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Abstract

Reinforcement Learning (RL) presents great promises for autonomous agents.
However, when using robots in a safety critical domain, a system has to be
robust enough to be deployed in real life. For example, the robot should be able
to perform across different scenarios it will encounter. The robot should avoid
entering undesirable and irreversible states, such as crashing into obstacles and
ideally should meet the safety consideration even if its primary goals cannot be
achieved.

One way to improve an RL agent’s robustness is to explore a variety of
scenarios, environment parameters and opponent policies, via domain random-
ization. However, as an agent’s performance gets better, it becomes less likely
to explore the region the agent performs poorly. An approach to solve this
problem is Adversarial training, where an adversarial agent tries to inject noise
to make the ego agent perform poorly. However, in such a setup, it’s much
easier for the adversary to win over the ego agent, and hence ego agent often
fails to overcome the adversarial noise without expert supervision. Also, as
we move robots into more unstructured environments, environmental factors
can affect the distribution of state space and dynamics more than what can be
encoded as noise.

In my thesis, I will discuss how we can use curriculum learning to help an
agent explore against variety of different situations, opponents, and dynamics
efficiently to help achieve a robust performance. The first part of the thesis
will introduce ideas in curriculum learning and how it can be used to explore a
wide range of environment. The second part will be expanding such concept to
multiagent domain and see how curriculum learning can help find a robust policy
against collaborative and competitive, symmetrical and asymmetrical setups.
Finally, I will be expanding the findings to the Quality Diversity domain and
explore how the curriculum learning can help us to find a library of behaviors
that cumulatively achieves robustness.
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Chapter 1

Introduction

1.1 Advancements in Artificial Intelligence and

Need for Robustness

Artificial Intelligence (AI) and Deep Learning have experienced significant growth
and have shown great potential in recent years. Several companies are introducing AI
agents capable of recognizing and making suggestions based on data (79; 80), which are
already starting to improve our quality of life. There are also efforts to introduce agents
capable of not only making suggestions to humans when they see certain data but also
knowing how to physically interact with the world and execute it when they see certain
data. Regarding agents capable of making decisions on their own, Reinforcement
Learning (RL) shows great promise. Rather than requiring an expert to handcraft
and hardcode what actions to take per each situation, an RL agent can autonomously
train itself by exploring and interacting with real or simulated environments. RL
agents have already shown better than human performances in various simulated
environments, such as Go, racing, and even air-to-air combat (92; 104; 118)

Such application also raises a new challenge of robustness as summarized by
Figure 1.1. While agents can demonstrate a super-human performance, such agents
will not be deployed should the human operators not trust the safety of the agents.
For example, gaming AI is relatively well-trusted and deployed in real life. Even if the
gaming AI encounters a situation where it cannot deliver its full performance and fails
to win the game, the results are not catastrophic. The goal of a game is to have fun,
and as long as the human users enjoy the experience, a gaming AI that occasionally
loses the game is acceptable. Likewise coding assistants such as the Open AI’s Copilot
is relatively well-trusted and deployed. While the agent will make coding suggestions,
it is ultimately the human programmer who will accept the recommendations and run
the program. Assuming that the human programmer does his or her job, the agent’s
failure will not directly lead to a catastrophic failure. On the other hand, in the
case of autonomous driving, autonomous agents are the decision-making algorithms
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Figure 1.1: Figure of a table summarizing safety challenges with respect to application

that are often the last piece of an autonomy pipeline that interacts with the real
world. Autonomous driving agents are designed with the goal of removing safety-driver
altogether and therefore, should an autonomous agent make a failure, it will lead to a
failure without humans to filter the errors and the results can be catastrophic and
sometimes irreversible depending on the situation. Therefore, to deploy autonomous
agents in real life for safety-critical applications, we not only need the agent to perform
well but also do so consistently across various situations and environments without
resulting in irreversible and catastrophic states. This thesis will approach robustness
as a way to ensure that the agent will not end up in an irreversible and catastrophic
state in the situations it is expected to operate in.

1.2 Approach for Addressing Robustness

Research for robustness in machine learning comes in many ways. Some focus on
verification that a trained model will not fail in the operating dataset (40; 55).
Extending this concept to the RL, one can use Control Barrier Functions (CBF) (3)
to ensure that the RL policy will not venture into irrecoverable states (30). CBFs are
designed with expert knowledge of the domain and dynamics to define which states
are safe and recoverable.

In conjunction with this idea, we focus on how wide situations can an autonomous
agent cover and solve without entering irreversible and catastrophic zones. In this
thesis, we focus on robustness as an agent’s capability to achieve high performance in
a wider field of situations. We aim to train robust policies capable of being deployed
into safety-critical situations such as driving and flying where the inability to handle
some of the unavoidable long-tail scenarios prevents the deployment of RL agents.
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1.3 Our Approach for Robustness

One of the main issues for robustness in RL is that training against the last 10% of
the situations is often significantly more difficult than training against the first 90%
of the situations. As an agent’s performance gets better and better it is less likely to
encounter a situation in which it does not do well, resulting in inefficient exploration
of the problem domain. In addition, as training progresses, an agent moves closer and
closer to its local minima, and adding a new skill becomes more difficult as an agent
approaches convergence. To achieve robust performance, an agent should have a way
to explore and gather data better than just randomly exploring the environment.

In conjunction with the above problem, our thesis will be focusing on the use of
curriculum learning (10) for training robust policies for safety-critical applications.
Chapter 2 will introduce the main ideas in curricular learning and genetic algorithms
and show how such ideas can be incorporated to train an RL agent to be robust against
a diverse set of environments and dynamics. The included empirical study shows
how such an approach can result in agents x2 8 less likely to fail a task compared to
state-of-the-art baselines.

Aside from differences in environment, the huge variety of opponents agents can
face during deployments presents a huge challenge for training an agent capable of
handling a variety of situations. For example, when driving a car, an agent must
solve against a variety of different road conditions, car dynamics, and other vehicles’
behaviors. A robust agent should be capable of learning a general policy that applies
to a wide variety of situations and dynamics, as well as coping with the training
instability when trying to learn against such a breadth of training examples.

Chapter 3 will expand the idea into the multiagent domain and show how curricular
RL can be used to train an RL agent to be robust against a diverse set of opponent
policies. The included empirical study shows how such an approach can outperform the
state-of-the-art approaches in both competitive and collaborative games, symmetrical
and asymmetrical. To the best of our knowledge, we are the first approach to solve
the Open AI AntSumo (6) benchmark by training from scratch without pre-trained
weights or expert supervision.

Lastly, one of the unavoidable issues with any policy is that it is difficult for a
policy to be completely free of failure modes in which the policy is not well-trained.
Sometimes, this could arise from a trade-off between performance and safety where
meeting both criteria is conflicting. In some cases, it could be that the situation is
so rare that was not properly considered nor included during the training phase. In
real life, instead of proving robustness against the unpredicted, robustness is often
achieved by redundancy and multiple backup systems. For example, in the case of
the aerospace industry, should aircraft exit normal operating boundaries predefined
by the primary flight controls, an aircraft will switch to alternative control law. This
delegates more control authority to the pilots who provide redundancy and backup in
situations not fully covered by the avionics computer.
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Inspired by such an approach, Chapter 4 will expand the idea of curriculum RL
to quality-diversity, where we train a population of multiple policies with different
behaviors to cover a wider area of the scenario space. The included empirical study
shows that such an approach can cover a wider range of benchmarks and scenarios
while minimizing expert supervision required in previous approaches.
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Chapter 2

Robustness With Respect to
Environment

2.1 Introduction

When training an RL agent, learning to solve the remaining 10% of the scenarios is
often significantly more difficult compared to learning to solve the first 90% of the
scenarios. This presents a challenge to using RL in safety critical applications, such
as autonomous vehicles, where robustness, the probability of an agent not landing in
irreversible and catastrophic states (i.e. collision) plays a crucial role in determining
product viability. In a typical RL setup, as an agent’s performance improves, it
becomes not only rare to encounter and collect data on the scenarios in which the
agent does poorly but also difficult to learn new behaviors when approaching a local
minimum. This results in an agent converging to a suboptimum with several scenarios
left unsolved.

One prominent approach for robust RL is to use adversarial agents to inject
adversarial noise to explore challenging situations. However, adversarial agents often
converge to the worst case scenario in which the protagonist cannot learn and requires
expert supervision to avoid this issue. Some scenarios are not well represented by
adversarial noise, such as a particular sequence of tasks or environment setup difficult
for the agent. While other approaches involve encoding the environment or generating
a curriculum to help learn difficult tasks, they are mostly limited to benchmarks with
small scenario space where low-dimensional encodings can be used.

In this section, We develop genetic curriculum (GC) which uses a genetic algorithm
to generate curricula for training robust RL agents. By running a genetic algorithm,
GC will generate training scenarios that the agent cannot solve, helping the agent to
explore the scenario space efficiently. As scenarios generated by the genetic algorithm
will be similar to each other, a skill learned from one scenario can easily be transferred
to another scenario, allowing them to work as a curriculum helping the agent to learn
faster and converge to a more optimal policy. As this algorithm is non-parametric, it
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can use raw scenario encoding of non-fixed length, minimizing expert supervision of
designing encoding methods and helping support highly complex scenario description
as the agent’s performance improves.

2.2 Related Works

In robust RL where an agent should be trained against and verified in a variety
of different scenarios, recent advances in sim2real (1; 16; 46; 60) and high fidelity
simulators (26; 96) makes it feasible to collect realistic training data in scenarios
too dangerous and difficult to collect in real life. However, even with this setup, an
agent would often leave a long tail of unsolved scenarios. As an agent becomes more
robust, it becomes less likely to encounter and collect data from situations where the
agent fails. Even when data is available, it is often difficult to learn new skills as the
agent would often be approaching a local minimum optimized towards more probable
scenarios.

Adversarial training is one such method for gathering data in the region where the
agent does not do well. Showing success with classical RL (54; 70; 78) and deep learning
architectures (41; 64; 98; 119), adversarial training in RL pairs a protagonist agent with
an adversary agent each playing a zero-sum game of maximizing/minimizing reward
in the environment. Robust adversarial RL (RARL) (90) uses an adversary to apply
external force to the protagonist. Risk averse robust adversarial RL (RARARL) (82),
probabilistic action robust Markov decision process (MDP) and robust action robust
MDP (PRMDP / NRMDP) (112) uses adversaries to inject action noise. However,
some challenging situations are difficult to represent as noise, such as particularly
hard scenarios or environment setups. Also, such a min-max setup often leads to the
adversary quickly converging to a worst-case scenario too difficult for the protagonist
to learn. GC differs by not only encoding scenarios and environment setup instead of
adversarial noise but also generating supporting scenarios that help the agent to learn
new skills.

Fingerprint policy optimization (FPO) (87) shares insights on encoding envi-
ronments and scenarios. Building upon the previous works on classical RL (18)
(86), FPO uses Bayesian optimization to select the training setup with the biggest
expected performance improvement. However, such approaches have been limited
to low-dimensional fixed-length encoding for training environments. GC differs by
using non-parametric optimizers to use non-fixed length encoding. This allows us
to minimize expert supervision by directly using the raw values of a simulator while
being more versatile to adapt to the agent’s changing needs with no information loss.

Curricular learning explores generating supporting scenarios to help learn new
skills. Organizing training data to gradually introduce more complex concepts, (10),
curricular learning has shown success in supervised learning tasks (9; 43; 56; 63; 121)
as well as various RL tasks (4; 35; 36; 37; 51; 53; 59; 76). Automatically generating a
curriculum of similar yet gradually more complex scenarios is an ongoing question
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in curriculum learning. Self-paced deep RL (SPDL) (62) is one such approach of
exploring how curriculum can automatically be generated based on the agent’s current
performance. At each epoch, SPDL locates the distribution of scenarios the agent
currently performs well and will select training scenarios as a distribution progressively
moving towards the goal distribution. However, SPDL likewise has been limited
to low-dimensional fixed length encoding of scenarios. we explore non-parametric
approaches to expand the ideas to non-fixed raw encoding of curriculum.

Figure 2.1: Curriculum generation during POET(115). Unlike GC, POET runs
training inside genetic algorithm, greatly increasing computational load.

Paired open-ended trailblazer (POET) (115) borrows several elements from genetic
algorithms to use non-fixed length encodings. As shown in Figure 2.1, POET starts by
adding a pair consisting of a random agent (A0) and a random training example (E0).
During an epoch, all pairs that haven’t reached a satisfactory performance are trained
in parallel. At the end of each epoch, a new pair is generated by adding a small random
perturbation, or mutation, to an existing example and pairing it up with a new agent
that inherits the parameter weights of the existing agent that performs best on the new
example. As POET has training nested inside the genetic algorithm, the algorithm is
computationally expensive as resources spent by any agents not contributing to the
performance of the best-performing agent are wasted. GC is computationally more
efficient by separately running the genetic algorithm outside of the loop. At the end of
each epoch, the current policy is fixed and the genetic algorithm runs to generate a set
of scenarios the agent cannot solve. Furthermore, POET uses mutation to generate
new scenarios. This makes the search for new scenarios an inefficient random walk and
makes it difficult to advance towards scenarios drastically different from the starting
scenario. GC on the other hand incorporates crossover, the processing of mixing
sequences from two parent sequences to generate two offspring, to help cover a wider
variety of scenarios faster.
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2.3 Background

This chapter examines continuous space MDP represented as a tuple: [S,A, Pψ, rψ, γ]
where S is a set of states, A action space, and γ ∈ [0, 1) is the temporal discount
factor. Scenario ψ are not fully observable to the agent, such as obstacles situated
out of the line of sight or an internal systems failure. Pψ and rψ represent the state
transition dynamics and reward function of the scenario. In the event of a partial
engine failure related to fuel pumps, the engine would be burning less fuel per second
and will be delivering less thrust, hence the state transition probability and reward
on fuel usage will be different from those of a nominal scenario. The agent’s policy,
π(a | s) maps states s ∈ S to a ∈ A. The utility of a policy π for scenario ψ is the
expected return, Jψ(π) = Eat∼π

∑
t γ

trψ(st, at).
During training, an RL algorithm seeks the optimal policy π∗ by exploring and

gathering data about reward and state dynamics. The data gathered will be dependent
on the distribution of scenarios the agent experienced during training ptrain(ψ);

π∗ = argmax
∑
ψ

ptrain(ψ)Jψ(π) (2.1)

2.3.1 Problem Statement

For a given scenario, ψ, I measure success as follows;

Gψ(π) =

{
0, if π fails for ψ
1, otherwise

(2.2)

Failure is defined as failing to achieve a goal before exhausting a resource budget
set by the user. This could be a walking robot falling down before reaching a target, a
wheeled robot crashing into a stationary object, a manipulator robot reaching certain
time steps with a cumulative reward lower than a threshold. A robust algorithm
should minimize the probability of failure during testing;

π∗
robust = argmax

∑
ψ

ptest(ψ)Gψ(π) (2.3)

Ideally, the trained agent should satisfy the robustness criteria π∗ = π∗
robust. As

the distribution of scenarios encountered during testing, ptest(ψ), and the definition of
failure Gψ(π), are problem specific, most papers focus on Jψ(π) and ptrain(ψ). While
reward shaping with Jψ(π) is possible, such as giving a high penalty towards failure,
this often requires expert supervision and fine-tuning for the training to be stable. I,
therefore, take the curricular approach of investigating how ptrain(ψ) can be better
selected to train a robust agent.

