
Multi-Resolution Informative Path

Planning for Small Teams of Robots

Nayana Suvarna

CMU-RI-TR-24-79

December 18, 2024

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Sebastian Scherer, chair

Jiaoyang Li
Ananya Rao

Submitted in partial fulfillment of the requirements
for the degree of Masters of Science in Robotics.

Copyright © 2024 Nayana Suvarna. All rights reserved.

To my village of family, friends, and mentors

iv

Abstract

Unmanned aerial vehicles can increase the efficiency of information gath-
ering applications. A key challenge is balancing the search across multiple
locations of varying importance while determining the best sensing alti-
tude, given each agent’s finite operation time. In this work, we present
a multi-resolution informative path planning approach for small teams
of unmanned aerial vehicles. We model our problem as a team orienteer-
ing problem, aiming to maximize reward by performing searches over a
set of spatially separated regions. We convert each region into a set of
nodes across multiple fixed altitudes, and compute a cost and reward for
each node based on sensing resolution at discrete altitudes. We utilize a
linearization method to precisely capture the nonlinear information gain
reward for each node, which allows us to leverage mixed-integer linear
programming optimizers to solve our problem. Through this approach,
we’re able to generate plans for our team of agents that balance revisiting
regions of importance and exploring new regions. We evaluate our ap-
proach against greedy, naive greedy, and random baselines for teams of up
to three agents on multiple maps with varying information distributions.
We show that our approach can produce plans of greater optimality within
a fixed time limit and limited sensing budget over the baselines. We also
discuss the tradeoffs in solution quality and runtime over the optimization
process compared to the baseline solutions.

v

vi

Acknowledgments

I’d like to first thank my advisor, Basti, for his mentorship and guidance
over the course of my masters. When I started the program, I knew very
little about drones and unmanned aerial vehicles. Through my experiences
in the lab and through our various research conversations, I was able to
gain an understanding of the real-world impact and challenges behind
these systems. This knowledge served as the foundation for my thesis.

I’d also like to thank my committee member, Prof. Jiaoyang Li, whose
extensive knowledge and expertise on multi-agent systems was instrumen-
tal in shaping the direction of this thesis. Thank you as well to my thesis
member Ananya Rao for her friendship and mentorship over the years
and for her guidance on my thesis document and slides.

I would like to extend a large amount of gratitude to my main collaborators
for this work. I’d first like to thank Brady Moon, for being an exceptional
friend, mentor, and desk neighbor. Working alongside you (both literally
and figuratively) across our various informative path planning projects
has been one of my greatest pleasures. Next, I’d like to thank Charles
Noren for his knowledge of operations research that helped influence this
work. Thank you both for being my sounding boards and for our countless
research conversations from the initial ideas of this thesis to the finest
details of the final document. I’m truly grateful for the opportunity to
have worked with the two of you. Thank you as well to many members of
the AirLab who helped contribute to its culture and made working in the
lab an enjoyable experience - Jay P., Cherie, Jay K., Ian, and Mateo.

This thesis is the culmination of my six-year journey in the RI and it
would not have been possible without the large community of people
that have supported me along the way. This is partially thanks to the
people who helped shape my robotics experience as an undergrad. Thank
you to Prof. Howie Choset with whom I worked with for the majority
of my undergrad. The practical hands-on experience I gained in his lab
taught me how to effectively communicate my research ideas and served
as the foundation for my robotics knowledge. Thank you as well to my
undergrad advisor, Dr. Dickerson, for always believing in me and for
pushing me to always do my best. Your support for me during the IAC
helped show me that I could achieve anything I set my mind to.

I’d also like to thank Prof. John Dolan and Rachel Burcin for their support

vii

and mentorship through my time in the Robotics Institute Summer
Scholars (RISS) program for two summers. Through these experiences,
I was able to build my confidence as a researcher. Your mentorship and
guidance over the years have been vital to my personal and professional
growth. I would not be in this program if it weren’t for the two of you
urging me to apply.

I’d like to thank my friends in my MSR cohort - Sofia, Sam, Conner, and
Matt for helping make long days in the office more bearable with our
lunch breaks and little treat runs. I would also like to thank the many
friends that I’ve met through my time at CMU - Abby, Ananya, Bart,
Ben E., Ben F., Dan, Min, Mrinal, Ravi, Rayna, Swapnil, Tejus, Vivian,
Alex, Sam, Maggie, and Pranav. Through our countless coffee shop work
sessions, walks around SQH, Blood on the Clocktower games, and various
other hangouts, thank you for helping me build a community at CMU
and for making me feel welcome in the RI.

Having lived in Pittsburgh for the past seven years, there are countless
friends outside of CMU who have supported and helped shape me into the
person I am today. To my oldest friends - Steph and Josh, you both know
me better than I know myself and I don’t know who I’d be without you.
To my other Pittsburgh friends - Tom, Prem, and Ashumi, thank you for
making Pittsburgh feel like home. Thanks as well to my friends from the
IAC - Andrew and Cindy for being invaluable mentors and friends and
for letting me take advantage of your wealth of wisdom and advice.

Finally, thank you to my family for being my biggest cheerleaders. My
experiences and accomplishments are a direct reflection of the sacrifices,
love, and encouragement that you have continuously given me. Your belief
in me has been a constant source of motivation, and I could not have
come this far without this unwavering support.

viii

Funding

This thesis was support by ONR grant N000142212548 and contract
N6833522C0179.

ix

x

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Challenges . 2
1.3 Contributions . 2

2 Background 5
2.1 Informative Path Planning . 5
2.2 Multi-Agent Information Gathering 6
2.3 Multi-Resolution Information Gathering 6

3 Multi-Agent Multi-Resolution Informative Path Planning 9
3.1 Problem Definition . 9
3.2 Region-Based Map Representation 10
3.3 Multi-Resolution Costs . 11
3.4 Information Reward Function . 12
3.5 Multi-Resolution Rewards . 13
3.6 Team Orienteering Problem Formulation 14

4 Experimental Setup 19
4.1 Map Generation . 19
4.2 Baseline Methods . 20
4.3 Experimental Method . 22

5 Results and Discussion 25
5.1 Information Gain Results . 25
5.2 Suboptimality Results . 27
5.3 Optimizer Runtime Analysis . 30
5.4 Variable Team Size . 32

6 Conclusions and Future Work 37

Bibliography 39

xi

List of Figures

3.1 Diagram outlining the inputs and outputs of our approach and the
individual components of our system. The inputs consist of the regions
to search and information on the set of agents to plan for. The outputs
include a set of paths for all agents. 10

3.2 Visualization of the process used to generate a graph representation
for a set of geometric regions. We first compute the centroids for each
region. Then, we place these centroids at varying altitudes to form
our set of nodes. Finally, we connect all these nodes to form a fully
connected graph . 11

3.3 Visualization of the path generated at two different altitudes. In the
left image, the sensor footprint is small to reflect the higher sensing
resolution. In the right image, the sensor footprint is larger to reflect
a low sensing resolution . 12

3.4 An example sensor model [16]. The blue line represents the true
positive rate P (X|Z) and the red line represents the false positive rate
P (¬X|Z) . 13

4.1 Map generation process for the city environment 19
4.2 Visualizations of the two maps we used for our experiments 20

5.1 Average reward across 10 randomized runs per budget across all base-
lines for the city environment with a team of two agents 26

5.2 Average reward across 10 randomized runs per budget across all base-
lines for the city environment with a team of two agents 26

