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Abstract

Navigating quadruped robots through complex, unstructured environ-
ments over long horizons remains a critical challenge in robotics. Tradi-
tional planning methods excel in providing guarantees such as optimality
and long-horizon reasoning, while learning-based approaches, particularly
those leveraging Deep Reinforcement Learning (DRL), offer robustness
and adaptability. This thesis introduces S3D-OWNS (Skilled 3D-
Optimal Waypoint Navigation System), a novel hybrid framework
that combines the strengths of both paradigms to achieve efficient and
adaptive quadrupedal locomotion.

The S3D-OWNS framework integrates a high-level sampling-based planner
with a generalist DRL-trained locomotion policy. The planner handles
long-horizon navigation and optimal path planning by reasoning over
obstacle traversability, while the learned policy executes agile, real-time
locomotion tasks such as walking, jumping, and climbing. By leveraging
DRL-trained policies, the dimensionality of the planning state space is
reduced, enabling computational efficiency and allowing the locomotion
policy to manage complex maneuvers. This integration empowers the
system to navigate cluttered environments while optimizing for energy
consumption, time efficiency, and task success.

Key innovations of this work include:

• A goal-conditioned locomotion policy trained across diverse terrains
using DRL, ensuring robustness and adaptability.

• A sampling-based planner that evaluates obstacle traversability based
on the robot’s capabilities, enabling efficient path planning beyond
traditional obstacle avoidance.

• Cost predictors trained using GPU parallelization to estimate energy
expenditure, traversal time, and success likelihood for each path
segment.

• A modular design that simplifies heading control by implicitly align-
ing the robot’s orientation through waypoint placement.

Extensive experimentation in simulated environments with a Unitree
Go1 quadruped demonstrates that S3D-OWNS significantly outperforms
traditional collision-avoidance planners in navigation efficiency. The
system optimally utilizes the robot’s climbing and jumping skills to reduce
energy consumption or traversal time across challenging terrains. Ablation
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studies validate the contributions of individual components, highlighting
improvements in operational efficiency and task success rates.

This research advances quadrupedal robotics by showcasing how hybrid
systems can combine classical planning with modern AI-driven techniques
to achieve both optimality and adaptability. The scalability of S3D-
OWNS across different robot models and sensor configurations makes
it applicable to diverse domains such as industrial automation, search-
and-rescue missions, and exploration in unstructured environments. By
addressing key challenges in long-horizon navigation and dynamic terrain
adaptation, this work sets a foundation for more efficient and versatile
robotic systems.
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Chapter 1

Introduction

1.0.1 Motivation

Recent advancements in simulators like Isaac Gym [6] have revolutionized the training

of Deep Reinforcement Learning (DRL) locomotion policies. These high-performance

simulators leverage GPU parallelization to accelerate learning, enabling the develop-

ment of robust and generalizable policies across diverse terrains in a matter of days.

The rapid progress in this field has led to the emergence of policies that can handle

complex terrains, dynamic obstacles, and even recover from falls, significantly expand-

ing the operational capabilities of legged robots [1][3][15]. A library of low-level skills

equips such robots with a versatile set of options for navigating various environments.

Building on this foundation, our work focuses on designing a framework that can

effectively guide these agile robots, ensuring both efficiency and safety in navigation.

1.0.2 Problem Statement

Efficient mobility in legged robots is deeply inspired by biological systems, where

high-level cognitive centers provide strategic commands while lower centers execute

precise motor actions. This hierarchical framework, often described as the dual-

process theory, is analogous to System I and System II in robotics. System II handles

high-level decision-making and planning, while System I performs reflexive, fast, and

intuitive actions through learned locomotion skills. This biomimetic design enhances
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1. Introduction

Figure 1.1: Problem statement: Given a cluttered environment, a robot needs to
decide which path to take to reach a destination, based on certain user-objectives:
minimum energy or minimum time above a certain risk threshold. Users can thus
expand the capabilities of legged systems having multiple skills for navigation based
on their need.

both the efficiency of robotic locomotion and its adaptability to diverse and dynamic

environments, which is crucial for real-world applications.

The synergy between strategic planning and deep reinforcement learning (DRL)-

based locomotion policies enables robots to adapt to complex terrains and efficiently

navigate cluttered 3D environments. Much like animals instinctively adjust their

movements to their surroundings, our approach combines a high-level planner with

a generalist locomotion policy capable of executing a diverse set of skills. This

integration bridges the gap between traditional robotics and modern AI techniques,

forming a hybrid system that leverages the strengths of both paradigms to achieve

efficient quadruped mobility in challenging environments.

In industrial settings such as warehouses and manufacturing units, the deployment

of robotic systems requires a careful balance of safety, optimality, and cost-effectiveness.

Robots must complete long-horizon tasks, navigating intricate static environments

while avoiding obstacles with precision, all while operating efficiently over extended
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1. Introduction

periods with minimal recharging. These constraints present significant challenges,

necessitating systems that can reliably plan and execute actions in complex, obstacle-

laden terrains.

The potential applications of efficient quadruped mobility extend well beyond

industrial contexts. In disaster response scenarios, legged robots could traverse

unstable or debris-filled terrains to assist in search and rescue operations. Similarly, in

agriculture, quadruped robots could aid in tasks like crop monitoring and harvesting

across diverse and challenging landscapes. By addressing these diverse use cases, our

approach aims to develop robust, efficient, and adaptable robotic systems for a wide

range of applications.

1.0.3 Contributions

Our research builds upon recent advancements in both planning algorithms and

reinforcement learning. Notable works in this field include the development of

hierarchical planning frameworks that decompose complex tasks into manageable

sub-goals and the creation of terrain-aware locomotion policies that can adapt to

different surface properties in real-time.

By combining a high-level planner with a generalist locomotion policy, our ap-

proach aims to address the limitations of current systems, which often struggle to

scale across diverse terrains or handle long-horizon tasks for multi-skilled robots. This

integration not only improves the robot’s ability to navigate complex environments

but also enhances its energy efficiency, a critical factor for prolonged operation in

industrial settings.

The development of such advanced mobility systems for quadruped robots repre-

sents a significant step towards more versatile and autonomous robotic platforms. As

these technologies mature, they have the potential to revolutionize various industries,

from logistics and manufacturing to exploration and environmental monitoring.

Legged robots, particularly quadrupeds, excel in areas where traditional wheeled

robots struggle, such as environments filled with gaps, steps, and clutter. Quadrupeds

offer significant advantages over humanoids in terms of stability, simplicity (fewer

degrees of freedom), and cost-effectiveness, making them ideal candidates for scalable

industrial deployment. These advantages stem from their biomimetic design, which

3



1. Introduction

allows for superior adaptability to uneven terrain and improved energy efficiency

during locomotion. To meet industry demands, these robots must optimize energy

consumption, ensure safety, and maintain high task completion rates. This necessitates

sophisticated long-horizon planning for smooth, uninterrupted operation. Our work

focuses on harnessing these advantages of quadrupeds while addressing the critical

need for efficient, safe, and cost-effective robotic solutions in industrial settings.

The application of quadruped robots in industrial environments presents unique

challenges, including the need for precise navigation in dynamic spaces, real-time

obstacle avoidance, and seamless integration with existing workflows. Additionally,

these robots must operate within strict safety parameters to ensure the well-being of

human workers in shared spaces.

Current approaches to robotic navigation often struggle to balance efficiency, safety,

and adaptability across diverse terrains. Many systems either lack the flexibility to

handle varied environments or fall short in managing long-horizon tasks for multi-

skilled robots. This limitation is particularly evident in scenarios requiring complex

decision-making, such as navigating through cluttered areas or selecting optimal

paths in multi-level environments.

To address these limitations, we present the Skilled 3D - Optimal Waypoint

Navigation System (S3D-OWNS), a novel framework that integrates a simple yet

effective planner (System II) with a generalist reinforcement learning-based locomotion

policy (System I). S3D-OWNS is designed to handle the complexities of long-horizon

navigation while maintaining optimality in terms of energy, risk, and time. This

dual system approach allows for real-time adaptation to environmental changes while

maintaining a high-level strategic overview of the navigation task.

Our system enables legged robots to efficiently navigate unstructured and cluttered

environments. The key contributions of our work are as follows:

• Flexible Planning for Customizable Behavior: We propose a planning

system capable of optimizing paths based on user-defined priorities, such as

minimizing risk, maximizing energy efficiency, or achieving a balance between

the two. This flexibility allows robots to adapt their behavior to specific

industrial scenarios, such as prioritizing safety in hazardous areas or maximizing

speed and efficiency in time-sensitive operations.

4



1. Introduction

• Nonholonomic Navigation for Enhanced Safety: Our approach accounts

for the robot’s physical constraints and sensor limitations, ensuring safe opera-

tion by avoiding blind spots. By explicitly integrating these constraints, the

risk of collisions is significantly reduced.

• Constraint-Aware Planning: We integrate the robot’s capabilities and limi-

tations, such as motor torque, and sensor range, into the planning process. This

ensures that all computed paths are within the robot’s operational capabilities,

improving reliability and robustness in real-world deployments.

• Reduced State Space for Efficient Planning: The planner operates in

a reduced state space by implicitly controlling the robot’s heading direction

through waypoint planning. The locomotion policy ensures that the robot

always faces the direction of the line connecting the current waypoint to the

next, eliminating the need for explicit heading adjustments. This simplification

improves computational efficiency and ensures smoother transitions between

waypoints as well as preventing the robot to take very sharp turns that could

cause instability.

• Improved Planning Efficiency and Optimality: Leveraging a novel com-

bination of heuristic-based path planning and reinforcement learning-based

locomotion policies, our system achieves significant improvements in both

computation time and solution quality compared to obstacle-avoidance based

planners that does not leverage the robot’s capabilities. This hybrid approach

addresses the limitations of traditional planners, which often struggle with the

complexity of dynamic environments.