In other words, the utility of a policy J comes from the reward function of the
environment and this is the optimization goal of the RL algorithm. On the other hand
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G is for our safety objective and is coming from the boolean definition of whether a
policy has solved the scenario or not, and this is the optimization goal or the fitness
function of our curriculum generator. With the curriculum generator oversampling the
difficult cases using G and the RL algorithm trying to optimize its performance using
J against the given curriculum, we try to optimize our policy based on our robustness
goal of solving more and more scenarios.

2.4 Approach

To train a robust agent, We select training scenarios as scenarios the agent currently
fails in. Solving these examples directly addresses Equation (2.3). We also select
the scenarios to be similar to each other. This follows the idea of curricular learning
on building a set of similar scenarios with varying types of challenges and levels of
difficulty to help transfer skills from one task to another more easily. Also, just as
adversarial RL adds perturbations to make an agent robust to a variety of situations,
the differences in the scenarios will help an agent learn not only a specific task but
also a variety of similar tasks as well. We explore GC, which borrows concepts from
genetic algorithms and curriculum learning to achieve these goals.

At each epoch, curriculum generation starts by initializing a population Ψpopulation

of size Mpop with randomly generated scenarios. We express scenarios as a sequence
of none-fixed length ψ = (z0, z1, z2, ...) where each vector z defines the order of values
to be used which would otherwise be filled in by a random number generator in the
original benchmark. Factors of variation include size and duration of obstacles and
bumps on terrain to the time of occurrence, or type and magnitude of an actuator
failure of a legged robot depending on the benchmark. At each iteration, Ψpopulation

is evaluated by current policy π. ψ is appended to Ψtraining if π is unable to solve ψ.
This provides our fitness function.

The next Ψpopulation is generated by crossover. With L(ψ) as the length of encoding
for ψ, the probability of a scenario being chosen as a parent for a crossover operation
is higher if the scenario’s encoding is shorter. This encourages sequences to only retain
the sections critical to failure and avoid having offspring diverse in irrelevant ways.
A selected parent change a random section of its encoding with a random section of
another parent’s encoding as shown in Figure 2.2. The crossover operation repeats
until |Ψpopulation| ≥ Mpop. To introduce new vectors to the gene pool, every ψ in
Ψpopulation has mutation probability pµ. The mutation is equivalent to conducting
crossover with a randomly generated sequence as shown in Figure 2.2.

Once |Ψpopulation| ≥ Mpop, GC exits the scenario generation cycle and Ψtraining

is used to train π for an epoch. Policy training can be done by any RL algorithm.
For example, the BipedalWalker benchmarks (13) used Soft Actor Critic (19) as
Train Agent. As for the reward function given to the RL algorithm, we used the
default reward functions of the environments we implemented. Algorithm 2 shows
the pseudocode of GC.
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Figure 2.2: Visualization on crossover and mutation. GC use genetic algorithm to
use raw, non-fixed length encoding to generate similar scenarios that can act as
a curriculum and dynamically change length of encoding to keep up with agent’s
performance.

pparent(ψ) =

{ 1
(max(L(i))−L(i)+1)

, if π fails ψ

0, otherwise
(2.4)

Algorithm 1 Genetic Curriculum (GC)

1: Initialize Policy π0
2: Input training steps, iterations, epochs, Mtrain, Mpop, pµ for i in epochs do

end
3: Initialize Ψpopulation

4: Initialize Ψtrain = {}
for k in iterations do

5:
end
Fitness = evaluate(Ψpopulation, πi+1)

6: Ψtrain = collect(Ψtrain,Ψpopulation,Fitness)
if |Ψtrain| > Mtrain then

7:
end
Break

8:

9: Ψpopulation = crossover(Ψpopulation,Mpop,Fitness)
10: Ψpopulation = mutate(Ψpopulation,pµ)
11:

while steps < training steps do
12:

end
πi+1 = Train Agent(πi, Ψtrain)

13:

14:
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GC has several desirable features. As a non-parametric optimizer, it is easy to
adapt to various types of tasks and policies. ψ not only has no fixed length, but as
visualized in Figure 2.2, offspring scenarios can easily get longer or shorter during
curriculum generation. This allows encoding length to expand and contract as needed
to accommodate changes in the agent’s performance over time. During the experiments,
the encoding dimension dynamically changed from 20 - 300D, which would have been
difficult with Bayesian optimization as used in FPO (87). Another feature visible in
Figure 2.2 is that scenarios within a curriculum will be similar to each other. With
the crossover and mutation operations, all scenarios have part of their sequence shared
recurring in another scenario. This similarity makes it easier to transfer skills from
one to another.

2.5 Experiments

2.5.1 Benchmarks

Figure 2.3: Screenshot of Benchmarks used in this chapter (from left to right),
BipedalWalker(Hardcore/System), LunarLander, Hopper, and Walker which tests
agent’s robustness against a variety of obstacle courses / actuator failure.

BipedalWalkerHardcore (13) involves agent observing the world with LIDAR,
IMU, and joint encoder values to control torque on each of the bipedal walker’s leg
servos. The goal is to traverse through a randomly generated obstacle course filled
with stairs, pitfalls, and walls. While individual obstacles are easy, the challenge is to
learn a robust policy that can solve a variety of sequences of obstacles without falling.

BipedalWalkerSystem is a modified version of the above where the agent
traverses through a fixed sequence of obstacles with simulated random system failures.
When a failure is triggered at a random timestep, the affected servo will only be able
to deliver 60 -100% of the original power depending on the severity. While individual
scenarios are easy, the challenge is to learn a robust kinetic energy management skill
to go through obstacles even if an actuator fails.

LunarLander is a modified benchmark of the one provided by (13). Using
position and velocity observations, an agent has to safely land on the landing pad
using its main engine (ME) and side thrusters. When failure is triggered at a random
timestep, the throttle of the affected rocket motor is limited to 60 - 100% of the
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nominal power. Under nominal scenarios, the best policy is to wait until the last
moment and fire the ME at full thrust to minimize fuel used. However, if a system
failure occurs, the lander may crash due to ME being unable to provide enough thrust.
A robust policy should keep the rate of descent to a manageable level to maximize
the possibility of landing even when a failure occurs.

Hopper and Walker are modified benchmarks based on the original versions
provided by (29). When a random system failure occurs, a torque limit of 75 - 100% of
the nominal maximum is applied to the affected servo. To make the benchmarks more
challenging, I mount a simulated payload of sizes 0.75 and 0.5 on the Hopper and
Walker legged robots. A policy is considered to have failed if its simulated payload
touches the ground.

2.5.2 Baseline Algorithms

Some of the state of the art approaches have been chosen as follows. To compare GC
against adversarial RL approaches, I chose RARL (90), RARARL (82), and PRMDP
/ NRMDP (112). I chose FPO (87) for comparison against approaches that control
the training environment. For comparison against curricular RL, I chose SPDL (62)
for parametric curricular approaches and POET (115) for non-parametric approaches.

The algorithms in this chapter require a base RL algorithm for updating policies.
RL algorithms listed on top of the respective leaderboards for the original version of
the benchmarks are used as base RL algorithms. BipedalWalker and LunarLander use
soft actor-critic (SAC) (19), while Hopper and Walker use twin delayed DDPG (TD3)
(94). SAC uses γ = 0.99, learning rate of 1e-4, batch size of 100, and replay memory
size of 1e6, while TD3 uses γ = 0.98, learning rate of 3e-4, batch size of 100, and
replay memory size of 2e5. Both algorithms use fully connected networks consisting
of layers sized 400 and 300 updated by ADAM (61) and activated with the ReLU
function.

2.5.3 Evaluation and Hyperparameters

One of the main challenges for comparing the performance of each algorithm is the
vastly different computation requirements of each algorithm during training. FPO,
POET, SPDL, and GC require additional steps for evaluating the agent’s performance.
While this can be expensive, evaluation can not only run in parallel but is also cheaper
than exploration which requires backpropagation. Adversarial RL algorithms, on
the other hand, had extra computational costs for training both protagonist and
adversarial networks at the same time. As this chapter is concerned about how robust
a converged solution is, I report results based on how many epochs have passed.
Each epoch consists of the same numbers of policy updates and exploration steps
per benchmark. To share insights in cases where the total number of environment
interactions is more important, this chapter also include a separate set of experiments
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on the LunarLander benchmark where values are reported based on how many steps
each algorithm interacted with the simulator.

This chapter report performance with mean and standard error on 10 random
seeds per algorithm per benchmark, with testing sets consisting of randomly generated
scenarios. For BipedalWalker benchmarks, only 3 random seeds were used to balance
accuracy and computational cost. This is because it would take 7 - 14 days to approach
convergence for such benchmarks. In the case of POET where multiple agents are
trained simultaneously, I report the performance of the best agent in terms of reward
as the result of the random seed. Table 2.1 shows the length of each epoch, testing
set size, and the number of epochs for each benchmark.

To offer a fair comparison, a hyperparameter search is conducted for adversarial
RL algorithms as shown in Table 2.2. Hyperparameters that performed the best
overall throughout the benchmarks were selected.

The size of policy evaluation for FPO, POET, SPDL is the same as the size of
policy evaluation used for reporting performance during training. POET also requires
manual reward thresholds on what is considered as not too trivial nor difficult before
adding an scenario for training. BipedalWalker benchmarks use the same threshold of
50 - 300 as used in the original POET paper. For other benchmarks, I selected the
value by checking their training curves and marking when the reward starts to climb
and flatten. The threshold is set as 100 - 250 for LunarLander and 1000 - 2000 for
Walker and Hopper benchmarks.

Table 2.1: Training Duration and Testing Resolution

Benchmark Steps per Epoch Testing Set Size Number of Epochs
BipedalWalkerHardcore 1e5 1000 350
BipedalWalkersystem 1e5 2500 30

LunarLander 1e4 2500 80
Walker 5e4 2500 60
Hopper 5e4 2500 40

Table 2.2: Hyperparameter Search on Baseline Algorithms

Algorithm Parameter Tested Selected
RARAL α 0.05,0.1,0.5 0.1

RARARL ξ 1,5,10,20 10
PRMDP α 0.05,0.1,0.3,0.5 0.1
NRMDP α 0.05,0.1,0.3,0.5 0.05

The default versions of the benchmarks random use number generators to create
scenarios at each run. For FPO and SPDL, I engineered a fixed-length encoder where
the range of the numbers coming out of the random number generator was defined.
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For POET and GC method, the string of numbers to be used in the place of the
random number generator was stored in a sequence.

For GC, the curriculum size is 300 for BipedalWalker benchmarks and 100 for
the rest, which is a rounded value on how many times the simulators are reset per
each epoch. The size of parent and offspring populations is 100 each which is a
rounded value on the minimum size required to have at least two or three failure
sequences upon random initialization to act as parents for subsequent generations.
While hyperparameter tunning was also conducted on pµ, GC didn’t show much
sensitivity towards pµ and a value of 0.1 is used. The GC’s reliance on crossover more
than the mutation rate is highlighted in the ablation study.

2.5.4 Ablation Study

To better understand how GC help improves the robustness of an agent, an ablation
study with BipedalWalkerHardcore is conducted. When generating a curriculum filled
with failure scenarios, NoMutation turns off mutation, NoCrossover turns off crossover,
and RandomFailure fills a curriculum with examples that are randomly generated and
are unsolvable when tested by current policy. To see how a genetic algorithm can
generate a curriculum of similar examples and its effect on performance, the mean
genetic distance of a curriculum is also reported. Every time a new example is loaded
during training, genetic distance is calculated by counting the minimum number of
variables that have to be changed, added, and deleted to convert the previous example
to the new example. Single Run provides additional data on the effect of genetic
distance on robustness by generating a curriculum consisting of one failure scenario,
making the mean genetic distance of the curriculum to be zero.

2.6 Results

2.6.1 Comparison with Baseline Algorithms

As shown in Figure 6.1 and Table 3.1, GC consistently improves over the state of
the art algorithms especially in terms of robustness. Agents trained by GC are 2 - 8x
times less likely to fail compared to those trained on baseline SAC / TD3.

One interesting observation from Table 3.1 is that even when agents show quite
a difference in performance in terms of robustness, such differences are less obvious
when looking at rewards only. When trained, big reward coming from the majority
of the cases tends to dominate over bad rewards coming from the minority of cases.
During training, similar issues are observed where the failure rate continues to converge
when the reward does not show significant progress. This highlights the challenge of
capturing robustness alone by reward and using it to optimize the policy.

The results from FPO and SPDL highlight the GC’s benefit of using raw scenario
encoding of non-fixed length. As a non-parametric optimizer, GC can adapt the
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Table 2.3: Reward and Mean Failure Rate of Trained Agents(%)

Reward
Algorithm BipedalWalkerHardcore BipedalWalkerSystem LunarLander Walker Hopper
Base RL (SAC / TD3) 291.76 ± 17.41 300.94 ± 1.85 265.30 ± 1.92 2300.81 ± 29.30 2266.64 ± 3.05
RARL 7.67 ± 13.49 289.25 ± 5.08 28.00 ± 12.24 122.60 ± 4.58 203.12 ± 4.53
RARARL 230.14 ± 19.52 270.89 ± 13.59 272.29 ± 0.80 2156.48 ± 10.31 2199.82 ± 3.18
PRMDP 285.30 ± 25.66 298.42 ± 0.23 260.73 ± 2.28 2165.19 ± 11.36 2275.72 ± 2.04
NRMDP 289.82 ± 19.25 291.42 ± 5.05 254.99 ± 1.27 2147.51 ± 1.30 2092.10 ± 3.85
FPO 118.60 ± 1.21 286.47 ± 10.84 256.31 ± 4.61 2134.83 ± 5.09 2044.73 ± 3.21
POET 24.60 ± 18.61 -62.58 ± 14.14 213.30 ± 3.94 2068.50 ± 31.01 2129.93 ± 1.81
SPDL 305.90 ± 0.45 289.13 ± 5.19 221.31 ± 10.71 589.78 ± 74.04 2274.70 ± 13.06
GC (Ours) 304.33 ± 1.65 300.00 ± 1.00 272.82 ± 0.30 2342.61 ± 5.45 2283.48 ± 2.01
Failure Rate(%)
Algorithm BipedalWalkerHardcore BipedalWalkerSystem LunarLander Walker Hopper
Base RL (SAC / TD3) 10.20 ± 0.71 3.62 ± 0.58 5.19 ± 1.20 4.31 ± 1.00 12.99 ± 3.52
RARL 91.27 ± 3.28 5.97 ± 2.87 73.56 ± 13.52 79.01 ± 16.82 85.61 ± 9.77
RARARL 27.69 ± 3.14 15.29 ± 5.27 4.33 ± 0.88 3.85 ± 0.41 14.36 ± 5.27
PRMDP 11.23 ± 0.36 2.85 ± 0.40 2.24 ± 0.90 3.88 ± 1.75 12.46 ± 4.70
NRMDP 11.00 ± 1.27 5.02 ± 1.38 6.41 ± 1.15 6.96 ± 2.09 28.32 ± 5.91
FPO 67.60 ± 19.05 8.30 ± 4.55 11.73 ± 2.71 12.12 ± 4.83 38.33 ± 5.11
POET 84.96 ± 9.45 100 ± 0.00 29.53 ± 2.36 12.31 ± 7.40 24.98 ± 7.26
SPDL 20.87 ± 7.40 12.57 ± 2.41 27.47 ± 4.13 21.18 ± 6.56 8.69 ± 6.57
GC (Ours) 3.96 ± 0.37 2.16 ± 0.45 0.64 ± 0.02 2.35 ± 1.11 7.30 ± 2.79

Figure 2.4: Training Curve for BipedalWalkerHardcore. Lower the better

length of its encoding to generate more complex scenarios as the protagonist agent’s
performance improves. The effect is most well observed in the case of BipedalWalker-
Hardcore where GC expanded the encoding size by 10 - 15 times during training to
precisely describe the what training scenarios should be.