5.3 Visualization of the paths generated by our approach and the greedy
planner for a city environment test case. The blue line is our approach
and the orange line is the greedy approach. The alpha values for
the regions correspond to the likelihood of objects of interest lying
within the region. The plot on the left shows a birds-eye view of the
plans generated for the two agents. Open circles are higher altitude
measurements and solid circles are lower altitude measurements. The
middle and right plots show the paths for the first and second agents
respectively. The gap in optimality between our approach and the
greedy planner was 2.82% for these plans 28

xii

5.4 Visualization of the paths generated by our approach and the greedy
planner for a wildlife environment test case. The blue line is our
approach and the orange line is the greedy approach. The alpha values
for the regions correspond to the likelihood of objects of interest lying
within the region. The plot on the left shows a birds-eye view of the
plans generated for the two agents. Open circles are higher altitude
measurements and solid circles are lower altitude measurements. The
middle and right plots show the paths for the first and second agents
respectively. The gap in optimality between our approach and the
greedy planner was 28.87% for these plans. 29

5.5 Runtime for the early stop spent getting to an equivalent reward as the
greedy solution and the final gap at the end of the planning timeout
for the city environment . 31

5.6 Percentage of runtime for the early stop spent getting to an equivalent
solution as the greedy solution and the final gap at the end of the
planning timeout for the wildlife environment. 31

5.7 Optimal reward obtained by the solver for variable agent team sizes
given the gap threshold and the maximum runtime. The left plot
shows the results for the city environment and the right plot shows the
results for the wildlife environment. 32

5.8 Average reward across 10 randomized runs per budget across all base-
lines for the city environment with a team of one and three agents
agents.The left plot shows the results for the one agent team size and
the right plot shows the results for the three agent team size. 33

5.9 Average reward across 10 randomized runs per budget across all base-
lines for the city environment with a team of one and three agents.
The left plot shows the results for the one agent team size and the
right plot shows the results for the three agent team size. 34

5.10 Final gap at the end of the planning runtime or after the gap threshold
was reached across the city and wildlife environment for variable team
sizes. The plot on the left shows the results for the city environment
and the plot on the right shows the results for the wildlife environment. 34

xiii

List of Tables

5.1 Percent optimality gaps given different budgets for a team of two
agents in the city environment . 27

5.2 Percent optimality gaps given different budgets for a team of two
agents in the wildlife environment . 27

5.3 Optimality gaps given different budgets for a variable team of agents
in the city environment . 33

5.4 Optimality gaps given different budgets for a variable team of agents
in the wildlife environment . 34

xiv

Chapter 1

Introduction

1.1 Motivation

Autonomous robots are used for a variety of information gathering applications

including environmental monitoring [6] [11], inspection [28], and disaster response

[3]. These robots can be leveraged to tackle tasks that may be dangerous or even

infeasible for humans to complete. In these situations, a prior is often defined that

represents the distribution of information in the search space. This priori information

distribution could represent probable locations for survivors in a search and rescue

situation or areas of wear and tear for inspection. Using this prior, robots can be

guided toward areas of higher interest in their search. Teams of robots can be used

to improve the speed and efficiency of these information gathering tasks.

We explore the multi-agent information gathering problem where a team of

unmanned aerial vehicles seek to plan informative paths over a large search space

to search for objects of interest. We consider a scenario with a maximum team size

of three robots where the collective flying budget allocated to the team of agents

is smaller than the budget needed to cover the entire space. Thus, agents must

balance the trade-off between exploring new areas of interest and exploiting existing

information to revisit areas of higher interest at varying sensing resolutions.

1

1. Introduction

1.2 Challenges

The main challenge at the core of information gathering problems is that each robot

has a finite operating time. This can be quantified through flight time, travel distance,

or battery levels. For this work, we represent the limited sensing resources of the

robot as flight distance or budget measured in meters. This challenge is exacerbated

by having non-uniform expected information over the search space as agents have

to balance observing multiple areas with varying importance. Agents have to use

the information to plan paths that maximize their overall team reward, modeled as

information gain, while not exceeding their individual flight budgets. This is often

formulated as the informative path planning problem.

Planning for multiple robots introduces additional challenges because the search

space grows exponentially as the number of agents increases [25]. This may make

it more difficult or potentially even infeasible to produce optimal plans. During the

planning procedure, multiple potentially competing objectives across the set of agents

must be balanced to produce plans that maximize overall team performance.

We introduce additional complexities to the informative path planning problem

by allowing agents to visit areas of interest multiple times at varying fixed-altitude

sensing resolutions. Flying at a lower altitude results in a smaller field of view, which

enables a higher sensing resolution. This limited field of view, however, can lead to a

large amount of budget to be expended when searching over a large space. At higher

altitudes, the field of view is larger, which allows for less budget to be expended

during a search. However, the sensing resolution is lower, which results in poorer

sensing performance. Thus, for individual sensing measurements, there is a trade-off

between sensing quality and budget expended. Compounding this across multiple

measurements at varying sensing resolutions, the cost versus benefit trade-off of

multiple observations taken over a single region must be considered as part of our

problem formulation.

1.3 Contributions

In this work, we present a multi-agent informative path planning approach modeled

as a team orienteering problem to plan informative paths for a small team of up

2

1. Introduction

to three unmanned aerial vehicles. We formulate it as a task allocation framework

where tasks are represented as searches over a set of regions of varying importance

at multiple fixed altitudes. We compute a cost and reward for each task, which we

represent as nodes, based on the sensing resolution at its fixed altitude. By leveraging

a linearized version of our information gain function, we’re able to utilize existing

mixed integer linear programming solvers for our problem.

For our results, we compare our approach against naive, greedy, and random

baselines on multiple maps with varying information distributions. We demonstrate

that our approach is able to consistently outperform our baselines at varying limited

budgets. In our discussion, we provide an analysis of the runtime versus performance

improvement achieved when utilizing our approach. We also observe the differences

in performance for our system across varying team sizes.

3

1. Introduction

4

Chapter 2

Background

2.1 Informative Path Planning

The informative path planning problem (IPP) consists of planning a set of paths that

maximize information gain, subject to a robot’s budget constraints. It is shown to

be NP-hard. Many approaches have been developed to compute optimal or close to

optimal solutions for this problem.

Graph-based approaches abstract the environment as a set of nodes and edges,

where the nodes consist of potential sensing locations. Some works utilize branch and

bound to solve the problem [4] or present greedy approaches to approximate solutions

[23] [5]. Other approaches formulate the graph search problem as an orienteering

problem [1], [26]. Although these approaches can generate high-quality solutions,

they become difficult to solve as the number of nodes in the graph increases. This

can lead to poor solutions in large, dynamic, and high-dimensional search spaces.

For large, dynamic environments, existing works have explored utilizing sampling-

based planners. A tree is built by sampling states in the search space. Then, the path

in the tree with the highest information gain is returned at the end of the allocated

planning time. Some works randomly sample states to build the tree [12], while

others bias sampling using the prior fed in [16]. Other approaches [21] rewire the

tree generated to reduce the tree size while simultaneously improving the quality

of existing plans. These approaches handle large search spaces more effectively,

but they can still struggle to efficiently sample states and generate plans when the

5

2. Background

dimensionality of the search space increases. Additionally, they are unable to provide

a measure on the quality of plans generated with respect to the true optimal solution

to the problem.