Additionally, our framework incorporates advanced features that expand its

versatility:

• Multi-Modal Locomotion: Our generalist locomotion policy enables seam-

less transitions between different gaits—such as walking, climbing, and jump-

ing—based on terrain and task requirements. This adaptability significantly

enhances navigation in diverse environments, outperforming systems limited to

fixed gaits. This generalist locomotion policy is inspired by the work of Cheng

et al. [1].

• Scalability Across Platforms: The framework is designed to support different
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1. Introduction

quadruped models and sensor configurations, making it applicable to a wide

range of industrial and operational scenarios. This scalability positions our

framework as a versatile tool for various robotic applications.

Compared to prior work, which often focuses either on efficient planning or

robust locomotion, our approach combines these strengths into a unified system.

This integration not only improves navigation performance but also bridges the gap

between traditional robotic planning methods and modern AI-driven locomotion

techniques.

Using a Unitree Go1 quadruped equipped with a single front-facing depth camera,

we showcase S3D-OWNS’ effectiveness in simulated environments featuring challenging

obstacles like blocks and gaps. The choice of the Unitree Go1 is significant due to its

balance of affordability and capability, making it a representative model for potential

large-scale industrial deployment. Our approach not only addresses current limitations

in robotic navigation but also paves the way for more efficient and adaptable robotic

systems in industrial applications.

The implications of this research extend beyond immediate industrial applications.

The principles developed in S3D-OWNS could be applied to other domains such as

search and rescue operations, planetary exploration, and even assistive robotics. By

combining efficient planning with adaptive locomotion, our work contributes to the

broader goal of creating more autonomous and versatile robotic systems capable of

operating in diverse and challenging environments.
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Chapter 2

Related Work

2.0.1 Policy

Recent advances in deep reinforcement learning have revolutionized quadruped loco-

motion control. The development of simulators like Isaac Gym has enabled training of

robust and generalizable policies within days through GPU parallelization [9]. These

policies have demonstrated remarkable capabilities ranging from basic locomotion to

complex maneuvers like parkour and fall recovery. The Extreme Parkour framework

showed how a single neural network policy operating directly from camera images

can enable precise athletic behaviors on low-cost robots with imprecise actuation,

achieving jumps up to 2x the robot’s height and length [1]. The ANYmal Parkour

framework demonstrates how a hierarchical learning approach can enable agile naviga-

tion across challenging parkour-like scenarios without requiring expert demonstrations

or explicit contact modeling [3]. This system achieves impressive speeds of up to

2 meters per second while navigating consecutive challenging obstacles, showcasing

the potential of end-to-end learned controllers. Modern approaches to quadruped

control often employ hierarchical frameworks to manage complexity. The ANYmal

system uses a hierarchical structure where a high-level policy selects and controls

specialized locomotion skills (walking, jumping, climbing, and crouching) based on

terrain understanding. This architecture allows the navigation policy to be aware

of each skill’s capabilities and adapt behavior accordingly, enabling more robust

performance across diverse scenarios. End-to-end learning approaches have shown

7
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promising results in directly mapping sensory inputs to control actions. Recent work

demonstrates how neural networks can reconstruct obstacles from highly occluded

and noisy sensory data, enabling scene understanding for navigation. The Extreme

Parkour framework shows how a single neural network can process depth camera

inputs to generate precise control outputs, even with imperfect sensing and actuation.

A key challenge in learning-based approaches is transferring policies trained in

simulation to real hardware. The ANYmal Parkour system successfully demonstrates

sim-to-real transfer, enabling the robot to navigate challenging obstacles in the real

world despite being trained entirely in simulation [3]. This achievement highlights the

importance of robust simulation environments and effective domain randomization

techniques.

2.0.2 Cost Predictor

Traditional approaches to quadruped navigation often rely on elevation maps con-

structed by fusing point cloud and odometry data. However, Yang et al. demonstrated

that a GPU-aided, sampling-based path planner combined with a gradient-based

optimizer can achieve planning speeds three orders of magnitude faster than RRT*

while maintaining optimality [13]. Their framework leverages a neural network-based

locomotion cost predictor trained in simulation to understand the robot’s capabilities

across different terrain types.

Recent work has shown the effectiveness of learning-based approaches for predicting

motion costs. Yang et al.’s framework uses a CNN-based cost predictor that estimates

multiple motion attributes based on local height scans and locomotion commands [13].

This enables real-time path optimization that considers both terrain characteristics

and robot capabilities.

2.0.3 Planner

The iPlanner framework demonstrates how end-to-end learning using only front-

facing depth images can enable efficient local path planning [14]. This approach

achieves around 4× faster planning than classic methods while maintaining robustness

against localization noise. Similarly, ViPlanner extends this concept by incorporating
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semantic information, reducing traversability costs by 38.02% compared to purely

geometric approaches [8].

A novel direction in path planning employs diffusion models for trajectory genera-

tion. The DiPPeST framework shows how diffusion-based planning can achieve a 92%

success rate in obstacle avoidance for nominal environments and an 88% success rate

in complex scenarios [11] . This approach enables zero-shot adaptation and real-time

path refinements reactive to camera input, without requiring additional training or

environment interpretation techniques.

Advanced planning strategies now consider the unique capabilities of legged robots.

The reachability-based navigation planner proposed by ETH Zurich approximates

robot morphology using reachability and body volumes [12] . This approach en-

ables real-time performance with fast update rates even in cluttered and narrow

environments by validating only low-cost graph edges during graph expansion and

implementing an adaptive sampling scheme.

The integration of semantic information has emerged as a crucial component

in modern navigation systems. ViPlanner’s approach of using 30 semantic classes

encoded in RGB colorspace enables effective representation of multiple traversability

levels [8]. This semantic understanding allows robots to distinguish between different

terrain types and accurately identify obstacles, leading to more efficient navigation

strategies.

Recent frameworks demonstrate impressive sim-to-real transfer capabilities. The

iPlanner achieves robust performance in real-world scenarios without requiring real-

world training data [14]. Similarly, reachability-based planners have shown successful

deployment on quadrupedal robots like ANYmal, demonstrating their effectiveness in

practical applications [12].

Modern planning frameworks increasingly combine multiple approaches to leverage

their respective strengths. The integration of geometric planning with semantic

understanding, as demonstrated by ViPlanner [8] , and the combination of sampling-

based planning with gradient-based optimization [13] represent this trend toward

multi-modal solutions that can handle diverse environmental challenges.
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Chapter 3

Approach

3.1 Preliminaries

Motivation of Our Framework

Efficient navigation for quadruped robots poses several challenges, including reasoning

over long horizons, adapting to diverse and dynamic terrains, and generalizing to

unseen scenarios. Addressing these challenges requires a careful balance of planning

and execution capabilities. Inspired by insights into human cognition, we draw upon

psychologist Daniel Kahneman’s dual-process theory, as introduced in Thinking, Fast

and Slow [5]. Kahneman describes two modes of thought:

• System 1, which is fast, instinctive, and intuitive, is used for tasks that have

been practiced to the point of becoming second nature. This mode prioritizes

speed and efficiency, even at the cost of potential risk.

• System 2, which is slower, deliberative, and logical, is used for tasks requir-

ing careful reasoning and attention to variation, particularly for complex or

unfamiliar situations.

In our work, we model this paradigm by separating tasks between a high-level

planner, which mimics the reasoning of “System 2,” and a low-level locomotion

policy, which embodies the reflexive capabilities of “System 1.” The planner performs

deliberate pathfinding over a given environment, determining optimal paths from a
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start to a goal, while the locomotion policy—trained for robust execution on diverse

terrains—handles the execution of these paths, responding instinctively to local

challenges.

One popular approach for quadruped navigation, as demonstrated in ANYMal

Parkour [3], employs a fully-learned hierarchical framework. This method trains

advanced locomotion skills tailored to specific obstacles, such as walking, climbing,

and jumping, and uses a high-level policy to dynamically select and execute these

skills across various terrains. By explicitly modeling the capabilities of each skill, the

navigation policy adapts its behavior to suit the terrain and task requirements.

While this approach is undeniably powerful, it suffers from several limitations:

1. Data Intensity: Training a repertoire of specialized locomotion skills requires

extensive data and computational resources, making the process resource-

intensive and time-consuming.

2. Increased Complexity: The reliance on a navigation policy to dynamically

control skill selection complicates the learning process, further increasing its

data requirements.

3. Lack of Long-Horizon Reasoning: Fully-learned systems lack explicit

planning mechanisms, making them less effective at reasoning over extended

sequences of actions. This can lead to suboptimal performance in tasks requiring

global optimization.

4. Generalization Challenges: Learned systems often struggle with out-of-

distribution scenarios, where the skills or navigation policies fail to generalize

effectively.

To address these limitations, our framework integrates a generalist locomotion

policy with a traditional planner, adopting a hybrid approach that balances

learning and planning:

• The generalist locomotion policy is trained to handle a broad range of

obstacles without requiring task-specific training, reducing data demands and

ensuring robust execution across diverse terrains.

• The traditional planner provides global reasoning over optimal paths, enabling

long-horizon navigation and better generalization to unseen environments.

By combining these components, our framework ensures adaptability, efficiency,
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Start (Xs,Ys)

Goal (Xg, Yg)

Map

Policy

Cost Predictor

PRM Planner
Next Waypoint                            

Desired Heading 

Proprioception

Local Scandots      
(12 x 11)

Optimal Waypoints

Figure 3.1: S3D-OWNS proposes a navigation framework for high-DOF systems like
quadrupeds to leverage its skills to traverse a complex 3D world efficiently. This
framework comprises of the three main modules, namely the Policy, the Cost Predictor
and the PRM Planner.

and generalization, avoiding the pitfalls of fully-learned approaches while leveraging

the strengths of learned locomotion.

