
CMU-RI-TR-24-33 November 6, 2024 1

Segmenting Homogeneous Regions in Images using Variance Wells

Satyaj Bhargava2, John Lorence2, Ben Cohen2, Minjie Wu2,3, Howard Aizenstein2,3, George Stetten1,2.
1 Robotics Institute, Carnegie Mellon University

2 Department of Bioengineering, University of Pittsburgh
3 Department of Psychiatry, University of Pittsburgh

Carnegie Mellon University Robotics Institute
Technical Report - CMU-RI-TR-24-33

Corresponding author: George Stetten, stetten@andrew.cmu.edu

Abstract. We present a method to identify small regions of relative homogeneity in an N-dimensional image
based on local variance. We call these regions “variance wells” or “vWells,” because they surround and sep-
arate local minima in the variance of image intensity. VWells fall into a class of entities in computer vision
known as “super-pixels,” generally irregularly shaped small homogenous regions that can be combined to
segment objects in the image while preserving sharp boundaries. Computing vWells requires no parameters
and is not iterative, having a computation time proportional to the total number of pixels. The vWells in an
image can form the nodes of a graph whose edges connect adjacent pairs of vWells. When using such a graph
to cluster vWells for segmentation, similarity between adjacent vWells can be computed using well estab-
lished statistical methods based on the mean and variance of the pixels within each vWell. We use such a
graph of vWells to segment arteries in 2D MRI images of the brain by finding the optimal path between two
manually placed starting points, and then performing a region-growing algorithm to include adjacent vWells
up to the vessel boundary. In this way, we demonstrate that vWells may form a useful preprocessing step to
simplify data for further analysis by reducing noise and reducing the number of primitives compared to indi-
vidual pixels, while preserving boundaries. Our software implementation is available (see Appendix 1).

Keywords: variance wells, vWells, super-pixels, image analysis, segmentation, graph theory.

1 Formation of vWells.

Variance wells, or vWells, are an adaptation of Descending
Variance Graphs (DVGs), which we previously developed to
segment objects in medical images. The initial method for find-
ing vWells is the same as for forming DVGs, which we briefly
describe here. We refer the reader to a more detailed description
in [1].

The procedure for finding vWells begins as follows: Given
an N-dimensional input image, we first calculate a variance im-
age, whose pixels indicate local variance of the input image in-
tensity within a small kernel centered on every pixel, (3x3… in
N dimensions, though this could be enlarged). The variance im-
age has low pixel values within regions of relative homogeneity
in the input image and high values where the kernel spans re-
gions that are heterogenous, including boundaries between re-
gions of differing intensity. To avoid any loss of precision in
computing variance (and mean) we use integer mathematics, as
described in Appendix 2.

We then find vWells in the variance image by building a
graph whose nodes are the pixels in the variance image (see Fig.
1). Specifically, we create directed edges between every pair of
orthogonally connected pixels pointing to that pixel in the pair
with the lower variance value. (In the case of pixels with identi-
cal values, we point arbitrarily and consistently in a particular
direction). As can be seen in a sample image in Fig. 1, three dis-
tinct relatively homogenous regions are shown in different

Fig. 1 Directed edges (arrows) between pixels (circles)
representing decreasing intensity variance of spheres
centered on those pixels. Three disjoint trees form 3
patches (different level of gray) each with its root

(square) and terminal nodes (open circles).

CMU-RI-TR-24-33 November 6, 2024 2

shades of gray and result in the formation of three disjoint trees, each of whose root is a local minimum in variance. Each
tree can be searched up from the root to find the set of pixels in the corresponding vWell. Each vWell is, in a sense, a local
“well” of variance, which tends to be internally relatively homogenous and preserve boundaries in the image between ad-
joining vWells. VWells do not generally represent entire anatomical structures, since they tend to form distinct subregions
even with relatively homogenous regions due to minor intensity variations, but they can be joined with similar adjacent
vWells to segment entire structures. We do this by forming a second level graph, this time between adjacent vWells. In
this graph, vWells are the nodes and the edges are a statistical metric of the difference, or distance, between adjacent vWells.
We have chosen the Welch’s t-test, based on the mean and variance of the pixel intensity in each vWell, as this metric, since
it allows for differing numbers of samples (pixels) in adjoining vWells. More specifically, we use the absolute value of the
Welch’s t-test as a metric of the distance between nodes along a given edge, since these edges are undirected. Lower t-test
values indicate a statistical likelihood that two vWells belong to the same population, while higher t-test values suggest they
belong to different populations.