2.2 Multi-Agent Information Gathering

Many approaches have been developed to tackle the multi-agent information gathering

problem. One way of formulating the problem has been through region partitioning

where each agent gets a single region to search [13], [9], [22]. These approaches fail

to capture the nuances introduced by performing a search over a non-uniform prior.

A common way of formulating the information gathering problem over a non-

uniform prior is through a task allocation problem. With these approaches, the tasks

consist of a set of sensing locations to visit. Each sensing location has a reward that

ties to its associated amount of information. So, the objective acts similarly to the

single agent IPP problem except now the team of multiple agents has to maximize

their collective reward.

One way of approaching the task allocation problem is through optimization-

based approaches. For these approaches, an exact solver such as a mixed-integer

linear programming solver [8] could be used to plan paths for the set of agents. A

key downside, however, to these approaches is that the exact solvers used for these

approaches can take a long time to solve to optimality. This can lead to difficulties in

producing plans when searching over a large space or when trying to plan for a large

team of agents. So, existing approaches rely on metaheuristics such as ant-colony

optimization [7], or genetic algorithms [14] to approximate sub-optimal solutions with

the tradeoff of faster solving times.

2.3 Multi-Resolution Information Gathering

Outside of these approaches, the problem of multi-resolution planning for unmanned

aerial vehicles has been looked at by other groups. In [19], the authors present an

evolutionary algorithm for environmental mapping. In [20], the authors explore a

multi-resolution coverage-based method. In other works, [1], [2], the authors present

6

2. Background

approaches that plan across multiple altitudes when searching for objects of interest.

The multi-agent problem with multi-resolution sensing for unmanned aerial vehicles

has largely been unexplored in existing literature. Especially when coupled with

information gain as part of the objective function. Outside of the multi-agent aspect

of our work, we also explore how geometric regions, representing clusters of sensing

locations, can be used as the tasks allocated to the team of agents instead of sensing

locations alone.

7

2. Background

8

Chapter 3

Multi-Agent Multi-Resolution

Informative Path Planning

3.1 Problem Definition

Let T = {T0, T1, . . . , Tn} represent trajectories for a small team of agents. C(Ti) and
I(Ti) represent the respective cost and reward or information gain of trajectory T

for agent i. We then define the multi-agent informative path planning problem as

follows where T ∗ is the set of trajectories from the total set of trajectories T for a set

of agents that maximizes information gain without exceeding the budget constraint

Bi for for each agent i.

T ∗ = argmax
T ∈T

n∑
i=1

I(Ti) s.t. C(Ti) ≤ Bi (3.1)

To generate these paths, we model the multi-agent informative path planning

problem as a team orienteering problem to jointly optimize trajectories for all agents.

In this chapter, we break down the various components of our system that feed into

this formulation. A summary of our approach can be seen in Fig. 3.1.

9

3. Multi-Agent Multi-Resolution Informative Path Planning

Figure 3.1: Diagram outlining the inputs and outputs of our approach and the
individual components of our system. The inputs consist of the regions to search and
information on the set of agents to plan for. The outputs include a set of paths for
all agents.

3.2 Region-Based Map Representation

We represent our environment as a set of spatially separated regions consisting of

areas and line segments where each region is an abstract representation of a cluster

of sensing locations. Areas are represented as a set of vertices that form a closed

polygon. They can be used to represent environmental features such as fields, forests,

and city blocks. Line segments are represented as a set of two points that form a

line. They can be used to represent environmental features such as trails, rivers, and

roads. Each area and line segment is assigned a uniform probability P (X) where X

represents the likelihood that objects of interest lie within the region.

To convert this geometric representation into a graph, we abstract each region

as a node. We begin by computing the centroid of each region. This gives us a

two-dimensional representation of all our regions. We then place these at various fixed

altitudes that the team of agents fly at. For our approach, we assume that the agents

are flying at a maximum of two fixed altitudes. Thus, each node can be summarized

as (x, y, z, c, r) where x and y are the centroids for the region and z corresponds to a

fixed altitude that a search of the region is performed at. c and r then give us the

respective budget spent and information gain received after completing the search

over the region.

We assume that we have a set of homogenous agents that can perform a search

at any altitude. So, our graph is fully connected. However, this underlying graph

representation can be modified to reflect problem-specific constraints such as obstacles

10

3. Multi-Agent Multi-Resolution Informative Path Planning

or restrictions on the altitudes that specific agents can fly at. During this process,

we also generate a mapping that represents the lower altitude searches that are

encompassed by searches at the higher altitude.

Figure 3.2: Visualization of the process used to generate a graph representation for
a set of geometric regions. We first compute the centroids for each region. Then,
we place these centroids at varying altitudes to form our set of nodes. Finally, we
connect all these nodes to form a fully connected graph

3.3 Multi-Resolution Costs

For each node, we define a cost that represents the flying budget in meters needed to

perform a search over the region at the desired altitude. We employ two different

methods for calculating cost depending on whether the region is an area or a line

segment.

For areas, we compute a coarse grid representation within the bounding box

the polygon is inscribed in where the dimensions of each cell are equivalent to the

sensor footprint of an agent at the node altitude. We assume that each agent has a

downward-facing camera so that this footprint can be represented as a square based

on the sensor configuration. We filter these cells into a set of nodes where our set of

nodes consists of the cells that intersect the polygon. We treat the upper leftmost

node as our start node, and the lower rightmost node as our end node. We then

compute a coverage path that passes through all nodes using a wavefront coverage

planner [27]. We treat the Euclidean distance of this path as the cost estimate for a

given area. By using the dimensions of the agent’s sensor footprint as the cell size,

we’re able to adjust the budget of an area based on sensing resolution.

For line segments, we assume that to cover the region, a robot would travel the

length of the line. So, we treat the Euclidean distance of the line segment as our base

cost. We adjust this based on sensing resolution by subtracting the length of the

11

3. Multi-Agent Multi-Resolution Informative Path Planning

Figure 3.3: Visualization of the path generated at two different altitudes. In the left
image, the sensor footprint is small to reflect the higher sensing resolution. In the
right image, the sensor footprint is larger to reflect a low sensing resolution

sensor footprint from this base cost. Formulating it this way allows us to similarly

adjust the budget of a line segment based on sensing resolution.

3.4 Information Reward Function

Our reward function for information depends on having an accurate model of the

performance of the sensor onboard each vehicle. For our implementation, we consider

an electro-optical range-based sensor, though this framework could extend to other

sensors. Let Z represent a detection. Thus, we can model the performance of our

perception system through its true positive rate P (X|Z) and false positive rate

P (¬X|Z). In the example sensor model in Fig. 3.4, we can see that as the range of

observations increases, the sensor performance degrades until it plateaus to 0.5 where

observations have minimal effect.

Using this sensor model, we compute our information reward function as the

reduction in entropy [18] from a new measurement Z. We model entropy using

Shannon entropy through

H(X) = −P (X) logP (X)− P (¬X) logP (¬X) (3.2)

Through calculating the entropy of P (X) and P (X|Z), we can then calculate the

reduction in entropy as

12

3. Multi-Agent Multi-Resolution Informative Path Planning

Figure 3.4: An example sensor model [16]. The blue line represents the true positive
rate P (X|Z) and the red line represents the false positive rate P (¬X|Z)

∆H(X|Z) = H(X)−H(X|Z) (3.3)

When applying multiple observations over X, the final belief and, consequently,

∆H(X|Z1, Z2) are the same regardless of the order of measurements. This is due to

the commutative property of the Bayesian updates and Shannon entropy calculations.