The proposed system, S3D-OWNS, integrates three key components to achieve

efficient quadruped navigation in complex environments:

1. A generalist goal-conditioned locomotion policy,

2. A cost predictor for reasoning over the optimality of paths,

3. A multi-stage planner for generating feasible and efficient paths.

In the following subsections, we provide a detailed overview of each component

and their interactions, illustrating how they collectively address the challenges of

long-horizon navigation. Our framework is designed to maintain optimality across

key metrics, including energy efficiency, risk mitigation, and time minimization. By

leveraging the quadruped’s inherent agility, the system prioritizes effective obstacle

traversal over simple avoidance, enabling efficient and robust navigation through

complex terrains. Additionally, the planning process accounts for turning constraints,

ensuring smooth, stable paths that minimize the risk of instability or mechanical

strain caused by sharp turns.
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3.2 Methodology: S3D-OWNS

3.2.1 Goal-Conditioned Generalist Policy

Our generalist locomotion policy builds upon the Extreme Parkour approach [1],

introducing significant modifications to enhance versatility and robustness across a

wider range of scenarios. Unlike the original policy, which was trained for specific

parkour maneuvers with meticulously designed waypoints placed directly on obsta-

cles, our policy is engineered to handle diverse edge cases and environments with

“distractors.” This robustness ensures seamless integration with the high-level planner,

enabling reliable performance even in complex and unpredictable settings.

A key innovation of our approach lies in its goal-conditioning mechanism. In

the Extreme Parkour policy, the oracle heading used during training is conditioned

on the heading to the next waypoint as well as the heading to the waypoint after

that, both computed with respect to the robot’s current xy-position. In contrast, our

locomotion policy retains this conditioning but introduces additional features: it also

considers the distance to the next waypoint relative to the robot’s current position

and a target heading defined by the line joining the current waypoint and the next

waypoint. This target heading specifies the robot’s orientation upon reaching the

next waypoint, providing a more precise goal for its trajectory. This design enables

the planner to implicitly govern the robot’s heading direction through the placement

of waypoints, providing greater flexibility and precision in navigation. The details

and implications of this mechanism are discussed further in this chapter.

We train the locomotion policy (figure 3.2) using model-free reinforcement learning

(RL), specifically Proximal Policy Optimization (PPO) [10], in simulation. The policy

takes as input the robot’s proprioception, scandots, and next-goal information, which

is encoded in the following components:

1. Go-to Heading Direction: The direction to the next waypoint relative to

the robot’s current position.

2. Go-to Distance: The distance between the robot’s current position and the

next waypoint.

3. Target Heading Direction: A heading defined by the direction to the next
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waypoint relative to the current waypoint position.

4. Subsequent Waypoint Direction: The direction to the next-to-next waypoint

relative to the robot’s current position.

Figure 3.2: Reinforcement learning (RL) is used to train a locomotion policy with
access to privileged information, including environment parameters and scandots, as
well as task-relevant data such as the heading direction from waypoints, the robot’s
current position, and the distance to the next waypoint.

The policy is trained to perform diverse locomotion tasks, including walking,

climbing up and down, jumping, and navigating around the edges of obstacles within

its visual range. Effective edge navigation is essential for walls that the robot cannot

climb, as well as obstacles such as blocks and gaps, where improper handling of edges

could result in instability or failure.

We train the generalized goal-conditioned policy in multiple stages using Deep

Reinforcement Learning (DRL). This staged approach allows us to progressively build

complex behaviors [4], starting with fundamental skills and gradually incorporating

more advanced capabilities [7].
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The training process consists of four main stages:

Stage I: Locomotion with the major skills

In this initial stage, the locomotion policy is trained to learn core skills (figure 3.3),

including running on flat terrain, jumping over gaps, and climbing up and down

blocks, simultaneously. This setup ensures the policy is reactive to the environment,

enabling it to handle diverse scenarios autonomously. While this approach limits the

planner’s ability to explicitly dictate skill execution, it reduces the planner’s reasoning

burden, as the policy itself navigates various obstacles effectively.

To train such a generalist policy, a diverse set of environments was created, allowing

the policy to encounter a wide range of challenges. Using a curriculum learning

approach, the training started with simpler environments and gradually introduced

more difficult ones. This strategy improved sample efficiency and minimized the risk

of catastrophic forgetting. In this stage, the policy was trained for 30,000 epochs on

block, gap, and flat terrains, with the robot positioned to prioritize obstacle traversal

over avoidance. Edge-specific training was deliberately excluded at this stage to focus

on foundational skills.

The reward function follows a structure similar to the Extreme Parkour setup,

combining task rewards with auxiliary rewards for safety, smoothness, stability, and

posture style. Task rewards include velocity tracking and yaw tracking, where the

tracking direction is determined by randomized waypoint placements on the terrain:

d̂−→
RP

=
p⃗− r⃗

∥p⃗− r⃗∥
(3.1)

Here, p⃗ represents the next waypoint location, and r⃗ is the robot’s current position

in the world frame.

Training the policy using the same reward weights and PD gains for joint position-

to-torque mapping as used by Cheng et al. [1] for the Unitree A1 robot did not

directly translate to the Unitree Go1. Despite their structural similarities, the A1

robot has stronger motors compared to the Go1, leading to suboptimal performance

across all skills during training. Without tuning the PD gains, the Go1 exhibited

improper locomotion, such as moving on three legs while dragging one of its hind
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Running

Jumping

Climbing

Figure 3.3: The major locomotion skills that the generalist policy was capable of.

legs.

Among the skills, jumping proved to be the most challenging to learn. To improve
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performance, we modified the reward structure for this task by removing penalties for

vertical (z-axis) velocity. However, when the z-velocity penalty was entirely removed,

the robot developed an undesirable hopping behavior. Striking the right balance in

the reward design was crucial for enabling stable and effective jumping.

Stage II: Edge Handling and Sideways Motion Penalty

Figure 3.4: Training the locomotion policy to go around wall edges.

Building on the core skills trained in Stage I, we observed that the policy struggled

significantly in scenarios where waypoints were placed near the edges of gaps and

blocks. Performance degradation often resulted in the robot tripping, leading to

instability. For walls, the robot exhibited a tendency to get stuck, as it lacked the

ability to navigate around them. Instead, it would continue heading straight toward

the next waypoint, even when a wall obstructed its path.

To address these limitations and to ensure that the planner need not filter

waypoints based on their proximity to obstacle edges, we trained the policy specifically

for edge scenarios. This enhancement simplifies the planning process, as it eliminates

the need for reasoning about waypoint placement near obstacles.
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To achieve this, we introduced an additional 3,000 epochs of training with the

robot intentionally positioned near the edges of various obstacles. We increased

stumbling penalties to promote safer navigation. Stumbling was defined as a specific

type of collision where the horizontal component of the contact force exceeds the

vertical component by a significant margin. Furthermore, we implemented a sideways

motion penalty, recognizing the limitations imposed by the front-facing depth camera.

Terrain-specific adjustments were also introduced. For example, yaw tracking

rewards were reduced by 50% in these edge-focused environments, granting the robot

greater freedom to modify its orientation to navigate around obstacles effectively. This

flexibility proved critical for traversing complex edge scenarios without compromising

the robot’s stability.

With these modifications, the policy became more adept at edge traversal, reducing

the risk of instability and improving its ability to navigate around walls and other

obstacles autonomously. These enhancements mark a critical step in enabling robust

and versatile locomotion, bridging the gap between high-level waypoint generation

and effective low-level execution.

Stage III: Distractor Robustness

To develop a locomotion policy that generalizes beyond specific training setups, it is

essential to account for real-world scenarios where irrelevant or unexpected obstacles

may appear. While traditional locomotion training often aligns closely with testing

setups to benchmark performance in controlled environments, achieving robustness in

navigation demands that the policy can distinguish between task-relevant obstacles

and unrelated environmental noise. Similar to approaches in computer vision where

distractors are introduced to improve noise resilience, we integrated distractors to

enhance the policy’s ability to stay focused on the task.

In this stage, we trained the policy to handle distractors such as additional gaps,

blocks, and walls not directly relevant to the navigation task but present within

the robot’s visual range (see figure 3.5). By incorporating these elements into the

environment, we ensured the policy would avoid unnatural or reactive behavior caused

by irrelevant objects. This phase of training, spanning 3,000 epochs, emphasized

robust navigation by teaching the robot to prioritize task-relevant information while
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ignoring non-essential details.

The inclusion of distractors significantly improved the policy’s ability to handle

complex environments where irrelevant elements might otherwise cause confusion or

instability. This enhancement ensures that the robot’s focus remains on its primary

navigation objectives, paving the way for more resilient and adaptable performance

in real-world scenarios.

Figure 3.5: Left: Policy trained to handle overcoming block and gap edges with
various distractors around them. Top Right: Policy trained to go across blocks and
gaps with various distractors on the sides. Bottom Right: Policy trained to go around
walls with other walls as distractors on the sides.

Stage IV: Heading Control

In this final stage, we aimed to enable the planner to control the robot’s heading

without the need to explicitly plan over an additional state, such as the robot’s yaw.

By avoiding explicit yaw planning, we reduce computational complexity, thereby

mitigating the curse of dimensionality where planner computation time increases with

additional state variables.

To achieve this, we designed the policy such that at any given waypoint, the

planner inherently knows the robot’s heading. Specifically, the policy was trained to

orient the robot’s heading direction along the line connecting the previous waypoint
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Extreme Parkour's policy Our locomotion policy

Figure 3.6: Difference in heading due to modification in the goal-conditioned policy.

to the current waypoint (see figure 3.6). This eliminates the need for the planner

to explicitly compute yaw trajectories while ensuring consistent alignment with the

intended heading direction.

