.1 28.0± 0.9 58.2± 2.9 139.2± 15.3
path len 1.60± 0.01 3.05± 0.23 3.36± 0.08 3.77± 0.19 5.46± 0.15 6.27± 0.26 8.13± 0.46
gini .753± .013 .676± .033 .677± .040 .540± .083 .471± .054 .387± .070 .398± .040
time 2.3± 0.0 4.1± 0.1 4.8± 0.2 5.9± 0.3 10.5± 0.3 18.0± 0.7 37.1± 3.7

wine acc .983± .025 .977± .028 .966± .037 .960± .036 .967± .027 .967± .027 .966± .027
nodes 2.0± 0.0 2.0± 0.0 2.5± 0.5 3.1± 0.7 4.7± 1.1 7.5± 1.8 13.2± 2.6
path len 1.67± 0.09 1.66± 0.09 1.85± 0.23 2.10± 0.31 2.45± 0.20 3.19± 0.44 4.12± 0.48
gini .817± .011 .789± .011 .814± .019 .775± .045 .779± .032 .756± .035 .740± .045
time 0.4± 0.0 0.4± 0.0 0.5± 0.1 0.6± 0.1 0.8± 0.1 1.1± 0.2 1.8± 0.3

car acc .700± .044 .700± .044 .949± .013 .978± .013 .990± .011 .992± .009 .990± .010
nodes 0.0± 0.0 0.0± 0.0 5.5± 1.0 15.6± 4.1 31.3± 3.1 36.1± 7.3 41.1± 9.8
path len 0.00± 0.00 0.00± 0.00 2.13± 0.25 2.98± 0.42 3.41± 0.46 3.50± 0.50 3.62± 0.69
gini .000± .000 .000± .000 .720± .020 .703± .045 .703± .032 .655± .033 .663± .031
time 0.3± 0.0 0.3± 0.0 1.9± 0.3 4.2± 1.0 7.8± 0.8 8.8± 1.7 9.9± 2.2

wdbc acc .970± .019 .970± .019 .974± .018 .968± .017 .977± .016 .965± .022 .970± .025
nodes 1.0± 0.0 1.0± 0.0 1.0± 0.0 3.2± 0.6 7.0± 3.0 17.4± 4.1 34.9± 8.9
path len 1.00± 0.00 1.00± 0.00 1.00± 0.00 2.00± 0.01 2.57± 0.49 3.94± 0.41 4.72± 0.61
gini .817± .019 .819± .022 .816± .019 .835± .045 .936± .008 .936± .006 .936± .007
time 0.6± 0.0 0.6± 0.0 0.6± 0.0 1.1± 0.1 2.0± 0.7 4.3± 0.9 7.8± 1.8

sonar acc .665± .174 .841± .071 .807± .081 .797± .079 .827± .065 .803± .084 .832± .071
nodes 0.9± 0.3 2.6± 0.7 5.6± 0.9 7.0± 1.6 12.6± 4.8 21.7± 3.7 28.9± 7.4
path len 0.90± 0.30 1.86± 0.28 2.70± 0.36 3.00± 0.26 3.97± 0.66 4.96± 0.83 5.68± 0.81
gini .849± .283 .939± .013 .899± .029 .900± .018 .915± .020 .933± .022 .924± .032
time 0.5± 0.1 1.0± 0.2 1.6± 0.2 2.0± 0.3 3.2± 1.0 5.2± 0.8 3.9± 0.9

pendigits acc .094± .003 .899± .009 .936± .009 .963± .004 .970± .006 .970± .004 .975± .005
nodes 0.0± 0.0 9.0± 0.0 11.9± 1.6 17.9± 1.6 42.2± 4.0 120.1± 7.1 292.1± 10.3
path len 0.00± 0.00 3.97± 0.03 4.56± 0.45 4.84± 0.26 5.90± 0.31 7.38± 0.19 8.78± 0.33
gini .000± .000 .809± .010 .813± .024 .764± .022 .695± .041 .492± .045 .321± .027
time 11.3± 5.0 72.8± 33.8 83.9± 14.0 112.8± 51.7 220.7± 82.2 31.2± 1.6 84.9± 8.8

ionosphere acc .857± .077 .909± .060 .923± .038 .917± .055 .926± .045 .900± .058 .915± .044
nodes 1.0± 0.0 2.4± 0.5 3.4± 0.5 6.3± 1.6 15.7± 4.0 32.2± 4.6 52.3± 5.4
path len 1.00± 0.00 2.02± 0.34 2.77± 0.39 3.89± 0.55 5.63± 1.16 8.56± 0.85 12.33± 0.88
gini .910± .010 .828± .093 .700± .088 .665± .067 .711± .062 .786± .047 .855± .027
time 0.5± 0.0 0.9± 0.1 1.2± 0.1 1.8± 0.4 2.4± 0.7 4.3± 0.6 8.7± 2.8
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Ours: prototype features, L1 regularization, random initialization, fuzzy
data metric 1e-1 3e-2 1e-2 3e-3 1e-3 3e-4 1e-4
iris acc .947± .065 .940± .047 .947± .050 .967± .045 .947± .072 .933± .060 .947± .050