Thus, we can pre-compute a reward given a single low or high observation or multiple

observations. This intuition can be leveraged to compute a linear formulation of the

non-linear ∆H(X|Z) function.

3.5 Multi-Resolution Rewards

For each node, we also define a reward that represents the information gained after

completing a search over a region at the node’s altitude. At a high level, we multiply

the reward we precomputed for a high, low, and combined high and low observation

over the set of cells that fall within a region. We vary the method we use to compute

the number of intersecting cells based on whether a region is an area or a line segment.

For areas, we first compute a grid within the bounding box in which an area is

inscribed. We then multiply the rewards we precomputed by the number of cells

that intersect with the shape of the area. For line segments, we multiply the rewards

we precomputed by the number of cells that intersect with the line through voxel

traversal. Through utilizing these methods, we’re able to vary the reward for a region

13

3. Multi-Agent Multi-Resolution Informative Path Planning

based on sensing resolution and the number of observations. Additionally, this allows

us to pre-compute the reward over a given region across all combinations of high and

low observations.

3.6 Team Orienteering Problem Formulation

Bringing all these components together, we model the multi-agent informative path

planning problem as a Team Orienteering Problem. The Team Orienteering Problem

is a multi-agent extension of the Orienteering Problem [24] where the objective

function is a reward maximization problem subject to a set of resource constraints.

Let I = {1, 2, . . . , P} represent an index set for the P agents in the team. The

agents in the team are tasked with performing a search over a set of regions at two

fixed altitudes. Let L = {l1, l2, . . . , lm1} denote the set of nodes representing the

search at the low altitude and let H = {h1, h2, . . . , hm2} denote the set of nodes

representing the search at the higher altitude. All agents are required to begin their

paths at start locations, D− = {d−1 , d−2 , . . . , d−P}, and end their paths at end locations,

D+ = {d+1 , d+2 , . . . , d+P}.
All agents share a workspace that can be represented as a weighted undirected

graph G = (V,E). The vertex set V = L ∪H ∪D− ∪D+ represents the set of all

possible locations for all agents and the edge set E = {(vi, vj) ∈ V × V | i ̸= j}
represents the connections between these vertices. Thus, the set of tasks the agents

have to complete can be expressed as S = V \ (D+ ∪D−).

Each vertex vi has an associated tuple (X i, Y i, Zi, Ci) where X i and Y i represent

the centroid of the region, Zi represents a measurement over the region at the

fixed altitude, and Ci represents a constant probability for the likelihood of objects

of interest lying within the region described by the node. Each vertex vi has an

associated reward Ri = ∆H(Ci|Zi) that corresponds to the reward obtained after

performing a search over the region associated with the node. Each edge (vi, vj) has

a weight (bij + bj) where bij is the Euclidean distance from vi to vj and bj represents

the positive cost of performing the search task at vj.

We define a function f : L→ H that maps low and high-altitude nodes. Given

a low-altitude node li ∈ L, the function f returns a corresponding high-altitude

node hj ∈ H. This mapping indicates the search at the lower altitude node that

14

3. Multi-Agent Multi-Resolution Informative Path Planning

is encompassed by the search at the higher altitude. In cases where multiple low

altitude searches are encompassed by a high altitude search, hj could map to multiple

elements li ∈ L. Using this mapping, we compute a reward Rij = ∆H(Ci|Zi, Zj) for

viewing a region at both the higher and lower altitudes.

For the mixed-integer linear programming model, we define three different decision

variables. The first is a binary decision variable that denotes whether the edge

connecting (vi, vj) was traversed by agent p ∈ I.

xijp =

1, if (vi, vj) ∈ E is traversed by agent p

0 otherwise
(3.4)

The next decision variable is a binary variable that denotes whether vertex vi ∈ V

was visited by agent p ∈ I.

yip =

1, if vi is visited by agent p

0 otherwise
(3.5)

The third decision variable is a binary variable we define through an indicator

constraint that indicates whether two nodes vi, vj ∈ V have been visited by any agent

p ∈ I in the team of agents.

mij =

1, if

P∑
p=1

yip +
P∑

p=1

yjp ≥ 2.0,

0, if
P∑

p=1

yip +
P∑

p=1

yjp < 2.0

(3.6)

The right-hand side of the first constraint is set to 2 so that mij is set to 1 when

both vi and vj are visited. The right-hand side of the second constraint is set to 1.9

so that this value is set to 0 otherwise. For our implementation, we assume that the

size of a sensor footprint is larger than the size of a region. So, there is a one-to-one

mapping between high and low-altitude nodes. We can then define our objective

function as

max
P∑

p=1

∑
i∈L

Riyip +
P∑

p=1

∑
j∈H

Rjyjp +
∑
k∈L

(Rkf(k) −Rk −Rf(k))mkf(k) (3.7)

15

3. Multi-Agent Multi-Resolution Informative Path Planning

By formulating our objective function this way, we’re able to obtain a linear

representation of the dependent rewards from single and multiple views over a region.

The first component of the summation computes the reward for all individual low-

altitude nodes i ∈ L. The second component of the summation computes the reward

for all individual high-altitude nodes j ∈ H. The total reward for both views is not

equal to the summation of both individual rewards. So, we add a third component

to ensure that the summed reward from the objective function is equivalent to the

reward from both altitudes. The third component of the summation iterates through

low altitude node k ∈ L and the mapped high altitude node f(k) ∈ H to compute

the combined reward from both high and low views over a region. The mkf(k) term is

1 when both vk and vf(k) are visited. The individual reward Rk for a low altitude

view and the individual reward Rf(k) for a high altitude view are subtracted from the

combined reward Rkf(k) to ensure that the individual rewards are not double counted

from the previous summations. The constraints that we use to optimize this objective

can be formulated as

P∑
p=1

∑
i∈T

xd−p ip =
P∑

p=1

∑
j∈T

xjd+p p = P (3.8)

P∑
p=1

ykp ≤ 1 ∀k ∈ T (3.9)

∑
i∈T

∑
j∈T\{i}

xijp(bij + bj) ≤ Bmax, ∀p ∈ I (3.10)

∑
i∈D−∪T

xikp =
∑

j∈D+∪T

xkjp = ykp ∀k ∈ T ;∀p ∈ I (3.11)

uip − ujp + 1 ≤ (|V | − 1)(1− xijp) ∀i, j ∈ V \ vs ∀p ∈ I (3.12)

2 ≤ uip ≤ |V | ∀i ∈ V \ vs ∀p ∈ I (3.13)

xijp, yip ∈ {0, 1} ∀i, j ∈ V ;∀p ∈ I (3.14)

16

3. Multi-Agent Multi-Resolution Informative Path Planning

Constraint (3.8) ensures that all agents begin from a start node vs and end at a

desired goal node vg. For our application, we treat vg as a dummy node where the

distance from a given node vj ∈ V to vg is 0. Thus, agents can end their paths at any

node in the graph. Constraint (3.9) ensures that the team of agents visits each node

at most once. Constraint (3.10) ensures that the cost of each agent’s trajectory does

not exceed the agent’s allocated budget. Constraint (3.11) ensures the connectivity

of each agent’s path. Constraint (3.13) defines a u variable that dictates the order of

node vi in the path of agent p. This variable is used in Constraint (3.12) through

Miller-Tucker-Zemlin subtour constraints [15] to ensure that no subtours exist in the

paths of the agents.