In this stage, the policy underwent an additional 3,000 epochs of training to refine

its ability to align the robot’s yaw with the desired target heading. The heading

direction, d̂−−−−→
PcurrP

, is mathematically defined as:

d̂−−−−→
PcurrP

=
p⃗− ⃗pcurr

∥p⃗− ⃗pcurr∥
(3.2)

where p⃗ represents the location of the next waypoint, and ⃗pcurr is the location of the

current waypoint in the world frame.

Rather than explicitly rewarding yaw alignment, we incorporated heading control

into the task completion criteria. The robot is required to realign its yaw within ±5◦
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of the desired heading before it can proceed to the next waypoint. This approach

encourages the robot to naturally adjust its heading as part of achieving its navigation

goals, promoting smooth transitions and maintaining planner simplicity.

Additionally, this approach allows the planner to generate paths that limit abrupt

changes in the robot’s heading direction. By avoiding sharp heading transitions, the

robot remains within safe operational limits, reducing the risk of slipping or instability

during movement. This ensures smoother and safer navigation across challenging

terrains.

Throughout all stages, we leveraged transfer learning techniques [16] to efficiently

build upon previously learned skills, significantly reducing the sample requirements

for subsequent training stages.

The resulting goal-conditioned policy showcases remarkable adaptability, enabling

the robot to navigate diverse terrains, handle edge cases, and maintain smooth and

stable headings. By allowing the planner to control the robot’s position explicitly

through waypoints while implicitly directing its heading along the path, this approach

ensures seamless integration of spatial and directional constraints. The implicit

heading control not only simplifies the planner’s computational burden but also

avoids abrupt turns that could lead to instability or excessive joint torques, ensuring

safer and more reliable navigation.

This combination of adaptability and implicit heading control empowers the

planner to generate efficient, sophisticated trajectories that optimize both safety

and performance, paving the way for robust navigation in complex and dynamic

environments.

3.2.2 Cost Predictor

Cost predictors are a fundamental component of the S3D-OWNS framework, inspired

by [2]. Their primary role is to estimate the cost of traversing between waypoints,

enabling the planner to calculate optimal paths from start to goal. We experimented

with three types of cost predictors: energy cost, time cost, and success cost, each

serving a unique purpose:

• Energy Cost: Predicts the energy expenditure (in Joules) required for traversal.

• Time Cost: Predicts the time (in seconds) needed to reach the next waypoint.
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Figure 3.7: Cost Predictors: In the top, the cost predictor architecture for energy
cost cE(e) or time cost cT (e). In the bottom, the cost predictor architecture for the
success cS(e) classifier.

• Success Cost: Predicts whether the robot is likely to successfully traverse a

path segment, given the terrain and heading requirements.
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Success Predictor

The success predictor is formulated as a binary classification problem, where success

is defined as a probability ≥ 50%. This threshold ensures robustness by focusing

on conditions where the robot is more likely than not to succeed. Initially, the

network was trained to predict the success rate directly as a regression problem, but

it struggled to learn this complex mapping due to the difficulty of estimating precise

fractional success rates (e.g., predicting 4 out of 10 robots succeeding). Simplifying

the task to classification improved both learning efficiency and prediction accuracy.

Network Design

The cost predictors share a unified architecture that combines convolutional and fully

connected layers (see Figure 3.7). Inputs to the networks include:

• Edge Features (ue): Comprises essential geometric metrics that facilitate

accurate cost estimation. These include:

Euclidean distance (∆d): The straight-line distance between consecutive

waypoints, representing the spatial separation that the robot must traverse.

Change in heading angle (δ): The angular difference between the

current heading direction (defined by the line joining the previous waypoint

to the current waypoint) and the desired heading direction (defined by the

line joining the current waypoint to the next waypoint). This captures

the sharpness of the turn required for traversal, which is critical for

understanding energy and time costs as well as stability considerations.

Derived terms (sin δ and cos δ): These trigonometric components of

the heading angle change provide a more granular and interpretable repre-

sentation of the angular difference. By decomposing the angle into its sine

and cosine, the cost predictors can leverage these continuous and smooth

features to better capture directional nuances. This is particularly useful

for understanding the extent of the turn (e.g., left or right) and its impact

on traversal cost. Additionally, these terms allow the model to process

angular relationships more effectively in scenarios involving sharp turns or

complex trajectories.
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These features encapsulate the geometric relationship between waypoints, pro-

viding the foundation for assessing traversal feasibility and associated costs.

• Local Terrain Patch: Encodes height map information around the robot,

offering rich contextual details about the surrounding terrain (Figure 3.8). The

local patch used for cost prediction was designed to be significantly larger than

the scandot input size used by the policy. Specifically, the scandot size was set

to 1.65 m along the robot’s length and 1.5 m along its width, while the local

patch covered an area approximately five times the robot’s length (5× 0.688 m)

along its length and four times the robot’s width (4 × 0.688 m). This larger

local patch size ensures that the next waypoint is neither too close, which could

cause the robot to slow down unnecessarily, nor too far, which might require the

cost predictor to reason about multiple obstacle types simultaneously—thereby

increasing the risk of prediction errors. Like the scandots, the local patch

heightfield is offset towards the front of the robot, prioritizing more points in

front of the robot to better anticipate upcoming obstacles and terrain features.

Top view Side view

Figure 3.8: Local patch: The locomotion policy is trained on a smaller patch (scandots
shown in yellow) as compared to the local patch (shown in purple) used by the planner.
The size of the scandots used in the policy is 1.65m x 1.5m and the size of the local
patch is 3.44m x 2.752m.
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The architecture integrates a CNN backbone to process the local terrain patch

and fully connected (FC) layers to handle edge features. These two representations

are concatenated, forming a unified feature vector, which is passed through additional

non-linear FC layers to generate the final predictions. The outputs of the network

are as follows:

• Energy Cost (cE(e)): Predicts the energy expenditure (in Joules) required

for the robot to traverse the edge.

• Time Cost (cT (e)): Estimates the time duration (in seconds) needed to move

from one waypoint to the next.

• Success Probability (cS(e)): Provides a binary classification to determine if

the probability of successfully reaching the next waypoint exceeds 50%. This

prediction aids in identifying traversable paths while accounting for obstacles

and the robot’s heading alignment.

Data Collection and Training

The datasets for training these predictors were collected in simulation, ensuring a

diverse and balanced representation of terrain types and obstacle configurations.

Energy and time predictors were trained as regression models, leveraging ground

truth from simulation experiments. The success predictor’s labels were generated

by simulating 10 parallel trials for each scenario and determining the proportion of

successful traversals.

By integrating these predictors into the planning framework, the robot is equipped

with the ability to assess traversal feasibility, prioritize paths with minimal energy and

time costs, and dynamically adapt to changing terrain. This capability significantly

enhances the planner’s efficiency and robustness in complex, simulated environments.

3.2.3 Planner

Modern learning-based methods often struggle with decision-making in long-horizon

tasks due to challenges in scalability and optimality. While advancements in Large

Language Models (LLMs) show promise as potential planners, they currently cannot

guarantee the level of optimality achievable by traditional planning methods. To
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Figure 3.9: Flowchart of the PRM-based planning process, illustrating key components:
node generation, cost prediction using energy, time, and success estimations, and
path planning with A* search. The process begins with a defined start and goal, and
the planner outputs an optimized path based on the specified task objective.

address these challenges, our framework leverages the strengths of a sampling-based

planner as a global planner to generate safe, optimal paths for navigation. We define

our planning configuration space

Q = {x, y, ψ}

and the subspace

q2D = {x, y}

Where x and y are cartesian coordinates of the environment and ψ is the absolute

heading of the robot. Our planner consists of three key stages:

1. PRM Sampling in 2D Space: The planning process begins by sampling

waypoints in a 2D configuration subspace q2D producing a node map for x and

y coordinates. The number of samples, ranging from 700 to 1400 depending

on the map size and complexity, is provided as input to ensure comprehensive

coverage of the environment. This sampling ensures a well-distributed roadmap

that adapts to varying environmental constraints and system limitations.

2. Extra Node Generation for Heading: To incorporate heading information
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into the roadmap, we generate additional nodes representing the robot’s orien-

tation. This extension transforms the problem from a purely 2D task into a

3D planning problem with configuration space Q, embedding the heading as a

critical dimension alongside the x and y coordinates. This integration allows

the planner to account for both spatial and directional constraints, ensuring the

planned paths align with the robot’s physical capabilities and task requirements.

3. A* Planner with Cost Predictor Integration: The A* algorithm is utilized

to search through the configuration space Q, incorporating heading information

implicitly via the parent node’s location. For each local action ai = {∆d, δ},
the planner queries the cost predictors to obtain edge costs based on the change

in euclidean distance ∆d and change in ψ, ie. δ mentioned in 3.2.2, including

energy cost CE(e), time cost CT (e), and success probability CS(e). To mitigate

the computational overhead caused by frequent GPU-to-CPU data transfers

during cost queries, all edges, including those with heading dimensions, are

pre-generated. GPU parallelization is employed to compute costs efficiently in

batch.

The task objective, as defined by the user, can be one of the following: minimum

energy, minimum time, or maximum success. Additionally, it can be a combination

of success followed by minimum time or energy, enabling the generation of safer

yet optimal paths. Figure 3.9 illustrates this process. Since the robot’s heading is

controlled by the provided waypoints (as discussed in Section 3.2.1), the waypoints

cannot be sampled randomly, as would typically occur in a standard PRM formulation.