2 Finding the shortest path through the graph between manually selected vWells

Our present application is to segment arteries magnetic resonance images (MRI) of the brain. Our ultimate goal is to
operate in 3D on such structures, but in the present report we demonstrate our methods on 2D slices derived from those 3D
MR images. In such slices, a longitudinal cross-section of an artery will typically produce a stripe-shaped object that termi-
nates at both ends where the vessel enters and leaves the slice (see Fig. 4). We identify the desired artery to segment by
manually placing markers within the artery near either end of the visible section of the vessel as well as along it. These
markers identify particular vWells within the object. We then find the shortest path between these vWells, connecting ad-
jacent nodes (vWells) in the graph using Dijkstra’s algorithm [2], where distance between pairs of nodes is defined above.
The vWells along this path tend to stay within the artery even for a curved vessel, because similar neighbors along the vessel
present the shortest cumulative distance. This process requires no explicit thresholds, but rather depends on the statistical
similarity of the vWells belonging to the artery.

Dijkstra’s algorithm is “greedy” in the sense that it begins at a starting node and makes choices to minimize the cu-
mulative distance as it explores outward along edges from node to node. These choices may not all be globally optimal in
terms of finding the path with the least cumulative distance to the end point. In fact, the algorithm may head off initially in
the wrong direction completely and thereby miss the shortest path. To avoid such problems, we add a bias along the geo-
metric direction between the starting and ending node, using a vWell’s root voxel to define its geometric location. This
heuristic is commonly used in algorithms to optimize routes along roads in maps [3] and assumes that the optimal path
initially heads out from its starting point in a direction towards the ending point, not away from it. We adjust the weight
of this bias empirically.

3 Region Growing around the shortest path.

Once a connected set of vWells is found within the artery along the shortest path through the graph, we apply a region-
growing algorithm to fill the region of the artery surrounding the initial path. At this point, it is useful to adopt the termi-
nology of background and blob (sometimes also called foreground). In the ideal solution for a segmentation, the blob
corresponds exactly to the object being segmented and the background corresponds to a region immediately surrounding
the object. One may want to limit that background as much as possible to the region immediately surrounding the blob,
since there may be other objects in the image that should not be included in the background. VWells offer a convenient

way to provide such an appropriately restricted
background, by simply having the background
consist of a layer one vWell thick, i.e., the vWells
that are immediate neighbors to those in the blob
(see Fig. 2a).

The region growing algorithm operates by it-
eratively transferring vWells from the background
to the blob. At each iteration, we choose the vWell
that increases the difference metric between the
blob and the background the most, using the same
distance metric as we previously used between in-
dividual vWells, but now between sets of vWells.
We then add vWells to the background to surround
the new vWell in the blob (see Fig 2b). As we saw
before with Dijkstra’s algorithm, this constitutes a
greedy algorithm, i.e., one that is likely, though not
guaranteed, to approach an optimal solution by
choosing what appears at each step to be the

Fig. 2 (a) Original blob of vWells (green) forming the shortest path between
manually placed landmarks identifying vWells A and B. Background

vWells (red) consist of the neighbors to the vWells in the blob. (b) Back-
ground vWell C is identified as the best candidate to be transferred to the

blob, and two new neighboring vWells, D and E, added to the background to
surround the newly enlarged blob.

CMU-RI-TR-24-33 November 6, 2024 3

optimal choice. When a final segmentation has been achieved, we would expect the difference metric to be at a maximum,
after which adding incorrect background vWells to the blob would start to decrease the difference metric. Whether this is a
global maximum is, unfortunately, not assured.