17

3. Multi-Agent Multi-Resolution Informative Path Planning

18

Chapter 4

Experimental Setup

4.1 Map Generation

Although our method is capable of handling both areas and line segments, we focus the

evaluation of our method on maps with regions exclusively represented as areas. This

is due to the large discrepancy in the reward and cost associated with line segments

and areas. Including both region representations requires an application-dependent

weight that balances the difference in reward-to-cost ratios to ensure that agents

search both line segments and areas. Limiting our focus to areas allows us to make a

more straightforward comparison between regions and gives us a clearer assessment

of our method’s performance. To evaluate our method, we rely on a city and wildlife

environment from real-world locations.

Figure 4.1: Map generation process for the city environment

For the city environment, we consider a scenario where we are trying to find

potential survivors after a natural disaster. We generate our map using data from

19

4. Experimental Setup

Boston, Massachusetts. We leverage the inherent structures that the various roadways

in the city provide to generate the set of regions. We generated the city environment

by filtering OpenStreetMap [17] data to include highways and major roads, buffering

each based on width and merging these buffered roadways. Subtracting the union of

all these buffered roads from the convex hull of our search area gives us the set of

regions enclosed by roadways. Thus, the set of areas for our search consists of various

city blocks within our search area. An overview of this map generation process can

be seen in 4.1 and the city environment we use can be seen in Figure 4.2.

For the wildlife environment, we consider a scenario where we’re trying to find a

set of cows grazing on a mountain. The map for this search area comes from an area

in the Utah mountains. To generate our set of regions, we place a set of areas around

each of the lakes in the environment and open grassy areas to represent probable

grazing locations for the cows. The wildlife maps we use for our experiments can be

seen in Figure 4.2

Figure 4.2: Visualizations of the two maps we used for our experiments

4.2 Baseline Methods

To evaluate our method, we implemented three different baselines: a random, naive

greedy, and greedy algorithm. At a high level, we use a sequential planning method

for each of our baseline methods. The main difference between our methods lies in

the node selection process.

Pseudocode for our various baseline methods can be seen in Algorithm 1. The

20

4. Experimental Setup

Algorithm 1 Multi-Agent Sequential Planner

Input: B = [b0, b1, . . . , bn],V ,v0,f
Output: informative paths for all agents
1: i← 0
2: P ← |B|
3: rem budget = B[i]
4: curr node = v0
5: while i < P do
6: F ← getFeasibleNodes(V , rem budget, curr node)
7: if F = ∅ then
8: i← i+ 1
9: rem budget← B[i]
10: curr node← v0
11: else
12: R← getBestNode(F, curr node)
13: nodes← nodes \ {R}
14: rem budget← rem budget− euclid dist(currnode,R)
15: curr node = R
16: end if
17: end while

algorithm plans for the set of agents by planning for them sequentially until the

agent index i is equivalent to the number of agents P . During each loop iteration,

a node is selected for agent i to visit. We keep track of the current node curr node

and remaining budget rem budget for agent i. We begin by filtering down the set

of unvisited nodes in the set of nodes, V , to form a set of feasible nodes F for the

agent to visit using the function getFeasibleNodes. We classify a node as feasible if

the budget required to travel to a node from the current node an agent’s at and the

budget needed to perform the search task at a node is less than the remaining budget

rem budget for an agent. If the set of feasible nodes is empty, then we know that

we’ve expended the budget of the agent and plan for the next agent by incrementing

the agent index i by 1 and by resetting the current node to the start node and the

remaining budget as the max budget for the next agent.

Using the set of feasible nodes, we select the best node by returning the node

from the set of feasible nodes with the largest reward. Our method for computing

reward differs based on the planner that we’re using. For the random planner, we

21

4. Experimental Setup

assign a random reward for each node. For the naive greedy planner, we compute the

reward for a node similar to our objective function using the number of views over a

region. For the greedy reward, we divide this node reward by the cost of traveling to

the node and completing a search task. Through these three reward functions, we

observe the differences between randomly sampling nodes, exclusively considering

reward, and balancing reward and cost for the agent trajectories.

The node with the best reward is returned and removed from the set of nodes to

mark that it’s been visited by agent i. This is similar to the behavior from Constraint

3.9 to ensure that each node is only visited once. We also mark the node as visited so

it can be used for reward calculations. Finally, this node is set as the current node of

the agent so it can resume planning from this position during the next planning loop.

4.3 Experimental Method

We evaluate our approach against the baselines in 10 tests per budget for each map

type with randomized information maps for each run. To generate each information

map, we assign a random probability in the range of 0.0 to 0.5 to each region, to

represent the likelihood that objects of interest lie within the region. To determine

the budget allocated to each agent, we calculate a coverage budget estimate for the

map. We compute this coverage budget as the summation of the cost to perform the

search at each node in the map plus an estimate of the cost to transition between

every node. We calculate this transition cost by running a greedy traveling salesman

problem on all the nodes in our map. To determine the set of budgets for our tests,

we increase this budget in 20% increments and divide each increment by the number

of agents to determine the budget allocated to each agent.

To compare our method against the baselines, we compare the suboptimality

of our solution after an early stop to the optimal solution. We define the optimal

solution for this comparison as the solution found when the optimizer reaches a 1%

gap or the solution found after an 1800 second maximum planning time. We use

a 120 second early stop as the solution for our approach. Through this metric, we

are able to measure the increase in optimality that our approach provides over the

baselines when faced with a finite planning time and limited budget.

For the city environment, the agents fly at a fixed altitude of 80 meters and 100

22

4. Experimental Setup

meters with a true positive rate and true negative rate of 0.75 for the lower altitude

and 0.70 for the higher altitude. For the wildlife environment, we fly at a fixed

altitude of 120 meters and 150 meters with a true positive rate and true negative

rate of 0.8 for the lower altitude and 0.75 for the higher altitude. Each map has 30

regions, which translates to 60 nodes across two fixed altitudes.

We implemented our approach using Python 3.8. We tested our approach and

the baselines on an Ubuntu 20.04 desktop with an AMD Ryzen 9 5950x 3.4 GHz

CPU with 16 cores (32 threads) and 126 GB of RAM. We used Gurobi [10] as the

mixed-integer linear programming solver to produce our results. We did not modify

any of the default parameters set by Gurobi for the solving procedure.

23

4. Experimental Setup

24

Chapter 5

Results and Discussion

5.1 Information Gain Results

The results from the 10 randomized experiments across each budget for the city

environment and the wildlife environment using a team of two agents are shown in

Fig. 5.1 and Fig. 5.2. The separation between the green line and the blue line in the

plots represents the difference between the total reward in the search space and the

maximum amount of reward that agents can obtain given their budget limitations.

So, as the budget allocated to the agents increases, the potential reward the agents

can receive gets closer to the total reward in the map. We observe that across all

budgets, our approach after the early stop and the optimal solution from our approach

outperforms all baselines. The greedy baseline performed similar to our approach

while the naive greedy and random baselines performed the worst.

Across all tests, the random planner performs the worst because it’s unable to

leverage the reward structure of balancing high-altitude and low-altitude views to

maximize reward. The naive greedy planner performs second worst because it expends

a large portion of its budget traveling between the highest information regions within

the map. The greedy planner is able to perform similar to our approach as it considers

the cost of search and transition actions as part of its reward formulation. This causes

the greedy planner to obtain immediate gains in its reward as it takes locally optimal

actions. Because our method can optimize over the entire budget of an agent, it

produces plans that get the closest to the globally optimal solution.

