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Abstract

For the multi-robot active reconstruction task, this thesis proposes using Gaussian
mixture models (GMMs) as the map representation that enables multiple downstream
tasks: high-fidelity static scene reconstruction, communication-efficient map sharing,
and safe informative planning. A new method called Self-Organizing Gaussian mixture
modeling (SOGMM) is proposed that estimates the model complexity (i.e., number
of Gaussian components) based on the depth and intensity data observed by the
robots. This method provides higher fidelity maps and lower map sizes compared
to prior GMM-based and grid-based methods. Due to the lower map sizes, shar-
ing the maps amongst robots or to a base station is tractable on low-bandwidth
communication channels. To enable safe informative planning, a motion primitives-
based planner is developed with two robot-robot and robot-environment collision
avoidance approaches. Both approaches provide collision avoidance capability without
maintaining a global occupancy grid, which can often consume too much memory
onboard the robots. Informative planning is enabled via an information-theoretic
action selection strategy with the robots sharing plans and map fragments over a
serial connection. The final active reconstruction system is demonstrated in a real
cave with two quadcopters equipped with RGB-D cameras. The overall approach
provides up to two orders of magnitude reduction in communication bandwidth usage
while providing higher depth and intensity reconstruction accuracy compared to dense
grid-based methods.
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1CHAPTER

Introduction
This thesis considers the problem of reconstructing an environment using multiple

robots, when each robot is equipped with a sensor that can provide dense imaging data
(e.g., RGB-D, thermal, depth). This problem arises in applications such as remote
search and rescue [87] and planetary exploration [168].

Dense point cloud data generated through depth sensors needs to be mathemati-
cally modeled in a way that all the robots in the team can reconstruct the environment
efficiently and accurately. For efficiency, the model built by individual robots should
be succint enough to pass on limited bandwidth communication channels and store
in the memory onboard the robot. For accuracy, the model should possess enough
information to enable informative planning and yield high-fidelity environment maps.

Towards achieving these goals, in this thesis we hypothesize that:

Using Gaussian mixture models as the map representation yields high-fidelity
maps, communication-efficient map sharing, and safe informative planning via
motion primitives during active reconstruction with multiple robots.

To feasibly evaluate this hypothesis, we make a set of simplifying assumptions
(Section 1.1). Within these assumptions, several requirements (Section 1.2) and chal-
lenges (Section 1.3) arise towards developing the required solutions. The contributions
of this thesis (Section 1.4) address these challenges by enabling high-fidelity recon-
struction through multiple robots while maintaining communication efficiency.

1.1 Assumptions
A1 Each robot is perfectly localized in an inertial frame of reference

The contributions in this thesis target two (planning and mapping) of the
three major subsystems (planning, mapping, and localization) of reconstruction
frameworks. We assume a perfect localization system is available. This is a
strong assumption since most existing state estimation methodologies accumu-
late drift in state estimates in visually challenging environments [59]. Potential
integrations with relevant Simultaneous Localization and Mapping (SLAM)
methods are suggested throughout the thesis when deemed necessary.

A2 Each robot can follow forward-arc motion primitives
The planning methodology in this thesis is based on forward-arc motion primitives-
based control of mobile robots [146]. This is not a strong assumption since

1



1.2 Requirements

planners have been proposed that utilize the same parameterization of motion
primitives for heterogeneous robots [204, 47, 49]. Further, we note that fixed-
wing aerial robots can also be used within a motion primitives-based frame-
work [109, 169] with the exception that stopping maneuvers must be carefully
designed [142]. For simplicity in exposition, we develop and demonstrate plan-
ning for multirotor vehicles in this thesis.

A3 Each robot generates registered depth-intensity point clouds
The mapping methodology in this thesis uses registered, four-dimensional (4D),
depth-intensity point clouds as input data. This is not a strong assumption be-
cause most volumetric mapping approaches use at least three-dimensional depth
data. Semantic or thermal mapping works use 4D data [177, 214]. For simplicity
in exposition, we develop and demonstrate mapping for robots equipped with
a forward-facing RGB-D sensor in this thesis.

A4 The reconstruction environment is 3D and static
Dynamic environments affect all subsystems of reconstruction frameworks and
are out of scope for this thesis. Our primary target environments for deploy-
ments are complex caves and narrow industrial tunnels.

1.2 Requirements
R1 Motion plans should be available anytime

Faster replanning rates can lead to higher speed operation of robots in unknown
environments [93]. However, calculating informative planning objectives can be
computationally expensive depending on the map resolution and the sensing
range [10, 134]. Different replanning rates might have to be set for every robot
in the team depending on the compute capability. This requires the planning
algorithm to be anytime, i.e., being able to return a plan within a fixed time
budget.

R2 Motion plans must be kinodynamically feasible
Actuator constraints impose limits on the maximum achievable velocity and
its higher derivatives given a starting state of the robot [125]. Therefore, the
planning algorithm should allow for kinodynamic feasibility checks during in-
formative planning to ensure safe operation during reconstruction.

R3 Motion plans should adapt with environmental complexity
A robot can potentially move much faster in wide open spaces compared to
constrained tight spaces [149]. Further, it might need to move slower in regions
with a high amount of surface detail to capture the map correctly compared
to moving in regions away from any surfaces [134]. Hence, the maximum speed
at any time during reconstruction should depend on the local environmental
complexity. Note that this form of adaptation also reduces the number of
maximum speed parameters that need to be set for a heterogeneous team
deployment.

2



1.3 Challenges

R4 Map resolution should adapt with scene complexity
Environments are unknown a priori for reconstruction tasks. It is undesirable
to set a fixed map resolution throughout the reconstruction mission because
this might lead to loss of fidelity on surfaces with a high amount of detail.
Requiring map resolution to adapt with the scene complexity enables automatic
modulation in the level of detail at which surfaces are captured in the map.

R5 Map should be succinct for communication-efficiency
In challenging environments, such as caves, the robots have to communicate over
low-bandwidth communication channels [59]. Map representations are nomi-
nally the most expensive data structures to communicate amongst robots and to
the human operators at some base station. In existing methods, this is achieved
at the cost of fidelity of the map. However, a high-fidelity compressed map is
desirable. Hence, the map representations used for the reconstruction framework
should be communication-efficient while remaining high-fidelity.

R6 Robots must not collide with each other or with the environment
The planning algorithm must guarantee obstacle avoidance between the robots
and the environment and should never enter into an inevitable collision state [93]
during operation. Further, collision avoidance amongst the robots must occur
via decentralized decision-making.

R7 Informative planning using motion primitives without global occupancy grids
Maintaining global occupancy grids can take a lot of memory onboard compu-
tationally constrained robots. Thus, we require enabling informative planning
for multi-robot system using a compressed map representation.

1.3 Challenges
Several challenges need to be overcome in order to realize these requirements into one
active reconstruction framework. The main challenges associated with the require-
ments are as follows:

C1 Anytime and kinodynamically feasible motion planning
Informative planning objectives are often expensive to compute as they require
many ray casting operations [42]. Since the ray casting operations have an
undecidable computational time complexity, it is challenging to serve subop-
timal motion plans in an anytime manner (Requirement R1). Checking these
suboptimal plans for kinodynamic feasibility (Requirement R2) entails careful
motion plan generation and selection while satisfying maximum acceleration
and jerk constraints.

C2 Adaptive motion plans for efficient action selection
How should the design of candidate motion plans vary with the environment
clutter (Requirement R3)? The environment clutter is captured in the map

3



1.4 Contributions & Outline

Chapter Challenges Publications
Chapter 4 C1 Goel et al. [73]
Chapter 5 C2 Goel et al. [75]1
Chapter 6 C3 Goel et al. [76], Goel and Tabib [71]
Chapter 7 C4 Goel and Tabib [72]
Chapter 8 C5 Goel et al. [74], Tabib et al. [180]2

Table 1.1: The challenges addressed in this thesis by each chapter along with the associated
publications.

since the environment is a priori unknown. The challenge here is to use some
form of feedback from the map and adapt the design of possible motion plans.

C3 Adaptive point cloud compression for high-fidelity mapping
In this thesis, robots are equipped with RGB-D cameras that produce dense
point clouds. Over time these point clouds need to be fused into a succint
representation that can be used for downstream tasks such as reconstruction,
map sharing, and safe informative planning (Requirements R4–R7). The key
challenge is to automatically tradeoff the level of compression and the down-
stream task accuracy with changes in the scene.

C4 Collision avoidance using compressed surface maps
If a multi-robot team is creating compressed surface maps using onboard depth
sensors, it follows that the same maps are used for collision avoidance (Re-
quirement R6). However, to enable navigation in cluttered environments, it
becomes crucial to avoid conservative approximations of the robot body and
the environment. Therefore, the challenge here is to create compressed surface
maps in a way that enables using tight approximations of robot bodies and the
environment for collision avoidance.

C5 Informative planning using compressed surface maps
Existing map representations either use dense occupancy grids or raw point
cloud data to enable informative planning for a multi-robot team during active
reconstruction. If we are enabling collision avoidance using compressed maps, it
is worth addressing how to enable informative planning with the same maps to
avoid maintaining a separate map just for informative planning. The challenge
is again to enable automatic tradeoff between the level of compression and the
suboptimality of informative plans.
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(a) (b)

(c)

Figure 1.1: Using the methodology in Chapter 5, a teleoperated multirotor adapts the
motion planning speed and local map resolution to (a) enter a cave and (b) traverse
a tight passage inside. (c) illustrates the surroundings near the cave entrance, which
is embedded in a sloping hillside. A video of this experiment can be found at https:
//youtu.be/VjyoPVXT8WY.

1.4 Contributions & Outline
Towards solving these challenges, this thesis makes the following contributions (Ta-
ble 1.1).

Chapter 2 provides a literature review of planning and mapping for robotic
reconstruction and highlights the research gaps addressed through this thesis.

Chapter 3 presents background information such as preliminary concepts in
motion planning and spatial mapping, the multi-robot reconstruction problem, and
Gaussian mixture models for mapping.

1Best Paper Award, IEEE International Symposium on Safety, Security, and Rescue Robotics
(SSRR), 2022

2King-Sun Fu Memorial Best Paper Award (Honorable Mention), IEEE Transactions on Robotics,
2022
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1.4 Contributions & Outline

Figure 1.2: The methodology proposed in Chapter 6 enables multi-modal reconstruction
at varying scales. Without modifying the model complexity parameters, the methodology
models depth and grayscale data of small objects (1m× 1m safety cone in the left image)
and complex environments (10m×5m cave in the center image) while also modeling depth
and thermal data of (right) large-scale buildings (42m× 28m) [18]. A supplementary video
may be found at https://youtu.be/TCn5KB1m5P0.

Chapter 4 [73] addresses challenge C1 through a motion primitives-based plan-
ner that utilizes a steady-state analysis of maximum feasible speeds under sensing
and kinodynamic constraints to design the library of motion primitives (MPL) along
with a Monte Carlo tree search (MCTS) strategy for motion primitive selection.
The method is tested onboard a multirotor which achieves speeds exceeding 2.25m/s
during reconstruction in open spaces and around scattered obstacles while enabling
anytime and safe operation.

Chapter 5 [75] targets challenge C2 and presents a hierarchical collision avoid-
ance methodology that automatically initializes and modulates the maximum speed
parameter based on the environmental complexity (Fig. 1.1). The map resolution of a
local occupancy grid is adapted hierarchically using the feedback from a local distance
field-based collision checker. If the number of 3D voxels in the local map is fixed, it
is shown that in this case the maximum speed parameter is a function of the map
resolution. The results from simulated and real-world cave reconstruction scenarios
demonstrate automatic speed modulation as the multirotor navigates through regions
with diverse environment complexity. Further, since the map resolution is adapted
online, teleoperation through tight spaces becomes feasible in scenarios where it
otherwise would be infeasible if map resolution were fixed.

Chapter 6 [76, 71] contributes an information-theoretic mapping method, Self
Organizing Gaussian Mixture Modeling (SOGMM), to address challenge C3. Through
this technique, the number of components of a GMM-based mapping methodology
are adapted during operation based on the complexity of depth-intensity image pairs
(Fig. 1.2). The principle of relevant information (PRI) [147] is employed to estimate
the relevant modes in the image data. The number of these relevant modes is used
as the number of components for a GMM over the 4D data (3D point cloud and 1D
intensity information per point). The qualitative and quantitative results demonstrate
the adaptation of number of components with changing scene complexity on real-world
datasets; scenes of increasing depth-intensity complexity are automatically assigned
higher number of components.
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(a) Point Cloud (b) 3D Ellipsoids

(c) Euclidean Distance Field (d) Collision Probability

Figure 1.3: Chapter 7 contributes methods to estimate continuous-space collision probabil-
ity, Euclidean distance and gradient of an ellipsoidal robot body model from a Gaussian
surface model (GSM) of the surface. The 3D point cloud shown in (a) is approximated
with a GSM, shown as a set of ellipsoids in (b). (c) The Euclidean distance over a 2D
slice predicted by the proposed approach is shown as a heatmap (increasing distances from
blue to red). (d) The collision probability values (decreasing from red to black, 1.0 in white
regions) over the same 2D slice when the robot position is uncertain.
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Chapter 7 [72] studies the problem of estimating distance and collision probabil-
ity between a set of ellipsoids towards enabling collision avoidance between multiple
robots and between robots and the environment (Challenge C4, Fig. 1.3). Most
collision detection and avoidance approaches assume the robot is modeled as a sphere,
but ellipsoidal representations provide tighter approximations and enable navigation
in cluttered and narrow spaces. State-of-the-art methods derive the Euclidean distance
and gradient by processing raw point clouds, which is computationally expensive
for large workspaces. Gaussian mixture surface mapping enables compressed and
high-fidelity surface representations. Few methods exist to estimate continuous-space
occupancy from such models. They require Gaussians to model free space and are
unable to estimate the collision probability, Euclidean distance and gradient for an
ellipsoidal robot. The proposed methods bridge this gap by extending prior work
in ellipsoid-to-ellipsoid Euclidean distance and collision probability estimation to
Gaussian surface models. A geometric blending approach is also proposed to improve
collision probability estimation. The approaches are evaluated with numerical 2D and
3D experiments using real-world point cloud data. Methods for efficient calculation of
these quantities are demonstrated to execute within a few microseconds per ellipsoid
pair on modern embedded computers.

Chapter 8 [74, 180] improves upon prior work where GMM-based maps are used
for reconstruction [43], and details a real-time distributed mapping system that rep-
resents the global shared map representation as a GMM. The occupancy information
is locally constructed from the GMM map [138] and used for information-theoretic
planning [179] (Challenge C5). The results from simulation experiments suggest
improvement in reconstruction performance on constrained bandwidth channels as
compared to occupancy grids. In the real-world, a two-multirotor system is deployed
in a wild cave. We observe up to 100x improvement in the communication-efficiency
compared to discretized mapping techniques.

In Chapter 9, we state the concluding remarks along with a summary of results
obtained through this thesis. Promising directions of future work are also discussed.
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2CHAPTER

Related Work
This chapter reviews prior work in adaptive-anytime planning and mapping to-

wards addressing challenges C1–C5. We limit the scope of this review to works that
present solutions under the same assumptions (Section 1.1). For C1 and C5, safe
and anytime informative planners for 3D reconstruction are reviewed in Sect. 2.1.
For C2, the related work in adaptive multirotor navigation is presented in Sect. 2.2.
For C3, adaptive point cloud compression methods that are useful for 3D mapping
in reconstruction applications are reviewed in Sect. 2.3. For C4, we review methods
that provide Euclidean distance and gradient calculation in the continuous space
(Sect. 2.4).

2.1 Safe, Anytime Informative Planning for 3D re-
construction

Motion primitives-based reconstruction for existing reconstruction systems [49, 141,
209, 25, 46, 58] typically consists of two stages: action representation and action
selection. Action representation refers to the motion profile used by the planner
to represent a motion to a potentially informative region in the 3D space. Action
selection is a two-stage process. First, a utility function to calculate the information
the candidate action can provide about the environment. And second, a spatial
sampling of the candidate actions to search the explored map so far for potential,
reachable, informative spaces. The second stage is what usually enables anytime
operation [43, 9, 13]. Next we review the literature in each of these areas.

Action Representation. Cieslewski et al. [38] propose a strategy based on
maintaining rapid forward motion by driving the system toward frontier cells (cells
on boundary of free and unknown space [201]) within the camera field-of-view. The
frontier-based approach is the most common amongst the deployed reconstruction
frameworks. While the authors note that reaction time for obstacles avoidance can
limit speeds in reconstruction, they provide little discussion of why this happens or
how it can be avoided. In contrast, the action representation developed through this
thesis considers a broader variety of sensing actions that can avoid these limitations
and also incorporates sensing and planning time into action design. In this thesis,
through Chapter 4 we focus on design of a library of motion primitives suitable for
reconstruction at high speeds given the relationship between sensing constraints and
maximum safe velocities.

Action Selection. The selection strategy requires creating a utility function that
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can be calculated over the candidate actions. Cieslewski et al. [38] use a frontier-
based motion planning strategy in which the planner biases the motion plans towards
frontiers while penalizing a change in direction of velocity. Recent work by Cao et al.
[26] improves upon frontier-based coverage strategies and proposes a hierarchical
planner that uses surface normals to generate informative viewpoints via a geometric
heuristic. These objectives can provide a rapid coverage of the environment with
low-noise sensors such as LiDARs. However, since the uncertainty in the map is not
explicitly accounted into motion planning, maximizing coverage alone might result in
degraded performance when using noisy data from depth sensors.

Towards incorporating uncertainty of the map explicitly into decision making,
there is a line of research that uses mutual information between projected mea-
surements and the current map as the objective to drive reconstruction. However,
these methods are computationally expensive when compared with coverage meth-
ods. Charrow et al. [30] and Zhang et al. [207] propose a computationally tractable
approximation of the Cauchy-Schwarz Quadratic Mutual Information (CSQMI) and
Shannon Mutual Information (FSMI) respectively, and use this information metric
over a local lattice of feasible trajectories to greedily maximize information in a local
map. The problem with local and greedy approaches is that they are susceptible to
getting stuck in local extrema of information distribution over the environment. To
this end, modifications have been proposed to these information-theoretic strategies
that incorporate not only a local information maximization objective, but also allows
to reason over the global information distribution. Approaches by Charrow et al. [29]
and Tabib et al. [179] use frontiers to model this global information spread. For our
reconstruction planner in Chapter 4 we use the objective function by Corah et al.
[43] which uses a global library of informative views as a succinct and more accurate
representation of the global information content.

Anytime Operation. The objective of anytime planning for reconstruction is
to be able to compute plans given a time budget and the current information of the
state space [162]. To enforce anytime operation, receding-horizon approaches are used
in 3D reconstruction scenarios [13, 43]. In Chapter 4, we employ Monte Carlo tree
search (MCTS) as it can search over long planning horizons using computationally
expensive reward functions, and it is anytime [21]. Further, MCTS is parallelizable on
the CPU and GPU [32] and thus it is beneficial towards enabling anytime planning
and mapping for the target platforms considered in this thesis.

2.2 Adaptive Planning for 3D Navigation
Motion primitives-based teleoperation of a multirotor has been demonstrated to
reduce operator cognitive load [203]. Spitzer et al. [165] propose a teleoperation
approach that leverages a KD-Tree to locally represent the environment for fast
collision checking. A motion primitive pruning approach leverages low-latency col-
lision avoidance and the closest distance to the operator’s joystick input to allow
for adaptive-speed teleoperation in the presence of obstacles. The local environ-
ment representation assumes the resolution of the map is fixed before the vehicle
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is teleoperated and does not encode unknown or free space information. However, in
practice, the unknown space information may be necessary to ensure safety when the
environment is incrementally revealed through a limited range depth sensor [93, 186].
Free space information is necessary to simultaneously support applications such as
robotic reconstruction [180]. Thus, in this thesis, we use probabilistic occupancy maps
for local environment representation. A fixed resolution during operation imposes
restrictions on the configuration space for the planner because the motion primitive
pruning approach depends on the granularity of discretization. If the resolution is
too low, the robot might not be able to enter narrow entrances due to the coarseness
of the map. If the resolution is too high, the high perceptual latency of a fine map
limits the maximum speed of the robot [64]. In this thesis, we address this research
gap by proposing a multirotor teleoperation approach, which uses variable-resolution
local probabilistic occupancy maps hierarchically to enable fast teleoperation in open
spaces while ensuring safe, low-speed teleoperation through narrow passages.