4 Finding objects 1 pixel wide

A problem arises with vWells for structures that are only 1-pixel wide. This is demonstrated in 2D in Fig. 3a, which
shows a stripe of pixels with value 2 on a background of 0’s. As a 3x3 kernel used to find sample variance passes over the

stripe, the resulting variance shows no
local minimum where the kernel is cen-
tered on the stripe (red). This makes
sense, since the set of numbers in the
kernel are the same for all 3 cases
shown. Without a local minimum in
variance, vWells will not form for this
1-pixel wide stipe. The problem can be
addressed by double sampling the im-
age using linear interpolation, as shown
in Fig. 3b. Now the vertical stripe of
value 2 is bordered by two linearly in-
terpolated stripes of value 1. As the ker-
nel passes over the stripe, the variance
now has a local minimum where the
kernel is centered directly on the stripe
(red). Thus, a vWell can form within
the stripe. This concept generalizes to
any objects whose width is on the order
of 1 pixel, in any number of dimensions.

5 Demonstration of vWells on a 2D MR Image of a Blood Vessel

In this section we demonstrate the formation of
vWells and their use in segmenting arteries using the
methods described above, in 2D slices from 3D time-
of-flight (TOF) MRI of the brain. In these images, ar-
teries appear bright because the TOF pulse sequence
energizes blood flowing into the 3D brain region being
imaged. From that 3D region, we have chosen a 2D
slice containing a section of artery that includes at least
one branch point (Fig. 4a). Since parts of the artery ap-
proach a width of 1 pixel, we started by double-sam-
pling the image using linear interpolation (Fig. 4b). We
used this double-sampled image for all subsequent pro-
cessing described below.

We computed the variance image using a 3x3 ker-
nel. As can be seen in Fig. 5a, the variance image is
bright where the kernel spans the boundaries of the ar-
tery, since variance is high for heterogeneous samples
of pixels. Along the centers of the artery, the variance
image is dark, since here the 3x3 kernel occupies areas
of relative homogeneity, even where the width of vessel in the original image approaches a width of just 1 pixel, thanks to
our double sampling. These dark areas provided the local minima which formed the roots of vWells (see Fig. 1). We applied
the algorithm described in Section 1 to find the set of vWells corresponding to the variance image.

Fig. 3 (a) 2D image containing a 1-pixel wide vertical stripe of value 2, showing
that a 3x3 kernel for computing variance yields no local minimum (bold). (b) Lin-
ear interpolation of stripe yields a local minimum for variance.

Fig. 4 (a) 2D slice from an MRI image showing a section of an
arterial tree. (b) Double-sampled version of same image.

a b

CMU-RI-TR-24-33 November 6, 2024 4

To display vWells as an image, we set the value of
all pixels in a given vWell to the mean value of those pix-
els. The result is shown in Fig. 5b. The vWells appear as
small irregularly shaped patches of homogeneous inten-
sity, each patch displaying the mean of that vWell’s con-
stituent pixels. Compared to the source image (Fig. 4b),
we see that the image of vWell means preserves the struc-
ture of the vessel, with sharpened boundaries and lowered
noise. In the process, vWells lower the degrees of free-
dom in the image from the number of pixels to the number
of vWells. Finally, vWells preserve proximity infor-
mation in terms of which vWells are adjacent, allowing
us to build graph structures whose nodes are the vWells
and whose edges are the distance metric between adjacent
vWells described in Section 1. Thus, vWells can be seen
as a form of lossy compression, preserving the important
information in the image, while reducing the dimension-
ality of the data.

 A human opera-
tor identified which

portions of the arterial tree to segment by manually placing markers at the two ends of
the portion of the main artery visible in the image. As described in Section 2, the artery
enters and leaves the 2D slice at these points. A third marker was also entered manually
along the artery. We found the shortest path along the markers through nodes in the
graph of vWells as described in Section 2. The result is shown Fig. 6 as a line drawn
through the set of connected vWells. The location of each vWell along the line was
taken to be its root pixel. It should be noted that the root pixel is not necessarily the

central pixel. How-
ever, in the example
shown here, the
shortest path does
take a central route
along the vessel,
staying within it
around the curve, ra-
ther than taking the
shortest path geo-
metrically. This is
because “distance” is computed using the statistical sim-
ilarity of the vWells within the artery. Notice that the
branch to the right is ignored, since those vWells do not
lie on the shortest path along the markers.