25

5. Results and Discussion

Figure 5.1: Average reward across 10 randomized runs per budget across all baselines
for the city environment with a team of two agents

Figure 5.2: Average reward across 10 randomized runs per budget across all baselines
for the city environment with a team of two agents

26

5. Results and Discussion

5.2 Suboptimality Results

The percent suboptimality of solutions across each budget for the 10 randomized

experiments for each map can be seen in Table 5.1 and Table 5.2. Across all budgets,

our approach was able to generate solutions of greater optimality when compared to

the baselines. In line with the information gain rewards, the greedy planner performed

similar to our approach while the naive greedy, and random planner performed the

worst. The overall trend we observe is that as the budget allocated to the agents

increases, the gap between our approach after an early stop and the greedy approach

gets smaller.

4528 m 9058 m 13586 m 18116 m 22644 m

TOP Early Stop 1.45 2.47 1.33 2.57 0.83

Greedy 14.95 9.95 8.85 8.09 5.25

Naive Greedy 36.00 30.30 28.55 28.98 21.46

Random 64.93 54.75 59.38 51.48 44.15

Table 5.1: Percent optimality gaps given different budgets for a team of two agents
in the city environment

14312 m 28626 m 42938 m 57252 m 71566 m

TOP Early Stop 2.36 1.61 4.06 2.90 0.57

Greedy 19.15 10.58 8.10 7.52 5.43

Naive Greedy 33.47 36.43 36.34 38.24 34.31

Random 70.87 68.48 64.79 61.20 54.71

Table 5.2: Percent optimality gaps given different budgets for a team of two agents
in the wildlife environment

The percent suboptimality of solutions across the various budgets for the city

environment is seen in Table 5.1. At the most limited budget, our approach generates

plans that are 13.5% more optimal than the greedy planner. At the largest budget,

this difference in optimality reduces to 4.42%. For the wildlife environment, the

27

5. Results and Discussion

gap in optimality between our approach and the greedy approach for the lowest

budget is 16.79%. The difference in optimality at the largest budget is similar to

the city environment at 4.86%. The greedy planner performed worse in the wildlife

environment at lower budgets and slightly better than the city environment at larger

budgets. While there was a general downward trend in the performance of the

naive greedy planner in the city environment, this trend was less consistent for the

wildlife environment. Finally, the random planner performed worse in the wildlife

environment when compared to the city environment.

Figure 5.3: Visualization of the paths generated by our approach and the greedy
planner for a city environment test case. The blue line is our approach and the
orange line is the greedy approach. The alpha values for the regions correspond to
the likelihood of objects of interest lying within the region. The plot on the left shows
a birds-eye view of the plans generated for the two agents. Open circles are higher
altitude measurements and solid circles are lower altitude measurements. The middle
and right plots show the paths for the first and second agents respectively. The gap
in optimality between our approach and the greedy planner was 2.82% for these plans

The difference in performance across both maps lies in the relationship between

cost and reward from the sensor model as well as the spatial distribution of information

in each map. For reward, differences in sensing quality dictate the spread of total

reward across the higher and lower altitudes. Because the lower altitude has a higher

sensing resolution, the majority of reward in the search space will be held by the set

of lower altitude nodes. Thus, the improvement in reward diminishes as the budget

increases especially when it surpasses the budget needed to complete a coverage over

all lower altitude nodes. The second component is cost. For our approach and the

28

5. Results and Discussion

greedy planner, the cost for an action consists of two components: a transition cost

and a task completion cost. The transition cost is the budget needed to travel to a

node and the task completion cost is the budget needed to perform the search at a

given node. The largest proponent of the cost comes from the task completion cost

and this is dictated by the fixed sensing altitude the agents fly at.

Given that the sensor model dictates the reward and task completion cost, our

experiments observed how task distances and the distribution of information across

tasks affect overall system performance. In the city environment, the majority of

regions are similar in size and densely grouped. This structure is apt for the greedy

planner to succeed as it isn’t penalized as much for taking locally optimal actions. We

can observe this in Fig 5.3. In the example, we equipped the agents with the estimated

coverage budget. The gap in reward across both maps was 2.887%. Although this

difference is relatively small, we can qualitatively observe that the paths generated

by our approach are smoother than the greedy planner. Because of the diminished

reward from a larger budget and the lack of penalty from greedy transitions, the final

reward for our approach is close to that of the greedy planner.

Figure 5.4: Visualization of the paths generated by our approach and the greedy
planner for a wildlife environment test case. The blue line is our approach and the
orange line is the greedy approach. The alpha values for the regions correspond to
the likelihood of objects of interest lying within the region. The plot on the left shows
a birds-eye view of the plans generated for the two agents. Open circles are higher
altitude measurements and solid circles are lower altitude measurements. The middle
and right plots show the paths for the first and second agents respectively. The gap
in optimality between our approach and the greedy planner was 28.87% for these
plans.

29

5. Results and Discussion

In contrast, the wildlife environment consists of regions that are all different shapes

and sizes, and the regions are grouped spatially into clusters. The greedy planner

in these environments is penalized more for its locally optimal actions. This can be

seen in Fig. 5.4. In this scenario, the agents were given 20% of the estimated budget

needed to perform a coverage over the search space. The gap in optimality between

our approach at the early stop and the greedy planner was 28.87%. The greedy

planner jumps to the regions with the highest reward which causes it to expend a

large portion of its budget on transition costs. Our approach on the other hand visits

one of the higher reward nodes that greedy visits. But, through performing a tour

through a larger set of lower reward nodes, it is able to maximize overall reward.

Thus, although our approach was able to beat the baselines across all budgets

in these two maps, it is best suited for scenarios where agents are equipped with

a limited budget and the regions are sparsely distributed in the map with varying

importance.

5.3 Optimizer Runtime Analysis

Optimizers provide the benefit of being able to produce provably optimal solutions.

But, this comes at the trade-off of a long runtime to generate and prove the optimality

of a given solution. Greedy planners, on the other hand, provide approximations or

even sometimes the optimal solution to a problem in a much quicker time frame. For

our tests, the greedy planner returned plans close to instantaneously, so we focused a

portion of our analysis on the time-based efficiency of our solver. For the city and

wildlife maps, across our 10 experiments per budget, we plotted how fast it took for

the solver to receive an equivalent reward to the greedy planner and we plotted the

estimated suboptimality gap of the optimal solution we grabbed at the end of our

maximum planning time of 1800 seconds.

These plots for the city and wildlife environment can be seen in Fig 5.5 and Fig.

5.6. The left plot for each map plots the time that it took to compute a solution with

an equivalent reward to the greedy planner across all budgets and the right plot shows

the estimated suboptimality of our optimal solution that we grab at the end of our

maximum planning time and the true optimal solution for the problem. Both maps

share a similar trend where the amount of time needed to reach the greedy solution

30

5. Results and Discussion

Figure 5.5: Runtime for the early stop spent getting to an equivalent reward as the
greedy solution and the final gap at the end of the planning timeout for the city
environment

reward is smallest at the lowest budget. It then steadily increases and reaches its

peak when agents are equipped with 80% of the estimated coverage budget. Then,

this runtime drops when agents are given the full estimated coverage budget. They

also share similar trends for the second plot where the estimated gap between the

optimal solution we generate and the true optimal solution is highest at the smallest

budgets and lowers as the budget allocated to the agents increases.