Prior work in adaptive motion planning has been proposed to modulate robot
speed based on application-specific heuristics. Zhang et al. [205] present a likelihood-
based collision avoidance strategy for fast teleoperation of a multirotor by prioritizing
open spaces for navigation to maintain high speed. The objective assumes that taking
an alternate path (i.e., a path through open space) will lead to the same location as
taking another (i.e., a path through a narrow passage); however, this assumption
is flawed in the context of certain domains like caves. In contrast, our work adapts
the maximum vehicle speed according to environment complexity. Quan et al. [149]
propose an adaptive optimization-based motion planning approach for the multirotor
navigation task, which is most similar to our approach. The heuristic used for speed
modulation relies on the angle between the velocity direction and the gradient of the
local signed distance field. This heuristic is coupled with a multi-layer model predictive
control approach to allow for fast flight in sparsely cluttered environments and slow
flight through dense clutter. However, while the motion planner allows adaptation
in speed, the resolution of the environment representation is fixed. Selecting the
resolution of an a priori unknown environment is difficult, which makes the approach
of Quan et al. [149] unsuitable for our application. An alternative strategy is to operate
with a range of voxel sizes for the local environment representation and modulate
speeds according to the change in the map. The proposed approach builds on this
strategy and introduces a motion primitive selection approach that modulates the
maximum speed along the motion primitives according to the voxel size of the local
occupancy map.

Several methods exist for hierarchical volumetric occupancy mapping. OctoMap
by Hornung et al. [88] provides a multi-level representation of occupancy via an Oc-
Tree data structure. However, to the best of our knowledge, no motion planner exists
that can leverage multiple levels of a local OctoMap-based representation to allow
for adaptive-speed teleoperation through environments with varying clutter. Nelson
et al. [134] present an occupancy grid adaptation methodology for two-dimensional
environment reconstruction using ground robots. This approach is specific to the
reconstruction scenario and the voxel sizes are adapted via the information-bottleneck
method to minimize the cost of computing the reconstruction objective. It is unclear
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how this approach may be applied in the context of multirotor teleoperation since
the objective highly depends on the intent of the human operator and may vary over
time. Closest to our work, Funk et al. [68] create a multi-resolution OcTree-based
representation for accurate 3D reconstruction and online planning. The resolution
is selected by minimizing the error in occupancy representation. A path planning
result is presented in this thesis that utilizes a “coarse-to-fine" approach for collision
checking. The time to compute the motion plan varies from 0.01 s to 0.4 s depending
on the desired start and end-points and the maximum resolution set by the user.
However, the results are generated with post-processed datasets and a parallelized
implementation so it is unclear how the performance would translate to compute
constrained robotic systems and real-world results. A key consideration in the teleop-
eration context is to minimize the lag in the multirotor response felt by the operator
by having a high motion planning rate. Thus, it is important to design a planning
approach that maintains a steady planning rate in environments with varying clutter.
The proposed approach addresses this gap by adapting a pre-specified number of map
levels per planning round to achieve a planning rate of at least 10Hz.

2.3 Adaptive Point Cloud Compression
In this section, we focus on reviewing methods that enable adaptive point cloud
compression for 3D mapping purposes. Both discrete and continuous methods are
reviewed.

Discrete Methods. Robotics applications commonly leverage probabilistic en-
vironment representations consisting of fixed-size volumetric pixels (or voxels in 3D)
and represent occupancy as independent, discrete random variables [63]. The discrete
probability distribution is updated using the inverse sensor model and Bayes’ rule.
The limitation of this representation is it requires specifying parameters such as
voxel size and occupancy clamping thresholds, which are dependent on environmental
conditions. Although the compute usage for Bayesian updates is low, voxel grids
require significant memory to scale in spatially-extensive environments. Multi-modal
extensions for 3D voxel grids suffer from the same limitations [177].

To reduce the number of voxels, Magnusson et al. [118] propose the Normal Distri-
butions Transform mapping framework (NDTMap) that utilizes the same volumetric
factorization but places a Gaussian distribution in each occupied voxel. The Voxblox
method by Oleynikova et al. [137] uses truncated signed distance functions (TSDFs)
over regular 3D voxel grids for point cloud modeling as opposed to an occupancy-
based formulation. Both of these frameworks model the point cloud with less memory
than regular 3D voxel grids, but still require specifying a map resolution in advance.

Hornung et al. [88] present OctoMap to address the limitation regarding pre-
specified voxel resolution via the hierarchy of an octree. The limitations are that pre-
specifying a minimum leaf size, which determines the maximum size of the map, and
occupancy thresholds are still required. Recent advances over OctoMap demonstrate
improvements in compression and fidelity [57, 68]; however, the limitations regarding
pre-specified parameters are unaddressed.
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In contrast to these discrete methods, we present a continuous probabilistic multi-
modal modeling methodology that adapts the model complexity according to the
scene variation.

Continuous Methods. Continuous non-parametric point cloud modeling meth-
ods like Gaussian Process (GP) [136] and Hilbert maps [151] increase representational
power at the expense of high computational cost. Closest to our work, Zobeidi et al.
[214] develop an incremental metric-semantic GP mapping approach that represents
map uncertainty and outperforms deep neural network-based approaches. However,
the need for offline training and specification of model hyperparameters precludes the
use of this representation for online adaptive compression. Yan et al. [202] present a
highly-parallelized adaptive scene representation that utilizes a Dirichlet Process (DP)
mixture model as a point cloud model. However, an upper limit on the number of
components allowed per processor must be pre-specified, which limits the adaptability
of the resulting model.

Neural Implicit Representations (NIRs) have been proposed as continuous implicit
models for radiance and occupancy information. Most works in this area build on
Neural Radiance Fields (NeRFs) proposed by Mildenhall et al. [127]. While NeRFs
produce high-resolution, realistic models, they suffer from one major limitation due
to the fixed architecture of the underlying neural network, which does not allow
adaptivity in the representation of the scene.

Gaussian Mixture Models for Mapping. Generative probabilistic models
that use a finite mixture of probability distributions aim to represent the environ-
ment through an adaptive and parametric mathematical model, and thus provide
a potential solution to the limitation in adaptivity of NeRFs. Recently, Gaussian
mixture models (GMMs) have been utilized for adaptive point cloud modeling [61,
133, 167, 138, 55]. Eckart et al. [61] use a top-down hierarchy of 3D GMMs to
represent 3D point cloud data at different levels of detail. Srivastava and Michael
[167] use a bottom-up hierarchy of 4D GMMs to model the surface point clouds and
the points along the sensor beams. Further, these works utilize random initialization
for the hierarchical GMMs that does not yield accurate results [113]. Navarrete
et al. [133] modify the FastGMM framework by Greggio et al. [77] and use it for
compressing locally planar point clouds. The FastGMM approach creates a GMM
via a deterministic splitting criterion in a coarse-to-fine manner. Dong et al. [55]
use a similar idea for adaptive model selection in their GMM mapping approach.
The Gaussian components belonging to the same plane are merged using their mean
vectors and principal directions to obtain a coarser model. Common to all these works
is a requirement to specify the levels of detail; either directly (e.g., number of layers in
hierarchy of GMMs) [61] or indirectly (e.g., through convergence, splitting, or merging
criteria) [167, 133, 55]. Specifying these parameters a priori can be challenging for
real-world robotic applications. In contrast to these methods, the proposed approach
does not require processing a hierarchy of GMMs to achieve online adaptation with
respect to scene complexity.

The fundamental challenge is to estimate the number of components required
to model the point cloud to obtain sufficient fidelity. McLachlan and Rathnayake
[123] provide an overview of approaches to estimate the number of components in
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a GMM. Among the commonly used criteria are the Akaike’s information criterion
(AIC) [4], Bayesian information criterion (BIC) [163], and Model description length
(MDL) [82], which strike a balance between the fit over the underlying dataset
and model complexity. For example, to use AIC or BIC scores for model selection
one must plot the scores over many candidate mixtures with increasing numbers of
components to detect an approximate minima, which is prohibitive for online robotics
applications with finite computational power and timing constraints. Variational
methods have been created to estimate a posteriori distributions over the parameters
of a GMM; however, these methods also require specifying a prior distribution over
model parameters [7, 17]. As opposed to using these techniques, we perform model
selection for GMMs through information-theoretic learning.

The proposed approach also relates to Self-Organizing Maps (SOMs) by Kohonen
[102] through the Self-Organizing Mixture Models (SOMMs) [189]. To create SOMMs,
Verbeek et al. [189] present a modified Expectation Maximization (EM) algorithm
where the E-step enforces topology preservation while the likelihood of the data is
maximized. Consequently, this approach provides topology-preserving fits of the data.
However, as the authors point out in their concluding remarks, setting the number of
components in their approach is a non-trivial task. The point cloud modeling method
proposed in our work (Chapter 6) is able to estimate the number of components
adaptively.

Saarinen et al. [160] motivate the development of NDTMap, which uses a Gaussian
density in each cell, by arguing that larger voxels may be used since the Gaussian
density better approximates the surface geometry. However, this representation also
suffers from the aliasing challenges of a regular occupancy grid as each Gaussian
density is considered an independent component of a uniformly-weighted Gaussian
mixture model (GMM). [43, 179] relax the assumption of uniform weights, by using
a maximum-likelihood fit over the point cloud data to create a global map that is
represented as a GMM without the use of a discrete grid. However, these works
require specifying the number of mixture components before operation which limits
the maximum achievable fidelity of the map. We bridge this gap by proposing a GMM-
based approach that enables creating a map representation that increases the model
fidelity incrementally via an information-theoretic self-organizing approach [76] and
enables scalable and efficient inference via spatial hashing.

Neural Radiance Fields (NeRFs) [127] enable photorealistic environment rendering
at lower memory costs; however, incremental mapping with implicit representations
are known to suffer from catastrophic forgetting [208]. Catastrophic forgetting is the
problem of forgetting old knowledge after training with new data [122]. To mitigate
this issue, some incremental NeRF mapping approaches [172, 139] retain keyframes
from historical data and replay them with current data to train the network; however,
this approach requires more memory to store the keyframes [208]. Zhong et al. [208]
develop a technique for large scale Signed Distance Field (SDF) mapping using
LiDAR, but it is not clear how robust it will be to catastrophic forgetting when
intensity data is incorporated. In contrast, the proposed approach adaptively increases
the fidelity of the parametric GMM-based environment model depending on the scene
complexity. This way, while offering an implicit representation of the surface, no
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special consideration for catastrophic forgetting is required.
While it may be possible to use NeRFs for the reconstruction problem [161], it

is unclear how to use this representation for map sharing in multi-robot reconstruc-
tion. In contrast, GMM-based maps can provide the sensor pose locally [178] and
globally [176], can be used for multi-robot reconstruction [74], and enable adaptive
multimodal reconstruction through the proposed approach built on top of SOG-
MMs [76]. Zhu et al. [213] propose NICE-SLAM to map multiple modalities. But the
representation suffers from memory inefficiency due to the use of multiple 3D voxel
grids. The proposed approach uses only a sparse grid over the Gaussian components
for computation performance gains for incremental mapping. Finally, note that the
current state-of-the-art in radiance field rendering in the computer graphics literature
leverages 3D Gaussian densities in place of neural networks [99, 98], demonstrating
superior performance in both training and inference compared to NeRFs. Our method
uses a mixture of 4D Gaussian densities to jointly model intensity and spatial data.
Therefore, incorporating radiance field rendering within the proposed incremental
mapping method is an exciting direction for future work. There are several concurrent
works that use the depth data [97, 173] but still require offboard compute and do not
enable motion planning and active informative planning. Some recent works do pro-
pose active informative planning solutions that require the planner to not be anytime
or without safety guarantees [95, 197]. Works that do support safety guarantees [33]
are not amenable to informative planning. Works that claim to achieve both, such as
the RT-GuiDE [181], are not amenable to multi-robot information sharing due to the
large number of Gaussians utilized for reconstruction. In contrast, the proposed work
enables high-fidelity multi-robot active reconstruction while enabling safe collision-
free and kinodynamically-feasible operation of the individual robots in the team.

2.4 Continuous Space Collision Avoidance
Euclidean distance fields and their gradients (often computed using finite differencing)
are used for collision avoidance [137] and optimization-based motion planning [154],
respectively. These values are calculated by fusing point clouds acquired by range
sensors (e.g., LiDARs and depth cameras) and processed on-board the robot. To
enable safe navigation outside the sensor field-of-view (FoV), the robot must maintain
a map comprised of past fused observations. This is especially important when limited
FoV sensors, like depth cameras, are used onboard the robot [186]. Existing Euclidean
distance and gradient estimation methods create a spatially discretized map and
compute distance and gradient values in each cell via a Breadth-First Search [81],
which is computationally expensive in large workspaces or when small grid cells are
employed [34]. To overcome the limitations of cell based methods, Gaussian Process
(GP) based methods were developed, which implicitly represent the surface and enable
continuous-space Euclidean distance and gradient calculation [108, 196, 107]. A GP
is regressed from raw point cloud data and used to infer the Euclidean distance
and gradient at any test point in the workspace. A challenge with these methods is
that the training time scales as the size of the input data increases, so optimization-
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based subsampling must be introduced to enable spatial scalability [195]. In contrast,
Gaussian surface models (GSMs) (e.g., mixture models [61, 167, 138, 110] and 3D
splatting works [50, 99, 98]) provide relatively compressed and high-fidelity point
cloud models. This work leverages the geometric interpretation of GSMs to calculate
continuous-space Euclidean distance and gradients.

Collision probabilities are used for motion planning under robot position uncer-
tainty [56, 22]. Like Euclidean distance and gradient field methods, existing methods
that estimate collision probability from a surface point cloud utilize probabilistic
occupancy queries from a discrete [86, 104] or continuous surface representation [66].
These maps require storing free space cells [63, 88, 3] or raw point clouds [151], leading
to high memory usage. GSMs can alleviate these challenges by effectively compressing
point clouds into a finite set of ellipsoids. However, existing occupancy estimation
frameworks leveraging GSMs either fit Gaussian components in free space [167, 111] or
Monte Carlo ray trace through a local discrete grid [138, 179]. Robot pose uncertainty
is not considered. This thesis bridges these gaps by proposing a collision probability
estimation method, which uses only the surface Gaussians and accounts for Gaussian
uncertainty in the robot position.

All the aforementioned techniques require approximating the shape of the robot.
Spherical approximations are widely used because inflating the obstacles with the
robot size for the purposes of collision avoidance results in a simple configuration space
(C-space) [105]. However, recent results in ellipsoidal approximations demonstrate
superior planning performance, especially in cluttered and narrow environments [158]
for both rigid [114] and articulated robots [94]. These approximations are also used
for human bodies in a dynamic environment [212, 115]. Consequently, in this work
the proposed methods use an ellipsoidal robot body approximation.

Gaussian Process regression has been used extensively in continuous EDF gen-
eration. Lee et al. [108] model the surface point cloud using a GP implicit surface
(GPIS) [193], which enables creating continuous ESDFs that are limited to a short-
range from the surface. Wu et al. [194] propose the Log-GPIS map representation
that estimates continuous EDFs further into 2D and 3D workspaces. This method
models heat diffusion from the surface [45] as a GP regression and uses the logarithm
of the regressed heat as the distance. The gradient is also regressed as part of the
GP regression. The error in EDF estimates is demonstrated to be lower than the
popular discrete-space Voxblox [137] approach. The downside of this method is that
the logarithm operation is numerically unstable when the heat approaches zero, which
occurs at distances far from the surface. Le Gentil et al. [107] prove that the error
in Log-GPIS EDF increases with the distance from the surface and propose an
alternate formulation, which leverages reverting functions of covariance kernels for
GP regression [153]. While this method achieves EDFs that are relatively accurate,
the numerical instability limitation still exists because a logarithm operation is needed
over an occupancy value that gets close to zero far from the surface. Furthermore, all
of the GP-based methods assume a spherical robot body. In contrast, our approach
is numerically stable far from the surface and explicitly accounts for ellipsoidal robot
shapes.

GPIS-based representations provide a variance estimate, which indicates the un-
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certainty in the fused map; however, there remains an open research question about
how to compute a collision probability leveraging this variance and the robot position
uncertainty. Our approach, however, does provide a collision probability estimate.

Few deep learning approaches enable EDF and gradient estimation. Ortiz et al.
[140] model the signed distance function using a 4-layer multi-layer perceptron along
with 3D positional embedding for input coordinates [127]. During training, an upper
bound on the distance is calculated from sampled free space points by approximating
the location of the closest surface points. In larger workspaces, this method requires
replaying stored keyframes to avoid catastrophic forgetting. Just like GP-based meth-
ods, a spherical robot body is assumed implicitly. Instead of the closest point, we use
the notion of the closest ellipsoid on the surface. This ellipsoid belongs to a set of
ellipsoids that geometrically approximate the surface GSM. The GSM is created using
a methodology that does not suffer from catastrophic forgetting and does not require
free space data [71]. Note that the GP-based methods mentioned earlier also do not
need to account for catastrophic forgetting and do not use free space points. Due
to this reason, the state-of-the-art GP-based method in [107] is used as a baseline
method for distance field and gradient comparison (Sect. 7.2).

Nguyen et al. [135] utilize deep neural networks to predict the collision probability
using a depth image, uncertain partial robot state, and motion primitives as inputs.
The network is trained in simulation environments using 1.5 million data points.
The Gaussian uncertainty in robot state is propagated through the network through
an Unscented Transform [96] of Monte Carlo samples of the Gaussian. The model
uncertainty is obtained via the Monte Carlo dropout [69] approach. Both uncertainty
calculation methods contain randomness because of the Monte Carlo sampling. Due
to this randomness, it is unclear if the uncertainty measure will generalize to real-
world environments that are significantly different from the simulation environments
used for training. Furthermore, the training will also require data points obtained at
various noise levels in robot state, increasing the cost of prior training. In contrast,
the proposed method is geometric and does not require prior training.

There are a few methods to note that enable relevant applications without ex-
plicitly creating EDFs. Dhawale et al. [52] demonstrate reactive collision avoidance
for a quadcopter from a Gaussian mixture model (GMM) surface model without
creating EDFs. The Gaussian components of the GMM are approximated as iso-
contour ellipsoids. To simplify the C-space [116], a spherical robot approximation
is leveraged to inflate the ellipsoids by the radius of the robot body model. Given
the inflated ellipsoids, the robot is approximated as a point object and point-in-
ellipsoid tests are used for deterministic collision tests. For the same task, Florence
et al. [65] provide collision probability estimates for a spherical robot body. Liu et al.
[114] use an ellipsoidal model for a quadcopter and use the raw point cloud maps
(within a KD-Tree for scalability) for point-in-ellipsoid tests. Srivastava and Michael
[167] and Li et al. [111] use surface and free space GMMs to compute continuous-
space occupancy prediction. However, the occupancy prediction does not encode robot
position uncertainty so that a collision probability may be regressed. In contrast, the
proposed methods enable continuous-space collision probability, Euclidean distance
and gradient calculation without using free space GMMs for ellipsoidal robots.
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3CHAPTER

Background
This chapter provides an overview of two basic aspects used in the remainder of

this thesis. The contents of this chapter also appear in [179, 180].

3.1 Preliminaries

3.1.1 Notation
In this thesis, unless otherwise noted, small letters are used for scalars and univariate
random variables (e.g., w, h, x, g), capital letters for multivariate random variables
(e.g., X, Y ), bolded small letters for vectors (e.g., x, y), bolded capital letters for
matrices (e.g., X, Y), and calligraphic letters for sets (e.g., I, X , Y). The probability
density of a continuous multivariate random variable X is written as pX(x), where x
is a value in the sample space of X.

3.1.2 Gaussian Mixture Models
A GMM represents D-dimensional multivariate data (D ∈ Z>0) as a weighted com-
bination of M Gaussian densities [15, p. 110]. The probability density function of a
GMM is parameterized by a set Θ = {πm,µm,Σm}Mm=1, where π ∈ R is a weight and∑

m πm = 1. The probability density of the GMM is written as

p(x | Θ) =
M∑

m=1

πmN (x | µm,Σm) (3.1)

where x ∈ RD is an independent and identically distributed (i.i.d) sample drawn with
distribution p, and

N (x | µm,Σm) =
exp

(
−1

2
(x− µm)

>Σ−1
m (x− µm)

)
(2π)D/2|Σm|1/2

(3.2)

is the probability density function of a Gaussian distribution with mean µm ∈ RD

and covariance Σm ∈ RD×D.

3.2 Gaussian Mixture Models for reconstruction
Gaussian Mixture Models (GMMs) can be leveraged to compactly encode sensor
observations for transmission over low-bandwidth communications channels [179]. The
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3.2 Gaussian Mixture Models for reconstruction

(a) Color Image (b) Depth Image

(c) Point Cloud (d) Free Space Windows

(e) GMM (f) Resampled Data

Figure 3.1: Overview of the approach to transform a sensor observation into free and
occupied GMMs. (a) A color image taken onboard the robot exploring Laurel Caverns. (b)
A depth image corresponding to the same view as the color image with distance shown as
a heatmap on the right hand side (in meters). (c) illustrates the point cloud representation
of the depth image. (d) In the mapping approach, points at a distance smaller than a
user-specified max range rd (in this case rd = 5m) are considered to be occupied, and a
GMM is learned using the approach detailed in Sect. 3.2.1. Points at a distance further
than rd are considered free, normalized to a unit vector, and projected to rd. The free space
points are projected to image space and windowed using the technique detailed in Sect. 3.2.2
to decrease computation time. Each window is shown in a different color. (e) The GMM
representing the occupied-space points is shown in red and the GMM representing the free
space points is shown in black. Sampling 2 × 105 points from the distribution yields the
result shown in (f). The number of points to resample is selected for illustration purposes
and to highlight that the resampling process yields a map reconstruction with an arbitrary
number of points.
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3.2 Gaussian Mixture Models for reconstruction

GMM provides a generative model of the sensor observations from which occupancy
may be reconstructed by resampling from the distribution and raytracing through
a local occupancy grid map. Formally, the GMM is a weighted sum of M Gaussian
probability density functions (PDFs).