Also, the results from adversarial RL show selecting a supporting curriculum is
as important as generating challenging scenarios during training. While adversarial
agents can generate challenging situations during training, they do not present in a
way that the trainee can easily learn new skills. The challenges of injecting difficult
cases without supporting a curriculum are further highlighted in the following section
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on the ablation study.
The effect of not nesting training within the genetic algorithm can be observed

from POET’s results. The original POET paper reported a reward of around 250 when
trained and tested on scenarios based on the BipedalWalkerHardcore. POET showed
a similar performance when evaluated on the training set during the experiments.
However, when evaluated against the testing set which includes the entire scenario
space as designed by the benchmark, POET performed poorly agent’s skills were
not generalizable across a wide variety of scenarios. As POET is computationally
expensive and relies only on mutation for curriculum generation, each trained agent
could only experience less training data from a less diverse set of scenarios compared
to those from GC.

An interesting observation from the trained policies is while there are some scenarios
where an agent had more difficulty solving than the others, there was no clear trend
describing which scenario is objectively more difficult than others or a priori difficult
scenarios where solving one case means being able to solve all the easier cases. When
a scenario that a trained agent consistently fails are used as a training scenario to a
randomly initialized agent, the agent would learn how to solve the scenario. However,
regardless of the random seed used, finding a general policy that solves all the scenarios
was difficult. This shares insight that a robust training scheme should not only focus
on performance per each task but also on learning a general skillset applicable across
the tasks.

2.6.2 Comparison with Respect to Environment Interactions

Figure 2.5: Characteristic Training Curve from LunarLander Benchmark with Respect
to Environment Interaction Steps

One of the important criteria in RL is how efficiently it can learn per the number
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of environment interactions. Figure 2.5 shows that while GC is a bit slow at the start
due to the extra cost of running genetic algorithms, the cost is offset by having better
training examples. Unlike the baseline RL (SAC) and adversarial RL methods where
marginal utility per environment interaction quickly diminishes, GC can sustain the
rate of performance improvement longer and converges to a better solution.

2.6.3 Ablation Study

Table 2.4: Reward, Failure Rate, and Mean Genetic Distance between Training
Examples during Ablation Study

Method Reward Failure Rate(%) Genetic Distance
Base RL (SAC) 291.76 10.2 22.65
GC (Ours) 304.33 3.96 10.60
No Mutate 294.17 8.51 10.44
No Crossover 271.72 17.63 20.92
Random Failure 251.37 24.50 23.34
Single Run 99.45 33.33 0

Figure 2.6: tSNE analysis on genetic distance of generated scenarios

One of the insights from ablation studies in Chapter 2.1.7 is, except for Single
Run, curricula with similar scenarios, i.e. shorter mean genetic distance, perform
better. While Random Failure builds a curriculum with failed scenarios, the similarity
between the scenarios is not ensured. In the case of No Crossover, genetic similarity
between scenarios is low as unlike crossover which mixes sequences from two parents
to generate two offsprings, mutation only creates one offspring from one parent. The
difficulty in transferring skills between more distant scenarios seems to result in No
Crossover and Random Failure performs poorly.

Figure 2.6 on the other hand highlights how a coverage over scenario space affects
performance for curriculums with short mean genetic distance between scenarios. As
an agent is trained based on scenarios it experiences, having curriculum scenarios
more spread out in the scenario space can help the agent generalize across diverse
scenarios. While Single Run keeps genetic distance between scenarios to a minimum,
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it offers a poor coverage of the scenario space as in Figure 2.6. Genetic Distance
between scenarios generated by No Mutate is similar to those in GC, but the former
offers narrower coverage of the scenario space. While No Mutate can only reorganize
genetic sequences it had upon initialization, GC can introduce new sequences through
mutation, allowing it to explore a wider scenario space and train a more robust agent.

2.7 Conclusion

This chapter explores genetic curriculum, an RL algorithm that uses a genetic algorithm
to generate a curriculum of scenario for training RL agents. Through empirical
study, the algorithms show improvement over existing state-of-the-art approaches
concerning robustness. For supplementary videos to this chapter, please visit https:
//sites.google.com/andrew.cmu.edu/robustreinforcementlearning
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Chapter 3

Robustness With Respect to
Opponent Policies

3.1 Introduction

Competitive multi-agent reinforcement learning (RL) has gained interest for its po-
tential in various fields, such as gaming, robotics, finance, and cybersecurity, where
agents need to outperform others. To discover new competitive strategies, self-play
is often used to explore the environment with RL agents. Most self-play algorithms
train ego agents against a population of opponent policies to avoid overfitting to a
specific opponent. (49; 50; 114).

When training against a population of policies, selecting the policies most useful for
training is challenging. Some works use game-theoretic methods to select opponents
(65; 77), but finding approximate Nash Equilibria in setups with large search spaces is
costly. Others use curriculum learning to select opponent policies (99), but relying on
random sampling to find candidates is not scalable with large search spaces. Therefore,
we propose using genetic algorithms, which have proven efficient for searching and
generating scenarios with large scenario spaces in single-agent domains (108).

Another issue with self-play is training instability due to the adversarial vulner-
ability of RL policies (67; 97; 120). RL agents often overfit to a specific opponent’s
weakness, resulting in non-generalizable behaviors. For example, when training against
a mujoco-ant agent trained to play sumo (7), agents would learn to win by waving
their legs to confuse the opponent, instead of the non-trivial solution of pushing the
opponent. Exploitation destabilizes self-play, especially during the initial phases when
the opponent’s policy is underdeveloped. Initiating opponents with expert demonstra-
tions (114) to avoid this issue can be costly. We, therefore, introduce GenOpt Agents,
which are environment-agnostic open-loop agents optimized by genetic algorithms to
match the performance of the ego agent.

To summarize, our approach utilizes genetic algorithms to efficiently search and
generate an optimal training curriculum in expansive search spaces, while GenOpt
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Agents improve training stability. An ablation study provides insights into our
methodology’s effectiveness and design choices. Figure 3.2 summarizes our approach.
Supplementary information and codes can be found in https://github.com/yeehos/

GEnetic-Multiagent-Selfplay.git

Figure 3.1: Overview of our proposed approach: During training, the ego student
agent is trained against a scenario describing the choice of opponent, action script
for the GenOpt Agent, and the choice of environment parameters. Our curriculum
records regret and win/lose/tie outcomes for each scenario. Based on the performance
of the scenarios in the previous population, our curriculum generator uses a genetic
algorithm to generate a new population of scenarios to be used to train the agent for
an epoch at each fixed interval of steps.

3.2 Related Works

Game Theoretic Approach to Self-Play
Training an RL agent in competitive multi-agent environments requires an opponent.

Unlike rule-based opponents (15) or expert demonstrations (17), self-play (103; 111)
agents to autonomously explore and discover competitive behaviors. However, training
against only one RL opponent can suffer from the instability of opponent behavior
changing over time and ego agent overfitting to a specific policy (38). Therefore,
Fictitious Self-Play (FSP) (14; 49; 66) proposes to train against a population of
opponents. In deep RL, this opponent library is often compiled by saving checkpoints
of the ego policy during training (12; 114).

Expanding on these findings, game theoretic approaches like Policy Space Response
Oracle (PSRO) (12; 65; 114) utilize Nash equilibrium (77), a stable point in a multi-
agent game where no player can unilaterally change their strategy to improve their
payoff. PSRO calculates an approximate Nash strategy to determine the mixture of
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checkpoints to load as opponents. However, computing an approximate Nash strategy
can be computationally intensive if the policy space is large. Moreover, effectively
learning policies in complex, non-stationary, and partially observable multi-agent
environments remains a significant challenge. While some approaches use ensemble
learning to split the learning task (106) (105), they are limited to simpler, discrete
action setups. This chapter approaches this issue with a curricular viewpoint.

Curricular Reinforcement Learning

When it comes to learning a policy for a difficult problem, Curricular RL suggests
that agents can learn faster by first being exposed to simple tasks and scenarios and
gradually progressing to similar but slightly more difficult tasks. (2; 22; 25; 35; 36; 53;
62; 69; 76; 93).

Various papers explore curriculum optimization in the single-agent domain, such
as Bayesian Optimization (88), teacher agents (27), and genetic algorithms (52;
115; 116). Genetic operations make scenarios similar to each other, thus achieving
curriculum learning by facilitating the transfer of skills. Many genetic approaches rely
on mutations, which make small alterations to the encoding of a scenario, in order to
populate a curriculum with similar scenarios.

On the contrary, the Genetic Curriculum (GC) (108) uses population-wide genetic
operations, such as crossover, for curricular RL. Crossover involves merging sequences
encoding across a population, helping the transfer of skills within the curriculum by
enhancing similarity among the scenarios. While successful in generating an effective
curriculum in a large scenario space, GC requires costly evaluation steps to validate
scenarios. Additionally, GC cannot regulate scenario difficulty.

One way to regulate difficulty is to use regret, which quantifies the gap between the
current obtained return with the maximum possible return on the scenario. Showing
success in various single-agent domains (57; 84), regret has been applied to curriculum
learning in a multi-agent setup by Multi-Agent Environment Design Strategist for
Open-Ended Learning (MAESTRO) (99). While MAESTRO introduced optimization
of both environmental parameters and opponent selection to guarantee robustness, it
is limited by relying on domain randomization to uncover new scenarios. Studies in
GC (108) suggest this can lead to suboptimal performance. Unlike those generated
by population-wide genetic operations, scenarios generated by domain randomization
may not be similar to each other, making transfer of skills difficult and learning slow.
We, therefore, combine both population-wide genetic operations with regret regulation
for multi-agent curriculum generation.

Open-Loop Opponents for Multi-Agent Self-Play

Self-play can be unstable, especially at the beginning of training when the opponent
is not well-trained to make effective moves in the game. While some approaches involve
hand-crafted opponents (114) or agents trained via imitation learning from expert
data (117), such supervision can be costly.

No-OP (No Operation) agents (109), which do not take any actions, can reduce
the need for expert supervision. However, their simple and limited behavior limits the
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approach to certain types of environments. For instance, a walking robot will fall if
there is no torque in the joints, while a plane with no control input will eventually
crash by losing speed and altitude due to drag. Our GenOpt addresses such issues by
introducing agents that take optimized actions.

3.3 Approach

3.3.1 Preliminaries

An RL problem setup is typically represented as a tuple in a Markov decision process:
[S,A, P, r, γ], where S is the state space of a problem, A is the action space, P is the
transition dynamics, r is the return of a state-action pair, and γ ∈ [0, 1) is the temporal
discount factor. The agent’s policy, π(a | s), maps states s ∈ S to actions a ∈ A. The
utility of a policy π is the expected return is denoted as J(π) = E

∑
tγtr(st, π(st)).

During training, an RL algorithm optimizes the policy with respect to the data it has
collected.

In our multi-agent setup, we consider that the utility of a policy is dependent on
both the opponent’s policy πopp and the environment ψ, denoted as J(πego, πopp, ψ). At
each epoch consisting of a fixed number of time steps, we save the current version of
our ego agent and add it to the library of possible opponents to choose from Πopp. We
describe the environment with parameters, ψ. We define a scenario ξ as an opponent
policy - environment pair: ξ = {πopp, ψ}. The goal of our curriculum generator at a
given timestep is to generate a population of scenarios, Ξtrain = {ξ0, ξ1, ..., ξn}, where
optimizing the ego policy πego with respect to the curriculum Ξtrain will result in a
policy with the behaviors we desire.

π∗ = max
π

J(πego,Ξtrain) (3.1)

3.3.2 Problem Formulation

For the multi-agent setup, we want our algorithm to continuously explore the game
by visiting scenarios that it does not do well to learn new competitive behaviors.
We design our curriculum generator around this idea by first formulating multi-
agent learning as a zero-sum game G(πego, ξ) between the πego and the curriculum
generator. G(πego, ξ) = 1 if πego wins the scenario ξ, G(πego, ξ) = 0 if it was a tie, and
G(πego, ξ) = −1 if loses. The opponent πopp and the environment parameters ψ are
determined by the curriculum’s scenario ξ. The solution for a finite zero-sum two
player game is minimax;

G∗ = min
Ξ

max
πego

G(π,Ξ) (3.2)
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Therefore, our curriculum generator will generate a population Ξ that minimizes
G(πego,Ξ)

3.3.3 Genetic Algorithm for Curriculum Generation

Figure 3.2: Visualization of crossover and mutation. Crossover replaces encoded
segments between two parent scenarios. Mutation changes an encoded segment of a
parent with a random sequence.

In this section and onward, we explain how our proposed algorithm, GEnetic
Multi-agent Self-play (GEMS), as described in Algorithm 2, generates curriculum.

To generate a curriculum, GEMS uses a genetic algorithm due to its proven
efficiency in large scenario spaces and its flexibility in scenario encoding. At the
beginning of the training, as in Line 5 of Algorithm 2, GEMS randomly initializes
curriculum Ξtrain. πego trains on the Ξtrain for an epoch consisting of a fixed number
of steps. For each scenario, our algorithm records whether the agent has won, lost, or
tied, along with the regret estimated by positive value loss (57; 58).

