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Abstract

Detecting unseen instances based on multi-view templates is a challenging
problem due to its open-world nature. Traditional methodologies, which
primarily rely on 2D representations and matching techniques, are often
inadequate in handling pose variations and occlusions. To solve this, we
introduce VoxDet, a pioneer 3D geometry-aware framework that fully
utilizes the strong 3D voxel representation and reliable voxel matching
mechanism.

VoxDet first ingeniously proposes template voxel aggregation (TVA) mod-
ule, effectively transforming multi-view 2D images into 3D voxel features.
By leveraging associated camera poses, these features are aggregated into
a compact 3D template voxel. In novel instance detection, this voxel
representation demonstrates heightened resilience to occlusion and pose
variations. We also discover that a 3D reconstruction objective helps to
pre-train the 2D-3D mapping in TVA. Second, to quickly align with the
template voxel, VoxDet incorporates a Query Voxel Matching (QVM)
module. The 2D queries are first converted into their voxel representation
with the learned 2D-3D mapping. We find that since the 3D voxel repre-
sentations encode the geometry, we can first estimate the relative rotation
and then compare the aligned voxels, leading to improved accuracy and
efficiency.

In addition to method, we also introduce the first instance detection
benchmark, RoboTools, where 20 unique instances are video-recorded
with camera extrinsic. RoboTools also provides 24 challenging cluttered
scenarios with more than 9k box annotations. Exhaustive experiments
are conducted on the demanding LineMod-Occlusion, YCB-video, and
RoboTools benchmarks, where VoxDet outperforms various 2D baselines
remarkably with faster speed. To the best of our knowledge, VoxDet is the
first to incorporate implicit 3D knowledge for 2D novel instance detection
tasks.
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Chapter 1

Introduction

Consider the common scenarios of locating the second sock of a pair in a pile of

laundry or identifying luggage amid hundreds of similar suitcases at an airport. These

activities illustrate the remarkable capability of human cognition to swiftly and

accurately identify a specific instance among other similar objects. Humans can

rapidly create a mental picture of a novel instance with a few glances even if they

see such an instance for the first time or have never seen instances of the same type.

Searching for instances using mental pictures is a fundamental ability for humans,

however, even the latest object detectors [23, 31, 33, 37, 38, 40, 44] still cannot achieve

this task.

We formulate the above tasks as novel instance detection [32], that is identification

of an unseen instance in a cluttered query image, utilizing its multi-view support

references. Previous attempts mainly work in 2D space, such as correlation [1,

37], attention mechanisms [38], or similarity matching [7], thereby localizing and

categorizing the desired instance, as depicted in Fig. 1.1 gray part. However, these

techniques struggle to maintain their robustness when faced with significant disparities

between the query and templates. In comparison to novel instance detection, there is

a vast amount of work centered around few-shot category-level object detection [23,

31, 44]. Yet, these class-level matching techniques prove insufficient when it comes to

discerning specific instance-level features.

Humans exhibit the remarkable capability to swiftly formulate a mental model

of an unfamiliar instance, facilitated by a rapid comprehension of its 3D geometric
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1. Introduction

structure [28, 42, 57]. Leveraging such a mental representation, once presented

with a single query image, a human can probably search and identify the same

instance despite alterations in distance, occlusion, and even approximate the instance’s

orientation. Motivated by this, we propose VoxDet, a pioneer 3D geometry-aware

instance detection framework as shown in Fig. 1.1 bottom. In contrast to state-of-

the-art methods [7, 37, 38, 43, 44], VoxDet adapts two novel designs: (1) a compact

3D voxel representation that is robust to occlusion and pose variations and (2) an

effective voxel matching algorithm for identifying instances.

VoxDet consists of three main modules: a template voxel aggregation (TVA)

module, an open-world detection module, and a query voxel matching (QVM) module.

Initially, the TVA module transforms multi-view 2D features of an instance into

individual 3D template voxels [28]. These template voxels are then accumulated using

relative rotations, thus incorporating both geometry and appearance into a condensed

template voxel. As VoxDet learns this 2D-3D mapping via a reconstruction objective,

TVA effectively encapsulates both the geometry and appearance of any instance into

a compact template voxel. When presented with a query image, VoxDet employs an

open-world detector [25] that universally identifies potential objects within the image

as 2D proposals. These proposals are then converted to query voxels via the learned

2D-3D mapping and compared with the template voxel by the QVM module. QVM

initiates this comparison process by first estimating the relative rotation between a

query voxel and the template, which is then used to align the two voxels. Finally, the

comparison between aligned voxels is delivered by a carefully designed voxel relation

module.

Besides methodology, we also construct a large-scale synthetic training dataset,

Open-World Instance Detection (OWID). OWID comprises 10k instances sourced

from the ShapeNet [8] and Amazon Berkeley Objects [10] datasets, culminating in

55k scenes and 180k query bounding boxes. Trained on OWID, VoxDet demonstrates

strong generalization ability on novel instances, which we attribute to the meticulously

designed voxel-based framework and the large-scale OWID training set.

To validate VoxDet, we further build RoboTools, a new instance detection bench-

mark compiled from a diverse range of real-world cluttered environments. RoboTools

consists of 20 unique instances, 24 test scenes, and over 9,000 annotated bounding

boxes. As shown in Fig. 1.1 right, in the demanding RoboTools benchmark, VoxDet
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1. Introduction

Support Templates

Query
2D Correlation / Attention / Matching

Support

Query Open-World
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Figure 1.1: Architecture comparison between previous 2D methods (gray) and
proposed VoxDet [32] (black). Previous methods resorts to pure 2D correla-
tion/attention/matching for novel instance detection. In contrast, VoxDet is 3D-
inspired, leveraging reconstruction objective to learn the geometry-aware voxel repre-
sentation, which enables more effective and accurate voxel-based instance detection.
In the challenging newly built RoboTools benchmark shown on the right, VoxDet
exhibits surprising robustness to severe occlusion and orientation variation.

can robustly detect the novel instances under severe occlusion or varied orientation.