A depth observation taken at time t and consisting of N points,

Z t = {x1
t , . . . ,x

n
t , . . . ,x

N
t },

is used to learn a GMM. The Expectation Maximization (EM) algorithm is usually
employed to solve the maximum-likelihood parameter estimation problem, which is
guaranteed to find a local maximum of the log likelihood function [15].

Following the work of O’Meadhra et al. [138], distinct occupied G(x) (detailed in
Sect. 3.2.1) and free F(x) (detailed in Sect. 3.2.2) GMMs are learned to compactly
represent the density of points observed in the environment (Fig. 3.1). The process
by which F(x) and G(x) are created is illustrated in Figs. 3.1c and 3.1d. Because
the GMM is a generative model, one may sample from the distribution (Fig. 3.1f) to
generate points associated with the surface model and reconstruct occupancy (detailed
in Sect. 3.2.3).

3.2.1 Occupied Space
For points with norms less than a user-specified maximum range rd, the EM approach
is adapted from [176] to accept points that lie within a Mahalanobis distance of λ.
Because Gaussians fall off quickly, points far away from a given density will have a
small effect on the updated parameters for that density. By reducing the number of
points, this decreases the computational cost of the EM calculation. Only points that
have a value smaller than λ are considered (i.e., points larger than λ are discarded):

λ >
√

(xn − µ1
m)

T (Λ1
m)−1(xn − µ1

m) (3.3)

where the superscript 1 denotes the initialized values for the mean, covariance, and
weight. This approach differs from our prior work Tabib et al. [179]; we utilize the
approach in [176] as it yields greater frame-to-frame registration accuracy in practice.
Frame-to-frame registration is not used in this work and is left as future work.

3.2.2 Free Space
To learn a free space distribution, points with norms that exceed the maximum range
rd are projected to rd. The EM approach from Sect. 3.2.1 is used to decrease the
computational cost of learning the distribution. To further decrease the cost, the
free space points are split into windows in image space and GMMs consisting of
nf components are learned for each window. The windowing strategy is employed
for learning distributions over free space points because it yields faster results and
the distributions cannot be used for frame-to-frame registration. The number of
windows and components per window is selected empirically. Fig. 3.1d illustrates
the effect of the windowing using colored patches and Fig. 3.1e illustrates the result
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3.2 Gaussian Mixture Models for reconstruction

(a) (b) (c) (d)

Figure 3.2: Overview of the method by which occupancy is reconstructed. (a) The blue
bounding box Bt+1 is centered around Xt+1 and red bounding box Bt is centered at Xt. (b)
illustrates the novel bounding boxes in solid magenta, teal, and yellow colors that represent
the set difference bt+1 \ bt. (c) Given a sensor origin shown as a triad, resampled pointcloud,
and novel bounding box shown in yellow, each ray from an endpoint to the sensor origin
is tested to determine if an intersection with the bounding box occurs. The endpoints of
rays that intersect the bounding box are shown in red. (d) illustrates how the bounding
box occupancy values are updated. Endpoints inside the yellow volume update cells with
an occupied value. All other cells along the ray (shown in blue) are updated to be free.

of this windowing technique with black densities. Once the free space distributions
are learned for each window the windowed distributions are merged into a single
distribution.

Let Gi(x) be a GMM trained from Ni points in window i and let Gj(x) be a GMM
trained from Nj points in window j, where

∑W
w=1Nw = N for sensor observation

Z t and W windows. Gj(x) =
∑K

k=1 τkN (x|νk,Ωk) may be merged into Gi(x) =∑M
m=1 πmN (x|µm,Λm) by concatenating the means, covariances, and weights. How-

ever, care must be taken when merging the weights as they must be renormalized to
sum to 1 [166]. The weights are renormalized via Eqs. (3.4) and (3.5):

N∗ = Ni +Nj (3.4)

π∗ =
[
Niπ1

N∗ . . . Niπm

N∗
Njτ1
N∗ . . .

Njτk
N∗

]T (3.5)

where m ∈ [1, . . . ,M ] and k ∈ [1, . . . , K] denote the mixture component in GMMs
Gi(x) and Gj(x), respectively. N∗ ∈ R is the sum of the support sizes of Gi(x) and
Gj(x). π∗ ∈ RM+K are the renormalized weights. The means and covariances are
merged by concatenation.

3.2.3 Local Occupancy Grid Map
The occupancy grid map [184] is a probabilistic representation that discretizes 3D
space into finitely many grid cells m = {m1, ...,m|m|}. Each cell is assumed to be
independent and the probability of occupancy for an individual cell is denoted as
p(mi|X1:t,Z1:t), where X1:t represents all vehicle states up to and including time t and
Z1:t represents the corresponding observations. Unobserved grid cells are assigned the
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3.2 Gaussian Mixture Models for reconstruction

uniform prior of 0.5 and the occupancy value of the grid cell mi at time t is expressed
using log odds notation for numerical stability.

lt,i , log

(
p(mi|Z1:t,X1:t)

1− p(mi|Z1:t,X1:t)

)
−l0

When a new measurement Z t is obtained, the occupancy value of cell mi is updated
as

lt,i , lt−1,i + L(mi|Z t)

where L(mi|Z t) denotes the inverse sensor model of the robot and l0 is the prior of
occupancy [184].

Instead of storing the occupancy grid map m that represents occupancy for the
entire environment viewed since the start of reconstruction onboard the vehicle, a
local occupancy grid map m̄t is maintained centered around the robot’s pose Xt. The
local occupancy grid map moves with the robot, so when regions of the environment
are revisited, occupancy must be reconstructed from the surface models G(x) and
F(x). To reconstruct occupancy at time t + 1 given m̄t, the set difference of the
bounding boxes bt and bt+1 for m̄t and mt+1, respectively, are used to compute at
most three non-overlapping bounding boxes (see Figs. 3.2a and 3.2b for example).
The intersection of the bounding boxes remains up-to-date, but the occupancy of
the novel bounding boxes must be reconstructed using the surface models G(x) and
F(x). Raytracing is an expensive operation [5], so time is saved by removing voxels
at the intersection of bt and bt+1 from consideration.

The local occupancy grid map at time t + 1, m̄t+1, is initialized by copying the
voxels in local grid m̄t at the intersection of bt+1 and bt. In practice, the time to copy
the local occupancy grid map is very low (on the order of a few tens of milliseconds)
as compared to the cost of raytracing through the grid. Not all Gaussian densities
will affect the occupancy reconstruction so to identify the GMM components that
intersect the bounding boxes a KDTree [16] stores the means of the densities. A
radius equal to twice the sensor’s max range is used to identify the components that
could affect the occupancy value of the cells in the bounding box. A ray-bounding
box intersection algorithm [192] checks for intersections between the bounding box
and the ray from the sensor origin to the density mean. Densities that intersect the
bounding box are extracted into local submaps Ḡ(x) and F̄(x). Points are sampled
from each distribution and raytraced to their corresponding sensor origin to update
the local grid map (example shown in Figs. 3.2c and 3.2d).

As the number of mixture components in the distribution increases over time in
one region, updating the occupancy becomes increasingly expensive as the number of
points needed to resample and raytrace increases. Tabib et al. [179] detail a method
for limiting the potentially unbounded number of points from a 360◦ field-of-view
(FoV) LiDAR sensor. An extension to limited FoV sensors is shown in [180].
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4CHAPTER

Motion Primitives-based Planning
for Active Reconstruction

This chapter presents the motion primitives-based planner developed in this thesis
to address the challenge C1. The action space used by the motion planner is repre-
sented as a collection of forward-arc motion primitives with velocity bounds derived
from sensing and kinodynamic capabilities. Anytime planning (R1) is enabled using
this action space through a receding-horizon action selection strategy that leverages
Monte Carlo tree search (MCTS). Kinodynamic feasibility (R2) is ensured through
a maximum acceleration and jerk checks along candidate motion primitives during
MCTS.

Section 4.1 details this approach. The simulation experiments (Sect. 4.2.2) study
the feasibility of the action selection approach for operation onboard an aerial robot
(Sect. 4.2.1) and the efficacy of the action representation towards rapid reconstruction.
The real-world experiments evaluate the rate of reconstruction and the maximum
speeds achieved by the robots in environments with and without obstacles. A sum-
mary of this chapter is provided in Sect. 4.3.

4.1 Approach
This section presents an idealized analysis in Sect. 4.1.1 that is used in the motion
primitive library design for the action representation (Sect. 4.1.2) of the receding-
horizon reconstruction planner detailed in Sect. 4.1.3.

4.1.1 Steady-State Velocity Analysis
This section presents analysis of reconstruction performance for an aerial robot op-
erating for steady-state conditions such as continuous motion toward a frontier. This
analysis produces bounds on velocity and rates of entropy reduction, given constraints
on dynamics and sensing. We leverage these insights in Sect. 4.1.2 to design motion
primitive actions for rapid reconstruction.

System Model and Safety Constraints This work applies a simplified double-
integrator quadrotor model with acceleration and velocity constraints for analysis
of limits on reconstruction performance, which can be thought of as a relaxation

23



4.1 Approach

of dynamics models that are commonly used for position and attitude control of
multirotor vehicles [126, 119]. Let r = [x, y, z]T be the position of the vehicle in an
inertial world frameW = {xW ,yW , zW}, and let the body frame be B = {xB,yB, zB}.
Assuming small roll and pitch angles, and given the yaw angle ψ, the system state
is ξ = [rT, ψ, ṙT, ψ̇]T. The derivatives of position and yaw satisfy bounds on velocity
and acceleration

||ṙ||2 ≤ Vmax ||r̈||2 ≤ Amax |ψ̇| ≤ Ωmax (4.1)

where || · ||2 is the L2-norm.
Further, the robot is equipped with a forward-facing depth sensor with range of

zmax for use in mapping. However, while navigating the environment, the robot must
also be able to avoid collisions with obstacles.

The requirement for collision-free operation restricts the set of actions that a mul-
tirotor can safely execute while navigating in an unknown environment. A planning
policy can ensure collision-free operation by guaranteeing that the robot is able to
stop entirely within unoccupied spaceWfree, given an appropriate collision radius rcoll,
such as in the work of Janson et al. [93]. In the worst case, any voxel in the unknown
space Wunk may be revealed to be occupied and so possibly force the robot to stop
within Wfree.

The robot plans once every ∆tp seconds, and there is also latency ∆tm for acquiring
depth information and integrating it into the occupancy map. The sensor data is ∆tm
seconds old at the beginning of planning, and once the planner is done, the robot
executes the selected action for another ∆tp so that the total effective latency is no
more than ∆tl = ∆tm + 2∆tp. Note that, although latency may be unpredictable in
practice, the robot will not depend on consistent latency to maintain safe operation.

Steady-State reconstruction Scenarios Figure 4.1 illustrates two possible sce-
narios for steady-state motion with respect to a frontier. For the perpendicular case
(Fig. 4.1a) the robot moves continuously toward a frontier and may have to avoid
obstacles at the edge of the sensor range. As discussed in Sect. 4.1.1, the robot must
be able to avoid collisions with obstacles in the unknown environment even if there
are not any there. This means that the the robot must always be prepared to stop
before reaching the frontier. For the parallel case (Fig. 4.1b) the robot moves along
the frontier through space that has already been mapped. When known space is free
of obstacles, the robot may continue to do so at the maximum allowable velocity.
This scenario can also be thought of as the limit for a spiral motion—which will arise
later in the experimental results—as the curvature becomes very small.

Bounds on Velocity Given the system model and constraints for reconstruction
scenarios, we now proceed with calculation of the velocity bounds for motion perpen-
dicular and parallel to the frontier, V⊥,max and V‖,max respectively. Maximum velocity
toward the frontier is computed based on motion at a constant velocity followed by
stopping at maximum deceleration to satisfy the safety constraint. The expression
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(a) Perpendicular Scenario (b) Parallel Scenario (c) Sensor Cone

Figure 4.1: Steady-state reconstruction scenarios. Analysis in Sect. 4.1.1 presents upper
bounds on velocities are for a double integrator system (a) for motion perpendicular to
a frontier (V⊥,max) and (b) for motion parallel to it (V‖,max). To ensure safety in the
perpendicular case, the robot has to stop within a user-specified collision radius from the
frontier (Wfrt), i.e. within zmax − rcoll from the current state. For the parallel case, no such
restrictions exist since the robot is moving in the explored space which, ideally, is free
(Wfree). (c) Combining the area of the projection of the sensor cone in the direction of
motion with the bounds on velocity leads to upper bounds on rates of novel voxels observed
during reconstruction.
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Figure 4.2: Maximum achievable velocity moving toward a frontier (V⊥,max) according
to Eq. (4.2) based on parameters used in Table 4.1 and varying (a) sensor range and
(b) total latency (which consists of latency for the mapping system and time for planning).
The circle marks the maximum velocity at which the robot can move toward unknown space
for the parameters used in this chapter (see Table 4.1) which is less than half the overall
velocity bound. Approaching this velocity limit requires either sensor range exceeding 10m,
both decreased planning time and mapping latency, or some combination of the two.
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Value/Cases Area (m2) Velocity (m/s) Volume rate (m3/s) Entropy rate (bits/s)
Perpendicular (⊥) 56.4 1.77 99.83 1.25× 104

Parallel (‖) 57.19 4.00 228.8 2.86× 104

⊥, rapid yaw 56.8 1.77 100.5 1.26× 104

‖, rapid yaw 78.05 4.00 312.2 3.90× 104

Table 4.1: Steady-state upper bounds on velocity and rate of entropy reduction for the
scenarios described in Sect. 4.1.1. All values are computed for a planning time of 1Hz,
mapping latency 0.4 s, sensor point cloud of size 9.93m × 5.68m based on the RealSense
D435 depth sensor with image size 424px × 240px and a maximum depth zmax of 5m.
Occupancy grid resolution is 20 cm with an overall bound on top speed Vmax at 4m/s, and
collision radius rcoll set at 0.6m.

for V⊥,max is a function of acceleration (Amax), maximum sensing range (zmax), the
collision radius (rcoll), and the latency in planning ∆tl (see Fig. 4.1a) and is given by

V⊥,max = min(Vmax, V
′
⊥,max)

V ′
⊥,max = Amax ·

(√
∆t2l + 2

zmax − rcoll
Amax

−∆tl

)
.

(4.2)

Figure 4.2 shows the variation of this bound with zmax and ∆tl for the parameters
used in this chapter. For motion parallel to a frontier (see Sect. 4.1.1 and Fig. 4.1b),
there are no obstacles in the direction of motion. Therefore, the steady-state upper
bound on the velocity moving parallel to the frontier is identical to the maximum
achievable by the system, i.e. V‖,max = Vmax.

The entropy reduction then can also be bounded for each scenario terms of the
sensor geometry (see Fig. 4.1c) and steady-state velocities by projecting the sensing
volume in the direction of motion. Here, we also introduce the possibility of rapid
yaw motion during either motion. Results are shown in Table 4.1. Note that moving
parallel to the frontier can provide significantly improved performance.

4.1.2 Action Representation
This section details the design of available actions for the proposed motion plan-
ning framework. We define a trajectory generation scheme, related parameters and
conventions, and action design specifics leveraging insights gained in Sect. 4.1.1.

Motion Primitive Library Generation Safe and accurate high-speed flight re-
quires large and smooth linear acceleration and angular velocity references. Smooth-
ness for such references depends on higher derivatives of position, jerk and snap [125].
For this work, the actions that are available to the robot are snap-continuous, forward
arc [203] motion primitives, which have previously been applied to high-speed tele-
operation of multirotors [165]. Given the differentially-flat state of the multirotor at
time t, ξt = [x, y, z, ψ]T, denote an available action parameterization as a = [vx, vz, ω]
where vx and vz are velocities in the body frame xB and zB directions, and ω is the
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(a) Variation in ω (b) Variation in vz

Figure 4.3: Actions in xB − yB plane at the multirotor state ξt, γjkξt (blue), are generated
using discretized velocity bounds obtained from the analysis in Sect. 4.1.1. The set of such
primitives at each state is termed a motion primitive library (MPL) Γξt . MPLs are sampled
in directions perpendicular (xB) and parallel (yB,−yB) to the sensor scans with speeds
bounded by V⊥,max and V‖,max respectively, see (a). Variation in zB direction using a
user-specified bound on vertical velocity, Vz, yields the final action space shown in (b).
Dynamically feasible stopping trajectories γstopξt

are available for each primitive (green) for
safety (only one shown for brevity).

body yaw rate. Actions are discretized using user-specified maximum velocity bounds
in xB − yB plane (ω variation, Nω primitives) and in zB direction (vz variation, Nz

primitives) to obtain a motion primitive library (MPL) Γξt given by (Fig. 4.3):

Γξt = {γ
jk
ξt
| j ∈ [1, Nω], k ∈ [1, Nz], ‖[vx, vy]‖ ≤ Vmax, ‖vz‖ ≤ Vz, ‖ω‖ ≤ Ωmax} (4.3)

where, ‖ · ‖ denotes L2-norm of a vector, Vmax and Vz are the bounds on speed in
xB − yB plane and z direction respectively, and Ωmax is the bound on body yaw rate.
For a given action discretization, the motion primitive γjkξt is an 8th order polynomial
in time with fixed start and end point velocities and unconstrained position at the
end. The velocity at the end point, at time τ , follows by forward propagating unicycle
kinematics using the current state and the action parameterization while higher order
derivatives up to snap, endpoints are kept zero:

ξ̇τ = [vx cosψ, vx sinψ, vz, ω]
T, ψ = ωτ, ξ(j)τ = 0, for j ∈ {2, 3, 4} (4.4)

where ξ(j) denotes the jth time derivative of ξ. The stopping trajectories at any ξt
(γstopξt

, Fig. 4.3) can be sampled by keeping ξ̇t = 0.
In contrast to the fixed duration (τ) primitives presented in [165], the duration for

the primitive is kept minimum via a line search from the minimum possible duration
(∆tp) to the user-specified maximum duration (τmax). The search terminates when
the first dynamically feasible motion primitive is obtained. This dynamic feasibility
check is based on pre-specified empirically observed bounds on linear acceleration and
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linear jerk L2-norms. This search achieves having the trajectory in the desired end
point velocity ξ̇t in the minimum time possible from the current state.

Action Space for Fast reconstruction The action space for the proposed planner
is a collection of MPLs, defined by Eq. (4.3), generated using linear velocities based
on bounds obtained in Sect. 4.1.1, V⊥,max and V‖,max. The planner uses 6 MPLs to
represent the action space, Aact = {Γi

ξt
| i ∈ [1, 6]}, and sets of upper bounds

on linear velocities (Table 4.2) define each of these different MPLs. These MPLs
include both high-speed actions for navigating the environment and actions that
mimic steady-state conditions described Sect. 4.1.1. Later, in Sect. 4.2, we highlight
effects on reconstruction performance due to these components, especially the high
speed parallel and low speed perpendicular MPLs.

4.1.3 Action Selection
We formulate the action selection problem as a receding-horizon optimization seeking
to maximize cumulative information gain [30], and build upon previous work [106, 41,
43] on robotic reconstruction using Monte Carlo tree search (MCTS). The receding-
horizon formulation allows anytime behavior (R1).

Most MCTS-based planners follow four steps: selection, expansion, simulation
playout, and backpropagation of statistics [31, 21]. Such planners usually construct a
search tree iteratively by random rollout from a previously unexpanded node selected
based on upper-confidence bounds for trees (UCT) [21]. Prior works [41, 43] have
applied MCTS in planning for reconstruction using multirotors using a UCT-based
selection policy, information gain rewards, and random simulation playout over a finite
horizon. We extend this approach by adding considerations for model constraints into
the node expansion phase of MCTS.

Information-Theoretic reconstruction Objectives Following a similar approach
as our prior work [43], the planner optimizes an objective with two components: a
local information reward based on Cauchy-Schwarz quadratic mutual information
(CSQMI) [30], and a global reward for decrease the shortest path distance to points
in the state space that are expected to provide significant information gain [43].
For any candidate action, γξt , we compute the local information gain Iγ over user-
specified time intervals and treat the joint information gain as a reward for the
MCTS planner. The distance reward serves to direct the robot toward unexplored and
possibly distant regions of the environment once the local environment is exhausted of
information causing the local information reward to decrease. Alternatively, designers
might substitute competing routing and scheduling approaches [103] for the distance
cost subject to with tradeoffs in computational cost and system design.