At the end of each epoch, GEMS harvests scenarios from the current curriculum
to generate the next curriculum as in line 14 of Algorithm 2. The fitness function,
p(ξ), defines the probability of a scenario being harvested. Since the GEMS is
trying to minimize G(πego,Ξ) of the generated curriculum, fitness is proportional
to (1 − G(πego, ξ)). At the same time, GEMS needs to generate scenarios with
high information potential, measured as regret, δ(ξ). Therefore, fitness is set as
p(ξ) ∝ δ(ξ)(1 −G(πego, ξ)).

From these harvested scenarios, GEMS uses crossover and mutation (see ??) to
create an offspring population consisting of sequences of ξ similar to the ones harvested.
Crossover occurs when the algorithm takes a random segment from one parent scenario
encoding and swaps it with a random segment from another parent scenario encoding.
The mutation is when the algorithm selects a random segment from a parent scenario
encoding and swaps it with a segment from a randomly generated scenario encoding.
Scenarios ξs generated by the genetic algorithm will inherently be similar, aiding in
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the transfer of skills and, consequently, a faster rate of convergence when used as a
curriculum. Detailed operations for crossover and mutation are shown in Section 6.5.

Unlike GC, which has separate evaluation steps, GEMS calculates fitness from the
performance measured during training, reducing the computational cost. In addition,
GEMS regularizes difficulty.

3.3.4 GenOpt Agent and Scenario Space

Algorithm 2 GEnetic Multi-agent Self-play

1: Initialize Policy πego
2: #Select size of curriculum, Mtrain

3: #Select mutation rate, pµ
4: Input Mtrain, pµ
5: Initialize Curriculum Ξtrain

while True do
o
end
utcome = [] regrets = []

6: #Train π with Ξtrain by exploring scenario ξ
for ξ in Ξtrain do

7:
end
G(π, ξ), δ = Train(πego, ξ)

8: outcome.append(G(πego, ξ))
9: regrets.append(δ)
10:

11: #Harvest Examples
12: Ξseed, utility = harvest(Ξtrain,outcome,regret)
13: #Generate New Curriculum
14: Ξtrain = crossover(Ξseed,Mtrain,utility)
15: Ξtrain = mutation(Ξtrain, pµ)
16: save(πego) #Regularly save checkpoint
17:

Self-play in deep RL often suffers from training instability due to ego agents exploiting
the adversarial vulnerability of the opponents. While using open-loop agents can
mitigate this issue, previous approaches used expert supervision to design open-loop
behaviors, which can be costly (109). To allow an open-loop agent that continuously
evolves to match the ego agent’s performance during training without expert supervi-
sion, we introduce GenOpt Agent, denoted as π∅, that optimizes open-loop behaviors
using genetic algorithms without supervision.

π∅ = {(t0, a0), (t1, a1), (t2, a2).....} encodes the opponent as a list of non-fixed
lengths describing which actions to take in an open-loop fashion. For example, at
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timestep t1 < t < t2, the opponent takes action a1. As genetic algorithms can be
agnostic to the length of encoding, the encoding length does not need to be pre-specified
and is optimized by the curriculum generator without expert supervision. GenOpt’s
open-loop nature makes it less vulnerable to opponent-induced confusion, but unlike
No-OP, GenOpt is competitively optimized to match the ego agent’s performance,
enhancing its applicability across diverse environments.

Using the features above, GEMS encodes a scenario as ξ = {iπ, π∅, ψ} iπ is an
integer representing the i-th checkpoint to load as the opponent πopp. If iπ = 0, it
indicates that no agent will be loaded, and instead, a GenOpt Agent π∅ will be used
as the opponent. ψ denotes which environment parameters to load. It should be
noted that whether it is used or not, the encoding for the GenOpt Agent π∅ is always
present in a scenario ξ. This ensures that the optimization and the memory about
a GenOpt Agent π∅ are not lost during the genetic operations and can always be
brought back if needed throughout the training.

3.4 Experiments

3.4.1 Benchmarks

Figure 3.3: Screenshots of Pong, Volley, ACM (dots marking trajectories), Ant, and
SimpleAdversary

We evaluate our algorithm in Pong, Volley, ACM, Ant, and SimpleAdversay to
assess its performance in different levels of complexity. More environment details are
in Section 6.2.

Pong is a 2-player, continuous-action space version similar to Atari Pong (13).
Each player controls a paddle to hit a ball back and forth, aiming to score by getting
the ball past the opponent. The scenario set the players’ sides and the ball’s initial
velocity. Simple 1-D movement and fixed horizontal ball speed focus make dynamics
easy to learn and relatively emphasize the game-theoretic aspect of the solution more
than other benchmarks.

Volley is based on (47). Each player uses continuous action input to control an
avatar, moving left, right, and jumping. The goal is to bounce the ball to land on the
other side of the map across the net. The scenario specifies the players’ sides and the
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initial ball velocity. Volley incorporates gravity, elastic collisions, and a net, increasing
complexity and skill requirements.

ACM is a simulated dogfighting environment. Each player flies an airplane in
3D space, aiming to position its nose toward the opponent without crashing to the
ground. The scenario describes the spawning airplanes’ positions, postures, and
velocities. With physics simulated by JSBSim (11), a high-fidelity simulator widely
adopted in autonomous aircraft and aircraft controls research due to its accurate
aerodynamic modeling (91), and direct control over the aircraft operating in 3D space
with no stability assist, ACM is a complex environment that needs well-trained skills
to master the game with non-linear dynamics. Additionally, since the game’s objective
is to maneuver and position the ego plane in relation to the opponent, the scenario,
encoding spawn locations and orientations of the planes, significantly influences the
game’s outcome. ACM tests whether algorithms are robust when environmental
factors outside their control give an unfair advantage to one of the agents.

Ant is a simulated Mujoco environment based on OpenAI’s Competitive Gym
environment. (7). The game’s goal is to flip the opponent or push the opponent out
of the ring. Ant challenges the agent to learn multiple different skills to master the
game. For example, while ramming is often the only way to win an opponent that
stands still, those who ram are vulnerable to those who flip the opponent. However,
flipping is not helpful against opponents that stand still, as an opponent keeping all
its legs on the ground leaves no room for flipping. The agents must learn various skills
and know how to mix and use them to win a game. To the best of our knowledge, we
are the first paper to solve the Ant problem by training from scratch without expert
supervision or pretrained weights.

SimpleAdversary is a Multi Particle Environment from (110). As in the
Figure 2.3, the environment features one adversary (red), two good agents (blue), and
two landmarks (green and black). Agents are rewarded based on their proximity to
the target landmark, with opposing goals for good agents and the adversary. Only
good agents know the target’s location. SimpleAdversary tests offers asymmetrical
environment with goals, action and observation space being different per role, along
with added challenge of collaborative-competitive settings with multiple agents.

3.4.2 Baseline Algorithms

We use PSRO as one of the baselines for comparison. While many algorithms have
emerged from PSRO, such as Rectified PSRO (5), Pipeline PSRO (71), or Anytime
PSRO (73), these are fundamentally based on PSRO’s framework. They share
the underlying structure of generating Nash strategy opponents without considering
the ego agent’s performance to present the tasks in a gradual, easy-to-learn fashion.
Therefore, we utilize PSRO as a characteristic example to highlight the limitation of this
assumption. While PSRO necessitates additional steps to evaluate each policy to run
the meta-solver during training, we report performance without considering the extra

26



evaluation steps that PSRO requires. We believe that presenting PSRO’s performance
without factoring in these additional steps provides a comprehensive comparison, not
only against PSRO itself but also against newer subsequent algorithms such as XDO
(72) and NAC (33), which aim to reduce the computational cost associated with
policy evaluation.

We include GC (108) as a comparison against approaches that use a genetic
algorithm to generate a curriculum. We include SPDL (62) to compare our approach
against algorithms controlling environment parameters and actively regulating difficulty
levels during curriculum generation. For fairness in the multi-agent domain, GC
and SPDL are running with Fictitious Self-Play (FSP) (49), labeled GC+FSP
and SPDL+FSP, where the curriculum generator can choose opponents from saved
checkpoints. While other single-agent curricula RL regulate difficulty levels, such as
using regret, we decide to use an approach more relevant to the multi-agent domain
by including MAESTRO (99). MAESTRO represents a state-of-the-art approach to
optimizing environment-opponent choices in the multi-agent domain using regret to
regulate the difficulty level of the scenarios. Finally, we include FSP as a baseline
comparison for simple population-based multi-agent RL. FSP loads environmental
parameters by domain randomization.

For all algorithms, we use a publicly available implementation of Soft Actor Critic
(SAC) (19; 45) and Proximal Policy Optimization (PPO) (8; 101) as the base strategy
explorers.

3.4.3 Evaluation and Hyperparameters

We conduct experiments to evaluate each method’s effectiveness using ten random seeds
for Pong, Volley, and 5 for the more complex ACM and Ant benchmarks. The training
duration varied from 5 to 15 days, with computationally intensive algorithms like ACM
requiring the most time. Given the impracticality of exploitability analysis in complex
environments, performance was assessed through competitions against five baselines
and our GEMS across 200 games with randomized environment parameters, utilizing
Round Robin format for both interim (every 2.5e5 timesteps for SimpleAdversary,
every 5e5 timesteps for the rest) and final evaluations. Ablation studies were performed
with five seeds to validate our design decisions further, comparing ablated models
against fully trained baselines.

While PSRO, GC, and SPDL involve additional simulation steps for curriculum
generation, we report results based on the exploration steps taken by each agent for
easier comparison. We train each algorithm for 7e6 steps in each benchmark, and
3.5e6 steps for the SimpleAdversary. See Section 6.2 for implementation details and
hyperparameter tuning results.
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Pong Volley ACM Ant SimpleAdversary

FSP 59 : 1 : 39 40 : 5 : 55 37 : 49 : 14 38 : 28 : 34 50 : 0 : 50
PSRO 56 : 1 : 42 40 : 5 : 55 35 : 51 : 14 37 : 21 : 42 53 : 0 : 47
GC+FSP 58 : 1 : 42 46 : 7 : 47 23 : 34 : 43 36 : 24 : 39 49 : 0 : 51
SPDL+FSP 31 : 0 : 69 47 : 24 : 28 28 : 43 : 29 37 : 21 : 42 46 : 0 : 54
MAESTRO 21 : 0 : 79 42 : 6 : 52 10 : 23 : 67 34 : 22 : 43 49 : 0 : 51
GEMS 72 : 3 : 25 48 : 24 : 28 41 : 52 : 8 44 : 36 : 21 53 : 0 : 47

Table 3.1: Mean Win:Tie:Lose Ratio (%) of algorithms against baseline algorithms
and ours (GEMS). In bold are the statistically significant highest win rates and lowest
lose rates.

3.5 Results

3.5.1 Round Robin Results

As summarized by the round robin results in Table 3.1, Our approach outperforms
all baselines in the win and lose rates across benchmarks. See Section 6.1 for
comprehensive results.

While MAESTRO performs comparable to FSP in Volley, it does not perform well
in other benchmarks. GC (108) suggested that relying on random exploration instead
of curriculum generation can be limiting. We will confirm that this limitation extends
to the multi-agent setup in our ablation study.

While PSRO performs well in Pong, where dynamics are simple and approaching
game-theoretical solutions is relatively more important, PSRO’s effectiveness dimin-
ishes in more complex environments like Volley, ACM, and Ant. This highlights the
significance of a curriculum that aids in learning new skills against a broad spectrum
of opponents. Also, while PSRO’s game theoretic approach allows it to outperform
most of the baselines in an asymmetrical setup such as SimpleAdvesary, as shown in
Table 6.2, our GEMS outmatches PSRO via flexible architecture applicable to such
setups as well.

Despite both being curricular methods, GC+FSP and SPDL+FSP exhibit dif-
ferent performances. SPDL+FSP can regularize scenario difficulty and outperforms
GC+FSP in more complex environments such as Volley, ACM, and Ant compared to
PONG. GC+FSP, on the other hand, has a robustness guarantee unlike SPDL+FSP,
and outperforms SPDL+FSP in simple benchmarks such as Pong, where difficulty
regularization is not important. However, both suffer from ACM benchmark as neither
are designed for multi-agent setups.

MAESTRO’s performance is comparable to FSP in Volley but is less effective
in other benchmarks, especially in ACM and Ant. This highlights the limitations
of relying on random exploration in expansive scenario spaces. Our ablation study
further supports this finding in the multi-agent context.
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3.5.2 Evolution of Generated Curriculum

Figure 3.4: Evolution of scenarios generated by our GEMS. Each dot marks the
position of red and blue aircraft at 1-second intervals. The color of the markers starts
from black to blue for student aircraft and black to red for the opponent aircraft.

To demonstrate the curriculum evolution, Figure 3.4 shows characteristic scenarios
generated at 1e6, 3e6, and 7e6 steps with the ACM benchmark. Initially, to accommo-
date the untrained ego agent, our algorithm generates GenOpt that spawns close and
circles around the ego agents, offering non-trivial and easy opponents for the ego agent
to practice basic tracking. As the training progresses, our GEMS starts to generate
scenarios with interesting learning examples, such as the opponent chasing the ego
agent for a head-on pass. This gradual complexity increase enables the agent to tackle
complex situations by training’s end, such as a much longer chase shown in the figure.
For extensive visualizations and comparisons, see Figure 6.2 in the appendix.

3.5.3 Ablation Study

We conduct an ablation study on our GEMS to demonstrate the empirical effects
of our design choices. NoRegret experiment excludes the regret term (δ) when
calculating the fitness function to observe how effectively regret regulates the difficulty
level of scenarios during training. NoGenetic experiment employs the approach of
MAESTRO (99) instead of using a genetic algorithm to generate a scenario population.
Scenarios are individually selected from a replay buffer, and new scenarios are added
through a random search, deviating from the batch generation of a genetic algorithm.
NoCrossover experiment disables the crossover function of the genetic algorithm,
relying solely on mutation for scenario search. NoGenOpt experiment disables the
option to use a GenOpt Agent during training. NoVic experiment disables the
fitness function from utilizing G(πego, ψ), focusing solely on maximizing regret. Lastly,
No-OP replaces GenOpt Agents with No-OP agents, which takes no actions.

While NoRegret initially mirrors GEMS in training performance, it plateaus earlier.
This marks that while regret becomes crucial for adjusting curriculum difficulty towards
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Figure 3.5: Ablation study training curve

MAESTRO -226.845±25.332
GEMS 139.080±32.768
NoRegret 128.416±14.724
NoGenetic -234.64±9.595
NoCrossover 75.808±21.963
NoVic -218.267±16.605
NoGenOpt -213.751±16.907
No-OP -243.172±8.521

Table 3.2: Mean return of the ablation study in ACM benchmark.

equilibrium, its impact on training efficacy is less significant compared to GEMS’s
other design features.