Evaluations are also performed on the authoritative Linemod-Occlusion [4] and YCB-

video [5] for more compelling results. The exhaustive experiments on these three

benchmarks demonstrate that our 3D geometry-aware VoxDet not only outperforms

various previous works [37, 38, 44] and different 2D baselines [7, 46] but also achieves

faster inference speed.
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Chapter 2

Related Work

2.1 Typical object detection

Object detection [14, 15, 35, 47, 48, 49, 50] thrive in category-level tasks, where all

the instances belonging to a pre-defined class are detected. Typical object detection

can be divided into two-stage approaches and one-stage approaches. For the former

one, RCNN [15] and its variants [14, 50] serves as foundations, where the regions of

interest (ROI) are first obtained by the region proposal network. Then the detection

heads classify the labels of each ROI and regress the box coordinates. On the other

hand, the YOLO series [47, 48, 49] and recent transformer-based methods [33, 40]

are developing promisingly as the latter stream, where the detection task is tackled

as an end-to-end regression problem.

2.2 Few-shot/One-shot object detection

Few/One-shot detection methods [23, 31, 44, 45, 59, 60] can work for unseen classes

with only a few labeled support samples, which are closer to our task. One stream

focuses on transfer-learning techniques [45, 59], where the fine-tuning stage is carefully

designed to make the model quickly generalize to unseen classes. While the other

resorts to meta-learning strategies [23, 31, 44, 60], where various kinds of relations

between supports and queries are discovered and leveraged. Since the above methods
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2. Related Work

are category-level, they assume more than one desired instances exist in an image, so

the classification/matching designs are usually tailored for Top-100 precision, which

is not a very strict metric. However, they can easily fail in our problem, where the

Top-1 accuracy is more important.

2.3 Open-world/Zero-shot object detection

Open-world detectors [18, 24, 25, 27] find any objects on an image, which is class-

agnostic and universal. Some of them learn objectiveness [24, 25] and others [27] rely

on large-scale high-quality training sets. These methods can serve as the first module

in our pipeline, which generates object proposals for comparison with the templates.

Among them, we adopt [25] with its simple structure and promising performance.

2.4 Instance detection

Instance detection problem require the algorithm to find an unseen instance in the

test image with some corresponding templates. Previous methods [1, 37, 38] usually

utilize pure 2D representations and 2D matching/relation techniques. For example,

DTOID [38] proposed global object attention and a local pose-specific branch to

predict the template-guided heatmap for detection. However, they easily fall short

when the 2D appearance variates due to occlusion or pose variation. Differently,

VoxDet leverages the explicit 3D knowledge in the multi-view templates to represent

and match instances, which is geometry-invariant.

2.5 Multi-view 3D representations

Representing 3D scenes/instances from multi-view images is a long-standing problem

in computer vision. Traditional methods resort to multi-view geometry, where

structure from motion (SfM) [52] pipeline has enabled joint optimization of the camera

pose and 3D structure. Modern methods usually adopts neural 3D representations [19,

28, 39, 42, 54, 55, 57], including deep voxels [28, 42, 54, 64] and implicit functions [39,

55], which have yielded great success in 3D reconstruction or novel view synthesis.
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2. Related Work

Our framework is mainly inspired by Video Autoencoder [28], which encodes a video

by separately learning the deep implicit 3D structure and the camera trajectory. One

biggest advantage of [28] is that the learned Autoencoder can encode and synthesize

test scenes without further tuning or optimization, which greatly satisfies the efficiency

requirement of our instance detection task.
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Chapter 3

Method

3.1 Problem Formulation

Given a training instance set Obase and an unseen test instance set Onovel, where

Obase ∩ Onovel = ϕ, the task of novel instance detection (open-world detection) is to

find an instance detector trained on Obase and then detect new instances in Onovel

with no further training or finetuning. Specifically, for each instance, the input to

the detector is a query image IQ ∈ R3×W×H and a group of M support templates

IS ∈ RM×3×W×H of the target instance. The detector is expected to output the

bounding box b ∈ R4 of an instance on the query image. We assume there exists

exactly one such instance in the query image and the instance is located near the

center of the support images.

3.2 Architecture

The architecture of VoxDet is shown in Fig. 3.1, which consists of an open-world

detector, a template voxel aggregation (TVA) module, and a query voxel matching

(QVM) module. Given the query image, the open-world detector aims to generate

universal proposals covering all possible objects. TVA aggregates multi-view supports

into a compact template voxel via the relative camera pose between frames. QVM lifts

2D proposal features onto 3D voxel space, which is then aligned and matched with

7



3. Method

the template voxel. In order to empower the voxel representation with 3D geometry,

we first resort to a reconstruction objective in the first stage. The pre-trained models

serve as the initial weights for the second instance detection training stage.

3.2.1 Open-World Detection

Since the desired instance is unseen during training, directly regressing its location

and scale is non-trivial. To solve this, we first use an open-world detector [25] to

generate the most possible candidates. Different from standard detection that only

finds out pre-defined classes, an open-world detector locates all possible objects in an

image, which is class-agnostic.

As shown in Fig. 3.1, given a query image IQ, a 2D feature map fQ is extracted by

a backbone network ψ(·). To classify each pre-defined anchor as foreground (objects)

or background, the region proposal network (RPN) [50] is adopted. Concurrently, the

boundaries of each anchor are also roughly regressed. The resulting anchors with high

classification scores are termed region proposals P = [p1,p2, · · · ,pN ] ∈ RN×4, where

N is the number of proposals. Next, to obtain the features FQ for these candidates, we

use region of interest pooling (ROIAlign) [50], FQ = ROIAlign(P, fQ) ∈ RN×C×w×w,

where C denotes channel dimensions and w is the spatial size of proposal features.

Finally, we obtain the final classification result and bounding box by two parallel multi-

layer perceptrons (MLP), known as the detection head, which takes the proposal

features FQ as input, and outputs the binary classification scores and the box

regression targets. The training loss is comprised of RPN classification loss LRPN
cls ,

RPN regression loss LRPN
reg , head classification loss LHead

cls , and head regression loss

LHead
reg .