Safety at High Speeds Given the action representation described in Sect. 4.1.2, we
require the planner to ensure safety while expanding nodes. Specifically, the trajectory
tracked by the controller should both respect constraints on the dynamics and remain
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Type Max.
Speed Dir. Nω Nz Nprim

Yaw 0 ψ 1 1 1
⊥ V⊥,max xB 9 5 45
⊥ Vmax xB 9 5 45
‖ Vmax yB 9 5 45
‖ Vmax −yB 9 5 45
Z Vz z 1 5 5

(a) Large Library

Type Max.
Speed Dir. Nω Nz Nprim

Yaw 0 ψ 1 1 1
⊥ V⊥,max xB 3 3 9
⊥ Vmax xB 3 3 9
‖ Vmax yB 3 3 9
‖ Vmax −yB 3 3 9
Z Vz z 1 3 3

(b) Minimal Library

Table 4.2: Motion primitive libraries used to construct action space using Eq. 4.3
from Sect. 4.1.2 and the bounds obtained after applying analysis presented in Sect. 4.1.1. The
vertical velocity bound (Vz) and the speed bound in xB−yB plane (Vmax) are kept at 0.3m/s
and 4.0m/s respectively. The total number of primitives for a MPL is Nprim = Nω ·Nz.

(a) t = 100 s (b) t = 500 s (c) t = 1000 s (d) t = 1500 s

Figure 4.4: Occupied map at different stages of reconstruction of a simulated three-
dimensional 60m × 30m × 11m warehouse environment used for experiments. The map
is colored based on Z height.

in known free space for all time. To satisfy this condition (R2 and R3), before
sending any trajectory to the robot, we require knowledge of a trajectory that will
bring the robot to a stop—and potentially keep it there—afterward. As such, the
robot will avoid collision, even if the planner fails to provide any output. If ever
planning fails, the known stopping trajectory is sent to the robot, and the robot will
continue to replan from a future reference point. Collision checking is performed at
sampled points along the motion primitive associated with the node through a signed
distance field obtained using the occupancy information in the map representation.
The kinodynamic feasibility of a node is checked through user-specified maximum
acceleration and jerk constraints over sampled points along the associated motion
primitive.

4.2 Results
This section describes hardware and simulation results for the proposed reconstruction
approach. The simulation results evaluate performance in a warehouse-like environ-
ment which serves as a representative example of a large-scale reconstruction task.
The hardware results demonstrate reconstruction at high speeds using a hexarotor
platform under various degrees of clutter. Unless otherwise noted, the configuration
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High BF, Sim-Time 157.7 365.7 602.5 788.3
High BF, Real-Time 267.4 501.6 866.5 1183.2
Low BF, Real-Time 193.2 382.5 604.8 901.1

Figure 4.5: (Top) Entropy reduction vs. time for each of the simulation trials. Transparent
patches show standard-error. (Bottom) Average time to reach fractions of the maximum
entropy reduction over all trials (1.766 × 106 bits). While the High BF, Sim-Time case
dominates in terms of entropy reduction, the Low BF, Real-Time case is able to provide
similar performance. Note that the different configuration are described at the beginning of
Sect. 4.2.2 and that BF denotes branching factor.

Actions: ⊥ ‖ Z Yaw Stop
Selection frequency 0.343 0.479 0.089 0.088 0.001
Total entropy red, norm. 0.40 0.41 0.06 0.12 0.01
Average speed (m/s) 2.163 2.778 0.959 1.114 1.611
Average yaw rate (rad/s) 0.286 0.234 0.170 0.381 0.080
Entropy red. rate (bits/s): 2425 2389 2020 2414 1283

Table 4.3: Performance statistics for the high branching factor, Sim-Time simulation study.
Unless otherwise stated, rates refer to average performance over time-periods when tracking
a given action type. All statistics include any time the robot is tracking a given action, except
for the entropy reduction rate in the last row, which is conditional on a significant entropy
reduction rate (greater than 600 bits/s). Best (or nearly equivalent) values are bolded.
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Figure 4.6: reconstruction performance by action. The plots provide estimates of probability
densities (via kernel density estimation) for speed, yaw rate, and entropy rate conditional on
the type of action (Table 4.2) being executed by the robot. All densities are also conditional
on a significant entropy reduction rate (greater than 600 bits/s) in order to emphasize
performance characteristics for actions that directly contribute to the map rather than
traversal of known space or time periods after reconstruction is effectively complete. Note
that, even though the planner has access to high-speed motions perpendicular to frontiers,
entropy reduction for perpendicular actions occurs primarily at lower speeds (1.25m/s) in
accordance with the analysis in Sect. 4.1.1.

of the robot for simulation matches the hardware.

4.2.1 Aerial Platform
The platform used for experiments is a hexarotor aerial robot (Fig. 4.7a) with a
forward-facing depth camera for mapping (Realsense D435) with a 89.57◦ by 59.24◦

field of view and a range of zmax = 5.0m. The robot itself weighs 55.37N, has a thrust
to weight ratio of 3.5, and has a diameter of 0.89m from motor to motor. Limits on
acceleration and jerk are set to Amax = 10m/s2 and Jmax = 35m/s3 respectively, based
on empirical data available for the platform. Unless otherwise stated, the planning
horizon is kept at 4 seconds for all experiments. The map is represented as a dense
voxel grid that creates a consistent representation of the environment using the depth
data. For both simulation and hardware experiments, mapping and planning run on
a computationally constrained quad-core embedded CPU Gigabyte Brix 6500U. The
robot obtains odometry estimates via a downward-facing camera and IMU using a
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(a) Multirotor with Depth Sensor (b) Open Space Scenario (c) Obstacles Scenario

(d) Open space scenario reconstruction after 90 s (e) Obstacles scenario reconstruction after 90 s

Figure 4.7: (a) Multirotor used for hardware experiments in two real world scenarios: (b)
open space and (c) space with scattered obstacles. (d) and (e) show the explored maps
(color gradient based on Z height) and the overall paths of the robot after 90 s of 3D
reconstruction using the proposed reconstruction approach.1

1Video: https://youtu.be/YXt4yiTpOAc

monocular Visual-Inertial Navigation System (VINS-Mono [148]), previously used for
high-speed teleoperation of a multirotor [165]. This state estimation component, only
present for hardware experiments, is executed on a quad-core NVIDIA Tegra TX2
on-board the vehicle. Contrary to perfect state estimation in simulation experiments,
for the hardware experiments the robot only has access to odometry for navigation
and is susceptible to drift. For the purpose of this work, we will continue to emphasize
the role of planning and speed in the reconstruction experiments and will comment
briefly on ramifications of drift on outcomes. Future iterations of this platform will
seek to combine a local mapping strategy [43] with a complete SLAM system.

4.2.2 Simulated reconstruction of a Warehouse Environment
The simulations demonstrate reconstruction of a large warehouse environment (pic-
tured in Fig. 4.4). These trials are repeated for three system configurations which
vary the motion primitive library and the computational setting:

• High branching factor (BF), Sim-Time: The planner uses the large motion
primitive library (Table 4.2a) for reconstruction. The simulation and clock pause
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Figure 4.8: (a) and (b) show speeds attained by the robot in the outdoor open space and
obstacles scenario respectively.

at the end of each planning round until the MCTS planner completes a user-
defined number (3000) of iterations. The simulation time then does not include
this additional time spent in planning.

• High BF, Real-Time: The planner uses the large motion primitive library
for reconstruction, but the simulation of the multirotor runs in real time. The
planner runs in an anytime fashion on a computer comparable to the on-board
computer used for flight experiments presented in Sect. 4.2.3 while simulators
for the camera and dynamics run on a separate computer.

• Low BF, Real-Time: The planner uses the minimal motion library (Ta-
ble 4.2b) for reconstruction and the computational configuration is the same
as the above.

These experiments first establish baseline performance (High BF, Sim-Time) given
access to a variety of motion primitives and a relatively large amount of planning
time. The latter two configurations demonstrate online planning in a configuration
that closely matches the hexarotor platform used in this chapter. These experiments
seek to demonstrate the role of computational constraints in design of the motion
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primitive library. For each configuration, we provide several trials, one for each of 5
given starting locations.

Each trial lasts 2500 seconds which provides ample time to explore the entire
environment. For all trials, the perpendicular velocity V⊥,max is further limited to
1.25m/s, below the value of 1.77m/s obtained in Sect. 4.1.1 which we find admits
forward motion at a constant speed given the trajectory generation approach used for
motion primitive design. The maximum speed is set to more than three times greater
at Vmax = 4.0m/s.

Figure 4.5 summarizes reconstruction performance for each experiment. The high
branching factory Sim-Time case which has access to extra planning time performs
at least as well or better than the other configurations in terms of entropy reduction.
However, the configuration with same motion primitive library and real time is signif-
icantly impaired and requires between approximately 1.3 to 1.8 times as long to reach
reported levels of entropy reduction. The lower branching factor case matches the
first configuration much more closely. As such, this latter configuration is appropriate
for deployment on the compute-constrained hexarotor platform.

In addition to being able to explore an environment rapidly and completely, we
characterize the roles of the motion primitive actions in the reconstruction task. Fig-
ure 4.6 shows density estimates plots for speeds, yaw rates, and entropy rate labelled
by the type of action selected by the MCTS planner for execution for periods when
the entropy reduction rate is significant (greater than 600 bits/s) so as to separate
reconstruction actions from traversal of the environment and time periods after re-
construction is effectively complete. This threshold corresponds to a knee point in the
overall distribution of entropy reduction rates: 94.4% of all entropy reduction occurs
above this threshold but during only 27.9% of time during the trials. Interestingly,
the time rate of entropy reduction is largely consistent across action types. However,
as expected, motions perpendicular to the frontier primarily contribute to entropy
reduction at reduced speed despite both low-speed and high-speed primitives being
available. Table 4.3 shows provides further statistics for the different kinds of actions.
Even though entropy reduction rates are similar across actions when the entropy
reduction rate is significant, the planner selects motions parallel and perpendicular to
frontiers most frequently, and those actions account for more than 80% of all entropy
reduction.

4.2.3 Hardware Experiments under Varied Conditions
Real-world autonomous reconstruction experiments are conducted using the aerial
platform described in Sect. 4.2.1 (Fig. 4.7a) in two outdoor scenarios: (1) Open space
(Fig. 4.7b), and (2) Scattered obstacles (Fig. 4.7c). The total reconstruction duration
is limited to 90 seconds to minimize the effects of state estimation drift on the resulting
map. During each scenario, the robots explores while confined to 12m× 24m× 2m
bounding box. The robot starts at the same position in the bounding box for each trial
in both scenarios. The bounds on the speed for perpendicular (V⊥,max) and parallel
(V‖,max) motions, are set at 1.25m/s and 2.25m/s respectively. The explored maps and
robot trajectory for two experiments, one from each scenario, are shown in Figs. 4.7d
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Figure 4.9: Entropy reduction for hardware trials and summary statistics. Except for the
final entropy reduction, all statistics are computed over the first 40 second of each trial
(shown by the black bar in the entropy reduction plot).

and 4.7e. Speeds achieved by the vehicle during the experiments are shown in Fig. 4.8.
Figure 4.9 provides plots of reduction of map entropy as well as summary statistics.
Even though the trials were relatively short, the odometry often drifted significantly
by the end This drift likely contributed to the robot getting stuck behind an obstacle
during the trial S2. For this reason, we only use the first for the first 40 seconds of
each trial when computing summary statistics unless otherwise noted.

As shown in Fig. 4.8, the odometry system reports that the robot reaches and
slightly exceeds the maximum desired reference speed2 in each trial, primarily while
executing motions parallel to the frontier. Figure 4.7d shows a particularly notable
example of this behavior where the robot executed an outward spiraling motion soon
after the start of the trial.

4.3 Summary
In this chapter, a motion primitives-based planner for reconstruction is proposed
that enables anytime operation (R1) while ensuring kinodynamically-feasible (R2)
operation. The requirement R1 is addressed through a receding-horizon action se-
lection strategy based on MCTS where the reward function is the computationally

2The robot may exceed reference speeds due to error in tracking the position reference because
of environment disturbances and inaccuracies in the system model.
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expensive CSQMI function. The requirement R2 is addressed with a modification
of the expansion step in MCTS. Nodes are only expanded during search if they
are kinodynamically-feasible, for both candidate actions and the associated stopping
trajectories.

Simulation and real-world experiments are conducted to study the rapid recon-
struction capabilities of the approach obtained after addressing these requirements
(C1). The simulation experiments provide a motion primitive library configuration
useful for computationally constrained operation onboard an aerial robot. Further, the
utility of the action representation is characterized by studying the effect of each type
of motion primitives on the reconstruction performance. The real-world experiments
ascertain the deployability of this approach for rapid reconstruction purposes–the
aerial robot achieves speeds up to 2.4m/s in obstacle-rich environments.
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5CHAPTER

Adaptive-Speed Motion
Primitives-based Teleoperation

This chapter details an adaptive-speed motion primitives-based teleoperation strat-
egy towards addressing the challenge C2 that requires developing adaptive-speed
reconstruction. For the teleoperation task, modulation in the motion plan profiles
(R3) is achieved via a hierarchical collision avoidance methodology that adapts the
map resolution and utilizes the velocity bounds calculated in Chapter 4 to enable
speed modulation.

Section 5.1 details this approach. The speed modulation capability is validated
through simulated and real-world multirotor teleoperation experiments (Sect. 5.2) in
a challenging cave environment (Fig. 1.1). A summary of this chapter is provided
in Sect. 5.3.

5.1 Approach
This section details the adaptive-speed teleoperation approach. Figure 5.1 illustrates
the components of the approach and how information flows between components. A
local occupancy map is generated using depth observations, robot pose and voxel
size (Sect. 5.1.1). Note that due to the myopic nature of the teleoperation task,
only a few recent observations are required to be included in the local occupancy
map. The motion primitive design block takes input from the operator’s joystick and
the voxel size of the local occupancy map. This information is used to compute a
candidate motion primitive close to the operator’s input and a fallback stopping
motion primitive to use in case the next planning round fails (Sect. 5.1.2). The
hierarchical collision avoidance block takes as input these two motion primitives and
the local map to perform collision checking (Sect. 5.1.3). If both selected and stopping
motion primitives are found to be feasible, they are sent to the controller for execution
and the voxel size is increased for the next planning round. In case either of these
primitives is infeasible, then the voxel size is decreased (and therefore the occupancy
grid extents, see Fig. 5.2) and the process is repeated for the same planning round.
If a suitable plan is not found, the stopping action from the previous planning round
is executed.
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Figure 5.1: Information flow diagram for the technical approach.

5.1.1 Variable Resolution Local Occupancy Mapping
A three-dimensional local occupancy grid map m is generated in the body frame
B = {xB, yB, zB} of the robot using the latest control state ξc as the origin, voxel size α,
and number of voxels |m| = Nx×Ny×Nz. The number of voxels along each dimension,
{Nx, Ny, Nz}, are fixed throughout teleoperation but the voxel size α may vary during
or across planning rounds. The local occupancy grid bounding box B = {bmin,bmax}
extents are adjusted as a function of the voxel size, α. bmin = {xmin, ymin, zmin} is the
minimum xB−yB−zB coordinate of the bounding box and bmax = {xmax, ymax, zmax} is
the maximum xB−yB−zB coordinate of B. Each voxel mi ∈m is a Bernoulli random
variable whose value is 0 if it is free and 1 if it is occupied. Initially, the map is set to
have a uniform occupancy probability in all voxels, p(mi) = 0.5,∀ i ∈ {1, . . . , |m|}.

It is assumed that the multirotor is equipped with a limited field-of-view (FoV)
forward-facing depth camera that provides a dense depth measurement Z at a user-
specified sensing rate 1/∆ts. In addition to the latest state-measurement (keyframe),
Kl = {ξcl ,Zl}, one past keyframe is maintained Kp = {ξcp,Zp}. The past keyframe
is selected based on a Euclidean distance threshold β between the latest state ξcl
and the previous keyframe state ξcp. Measurement Zp is transformed into the frame
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(a) (b) (c)

Figure 5.2: Bounding box extents for a scenario where the robot traverses a window.
The teleoperator gives maximum joystick input in the forward direction for these three
figures. (a) When the robot is far from the window, the bounding box extents and local
occupancy map are large because the voxel size is also large. (b) As the multirotor gets
closer to the window, the voxel size decreases and so does the bounding box extent because
the number of voxels in the map stays the same. (c) After exiting the window, the bounding
box expands to the original size. Note that the change in bounding box extents is achieved
by varying the voxel size and keeping the number of voxels constant.

of reference of the keyframe Kl. The occupancy map is updated using both Zl and
the transformed Zp through the standard logodds update [184]. If the voxel size α
changes during the planning round, the occupancy grid map is regenerated using Zl

and Zp using the new α. The time complexity of this regeneration step depends on
the total number of voxels. In practice, we decide the number of voxels based on the
available compute and keep them fixed throughout teleoperation.

The local occupancy map m partitions the space R3 into three subspaces: (1) free
space Wfree, (2) occupied space Wocc, and (3) unknown space Wunk. To ensure safety,
the motion plans sent to the robot must lie in free space, ξt ∈ Wfree, for all time t. To
check the motion plans against Wunsafe = {Wocc ∪ Wunk}, a common strategy is to
compute a discrete distance field d where each point in the field stores the shortest
distance to Wunsafe. We use the variant of the fast-marching method by Sethian [164]
over occupancy grids to compute the distance map d from the local map m. It is
assumed that the robot can fit a cube of side-length 2 · rrobot and a rcoll amount of
tolerance from Wunsafe is required for safety.

5.1.2 Motion Primitive Design
We use the control input parameterization by Yang et al. [203] that maps the space
of joystick inputs to a finite set of forward-arc motion primitives. The joystick input
is represented as at = {vx,t, vz,t, ωt}, where vx,t is the velocity command in the xB
direction, vz,t is the velocity command in the zB direction, and ωt is the angular
velocity command around the zB direction. All velocity commands are uniformly
dense sets clamped with user-specified bounds: vx,t ∈ [−Vx, Vx], vz,t ∈ [−Vz, Vz],
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and ωt ∈ [−Ω,Ω]. Assuming a user-specified duration of the motion primitive, T ,
a forward-arc motion primitive γt = {at, T} can be generated by propagating the
unicycle model [146]. The motion primitive γt is checked for feasibility and sent to
the controller for execution.

Prior motion primitives-based teleoperation frameworks that utilize forward-arc
motion primitives assume velocity command bounds to be constant and user-specified
[203, 165]. These bounds can influence the design of the motion primitives when they
are used for navigation in unknown environments. Such design decisions are made
to ensure that the robot never enters an inevitable collision state [93]. For example,
setting the xB-velocity bound, Vx, depends on many factors: (1) mapping time (∆tm),
(2) planning time (∆tp), (3) sensing time (∆ts), (3) sensing range (zmax), (4) collision
tolerance distance (rcoll), (5) robot radius (rrobot), and (6) maximum xB-deceleration
(Ax) [73]. For the teleoperation task, we also need to account for the bounding box B
of the local occupancy map m. In terms of the voxel size and the number of voxels, the
corners of the local map bounding box B are given by bmin = −(α/2) · {Nx, Ny, Nz}
and bmax = (α/2) · {Nx, Ny, Nz}. Since the robot is at the center of B, the map
information available in front of the robot is up to a distance zeq = min(zmax, (α/2)Nx)
from the robot. Thus, an ideal upper bound for the maximum xB-velocity is derived
using Euler motion equations as:

Vx = Ax

√∆t2l + 2
zeq − (rrobot + rcoll)

Ax

−∆tl

 , (5.1)

where, ∆tl = ∆ts+∆tm+2∆tp. This equation represents an ideal upper bound because
it assumes the deceleration Ax is attained instantly and does not consider the motor
dynamics. Therefore, in practice, we reduce Vx with a constant δv to account for these
unmodeled factors.

Note that Eq. (5.1) represents the velocity bound in terms of the voxel size α of
the local occupancy map m. Thus, the velocity bound should scale according to the
resolution of the map. Consequently, the motion primitive design is dependent on the
voxel size. We use this fact to adapt voxel size and the motion primitive design across
and within planning rounds through hierarchical collision avoidance (Sect. 5.1.3).