Figure 5.6: Percentage of runtime for the early stop spent getting to an equivalent
solution as the greedy solution and the final gap at the end of the planning timeout
for the wildlife environment.

At the lowest budget, the search space for the planning problem is smaller. So,

the solver can quickly find a solution with an equivalent reward to the greedy planner

and consequently spends the majority of the remaining runtime on improving the

31

5. Results and Discussion

reward of its solution beyond that of the greedy reward. As the budget gets larger,

the problem gets more complex. So, the solver takes longer to find a solution with

an equivalent reward to the greedy solver. Finally, when the agents are given the

estimated coverage budget, the problem is easier as the majority of the reward in the

space can be collected, so the solver’s performance improves.

5.4 Variable Team Size

For our experiments, we also ran various tests to observe how the performance of

our system changes as we vary the size of the agent team. We ran 10 randomized

experiments per budget for a team size of one and three agents. The resulting optimal

solutions generated by our solver after the gap threshold or maximum runtime are

shown in Fig. 5.7 for both maps. We observe that for most budgets the one agent team

produces plans with a higher reward than the two and three agent team. Although

the one agent team is able to generate plans with the highest reward, this comes at

the tradeoff of runtime since it takes twice as long as the two agent team and three

times as long as the three agent team to generate this reward.

Figure 5.7: Optimal reward obtained by the solver for variable agent team sizes given
the gap threshold and the maximum runtime. The left plot shows the results for the
city environment and the right plot shows the results for the wildlife environment.

The associated average rewards for our approach and the baselines for the city

and wildlife map can be seen in Fig. 5.8 and Fig. 5.9 respectively. At a high-level, we

observe similar trends in performance to the two agent tests in Fig. 5.1 and Fig. 5.2

respectively. The suboptimalities for these plots can be seen in Table 5.3 and Table

32

5. Results and Discussion

Team Size Approach 4529 m 9058 m 13586 m 18116 m 22644 m

1
TOP Early Stop 0.15 0.12 0.25 0.55 0.0
Greedy 11.62 9.29 10.80 8.75 4.71

2
TOP Early Stop 1.45 2.47 1.33 2.57 0.83
Greedy 14.95 9.95 8.85 8.09 5.25

1
TOP Early Stop 0.65 2.37 3.07 3.22 1.83
Greedy 8.35 10.79 9.51 7.39 6.61

Table 5.3: Optimality gaps given different budgets for a variable team of agents in
the city environment

5.4. We focus our analysis on our early stop solution and the greedy planner. For

the city environment, the optimality of solutions for our approach were better when

increasing the team size from one to two agents and decreases with the team size of

three agents. For the wildlife environment, the optimality is consistently better with

the two and three agent team when compared to the single agent team.

Figure 5.8: Average reward across 10 randomized runs per budget across all baselines
for the city environment with a team of one and three agents agents.The left plot
shows the results for the one agent team size and the right plot shows the results for
the three agent team size.

We measure the efficiency of the solver when scaling to larger team sizes by

observing the estimated suboptimality of our optimal solution that we grab at the

end of our maximum planning time and the true optimal solution for the problem.

The results from these experiments can be seen in Fig. 5.10. Similar to the two

agent tests, the estimated gap is largest at the lowest budget and then decreases as

the budget allocated to the agents increases. If we compare performance across the

various team sizes, the estimated gap increases as we increase the team size.

33

5. Results and Discussion

Figure 5.9: Average reward across 10 randomized runs per budget across all baselines
for the city environment with a team of one and three agents. The left plot shows
the results for the one agent team size and the right plot shows the results for the
three agent team size.

Team Size Approach 14313 m 28626 m 42939 m 57253 m 71566 m

1
TOP Early Stop 0.00.11 0.00.91 0.01.27 0.01.01 0.0
Greedy 0.08.26 0.10.81 0.10.62 0.09.48 0.05.68

2
TOP Early Stop 0.02.36 0.01.61 0.04.06 0.02.90 0.00.57
Greedy 0.19.15 0.10.58 0.08.10 0.07.52 0.05.43

1
TOP Early Stop 0.01.46 0.02.67 0.02.37 0.04.26 0.01.72
Greedy 0.1841 0.0840 0.0723 0.0612 0.0423

Table 5.4: Optimality gaps given different budgets for a variable team of agents in
the wildlife environment

Figure 5.10: Final gap at the end of the planning runtime or after the gap threshold
was reached across the city and wildlife environment for variable team sizes. The plot
on the left shows the results for the city environment and the plot on the right shows
the results for the wildlife environment.

34

5. Results and Discussion

In summary, when increasing the team size, the difference between the optimal

reward generated from the maximum planning timeout and the one agent increases.

As the number of agents in the team increases, the number of search variables for

the problem increases exponentially. Thus, the solver struggles to efficiently search

this increasingly larger space as the number of agents in the team increases. Despite

these challenges, our approach is still able to outperform the baselines.

35

5. Results and Discussion

36

Chapter 6

Conclusions and Future Work

In this thesis, we present a multi-agent informative path planning approach that

allows small teams of agents to balance the trade off between sensing quality and

budget expended when tasked with searching over a set of regions. Through our

experiments, we’re able to show a consistent improvement over the baselines when

agents are allocated a limited sensing budget. Thus, agents are able to balance the

tradeoff between revisiting areas of high importance and exploring new regions to

generate plans with greater optimality.

Future directions of this work could include speeding up the optimization pro-

cess. This could be done by feeding a warm start to the planner using the greedy

planner or by developing user-defined heuristics to aid the solver. Another avenue

for potential future work is picking the right parameters to weight the search across

areas and roadways based on the user’s desired behavior for the system. Additionally,

modfiications to the base formulation could be made to account for uncertainty and

to allow for partial costs and rewards for regions. Our method is currently centralized,

so additional future work could include extending this approach to a distributed and

decentralized case.

37

6. Conclusions and Future Work

38

Bibliography

[1] Sankalp Arora and Sebastian Scherer. Randomized algorithm for informative
path planning with budget constraints. In 2017 IEEE International Conference
on Robotics and Automation (ICRA), pages 4997–5004, 2017. doi: 10.1109/
ICRA.2017.7989582. 2.1, 2.3

[2] Sankalp Arora, Sanjiban Choudhury, and Sebastian Scherer. Hindsight is
only 50/50: Unsuitability of mdp based approximate pomdp solvers for multi-
resolution information gathering, 2018. URL https://arxiv.org/abs/1804.