To make the detector work for open-world objects, the classification branches

(in RPN and head) are guided by objectiveness regression [25]. Specifically, the

classification score is defined (supervised) by Intersection over Union (IoU), which

showed a high recall rate over the objects in test images, even those unseen during

training. Since they have learned the class-agnostic ”objectiveness”, we assume the

open-world proposals probably cover the desired novel instance. Therefore, we take

the top-ranking candidates and their features as the input of the subsequent matching

module.
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QVM
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Figure 3.1: Architecture of VoxDet. VoxDet mainly consists of three modules, namely,
open-world detection, template voxel aggregation (TVA), and query voxel matching
(QVM). We first train TVA via the reconstruction stage, where the 2D-3D mapping
learns to encode instance geometry. Then the pre-trained mapping serves as initial
weights in the TVA and QVM modules for detection training.

3.2.2 Template Voxel Aggregation

To learn geometry-invariant representations, the Template Voxel Aggregation (TVA)

module compresses multi-view 2D templates into a compact deep voxel. Inspired

by previous technique [28] developed for unsupervised video encoding, we propose

to encode our instance templates via their relative orientation in the physical 3D

world. To this end, we first generate the 2D feature maps FS = ψ(IS) ∈ RM×C×w×w

using a shared backbone network ψ(·) used in the query branch and then map the

2D features to 3D voxels for multi-view aggregation.

2D-3D mapping: To map these 2D features onto a shared 3D space for subsequent

orientation-based aggregation, we utilize an implicit mapping function M(·). This
function translates the 2D features to 3D voxel features, denoted by V = M(FS) ∈
RM×Cv×D×L×L, where V is the 3D voxel feature from the 2D feature, Cv is the feature

dimension, and D,L indicate voxel spatial size. Specifically, we first reshape the

feature maps to F′S ∈ RM×(C/d)×d×w×w, where d is the pre-defined implicit depth,
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3. Method

then we apply 3D inverse convolution to obtain the feature voxel.

Note that with multi-view images, we can calculate the relative camera rotation

easily via Structure from Motion (SfM) [52] or visual odometry [58]. Given that the

images are object-centered and the object stays static in the scene, these relative

rotations in fact represent the relative rotations between the object orientations

defined in the same camera coordination system. Different from previous work [28]

that implicitly learns the camera extrinsic for unsupervised encoding, we aim to

explicitly embed such geometric information. Specifically, our goal is to first transform

every template into the same coordinate system using their relative rotation, which

is then aggregated:

vS =
1

M

M∑
i=1

Conv3D(Rot(Vi,R
⊤
i )) , (3.1)

where Vi ∈ RCv×D×L×L is the previously mapped i-th independent voxel feature, R⊤
i

denotes the relative camera rotation between the i-th support frame and the first

frame. Rot(·, ·) is the 3D transform used in [28], which first wraps a unit voxel to the

new coordination system using R⊤
i and then samples from the feature voxel Vi with

the transformed unit voxel grid. Therefore, all the M voxels are transformed into the

same coordinate system defined in the first camera frame. These are then aggregated

through average pooling to produce the compact template voxel vS.

By explicitly embedding the 3D rotations into individual reference features, TVA

achieves a geometry-aware compact representation, which is more robust to occlusion

and pose variation.

3.2.3 Query Voxel Matching

Given the proposal features FQ from query image IQ and the template voxel CS

from supports IS, the task of the query voxel matching (QVM) module is to classify

each proposal as foreground (the reference instance) or background. As shown in

Fig. 3.1, in order to empower the 2D features with 3D geometry, we first use the

same mapping to get query voxels, VQ = M(FQ) ∈ RN×Cv×D×L×L. VoxDet next

accomplishes matching vS and VQ through two steps. First, we need to estimate

the relative rotation between query and support, so that VQ can be aligned in the

same coordinate system as vS. Second, we need to learn a function that measures the

10



3. Method

distance between the aligned two voxels. To achieve this, we define a voxel relation

operator Rv(·, ·):
Voxel Relation Given two voxels v1,v2 ∈ Rc×a×a×a, where c is the channel and

a is the spatial dimension, this function seeks to discover their relations in every

semantic channel. To achieve this, we first interleave the voxels along channels as

In(v1,v2) = [v1
1,v

1
2,v

2
1,v

2
2, · · · ,vc

1,v
c
2] ∈ R2c×a×a×a, where vk

1 ,v
k
2 is the voxel feature

in the k-th channel. Then, we apply grouped convolution as

Relv(v1,v2) = Conv3D(In(v1,v2), group = c)

. In the experiments, we found that such a design makes relation learning easier

since each convolution kernel is forced to learn the two feature voxels from the same

channel. With this voxel relation, we can then roughly estimate the rotation matrix

R̂Q ∈ RN×3×3 of each query voxel relative to the template as:

R̂Q = MLP(Rv(V
S,VQ)) , (3.2)

where vS is copied N times to get VS. In practice, we first predict 6D continuous

vector [66] as the network outputs and then convert the vector to a rotation matrix.

Next, we can define the classification haed with the Voxel Relation as:

ŝ = MLP
(
Rv(V

S,Rot(VQ, R̂Q))
)
, (3.3)

where Rot(VQ, R̂Q) rotates the queries to the support coordination system to allow

for reasonable matching. In practice, we additionally introduced a global relation

branch for the final score, so that the lost semantic information in implicit mapping

can be retrieved. More details are available in the supplementary material. During

inference, we rank the proposals P according to their matching score and take the

Top-k candidates as the predicted box b̂.

3.3 Training Objectives

As illustrated in Fig. 3.1, VoxDet contains two training stages: reconstruction and

instance detection.
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3. Method

Reconstruction To learn the 3D geometry relationships, specifically 3D rotation

between instance templates, we pre-train the implicit mapping function M(·) using a

reconstruction objective. We divide M multi-view templates IS into input images

IS
i ∈ R(M−K)×3×W×H and outputs IS

o ∈ RK×3×W×H . Next, we construct the voxel

representation VS using IS
i via the TVA module and adopt a decoder network Dec

to reconstruct the output images through the relative rotations:

ÎS
o,j = Dec(Rot(VS,R⊤

j )) , j ∈ {1, 2, · · · , K} , (3.4)

where ÎS
o,j denotes the j-th reconstructed (fake) output images and Rj is the rela-

tive rotation matrix between the 1-st to j-th camera frame. We finally define the

reconstruction loss as:

Lr = wreconLrecon + wganLgan + wpercepLpercep ,

where Lrecon denotes the reconstruction loss, i.e., the L1 distance between IS
o and ÎS

o .