One key aspect of GEMS is the use of genetic operations. GC (108) showed
that genetic algorithms outperform random exploration in single-agent settings by
efficiently identifying challenging scenarios similar to each other, facilitating effective
task generation. The ablation study shows that this advantage also applies to the
multi-agent domain, where even solely relying on mutation (NoCrossover) is more
effective than random exploration (NoGenetic).

However, beyond difficulty regularization by regret, GEMS has several useful
features for multi-agent training. One such is the GenOpt Agent, which provides
non-trivial open-loop agents without expert supervision. Compared to the No-OP
approach, which involves agents taking no actions, the ablation study shows that
training with GenOpt is better. In the ACM environment, for instance, an uncontrolled
aircraft’s inevitable energy loss leads to a crash. The GenOpt Agent, on the other
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hand, addresses this issue by providing a sophisticated sequence of actions optimized
by the curriculum generator, thereby ensuring sustained engagement and challenge.

Finally, NoVic underscores the critical role of Nash equilibrium in our zero-sum
game formulation between the curriculum generator and the ego agent. Unlike NoRe-
gret, NoVic exhibits inferior performance, illustrating that while regret contributes to
curriculum generation, G(πego, ψ) is pivotal for ensuring training stability and effective
curriculum optimization.

3.6 Conclusion

This chapter proposes using a genetic algorithm to improve and stabilize learning
in multi-agent environments. Using the strength of genetic algorithms to generate
a curriculum in a large scenario space, we enable an RL agent to reach a better
solution faster. We also introduce GenOpt Agent, an open-loop agent optimized
by the curriculum generator without expert supervision. This enhances training
stability, which is especially valuable early on when the self-play opponent lacks
sufficient competence. Empirical results across multiple benchmarks show our method
outperforming various baselines, and an ablation study further confirms the significance
of our design decisions. For supplementary videos to this chapter, please visit https:
//sites.google.com/andrew.cmu.edu/robustreinforcementlearning

3.7 Limitations and Future Works

Similar to MAESTRO (99), our method currently lacks a provable guarantee for
convergence to the Nash equilibrium in games. This presents an opportunity to identify
conditions under which guaranteed convergence can be achieved.

3.8 Additional Results : Against OpenAI’s Agent

When the Ant benchmark was first released, OpenAI trained agents with manual
curriculum and self-play to play as opponent for those who will use the benchmark
for their research. When comparing our agent to OpenAI’s agent, we report 50.9%
victory for GEMS, 37.2% for OpenAI, and 11.9% tie. We have uploaded the codes
as well as the trained weights for our best performing model as a new benchmark
for people to use. Figure 3.6 visualizes the training curve of or training. Note that
GEMS never saw OpenAI’s agent during training and evaluation was dune with fixed
saved weights after the training was completed.
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Figure 3.6: Training curve of the GEMS in Ant benchmark evaluated against OpenAI’s
agent. Left shows performance in terms of cumulative reward. Right shows performance
in terms of win, lose and tie.
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Chapter 4

Robustness By Quality-Diversity

4.1 Introduction

In recent years, there has been an increased interest in applying reinforcement learning
(RL) for complex systems requiring a high level of robustness due to strict operating
conditions intolerable for failure, from nuclear fusion reactors (24; 74; 102) running
billions of dollars worth of scientific equipment to autonomous driving (32) operating
cars in proximity with people. With such environments having little margin for error,
having an agent that covers a variety of situations and finds a reasonable control
solution is crucial. However, as with all controllers, RL-based controllers have some
crucial design considerations that have to be addressed in order for the controller to
be applied to real-world problems.

First, it is difficult to have a controller that can fit all situations with optimal
performance. In machine learning, there are some problems where it is empirically
shown that for some problems there is no single universally best method that solves
every problem and outperforms all other baselines (42; 83; 100). Likewise, in the
controls and RL domain, it is difficult to have a single controller to achieve optimal
performance in every situation Sometimes, this can be due to conflicting optimization
criteria (performance vs safety), or difficulty in covering the entire situation with a
single controller.

Second, all controllers will inevitably have a weak point where they perform
less optimally compared to other situations they encounter. RL is known to have
adversarial weakness (39; 44; 81; 107), and given enough time and resources, such
weakness may be found. This could be an adversary agent actively trained to find
the weakness or simple environment perturbation that pushes the agent out of its
designed operating area.

As such weakness is present in any system, robustness in real life is often achieved
by redundancy and backups. For example, modern airliners use on-board flight
computers to generate actual command input to the aircraft’s control surfaces. While
flight computers are designed to be robust, there are reported cases where this
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procedure no longer works due to aircraft inadvertently entering a flight regime which
the flight computer was not designed for, or the flight computer itself having some
malfunctions. However, instead of such incidents being fatal, airplanes would generally
have redundancy and backups. For example, when the primary flight computer is
no longer working, the aircraft would switch to alternate flight control mode. In this
mode, the aircraft would not be flying as optimal and fuel efficiently as if aided by the
flight computer, but the pilot would have more control authority over how the control
surfaces deflect to steer the aircraft and recover the aircraft. While it is possible,
however unlikely, that the primary flight computer can fail, the probability of both
primary flight computer, backup flight computer, and human pilots failing all at once
is so low that flying is often regarded as one of the safest modes of transport.

Inspired by such a design, we explore how we can improve the robustness of
RL controllers. By having multiple different agents with different performance,
weaknesses, and strengths, we aim to deliver higher performance across a wider
situation an autonomous agent can encounter during deployment. In this regard,
we look into Quality-Diversity, where we train multiple policies with different but
well-performing behaviors to populate our library of possible controllers to be selected
during deployment. We incorporate ideas from curriculum learning and to efficiently
explore the policy space to optimize the combined performance of the policy library.
Unlike existing approaches in Quality-Diversity where expert supervision is required to
design a metric for diversity, we instead take inspiration from nature where diversity
arises not from manual design, but due to difference in situations the agents are
optimizing for (23).

4.2 Related Works

When it comes to changing or switching between behaviors to better fit the given
situation, Meta-RL (28) is one approach where agents will change behavior based on
what they experience during test time. In such approaches, agents will update their
controller to better fit the data it sees and collects during test time. While in theory,
this will provide infinitely many kinds of behaviors optimized for every situation it
encounters, such approaches assume unlimited resets and cheap cost of collecting data,
which is not feasible in safety-critical applications, Single-Life Reinforcement Learning
(17; 85) tries to mitigate this issue by not resetting the system during test time, but
such approaches for exploration and data collection purposes still assumes that all
states are recoverable and does not result in catastrophic failure, which is not feasible
in safety-critical systems. Moreover, real-world systems often do not have enough
computation resources to update entire neural networks while exploring at the same
time.

In this regard, Probabilistic Embeddings for Actor-critic meta-RL (PEARL) (95)
offers a more viable option. Using a conditional network structure, the policy with
trained with ground truth information description of the situation as a latent condi-
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tional variable. During the test time, this latent variable would be estimated using a
separate classification or a regression module. Such structure allows for an infinite
variety of different behaviors depending on how the latent variable is encoded and
has a relatively small search space to be fitted during test time instead of updating
the entire neural network. However, such an approach requires expert supervision to
represent the situation in latent variables during training and is limited to benchmarks
where a clear latent encoding can be used. For example, if the latent encoding has
no useful spatial description of the environment, the conditional network will simply
ignore the latent embedding and try to fit all situations at once.

On the other hand, some approaches go full-expert supervision to differentiate and
diversify between behaviors. In the case of Agile But Safe (48), the algorithm uses
two different policies with different behaviors to control a quadruped robot. When
the situation is nominal, the nominal controller optimized for performance takes over.
When the robot loses stability, a safety controller optimized for stability recovery takes
over and moves the robot back into a nominal state. While this allows the robot to
efficiently navigate through unstructured terrain using two different behaviors, such
behaviors had to be carefully prepared by expert supervision with customized reward
functions and goal states.

In contrast to the above case where diversity was achieved by expert supervision,
Diversity is All You Need (DIAYN) (31) achieves diversity by self-supervision. Instead
of relying on an engineered reward function, DIAYN gives rewards by self-supervision
by using a classifier trained to differentiate the behaviors being trained online. While
achieving great success in skills discovery, DIAYN’s behaviors are designed for diversity,
not performance. Therefore, DIAYN behaviors are not directly applicable to solving
problems and require a supervisory agent that stitches the discovered skills to make a
coherent working policy.

In this regard, Quality-Diversity approaches both the quality and diversity of the
trained set at the same time. MAP-Elites (20) and the expanded framework in the
deep-RL domain, Actor-Critic Quality Diversity Reinforcement Learning (ACQDRL)
(34; 68; 89) uses the idea of quality-diversity to train behaviors that are different from
each other but also optimal in their respective occupancy in diversity space. However,
the quality-diversity approached based on the MAP-Elites framework requires expert
domain knowledge and supervision to design a metric that can differentiate one
behavior from another.

4.3 Approach

4.3.1 Preliminaries

An RL problem setup is typically represented as a tuple in a Markov decision process:
[S,A, P, r, γ], where S is the state space of a problem, A is the action space, P is the
transition dynamics, r is the return of a state-action pair, and γ ∈ [0, 1) is the temporal
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discount factor. The agent’s policy, π(a | s), maps states s ∈ S to actions a ∈ A. The
utility of a policy π is the expected return is denoted as J(π) = E

∑
tγtr(st, π(st)).

During training, an RL algorithm optimizes the policy concerning the data it has
collected. In a single behavior RL, we only have to consider a single policy π0
representing a single behavior.

π∗ = max
π

J(π,Ξtrain) (4.1)

In multi-behavior RL, we consider the utility of the population of behaviors Π
against the scenario space. While selecting which behavior to use during test time
would be dependent on some algorithm that takes care of test-time adaption, we will
assume that we can choose the policy representing the optimal behavior πξ at a given
test-time scenario ξ, for simplicity. Using this oracle model, we can define the utility
of a behavior population as the sum of performances across scenario space paired with
best-performing behaviors as in Equation (4.2).

πξ = max
π

J(π, ξ), πξ ∈ Π (4.2)

With this formulation, our goal would be to find the best-performing population
of behaviors, Π∗

Π∗ = maxΠ = Σξ∈ΞJ(πξ, ξ) (4.3)

During training, the behavior will be optimized for the scenarios it is being trained
for as follows;

πξ = maxπJ(π, ξ) (4.4)

Using Equation (4.4) and Equation (4.2), solution to the Equation (4.3) can be
found by assigning following curriculum;

ξtrain,πi = ξ, πi = maxπJ(π, ξ) (4.5)

4.3.2 Our Approach

However, when using curricular learning, using Equation (4.5) is not feasible. For
example, if two different behaviors are trained on two different distributions of scenarios
with the mean of the distributions being close to each other, the resulting behaviors
will also be similar to each other. Therefore, to achieve diversity, the distribution of
the scenarios should be grouped so that the mean of the distributions are far away
from each other.

Due to this requirement, we approach the curriculum generation with the 4X
(eXplore, eXpand, eXploit, and eXterminate) algorithm, an argmax solution to mul-
tiagent domain often used in electronic games. Under the formulation, we start the
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training by having each behavior first initialized in their respective cell in the scenario
space. At each interval, as part of the explore and expand rules, the behavior can
spread its curriculum to include the nearby cells. As part of the exploitation process,
each behavior will exploit its curriculum by being trained against the scenarios in the
curriculum cells to improve their performance in their assigned cells. As part of the
extermination process, should a contested for expansion by more than one behavior,
or should a cell be bordered by a cell occupied by a different behavior, the curriculum
generator will evaluate the performance of each behavior and assign the cells to the
behavior that performs better in the cells in question.

Figure 4.1: Visualization of the 4X rules. Upon initialization, each behavior (visualized
as red and blue in this figure) is assigned a random curricular cell. During exploration
and expansion, the curriculum distribution is allowed to spread into bordering cells.
During extermination cells, the cells contested for expansion by more than one behavior,
and cells bordered by cells of different behaviors (Marked with question marks) are
evaluated and assigned to the best-performing behavior.

The benefit of the 4X approach is that it conserves the argmax formulation in
Equation (4.5) while also allowing for each behavior to extend and contract their
coverage via specialization - generalization trade-off. For example, if an agent covers
more area than it can cover, it will start to lose the border cells to the nearby behavior
that is more specialized in the zone. In this process of taking over the cells, the
Nash Equilibrium is a point where none of the behaviors can take over nearby cells
without losing performance and specializations in the cells it controls. As such, the
equilibrium point of the behavior is where the global utility of the population is
maximized. Assuming that the scenario space is not too complex, we can say that our
approach will maximize the total welfare of the population.

One of the downsides of this approach is that each contested and bordering cell
must be evaluated to decide which behavior to assign the cells to. As this can be quite
costly, we replace the evaluation part with a regression model and only evaluate the
scenario cells regression model is having difficulty assigning behavior to. For the case
of experiments in this thesis, we used KNN models and limited actual evaluations to
be less than 10% of the steps the agent interacted with the environment.

To summarize our algorithm, our algorithm works as follows. First, we randomly
initialize b behaviors and segment the scenario space into kernels. We then randomly
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assign starting cells to each behavior in which the curriculum generation can take place.
We then sample random scenarios from the assignments Υ to generate a curriculum
of a desired size. After each behaviors are trained on and exploited in their respective
scenarios, we run the exploration and expansion steps to assign more curriculum
cells to each behavior. When contested and bordering cells are generated, we take
the extermination steps to reassign cells to each behavior. We continue the cycle
again until we are out of iteration steps. Algorithm 3 shows the pseudocode for our
proposed algorithm, Curricular Quality Diversity (CQD).

Algorithm 3 Curricular Quality Diversity

1: Initialize b Behaviors π0, . . . πb−1

2: Initialize b Assignments υ0, . . . υb−1

3: #Select size of curriculum, Mtrain

4: Input Mtrain

while True do

end
5: #Exploit : Train Behaviors with Assignments

for i in range(b) do
6:

end
ξi = GenerateCurriculum(υi)

7: πi = Train(πi, ξi)
8:

9: #Explore and Expand for i in range(b) do
10:

end
Assignmenti = ExploreAndExpand(υi)

11:

12: #Exterminate
13: Υ = Exterminate(Υ)
14:

4.4 Experiments

4.4.1 Benchmarks

As shown in Figure 4.2, we choose the following four benchmarks to demonstrate the
characteristics of our proposed approach.

BipedalWalker

BipedalWalker is the same as the BipedalWalkerHardcore in Chapter 2. The agent
observes the environment through IMU, joint encoders, and LIDAR on the body and
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Figure 4.2: Visualization benchmarks used in this chapter. (From left to right)
BipedalWalker, LunarLander, and Ant

controls its knee and hip joints to traverse through various obstacles. A scenario
consists of various combinations of obstacles and grass fields in various ordering.