nodes 2.0± 0.0 2.0± 0.0 3.1± 0.7 6.2± 1.1 9.5± 2.2 18.3± 4.4 26.3± 7.3
path len 1.67± 0.09 1.67± 0.09 2.02± 0.22 2.58± 0.32 2.92± 0.54 3.95± 0.63 4.40± 0.69
gini .616± .043 .646± .040 .604± .059 .575± .061 .577± .094 .538± .054 .580± .045
time 1.1± 0.0 1.1± 0.0 1.5± 0.2 2.4± 0.3 2.7± 0.5 6.0± 1.3 8.4± 2.2

heart acc .812± .057 .805± .048 .775± .049 .756± .054 .766± .081 .756± .052 .798± .036
nodes 1.0± 0.0 1.2± 0.4 3.9± 1.1 13.5± 1.7 45.9± 5.0 71.1± 6.8 97.1± 9.0
path len 1.00± 0.00 1.08± 0.16 2.19± 0.34 3.85± 0.45 5.48± 0.48 6.99± 0.75 7.68± 0.84
gini .936± .003 .935± .002 .929± .005 .900± .012 .852± .022 .839± .018 .828± .031
time 0.9± 0.0 1.0± 0.1 1.8± 0.3 4.8± 0.6 14.7± 1.5 22.3± 2.1 22.9± 2.3

dry-bean acc .617± .068 .869± .035 .894± .011 .902± .006 .905± .006 .909± .005 .915± .006
nodes 2.6± 0.5 5.6± 0.5 7.5± 1.0 16.1± 1.9 37.1± 2.8 79.7± 7.0 190.1± 15.1
path len 1.92± 0.31 2.83± 0.17 3.15± 0.29 4.38± 0.19 5.59± 0.31 6.95± 0.34 8.86± 0.71
gini .724± .052 .718± .027 .596± .078 .385± .058 .356± .046 .310± .046 .303± .042
time 2.7± 0.4 4.5± 0.2 5.8± 0.8 10.2± 0.9 20.6± 1.3 38.1± 3.7 86.0± 9.2

wine acc .955± .043 .960± .036 .955± .042 .950± .058 .955± .042 .939± .046 .939± .052
nodes 2.0± 0.0 2.2± 0.4 3.1± 0.5 8.3± 2.2 14.1± 3.2 25.2± 6.4 35.1± 9.5
path len 1.66± 0.10 1.74± 0.20 2.01± 0.25 3.26± 0.49 4.17± 0.49 5.18± 0.69 5.70± 0.72
gini .845± .012 .847± .020 .815± .026 .614± .111 .529± .085 .418± .094 .403± .070
time 0.9± 0.0 1.0± 0.1 1.2± 0.1 2.4± 0.5 3.7± 0.7 6.2± 1.4 8.4± 2.1

car acc .700± .044 .770± .052 .833± .046 .953± .017 .969± .014 .974± .015 .983± .009
nodes 0.0± 0.0 1.1± 0.7 2.8± 1.2 12.9± 2.9 26.5± 6.8 49.8± 12.4 70.4± 13.1
path len 0.00± 0.00 0.97± 0.39 1.61± 0.38 2.86± 0.40 3.38± 0.54 3.70± 0.59 4.00± 0.49
gini .000± .000 .699± .236 .816± .040 .769± .035 .707± .056 .658± .035 .596± .038
time 0.3± 0.0 0.8± 0.2 1.3± 0.3 3.9± 0.7 7.1± 1.5 12.2± 2.8 16.7± 2.9

wdbc acc .961± .025 .956± .024 .961± .027 .970± .019 .963± .024 .961± .022 .953± .024
nodes 1.0± 0.0 1.1± 0.3 1.8± 0.7 6.3± 1.3 19.1± 1.8 37.4± 3.1 68.8± 4.4
path len 1.00± 0.00 1.07± 0.22 1.36± 0.37 2.69± 0.28 3.90± 0.41 4.75± 0.32 6.08± 0.48
gini .864± .015 .851± .039 .821± .038 .779± .049 .646± .062 .569± .064 .633± .045
time 0.7± 0.0 0.8± 0.1 0.9± 0.2 2.0± 0.3 5.0± 0.4 9.3± 0.8 16.7± 1.0