Lgan is the generative adversarial network (GAN) loss, where we additionally train a

discriminator to classify IS
o and ÎS

o . Lpercep means the perceptual loss, which is the

L1 distance between the feature maps of IS
o and ÎS

o in each level of VGGNet [53].

Even though the reconstruction is only supervised on training instances, we observe

that it can roughly reconstruct novel views for unseen instances. We thus reason that

the pre-trained voxel mapping can roughly encode the geometry of an instance.

Detection base training : In order to empower M(·) with geometry encoding

capability, we initialize it with the reconstruction pre-trained weights and conduct the

instance detection training stage. In addition to the open-world detection loss [25],

we introduce the instance classification loss LIns
cls and rotation estimation loss LIns

rot to

supervise our VoxDet.

We define LIns
cls as the binary cross entropy loss between the true labels s ∈ {0, 1}N

and the predicted scores ŝ ∈ RN×2 from the QVM module. The rotation estimation

loss is defined as:

LIns
rot = ∥R̂QRQ⊤ − I∥ , (3.5)

where RQ is the ground-truth rotation matrix of the query voxel. Note that here we

only supervise the positive samples. Together, our instance detection loss is defined

12



3. Method

as:

Ld = w1LRPN
cls + w2LRPN

reg + w3LHead
cls + w4LHead

reg + w5LIns
cls + w6LIns

rot , (3.6)

Remark 1: In both training stages, we only use the training objects, Obase. During

inference, VoxDet doesn’t need any further fine-tuning or optimization for Onovel.
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Chapter 4

Experimental Setup

Our research employs datasets composed of distinct training and test sets, adhering

to Obase ∩ Onovel = ϕ to ensure no overlap between semantic classes of Obase and

Onovel.

Synthetic Training set: In response to the scarcity of instance detection traing

sets, we’ve compiled a comprehensive synthetic dataset using 9,901 objects from

ShapeNet [8] and ABO [10]. Each instance is rendered into a 40-frame, object-

centric 360o video via Blenderproc [12]. We then generate a query scene using 8

to 15 randomly selected objects from the entire instance pool, each initialized with

a random orientation. This process yielded 55,000 scenes with 180,000 boxes for

training and an additional 500 images for evaluation, amounting to 9,800 and 101

instances respectively. We’ve termed this expansive training set ”open-world instance

detection” (OWID-10k), signifying our model’s capacity to handle unseen instances.

To our knowledge, this is the first of its kind.

Synthetic-Real Test set: We utilize two authoritative benchmarks for testing.

LineMod-Occlusion [4] (LM-O) features 8 texture-less instances and 1,514 box anno-

tations, with the primary difficulty being heavy object occlusion. The YCB-Video [5]

(YCB-V) contains 21 instances and 4,125 target boxes, where the main challenge

lies in the variance in instance pose. These datasets provide real test images while

lacks the reference videos, we thus render synthetic videos using the CAD models in

Blender.

Fully-Real Test set: To test the sim-to-real transfer capability of VoxDet, we

14



4. Experimental Setup

Figure 4.1: The instances and test scenes in the newly built RoboTools benchmark.
The 20 unique instances are recorded as multi-view videos, where the relative cam-
era poses between frames are provided. RoboTools consists of various challenging
scenarios, where the desired instance could be under severe occlusion or in different
orientation.

introduced a more complex fully real-world benchmark, RoboTools, consisting of 20

instances, 9,109 annotations, and 24 challenging scenarios. The instances and scenes

are presented in Fig. 4.1. Compared with existing benchmarks [4, 5], RoboTools

is much more challenging with more cluttered backgrounds and more severe pose

variation. Besides, the reference videos of RoboTools are also real-images, including

real lighting conditions like shadows. We also provide the ground-truth camera

extrinsic.
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4. Experimental Setup

Baselines: Our baselines comprise template-driven instance detection methods, such

as correlation [37] and attention-based approaches [38]. However, these methods falter

in cluttered scenes, like those in LM-O, YCB-V, and RoboTools. Therefore, we’ve

self-constructed several 2D baselines, namely, OLNDINO, OLNCLIP, and OLNCorr.

In these models, we initially obtain open-world 2D proposals via our open-world

detection module [25]. We then employ different 2D matching methods to identify

the proposal with the highest score. In OLNDINO and OLNCLIP, we leverage robust

features from pre-trained backbones [7, 46] and use cosine similarity for matching. 1

For OLNCorr., we designed a 2D matching head using correlation as suggested in [37].

These open-world detection based 2D baselines significantly outperform previous

methods [37, 38]. In addition to these instance-specific methods, we also include a

class-level one-shot detector, OS2D [44] and BHRL [62] for comparison.

Hardware and configurations: The reconstruction stage of VoxDet was trained

on a single Nvidia V100 GPU over a period of 6 hours, while the detection training

phase utilized four Nvidia V100 GPUs for a span of ∼40 hours. For the sake of

fairness, we trained the methods referenced [7, 25, 37, 38, 44, 46] mainly on the

OWID dataset, adhering to their official configuration. Inferences were conducted on

a single V100 GPU to ensure fair efficiency comparison. During testing, we supplied

each model with the same set of M = 10 template images per instance, and all

methods employed the top N = 500 ranking proposals for matching. In the initial

reconstruction training stage, VoxDet used 98% of all 9,901 instances in the OWID

dataset. For each instance, a random set of K = 4 images were designated as output

IS
o , while the remaining M −K = 6 images constituted the inputs IS

i . For additional

configurations of VoxDet, please refer to Appendix A.1 and our code.