BipedalWalker provides a unique challenge as it represents the unforeseeable
nature of failure cases. While there are states from which BipedalWalker agents are
physically incapable of recovering, knowing where the unsafe states are does not solve
the robustness problem as most well-trained policies will easily avoid those states
in the first place. In the rare moments in which the agent enters such states, it is
most likely not because the agent intentionally entered such states, but more likely
due to the environmental factors, a sequence of critical events and obstacles, that the
agent ended up in such states. Therefore, to avoid unsafe states, agents must prepare
well before it starts to become unstable and lose energy by traversing through the
obstacles beforehand. However, as LIDAR has a limited range the agent cannot see
what the situation will be like. Moreover, the arrangement of the obstacles ahead the
robot is not dependent on the ordering and obstacles behind the robot. Therefore,
it is difficult to predict what challenges lie ahead until the robot is standing in front
of the obstacles themselves. Such a feature of the BipedalWalker makes it a good
representation of how the agent will be able to prepare against unforeseeable failure
situations.

LunarLander

LunarLander is a benchmark similar to the LunarLander benchmark in the Chapter 2
but with even larger variation in failure modes, and higher fuel cost to compare and
contrast the effect of two conflicting optimization goals between safety and performance
(fuel usage). While the observation space is the same as in the Chapter 2, it has one
additional degree of freedom for rotating the main engine gimbal. This is to give an
alternative mode of controlling the lander’s orientation should failure with the RCS
be too great to allow for a safe landing. The goal of the LunarLander is to safely
land on the surface using its RCS thrusters, main engine gimbal, and main engine
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thrust while minimizing fuel usage. Scenario space consists of various failure modes,
limiting the actuation range of RCS, gimbal, and main engine throttle depending on
the situation. The actuation range can be limited to 100% of the nominal to 30% of
the nominal depending on the scenario.

LunarLander provides two unique challenges to the environment. First, due to
the conflicting optimization goals between performance and safety, it is difficult to
have a single behavior fit all situations. As mentioned in the previous chapters, the
optimal policy for LunarLander is to free fall as much as possible and fire its main
engines to a maximum at the last possible moment to minimize fuel usage. However,
this method of performing a suicide burn can be risky if the main engine is unable to
deliver as much thrust as it is needed. For such cases, the engines will have to start
firing much earlier to compensate for the loss in thrust. However, this will lead to
increased fuel usage and associated costs. Therefore, unless the dynamics and the
failure mode of the scenario are given to the agent, there is no single behavior that can
optimize performance while optimizing safety, and the scenarios must be distributed
against multiple agents with different levels of focus on safety and performance.

Second, LunarLander pushes the curriculum generator whether it is capable of
dividing scenario space the way it should be to diversify the behaviors. In the case of
LunarLander, the scenario space consists of failure to the main engine, main engine
gimbal, right RCS, and left RCS. However, the only variable that leads to variations in
behavior is the magnitude of the main engine failure. For example, when trained with
two different scenarios, the policies will exert the same behavior if the variation in main
engine failure is the same. However, even if the variations in the main engine gimbal
or RCS failure are different, the policies will show different behaviors if the magnitude
of the main engine failure is different. Therefore, a good curriculum generator should
be able to find how a scenario can be split to give more diversity to each policy and
their respective behaviors.

Ant

Ant is a benchmark simulated by the MuJoCo physics engine (113). The agent has
control of each of the ant-shape robot’s eight joints. The robot is free to move in the
3D space on a flat surface and the agent is rewarded if the ant robot moves towards the
right. Borrowing ideas from legged locomotion research, diversity between different
modalities of behavior and gaits is relatively well-understood and because of this,
much quality-diversity research includes some form of multi-legged locomotion as part
of the benchmark. The scenario-space for the Ant benchmark consists of failure modes,
limiting how much power each motor can deliver in a given scenario. The actuation
range can be limited to 100% of the nominal to 50% of the nominal depending on the
scenario.
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4.4.2 Baselines

We compare our approach with the following baselines inspired by various approaches
emphasizing diversity in the behavior of the population.

Conditional

In our Conditional baseline, the policy is represented as a conditional network with
latent conditional encoding describing the situation. Both during training and test-
ing, this latent conditional encoding comes from expert supervision with access to
ground truth information. As such, our Conditional baseline represents the maximum
performance of the PEARL (95) based approaches.

In the case of LunarLander, and Ant benchmarks, this latent embedding comes from
the ground truth information of what the failure situation is, which is how much power
is limited to each of the joints and actuators. In the case of BipedalWalker, ground
truth information is a combined discrete and continuous embedding of undefined
length, and feeding a conditional network with raw data would be difficult. Instead,
we condense the information to represent the percentage of each obstacle on the map.
As the agent requires a long look ahead to avoid catastrophic failure, we believe that
this is a good balance between performance and cost to tell an agent how aggressively
or safely an agent should walk to maximize performance while maintaining safety.

Manual

In our Manual baseline, we have 4 behaviors in a behavior library, and each behavior
is trained with a manually designed curriculum. In the case of LunarLander, behaviors
are trained on different scenarios ranging from no failure to the main engines, maximum
main engine power limit of 75%, maximum main engine power limit of 50%, and
maximum main engine power limit of 30%. In the case of Ant, the behaviors are
trained for a case where all legs are working, all legs are limited to 50% power and
two different combinations of failure modes. In the case of BipedalWalker, we selected
four random obstacle courses, with one of the courses being free of obstacles. Our
Manunal represents approaches such as ABS (48), where expert domain knowledge is
used to train police with different behaviors geared for different goals and situations.

Ensemble

In our Ensemble baseline, we have 4 behaviors in a behavior library and each behavior
is trained on a randomly generated curriculum. This provides a baseline comparison
of not having any curricular considerations in a multi-behavior setup.
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Swept Values

learning rate 1e-3,3e-4,1e-4
γ 0.95, 0.98, 0.98
α auto

Table 4.1: Hyperparameter Sweep for the SAC algorithm used in this chapter. Selected
value in bold.

DIAYN

DIAYN baseline is our implementation of DIAYN (31) for the benchmarks. We keep
the number of behaviors to four as with other baseline implementations.

MAP-ELITES

MAP-ELITES is our implementation of the MAP-ELITES baselines (21) for the
benchmarks. Based on the original publication and following publications on Quality
Diversity (34; 68; 89), we use the duty cycle, which is the ratio of time each leg
spends in contact with the ground as the diversity metric for the BipedalWalker, and
Ant. In the case of LunarLander, we use episode length as a diversity metric. As
MAP-ELITES is the only non deep-RL based method, a manually generated policy
was used. In the case of LunarLander, heuristics default controller included in the
OpneAI’s pacakge was used, and the agents was able to tweak the 8 parameters of the
heuristics. In the case of the rest, a central pattern generator generating step function
was used. Parameters controlling the pattern generator was 25 for Ant benchmark,
and 14 for the BipedalWalker

ACQDRL

ACQDRL is our implementation of the Actor-Critic Quality Diversity Reinforcement
Learning, a generalized framework for using MAP-Elites in Deep RL framework (68).
Based on the said paper, we use the duty cycle, which is the ratio of time each leg
spends in contact with the ground as the diversity metric for the BipedalWalker, and
Ant. In the case of LunarLander, we use episode length as a diversity metric. Based
on the discretization of policy space by the diversity metric, ACQDRL had 10 to 16
different behaviors included in its library.

4.4.3 Evaluation and Hyperparameters

For evaluation purposes, we selected 8 random scenarios from each benchmark. We
evaluated each behavior 50 times against the selected scenario. By doing so, we
marked the best-performing behavior for a given scenario. We then evaluated the
best-performing behavior to its assigned scenario 100 times and reported the mean.

42



Diversity Space Kernel, MAP-Elites andACQDRL

BipedalWalker 2,3,5,10
LunarLander 2,3,5,10

Ant 2,3,5,10

Scenario Space Kernel, CQD

BipedalWalker 2,3,5,10
LunarLander 2,3,5,10

Ant 2,3,5,10

Table 4.2: Hyperparameter Sweep for the SAC algorithm used in this chapter. Selected
value in bold.

BipedalWalker LunarLander Ant

Conditional 97.55±15.17 68.06±0.97 893.97±352.38
Manual 144.55±24.33 67.23±0.65 4373.87±405.22
Ensemble 109.32±13.95 54.13±2.44 4160.21±503.31
DIAYN -14.63±0.59 58.35±1.12 35.93±62.94
MAP-ELITES -87.12±40.36 9.23±2.82 -132.54±10.97
ACQDRL -60.19±3.44 -126.19±4.72 1280.46±370.38
CQD (Ours) 180.70±10.53 69.28±0.08 4704.21±43.81

Table 4.3: Cumulative Performance of the Trained Algorithms

We used this approach as the scope of this chapter is on training a diverse and
well-performing set of behaviors, not how we choose which behavior during test time.

We ran an evaluation at every 1e6 step. To balance between performance and
computation cost, each baselines were tested with 5 random seeds. As the baselines
require a base RL algorithm for policy optimization, we chose the SAC codes we
used in the chapter 2. We trained a single-behavior version of the SAC to run a
hyperparameter sweep. table 4.1 shows the hyperparameters swept and used for our
SAC implementation.

For DIAYN, we used hyperparameters as listed in the original paper. For MAP-
ELITES and ACQDRL, while we used hyperparameters proposed in their respective
papers, we needed to tune the size of kernels for the diversity space. Likewise, our
proposed approach has a hyperparameter controlling how many kernels each scenario
axis is discretized into. table 4.2 shows the hyperparameters swept and how many
kernels discretize each dimension.
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Figure 4.3: Training curve of the baselines across benchmarks. (From left to right)
BipedalWalker, LunarLander, and Ant

4.5 Results

Figure 4.3 and Table 4.3 shows the training curves and the results of the trained
library. A quick glance shows that our behavior outperforms all other baselines across
all benchmarks.

One of the notable observations from the result is that while Conditional does well
in LunarLander, it performs poorly in the BipedalWalker and the Ant benchmark.
One of the differences between the LunarLander and BipedalWalker is the diversity
and difference in modes of each behavior. In the case of LunarLander, the difference
in behavior comes from how early the main engine should start firing to ensure a safe
landing. The variations between behaviors are small enough to be supported by a
single conditional network where multiple behaviors share network weights. However,
in the case of the BipedalWalker and Ant, the gait pattern has to drastically change
based on failure modes, such as walking as a stiff-kneed inverted pendulum, hopping
on a leg or two, or having a natural-looking gait. For the environments where the
difference in modality is greater, the Conditional benchmark tends to perform poorly.

Second, it should be noted that manual curriculum design, depending on the
situation, can work quite well. However, as this approach is limited by expert domain
knowledge, such an approach can miss better diversification and distribution of the
behaviors, as shown in the case of BipedalWalker and LunarLander where our CQD
clearly found a better library of behaviors.

Overall, DIAYN performs poorly across the benchmarks. While showing limited
success in the LunarLander, DIAYN does not perform well in locomotion tasks where
the modalities can differ so much that aiming for diversity often comes at a tradeoff
of performance.

In the case of MAP-ELITES and ACQDRL, they perform poorly in general in our
benchmarks. While MAP-Elites sometimes have a better performance at the start by
using expert domain knowledge infused into the controller, both approaches do not
learn diverse and well-performing behaviors that are useful. When MAP-ELITES and
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ACQDRL train an agent, it collects its trajectory during training, uses the diversity
metric to see which container in the library should the behavior be assigned to, and
updates the container if the new behavior is performing better than the old one.
However, in our setup where environmental parameters and dynamics vary during
training, such evaluation on trajectory is difficult, as the resulting trajectory and the
performance are not only dependent on the behavior but also on environmental factors
and dynamics as well. Therefore, MAP-ELITES and ACQDRL will not work well if
such external factors to performance cannot be removed for evaluating the quality
and diversity of behavior.

4.6 Conclusion

In this chapter, we covered how curricular RL can be used in conjunction with quality
diversity to generate a library of different and high-performing behaviors that can
cumulatively achieve robustness. Using diversity within the scenario to ensure diversity
in behavior, we achieve Quality-Diversity without manually designed diversity metric
and outperform all baselines in the given benchmarks.

The limitation of our approach is that due to how we segmented the scenario space
in grid-like cells, the 4X steps in the curriculum generation can be computationally
costly. For future works, we could explore to expedite this process. Also, test time
adaptation is a problem not covered in this chapter and could be covered in future
works.
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Chapter 5

Conclusion

In this paper, we have shown how curricular RL can be used to improve the robustness
of the trained agents. In Chapter 2, we have shown how curriculum learning along
with genetic algorithms can be used to improve the robustness of a trained agent in a
single-agent domain. In Chapter 3, we explored how the idea can be expanded in the
multi-agent domain, in conjunction with genetically optimized open-loop agents, can
be used to achieve state-of-the-art performance in various multi-agent domains, both
symmetrical and asymmetrical, competitive and collaborative. Finally, in Chapter 4,
we have demonstrated how curricular learning can be used with quality-diversity to
achieve robustness as a group. Overall, we have used curriculum learning to achieve
all the stated goals with less expert supervision and in an environment-agnostic way,
allowing the training to adapt to the environment.

I think one of the takeaways from the thesis research is that the theory only solves
half of the problem. While theory can be used for verification of an algorithm and
see if there’s any theoretical limit that will prevent the algorithm from solving the
problem, it is less efficient at predicting the actual performance of the algorithm as it is
quite difficult to achieve the theoretical maximum. For example, most adversarial RL
algorithms use a min-max formulation that guarantees robustness upon convergence,
but due to the training instability triggered by the adversarial RL algorithm, it does
not always work well. Likewise, we saw similar issues in multi-agent and other problem
domains where the algorithm would not converge to its theoretical equilibrium within a
reasonable time frame, especially due to training inefficiency and instability. Therefore,
it would be wise to be careful about the underlying assumptions and environment-
specific details when considering which algorithm to implement as especially in complex
systems, the agent will be operating much lower than the maximum performance
predicted by the theory.
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Chapter 6

Appendix A. Additional results and
implementation details for
Chapter 3

6.1 Full Performance Results of the Trained Algo-

rithms

In this section, we include the full results of our experiments. Table 6.1 and Table 6.2
shows the mean return of each algorithm against each other, while ?? and Table 6.3
includes the detailed results of each pair. Figure 6.1 shows the training curve, evaluated
in round robin fashion.

Figure 6.1: Training curve with round robin results.

6.2 Environment Details

This section will discuss the details of the benchmark environments used in Chapter 3.

47



Pong Volley ACM

FSP 0.197 ± 0.158 -0.143 ± 0.061 94.498 ± 39.686
PSRO 0.141 ± 0.154 -0.145 ± 0.058 83.274 ± 51.499

GC+FSP 0.159 ± 0.179 -0.004 ± 0.07 -124.304 ± 44.356
SPDL+FSP -0.386 ± 0.144 0.192 ± 0.058 -97.987 ± 51.969
MAESTRO -0.578 ± 0.142 -0.094 ± 0.053 -226.845 ± 25.332

GEMS 0.466 ± 0.121 0.194 ± 0.058 139.080 ± 32.768

Table 6.1: Mean return of algorithms against baseline algorithms and ours for Pong,
Volley, and ACM. The highest mean return in bold.