5.1.3 Hierarchical Collision Avoidance
Algorithm 1 shows the pseudocode for the Hierarchical Collision Avoidance (HCA)
algorithm. Instead of using a fixed voxel size α for the local occupancy map m
throughout teleoperation, it is adapted hierarchically based on the output of the
collision checker. At the start of the planning round, the voxel size α is set ∆α above
the one used in the previous planning round, αprev, but clamped by a pre-specified
αmax and αmin (Line 2). The motion primitive design is updated for this voxel size
(Sect. 5.1.2, Line 5). The joystick input is mapped to the closest motion primitive,
γsel, via grid search [203] (Line 6). A stopping motion primitive, γstop, is generated
as a fallback action in case the next planning round fails (Line 7). The distance field
(Sect. 5.1.1, Line 9) generated via the local map at the voxel size α (Sect. 5.1.1,
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Algorithm 1: Hierarchical Collision Avoidance
1 function HCA(ξt+∆tp, a, αprev)

input: ξt+∆tp , a, αprev

parameters: αmax, αmin, ∆α, ∆tp, ∆tm, ∆ts, Nx, Ny, Nz

output: γsel, γstop, αprev

2 α← min(max(αprev +∆α, αmin), αmax)
3 ∆l← 0
4 while ∆l ≤ 2 do
5 Vx ← MaxSpeed (m, ∆tp, ∆tm, ∆ts)
6 γsel ← MapJoystick (ξt+∆tp , a, Vx)
7 γstop ← StoppingAction (γsel, ∆tp)
8 m← LocalMap (α, Nx, Ny, Nz)
9 d← DistanceField (m)

10 if InCollision (γsel, γstop, d) then
11 α← min(max(α−∆α, αmin), αmax)
12 ∆l← ∆l + 1

13 else
14 break
15 end
16 end
17 αprev ← α
18 if ∆l > 2 then
19 return αprev

20 else
21 return γsel, γstop, αprev

22 end
23 end

Line 8) is used for collision checking. If either γsel or γstop are in collision (Line 10), we
reduce the voxel size by ∆α (Line 11), and try planning again. The map generation
step contributes the most to the time complexity of this algorithm. If a feasible plan is
found within a maximum of three map level changes (Line 18), it is returned (Line 21)
and the next plan is executed. We choose to limit the checks to three map levels at a
time to keep a consistent time complexity across planning rounds. If a feasible plan
is still not possible, the current voxel size is returned as αprev (Line 19) to use in the
next planning round, and the previously planned stopping action is executed.

5.1.4 Implementation Detail
The proposed framework is deployed to the aerial system of dimensions 0.6m × 0.3m
× 0.3m and mass 2.5 kg (Fig. 5.3). This design is an improved version of the robot
from [180] with a higher motor constant, longer flight time, and larger depth sensing
range (Intel Realsense D455). The onboard companion computers, state estimation
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Figure 5.3: The robot used in the field experiments is equipped with a forward-facing Intel
Realsense D455, downward-facing mvBluefox global shutter color camera, and Pixracer
flight controller.

Parameter Value Parameter Value
∆tp 0.1 s Ny 20
∆tm 0.08 s Nz 20
∆ts 0.07 s zmax 10.0m
∆α 0.01m rrobot 0.3m
Nx 40 rcoll 0.1m

Table 5.1: Parameters common to all experiments.

system, the control system remain the same.
The parameters common to all the experiments are listed in Table 5.1. These

parameters remain constant throughout teleoperation. Note that the operator does
not need to specify a maximum velocity parameter found in most multirotor motion
planning frameworks. Instead, the maximum velocity is determined in each planning
round based on the local map extents (Sect. 5.1.2). Note that the ∆α parameter
specifies the change in map resolution after each collision checking iteration. Thus,
this parameter should be specified based on the desired planning rate and the available
onboard compute.

5.2 Results
The adaptive teleoperation framework with hierarchical collision avoidance is imple-
mented with a single thread on a CPU in C++ with the Robot Operating System
(ROS) middleware. A 3.7GHz Intel Core i9-10900K CPU with 32 GB RAM is used
for the simulation experiments. A 1.8GHz Intel Core i7-8550U CPU with 32 GB
RAM is used for the hardware experiments. We evaluate the approach with four
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Figure 5.4: Performance comparison for the simulated window teleoperation task. (a) depicts
the initial conditions for the task. A multirotor hovers at a distance of 10m from a window
of dimensions 0.9m × 0.9m. The operator controls the multirotor via the joystick shown
in (b). The operator intends to go forward at the highest speed possible. (c) and (d) show
the variation of the forward speed and the local map voxel size as a function of the distance
from the window for the three teleoperation approaches.

teleoperation scenarios, two for simulation experiments (Window Scenario, Varying-
Clutter Cave Scenario) and two for hardware experiments (Door Scenario, Cave
Scenario). Experimentation for the Cave Scenario occurred at a cave on the Barbara
Schomer Cave Preserve in Clarion County, PA.

5.2.1 Simulation Experiments
Window Scenario: A multirotor is placed 10m away from a simulated window of
dimensions 0.9m×0.9m (Fig. 5.4a). The operator intends to fly the multirotor in the
forward direction, through the window, at the maximum possible speed (Fig. 5.4b).
The teleoperation task is successful if the multirotor passes through the window
without collisions and without the operator having to lower the raw joystick input.
Three teleoperation methodologies are compared: (1) the proposed adaptive approach
with αmax = 0.5m and αmin = 0.1m; (2) a non-adaptive approach with a fixed voxel
size, α1 = 0.2m; and (3) a non-adaptive approach with a fixed voxel size, α2 = 0.5m.
These parameters are chosen such that for α1 = 0.2m the local map is fine enough
for the window to be visible while α2 = 0.5m leads to a local map that is too coarse
for it.

The results for the Window Scenario are shown in Fig. 5.4. We plot the speed and
the local map voxel size over the X coordinate with respect to the window (X = 0)
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(a) Simulated cave with varying clutter (b) Speed heatmap for adaptive method

0 50 100
0

1

2

3

Time (s)

Sp
ee

d
(m

/s
)

Region 1
Region 2
Region 3
Return

(c) No Adaptation 0.5m

0 50 100
0

1

2

3

Time (s)

Sp
ee

d
(m

/s
)

(d) No Adaptation 0.2m

0 50 100
0

1

2

3

Time (s)
Sp

ee
d

(m
/s

)
(e) Adaptation

Method
Region 1 Region 2 Region 3 Return

Time Av. Speed Time Av. Speed Time Av. Speed Time Av. Speed
(s) (m/s) (s) (m/s) (s) (m/s) (s) (m/s)

No adapt. 0.5m 20.0 2.22 – – – – – –
No adapt. 0.2m 42.4 1.15 43.2 0.98 26.7 0.97 25.3 1.13
Adaptation 20.0 2.67 43.0 1.02 22.3 0.93 17.7 1.69

(f) Comparison of teleoperation statistics

Figure 5.5: Performance comparison for the (a) varying-clutter cave scenario with three
different spaces: Region 1 is an open space, Region 2 is cluttered, and Region 3 is a narrow
passage. The speeds achieved by the robot for each method are plotted over time in (c), (d),
and (e). The graphs and the table in (f) demonstrate that the (c) No Adaptation 0.5m
variant cannot complete the circuit, while both the (d) No Adaptation 0.2m and (e)
Adaptation variants successfully traverse all regions. Our method completes the circuit
in the least time while modulating speeds, as illustrated in the heatmap in (b). A video of
this experiment can be found at https://youtu.be/VjyoPVXT8WY.

44

https://youtu.be/VjyoPVXT8WY


5.2 Results

(a) Door scenario
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Figure 5.6: Performance comparison for the door teleoperation task. (a) a robot starts at
hover from outside a building and the operator intends to enter the building at the maximum
possible forward speed (Fig. 5.4b) through a door of width 0.9m. (b) and (c) show the speeds
and voxel sizes as a function of distance from the door. A video of this experiment can be
found at https://youtu.be/VjyoPVXT8WY.

in Figs. 5.4c and 5.4d respectively. For the non-adaptive case with α1 = 0.2m voxel
size, the operator teleoperates the multirotor through the window without collision at
a constant speed of 1.17m/s. For the non-adaptive case with α2 = 0.5m, the operator
is not able to teleoperate the multirotor through the window while achieving a top
speed of 3.03m/s in open space. For the adaptive case, the operator can teleoperate
through the window while being able to achieve a top speed of 3.03m/s in open space,
automatically slowing down to move through the window, and attaining the same
top speed after passing through the window. The automatic slow down is expected
due to the adaptation in the local map voxel size from αmax = 0.5m down to 0.25m.
Thus, the proposed approach allows speed modulation without requiring the operator
to adjust the joystick input. Note that the speed attained close to the window in
the adaptive case is lower than the constant speed of 1.17m/s achieved in the non-
adaptive 0.2m voxel size case. This is because the length of the motion primitive
when the robot is decelerating is longer than the case when the robot is moving at
a constant speed. The collision checker marks the longer motion primitive infeasible,
which results in a speed modulation that decelerates the robot to lower than 1.17m/s.
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This behavior may be changed through a collision checker that utilizes the higher
derivatives of position, but this is left as future work.

Varying-Clutter Cave Scenario: A multirotor is placed in a simulated cave en-
vironment containing varying amounts of clutter (Fig. 5.5a). Region 1 is an open
space, so the expected operation is high-speed multirotor teleoperation. Region 2 is
a cluttered space where speeds must be reduced to ensure safety. Region 3 contains
a narrow entrance to a larger passage that must be visible in the local occupancy
map to enable robot access. The teleoperation task is to fly from Region 1 to Regions
2 and 3 and return to Region 1 (Fig. 5.5b). The operator supplies the directional
inputs from the joystick but the forward speed input is always the maximum value.
The three teleoperation methods from the Window Scenario are used here without
modification in parameters. The methods are compared based on: (1) whether they
allow access to all three regions and (2) the total time taken for the teleoperation
task. Figures 5.5c–5.5e show the variation of the speed over time for each of the
methods. Without adaptation, the method with a high voxel size can traverse Region
1 at high speeds and can enter Region 2 partially. However, it is unable to access
the other regions. When the voxel size is lower or adaptive, the operator can tele-
operate through all regions and return to Region 1. However, without adaptation,
the speeds are lower compared to the adaptive-speed case. Consequently, the total
time taken for the non-adaptive 0.2m case is 137 s versus 103 s for the adaptive-speed
case. Figure 5.5f shows the distribution of the time taken with the different phases of
the teleoperation task. The adaptive-speed method achieves lower times and higher
average speeds in most phases. These results demonstrate the efficacy of the proposed
method in environments with varying amounts of clutter.

5.2.2 Real-World Experiments
Door Scenario: A multirotor is hovering outside a building, about 12m away from a
door, which has a frame with a 0.9m width (Fig. 5.6a). The operator’s intent and
the measures of success are the same as in the Window Scenario, this time flying
through the door to enter the building. The same teleoperation methodologies are
compared as in the Window Scenario, with αmax = 0.6m, αmin = 0.3m, α1 = 0.3m,
and α2 = 0.6m. The choice of these parameters is motivated by the same reasons as
in the Window Scenario.

The results for the Door Scenario are shown in Fig. 5.6. Just like the Window
Scenario, the speed and local map voxel sizes are plotted against the distance from
the door (X = 0) in Figs. 5.6b and 5.6c, respectively. We observe similar results as in
the Window Scenario. For the non-adaptive case with α1 = 0.3m, the operator can
teleoperate through the door at a constant speed of 1.88m/s. For the non-adaptive
case with α1 = 0.6m, the operator is not able to teleoperate through the door
while achieving high speeds outside the building. For the adaptive case, the operator
can teleoperate through the door while being able to achieve a maximum speed of
2.50m/s outside the building, automatically slowing down at the door and achieving
the same maximum speed again after entering the building. Thus, the Door Scenario
experiment demonstrates the efficacy of the proposed teleoperation method on the
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Method Door Scenario Cave Scenario

No adapt. low vox. size 0.06 s ± 0.01 s –
No adapt. high vox. size 0.03 s ± 0.01 s 0.04 s ± 0.01 s

Adaptation 0.06 s ± 0.03 s 0.06 s ± 0.03 s

Table 5.2: Planning times for the real-world experiments.

computationally-constrained multirotor system shown in Fig. 5.3.
Cave Scenario: A multirotor hovers in a narrow passage inside of the wild cave

shown in Fig. 1.1c. The operator intends to fly through the narrow passage without
substantially altering the raw joystick input. Two teleoperation methodologies are
compared in this case: (1) the adaptive approach with αmax = 0.5m, αmin = 0.1m
and (2) the non-adaptive approach with α = 0.5m.

The results for the Cave Scenario are shown in Fig. 5.7. In the no-adaptation case
with α = 0.5m, the operator is not able to teleoperate the multirotor through the
narrow passage of the cave due to the coarse local map. However, for the adapta-
tion case, the voxel size is reduced automatically to allow for a finer local map for
flight through the narrow passage. Thus, the proposed approach allows teleoperation
through a narrow passage where it is difficult to guess the required voxel size of the
local map before starting teleoperation.

Table 5.2 illustrates the mean and standard deviation for total planning times for
the real-world experiments. As noted in Sect. 5.1.3, most of the time complexity of
the proposed approach is due to local map generation. Imposing an upper bound on
the number of local map generation steps per planning round enables us to contain
that time complexity and achieve a consistent planning rate (i.e., the low standard
deviation in planning time).

5.3 Summary
In this chapter, we detail an approach for automatic maximum speed modulation
(R3) for teleoperation of a multirotor in environments consisting of open, cluttered,
and narrow spaces. We couple the motion primitive design and variable-resolution
mapping to create a hierarchical collision avoidance method that modulates the
maximum speed and voxel size of the local occupancy map simultaneously depending
on the environment complexity. The framework is experimentally evaluated both in
simulation and real-world complex environments, including caves, demonstrating that
the speed and map resolution adaptation yields advantages both in terms of time
taken and ability to complete a task.

Note that while this approach has been demonstrated for the teleoperation task,
the same can be used for the reconstruction task in the preceding chapter with the
local mapping strategy replaced with the one proposed in this chapter.
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(a) Cave scenario
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Figure 5.7: Performance comparison for the cave teleoperation task. (a) a robot starts at
hover from a relatively spacious part of a cave passage. The operator intends to go through
the passage at the maximum possible forward speed (Fig. 5.4b). (b) and (c) show the speeds
and map voxel sizes as a function of time. Without map adaptation, the robot is unable to
go through the narrow passage and the operator must land the robot around the 35 s mark.
With map adaptation, the speeds are adapted according to the environment complexity
and the robot traverses the narrow passage. A video of this experiment can be found at
https://youtu.be/VjyoPVXT8WY.
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6CHAPTER

Adaptive Point Cloud Compression
via Self-Organizing GMMs

This chapter presents the approaches addressing challenge C3 which requires
creating a mapping method that enables adaptive point cloud compression depend-
ing on the scene complexity for communication-efficient multi-robot reconstruction.
Leveraging prior work in using GMMs for reconstruction to enable communication-
efficiency for multi-robot operation [43], an adaptive point cloud compression strategy
called Self-Organizing Gaussian Mixture Modeling (SOGMM) is presented that en-
ables adaptive estimation of the GMM model complexity.

Section 6.1 details this approach. For convenience in the rest of this thesis, the
model learnt through the SOGMM approach will be called a SOGMM model to
distinguish from regular GMM models with fixed number of components. The ex-
periments in Sect. 6.2 are designed for qualitative and quantitative comparison of
the proposed approach and existing point cloud modeling techniques using publicly
available simulated and real-world depth-intensity point clouds. A summary of this
chapter is provided in Sect. 6.3.

6.1 Approach
Overview. An overview of the SOGMM system is shown in Fig. 6.1. We assume that
a registered pair of depth, Id ∈ Rh×w, and grayscale, Ig ∈ Rh×w, images I := {Id, Ig}
of dimension h × w is provided for point cloud modeling. Note that the grayscale
modality can also be thermal data scaled to a range [0, 1]. The image frame points
may be projected to three dimension using the intrinsic camera matrix and associated
with depth to obtain a pointcloud Z with hw points, where each point xi ∈ Z is four-
dimensional and consists of 3D coordinates (x, y, z) augmented with a grayscale value
g. Like prior works in GMM-based point cloud modeling [61, 166], we assume that
the points in X are independently and identically distributed (i.i.d.) samples from
an underlying continuous random variable X. The goal of the proposed approach is
to model the joint probability distribution p(x, y, z, g) as a GMM, G(I). Thus, the
probability density for G(I) is written as:

G(I) ≡ pX(x) =
M∑

m=1

πmN (x | µm,Σm), (6.1)
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where, πm ∈ R, µm ∈ R4, and Σm ∈ R4×4 are the weight, mean, and covariance
associated with the mth multivariate Gaussian distribution component of the mixture.
In contrast to existing techniques where the number of mixtures is specified a pri-
ori [179, 43] or utilize a hierarchy of GMMs to estimate the number of components [61,
166], the contribution of this work is a self-organizing approach that learns the
number of mixtures from the underlying sensor data, I, via information-theoretic
techniques. This learned value is used for generative modeling for dataset X via
the Expectation-Maximization (EM) algorithm [12], and utilizes steps (1a) through
(1c) of K-Means++ [6] for initialization. The output of EM is the model G(I) from
Eq. (3.1). Since this model is a joint distribution over the 3D spatial coordinates and
the grayscale data, we can use the conditional distribution p(g | x, y, z) to regress the
grayscale image from the model for a given spatial point cloud and pinhole camera
model [174, 166]. The remainder of this section describes how to estimate the number
of mixture components M .

6.1.1 Principle of Relevant Information
The Principle of Relevant Information (PRI) [147] is an approach that extracts
the relevant statistics from the dataset to learn a compressed representation of size
M , equal to the number of locally-dense regions in the environment. The intuition
behind PRI is to extract these relevant statistics by simultaneously minimizing the
redundancy and distortion between the original and compressed datasets. Formally,
let us consider a dataset, Y , in which the points are assumed to be D-dimensional
i.i.d. samples from a continuous multivariate random variable Y with the associated
probability density function pY (y). To create a compressed dataset Yr, with random
variable Yr and density pYr(y), the PRI is an information-theoretic optimization
problem with the objective function:

J(Yr) = min
Yr

H2(Yr) +DCS(Yr, Y ), (6.2)

where, H2(Yr) is the Renyi’s quadratic entropy (RQE) of dataset Yr calculated using
the density pYr(y) and DCS(Yr, Y ) is the Cauchy-Schwarz divergence (CSD) between
datasets Yr and Y calculated using the densities pYr(y) and pY (y). Minimizing RQE
ensures less redundancy in the compressed dataset and minimizing CSD reduces the
error induced due to compression. Principe [147] proves that when RQE and CSD
have an equal contribution to the objective function in Eq. (6.2), the compressed
dataset Yr contains the modes of the original dataset Y .

6.1.2 Gaussian Mean Shift
Rao et al. [152] show that the Gaussian Mean Shift (GMS) algorithm, as proposed
by Cheng [35], is an iterative scheme for an approximate solution to the optimization
problem in Eq. (6.2). The GMS algorithm uses a nonparametric estimate of the density
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pY (y),

pY (y) =
1

|Y|

|Y|∑
i=1

KH (y − yi) , (6.3)

where, H is a symmetric positive definite D ×D matrix and KH (y − yi) is a multi-
variate symmetric Gaussian kernel. This matrix is usually chosen proportional to the
identity matrix H = σ2ID×D, where σ is called the bandwidth parameter [39]. Under
this assumption the kernel KH (y − yi) simplifies to:

KH (y − yi) =
1

(2π)D/2σ
exp

(
− 1

2σ2
‖y − yi‖2

)
. (6.4)

The compressed dataset Yr containing the modes of the dataset is constructed through
successive iterations using the update rule:

yt
r,i ←

∑|Y|
j=1KH

(
yt−1
r,i − y0

j

)
y0
j∑|Y|

j=1KH

(
yt−1
i − y0

j

) , (6.5)

where, the indices i and j iterate over each point in Y and the index t ∈ {0, . . . , T−1}
is used to indicate a GMS iteration. At t = 0, the compressed dataset is initialized
with the original dataset Y0

r = Y0. The convergence criteria for GMS is based on the
relative change in the points between successive iterations or the maximum number
of iterations T are reached [28]. At the final iteration, the dataset contains many
overlapping points (indicating modes) and is filtered based on Euclidean distances to
obtain the final output Yr.

6.1.3 Mean Shift on Image Pair
For the SOGMM system, the value of M for a given image pair I as the number of
unique points in the reduced dataset, i.e., M = |Yr|. In contrast to applying the mean
shift algorithm in R4 using the point cloud Z, we create the dataset Y from Eq. (6.2)
in R2 space using depth and grayscale values from the image pair I. Each point y in
the dataset is a tuple (di, gi), such that di ∈ Id, gi ∈ Ig, and i is an index for a pixel
coordinate in the images. Thus, the size of the dataset Y is hw (equal to that of Z)
and D = 2.