Metrics: Given our assumption that only one desired instance is present in the

query image, we default to selecting the Top-1 proposal as the predicted result. We

report the average recall (AR) rate [36] across different IoU, such as mAR (IoU

∈ 0.5 ∼ 0.95), AR50 (IoU 0.5), AR75 (IoU 0.75), and AR95 (IoU 0.95). Note that the

AR is equivalent to the average precision (AP) in our case.

1we default to the ViT-B model. DINO [7] and CLIP [46] might already be familiar with the test
instances.
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Chapter 5

Results & Discussion

5.1 Quantitative Results

5.1.1 Overall Performance Comparison:

On the synthetic real datasets, we comprehensively compare with all the potential

baselines, the results are detailed in Table 5.1, demonstrating that VoxDet consistently

delivers superior performance across most settings. Notably, VoxDet surpasses the

next best baseline, OLNDINO, by an impressive margin of up to 20% in terms of average

mAR. Furthermore, due to its compact voxel representation, VoxDet is observed to

be markedly more efficient. On the newly built fully real dataset, RoboTools, we

only compare methods trained on the same synthetic dataset for fairness. As shown

in Table 5.2, VoxDet demonstrates better sim2real transfering capability compared

with the 2D methods due to its 3D voxel representation. We present the results

comparison with the real-image trained models in Appendix A.4.

5.1.2 Efficiency Comparison:

As QVM has a lower model complexity than OLNCLIP and OLNDINO, it achieves

faster inference speeds, as detailed in Table 5.3. Compared to correlation-based

matching [37], VoxDet leverages the aggregation of multi-view templates into a

single compact voxel, thereby eliminating the need for exhaustive 2D correlation and
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5. Results & Discussion

Table 5.1: Overall performance comparison on synthectic-real datasets LM-O [4]
and YCB-V [5]. Compared with various 2D methods, including correlation [37],
attention [38], and feature matching [7, 46], our VoxDet holds superiority in both
accuracy and efficiency. OLN* means the open-world object detector (OW Det.) [25]
is jointly trained with the matching head while OLN denotes using fixed modules. †

the model is trained on both synthetic dataset OWID and real images.

Test/Metric LM-O YCB-V Avg.
Method OW Det. Train mARAR50 AR75 AR95 mARAR50 AR75 AR95 mARAR50 AR75 Speed

VoxDet OLN* OWID 29.2 43.1 33.3 0.8 31.5 51.3 33.4 1.7 30.4 47.2 33.4 6.5
OLNCorr. [25, 37] OLN* OWID 22.3 34.4 24.7 0.5 24.8 41.1 26.1 0.7 23.6 37.8 25.4 5.5

DTOID [38] N/A OWID 9.8 28.9 3.7 <0.1 16.3 48.8 4.2 <0.1 13.1 38.9 4.0 2.8
OS2D [44] N/A OWID 0.2 0.7 0.1 <0.1 5.2 18.3 1.9 <0.1 2.7 9.5 1.0 5.3

OLNCLIP [25, 46] OLN OWID† 16.2 32.1 15.3 0.5 10.7 25.4 7.3 0.2 13.5 28.8 11.3 2.8
OLNDINO [7, 25] OLN OWID† 23.6 41.6 24.8 0.6 25.6 53.0 21.1 0.8 24.6 47.3 23.0 2.8

Gen6D [37] N/A OWID† 12.0 29.8 6.6 <0.1 12.1 37.1 5.2 <0.1 12.1 33.5 5.9 1.3
BHRL [62] N/A COCO 14.1 21.0 15.7 0.5 31.8 47.0 34.8 1.4 23.0 34.0 25.3 N/A

achieving 2× faster speed.

In addition to inference speed, VoxDet also demonstrates greater efficiency regard-

ing the number of templates. We tested the methods on the YCB-V dataset [5] using

fewer templates than the default. As illustrated in Fig. 5.1, we found that the 2D

baseline is highly sensitive to the number of provided references, which may plummet

by 87% when the number of templates is reduced from 10 to 2. However, such a

degradation rate for VoxDet is 2× less. We attribute this capability to the learned

2D-3D mapping, which can effectively incorporate 3D geometry with very few views.

5.1.3 Top-K Analysis:

Compared to the category-level method [44], VoxDet produces considerably fewer false

positives among its Top-10 candidates. As depicted in Fig. 5.2, we considered Top-

K = 1, 5, 10, 20, 30, 50, 100 proposals and compared the corresponding AR between

VoxDet and OS2D [44]. VoxDet’s AR only declines by 5 ∼ 10% when K decreases

from 100 to 10, whereas OS2D’s AR suffers a drop of up to 38%. This suggests that

over 90% of VoxDet’s true positives are found among its Top-10 candidates, whereas

this ratio is only around 60% for OS2D.
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5. Results & Discussion

Table 5.2: Overall performance compari-
son on the newly built real image dataset,
RoboTools. For fairness, we only com-
pare with the models fully trained on
synthetic dataset here, more comparison
see Appendix A.4. VoxDet shows superi-
ority even under sim-to-real domain gap
compared with other 2D representation-
based methods [25, 37, 38, 44].

Metric OW Det. mAR AR50 AR75 AR95

VoxDet OLN* 18.7 23.6 20.5 5.1
OLNCorr. [25, 37] OLN* 14.4 18.1 15.7 3.8

DTOID [38] N/A 3.6 9.0 2.0 <0.1
OS2D [44] N/A 2.9 6.5 2.0 <0.1

Table 5.3: Per module efficiency com-
parison. All the four methods share
the same open-world detector [25].
Compared with 2D baselines that
adopt cosine similarity [7, 46] or learn-
able correlation [37], our Voxel match-
ing is more efficient, which shows∼ 2×
faster speed. The numbers presented
below are measured in seconds.

Method/Module Open-World Det. Matching ToTal

VoxDet

0.122

0.032 0.154
OLNCLIP [25, 46] 0.248 0.370
OLNDINO [7, 25] 0.235 0.357
OLNCorr. [25, 37] 0.060 0.182
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Figure 5.1: Number of templates analysis of VoxDet and 2D baseline, OLNDINO [7, 25]
on YCB-V benchmark. Thanks to the learned geometry-aware 2D-3D mapping,
VoxDet can work well with very few reference images, while 2D method suffers from
such setting, dropping up to 87%.