The heuristic for the A* planner is designed using a 2D backward Dijkstra search

algorithm. This heuristic is informed by analytical cost approximations, which

are derived from sparse data points collected through simulation experiments and

subsequently curve-fitted for accuracy. Additionally, to avoid excessively risky paths,

the success rate CS(e) is used as a cutoff criterion for both minimum energy and

minimum time objectives. Specifically, edges with CS(e) < 0.5 could be excluded

from the search space, ensuring that the planner prioritizes feasible and reliable

trajectories.
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map (start in blue, goal in pink) nodes and edges generation heuristics computation node expansion and path found start to goal path

Figure 3.10: Stages of path planning and waypoint generation. The planner begins
with a 2D grayscale map, which is converted into a heightfield in IsaacGym based
on pixel values. Green nodes represent sampled waypoints, and valid blue edges are
determined based on changes in heading direction. Next, yellow edges illustrate the
heuristic connections used for planning. The expanded nodes and their corresponding
red edges are shown in the subsequent stage. Finally, the planned red waypoints are
visualized in the 3D world.
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Chapter 4

Experiments

4.0.1 Analytical Costs

Before creating the large datasets for training cost predictors, we conducted controlled

experiments in simulation to analyze how various input variables—such as the distance

between waypoints, change in heading direction, and local patch features like block

height or gap width—affect traversal costs. In these experiments, we varied only

one input variable at a time, isolating its influence on the costs. The resulting data

provided valuable insights into the relationship between input features and costs,

enabling us to fit high-order polynomials to model these dependencies. These fitted

polynomials represent the analytical costs and were subsequently used for heuristic

computation in the backward-Dijkstra algorithm and as edge costs in analytical-

cost-based planners. This analysis also served as a benchmark for evaluating the

performance of predictor-based planners.

The experimental setup, as illustrated in Figure 4.1, demonstrates that the data

collection process heavily relies on the placement of three consecutive waypoints,

which define the turning angle. The waypoints were restricted to lie within a range

of [0.5,2.5 m]. This range was chosen to ensure that the distance between consecutive

waypoints was neither too short—avoiding situations where it would be smaller than

the robot’s size—nor too large, where the next waypoint would fall outside the local

patch used by the planner.

Figures 4.2 and 4.3 summarize the results of multiple experiments, each performed
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-45 deg turning 0 deg turning 45 deg turning

Figure 4.1: Analytical cost generation process for turning angles. 3-waypoints
placement for the all data collection process. The turning angle is defined by the
change in angle between the line connecting the first and second waypoints and the
line connecting the second and third waypoints.

10 times to compute average costs for walking, climbing, and jumping. The results

reveal that traversal costs are influenced by several factors, including the distance

traveled, obstacle type, obstacle size, and turning angle required to reach the goal.

To maintain consistency across experiments, we kept variables such as friction,

smoothness, robot mass, and commanded velocities constant. Notably, the stochastic

nature of the policy introduced variations across the runs, with more challenging tasks

exhibiting higher variability. Only successful runs were considered when computing

the average energy and time costs.

Key Observations

• Energy and Time Costs for Walking:

Both energy and time costs are linearly proportional to the distance

traveled, as expected given the fixed commanded velocity.
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Figure 4.2: Analytical Energy Cost Functions.

Energy costs exhibit additional increases when traversing hurdles that

require climbing or jumping, with larger obstacles generally incurring

higher costs.

• Turning Costs:

Turning costs depend on both the change in heading angle and the distance

to the next waypoint.

Ideally, the cost plots for left and right turns should be symmetrical,

though minor deviations were observed due to the robot’s dynamics.

• Time Costs for Obstacles:

Time costs are generally lower for jumping over gaps and, in some cases,

for climbing over obstacles.

Interestingly, there exists an optimal obstacle height for the robot, where

climbing is both faster and more comfortable compared to other heights.

33



4. Experiments

Figure 4.3: Analytical Time Cost Functions.

Time cost plots for turning actions are approximately symmetrical, reflect-

ing the additional time required for the turning maneuver.

These findings provide critical insights into how input features influence traversal

costs, validating trends such as the proportionality of energy costs to distance and

the symmetry of turning costs. These results highlight the importance of designing

cost predictors that account for task-specific nuances while maintaining generality

across different scenarios.

4.0.2 Dataset Collection

Datasets. To train the cost predictors effectively, we collected local motion costs by

running the robot policy in simulation using Isaac Gym. We created three environment

types for data collection: block world, gap world, and hurdle world, each featuring

obstacles of varying sizes (Figure 4.4).

For block and hurdle worlds, obstacle heights ranged from 0.0 m to 1.0 m, with

34



4. Experiments

Figure 4.4: Hurdle World, Block World and Gap World. These are in the pixel space
with varying sizes for the data collection process.

increments of 0.1 m. For gap worlds, gap lengths ranged from 0.1 m to 1.2 m, with

the same increment. Based on the robot’s policy, we observed that the robot could

reliably climb obstacles up to 0.6 m and jump gaps up to 0.9 m. However, success

depended heavily on the placement of the next waypoint, as this determines the angle

at which the robot approaches the obstacle.

To expedite data collection, the simulation worlds were kept static throughout the

process, significantly reducing environment initialization time. By avoiding frequent

spawning of new environments—a time-consuming operation in Isaac Gym—we
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reduced the total data collection time from 3-4 days to just one day.

Hurdle World - going across Gap World - going across

Block World - going up Block World - going down

Figure 4.5: Automation of 3-wayponts generation process for different worlds. Reset
points (in black), starting points (in orange) and goal points (in blue) for the all the
worlds.

The robot was reset to a randomized location within a 0.5 m radius of a predefined

starting point. For each starting point, 10 parallel agents collected data simultaneously,

further accelerating the process. Before moving towards the target waypoint, the

robot first aligned itself at the starting waypoint, ensuring a consistent initial heading.

This added reset step introduced extra randomness to the robot’s initial orientation

by dropping it at slightly offset positions within the radius.

World and Waypoint Selection. For each task and environment type, valid

starting and goal waypoints were selected based on feasibility constraints. These

constraints included:

• Obstacle Traversal: In most cases, the goal must be on the other side of

the obstacle. During the goal placement validity check, points within 0.3 m
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(approximately half the robot’s length) from the edge of obstacles are avoided.

This constraint ensures that waypoints are not placed too close to obstacle

edges, which could interfere with the robot’s target orientation upon reaching

the waypoint.

• Turning Angle: The angle required to traverse between waypoints must fall

within a feasible range for the robot’s capabilities. Waypoints resulting in

turning angles greater than ±120◦ are discarded, as they exceed the robot’s

operational limits.

• Local Patch Coverage: The goal must lie within the local patch accessible

from the starting waypoint, as illustrated in Figure 3.8. Points outside the local

patch are excluded because the cost predictor network relies on local environment

information within the patch. Without this data, it would be impossible to

accurately predict the traversal costs due to incomplete environmental context.

To account for cases where the robot needs to adjust its final heading, padding

was added around the edges of blocks and gaps. An automation script was used to

generate approximately 3,000 valid waypoint pairs for each obstacle type, with the

process completing in approximately 10 minutes.

Data Collection Metrics. During data collection, the following metrics were

captured:

• Energy Consumption: The total energy consumption between the starting

waypoint and goal waypoint was recorded. It is computed as
∑

(τ ·ω)∆t, where

τ and ω are the vectors of joint torques and joint velocities, respectively, and

∆t is the time step for each simulation frame.

• Traversal Time: The total traversal time from the starting waypoint to the

goal waypoint was measured and computed as
∑

∆t, where ∆t represents the

time per simulation step.

• Success: The success was determined based on whether the able to reach the

goal or not before the end of the episode for each combination of reset position,

starting point, and target point.

Each experiment was conducted with 10 robots spawned in parallel under identical

initialization conditions, and the above metrics were recorded for each robot. Finally,

the success rate was computed as Number of Successful Runs
10

, representing the fraction of
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Figure 4.6: Data collection process: For each combination of reset position, starting
point, and target point, 10 robots are spawned simultaneously in parallel, and relevant
information for cost computation, such as energy consumption, traversal time, and
success metrics, is logged.

robots that reached the goal. Average energy and traversal time were calculated

using only the successful runs to ensure meaningful comparisons.

Utility of the Dataset. This comprehensive dataset serves as the foundation for

training the cost predictors to estimate energy, time, and success costs associated with

various navigation strategies. By providing accurate predictions, the cost predictors

enable the planner to generate efficient, safe, and feasible paths, optimizing the robot’s

navigation performance.

Dataset Analysis. We analyzed the datasets to evaluate their distribution and

identify trends before training the cost predictors.

As shown in Figure 4.7, we observed a significant data imbalance that could

adversely affect the training process. To mitigate this, we included only data points

with a success rate greater than or equal to 0.5 when training the energy and time

cost predictors. This filtering reduced data imbalance and led to a dataset with less
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hurdle world - crossing over gap world - jumping

block world - climbing up block world - climbing down 

Figure 4.7: Success Rate vs Number of samples for all worlds.

variance, making it easier for the network to learn effectively.

For the success rate and success cost predictors, we discarded data points with

zero success rate from the hurdle world (crossing over) and block world (climbing

up) datasets. These data points correspond to obstacle heights greater than 0.6 m,

which are not traversable by the robot and effectively act as walls. Since our planner

already discards waypoints placed on such walls, these points were deemed irrelevant

for training. Removing them prevents the success predictor from being biased by

untraversable scenarios, avoiding pessimistic predictions that might incorrectly classify

obstacles as insurmountable.

To prepare the data for training, we normalized the energy and time cost datasets
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Figure 4.8: Distribution of energy costs and time costs for success rate greater than
or equal to 0.5

using z-standardization, as these costs closely followed a normal distribution (Fig-

ure 4.8). For the success classifier, we applied min-max normalization. These normal-

ization techniques ensured that the networks produced outputs within standardized

ranges, facilitating more stable and effective learning.