The time complexity of the GMS algorithm increases quadratically with the num-
ber of points, linearly with the number of iterations, and linearly with the dimension
of the data, O(TD|Y|2) [92]. The number of iterations for convergence T depends on
the bandwidth value σ. In general, lower values of σ require larger values of T . For
faster convergence, Carreira-Perpiñán [28] propose a modification to the update rule
in Eq. (6.5) called the Gaussian Blurring Mean Shift (GBMS) algorithm and an early
stopping criteria to obtain similar results. Instead of using the iterate y0

j for every
iteration in Eq. (6.5), GBMS uses the result from the previous iteration yt−1

j :

yt
r,i ←

∑|Y|
j=1KH

(
yt−1
r,i − yt−1

j

)
yt−1
j∑|Y|

j=1KH

(
yt−1
i − yt−1

j

) . (6.6)
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Further, Comaniciu and Meer [39] show that utilizing a flat kernel as opposed
to a Gaussian kernel also produces reasonable accuracy in applications like image
segmentation while saving substantial computation due to the finite support of the
flat kernel. As opposed to the Gaussian kernel in Eq. (6.4), the flat kernel is given by:

KH (y − yi) =

{
1 if ‖y − yi‖ ≤ σ

0 if ‖y − yi‖ > σ
. (6.7)

In this work, we utilize both of these approximations to make PRI tractable for dense
image pair data.

Figure 6.2 illustrates a result of applying the method on image pairs corresponding
to a scene with low variation in depth and intensity (Fig. 6.2a) and a scene with high
variation in depth and intensity (Fig. 6.2b). For increasing values of the bandwidth
parameter σ used by the kernel in Eq. (6.5), we observe a monotonic decrease in the
estimated number of components (Fig. 6.2c) and increase in the mean reconstruction
error (Figs. 6.2d–6.2f). Further, for the scene in Fig. 6.2b, the estimated value of M
is higher for all bandwidth values compared to the scene in Fig. 6.2a. This behavior
is desired for the SOGMM system as the value of M in the model given by Eq. (3.1)
must adapt automatically according to the scene complexity. Thus, using this system,
adaptive complexity in GMM-based point cloud modeling can be achieved by only
specifying the bandwidth parameter σ. The choice of bandwidth parameter can be
based on the amount of computation available and the level of fidelity in the GMM
model required by the application.

6.1.4 Incremental Multimodal Surface Mapping
Before describing the algorithm, three key data structures are described: the Local
SOGMM, Global SOGMM, and Spatial Hash table.

Local SOGMM. A GMM model created via the SOGMM method using the
relevant points corresponding to the latest multimodal point cloud. Each point z in
this point cloud is assumed to be of the form, z = {(x, i) | x ∈ R3, i ∈ [0.0, 1.0]}.
Formally, the GMM model is represented as the function GL ≡ GL(z) =

∑
j∈J πjN (z |

µj,Σj), where πj, µj, and Σj are the weight, mean, and covariance for the mixture
component associated with index j in GL. Each mixture component is a Gaussian
probability density N (z | µj,Σj). The set of indices is denoted by J . The sum of
weights must be 1,

∑
j∈J πj = 1, for a valid GL.

Global SOGMM. A GMM model created after merging all prior GL models.
The global model contains |K| ≥ |J | mixture components. Formally, GG ≡ GG(z) =∑

k∈K τkN (z | νk,Λk), where different index and parameter symbols are used to
notationally differentiate GG from GL. Similar to GL, the set of indices is denoted by
K and

∑
k∈K πk = 1 must hold for a valid GG.

Spatial Hash. A hash table H :M→ Q,m 7→ qA[h(m)] is created to map any
point in 3D space (key m ∈ M) to a vector of mixture component indices in GG
(value qA ∈ Q) that are within a fixed volume around the point. This fixed volume is
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a cube with side length α. The hash function h :M→A maps the keys to an index
set A = {0, 1, . . . , |A| − 1} used to insert into and query from H.

Figure 6.3 provides an overview of the multimodal surface mapping method. There
are three steps: (1) creating GL, (2) merging GL into GG, and (3) spatially hashing GL
into H. Details of each step are provided in the following sections.

6.1.4.1 Creating GL

For each point cloud Z, the relevant subset of the point cloud Zr is determined.
If the number of points in this set is greater than a pre-specified threshold, then
GL is created; otherwise, Zr is cached and used along with the subsequent frames.
Zr represents points not already modeled by GG. Therefore, if GG is not initialized,
all points are treated as relevant (Zr = Z). Otherwise, Zr is determined using a
threshold (φ) on the log-likelihood [166] that points Z originated from the model GG,

Zr = {z ∈ Z | L(z) = ln (GG(z)),L(z) < φ}. (6.8)

However, this approach has two drawbacks when used with multimodal point clouds.
First, thresholding the log-likelihood scores via Eq. (6.8) over the multimodal point
cloud directly does not yield the intended Zr as the 4th dimension contains intensity
data, which is not in the metric space of the other three dimensions. Second, as the
size of the model GG (i.e., the value of K) increases over time, the time complexity
of calculating Eq. (6.8) increases linearly. Performing this computation for all points
in Z is prohibitive for real-time operation on computationally-constrained robotic
systems.

The first challenge is addressed by utilizing the marginal probability density p(x)
instead of p(z) for the log-likelihood calculation, i.e.,

Zr = {z ∈ Z | z = (x, i),L(x) < φ} where, (6.9)

L(x) = ln

(∑
k∈K

τkN (x | νx
k ,Λ

xx
k )

)
, (6.10)

νk = [νx
k ,ν

i
k]

>, and Λk =

[
Λxx

k Λxi
k

Λix
k Λii

k

]
. (6.11)

Figure 6.4 details the effect of using Eq. (6.9) instead of Eq. (6.8). The value of φ is
determined empirically, as done in [167], and it is fixed for the synthetic and real-world
scenarios.

The second challenge is addressed by selecting only the subset of mixture compo-
nents from GG (i.e., selecting B ⊆ K) that are overlapped by or close to the points in
Z. This way we can reduce the number of summands in Eq. (6.10). The hash table
H is leveraged for this purpose. Each 3D point x from z ∈ Z is a key m for the hash
function h that is used to searchH for the closest vector of mixture component indices,
qA[h(m)]. After attaining these vectors for all points in Z, the unique set of mixture
component indices form the index set B. For the example scenario in Fig. 6.4, Fig. 6.4d
shows the output after this approximation. The output is similar to the case when
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the original set of components K (Fig. 6.4c) is used but B is smaller (480 elements
instead of 1165). Consequently, for this example the time taken to compute Eq. (6.10)
with K is 0.35 s whereas with B it is 0.25 s (28% faster). Note that the ratio |K|/|B|
grows over time as the size of GG increases when point clouds from new regions are
observed. An analysis of the computational savings using this approach is provided
in Sect. 6.2.3.

6.1.4.2 Merging GL into GG

After the GL model is created using Zr, it is merged with the global point cloud model
GG by appending the parameters and re-normalizing the weights. Let the global model
before merging be GtG and after merging be Gt+1

G . The parameters for Gt+1
G are given

by τ t+1 = [τ t,π]> such that
∑

b∈B τ
t+1
b = 1, νt+1 = [νt,µ]>, and Λt+1 = [Λt,Σ]>.

The index set for the global model is also updated and the number of components
increase accordingly, |K|t+1 = |K|t + |J |.

6.1.4.3 Spatially Hashing GL into H

In addition to the global model, the hash table H is updated using the mixture
components from the latest local model GL. A total of |J | hash keys are inserted
into the table where each hash key mj is the spatial part of the mean position µx

j

along with points generated at constant probability ellipsoids corresponding to 68%
(1-sigma), 95% (2-sigma) and 99.7% (3-sigma) of the data points, for all j ∈ J .

The hash function h that maps mj to an index in A is given by h(mj) ≡ h(µx
j ) =

Nz(r(µ
x
j )Nx+c(µ

x
j ))+s(µ

x
j ) such that, r(µx

j ) = b(µ
y
j−oy)/αc, c(µx

j ) = b(µx
j−ox)/αc,

and s(µx
j ) = b(µz

j − oz)/αc. Here, [Nx, Ny, Nz] are the number of cells along each
axis of a 3D regular grid of spatial resolution α, o = −1

2
α[Nx, Ny, Nz] is the origin

position of this grid, and b.c is the floor operator. Intuitively, the hash function h
assigns the mean positions µx into a sparse grid of a pre-specified extent [Nx, Ny, Nz]
and resolution α.

The value corresponding to each key is the index of the component j in the global
model after the merging step (Sect. 6.1.4.2) is complete. Thus, the value corresponding
to the hash key mj is |K|t + j. It is possible that multiple hash keys are mapped to
the same cell in the grid (i.e., hash collisions are possible). An example scenario is
when α is large and a subset of means µx are spatially within α distance. In this case,
we want to store all the values in a vector. This is why the value set Q is defined
as a set of vectors as opposed to a set of integers. If a hash collision occurs for any
two keys mf and mg (i.e., h(mf ) = h(mg)), the values are appended into the vector
qA[h(mf )].

6.1.5 Global Spatial and Intensity Inference
Given the global model GG, we want to reconstruct the environment spatially along
with the intensity values. The marginal global model given by τ , νx, and Λxx (as
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defined by Eq. (6.11)) is used for spatial inference and densely sampled using the Box-
Muller transform [19]. The conditional probability density p(i | x) (as noted in [76]),
is used to infer intensity at the sampled spatial points. This inference is performed in
batches of components from GG. The batch size is determined based on the available
memory on the CPU used to perform inference.

6.2 Results
In this section, the performance of the SOGMM method is evaluated on real-world
point cloud data provided by Zhou and Koltun [210]: stonewall (Fig. 6.5a), copyroom
(Fig. 6.5b), and lounge (Fig. 6.5c). Because the proposed methodology addresses
efficient and compact perceptual modeling within the robotics context, it is compared
against three open source mapping baselines: (1) OctoMap (OM) [88], (2) NDTMap
(NDT) [118], and (3) GMM with fixed number of components (FC) [180]. The voxel
resolutions for the first two approaches are set to 0.02m and 0.05m, which have been
demonstrated to be adequate for scene representation [202]. For this section only, the
following shorthand is introduced: an OM with 0.05m and 0.02m leaf sizes will be
referred to as OM-0.05 and OM-0.02, respectively; an NDTMap with voxel resolutions
of 0.05m and 0.02m will be referred to as NDT-0.05 and NDT-0.02, respectively; the
GMM approach with 75, 500, and 2000 components will be referred to as FC-75, FC-
500, and FC-2000, respectively; and the SOGMM approach with bandwidths 0.01,
0.02, and 0.03 will be referred to as SOGMM-0.01, SOGMM-0.02, and SOGMM-0.03,
respectively.

Reconstruction from Environment Models. For OctoMap, the reconstruc-
tion at the minimum leaf size is utilized after modeling occupied space using the color
class1. For NDTMap, the reconstruction is obtained by modifying the NDTCell class
to store the average grayscale value for the points associated with the cell2. In both
cases, intensity is queried at a 3D coordinate. For the FC and SOGMM approaches,
the 3D reconstruction is obtained by densely sampling the joint distribution pX(x).
The grayscale reconstruction is obtained by regressing the expected value from the
conditional distribution pg|x(g|x). This conditional distribution is obtained as follows.
First, for each component m in the model given by Eq. (3.1), the mean and covariance
can be written as:

µm =

[
µm,x

µm,g

]
Σm =

[
Σm,xx Σm,xg

Σm,gx Σm,gg

]
.

The conditional distribution pg|x(g|x) can be expressed using these quantities
1https://github.com/OctoMap/octomap/blob/devel/octomap/include/octomap/

ColorOcTree.h
2https://github.com/OrebroUniversity/perception_oru/blob/port-kinetic/ndt_map/

include/ndt_map/ndt_cell.h
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as [167, 174]:

pg|x(g|x) =
M∑

m=1

wm(x)N (g | λm(x), ν2m), (6.12)

where

wm(x) =
πmN (x | µm,x,Σm,xx)∑M

m′=1 πm′N (x | µm′,x,Σm′,xx)
,

λm(x) = µm,g +Σm,gxΣ
−1
m,xx(x− µm,x),

and

ν2m = Σm,gg −Σm,gxΣ
−1
m,xxΣm,xg.

Finally, the expected value for Eq. (6.12) is:

λ(x) =
M∑

m=1

wm(x)λm(x). (6.13)

6.2.1 Qualitative Evaluation
Figure 6.5 provides a qualitative evaluation of the OctoMap, NDTMap, and SOGMM
methods by comparing the reconstruction of three scenes of varying complexity. Fig-
ures 6.5a–6.5c provide images of low, medium, and high complexity scenes, respec-
tively. The OctoMap method does not allow smooth color representation at the
boundaries of voxels, as shown in Figs. 6.5d–6.5f. The NDTMap representation can be
sampled using the Gaussian components in each voxel. This results in a qualitatively
better reconstruction (Figs. 6.5g–6.5i) compared to OctoMap at a cost of high memory
footprint. The SOGMM representation is sampled to generate reconstructions shown
in Figs. 6.5j–6.5l, respectively. While the bandwidth parameter remains constant
across scenes, the estimated number of components increases with the scene com-
plexity. The reconstructed wall retains the fine details in the intensity and edges
around the individual stones. Note that in the reconstruction of the copier (Fig. 6.5k),
the thin wires on the right-hand side of the image are accurately modeled and the
intensity is retained. In Fig. 6.5l one can see the individual leaves and shadows of
the plant are preserved between the original image and reconstruction. The SOGMM
framework preserves fine details by learning the appropriate model complexity from
the underlying sensor data without parameter tuning from the user.

6.2.2 Quantitative Evaluation
For quantitative evaluation of the reconstructed point clouds and grayscale images,
we utilize three metrics: (1) Peak Signal-To-Noise Ratio (PSNR), (2) Mean Recon-
struction Error (MRE), and (3) Memory Usage. The PSNR quantifies how accurately
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Figure 6.1: Overview of the proposed point cloud modeling method. The registered intensity-
depth image pair is used by the PRI component to determine the number of modes M . Steps
(1a)–(1c) of the K-Means++ algorithm [6] perform a hard-partitioning of the 4D data into
M clusters (KInit). Finally, the EM algorithm does a soft-partitioning of the 4D data using
the KInit output to create a M -component finite GMM. The proposed system encodes the
4D point cloud data into a finite GMM without requiring the specification of number of
mixtures M for every image pair.

Dataset OM-0.02 NDT-0.02 FC-2000 SOGMM-0.01

PSNR
Recon Err.

(m)
Mem.
(MB) PSNR

Recon Err.
(m)

Mem.
(MB) # Voxels PSNR

Recon Err.
(m)

Mem.
(MB) # Comp. PSNR

Recon Err.
(m)

Mem.
(MB) # Comp.

Wall 33.9 0.010 0.078 38.0 0.002 0.26 6482 40.5 0.002 0.12 2000 39.1 0.002 0.06 933
Copier 25.8 0.010 0.10 30.0 0.002 0.31 7856 33.4 0.002 0.12 2000 33.0 0.002 0.10 1599
Plant 26.3 0.010 0.10 30.8 0.002 0.30 7470 35.5 0.002 0.12 2000 36.0 0.002 0.15 2464

Table 6.1: Raw data for the quantitative comparison of the OM-0.02, NDT-0.02, FC-
2000, and SOGMM-0.01 cases. The SOGMM method achieves a balance between the model
fidelity and size for diverse scenes without changing the single tunable parameter σ.
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(a) Image A (b) Image B
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(e) Reconstruction, σ = 0.05 (f) Reconstruction, σ = 0.01

Figure 6.2: A study on how the PRI (Eq. (3.1)) component in the SOGMM system (Fig. 6.1)
adapts the model size according to the scene complexity. A simple scene consisting of (a)
homogeneous, white walls requires fewer components than a (b) complex scene consisting of
discrete, structured objects. (c) plots the number of components required to represent each
of the two scenes for a given bandwidth parameter, σ. (d) plots the mean reconstruction
error variation with σ. (e) and (f) show the reconstruction result for the extrema bandwidths
in (d). Note how the SOGMM formulation selects more components to represent the complex
scene for a given bandwidth value. Further, the reconstruction error varies monotonically
with σ.
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Figure 6.3: Information flow during surface point cloud modeling via the proposed
incremental mapping approach (Sect. 6.1.4).

(a) (b) (c)

(d)

Figure 6.4: Illustration of the relevant point cloud calculation using two multimodal point
clouds, Z1 and Z2 (Sect. 6.1.4.1). The objective is to find the relevant point cloud, Zr

2 , from
Z2 using GG, which is created from Z1. (a) shows the 3D parts of these point clouds in
different colors and the associated 3D poses. (b) shows Zr

2 and Z1 with intensity values,
when Eq. (6.8) is used. (c) shows the same but when Eq. (6.9) is used. Notice that in
the former case Zr

2 contains more misclassified points that overlap with GG than in the
latter case. (d) shows the output Zr

2 when only a subset (|B| = 480) of components in GG
(|K| = 1165) derived using the hash table H are used. This output is similar to (c). The
point clouds are sourced from from the real-world Lounge dataset [210]. This figure is best
viewed in color.
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(a) Wall (original) (b) Copier (original) (c) Plant (original)

(d) OctoMap 0.02m (e) OctoMap 0.02m (f) OctoMap 0.02m

(g) NDTMap 0.02m (h) NDTMap 0.02m (i) NDTMap 0.02m

(j) σ = 0.01 (k) σ = 0.01 (l) σ = 0.01

Figure 6.5: Resampled output from SOGMMs created for three point clouds with different
levels of complexity. The point clouds are taken from real-world datasets [210]. The OctoMap
method results in a pixelated output. NDTMap allows a smoother output at a cost of high
memory usage. The SOGMM method adapts the complexity of the mixture model without
changing parameters across different scenes (σ = 0.01 for all the cases). A supplementary
video may be found at https://youtu.be/TCn5KB1m5P0.
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Figure 6.6: Quantitative evaluation of the SOGMM method for the scenes shown in Fig. 6.5.
The SOGMM approach enables high accuracy (a) grayscale and (b) 3D reconstructions while
allowing (c) adaptation in the size of the model without changing the bandwidth parameter
across scenes.

intensity is reconstructed from the model by comparing against the original intensity
image. The MRE is computed for the spatial part of the reconstructed point cloud
(i.e., [x, y, z]>) and is given by the average distance between the reconstructed point
cloud and the ground truth point cloud. The memory usage quantifies the memory
required to store the model in megabytes (MB). For OctoMap, this value is the size
of the .ot file that retains the occupancy and grayscale information. Each cell of the
NDTMap stores a Gaussian component and intensity, so the memory usage (assuming
floating point values and M cells) is calculated as 4 ·M · (1 + 3 + 6) bytes. The FC
and SOGMM are composed of M 4D Gaussian components, so the memory usage is
calculated as 4 ·M · (1 + 10 + 4) bytes.

Figure 6.6 shows these metrics for the baselines and our approach for three scenes
(Wall, Copier, and Plant) shown in Fig. 6.5. The OM baseline exhibits lower PSNR
values (Fig. 6.6a) and highest reconstruction error (Fig. 6.6b) compared to other
approaches. NDT-0.05 and NDT-0.02 outperform OM-0.05 and OM-0.02 in terms of
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PSNR and reconstruction error but consume larger amounts of memory (Fig. 6.6c).
While FC-75, FC-500, and FC-2000 consume less memory compared to NDT-

0.02, they are each constrained to leverage the same representational fidelity across
the three scenes without consideration for the scene complexity. Without the ability
to adapt, homogenous scenes will be represented with more fidelity than required
and complex scenes will have insufficient fidelity, which is undesirable. For example,
a large number of components may not be required to achieve good PSNR and
reconstruction error scores for the Wall scene due to its low complexity; however,
FC-2000 is required to use 2000 components a priori. In contrast, SOGMM cases
automatically decide to use lower number of components for Wall and progressively
higher number of components for Copier and Plant. Consequently, we observe similar
PSNR and reconstruction error scores for SOGMM-0.01 and FC-2000; however, the
former case adapts to the scene and consumes less memory for the Wall and Copier
cases. Table 6.1 provides raw evaluation data to directly compare SOGMM-0.01
against the best performing variants of OctoMap, NDT, and FC. SOGMM-0.01
produces a model with accuracy in line with NDT-0.02, while consuming significantly
less memory. FC-2000 allows higher PSNR scores but overestimates the number of
components for scenes with relatively less intensity-depth variation. SOGMM-0.01
on the other hand provides a variation in the number of components used without
changing any parameters across the three scenes.

SOGMM-0.02 and SOGMM-0.03 show the effect of the bandwidth parameter
σ. As expected from Fig. 6.2, the size of the model increases σ decreases. The σ
parameter can be chosen based on the available computation as opposed to making
an a priori guess about the complexity of the environments being modeled. The
experimental results are divided into two parts. In Sect. 6.2.3, the computational
performance gain offered by the proposed incremental mapping approach due to the
spatial hash formulation is compared with the prior work on GMM-based multi-
modal mapping [166]. In Sect. 6.2.4 the reconstruction accuracy from the global map
created through the proposed approach is compared with Octomap [88], Voxblox
(Nvblox3) [137], and GMM-based maps that use a fixed number of components
(FCGMM) [180]. These methods are chosen as baselines because they have been used
for our target application, multi-robot 3D reconstruction. We will use the “Method-
Parameter” notation to denote the parameter being used. For example, Proposed-0.02
denotes the proposed approach with the bandwidth parameter σ = 0.02.