Top K Analysis on YCB-V Benchmark
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Figure 5.2: Top-K analysis of VoxDet and One-shot object detector [44]. By virtue of
the instance-level matching method, QVM, VoxDet can better classify the proposals,
so that 90% of the true positives lie in Top-10, while for OS2D, this ratio is only 60%.
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5. Results & Discussion

5.1.4 Ablation Studies:

Table 5.4: Ablation study for VoxDet in
RoboTools benchmark. All the three criti-
cal modules are helpful in our design. Su-
pervising the estimated rotation achieves
slightly better results. Comparison with
more matching module see Appendix A.2.

Recon. R R w/ sup. Voxel Rel. mAR AR50 AR75

✓ ✓ ✓ ✓ 18.7 23.6 20.5

✓ ✓ ✗ ✓ 18.2 23.2 20.0

✓ ✗ ✗ ✓ 15.6 21.9 17.0

✓ ✓ ✓ ✗ 15.1 19.4 16.2

✗ ✓ ✓ ✓ 14.2 18.3 15.7

The results of our ablation studies are

presented in Table 5.4. Initially, we at-

tempted to utilize the 3D depth-wise

convolution for matching (see the fourth

row). However, this proved to be infe-

rior to our proposed instance-level voxel

relation. Reconstruction pre-training is

crucial for VoxDet’s ability to learn to

encode the geometry of an instance (see

the last row). Additionally, we conducted

an ablation on the rotation measurement

module (R) in the QVM, and also tried

not supervising the predicted rotation. Both are inferior to our default settings.

5.2 Qualitative Results

5.2.1 Detection Visualization

The qualitative comparison is depicted in Fig. 5.3, where we compare VoxDet with

the two most robust baselines, OLNDINO and OLNCorr.. We notice that 2D

methods can easily falter if the pose of an instance is not seen in the reference,

e.g., 2-nd query image in the 1-st row, while VoxDet still accurately identifies

it. Furthermore, 2D matching exhibits less robustness under occlusion, where the

instance’s appearance could significantly differ. VoxDet can effectively overcome these

challenges thanks to its learned 3D geometry. More visualizations and qualitative

comparisons see Appendix A.3.

5.2.2 Deep Voxels Visualization

To better validate the geometry-awareness of our learned voxel representation, we

present the deep visualization in Fig. 5.4. The gradient of the matching score is

backpropagated to the template voxel and we visualze the activation value of each
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5. Results & Discussion

VoxDet OLN!"#$ OLN%&''.

VoxDet OLN!"#$ OLN%&''.

VoxDet OLN!"#$ OLN%&''.

Obj 5@LM-O

Obj 13@YCB-V

Obj. 9@RoboTools

Support Images and AR Query Images

Figure 5.3: Detection qualitative results comparison between VoxDet and 2D baselines
on the three benchmarks. VoxDet shows better robustness under pose variance (e.g.
Obj. 5@LM-O first and second columns) and occlusion (e.g. Obj. 13@YCB-V second
column and Obj. 9@RoboTools).

Support Query and Voxel Activation Support Query and Voxel Activation

Figure 5.4: Visualization of the high activation grids during matching. As query
instance rotates along a certain axis, the location of the high-activated grids roughly
rotates in the corresponding direction.

grid. Surprisingly, we discover that as the orientation of the query instance changes,

the activated regions within our voxel representations accurately mirror the true
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5. Results & Discussion

Figure 5.5: Reconstruct results of VoxDet on unseen instances. The voxel representa-
tion in VoxDet can be decoded with a relative rotation and synthesize novel views,
which demonstrate the geometry embedded in our learned voxels.

rotation. This demonstrates that the voxel representation in VoxDet is aware of the

orientation of the instance.

Reconstruction Visualization The voxel representation in VoxDet can be decoded

to synthesize novel views, even for unseen instances, which is demonstrated in Fig. 5.5.

The voxel, pre-trained on 9500 instances, is capable of approximately reconstructing

the geometry of unseen instances.
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Chapter 6

Conclusion

6.1 Conclusion

This thesis introduces VoxDet, a novel approach to detect novel instances using multi-

view reference images. VoxDet is a pioneering 3D-aware framework that exhibits

robustness to occlusions and pose variations. VoxDet’s crucial contribution and

insight stem from its geometry-aware Template Voxel Aggregation (TVA) module and

an exhaustive Query Voxel Matching (QVM) specifically tailored for instances. Owing

to the learned instance geometry in TVA and the meticulously designed matching

in QVM, VoxDet significantly outperforms various 2D baselines and offers faster

inference speed. Beyond methodological contributions, we also introduce the first

instance detection training set, OWID, and a challenging RoboTools benchmark for

future research.

6.2 Limitations

Despite its strengths, VoxDet has two potential limitations. Firstly, the model trained

on the synthetic OWID dataset may exhibit a domain gap when applied to real-world

scenarios, we present details in Appendix A.4. Secondly, we assume that the relative

rotation matrixes and instance masks (box) for the reference images are known,

which may not be straightforward to calculate. However, the TVA module in VoxDet
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doesn’t require an extremely accurate rotation and 2D appearance. We present

further experiments addressing these issues in Appendix A.5.
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Appendix A

Supplementary Material

Overview

To make our model fully reproducible, we present complete implementation details

in Appendix A.1. Besides, our code library will be released upon acceptance. We

report more comparisons between our QVM module and the 2D matching/relation

techniques [31, 37, 61] in Appendix A.2 to demonstrate the superiority of QVM in

instance-level 3D matching. In Appendix A.3, we present more detection qualitative

results. We further present some discussions about the sim2real domain gap of VoxDet

in Appendix A.4. To test the robustness of VoxDet under interference on the voxel

representation, we display results obtained from the flawed voxel in Appendix A.5.