We next proceeded with the region-growing algo-
rithm described above in Section 3. The set of vWells
along the path were considered the initial blob and their
immediate neighbors constituted the initial background.
The algorithm iterated by adding vWells from the back-
ground to the blob, each time choosing the vWell that
increased the difference between the blob and back-
ground the most. At each step we updated the back-
ground by adding new vWells to surround the latest
vWell transferred to the blob (see Fig. 2). The algorithm
proceeded until the next vWell to add to the blob de-
creased the difference metric between the blob and the
background.

The resulting blob and background are shown in
Figs. 7a and 7b, respectively. The blob is seen to have
filled the artery initially identified by the markers, with
a small amount of spreading into the branch to the right.
This is discussed in the next section. Fig. 7c shows a
histogram of the final segmentation, whose t-test had
reached a maximum during the region growing.

a
A

b

c

Fig. 7 Shown after application of the region-filling algorithm are (a)
the set of vWells in the blob, (b) the set of vWells in the back-

ground, and (c) a histogram of constituent voxel intensities in each.

Fig. 5 (a) Variance image corresponding to the double-sampled
input image (Fig. 4a). (b) Image of vWells, with each vWell’s

pixels set to the mean of all the pixels in that vWell.

a b

Fig. 6 Shortest path along
manually placed markers con-

necting vWells.

CMU-RI-TR-24-33 November 6, 2024 5

6 Discussion

We have reported here on a new method of segmentation based on graph structures using vWells as the nodes and
relations between neighboring vWells as the edges, demonstrating the method in 2D on arteries in MRI images of the
brain. We have shown how vWells serve as a useful preprocessing step for graph-based analysis of images by reducing
the number of variables and removing noise while preserving sharp boundaries. The graph-based methods we have intro-
duced permit creation of an initial path through an artery as well as region growing around that path to optimize a seg-
mentation of the artery relative to a boundary region immediately surrounding it. By using statistical differences within
the desired object and an evolving local background, we avoid the use of intensity thresholds common in segmentation.
Nothing in our method limits it to 2D, and we are presently extending it to 3D and validating it on vascular structures in a
set of MRI scans of the brain.

One potential complication involves deciding when to terminate the flood-fill operation. This is seen in Fig. 7a, where
the right-hand branch begins to be filled. In 3D, this will become more troublesome as arteries no longer are limited to their
intersection with a given slice. Clearly, more high-level information about expected shape and topology will be needed to
specify a desired segmentation. Furthermore, the initialization of the method could be further automated by using an atlas
of expected anatomical structures.

The code used to produce our demonstration is available on Google Colab as well as GitHub (see Appendix 1). By

making the code accessible through both platforms, we aim to support reproducibility and encourage further exploration.

References
[1] G. Stetten, C. Wong, V. Shivaprabhu, A. Zhang, S. Horvath, J. Wang, J. Galeotti, V. Gorantla, and H. Aizen-

stein, “Descending Variance Graphs for Segmenting Neurological Structures,” 3rd International IEEE Workshop on
Pattern Recognition in Neuroimaging, Philadelphia, PA, June 22-24, 2013.

[2] E.W Dijkstra. A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959).
https://doi.org/10.1007/BF01386390

[3] P. E. Hart, N. J. Nilsson and B. Raphael, "A Formal Basis for the Heuristic Determination of Minimum Cost Paths," in
IEEE Transactions on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100-107, July 1968, doi:
10.1109/TSSC.1968.300136. https://ieeexplore.ieee.org/document/4082128

CMU-RI-TR-24-33 November 6, 2024 6

Appendix 1 – Demonstration in Python
The code used to produce our demonstration is available on Google Colab as well as GitHub

Google Colab Access:

To access and run our algorithm via Google Colab, follow these steps:

1. Open Colab Notebook using the following link:

https://drive.google.com/drive/folders/1f6Rcwyrfxy9aYtfnbPg5SOgBCDtaJe59?usp=drive_link.
a. To view the code only, simply click on the. ipynb file to see the code and pre-loaded output.
b. To run the code or make changes, proceed with the following steps.