Ant SimpleAdversary

FSP 25.788 ± 4.228 -10.545 ± 0.166
PSRO 23.061 ± 4.066 -5.535 ± 0.308

GC+FSP 23.544 ± 3.735 -10.125 ± 0.158
SPDL+FSP 22.312 ± 4.275 -15.47 ± 0.338
MAESTRO 19.748 ± 3.706 -9.358 ± 0.169

GEMS 34.714 ± 4.549 -5.010 ± 0.333

Table 6.2: Mean return of algorithms against baseline algorithms and ours for Ant
and SimpleAdversary. The highest mean return in bold.

48



Table 6.3: Detailed Win:Tie:Lose Ratio(%) of Each Algorithm Against Others.

Agent vs FSP vs PSRO vs GC+FSP vs SPDL+FSP vs MAESTRO vs GEMS (Ours)

Pong

FSP 49±1 :2±0 :49±1
PSRO 42±1 :1±0 :57±1 49±1 :3±0 :49±0

GC+FSP 48±1 :1±0 :51±1 50±1 :0±0 :49±1 50±1 :0±0 :50±1
SPDL+FSP 22±0 :0±0 :78±0 22±1 :1±0 :78±1 19±0 :0±0 :80±0 50±0 :0±0 :50±0
MAESTRO 9±0 :0±0 :91±0 13±1 :0±0 :87±1 8±0 :0±0 :92±0 40±0 :0±0 :60±0 50±0 :0±0 :50±0

GEMS (Ours) 66±1 :4±0 :30±0 63±1 :4±0 :33±1 73±1 :2±0 :25±1 89±0 :1±0 :11±0 94±0 :0±0 :6±0 47±1 :7±0 :47±1

Volley

FSP 50±0 :0±0 :50±0
PSRO 50±0 :0±0 :50±0 50±0 :0±0 :50±0

GC+FSP 58±0 :0±0 :42±0 59±0 :0±0 :41±0 49±0 :2±0 :49±0
SPDL+FSP 59±0 :16±0 :25±0 59±0 :15±0 :26±0 51±0 :21±0 :29±0 30±0 :41±0 :30±0
MAESTRO 51±0 :0±0 :49±0 52±0 :0±0 :48±0 46±0 :0±0 :54±0 29±0 :15±0 :56±0 50±0 :0±0 :50±0

GEMS (Ours) 61±0 :13±0 :26±0 58±0 :17±0 :25±0 52±0 :19±0 :29±0 31±0 :37±0 :31±0 54±0 :20±0 :27±0 31±0 :38±0 :31±0

ACM

FSP 25±0 :49±0 :25±0
PSRO 20±0 :54±0 :26±0 22±0 :55±0 :22±0

GC+FSP 3±0 :48±0 :49±0 3±0 :50±0 :47±1 38±2 :23±1 :38±2
SPDL+FSP 2±0 :48±0 :50±0 2±0 :49±0 :49±0 63±2 :23±1 :15±1 8±0 :84±0 :8±0
MAESTRO 1±0 :39±0 :60±0 1±0 :39±0 :60±0 10±1 :13±1 :78±1 2±0 :5±0 :93±0 47±1 :6±0 :47±1

GEMS (Ours) 32±0 :56±0 :14±0 35±0 :55±0 :12±0 50±0 :48±0 :2±0 48±0 :50±0 :1±0 62±0 :37±0 :1±0 18±0 :64±1 :18±0

Ant

FSP 36±0 :27±0 :37±0
PSRO 34±0 :23±0 :43±0 43±0 :15±0 :42±0

GC+FSP 31±1 :27±1 :42±1 40±1 :20±1 :40±1 42±1 :20±1 :38±1
SPDL+FSP 32±0 :22±0 :45±0 48±0 :17±0 :41±0 38±1 :20±0 :42±1 43±0 :16±0 :41±0
MAESTRO 30±0 :25±1 :45±0 38±0 :18±0 :44±0 36±1 :23±1 :41±1 39±0 :18±0 :42±0 42±1 :18±0 :41±1

GEMS (Ours) 36±0 :42±1 :22±1 51±1 :30±1 :19±1 47±1 :31±1 :22±1 49±1 :31±1 :20±1 51±0 :30±1 :18±1 26±1 :47±1 :27±1

SimpleAdversary

FSP 50±0 :0±0 :50±0
PSRO 53±0 :0±0 :47±0 50±0 :50±0 :50±0

GC+FSP 50±0 :0±0 :50±0 46±0 :0±0 :54±0 50±0 :0±0 :50±0
SPDL+FSP 46±0 :0±0 :54±0 43±0 :0±0 :57±0 47±0 :0±0 :53±0 50±0 :0±0 :50±0
MAESTRO 49±0 :0±0 :51±0 47±0 :0±0 :53±0 49±0 :0±0 :51±0 52±0 :0±0 :48±0 50±0 :0±0 :50±0

GEMS (Ours) 54±0 :0±0 :46±0 50±0 :0±0 :50±0 54±0 :0±0 :46±0 57±0 :0±0 :43±0 54±0 :0±0 :46±0 53±0 :0±0 :47±0
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6.2.1 Pong

Environment Overview

Pong is a game similar to the one described in (13). In this game, there are two
paddles, each located at the left and right edges of the map. Each agent controls a
paddle capable of 1D movement. At the start of the game, a ball spawns at the center
of the map with a certain velocity. The ball will bounce if it comes in contact with
the top edge, the bottom edge, or paddles. An agent wins the game if the ball passes
through the opposite edge of the map.

To play the game, each agent observes the position and velocity of the ball and the
location of each paddle. The action space is 1-D. If the value is positive, the agent’s
paddle will move up at a constant speed, and vice versa if negative. An agent receives
a reward of +1 if they win and -1 if they lose. If neither player manages to win the
game after 300 steps, it is considered a tie with a reward of 0.

Environment Encoding

The original environment calls the random number generator four times to reset a game.
Subsequently, we encode the environment with four values. One value determines
whether the ego agent plays the left or right paddle. The other three control the initial
velocity of the ball. One value determines whether the ball will be moving up or down,
another controls the magnitude of the ball’s velocity vector in the up-down axis, and
the last one determines whether the ball will be traveling left or right. The magnitude
of the ball’s velocity in the left-right axis remains constant throughout the game.

6.2.2 Volley

Environment Overview

Volley is an environment based on the concept presented in (47), where two agents
engage in a 2D volleyball game. This presents a more intricate update than Pong,
as both players can move in a 2D space instead of the 1D movement of paddles.
Additionally, the ball’s horizontal speed can vary along with its vertical speed. At
the start of the game, the ball spawns at the center of the map above the net, which
divides the map into two halves. The ball will bounce upon contact with any players
or edges except for the bottom. Each agent can redirect the ball by hitting it with the
avatar they control. The ball follows a simple physics model, subject to gravity and
simple elastic collision mechanics. An agent wins the game by successfully landing the
ball on the other side of the map.

To play the game, each agent observes the position and velocity of the ball, the ego
agent, and the other agent. Each agent has a 2-D continuous action space, dictating
the desired vertical and horizontal velocity of the avatar in the game. While the avatar
can move at the desired velocity in the horizontal axis, it can only be launched upward
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with a desired velocity if it is on the ground. Otherwise, it will move along the surface
or be in free fall due to gravity. An agent receives a reward of +1 if they win and -1 if
they lose. If neither player manages to win the game after 300 steps, it is considered a
tie, and both players receive a reward of 0.

Environment Encoding

The Volley environment is expressed in three values. The first two values are continuous
(-1,1) and define the ball’s initial velocity. The third value is discrete 0,1 and defines
whether the ego agent controls the avatar on the left or the right.

6.2.3 ACM

Environment Overview

ACM is a simulated dogfight environment. This is more complex than the previous two
benchmarks, as ACM agents will move in 3D space with realistic physics simulation.
At the start of the game, two aircraft spawn in the air at a certain orientation and a
velocity vector with respect to the nose heading. The agent wins the game by pointing
its nose at the opponent while avoiding getting pointed by the opponent’s nose. There
is also a penalty involved with crashing to the ground.

To play the game, each agent observes the position, orientation, and velocity of
the ego and the opponent agents. Each agent has a 4-D continuous action space with
direct control over the aircraft’s elevator, aileron, rudder, and throttle. The physics is
simulated by JSBSim (11), a high-fidelity simulator often used in autonomous aircraft
research. The aerodynamics model for ACM is based on a Boeing F-15D, capable of
flying two times faster than the speed of sound.

To win the game, the agent should have its nose pointed less than 5 degrees off the
opponent aircraft while flying less than 2,000 feet away from the opponent. The agent
can also win the game if the opponent aircraft flies below the hard deck of 500 ft. The
agent wins the game if either of these conditions are met and loses if the opponent
achieves either of the conditions. It is a tie if both aircraft achieve either of these
conditions simultaneously. If either of the agents meets none of the conditions for 300
seconds, it is considered a tie. Agent receives a penalty of -300 for crashing into the
ground, 150 for pointing the nose toward the target, and 100 if the opponent crashes
to the ground. To help with training, there is a small, dense reward for getting closer
to pointing the nose toward the opponent.

Environment Encoding

The ACM environment is expressed in 14 continuous values. They define the initial
conditions of the game, which are each aircraft’s position, orientation, and airspeed.
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6.2.4 Ant

Environment Overview

Ant is a simulated Mujoco environment where two ant agents try to flip or push
the other agent out of the arena. With each agent having 8 degrees of freedom in a
contact-rich setup, the environment offers a variety of behaviors to learn. For example,
while ramming is often the only way to win against a stationary target, ramming is
vulnerable to flipping attacks. However, flipping attacks are useless against stationary
opponents as agents need more torque to lift and flip an opponent with all its legs
firmly contacting the ground.

To play the game, each agent observes the position, orientation, velocity, and
posture of the ego and the opponent agents. Each agent has 8-D continuous action
space with direct control over the torques applied to each joint. The agents get a
reward of 100 if the opponent is flipped or pushed out of the arena. There is a penalty
of -20 if the agent is flipped or exits the arena. To make the training faster, there is
a sparse reward for approaching the opponent or moving towards the center of the
arena. If neither player manages to win the game after 300 steps, it is considered a tie,
and both players receive a reward of 0. While the environment is based on OpenAI’s
implementation of Sumo-Ant (7), the arena is smaller to allow agents to interact
more and learn faster.

Environment Encoding

The Ant environment is expressed in 1 discrete value assigning who will be controlling
the red agent and who will be controlling the blue agent in the game. The red and
blue agents have the same winning and losing conditions and have fixed spawn points
in the arena.

6.2.5 SimpleAdversary

SimpleAdversary is a Multi Particle Environment from (110). SimpleAdversary
provides an interesting opportunity to validate our GEMS on environments that are
asymmetrical and have both competitive and collaborative features to a game. ??
shows a screenshot of the environment.

In this environment, there is one adversary agent (red), two good agents (blue),
and two landmarks (green and black). One of the landmarks is a target landmark
where the good agents get a reward for the good agents getting close to the agent and
a negative reward for the adversary agent getting close to the target landmark. The
vice versa applies to the reward for the adversary agent. While all agents can see the
location of each other and landmarks, only good agents have additional information
on where the goal is. The good agents observe the environment with 10-D space
including the goal information while the adversary agent observes the environment
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with 8-D space missing this environment. The action space is continuous, with the
agents being allowed to move up, down, left, and right.

This environment covers challenges that are not covered well in the original
manuscript. First, it is an asymmetrical environment where the goal and the optimal
policies differ by role. Also, there are two good agents in the game which has to learn
to collaborate with each other. Finally, there are three agents in this game, giving a
limited yet first glimpse into scalability regarding the number of agents.

6.2.6 Environment Encoding

SimpleAdversary has a total of 5 objects in the game consisting of two landmarks,
two good agents, and one adversary agent. The first 10 variables in the environment
encoding cover the X and Y coordinates of the objects in the game. The last 11th
variable in the environment encodes whether the ego agent is playing as the good
agent or the adversary agent in the game.

As observation space is different whether playing as an adversary agent or a good
agent, we added a zero padding to equalize the dimensions. In addition, we also add a
variable to the observation space denoting whether the agent is playing as an adversary
agent or a good agent. This allows the policy network to run as a conditional network
able to support both roles in the game.

6.3 Implementation Details

This section covers the details of implementing the training procedures for each baseline
for reproducibility purposes.

6.3.1 Training Hardware

We used an 88-core Intel Xeon Gold 6238 CPU at 2.10 GHz to train the models.
Training models took from 5 ∼ 15 days. Lighter benchmarks, like Pong, took 5 days,
while heavier benchmarks, such as ACM, took 15 days. This is due to the computation
load of the JSBsim, which provides high-fidelity aerodynamics simulation.

6.3.2 Tuning RL Algorithm

Tuning Procedures

To ensure that hyperparameters do not favor one baseline over another, they were
tuned for the RL policy explorer in a single-agent setup against hand-coded opponents.
For Pong and Volley, the opponents were PID controllers chasing the estimated impact
point of the ball (75). In the case of ACM, a simple PID autopilot was employed
to control the opponent aircraft’s speed, heading, and altitude. Ant was tuned with
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Benchmark Parameter Name Range

Pong Magnitude of the Ball’s Vertical Speed [0,1]
Left-Right Initial Velocity Direction of the Ball {0,1}
Up-Down Initial Velocity Direction of the Ball {0,1}
Left / Right Paddle Controlled by the Ego Agent {0,1}

Volley Initial Horizontal Velocity of the Ball [0,1]
Initial Vertical Velocity of the Ball [0,1]
Left / Right Paddle Controlled by the Ego Agent {0,1}

ACM Ego Agent Initial X Coordinates [-1,1]
Ego Agent Initial Y Coordinates [-1,1]
Ego Agent Initial Z Coordinates [-1,1]
Ego Agent Initial Heading [-1,1]
Ego Agent Initial Pitch Angle [-1,1]
Ego Agent Initial Role Angle [-1,1]
Ego Agent Initial Airspeed [-1,1]
Opponent Agent Initial X Coordinates [-1,1]
Opponent Agent Initial Y Coordinates [-1,1]
Opponent Agent Initial Z Coordinates [-1,1]
Opponent Agent Initial Heading [-1,1]
Opponent Agent Initial Pitch Angle [-1,1]
Opponent Agent Initial Role Angle [-1,1]
Opponent Agent Initial Airspeed [-1,1]

Ant Ego and Opponent Agent Spawnpoint Configurations {0,1}

SimpleAdversary Good Agent 0 Location, X [-1,1]
Good Agent 0 Location, Y [-1,1]
Good Agent 1 Location, X [-1,1]
Good Agent 1 Location, Y [-1,1]
Adversary Agent 1 Location, X [-1,1]
Adversary Agent 1 Location, Y [-1,1]
Goal Location, X [-1,1]
Goal Location, Y [-1,1]
Obstacle Location, X [-1,1]
Obstacle Location, Y [-1,1]
Ego Agent is Playing As {0,1}

Table 6.4: Summary of environmental parameters.
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Pong Volley ACM Ant SimpleAdversary

Start Steps 10000 10000 10000 N/A 10000
Learning Rate 3e-4 3e-4 3e-4 3e-4 3e-4
γ 0.98 0.98 0.98 0.98 0.98
α auto auto auto N/A auto
Batch Size 256 256 512 36864 256
Replay Size 1e6 1e6 1e6 N/A 1e6
Update Every 1 1 1 36864 1
Backpropagation per Update N/A N/A N/A 20 N/A

Table 6.5: Selected hyperparameters for RL algorithms.

a stationary agent that does not move. The combination of network structure and
hyperparameters that performed the best in these single-agent setups was selected for
our baseline experiments. Note that these hand-coded agents were only used to tune
the RL hyperparameters. The hand-coded agents were not used when training the
baselines and our approach, GEMS.