To further understand the trends in the data, we plotted the distributions of

energy (Figures A.1 to A.12) and time costs (Figures A.14 to A.25) separately for

each environment and for different success rates. These plots illustrate the variations

in cost values, represented using a color map, as functions of distance (x-axis), turning

angles (y-axis), and obstacle heights (indicated by the size of the circular data points).

The observed trends in these distributions align closely with those identified during

the analytical cost computation process, thereby validating the datasets.

For the energy plots, it is observed that energy consumption increases with greater

start-to-goal distances and sharper turning angles. Additionally, sharper turns are

associated with lower success rates. Obstacles such as blocks, hurdles, and gaps

further contribute to increased energy expenditure. Similarly, the time plots reveal

that traversal time increases with longer start-to-goal distances and sharper turning

angles. However, traversal time may decrease when jumping over gaps or climbing

up and down blocks or hurdles, likely due to the fact that the policy has learned to

increase speed to overcome such obstacles more successfully.

Examining the 3D plots (Figures A.13 and A.26), it becomes evident that the
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time data exhibits a clearer trend with less noise compared to the energy data. This

outcome is expected, as energy computation involves joint torques and joint velocities,

which are inherently noisy. Consequently, it is more challenging for a neural network

to accurately learn energy costs compared to time costs.

Cost Predictor Training Results. We trained the energy and time cost predictors

using a balanced dataset comprising data points with a success rate of at least 0.5

and evaluated their performance by plotting the predicted costs against the ground

truth costs (Figures 4.9, 4.10). For an ideal regressor, these plots would align along

a straight line with a 45-degree slope. However, we observed that the energy cost

predictor exhibited greater variance compared to the time cost predictor. This is

expected since energy costs in simulation are inherently noisier than time costs,

making the learning process more challenging for neural networks.

Figure 4.9: Groundtruth vs predicted costs for the energy cost predictor.

For the success classifier, we trained it using a balanced dataset with success rates

ranging from 0.0 to 1.0. A success was defined as at least 5 out of 10 robots successfully

navigating from the starting waypoint to the goal waypoint. The confusion matrix

(Figure 4.11) shows that most points lie in the true positive or true negative categories.

However, there are notable false positives and false negatives, which make the success

classifier less reliable. This unreliability caused the planner to behave conservatively

at times, failing to find feasible paths between the start and goal locations.

This issue is particularly pronounced in our sampling-based planner, where the

number of valid points sampled across gaps or blocks is already limited. For a

waypoint to be valid, it must lie within the local patch at the robot’s current waypoint
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Figure 4.10: Groundtruth vs predicted costs for the time cost predictor.

and must also be at least half the robot’s length away to avoid interfering with the

target heading direction. Furthermore, at edges, if the robot approaches at angles

greater than 30◦, it struggles to overcome obstacles that are otherwise traversable.

On test maps with gaps of 0.5–0.6 m or blocks 0.5 m high, if the success predictor

incorrectly predicts false negatives for these sparse edges, the planner becomes unable

to find a valid path. For this reason, we avoided using the success predictor when

evaluating the planner’s performance on our test maps.

Figure 4.11: Confusion matrix for the success cost predictor.

Initially, we approached the success prediction problem as a multi-class classifica-

tion task, aiming to predict the probability of success. However, the neural network

often misclassified probabilities that were close to the ground truth. For instance,

distinguishing between success rates of 0.2, 0.3, or 0.4 proved to be highly unreliable.
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This challenge arises due to the following factors:

1. Stochastic Nature of Policies: The inherent randomness in the robot’s

policy introduces variability in outcomes even under similar conditions.

2. Environmental Factors: Critical factors such as friction and restitution

coefficients, which significantly affect dynamics, were not included as inputs to

the network.

3. Task Complexity: Agile maneuvers over challenging obstacles further increase

uncertainty, making precise predictions more difficult.

To address these challenges, we simplified the problem to a binary classification

task: determining whether the success rate for a given scenario exceeds 0.5. This

simplification allowed the network to focus on broader success trends, resulting in a

more reliable success predictor.

4.0.3 Planning Results

Experiments.Once we developed a generalist locomotion policy and trained cost

predictors, the final step was to demonstrate how the S3D-OWNS framework, com-

bined with our sampling-based planner, outperforms an obstacle-avoidance-based

planner. The latter does not leverage the robot’s capabilities and always opts for safe,

obstacle-free paths. We conducted experiments on three different maps, each tailored

to specific objectives:

• Minimum energy: Figure 4.12,

• Minimum time: Figure 4.13, and

• Long-horizon minimum time: Figure 4.14.

Minimum Energy Map

The 10m× 10m map for minimum energy features two possible routes from the start

to the goal location:

• Route 1: The robot climbs up and down a high block to traverse a shorter

path.

• Route 2: The robot takes a longer path around a wall on flat ground.
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Text

Obstacle-avoidance based planner 

Our planner using cost predictor 

Map for min-energy 
(start: blue dot; goal: pink triangle)

1.0 m wall0.3 m high block

Figure 4.12: Obstacle-avoidance based planner vs our planner for minimum-energy
path planning.

Although climbing requires extra energy, the significantly shorter distance of

Route 1 results in lower overall energy consumption. Our planner, leveraging the

learned energy cost predictor, selects the more energy-efficient path over the block.
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This demonstrates how the planner optimally reasons about feasibility and cost,

taking full advantage of the robot’s climbing capabilities.

Minimum Time Map

Similar to the minimum energy map, the 10m× 10m map for minimum time also

offers two routes from the start to the goal:

• Route 1: The robot jumps over two 0.6m gaps.

• Route 2: The robot follows a longer, obstacle-free path with multiple turns

and walls.

Jumping across the gaps is faster due to the robot’s high speed during jumps,

whereas the flat-ground path is slower because of the longer distance and additional

turns. Our planner, using the learned time cost predictor, selects the faster path over

the gaps, effectively utilizing the robot’s jumping skills. In contrast, the obstacle-

avoidance-based planner defaults to the longer, obstacle-free route.
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Text

Obstacle-avoidance based planner 

Our planner using cost predictor 

Map for min-time 
(start: blue dot; goal: pink triangle)

0.6 m wide gap

1.0 m wall

1.0 m wall

0.6 m wide gap

Figure 4.13: Obstacle-avoidance based planner vs our planner for minimum-time path
planning..
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Long-Horizon Minimum Time Map

Text

Obstacle-avoidance based planner 

Our planner using cost predictor 

Map for long-horizon min-time 
(start: blue dot; goal: pink triangle)

1.0 m wall

1.0 m wall

0.3 m high block

0.3 m high block

0.3 m high block

0.3 m high block

0.7 m high block

0.7 m high block

0.3 m high block

0.4 m wide gap

0.4 m wide gap

Figure 4.14: Obstacle-avoidance based planner vs our planner for long-horizon
minimum-time path planning.

The 15m×20m map for the long-horizon task demands a minimum time objective.

The robot must navigate a series of blocks, requiring it to climb up and down multiple

times and jump across gaps to reach the goal.

Our planner, equipped with the learned time cost predictor, selects waypoints

that optimize the robot’s traversal time by fully leveraging its locomotion skills. This

includes climbing, descending, and jumping, enabling the robot to reach the goal in

the shortest time possible. This contrasts with obstacle-avoidance-based planners,

which fail to exploit the robot’s capabilities and often choose less efficient paths.
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Results. In the offline planning stage, the PRM planner samples nodes on the map to

build the roadmap from start to goal. Due to the stochastic nature of node sampling,

the roadmap may vary slightly between runs, leading to different planning results.

To demonstrate consistency across multiple runs, we conducted five trials for each

planner on every map with the same start and goal configuration. The quantitative

results are summarized in Tables 4.15, 4.16, and 4.17.

planners sampling time [s] planning time [s] node gen time [s] GPU parallel time [s] total cost [J] sim success rate sim energy cost (mean , std) [J]

run1_heu0_prediction_obs_avoid 7.365069 37.492034 0.413104 27.372249 6045.461426 5/5 1117.61068 , 17.1748486
run1_heu0_prediction - 65.971144 0.388223 25.887549 2694.167969 5/5 617.49389 , 31.70661491
run1_heu2_prediction - 4.688502 0.399186 26.566449 2953.543945 5/5 702.74462 , 14.24445537
run1_heu0_analytical - 59.432103 0.416005 25.974054 1181.308228 5/5 484.81123 , 13.98808419
run1_heu2_analytical - 2.996511 0.396118 26.343149 1226.66272 5/5 591.617928 , 25.74460571
run2_heu0_prediction_obs_avoid 6.809917 41.072785 0.373333 24.657029 7222.609375 4/5 1964.31642 , 225.8966273
run2_heu0_prediction - 55.850572 0.365653 23.823958 2956.412598 5/5 589.845244 , 18.41726665
run2_heu2_prediction - 11.145987 0.381073 23.753696 3074.038086 5/5 617.26564 , 97.38835059
run2_heu0_analytical - 44.164505 0.3729 23.31425 1191.670898 5/5 538.355502 , 14.6063455
run2_heu2_analytical - 2.843557 0.376543 24.14458 1377.993042 4/5 923.159698 , 91.79434988
run3_heu0_prediction_obs_avoid 7.437381 34.340959 0.359116 23.659318 6802.675293 5/5 1266.49494 , 37.58432477
run3_heu0_prediction - 41.170231 0.336524 22.163544 2931.806152 5/5 537.647802 , 14.86487283
run3_heu2_prediction - 3.682478 0.359798 22.294373 3090.266113 5/5 496.141058 , 10.25105254
run3_heu0_analytical - 40.641494 0.358994 22.130782 1168.391357 5/5 468.964508 , 4.80996963
run3_heu2_analytical - 2.715519 0.360799 22.267174 1178.665771 5/5 492.11942 , 10.39403093
run4_heu0_prediction_obs_avoid 7.211643 34.544921 0.426424 27.439591 6537.520508 5/5 1633.29464 , 413.2266703
run4_heu0_prediction - 53.872778 0.40294 25.363995 2831.932373 5/5 575.26606, 15.50255111
run4_heu2_prediction - 4.508556 0.400557 25.021257 2923.069092 5/5 578.90487, 26.29599849
run4_heu0_analytical - 50.930645 0.375997 24.804066 1208.767578 5/5 508.151144 , 3.71483913
run4_heu2_analytical - 3.61741 0.392811 25.522455 1307.242676 5/5 896.118652 , 198.9932168
run5_heu0_prediction_obs_avoid 7.062268 31.102097 0.34322 22.808169 6118.026855 5/5 1367.03046 , 26.99385528
run5_heu0_prediction - 48.71955 0.341638 21.25141 2743.304199 5/5 544.924314 , 30.95721983
run5_heu2_prediction - 4.639923 0.331372 21.554788 2923.774902 5/5 634.479478 , 33.60127517
run5_heu0_analytical - 43.23159 0.322226 21.367988 1171.791138 5/5 478.57961 , 5.810023723
run5_heu2_analytical - 2.687212 0.341858 21.824838 1209.395264 5/5 501.38478 , 11.10467187

Figure 4.15: Results of all the planners for minimum-energy path.