02573. 2.3

[3] Rafael Bailon-Ruiz, Arthur Bit-Monnot, and Simon Lacroix. Real-time wildfire
monitoring with a fleet of uavs. Robotics and Autonomous Systems, 152:104071,
2022. 1.1

[4] Jonathan Binney and Gaurav S Sukhatme. Branch and bound for informative
path planning. In 2012 IEEE international conference on robotics and automation,
pages 2147–2154. IEEE, 2012. 2.1

[5] Jonathan Binney, Andreas Krause, and Gaurav S. Sukhatme. Informative path
planning for an autonomous underwater vehicle. In 2010 IEEE International
Conference on Robotics and Automation, pages 4791–4796, 2010. doi: 10.1109/
ROBOT.2010.5509714. 2.1

[6] Jonathan Binney, Andreas Krause, and Gaurav S Sukhatme. Optimizing way-
points for monitoring spatiotemporal phenomena. The International Journal of
Robotics Research, 32(8):873–888, 2013. 1.1

[7] Gianni A. Di Caro and Abdul Wahab Ziaullah Yousaf. Multi-robot informative
path planning using a leader-follower architecture. In 2021 IEEE International
Conference on Robotics and Automation (ICRA), pages 10045–10051, 2021. doi:
10.1109/ICRA48506.2021.9561955. 2.2

[8] Ayan Dutta, Anirban Ghosh, and O. Patrick Kreidl. Multi-robot informative
path planning with continuous connectivity constraints. In 2019 International
Conference on Robotics and Automation (ICRA), pages 3245–3251, 2019. doi:
10.1109/ICRA.2019.8794090. 2.2

39

https://arxiv.org/abs/1804.02573
https://arxiv.org/abs/1804.02573

Bibliography

[9] Ayan Dutta, Amitabh Bhattacharya, O Patrick Kreidl, Anirban Ghosh, and
Prithviraj Dasgupta. Multi-robot informative path planning in unknown environ-
ments through continuous region partitioning. International Journal of Advanced
Robotic Systems, 17(6):1729881420970461, 2020. doi: 10.1177/1729881420970461.
2.2

[10] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL
https://www.gurobi.com. 4.3

[11] Gregory Hitz, Enric Galceran, Marie-Ève Garneau, François Pomerleau, and
Roland Siegwart. Adaptive continuous-space informative path planning for online
environmental monitoring. Journal of Field Robotics, 34(8):1427–1449, 2017. 1.1

[12] Geoffrey A Hollinger and Gaurav S Sukhatme. Sampling-based motion planning
for robotic information gathering. In Robotics: Science and Systems, volume 3,
pages 1–8, 2013. 2.1

[13] Stephanie Kemna, John G. Rogers, Carlos Nieto-Granda, Stuart Young, and Gau-
rav S. Sukhatme. Multi-robot coordination through dynamic voronoi partitioning
for informative adaptive sampling in communication-constrained environments.
In 2017 IEEE International Conference on Robotics and Automation (ICRA),
pages 2124–2130, 2017. doi: 10.1109/ICRA.2017.7989245. 2.2

[14] Ariella Mansfield, Sandeep Manjanna, Douglas G. Macharet, and M. Ani Hsieh.
Multi-robot scheduling for environmental monitoring as a team orienteering
problem. In 2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 6398–6404, 2021. doi: 10.1109/IROS51168.2021.9636854.
2.2

[15] Clair E Miller, Albert W Tucker, and Richard A Zemlin. Integer programming
formulation of traveling salesman problems. Journal of the ACM (JACM), 7(4):
326–329, 1960. 3.6

[16] Brady Moon, Satrajit Chatterjee, and Sebastian Scherer. Tigris: An informed
sampling-based algorithm for informative path planning. In 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), volume 19,
page 5760–5766. IEEE, October 2022. doi: 10.1109/iros47612.2022.9981992. URL
http://dx.doi.org/10.1109/IROS47612.2022.9981992. (document), 2.1, 3.4

[17] OpenStreetMap contributors. Planet dump retrieved from https://planet.osm.org
. https://www.openstreetmap.org, 2017. 4.1

[18] Liam Paull, Carl Thibault, Amr Nagaty, Mae Seto, and Howard Li. Sensor-driven
area coverage for an autonomous fixed-wing unmanned aerial vehicle. IEEE
transactions on cybernetics, 44(9):1605–1618, 2013. 3.4

[19] Marija Popović, Teresa Vidal-Calleja, Gregory Hitz, Jen Jen Chung, Inkyu Sa,
Roland Siegwart, and Juan Nieto. An informative path planning framework for

40

https://www.gurobi.com
http://dx.doi.org/10.1109/IROS47612.2022.9981992
 https://www.openstreetmap.org

Bibliography

uav-based terrain monitoring. Autonomous Robots, 44(6):889–911, 2020. 2.3

[20] Seyed Abbas Sadat, Jens Wawerla, and Richard Vaughan. Fractal trajectories for
online non-uniform aerial coverage. In 2015 IEEE International Conference on
Robotics and Automation (ICRA), pages 2971–2976, 2015. doi: 10.1109/ICRA.
2015.7139606. 2.3

[21] Lukas Schmid, Michael Pantic, Raghav Khanna, Lionel Ott, Roland Siegwart,
and Juan Nieto. An efficient sampling-based method for online informative path
planning in unknown environments. IEEE Robotics and Automation Letters, 5
(2):1500–1507, 2020. doi: 10.1109/LRA.2020.2969191. 2.1

[22] Yunfei Shi, Ning Wang, Jianmin Zheng, Yang Zhang, Sha Yi, Wenhao Luo, and
Katia Sycara. Adaptive informative sampling with environment partitioning for
heterogeneous multi-robot systems. In 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 11718–11723, 2020. doi: 10.
1109/IROS45743.2020.9341711. 2.2

[23] A. Singh, A. Krause, C. Guestrin, and W. J. Kaiser. Efficient informative
sensing using multiple robots. Journal of Artificial Intelligence Research, 34:
707–755, April 2009. ISSN 1076-9757. doi: 10.1613/jair.2674. URL http:

//dx.doi.org/10.1613/jair.2674. 2.1

[24] Pieter Vansteenwegen, Wouter Souffriau, and Dirk Van Oudheusden. The
orienteering problem: A survey. European Journal of Operational Research, 209
(1):1–10, 2011. 3.6

[25] Jingjin Yu and Steven LaValle. Structure and intractability of optimal multi-
robot path planning on graphs. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 27, pages 1443–1449, 2013. 1.2

[26] Jingjin Yu, Mac Schwager, and Daniela Rus. Correlated orienteering problem
and its application to informative path planning for persistent monitoring tasks.
In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 342–349, 2014. doi: 10.1109/IROS.2014.6942582. 2.1

[27] Alexander Zelinsky, Ray A Jarvis, JC Byrne, Shinichi Yuta, et al. Planning
paths of complete coverage of an unstructured environment by a mobile robot. In
Proceedings of international conference on advanced robotics, volume 13, pages
533–538. Citeseer, 1993. 3.3

[28] Hai Zhu, Jen Jen Chung, Nicholas R.J. Lawrance, Roland Siegwart, and Javier
Alonso-Mora. Online informative path planning for active information gathering
of a 3d surface. In 2021 IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 1488–1494, 2021. doi: 10.1109/ICRA48506.2021.9561963.
1.1

41

http://dx.doi.org/10.1613/jair.2674
http://dx.doi.org/10.1613/jair.2674

	1 Introduction
	1.1 Motivation
	1.2 Challenges
	1.3 Contributions

	2 Background
	2.1 Informative Path Planning
	2.2 Multi-Agent Information Gathering
	2.3 Multi-Resolution Information Gathering

	3 Multi-Agent Multi-Resolution Informative Path Planning
	3.1 Problem Definition
	3.2 Region-Based Map Representation
	3.3 Multi-Resolution Costs
	3.4 Information Reward Function
	3.5 Multi-Resolution Rewards
	3.6 Team Orienteering Problem Formulation

	4 Experimental Setup
	4.1 Map Generation
	4.2 Baseline Methods
	4.3 Experimental Method

	5 Results and Discussion
	5.1 Information Gain Results
	5.2 Suboptimality Results
	5.3 Optimizer Runtime Analysis
	5.4 Variable Team Size

	6 Conclusions and Future Work
	Bibliography