Network Structure

To train our RL algorithm, we experimented with various network structures, varying
the depth of the hidden layers from 1 to 4 layers and the width from 64 to 512. Our
findings revealed that the optimal architecture for Pong, Volley, and ACM consists
of hidden layers composed of two fully connected layers, each with a size of 256.
We utilized ReLU activation between the hidden layers and concluded that the last
layer had an output dimension equivalent to the action dimension, followed by Tanh
activation. Conversely, Ant uses 2-layer policy networks with Tanh activation and a
width of 128.

6.3.3 RL Hyperparameters

We conducted a limited grid search to hyperparameters for our RL algorithm. For
learning rate, we tried {3e-5, 1e-4, 3e-4, 1e-3}. For discount ratio γ, we tried {0.95,
0.98, 0.999}.

Regarding the algorithms that use SAC, we tried 0, 1000, 10000 for the initial
exploration steps. For batch size, we tried {64, 256, 512}. For update every, we tried
{1, 32, 100}. We tried {1e6, 3e6} for Replay size. We ran each setting on 3 seeds to
balance performance and computational cost.

Regarding algorithms that use PPO, we tried policy update frequency of 9216,18432,36864.
For the number of times the gradient was calculated and backpropagated per update
frequency, we tried 10,20,30. We ran each setting on 3 seeds to balance performance
and computational cost.

Table 6.5 shows the selected hyperparameters we used for the main experiments.
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Pong Volley ACM Ant

PSF
Checkpoint Interval 10000 10000 10000 50000
PSRO
Match Times 30 30 10 10
GC
Evaluation Set Size 200 200 300 300
Curriculum Size 200 200 300 300
SPDL
Penalty Proportion 1 1 0.1 0.1
Offset 20 20 20 20
MAESTRO
Co-Player Exploration Coefficient 0.1 0.1 0.1 0.1
Curriculum Buffer Size 1000 1000 1000 1000

Table 6.6: Selected hyperparameters for baselines.

6.4 Baseline Hyperparameter Tuning

To tune the hyperparameters for the baselines, we trained the models using the
following settings. Since it is challenging to tune the hyperparameters by conducting
a round-robin across all hyperparameter settings used for different baselines, each
setting was evaluated against the same hand-crafted opponents used for tuning the RL
hyperparameters. Striking a balance between performance and computational cost, we
ran each configuration with 3 seeds. Table 6.6 presents the selected hyperparameters
used for the main experiments.

We tested the following hyperparameter values in a limited grid search. For adding
checkpoints, we tried saving a copy of the agents’ policies at every {10000, 30000,
50000} exploration step. We used the same interval of steps as the interval in which
curriculum is generated for the algorithms that generate one at every epoch. For
measuring performance between each checkpoint on random environment parameters
to approximate the Nash equilibrium in PSRO, we tried {10,30} evaluations per
pair. As for the hyperparameters of the GC, we tried {200,300} for the size of the
population of scenarios evaluated for whether being solved or not solved. We also
tried sizes of {200,300} for the sizes of the generated curriculum and mutation rates of
{0.1,1}. For SPDL, we tried values of {0,10,20} for offset and {0.1,0.3,1} for penalty
proportion. For MAESTRO, we tried co-player exploration coefficients of {0.05,0.1}
and curriculum buffer sizes of {500,1000}. For GEMS, we copied the hyperparameters
from the GC in terms of the size of the curriculum and mutation rate. This was done
to make comparisons between different algorithms easier by removing the effect of
different hyperparameters during genetic operations.
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6.5 Crossover and Mutation

This section covers how GEMS perform crossover and mutation. Please note that
these steps simply conduct generic genetic operations and are not hand-tuned nor
hardcoded to specifically solve the benchmark tasks in this paper.

For a sampled parent scenarios m,n, the corresponding encoding would look like;

m = {iπ, π∅, ψ} = {m0,m1} = {m0,0,m0,1...m0,x,m1,0,m1,1...m1,y} (6.1)

n = {iπ, π∅, ψ} = {n0, n1} = {n0,0, n0,1...n0,x, n1,0, n1,1...n1,z} (6.2)

mo encodes the choice of opponent to load iπ and the environment parameters
ψ while mo represents the encoding of the GenOpt Agent π∅ .In this section, x
corresponds to the length of environment encoding for m. y and z in this section
corresponds to the length of GenOpt Agent π∅ encoding for m and n. If using the
same environment, x will not be different between the scenarios, whereas y and z will
vary depending on the encoded environment.

GEMS performs crossover by swamping a section from one parent with a section
from another parent. This would be done by randomly selecting three split points
in the encoding. Using a uniform distribution, GEMS sample three integer values
η0 ∈ {0, 1, 2, ..x}, η1 ∈ {0, 1, 2, ..y}, η2 ∈ {0, 1, 2, ..z}

From this, GEMS generates two child scenarios p,q as follows;

p = {m0,0...m0,η0 , n0,η0+1...n0,x,m1,0...m1,eta1 , n1,eta2+1...n1,z} (6.3)

q = {n0,0...n0,η0 ,m0,η0+1...m0,x, n1,0...n1,eta2 ,m1,eta1+1...n1,y} (6.4)

For the special cases such as η0 = 0, x or η1 = 0, y, or η2 = 0, z, GEMS inherits
the segment without dividing it. For example, if η0 = 0, then p0 = n0,q0 = m0 and
so on.

To perform a mutation on a sampled scenario, GEMS first performs a crossover
between the scenario and a randomly generated scenario and returns one of the child
scenarios as the mutated scenario. The mutation rate controls the probability of each
scenario undergoing mutation.

6.6 Sampling Parents

In this paper, we have defined the probability of GEMS sampling scenarios as parents
as the following;

p(ξ) ∝ δ(ξ)(1 −G(πego, ξ)) (6.5)

In practice, GEMS uses the normalized form as follows;
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p(ξi) =
δ(ξi)(1 −G(πego, ξi))

Σδ(ξ)(1 −G(πego, ξ))
(6.6)

If
∑
δ(ξ) = 0, GEMS use regret-only version as follows;

p(ξi) =
(1 −G(πego, ξi))

Σ(1 −G(πego, ξ))
(6.7)

6.7 Evolution of Curriculum

Figure 6.2 includes characteristic examples of the scenarios generated and used as
curriculum for each algorithm in the ACM benchmark.
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Figure 6.2: Each dot marks the position of the red and blue aircraft at 1-second
intervals. The color of the markers transitions from black to blue for the student aircraft
and from black to red for the opponent aircraft. At the start of the training, only
our GEMS can present scenarios and opponents that provide interesting data points
instead of simply crashing to the ground. While SPDL+FSP somewhat succeeds in
finding scenarios that do not end in a crash, it optimizes scenarios without considering
opponent policy. It simply finds trivial cases where agents are flying in circles.
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[10] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Cur-
riculum learning. In Proceedings of the 26th annual international conference on
machine learning, pages 41–48, 2009.

[11] Jon Berndt. Jsbsim: An open source flight dynamics model in c++. In AIAA
Modeling and Simulation Technologies Conference and Exhibit, page 4923, 2004.

[12] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemys law
Debiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris
Hesse, et al. Dota 2 with large scale deep reinforcement learning. arXiv preprint
arXiv:1912.06680, 2019.

[13] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint
arXiv:1606.01540, 2016.

[14] George W Brown. Iterative solution of games by fictitious play. Act. Anal. Prod
Allocation, 13(1):374, 1951.

[15] George H Burgin and LB Sidor. Rule-based air combat simulation. Technical
report, 1988.

[16] Yevgen Chebotar, Ankur Handa, Viktor Makoviychuk, Miles Macklin, Jan
Issac, Nathan Ratliff, and Dieter Fox. Closing the sim-to-real loop: Adapting
simulation randomization with real world experience. In 2019 International
Conference on Robotics and Automation (ICRA), pages 8973–8979. IEEE, 2019.

[17] Dian Chen, Vladlen Koltun, and Philipp Krähenbühl. Learning to drive from a
world on rails. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 15590–15599, 2021.

[18] Kamil Andrzej Ciosek and Shimon Whiteson. Offer: Off-environment rein-
forcement learning. In Thirty-first AAAI conference on artificial intelligence,
2017.

[19] createmind. Deep reinforcement learning. https://github.com/createamind/
DRL/tree/master/spinup/envs/BipedalWalkerHardcore, 2019.

[20] Antoine Cully, Jeff Clune, and Jean-Baptiste Mouret. Robots that can adapt
like natural animals. arXiv preprint arXiv:1407.3501, 2, 2014.

[21] Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-Baptiste Mouret. Robots
that can adapt like animals. Nature, 521(7553):503–507, 2015.

61

https://github.com/createamind/DRL/tree/master/spinup/envs/BipedalWalkerHardcore
https://github.com/createamind/DRL/tree/master/spinup/envs/BipedalWalkerHardcore


[22] Felipe Leno Da Silva and Anna Helena Reali Costa. A survey on transfer learning
for multiagent reinforcement learning systems. Journal of Artificial Intelligence
Research, 64:645–703, 2019.

[23] Charles Darwin. On the origin of species: A facsimile of the first edition. Harvard
University Press, 1964.

[24] Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey,
Francesco Carpanese, Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego
de Las Casas, et al. Magnetic control of tokamak plasmas through deep rein-
forcement learning. Nature, 602(7897):414–419, 2022.

[25] Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart
Russell, Andrew Critch, and Sergey Levine. Emergent complexity and zero-shot
transfer via unsupervised environment design. Advances in neural information
processing systems, 33:13049–13061, 2020.

[26] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. CARLA: An open urban driving simulator. In Proceedings of the 1st
Annual Conference on Robot Learning, pages 1–16, 2017.

[27] Yuqing Du, Pieter Abbeel, and Aditya Grover. It takes four to tango: Multiagent
selfplay for automatic curriculum generation. arXiv preprint arXiv:2202.10608,
2022.

[28] Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter
Abbeel. Rl 2̂: Fast reinforcement learning via slow reinforcement learning. arXiv
preprint arXiv:1611.02779, 2016.

[29] Benjamin Ellenberger. Pybullet gymperium. https://github.com/benelot/
pybullet-gym, 2018–2019.

[30] Yousef Emam, Gennaro Notomista, Paul Glotfelter, Zsolt Kira, and Magnus
Egerstedt. Safe reinforcement learning using robust control barrier functions.
IEEE Robotics and Automation Letters, 2022.

[31] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diver-
sity is all you need: Learning skills without a reward function. arXiv preprint
arXiv:1802.06070, 2018.

[32] Shuo Feng, Haowei Sun, Xintao Yan, Haojie Zhu, Zhengxia Zou, Shengyin
Shen, and Henry X Liu. Dense reinforcement learning for safety validation of
autonomous vehicles. Nature, 615(7953):620–627, 2023.

[33] Xidong Feng, Oliver Slumbers, Ziyu Wan, Bo Liu, Stephen McAleer, Ying Wen,
Jun Wang, and Yaodong Yang. Neural auto-curricula in two-player zero-sum
games. Advances in Neural Information Processing Systems, 34:3504–3517, 2021.

62

 https://github.com/benelot/pybullet-gym
 https://github.com/benelot/pybullet-gym


[34] Manon Flageat, Felix Chalumeau, and Antoine Cully. Empirical analysis of
pga-map-elites for neuroevolution in uncertain domains. ACM Transactions on
Evolutionary Learning, 3(1):1–32, 2023.

[35] Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic
goal generation for reinforcement learning agents. In International conference
on machine learning, pages 1515–1528. PMLR, 2018.

[36] Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter
Abbeel. Reverse curriculum generation for reinforcement learning. In Conference
on robot learning, pages 482–495. PMLR, 2017.

[37] Pierre Fournier, Mohamed Chetouani, Pierre-Yves Oudeyer, and Olivier Sigaud.
Accuracy-based curriculum learning in deep reinforcement learning.

[38] Marta Garnelo, Wojciech Marian Czarnecki, Siqi Liu, Dhruva Tirumala, Junhyuk
Oh, Gauthier Gidel, Hado van Hasselt, and David Balduzzi. Pick your battles:
Interaction graphs as population-level objectives for strategic diversity. arXiv
preprint arXiv:2110.04041, 2021.

[39] Adam Gleave, Michael Dennis, Cody Wild, Neel Kant, Sergey Levine, and Stuart
Russell. Adversarial policies: Attacking deep reinforcement learning. arXiv
preprint arXiv:1905.10615, 2019.

[40] Jack H Good, Nicholas Gisolfi, Kyle Miller, and Artur Dubrawski. Verification
of fuzzy decision trees. IEEE Transactions on Software Engineering, 49(5):3277–
3288, 2023.

[41] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial
nets. In Advances in neural information processing systems, pages 2672–2680,
2014.

[42] Mononito Goswami, Cristian Challu, Laurent Callot, Lenon Minorics, and
Andrey Kan. Unsupervised model selection for time-series anomaly detection.
arXiv preprint arXiv:2210.01078, 2022.

[43] Alex Graves, Marc G Bellemare, Jacob Menick, Remi Munos, and Koray
Kavukcuoglu. Automated curriculum learning for neural networks. In Pro-
ceedings of the 34th International Conference on Machine Learning-Volume 70,
pages 1311–1320. JMLR. org, 2017.

[44] Wenbo Guo, Xian Wu, Sui Huang, and Xinyu Xing. Adversarial policy learning
in two-player competitive games. In International Conference on Machine
Learning, pages 3910–3919. PMLR, 2021.

63



[45] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon
Ha, Jie Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al.
Soft actor-critic algorithms and applications. 2018.

[46] Nicklas Hansen, Rishabh Jangir, Yu Sun, Guillem Alenyà, Pieter Abbeel,
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