For every roadmap, we evaluated five different planners (Figures A.27 to A.29).

These planners are as follows:

1. Obstacle-avoidance-based planner using predicted costs without heuristics.

2. Planner based on Dijkstra’s algorithm using predicted costs without heuristics.

3. Planner based on weighted-A* using predicted costs.

4. Planner based on Dijkstra’s algorithm using analytical costs without heuristics.
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planners sampling time [s] planning time [s] node gen time [s] GPU parallel time [s] total cost [s] sim success rate sim time cost (mean , std) [s]

run1_heu0_prediction_obs_avoid 6.764137 429.960779 1.112213 86.524157 35.593395 3/5 21.4119998 , 0.3454276712
run1_heu0_prediction - 605.370998 1.097352 80.445199 14.666033 5/5 8.13599978 , 0.3444996528
run1_heu2_prediction - 4.149565 1.101122 79.444236 21.093773 1/5 8.4519997 , 0.7995750521
run1_heu0_analytical - 475.295385 1.165456 80.3006 22.006748 5/5 6.8999998 , 0.6546750492
run1_heu2_analytical - 4.277445 1.167216 79.407941 24.199381 5/5 7.24799984 , 0.3559774869
run2_heu0_prediction_obs_avoid 10.126023 359.694463 1.091488 76.39692 34.94833 5/5 21.0719998 , 0.2142892811
run2_heu0_prediction - 504.487967 1.110689 68.993006 14.867062 4/5 7.556 , 0.6735577184
run2_heu2_prediction - 5.617786 1.038842 69.620253 17.451452 5/5 7.79599994 , 0.2558906063
run2_heu0_analytical - 405.248195 1.046117 68.796832 20.460171 5/5 6.55199992 , 0.1269646975
run2_heu2_analytical - 4.204775 1.081044 69.57852 21.115795 5/5 6.79599986 , 0.1818790054
run3_heu0_prediction_obs_avoid 8.700342 425.751988 1.116218 73.167889 36.973606 3/5 21.2719998 , 0.5080551505
run3_heu0_prediction - 421.148908 1.037526 68.396129 14.378777 3/5 6.63599988 , 0.2491584612
run3_heu2_prediction - 3.604995 1.086223 68.57247 15.371344 5/5 8.616, 0.5026728558
run3_heu0_analytical - 350.973206 0.998893 68.51778 20.718349 4/5 6.65599982 , 0.2041568054
run3_heu2_analytical - 3.609875 1.032441 67.990989 20.897057 5/5 6.73599988 , 0.3912543646
run4_heu0_prediction_obs_avoid 8.564244 330.963325 1.200262 87.430035 34.505718 5/5 20.8559996 , 0.579896427
run4_heu0_prediction - 539.569606 1.115787 80.56769 13.214941 5/5 6.75199996 , 0.2193627115
run4_heu2_prediction - 8.702871 1.160753 77.95767 15.614209 5/5 7.28799988 , 0.2862165691
run4_heu0_analytical - 412.376716 1.1672 77.932932 21.036211 5/5 6.84399976 , 0.07797442786
run4_heu2_analytical - 6.674961 1.102553 77.558369 21.990086 5/5 8.2 , 0.7557777451
run5_heu0_prediction_obs_avoid 6.072579 323.007521 1.041039 69.62835 36.487373 5/5 24.248 , 1.680987805
run5_heu0_prediction - 415.953734 0.971693 64.904937 14.948875 5/5 7.53199988 , 0.5617117291
run5_heu2_prediction - 5.378675 0.983319 66.555806 17.087477 5/5 7.9879996 , 0.4830319544
run5_heu0_analytical - 330.664807 0.972282 64.74408 21.910887 4/5 6.96399994 , 0.3415845746
run5_heu2_analytical - 4.092933 0.992965 65.895579 23.040199 5/5 8.00799974 , 0.8205608272

Figure 4.16: Results of all the planners for minimum-time path.

5. Planner based on weighted-A* using analytical costs.

Key Observations

• Across all scenarios, planners that leverage the robot’s capabilities to plan paths

over feasible obstacles consistently achieve significantly lower costs compared to

the obstacle-avoidance-based planner.

• Weighted-A* planners, with a heuristic weight of 2.0, demonstrate significantly

faster planning times. However, the use of this heuristic renders the planner

inadmissible, resulting in suboptimal paths.

• For minimum energy tasks, planners using analytical costs outperform those

using predicted costs. This is expected since the analytical cost functions are

directly derived from controlled experiments, providing more accurate estimates
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planners sampling time [s] planning time [s] node gen time [s] GPU parallel time [s] total cost [s] sim success rate sim time cost (mean , std) [s]

run1_heu0_prediction_obs_avoid 13.334338 247.512418 0.929701 69.395621 34.631222 5/5 20.332 , 0.3545701623
run1_heu0_prediction - 520.813787 0.95633 63.455633 24.833687 2/5 16.6899995 , 0.2899141338
run1_heu2_prediction - 10.29323 0.881329 64.312246 40.846451 5/5 21.5879996 , 0.4975138671
run1_heu0_analytical - 223.792691 0.876677 61.961835 67.991745 5/5 20.6639998 , 1.413534687
run1_heu2_analytical - 10.878828 0.94841 64.197083 75.066086 5/5 23.0159996 , 1.659180191
run2_heu0_prediction_obs_avoid 17.66699 183.023088 0.922353 62.587272 41.095451 3/5 24.6719998 , 0.712404461
run2_heu0_prediction - 369.946766 0.827661 58.393747 27.67602 4/5 17.1879996  , 0.8801821505
run2_heu2_prediction - 10.16941 0.884645 61.074148 39.474228 4/5 22.6039998 , 0.4746368738
run2_heu0_analytical - 176.693988 0.816605 59.933736 70.30175 3/5 21.768 , 0.476571086
run2_heu2_analytical - 10.026379 0.833632 59.866402 72.542587 4/5 22.544 , 0.3465256123
run3_heu0_prediction_obs_avoid 14.834605 227.034913 0.891837 65.195186 37.500057 4/5 21.0519998 , 0.1162755606
run3_heu0_prediction - 393.616172 0.893552 61.613133 24.822813 5/5 15.2439996 , 0.4265205833
run3_heu2_prediction - 10.574775 0.887121 59.726874 42.819279 2/5 25.31499975 , 1.087183197
run3_heu0_analytical - 199.859574 0.830832 58.858118 69.542839 4/5 22.716 , 1.470945274
run3_heu2_analytical - 10.092356 0.856402 60.670114 70.452202 4/5 23.3759992 , 1.806454285
run4_heu0_prediction_obs_avoid 17.883963 263.552201 0.86645 61.019721 35.740757 5/5 20.7199998 , 0.1788856898
run4_heu0_prediction - 389.522811 0.862448 57.492367 25.121288 5/5 14.7119996  , 1.043321993
run4_heu2_prediction - 9.933816 0.874329 58.721039 39.798618 4/5 21.3119998 , 0.5264220132
run4_heu0_analytical - 241.539825 0.864316 57.63257 69.695915 5/5 20.2119996 , 0.4748895998
run4_heu2_analytical - 9.89526 0.864016 58.352638 71.981522 5/5 22.0919996 , 0.8386413965
run5_heu0_prediction_obs_avoid 13.285764 209.995985 0.899886 65.197599 33.835461 5/5 20.132 , 0.1480540442
run5_heu0_prediction - 391.637623 0.84352 60.071077 23.312933 3/5 15.3759998 , 2.949080768
run5_heu2_prediction - 10.131573 0.920936 61.322621 36.341213 5/5 21.8599996 , 0.6634760131
run5_heu0_analytical - 194.907423 0.86433 60.058396 68.05191 5/5 19.9879998 , 0.4448816966
run5_heu2_analytical - 10.654175 0.904479 63.593254 69.239555 4/5 20.2199998 , 0.3088688557

Figure 4.17: Results of all the planners for long-horizon minimum-time path.

for such scenarios. Both approaches, however, yield paths with much lower

costs than the obstacle-avoidance-based planner.

• For minimum time tasks, planners using predicted and analytical costs perform

comparably, as both methods produce similar time estimates. The resulting

paths effectively exploit the robot’s capabilities to minimize traversal time.