sonar acc .534± .144 .759± .091 .798± .072 .789± .052 .774± .046 .779± .081 .812± .058
nodes 0.0± 0.0 2.0± 0.4 7.6± 1.4 18.7± 2.6 29.5± 4.3 39.3± 3.3 50.4± 6.3
path len 0.00± 0.00 1.64± 0.28 3.38± 0.29 4.70± 0.36 5.30± 0.50 5.77± 0.44 6.24± 0.67
gini .000± .000 .931± .014 .905± .020 .844± .024 .770± .029 .743± .031 .731± .037
time 0.3± 0.0 1.0± 0.1 2.4± 0.5 4.9± 0.6 7.3± 1.0 9.6± 0.8 12.0± 1.5

pendigits acc .094± .003 .783± .057 .854± .024 .881± .019 .912± .012 .939± .009 .949± .011
nodes 0.0± 0.0 8.2± 0.7 12.8± 1.2 30.2± 3.7 69.7± 10.1 166.7± 10.7 372.4± 23.3
path len 0.00± 0.00 4.10± 0.47 4.56± 0.56 5.28± 0.34 6.58± 0.27 7.93± 0.34 9.49± 0.18
gini .000± .000 .770± .029 .684± .043 .475± .090 .317± .030 .353± .045 .354± .031
time 0.4± 0.0 4.7± 0.3 6.6± 0.5 12.2± 1.2 24.2± 2.8 62.9± 4.2 179.6± 18.3

ionosphere acc .903± .045 .892± .057 .920± .045 .909± .035 .897± .092 .917± .052 .906± .054
nodes 1.1± 0.3 1.8± 0.6 3.8± 1.1 10.5± 2.3 23.3± 4.2 40.5± 7.4 58.8± 6.4
path len 1.03± 0.10 1.42± 0.34 2.29± 0.46 4.35± 0.66 5.96± 0.88 7.48± 0.88 9.28± 1.87
gini .894± .012 .887± .029 .839± .033 .706± .022 .616± .050 .596± .051 .594± .058
time 0.7± 0.1 0.9± 0.2 1.4± 0.3 2.9± 0.6 6.1± 0.9 13.2± 2.3 18.9± 1.9
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Ours: prototype features, L1 regularization, random initialization, crisp
data metric 1e-1 3e-2 1e-2 3e-3 1e-3 3e-4 1e-4
iris acc .947± .065 .940± .047 .947± .050 .947± .050 .947± .058 .927± .063 .947± .050

nodes 2.0± 0.0 2.0± 0.0 3.1± 0.7 6.2± 1.1 9.5± 2.2 18.3± 4.4 26.3± 7.3
path len 1.67± 0.09 1.67± 0.09 2.03± 0.21 2.56± 0.33 2.89± 0.53 4.00± 0.61 4.43± 0.71
gini .616± .043 .646± .040 .604± .058 .574± .061 .575± .095 .538± .056 .578± .048
time 1.0± 0.0 1.0± 0.0 1.4± 0.2 1.7± 0.2 2.4± 0.5 5.3± 1.1 7.4± 1.9

heart acc .809± .055 .802± .036 .772± .061 .743± .066 .737± .082 .750± .061 .792± .041
nodes 1.0± 0.0 1.2± 0.4 3.9± 1.1 13.5± 1.7 45.9± 5.0 71.1± 6.8 97.1± 9.0
path len 1.00± 0.00 1.09± 0.17 2.19± 0.37 3.84± 0.48 5.47± 0.53 7.09± 0.80 7.81± 0.98
gini .936± .003 .935± .002 .929± .005 .900± .012 .852± .022 .840± .020 .828± .031
time 0.7± 0.0 0.7± 0.1 1.3± 0.2 3.3± 0.4 9.4± 0.9 14.1± 1.3 19.1± 1.8

dry-bean acc .612± .065 .861± .035 .887± .011 .890± .007 .892± .007 .894± .006 .893± .017
nodes 2.6± 0.5 5.6± 0.5 7.5± 1.0 16.1± 1.9 37.1± 2.8 79.7± 7.0 190.1± 15.1
path len 1.93± 0.31 2.84± 0.18 3.14± 0.29 4.39± 0.20 5.65± 0.33 7.07± 0.40 9.45± 1.11
gini .724± .052 .718± .026 .596± .078 .383± .059 .357± .046 .313± .045 .308± .045
time 2.5± 0.3 4.1± 0.2 5.0± 0.5 8.6± 0.7 15.8± 1.0 27.2± 2.6 56.9± 4.7