One synthetic (D1: Living Room from the Augmented ICL-NUIM datasets [36])
and three real-world datasets (D2: Lounge, D3: Copyroom, and D4: Stonewall from
the Redwood datasets [210]) are used for qualitative and quantitative evaluation of
the proposed approach and its comparison with the baseline methods. All datasets
contain 640×480 RGB and depth images along with the corresponding camera poses.
All methods are provided reduced resolution 128×96 images for incremental mapping.
The computer used for all experiments contains an Intel Core i9-10900K CPU (20
threads, maximum clock speed 5.3GHz, 32GB RAM) and a NVIDIA GeForce RTX

3Nvblox is the GPU-accelerated extension of Voxblox: https://github.com/nvidia-isaac/
nvblox
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Figure 6.7: Comparison of the relevant subset Zr calculation time between the prior work
on multimodal GMM mapping [166] and the proposed approach. The per-frame calculation
time in seconds is plotted for (a) different values of fixed numbers of components |J |
and (b) different values of the bandwidth parameter σ for the proposed method. (c) Notice
that the spatial hash (Sect. 6.1.4.3) enables an order of magnitude improvement and that
the performance gains increase monotonically with model size. (d) shows an ablation of
calculation times for different values of the spatial hash resolution parameter α.
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Figure 6.8: Quantitative comparison of (a) reconstruction error, (b) precision, (c) recall,
and (d) PSNR as a function of the map size in megabytes (MB) for each approach. The
dataset under consideration is the synthetic D1 dataset shown in Fig. 6.9a. Note that the
proposed approach yields a map that requires less disk space than the competing methods
while demonstrating at par or better reconstruction accuracy (i.e., low reconstruction error
and high precision).
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(a) Synthetic (b) Octomap (0.02m, 3.2MB) (c) Nvblox (0.08m, 6.4MB)

(d) FCGMM (400, 4.8MB) (e) Proposed (0.02, 2.1MB)

Figure 6.9: Qualitative comparison of the reconstructions obtained by baseline methods
and the proposed approach at similar values of map size for (a). The highest achievable
resolution used during execution and resulting map sizes are reported in the sub-captions.
(b) visualizes the lowest level of the Octomap octree. Incorrect intensity values are visible
due to the color averaging within the octree. (c) illustrates the mesh extracted from the
stored TSDF for Nvblox. Aliasing is visible in the meshes due to large voxel sizes required for
a lower memory footprint. (d) FCGMM and (e) the proposed method enable qualitatively
similar high-resolution dense reconstructions; however, the FCGMM output requires a much
longer time to process incremental observations (see Fig. 6.7). A video of the proposed
approach reconstructing the D1 dataset is available at https://youtu.be/VgPEEcbUAnY.
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(a) Real-World (b) Octomap (0.02m, 5.9MB) (c) Nvblox (0.06m, 8.2MB)

(d) FCGMM (400, 6.2MB) (e) Proposed (0.02, 5.7MB)

Figure 6.10: Same results as in Fig. 6.9 but with real-world point cloud data.

3060 GPU (12GB RAM). The CPU implementation of the Octomap approach for
color data is used. Nvblox and the proposed method4 use the CPU and GPU for
incremental mapping. Nvblox uses both depth and color data by default. It is modified
to use depth and grayscale images for the comparison presented in this section. Since
the software for prior GMM map works [166, 167, 180] is not openly available, the
codebase for the proposed approach is modified to use a fixed number of components
for the FCGMM comparison. The FCGMM approach uses the GPU for EM execution
but CPU for the Zr calculation because it requires access to more RAM than is
available to the GPU.

6.2.3 Relevant Point Cloud Calculation
As mentioned in Section 6.1.4.1, a drawback of prior work [166] is that the relevant
point cloud subset Zr calculation in Eq. (6.8) is not real-time viable, especially as the
number of components |K| increase in the global point cloud model GG. The proposed
spatial hashing approach reduces this computation cost by selecting a subset of com-
ponents B that geometrically overlaps the point cloud. Figure 6.7 demonstrates the
performance gains due to the proposed approach. While the methodology proposed
in [166] is hierarchical, we choose to compare against their highest fidelity model (i.e.,
lowest layer) in the hierarchy for a fair comparison.

For the baseline approach (Fig. 6.7a), the calculation times per frame are shown
for increasing values of number of mixture components |J |, J = {100, 200, 400, 800}.
The proposed methodology enables an order of magnitude faster Zr calculation
as compared to the baseline approach, because the log-likelihood operates over all
mixture components and points. The spatial hash resolution α is fixed at 0.2m for all

4Release 0.1.0 of https://github.com/gira3d/gira3d-reconstruction.
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Method Param.
MRE
(m) ↓ Prec. ↑Rec. ↑

PSNR
(dB) ↑

Mem.
(MB) ↓

Octomap 0.02 0.007 0.81 0.46 18.37 5.94
0.04 0.011 0.55 0.06 16.76 1.13
0.06 0.016 0.41 0.02 15.84 0.44
0.08 0.021 0.33 0.01 15.30 0.23

Nvblox 0.02 0.006 0.92 0.38 20.63 114.19
0.04 0.008 0.86 0.35 19.08 19.98
0.06 0.011 0.81 0.31 18.26 8.19
0.08 0.014 0.76 0.28 17.51 4.22

FCGMM 800 0.005 0.98 0.72 20.25 14.11
400 0.006 0.97 0.72 19.35 6.24
200 0.005 0.96 0.72 18.64 2.98
100 0.006 0.92 0.72 17.62 1.46

Proposed 0.02 0.005 0.98 0.65 20.74 5.71
0.03 0.005 0.97 0.64 20.18 2.39
0.04 0.006 0.96 0.65 19.76 1.32
0.05 0.006 0.93 0.65 19.12 0.83

(a) D2: Lounge dataset

MRE
(m) ↓ Prec. ↑Rec. ↑

PSNR
(dB) ↑

Mem.
(MB) ↓

0.007 0.83 0.51 18.61 5.93
0.011 0.57 0.06 17.35 1.10
0.016 0.44 0.02 16.49 0.43
0.021 0.36 0.01 15.95 0.23
0.006 0.92 0.38 20.94 96.95
0.009 0.87 0.33 19.71 18.61
0.010 0.83 0.29 18.86 8.00
0.010 0.81 0.26 18.29 4.40

– – – – –
0.004 0.97 0.83 20.66 10.68
0.005 0.95 0.83 19.70 4.85
0.007 0.91 0.83 18.59 2.30
0.005 0.98 0.70 21.42 5.59
0.005 0.97 0.68 20.96 2.48
0.005 0.95 0.66 20.56 1.39
0.006 0.93 0.66 20.05 0.88

(b) D3: Copyroom dataset

Method Param.
MRE
(m) ↓ Prec. ↑Rec. ↑

PSNR
(dB) ↑

Mem.
(MB) ↓

Octomap 0.02 0.007 0.84 0.62 19.19 5.29
0.04 0.011 0.59 0.08 18.32 0.95
0.06 0.016 0.47 0.02 17.61 0.37
0.08 0.021 0.39 0.01 17.79 0.19

Nvblox 0.02 0.005 0.99 0.42 24.80 155.05
0.04 0.005 0.98 0.39 23.41 25.96
0.06 0.005 0.96 0.37 22.40 9.43
0.08 0.006 0.94 0.34 21.43 4.89

FCGMM 800 0.005 0.99 0.82 22.13 13.34
400 0.004 0.99 0.80 21.51 5.66
200 0.005 0.98 0.79 20.99 2.60
100 0.006 0.96 0.79 20.40 1.24

Proposed 0.02 0.005 0.99 0.68 21.83 3.27
0.03 0.005 0.98 0.66 21.62 1.26
0.04 0.005 0.97 0.65 21.41 0.63
0.05 0.006 0.95 0.65 21.16 0.36

(c) D4: Stonewall dataset

Figure 6.11: Quantitative comparison of Octomap, Nvblox, FCGMM, and the proposed
approach using the real-world datasets with noisy RGB-D data. The best and worst values
in each column are colored green and red respectively. The FCGMM method results in a
larger map size compared to the proposed approach and is orders of magnitude slower in
execution time (Fig. 6.7). These results highlight that the proposed approach balances the
accuracy and map size better than the state-of-the-art approaches.
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values of σ. Because lower σ yields higher resolution reconstruction, the computation
time increases as σ decreases. Figure 6.7c presents the cumulative Zr calculation
times for the D1 dataset. The ∆ columns show the order of magnitude improvement
via the proposed approach. Notice that while the performance gain of Proposed-0.05
compared to FCGMM-100 is nearly 10×, it increases with the model fidelity; the
Proposed-0.02 is about 30× faster than FCGMM-800. Finally, Fig. 6.7d compares
the Zr calculation times for α = {0.1, 0.2, 0.4, 0.8}. Increasing α results in overall
higher calculation times because the size of B gets larger. Before using the proposed
method, the value of α should be set according to the available CPU computation
resources.

6.2.4 Global Map Accuracy and Compression
For Octomap and Nvblox, the predicted point cloud Zpr and mesh are constructed,
respectively, after processing all the frames in a given dataset. For FCGMM and the
proposed approach, the predicted point cloud is inferred from the global model GG
using the method in Sect. 6.1.5. The Octomap method requires specifying a minimum
leaf size for the underlying octree used for modeling and inference. We use a range of
leaf sizes for the experiments, αom = {0.02, 0.04, 0.06, 0.08}m. The same set of values
are used for the voxel sizes required in the Nvblox method, αnv = αom. For FCGMM
and the proposed approach, the same set of parameters are used as in Sect. 6.2.3.
The ground truth point cloud, Zgt, is constructed by appending all the point clouds
corresponding to the images and poses in the dataset followed by downsampling using
a voxel grid filter with a small voxel size (0.01m for all experiments in this section).

The performance measures for 3D reconstruction are (1) Mean Reconstruction
Error (MRE), which is the average distance of the closest points between Zpr and
Zgt (lower is better), (2) Precision of 3D reconstruction, which measures the fraction
of points in Zpr that lie within 0.01m of a point in Zgt (higher is better), and (3)
Recall of 3D reconstruction, which measures the fraction of points in Zgt that lie
within 0.01m of a point in Zpr (higher is better). Intuitively, this measure computes
the degree of “completeness” in the reconstruction. The performance measure for
intensity reconstruction is the peak-signal-to-noise ratio (PSNR) calculated using the
mean squared error (MSE) between the intensity values of the closest points in Zpr

and Zgt (higher PSNR is better). These measures are computed using the closest point
distance computation functions for point clouds in Open3D [211]. For the Nvblox case
in particular, the mesh output is uniformly and densely sampled to create a point
cloud with number of points equal to the ground truth point cloud.

The memory storage efficiency of the multimodal environment representations is
measured by calculating the size (measured in bytes) of the models that can be loaded
from disk to create Zpr. The models are chosen so that they can enable reconstruction
of the surface and occupancy modeling for other robots in a multi-robot reconstruction
scenario. For Octomap, the model size corresponds to the output .ot file [88], as
opposed to the binary .bt file that does not retain occupancy information. Due to
the same reason, for Nvblox the SQLite3 database (.db file) output is used instead
of the output .ply mesh file. For the FCGMM and proposed methodologies, the
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memory occupied by the means, covariances, and weights in the global model GG is
calculated (four floats for each mean, one float for each weight, and ten floats for
each covariance). Note that occupancy modeling from a stored GMM map with these
parameters has been demonstrated in prior work [61, 167, 138, 180].

Figure 6.8 shows the variation in the performance measures for all methods with
respect to the map size on disk for the D1 dataset. Each data point in the plots cor-
responds to a unique parameter setting in αom, αnv, J , and σ for Octomap, Nvblox,
FCGMM, and the proposed approach respectively. To attain similar levels of mean
reconstruction error and precision, the proposed approach, FCGMM, and Octomap
require an order of magnitude less memory than Nvblox (Figs. 6.8a and 6.8b). This
is because Nvblox utilizes a regular grid of fixed resolution and multiple data storage
layers while Octomap, FCGMM, and the proposed approach leverage octrees, GMMs,
and SOGMMs, respectively. Note that while these values are close for the FCGMM
and the proposed methods, in the FCGMM case the time taken to create the model
is much higher (Sect. 6.2.3).

The FCGMM and the proposed approaches achieve a recall score close to 1.0
(Fig. 6.8c) demonstrating that for nearly each point in the ground truth point cloud,
there is a point in the reconstruction within a 0.01m ball. Both of these GMM-
based methods outperform Octomap because an arbitrarily high number of points
can be densely sampled from a GMM (Sect. 6.1.5) whereas the Octomap outputs the
point cloud at its minimum pre-specified leaf size. The Nvblox method output mesh
is uniformly sampled; however, a low voxel size is required to achieve similar recall
scores.

The highest intensity reconstruction accuracy (i.e., PSNR score in Fig. 6.8d)
attained by Octomap (PSNR = 26.70) is much lower than the proposed approach
(PSNR = 30.29) at a similar storage cost. This is because the intensity in an Octomap
octree node is averaged according to the density of the points around the node. In
contrast, the proposed approach treats intensity as a univariate random variable and
jointly modeled with the 3D coordinates in the global point cloud model. Inference
from this joint probability density leads to a higher accuracy than the averaging
in Octomap. Nvblox fuses intensity information into the 3D map using a weighted
average update. This process is an improvement over Octomap but still requires a
low voxel size to attain a PSNR comparable to GMM-based approaches. Finally,
the FCGMM approach demonstrates a lower PSNR than the proposed approach for
similar storage costs. This is because the FCGMM uses a fixed number of components
for every scene in the dataset while the proposed method uses SOGMM, which adapts
the number of components according to the complexity of depth and image data [76].
The impact of these quantitative results is visible in the qualitative comparison shown
in Fig. 6.9. The reconstructions from all methods are shown for comparable map sizes
along with the ground truth point cloud for D1 and D2 datasets.

Figure 6.11 provides performance statistics corresponding to real-world datasets
D2, D3 and D4, which exhibit noisy sensor readings. For each performance measure,
the best and worst values are highlighted in green and red, respectively. Note that
there is no result for the D2 dataset in the FCGMM-800 case because the relevant
point cloud calculation required more RAM than the available 32GB. This is expected
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since the D2 dataset contains 5490 frames which is nearly twice the other datasets.
While using Octomap at a 0.08m resolution results in the lowest map size (0.23MB),
reconstruction performance is poor compared to all other methods. Nvblox outputs
the largest map size on disk at 114.19MB but does not enable the highest PSNR. The
FCGMM and proposed approach enable similar reconstruction accuracy; however, the
proposed approach results in smaller map sizes and utilizes less computation as shown
earlier. This trend is observed for the D2 and D3 datasets as well. One exception for
Nvblox is that it provides a higher PSNR compared to the proposed approach for the
D3 dataset but it consumes about 50× more storage.

6.3 Summary
In this chapter, a continuous probabilistic modeling approach is presented towards
addressing the challenge C3. We enable adaptation in this framework through es-
timation of number of components using the principle of relevant information from
information-theoretic learning. The quantitative and qualitative results for the pro-
posed method demonstrate its efficacy in terms of reconstruction accuracy and mem-
ory utilization on diverse real-world scenes. For streaming sensor data, inserting a new
point cloud observation to an existing GMM map model involves iterating over all
the mixture components; which is computationally expensive. To bridge this gaps,
this chapter formulated methodologies to (1) extract a submap by innovating a
spatial hash table of mixture components and (2) incrementally update the global
environment model in a computationally efficient manner. The approach was evalu-
ated with synthetic and real-world datasets and the results demonstrated that the
proposed approach enables high-fidelity reconstruction at low memory with an order
of magnitude increase in speed compared to existing GMM-based mapping methods.

The implementation details for these methods for CPU and GPU platforms are
provided in Appendix A.
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7CHAPTER

Collision Avoidance using
Self-Organizing GMMs

This chapter proposes a method to compute distance at any point in space for an
ellipsoidal robot from a surface represented by a set of Gaussians.

Given an ellipsoidal robot body model and a set of Gaussians representing the
surface point cloud, this chapter contributes methods to compute the continuous-
space

1. Euclidean distance estimate between the robot body and surface,

2. the approximate gradient of this distance, and

3. the upper bound on collision probability when the robot position is a Gaussian
random variable.

These methods are evaluated using 2D and 3D surface point clouds from simulation
and real-world environments. Several discrete- and continuous-space methodologies
have been proposed to compute Euclidean Distance Fields (EDFs), which indicates
distance from an obstacle using only positive values, and Euclidean Signed Distance
Fields (ESDFs), which indicate occluded distance using a negative sign. While the
applications of these quantities are quite diverse (e.g., shape reconstruction, mesh-
ing, etc.), we review continuous-space methods that have been proposed for robot
navigation purposes. Collision probability calculation methods under robot position
uncertainty are also discussed.

This capability is important to enable collision avoidance from SOGMM (Chal-
lenge C4). Section 7.1 details the proposed methods. The evaluation is presented
in Sect. 7.2. A summary is provided in Sect. 7.3.

7.1 Approach
Starting with the preliminary information Sect. 7.1.1, the problem statement is pro-
vided in Sect. 7.1.2. The proposed methods are detailed in Sect. 7.1.3 and Sect. 7.1.4.
In this section, small letters are scalars (e.g. x, y), bolded small letters are vectors
(e.g. x, y), capital letters are random variables (e.g. X, Y ), capital bolded letters are
matrices (e.g. X, Y), and calligraphic letters are sets (e.g. X ,Y).
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7.1.1 Preliminaries
A solid ellipsoid of dimension q, center p ∈ Rq, and shape P ∈ Rq×q is the quadratic
form inequality

E (p,P) = {q ∈ Rq | (q− p)>P(q− p) ≤ 1}.

The eigen decomposition of P enables determining the rotation and scale of the ellip-
soid. If the eigen decomposition of P is given by P = RSR>, then R is an orthogonal
matrix that provides the ellipsoid’s principal axes rotation and S is a diagonal matrix
where entries are the inverse squares of the semi-principal axes lengths. The positive
definite matrix P−1 is called the shape matrix of the ellipsoid [80].

The region inside and on a probability isocontour of the probability density
function for a q-variate Gaussian random variable X with mean vector µX and
covariance matrix ΣX can be geometrically interpreted as an ellipsoid [14, Ch. 2].
The l-th level isocontour is given by the solid ellipsoid EX(µX ,RΓR>). The rotation
matrix R contains the eigenvectors of Σ−1

X as columns. The entries of the diagonal
matrix Γ are given by 1/l2 times the eigenvalues of Σ−1

X . For reference, l = 3 and
4 provide 99.7% and 99.95% coverage bounds respectively on the points modeled by
the random variable X.

If the probability density function is instead given by a weighted sum of Gaussian
density functions (i.e., a GMM), then the probability isocontours can be approximated
as a set of ellipsoids with one ellipsoid per component of the mixture. Note that this
geometric interpretation ignores the weights of the GMM.

7.1.2 Problem Statement
A robot P is equipped with a range sensor (e.g. depth camera, LiDAR, etc.) and it
can be moved in a workspaceW ⊆ Rq. In this work q is either 2 or 3. The region inside
the workspace occupied by the robot is modeled using the solid ellipsoid EP(p,P).
The parameters p and P are determined using the Lowner-John ellipsoid fit [157].
The center p can be uncertain. This uncertainty is modeled using a continuous mul-
tivariate Gaussian variable P with the probability density function N (p;µP ,ΣP ). In
practice, these uncertainty estimates may be provided by an external state estimation
system [129].

The onboard range sensor provides a stream of point cloud measurements Z of
the surfaces Ws in the workspace. The elements of the point cloud Z are assumed to
be independent and identically distributed samples of a random variable Z with the
probability density function given by the GMM

fZ =
M∑

m=1

πmN (z;µm
Z ,Σ

m
Z ) (7.1)

where πm, µm
Z , and Σm

Z are the weight, mean, and covariance of the m-th Gaussian
component in an M -component GMM. This GMM can be obtained from many recent
point cloud modeling methods. The weights may be uniform, such as the GSMs
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obtained via stochastic gradient-descent [99, 98] or geometric region growing [50].
Alternatively, GMMs with non-uniform weights obtained from Expectation Maxi-
mization [71, 167] or scan line segmentation [110] may also be used. The proposed
methods in this work only depend on the geometric interpretation of the GMMs and
thus do not require the GMMs to be created using a specific method.

Given this information, the following problems are addressed in this work:
1. Estimate the closest distance between EP(p,P) and fZ . Estimate the gradient of

this distance at any location. The solution must not depend on a discretization
of the space (Sect. 7.1.3).

2. Estimate the collision probability between EP(p,P) and fZ when the ellipsoid
center position is uncertain (Sect. 7.1.4).