Finally, we provide extended related works discussions in Appendix A.6, where we

exhaustively compare VoxDet with the existing instance-level tasks, including visual

tracking, instance pose estimation, and instance retrieval.

A.1 Implementation Details

Model Structure: We adopt ResNet50 [20] with feature pyramid network [35] as our

feature extractor ψ(·). The default multi-scale ROIAlign in [35] is leveraged to obtain

the 2D proposal features, where the dimensions are N = 500, C = 256, w = 7. In our

2D-3D mapping, we set C/d = 32, d = 8, which results in the voxel feature dimension
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Cv = 256, D = 16, L = 14. All the 3D convolutions in TVA and QVM take kernel

size as 3 and the padding equals to 1, so that the dimension of the voxels remains the

same throughout the two modules. For the Rot(·, ·) function, we have followed [28] to

use torch.nn.functional.affine grid() and torch.nn.functional.grid sample()

functionalities. Though the 2D-3D mapping can learn the rotations in the physical

world, it sacrifices some semantics information in the feature channels when reshaping.

Therefore, in QVM, we have a global matching branch to retrieve the lost semantic

information. To be more specific, we apply global average pooling on the support

features to get a support vector k ∈ R1×C×1×1. Then we adopt depth-wise convolution

between k and FQ to get a correlation map. Note that this correlation map preserved

all the semantic channels from the backbone ψ(cot), so that the lost information in the

2D-3D mapping. The map is added to the voxel relation output Rv(V
S,Rot(VQ, R̂Q))

for the final score.

Training Details: In the first reconstruction stage, we set the loss weights as

wrecon = 10.0, wgan = 0.01, wpercep = 1.0. The model is trained for 16 epoch on the

9600 instances from OWID datasets. We leveraged Adam optimizer [26] with a base

learning rate of 5× 10−5 during training. In the second detection stage, we initialize

the 2D-3D mapping modules in TVA and QVM with the reconstruction pre-trained

weights. VoxDet first only learns the detection task, without learning the rotation

estimation, i.e., the loss weights are set as w1 = w2 = w3 = w4 = w5 = 1.0, w6 = 0 in

the first 10 epochs, where SGD is leveraged as an optimizer with 0.02 base learning

rate. Note that in this stage, the 2D-3D mapping part only takes 1
10

of the base

learning rate. Then in the final epoch, VoxDet learns the rotation estimation with

the detection part fixed, i.e., w1 = w2 = w3 = w4 = w5 = 0.0, w6 = 1.0. However,

supervising rotation is not the key requirements and is optional for VoxDet. It

improves the performance slightly by 1 ∼ 2%.

26



A. Supplementary Material

A.2 More Matching Module Comparison

Table A.1: Comparison with different types
of matching module. We compare QVM
with the correlation in [37], class-level rela-
tion proposed in [31], and the class distance
defined in FSDet [61].

Method mAR AR50 AR75

QVM (Ours) 23.95 33.35 26.90

QVM† 22.45 31.75 25.05

2D Relation [31] 20.25 29.70 22.80

FSDet [61] 20.35 29.35 22.60

Local Matching [13, 51] 10.60 13.90 11.75

We compare QVM with more match-

ing techniques in Table A.1, where the

averaged results onthe cluttered LM-

O [4] and RoboTools benchmark are

reported. We first ablate the Voxel Re-

lation module in QVM, which results

in QVM†. Specifically, all the Voxel

Relation in QVM† are replaced by a

simple depth-wise convolution, i.e., we

first apply global average pooling on the

template voxel to get a feature vector,

which is then taken as the convolution

kernel to calculate the correlation voxel from the queries. We can see such a naive

design will result in a performance drop.

For all the rest methods, we used the same open-world detector to obtain the

universal proposals, which are then matched with the template images using different

matching techniques. To be more specific, 2D Corr. [37] constructs support vectors

from every reference image. Then, depth-wise convolution is conducted between each

support vector and the proposal patch. The resulting correlation maps are sent to an

MLP for classification score. In 2D Relation [31], we substitute the simple depth-wise

convolution in 2D Corr. with the spatial and channel relation proposed in [31]. In

FSDet [61], the depth-wise convolution in 2D Corr is replaced by the distance defined

in [61]. Since they are geometry-unaware, we find all the 2D techniques worse than

our QVM module.

Additionally, we designed a Local Matching baseline [13, 51]. In Local Matching,

we first extract local key points from the reference images and proposals using

SuperPoint [13]. Then the points descriptors are matched by SuperGlue [51]. We

take the mean matching score of all the points in the proposal as their classification

score. We find such an implementation, though geometry-invariant, falls short in our

task since it lacks semantic representation of the whole instance.
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VoxDet vs DTOID VoxDet vs Gen6D VoxDet vs OLN!"#$
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Figure A.1: Detection qualitative results comparison between VoxDet and 2D base-
lines, DTOID [38], Gen6D [37], OLNDINO [7, 25] on the three benchmarks. VoxDet
shows better robustness under pose variance and occlusion. These qualitative com-
parisons can be better visualized in our supplementary video.
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A.3 More Detection Visualizations

We present more detection qualitative comparisons in Fig. A.1. VoxDet, in red, is

compared with three baselines, DTOID [38], Gen6D [37], and OLNDINO. Compared

with previous instance detectors [37, 38], VoxDet is more robust under orientation

variation and severe occlusion by virtue of the learned geometric knowledge. For

example, in the LM-O benchmark, second column, when the duck is partially occluded

and the egg box is in different orientations, VoxDet can still find them while Gen6D

fails. Compared with similarity matching [7], VoxDet can better distinguish similar

instances via the QVM module. For instance, in the RoboTools benchmark, the

third column, the desired instance could be distracted by the motor, which has

similar appearances but different geometry. Our VoxDet can discover such geometric

differences and make correct classification, while the similarity matching falls short

even if the feature from DINO [7] is stronger than ResNet50 [20].

A.4 Sim-to-Real Comparison

VoxDet is entirely trained on synthetic dataset, OWID. We observe that the model

shows some domain gap when transferred to real-world images like RoboTools. On

the synthetic-real datasets, LM-O [4] and YCB-V [5], our model easily outperforms

those trained on real images, while it shows limitations in fully real test set RoboTools.