• For long-horizon minimum time tasks, planners using predicted time costs

consistently outperform those using analytical costs. This highlights the value

of learned cost predictors in navigating complex environments with varying

obstacle types and long planning horizons.
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4. Experiments

Ground Truth Validation

To validate the planned paths, we executed them using the robot in the Isaac Gym

simulator and compared the resulting ground truth costs with the estimated costs.

While the ground truth costs often differed from the estimated costs (due to factors

like stochastic policies and unmodeled dynamics), the trends in total costs across

planners were consistent. Importantly, these differences did not affect the feasibility

of the planned paths, demonstrating the robustness of the S3D-OWNS framework.

Conclusion

These results underscore the effectiveness of blending learning-based policies with

a high-level planner that utilizes learned cost predictors to optimize the desired

objectives. The S3D-OWNS framework consistently generates optimal paths, even

for long-horizon tasks, enabling efficient navigation and robust decision-making in

complex environments.
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Chapter 5

Conclusion and Future Works

5.1 Conclusion

We conclude that the S3D-OWNS framework, by leveraging the robot’s capabilities

to plan optimal paths, enables efficient navigation in unstructured and cluttered

environments. Depending on the task requirements, the robot can select paths

that either minimize energy consumption—extending operational time—or prioritize

faster traversal to complete tasks efficiently. This adaptability makes the framework

particularly suitable for industrial applications, such as factory settings, where

efficiency and cost-effectiveness are critical.

A significant strength of the framework lies in its modularity. Each module can

be independently replaced or upgraded with more sophisticated counterparts, making

it versatile and future-proof. For example, the planner, locomotion policy, or cost

predictors can be substituted with improved versions without altering the overall

framework, allowing for continuous performance enhancement.

The simplicity of the planner is another key advantage. By operating in a reduced

state space, the planner avoids the computational burden of reasoning in high-

dimensional spaces. This simplicity is particularly beneficial in multi-agent scenarios

where multiple robots must coordinate efficiently across a shared environment. The

ability to integrate powerful policies ensures high-level planning is both robust and

efficient.

Despite its strengths, the framework has certain limitations. Its reliance on the
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cost predictor’s accuracy is a notable challenge. For instance, due to the unreliable

performance of the trained success predictor, it was not utilized in our experiments.

Training neural networks to estimate edge costs requires careful consideration of all

possible scenarios that could arise during planning. Simulating these scenarios during

data collection ensures a diverse dataset, reducing the likelihood of encountering

out-of-distribution data during deployment.

The framework’s reliance on the simulation environment for data collection is

another limitation. The accuracy of the collected data depends on the fidelity of the

simulator. In our case, NVIDIA’s Isaac Gym provided a highly efficient platform

with parallel GPU acceleration, significantly speeding up data collection. Without

this, the process would have taken weeks or months.

Looking ahead, these challenges can be addressed by improving the diversity of

datasets, exploring better cost predictor architectures, and integrating higher-fidelity

simulations to enhance real-world applicability.

5.2 Future Works

The following directions are proposed to extend and improve upon the S3D-OWNS

framework:

• Path Smoothing: Introduce post-processing steps to optimize the paths gen-

erated by the sampling-based planner. This refinement could ensure smoother

paths, reducing unnecessary turns and improving traversal efficiency.

• Advanced Neural Architectures: Employ more powerful neural networks,

such as transformers, for cost predictors. These architectures could enhance the

accuracy of success estimators, making them more reliable and robust, thereby

adding an extra layer of safety to the planning module.

• Larger Local Patches: Experiment with larger local patches to reduce the

need for excessive sampling near obstacle edges. This approach could increase

the number of feasible paths without requiring additional sampling at gaps or

block edges.

• Diffusion Policies for Path Generation: Explore diffusion-based policies to

generate multiple paths from start to goal. These policies could create diverse
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path candidates, which can then be evaluated using cost predictors to identify

the optimal path.

• Integrated Cost Learning: Extend the framework to train cost predictors or

value functions directly alongside the locomotion policy. Simultaneous training

could reduce reliance on separate datasets and ensure better alignment between

the learned costs and the policy.

• Sim-to-Real Transfer: Enhance sim-to-real transfer by using techniques

such as DAgger and distillation processes. While previous works, such as [1],

demonstrated successful sim-to-real transfer for generalist policies, long-horizon

tasks require more accurate state estimators to prevent drift over extended

navigation sequences.

• Real-World State Estimation: Improve state estimation by integrating

external sensors, such as motion capture (MoCap), to refine state feedback

during planning. Initially, the pipeline could leverage external sensing before

transitioning to fully onboard state estimation.

• Scene Understanding and High-Level Commands: Incorporate scene-

understanding methods and Large Language Models (LLMs) to enable natural

language interfaces. This could allow users to define start and goal locations

using voice or text commands, broadening the framework’s applicability in

complex environments.

• Multi-Agent Coordination: Extend the framework to multi-agent planning

scenarios, where multiple robots navigate and collaborate within the same

environment. This could involve integrating decentralized planning techniques

or communication protocols to optimize coordination.

• Exploration of Diverse Applications: Apply the framework to diverse fields

such as search and rescue, agriculture, and warehouse automation. Each of

these domains offers unique challenges that could further validate and improve

the framework’s robustness.

The S3D-OWNS framework lays a solid foundation for efficient and adaptable

robotic navigation. By addressing the aforementioned directions, the framework can

be further refined and expanded, enabling robots to tackle increasingly complex tasks
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in real-world scenarios.
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Appendix A

Additional Results

A.1 Trends in Dataset

A.1.1 2D Energy Plots

Figure A.1: Success Rate 0.1: Energy distribution as per success rate for
the hurdle world cross dataset.
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A. Additional Results

Figure A.2: Success Rate 0.5: Energy distribution as per success rate for
the hurdle world cross dataset.

Figure A.3: Success Rate 1.0: Energy distribution as per success rate for
the hurdle world cross dataset.
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A. Additional Results

Figure A.4: Success Rate 0.1: Energy distribution as per success rate for
the gap world cross dataset.

Figure A.5: Success Rate 0.5: Energy distribution as per success rate for
the gap world cross dataset.
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A. Additional Results

Figure A.6: Success Rate 1.0: Energy distribution as per success rate for
the gap world jumping dataset.

Figure A.7: Success Rate 0.1: Energy distribution as per success rate for
the block world going up dataset.
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A. Additional Results

Figure A.8: Success Rate 0.5: Energy distribution as per success rate for
the block world going up dataset.

Figure A.9: Success Rate 1.0: Energy distribution as per success rate for
the block world going up dataset.
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A. Additional Results

Figure A.10: Success Rate 0.1: Energy distribution as per success rate for
the block world going down dataset.

Figure A.11: Success Rate 0.5: Energy distribution as per success rate for
the block world going down dataset.

62



A. Additional Results

Figure A.12: Success Rate 1.0: Energy distribution as per success rate for
the block world going down dataset.
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A. Additional Results

A.1.2 3D Energy Plots

Figure A.13: Average energy cost vs Start-to-goal distance vs Delta heading
for max local patch 0.0 and success rate range (0.8, 1.0). Different views
of the same data are presented to highlight the relationships between
variables.
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A. Additional Results

A.1.3 2D Time Plots

Figure A.14: Success Rate 0.1: Time distribution as per success rate for the
hurdle world cross dataset.
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A. Additional Results

Figure A.15: Success Rate 0.5: Time distribution as per success rate for the
hurdle world cross dataset.

Figure A.16: Success Rate 1.0: Time distribution as per success rate for the
hurdle world cross dataset.
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A. Additional Results

Figure A.17: Success Rate 0.1: Time distribution as per success rate for the
gap world cross dataset.

Figure A.18: Success Rate 0.5: Time distribution as per success rate for the
gap world cross dataset.
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A. Additional Results

Figure A.19: Success Rate 1.0: Time distribution as per success rate for the
gap world jumping dataset.

Figure A.20: Success Rate 0.1: Time distribution as per success rate for the
block world going up dataset.
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A. Additional Results

Figure A.21: Success Rate 0.5: Time distribution as per success rate for the
block world going up dataset.

Figure A.22: Success Rate 1.0: Time distribution as per success rate for the
block world going up dataset.
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A. Additional Results

Figure A.23: Success Rate 0.1: Time distribution as per success rate for the
block world going down dataset.

Figure A.24: Success Rate 0.5: Time distribution as per success rate for the
block world going down dataset.
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A. Additional Results

Figure A.25: Success Rate 1.0: Time distribution as per success rate for the
block world going down dataset.
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A. Additional Results

A.1.4 3D Time Plots

Figure A.26: Average time cost vs Start-to-goal distance vs Delta heading
for max local patch 0.0 and success rate range (0.8, 1.0). Different views
of the same data are presented to highlight the relationships between
variables.
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A. Additional Results

A.2 Different Planners

Obstacle avoidance planner 

Dijkstra planner using cost 
predictor 

Weighted A* planner using 
cost predictor 

Dijkstra planner using 
analytical cost 

Weighted A* planner using 
analytical cost 

Map for min-energy  
(start: blue dot; goal: pink triangle)

Figure A.27: Different planners for minimum-energy path.
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A. Additional Results

Obstacle avoidance planner 

Dijkstra planner using cost 
predictor 

Weighted A* planner using 
cost predictor 

Dijkstra planner using 
analytical cost 

Weighted A* planner using 
analytical cost 

Map for min-time  
(start: blue dot; goal: pink triangle)

Figure A.28: Different planners for minimum-time path.
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Text

Obstacle avoidance planner 

Dijkstra planner using cost 
predictor 

Weighted A* planner using 
cost predictor 

Dijkstra planner using 
analytical cost 

Weighted A* planner using 
analytical cost 

Map for long-horizon min-time 
(start: blue dot; goal: pink triangle)

Figure A.29: Different planners for long-horizon minimum-time path.
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