2. After opening the link:

a. Click on the header labeled "VIA_vWellAlgorithm".
b. Then, navigate to "Organize > Add Shortcut > My Drive > Add" to save a shortcut in your Google

Drive.
c. Now, simply open the Colab notebook (.ipynb) from your Google Drive and run the code. The settings

can be modified as needed, and the algorithm will execute accordingly.

GitHub Repository Access:

The code is also available through our GitHub repository:
https://github.com/SatyajBhargava/2024-2D-vWell-Algorithm-.git.

This repository contains the full source code and additional documentation for running the algorithm in different

environments. You can clone the repository or download as a ZIP and follow the instructions provided in the
README file for setup and usage.

Appendix 2 – Integer Mathematics to Compute Mean and Variance

In computing local variance with the kernel described above (3x3… in N dimensions), we need to be careful in defin-
ing our numerical technique. The mean 𝑥̅ of a set of 𝑛 numbers 𝑥! is defined as

𝑥̅ =
∑ 𝑥!"
!#$

𝑛

Since n is constant in our kernel for a given number of dimensions N (n = 9 for N = 2, n = 27 for N = 2, or generally n =
3N) we can simply use the sum of the numbers instead of the mean, and it will be proportional to the mean, as denoted in
the following equation

&𝑥!

"

!#$

= 𝑛𝑥̅

Assuming 𝑥! is in an integer (pixel intensity in our case), 𝑛𝑥̅	has the added advantage that it is an integer as well.

The process of computing the variance of n numbers 𝑥! in a population is generally described as first computing the
mean and then summing the squared difference between each number and that mean and dividing by n, or

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 	∑ (𝑥𝑖−𝑥.)2𝑛
𝑖=1

𝑛

In practice, variance is often computed by keeping a running computation two numbers: the sum of the squares of 𝑥! and
the square of the sum of 𝑥!. Variance can then be computed from these two numbers by

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
∑ (𝑥𝑖−𝑥.)2𝑛
𝑖=1

𝑛 = ∑ (𝑥𝑖)2𝑛
𝑖=1
𝑛 − 0∑ 𝑥𝑖𝑛

𝑖=1 12

𝑛2

CMU-RI-TR-24-33 November 6, 2024 7

The computation can cause problems for floating point representations, because it depends on a relatively small difference
between potentially quite large numbers. Therefore, by multiplying the above equation by 𝑛", we can avoid division and
use integer math to avoid any loss of precision. We use 𝑛" × 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 instead of 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒, and again, since n is fixed,
we can compare magnitudes effectively.

𝑛" × 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝑛3(𝑥𝑖)2
𝑛

𝑖=1
− 43𝑥𝑖

𝑛

𝑖=1
5

2

Thus, we simply need to keep running sums of 𝑥! an (𝑥!)", from which 𝑛𝑥̅ and 𝑛" × 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 can be computed at

any time, with all operation avoiding division and preserving full precision as integers.
Our number format must accommodate the largest possible expected values. For 3x3… kernels of up to 4 dimensions

(81 pixels) with up to 12-bit pixel intensity resolution, the maximum n times the sum of (𝑥!)" would be 81 x (212)2 =
15,752,961. The maximum sum of the 𝑥! quantity squared would be quite a bit larger (81 x 212)2 = 1,275,989,841. These
numbers are always positive, assuming the original image pixels are unsigned integers. Thus, we can use unsigned long
integers consisting of 4 bytes (232 = 4,294,967,296), we can handle any of these possible numbers, though of course we
would expect real images to produce lower numbers. If the image pixels are signed integers, we can use signed long inte-
gers and still have room to spare (231 = 2,147,483,648),