wine acc .949± .040 .960± .036 .939± .058 .944± .066 .933± .054 .922± .067 .916± .037
nodes 2.0± 0.0 2.2± 0.4 3.1± 0.5 8.3± 2.2 14.1± 3.2 25.2± 6.4 35.1± 9.5
path len 1.67± 0.11 1.74± 0.20 2.02± 0.26 3.26± 0.52 4.22± 0.55 5.25± 0.76 5.76± 0.75
gini .845± .012 .847± .020 .815± .026 .612± .110 .529± .085 .420± .094 .403± .071
time 0.8± 0.1 0.9± 0.1 1.1± 0.1 2.2± 0.4 3.3± 0.6 5.4± 1.2 7.2± 1.8

car acc .700± .044 .771± .053 .832± .044 .953± .017 .969± .013 .974± .015 .982± .009
nodes 0.0± 0.0 1.1± 0.7 2.8± 1.2 12.9± 2.9 26.5± 6.8 49.8± 12.4 70.4± 13.1
path len 0.00± 0.00 0.97± 0.39 1.61± 0.39 2.85± 0.39 3.38± 0.54 3.70± 0.59 4.01± 0.49
gini .000± .000 .700± .236 .816± .040 .769± .035 .707± .056 .658± .035 .596± .038
time 0.3± 0.0 0.8± 0.2 1.2± 0.3 3.4± 0.6 6.3± 1.3 10.9± 2.2 14.8± 2.5

wdbc acc .961± .025 .956± .024 .961± .027 .958± .026 .947± .025 .951± .020 .937± .037
nodes 1.0± 0.0 1.1± 0.3 1.8± 0.7 6.3± 1.3 19.1± 1.8 37.4± 3.1 68.8± 4.4
path len 1.00± 0.00 1.07± 0.22 1.36± 0.37 2.69± 0.30 3.88± 0.40 4.71± 0.35 6.13± 0.61
gini .864± .015 .851± .039 .821± .038 .780± .050 .645± .062 .568± .063 .632± .044
time 0.7± 0.0 0.7± 0.1 0.9± 0.2 1.8± 0.3 4.4± 0.4 7.9± 0.7 13.8± 0.8

sonar acc .534± .144 .769± .115 .813± .062 .798± .046 .778± .057 .788± .066 .803± .072
nodes 0.0± 0.0 2.0± 0.4 7.6± 1.4 18.7± 2.6 29.5± 4.3 39.3± 3.3 50.4± 6.3
path len 0.00± 0.00 1.65± 0.27 3.44± 0.30 4.73± 0.41 5.34± 0.54 5.85± 0.48 6.31± 0.71
gini .000± .000 .931± .014 .906± .020 .844± .023 .770± .028 .744± .032 .730± .035
time 0.3± 0.0 0.9± 0.1 2.1± 0.3 4.3± 0.5 6.4± 0.8 8.5± 1.1 10.5± 1.6

pendigits acc .094± .003 .773± .047 .844± .024 .865± .015 .892± .013 .919± .010 .930± .014
nodes 0.0± 0.0 8.3± 0.6 12.8± 1.2 30.2± 3.7 69.7± 10.1 166.7± 10.7 372.4± 23.3
path len 0.00± 0.00 3.93± 0.45 4.57± 0.58 5.28± 0.34 6.58± 0.27 7.93± 0.37 9.51± 0.18
gini .000± .000 .743± .034 .684± .043 .475± .090 .317± .030 .352± .045 .354± .031
time 0.4± 0.0 4.2± 0.3 5.7± 0.5 10.4± 1.0 20.2± 2.4 51.1± 3.4 152.9± 8.7

ionosphere acc .903± .045 .892± .057 .923± .048 .906± .043 .909± .079 .900± .057 .883± .079
nodes 1.1± 0.3 1.8± 0.6 3.8± 1.1 10.5± 2.3 23.3± 4.2 40.5± 7.4 58.8± 6.4
path len 1.03± 0.10 1.42± 0.35 2.29± 0.48 4.38± 0.68 6.01± 0.88 7.67± 0.88 10.00± 2.49
gini .894± .012 .887± .029 .839± .032 .705± .022 .615± .051 .596± .051 .594± .060
time 0.7± 0.1 0.8± 0.1 1.2± 0.2 2.6± 0.5 5.4± 0.9 11.4± 1.9 16.2± 1.6
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D.2.2 Visualization of MNIST and Fashion-MNIST Trees

Here we show the full decision trees trained on MNIST and Fashion-MNIST, which
were covered in part in Section 4.3.3. For each tree, we also show one randomly
selected prediction from the training set for each class. The trees with α = 10−5 are
not shown because of their large size. While the larger trees may be too small to be
legible in print, the image resolutions are high, so zooming in to a digital view of this
document will make the details visible.

MNIST α = 10−2
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MNIST α = 10−3
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MNIST α = 10−4
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Fashion-MNIST α = 10−2
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Fashion-MNIST α = 10−3
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Fashion-MNIST α = 10−4
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