For example, Gen6D [37] is mainly trained on real-images, which reports 17.0 mAR,

35.5 AR50, and 14.3 AR75. Its AR50 is higher than VoxDet (23.6) while in harder

metrics like AR75, our model works better (20.5). Compared with the cutting edge

foundation models that are trained on large-scale real images, our model still shows

spaces for improvement. For example, OLNCLIP achieves 11.0 mAR, 20.8 AR50,

and 9.2 AR75, which is worse than VoxDet. Yet, OLNDINO [43] can outperform

VoxDet in RoboTools with over 30 mAR. We conclude that the feature representation

from the concurrent 2D foundation model [43] could be a stronger backbone for

VoxDet to overcome the domain gap issue. Learning a geometry-aware strong voxel

representation from such foundation model will be one of our future work.
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A.5 Performance under Flawed Voxel

Table A.2: Performance of VoxDet on
RoboTools when the reference is disturbed.
The ratio means center shift and scale noise
with respect to width and height.

Mean Shift Ratio 0 10% 20% 30%

AR50 23.6 20.1 18.9 17.1

VoxDet assumes known instance masks

and poses for the reference video, which

may have some noise during realworld

deployment. To quantitatively anal-

ysis the robustness of VoxDet under

flawed Voxels, we present its results on

RoboTools when the reference video is

disturbed in appearance and geometry.

Add noise on the reference image patches : We tried to add random shift on

the cropped area in the reference images, resulting in inaccurate instance appearance.

The results on RoboTools are shown in Table A.2. We conclude that even when we

disturb around 65% of the voxel (30% shift on each 2D patch), the model still works,

which means VoxDet is robust to appearance noise.

Add noise on the relative poses : We tried to add random error on the pose of

the reference images, resulting in inaccurate instance geometry. When we add as

large as 15 degree angular error, the performance (AR50) decreased from 23.6 to 20.4.

We conclude that VoxDet is not very sensitive to the geometry noise.

A.6 Extended Related Works

Visual Object Tracking aims to localize a general target instance in a video, given

its initial state in the first frame. Early methods adopt discriminative correlation

filters [22, 30, 34], where the calculation in the frequency domain is so efficient

that real-time speed can be achieved on a single CPU. More recently, methods are

developed on Siamese Network [29] and Transformers [6, 11, 65]. Unlike detection,

object tracking has a strong temporal consistency assumption, i.e., the location and

appearance of the instance in the next frame do not largely vary from the previous

frame. So that they only conduct detection/matching in the small search region with

a single 2D template, which can’t work for our whole image detection setting.

Instance Pose Estimation is developed to estimate the 6 DoF pose of an unseen

instance. Some of them [21, 56] match the local point features and resort to RANSAC
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to optimize the relative pose. While others [17, 37] first selects the closest template

frame and then conducts pose refinement on the known template poses. Most of these

methods usually assume the instance detection is perfect, i.e., they crop the instance

out of the query image with the ground truth box and estimate the pose on the small

object-centered patch. Our VoxDet can serve as their front-end, which is robust to

cluttered environments, thus making the detection-pose estimation framework more

reliable.

Instance Retrieval hopes to retrieve a specific instance from a large database

with a single reference image [2, 3, 9, 16, 41, 63]. Some early work extracts local

point features from template and query patch for image matching [3, 13], which may

suffer from poor discriminative capability. More recent work resorts to the deep

neural network for a global representation of the instance [2, 16, 41, 63], which is

compared with the features from query images. However, most of them construct 2D

template features from the reference, so that their representation is unaware of the

3D geometry of the instance, which may not be robust under severe pose variation.

Besides, instance retrieval methods usually require high-resolution query images for

the discriminative features, while the instance in our cluttered query image could be

in low-resolution, which sets additional barriers to these approaches.
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Appendix B

Contribution Statement

The content of the thesis if based on a research paper: ”VoxDet: Voxel Learning

for Novel Instance Detection” [32], where Bowen Li is the primary first author. The

contribution of each author to the research is listed below:

Bowen Li: Developed the code library of VoxDet, proposed the idea of applying

the Voxel representation in VideoAutoEncoder [28] to instance detection. Specifically,

Bowen came up with the Template Voxel Aggregation (TVA) module and the Query

Voxel Matching (QVM) module, which are inspired by the 2D-3D mapping and Rotate

operation in VideoAutoEncoder [28]. Bowen also found out the using reconstruc-

tion before detection and that initializing TVA with the reconstruction-pre-trained

weights help in learning detector. The empirical results, along with the qualitative

visualizations are completed by Bowen. Bowen have also constructed the synthectic

training dataset (OWID) and the real-world test set, RoboTools. The research paper

draft was primarily written by Bowen.

Jiashun Wang: Participated in the weekly updates of this project. He suggested

the paper of VideoAutoEncoder [28] to Bowen, collaborated with Bowen on developing

the priliminary reconstruction experiments. Jiashun also suggested that applying

reconstruction techniques may help building a geometry-aware detector. In the

experiment section, Jiashun collabrated with Bowen on building and rendering the

Voxel Visualization.

Yaoyu Hu: Participated in the weekly updates of this project. He suggested

the ”Interleave” operation in the QVM module. Yaoyu also collaborated with Bowen
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on building the real-world test set, RoboTools. Yaoyu helped Bowen in shaping the

paper draft.

Chen Wang: Participated in the weekly updates of this project. He has provided

technical suggestions in building the TAV and QVM modules, including the opti-

mization and network designs. Chen contributed a lot to the writing of the research

paper, he collaborated with Bowen in polishing most sections of the research paper.

Sebastian Scherer: is the principle investigator of this research project. He

provided guidance to the development of this research, helped shaping the big picture

of the final research goal. He has suggested Bowen with several possible directions

for this research in the preliminary stage and has given useful feedbacks to Bowen’s

thinking and ideas. He also contributed to the writing to the research paper, making

the methodology and experiments part clear.
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