7.1.3 Continuous Euclidean Distance Field
The m-th component of the GMM density fZ from Eq. (7.1) can be interpreted as
an ellipsoid (Sect. 7.1.1). If it were possible to efficiently calculate the distance of
the robot to all M components, we could compute the minimum distance of the
robot to the surface GMM. Thus, we require a method to find the closest distance
between two ellipsoids. Unfortunately, this distance cannot be derived as a closed-form
expression [112].

Many optimization-based approaches have been proposed for this purpose [112,
157, 187]. In this work, the method by Rimon and Boyd [157] is leveraged because it
formulates the optimization as an eigenvalue problem. However, the expressions stated
in their work require several matrix inversions and square roots. It is not obvious how
to avoid these calculations and leverage numerically stable and faster alternatives
(e.g. linear system solvers, decompositions) without introducing approximations. The
following proposition restates the result from [157] but removes the need to explicitly
calculate matrix inversions and square roots.
Proposition 1 (Deterministic Ellipsoid Distance [157]1). Consider two ellipsoids
E1(b,B) and E2(c,C). The centers and shapes of these ellipsoids are perfectly known.
Let B = B̂ΛBB̂

> and C = ĈΛCĈ
> be the eigen decompositions of B and C

respectively. Consequently, B1/2 = B̂Λ
1/2
B B̂>, B−1 = B̂Λ−1

B B̂>, B−1/2 = B̂Λ
−1/2
B B̂>,

and C−1 = ĈΛ−1
C Ĉ>. Let λ be the minimal eigenvalue2 of the 2q × 2q matrix

M1 =

[
C̃ −Iq
−c̃c̃> C̃

]
such that Iq is an identity matrix of order q, C̃ = B1/2C−1B1/2, and c̃ is the solution
of the linear system

(B−1/2Q̂Λ
1/2
Q Q̂>)c̃ = c− b (7.2)

1The typographical errors in the expressions for b̃ and y∗ in [157, Prop. 3.2] have been corrected
here.

2The minimal eigenvalue is equal to the real part of the eigenvalue with the lowest real part
amongst all eigenvalues (real or complex). This notion is required because the eigenvalues of M1

and M2 may be complex numbers.
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where Q̂ΛQQ̂
> is the eigen decomposition of the real symmetric matrix B−1/2CB−1/2.

Let µ be the minimal eigenvalue of the 2q × 2q matrix

M2 =

[
B−1 −Iq
−b̃b̃> B−1

]
such that b̃ = −λB−1/2α and α is the solution to the linear system

{B−1/2(λIq − C̃)B1/2}α = c− b. (7.3)

Given these quantities, the closest distance estimate d(E1, E2) between E1 and E2 is

d(E1, E2) = ‖d∗‖, (7.4)

where ‖.‖ denotes the L2-norm of a vector and d∗ is the solution to the linear system

(µIq −B−1)d∗ = −µλα. (7.5)

Note that calculating matrix inverses and square roots of diagonal matrices like
ΛB only requires inverse and square root operations on their scalar diagonal entries
as opposed to full matrix operations. Therefore, there are no explicit matrix inversion
or matrix square root calculations required in Proposition 1.

Using Proposition 1, the distance between the robot body ellipsoid EP(p,P) and
the surface model fZ can be computed by computing the minimum over all M
components of fZ :

d∗(EP(p,P), fZ) = min
m

d(EP(p,P), Em) (7.6)

where d(.) is the distance function from Eq. (7.4) and Em denotes the ellipsoid
corresponding to the m-th Gaussian component in the GMM density fZ . This ellipsoid
can be constructed for isocontours of the Gaussian component Sect. 7.1.1.

To calculate the gradient, Rimon and Boyd [157] suggest deriving the analytical
gradient of Eq. (7.4) as it is differentiable. However, computing this gradient requires
several matrix multiplications and inversions. To save computational resources on-
board robots, an approximation is leveraged. From Eq. (7.6), we also get the ellipsoid
on the surface, E∗m, that is closest to the robot. The gradient vector is approximated
using the position vector d∗ (from Eq. (7.4)) for E∗m and EP ,

∇d∗(EP(p,P), fZ) =
d∗

√
d∗>d∗

. (7.7)

Under the limiting condition where the number of components M is equal to
the number of points in the point cloud Z such that each point in the point cloud
is represented with a Gaussian component, the distance (Eq. (7.6)) and gradient
(Eq. (7.7)) formulations are exact (i.e., ground truth values). As M decreases, the
error in d∗ and ∇d∗ increases relative to the ground truth value.

The computation in Eq. (7.6) scales linearly with the number of components
M in the GMM. Local submap extraction approaches such as hash maps [71] or
spatial partitioning data structures such as KD-tree [90] and B+-tree [130] may enable
improved scalability as M increases.
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Figure 7.1: Illustration of the quantities required for blending weights calculation in collision
probability estimation (Sect. 7.1.4). For each of the ellipsoids on the surface, the blending
weight wk is the dot product of the distance gradient ∇d∗k and the normal n̂∗

k. This figure
is best viewed in color.
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7.1.4 Collision Probability Under Position Uncertainty
The following corollary to Proposition 1 will be used in this section.
Corollary 1 (Deterministic Ellipsoid Collision Check [183]). If it is desired to only
check whether E1 and E2 collide (under deterministic conditions), an explicit calcula-
tion of Eq. (7.4) is not required. When E1 and E2 touch or intersect, Thomas et al.
[183] show that y>D>BDy ≤ 1/λ2, where y = c − b, D = B−1/2(λIq − C̃)−1B1/2,
and other quantities are as calculated in Proposition 1. We simplify this inequality to

y>B1/2A−1B1/2y ≤ 1/λ2 (7.8)

where A = (λIq − C̃)2 is a real symmetric matrix. It is shown in [157, Thm. 2] that
when the center of ellipsoid E1, b, lies outside of E23, λ is always negative. Since
C̃ = B1/2C−1B1/2 with B � 0 and C � 0, it follows that C̃ � 0. Therefore, the
matrix λIq − C̃ ≺ 0, which implies A � 0 (i.e., A is positive definite). Therefore, the
Cholesky decomposition of A can be used to efficiently compute Eq. (7.8) without
explicit matrix inversions or square roots.

Let v = y>Āy where Ā = B1/2A−1B1/2. When the center b of the ellipsoid E1
is a Gaussian distributed random variable with density N (b;µB,ΣB), v becomes a
random variable as both y and Ā depend on b. Under a conservative assumption that
Ā and λ are deterministic (calculated using the mean µB)4, it is proved in [183] that
PB(E1, E2) ≡ PB(v ≤ 1/λ2) and an upper bound on the probability can be estimated
via

PB(v ≤ 1/λ2) ≤
η
√

V[v]
E[v] + η

√
V[v]− (1/λ2)

(7.9)

where E[v] and V[v] denote the expectation and variance of v, λ is as defined
in Proposition 1, and η is a constant. The values E[v] and V[v] can be exactly
calculated using [121, Thm. 3.2b.2]

E[v] = tr[ĀΣB] + (c− µB)
>Ā(c− µB) and

V[v] = 2tr[(ĀΣB)
2] + 4(c− µB)

>ĀΣBĀ(c− µB)

where tr[.] denotes the trace of a matrix. Note that explicit matrix square roots are
required in this upper bound calculation (Proposition 1). Estimation of the constant η
is difficult. Thomas et al. [183] set this value to 0.25 for all cases5. However, we found
that in some cases this value leads the denominator in Eq. (7.9) to be negative (i.e.,
E[v] + η

√
V[v] < (1/λ2)). Therefore, in practice when this denominator is negative,

starting with η = 0.25, we keep increasing it by 0.5 until the denominator turns
positive. This is a valid approximation because η is used to upper bound the value of

3This assumption does not lead to a loss of generality because when b lies inside E2, the ellipsoids
are definitely intersecting.

4Liu et al. [115] propose leveraging the Minkowski sum of ellipsoids to relax this assumption.
However, it is computationally difficult to obtain a tight approximation of this sum [80].

5There is a typographical error in [183] which states that η = 1. The tight upper bound calculated
in Section IV-D of [183] is correct when η = 0.25.
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v [183]; increasing η makes this bound loose for certain ellipsoid pairs but maintains
the validity of Eq. (7.9).

To compute the probability in Eq. (7.9) relative to the surface GMM fZ , one
approach is to identify the surface ellipsoid closest to the robot (E∗m) from Eq. (7.6)
and evaluate Eq. (7.9) between the robot ellipsoid EP(p,P) and E∗m. However, this
approach yields a non-smooth collision probability field due to a rapid spatial change
in E∗m. Such a probability field may not be useful for optimization-based motion
planning under uncertainty [212].

To mitigate this problem, we propose blending the collision probabilities of the K
nearest surface ellipsoids from the robot ellipsoid. Such neighbors can be efficiently
queried from spatial partitioning data structures such as KD-Tree [90]. In this work,
we empirically set K = 3 for 2D and K = 9 for 3D workspaces. The final probability
is given by

P ∗(EP(p,P), fZ) =
1∑
k wk

∑
k

wkP (EP(p,P), E∗k ), (7.10)

where wk denotes the blending weight of the k-th ellipsoid E∗k in the set of nearest K
ellipsoids {E∗1 , . . . , E∗K}. The blending weight wk is the dot product of ∇d∗k and the
eigenvector directed towards the robot position, n̂∗

k, corresponding to the minimum
eigenvalue of the shape matrix (Fig. 7.1). The dot product will be negative in cases
when the angle between n̂∗

k and ∇d∗k is in the range [π/2, 3π/2]. For example, this
situation can arise when ellipsoids represent a sharp turn. In such cases, we ignore
the contribution of the ellipsoid to the collision probability (i.e., wk = 0).

7.2 Results
This section presents an evaluation of the computational cost and accuracy of the
proposed methods.

Targeting single-threaded operation on a CPU, the proposed methods are imple-
mented in C++ using the Eigen library [78] with the highest level of optimization
enabled in the GNU GCC compiler (-O3). The performance of this implementation is
measured on several desktop and embedded platform CPUs to reflect the applicability
of the proposed methods for a wide range of robots (Sect. 7.2.1).

The accuracy of the proposed continuous distance field is compared with the state-
of-the-art continuous GP-based approach by Le Gentil et al. [107]. The accuracy
measures for both the distance and gradient prediction are detailed in Sect. 7.2.2.
For the proposed collision probability calculation method, the improvement due to
the blending approach (Eq. (7.10)) is analyzed for different levels of noise in robot
position. Experiments are conducted using 2D (Sect. 7.2.3) and 3D (Sect. 7.2.4) point
clouds. For 3D, both simulated and real-world point clouds are used for evaluation.

7.2.1 Computational Performance
For this analysis, 100000 pairs of random ellipsoids are created by randomizing axis
lengths, positions, and rotations of 3D ellipsoids. Axis lengths and positions (in all
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directions) are sampled uniformly from the intervals [0.1, 0.5]m and [−10, 10]m, re-
spectively. Random rotation matrices are generated using the Haar distribution [170].
Time taken for ellipsoid pair data structure initialization, distance and gradient
computation, and collision probability calculation is measured. The initialization
procedure caches matrices B̂,ΛB,B

1/2,B−1/2, and B−1 for E1(b,B) (and the respec-
tive counterparts for E2(c,C)), as defined in Proposition 1. Distance and gradient
computation times correspond to calculating Eq. (7.4). For collision probability cal-
culation, Eq. (7.9) is used. The performance is measured on one desktop (Intel i9-
10900K) and three embedded platforms (NVIDIA Orin AGX, Orin NX, and Orin
Nano).

Mean and standard deviation statistics of elapsed time (in microseconds) are
reported in Table 7.1. It can be concluded that the time taken by all computers
in Table 7.1 is between 10 to 60 microseconds. The total time (last column) represents
the worst case where new ellipsoids are initialized every time the distance, gradient,
and collision probability are calculated. In practice, the ellipsoids are initialized and
updated using a few sensor observations; not for every distance or collision probability
computation. As expected, the computation time increases as the clock speed of the
CPU decreases.

Since real-world motion planning systems largely run on CPUs, these observations
indicate that the proposed methods may be beneficial for adapting many existing
motion planners towards leveraging GSMs as the environment representation. Fur-
thermore, since the proposed methods run efficiently on a CPU, the GPU can be
used for tasks like online high-fidelity RGB-D reconstruction. Note that fast fitting
of GSMs to point cloud data is an active area of research, with recent approaches
demonstrating high frame-rate operation on embedded computers like the NVIDIA
TX2 [111].

Time Taken (10−6s), single-threaded execution
Device (CPU) Init. Dist. + Grad. Coll. Prob. Total
i9 3.7GHz 9.0± 1.7 9.5± 2.0 2.2± 0.9 20.7± 3.0
AGX 2.2GHz 18.4± 1.1 17.3± 1.8 5.3± 0.6 41.0± 2.3
NX 2.0GHz 22.4± 4.2 22.9± 2.6 6.7± 0.8 52.0± 5.2
Nano 1.5GHz 24.5± 1.6 24.8± 2.7 7.0± 0.8 56.2± 3.4

Table 7.1: Mean and standard deviation of the time taken (in microseconds) to initialize
a pair of ellipsoids and estimate distance, gradient, and collision probability using single-
threaded execution on various CPUs.

7.2.2 Accuracy Measures
The accuracy in the distance field is measured (in meters) using the Root-Mean-
Squared-Error (RMSE) between the prediction and the ground truth. A lower RMSE
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indicates higher accuracy. For the gradient of the distance field, we use

1.0− RMSE(cos(Dp,Dg))

, where the cosine is computed at each corresponding point in the predicted (Dp) and
the ground truth vector field (Dg) [140, Eq. 15]. This score is referred to as the Cosine
Error Score (CES) in the following sections. A lower CES implies a better alignment
between the predicted and the ground truth gradient.

The ground truth distance between ellipsoid and point cloud is computed using
the point cloud distance between points densely sampled on the robot ellipsoid surface
and the surface point cloud. For 2D numerical experiments, the ground truth gradient
is calculated using the finite difference method on the ground truth distance field. For
3D experiments, the ground truth gradient vector is given by the surface normal at
the point in the surface point cloud that is closest to the robot point cloud.
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Figure 7.2: Two-dimensional numerical scenario used in Sect. 7.2.3. (a) The input point
cloud along with the representative position of the robot body model (green ellipse). (b)
The GMM of the point cloud.

7.2.3 2D Experiments
The experimental setup is shown in Fig. 7.2. A point cloud with 1000 points is
generated by uniformly sampling the boundary of a circular obstacle of radius 1.0m.
This point cloud represents a set of range measurements of the obstacle. The robot
body is given by an ellipsoid with semi-axes lengths (0.3, 0.1) meters and a rotation
by 45 degrees from the positive x-axis (Fig. 7.2a). The GMM shown in Fig. 7.2b
contains M = 40 components and it is generated from the point cloud using the
approach from [76].
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Distance (m)

(a) Ground truth EDF (b) [107] EDF (c) Proposed EDF

(d) Ground truth gradient (e) [107] gradient (f) Proposed gradient

Figure 7.3: Comparison of EDF and gradient accuracy for the 2D scenario in Fig. 7.2a.
Qualitative difference for EDF can be observed in (a), (b), and (c) and for the gradient
in (d), (e), and (f). This figure is best viewed in color.

Baseline [107] Proposed
l RMSE (m) ↓ CES ↓ σ M RMSE (m) ↓ CES ↓

0.5 0.073 0.003 0.1 40 0.007 0.003
0.4 0.080 0.003 0.2 19 0.030 0.009
0.3 0.093 0.003 0.3 14 0.055 0.017
0.2 0.103 0.003 0.4 12 0.072 0.018
0.1 0.111 0.003 0.5 7 0.186 0.044

Table 7.2: Quantitative analysis for errors in EDF and gradient at different hyperparameter
values. The best RMSE and CES values are bolded. The proposed method enables higher
EDF accuracy compared to the baseline.

The number of components M may vary with the bandwidth hyperparameter σ
in [76]; therefore, in quantitative results five different bandwidth values are considered.
The baseline approach [107] uses the raw point cloud in all cases but requires a

80



7.2 Results

0 5 10 15 20

Distance (m)

−10 0 10

−10

0

10

(a) [107] Numerical Instability

−10 0 10

−10

0

10

(b) Proposed EDF

Figure 7.4: Heatmaps for EDF far from the surface generated using the baseline (a) and
proposed (b) methods. The blank space at the edges in (a) shows the region where the EDF
is undefined. Contrary to the baseline, the proposed approach is numerically stable in large
workspaces.

hyperparameter called characteristic length l. It is stated in [107] that specifying this
parameter is an open area of research. Therefore, the RMSE and CES values are
computed for a set of σ and l parameters.

The center position of the robot body ellipsoid is varied on a 200 × 200 uniform
grid in a workspace with extents [−2.0, 2.0] meters in both x and y directions. At
each robot position the Euclidean distance and its gradient from the surface point
cloud are measured, resulting in EDFs and gradient vector fields in the 2D workspace
for the ground truth, baseline, and proposed methods (Fig. 7.3).

Qualitatively, the distance isocontours appear rotated by 45 degrees in the ground
truth EDF (Fig. 7.3a) because of the ellipsoid’s fixed orientation. The baseline ap-
proach implicitly assumes a circular robot body of radius equal to the semi-major
axis length of the ellipsoid (0.3m). This results in a conservative EDF estimate
(Fig. 7.3b) relative to the ground truth. However, the proposed approach (using
the GMM in Fig. 7.2b) accounts for the ellipsoid robot model explicitly, resulting
in a relatively accurate EDF (Fig. 7.3c). Notably, this EDF accuracy improvement
is achieved while maintaining a similar level of accuracy in the gradient of EDF (see
the arrows in Figs. 7.3d–7.3f).

The quantitative results are summarized in Table 7.2. In the baseline case, for
decreasing l the EDF accuracy increases but the gradient accuracy is observed to be
constant. For the proposed method, the EDF and gradient accuracy increases with
decreasing σ. The best performing case for the proposed method enables about 10×
more accurate EDF prediction than the best performing baseline while achieving the
same gradient accuracy. If a higher σ is used, the EDF estimates remain conservative
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p = 0.01 (b) Unblended, σ2

p = 0.04

(c) Blended, σ2
p = 0.01 (d) Blended, σ2
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Figure 7.5: Heatmaps for collision probabilities computed using the proposed approach at
different noise levels. The blue circle is the obstacle surface from Fig. 7.2a. From (a) to
(b) and from (c) to (d) the noise increases and so do the collision probabilities (larger red
regions in (b) and (d)). The dashed orange lines are isocontours at 15% collision probability.
In the blended case the isocontour lines are smoother compared to the unblended approach.
This figure is best viewed in color.

so the robot still remains safe.
Figure 7.4 provides a comparison of the numerical stability during EDF computa-

tion far from the surface. The baseline approach requires a logarithm computation of
an occupancy value that gets close to zero as the distance from the surface increases.
Therefore, at a certain distance the estimates are invalid as log(0)→ −∞. In Fig. 7.4a,
this effect can be seen in the blank areas nearly 10m away from the surface where the
EDF is not defined. In contrast, the proposed approach can estimate distance every-
where in the workspace as it depends on the distance between ellipsoids (Fig. 7.4b).

Let the center of the robot ellipsoid be Gaussian-distributed with the spherical
covariance σ2

pI2, where In denotes the identity matrix of order n. The unblended
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(a) Point Cloud

(b) Ground Truth

(c) Baseline [107] EDF (d) Proposed EDF

Figure 7.6: Heatmaps for (b) ground truth, (c) baseline [107], and (d) proposed EDFs
generated using the real-world 3D point cloud shown in (a). Note the difference in baseline
and proposed EDFs relative to the ground truth in the dashed white regions. The dark
blue regions are bigger in the baseline demonstrating conservative EDF estimation due
to an implicit spherical robot body assumption. The proposed approach accounts for the
ellipsoidal robot body while enabling continuous-space queries. This figure is best viewed in
color.

and blended collision probabilities for σ2
p = 0.01 and 0.04 along with isocontours for

probability level 0.15 are shown in Fig. 7.5. It is observed that for increasing levels of
noise there is an overall increase in collision probabilities and the blending approach
yields a smoother collision probability field. Both observations imply that the blended
collision probability calculation method may be used for continuous-space queries in
uncertainty-aware motion planning frameworks [212, 115].
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(a) Point Cloud
(b) Ground Truth

(c) Baseline [107] EDF (d) Proposed EDF

Figure 7.7: Heatmaps for (b) ground truth, (c) baseline [107], and (d) proposed EDFs
generated using the real-world 3D point cloud shown in (a). Note the difference in baseline
and proposed EDFs relative to the ground truth in the dashed white regions. The dark
blue regions are bigger in the baseline demonstrating conservative EDF estimation due
to an implicit spherical robot body assumption. The proposed approach accounts for the
ellipsoidal robot body while enabling continuous-space queries. This figure is best viewed in
color.

7.2.4 3D Experiments
Three point clouds are used in 3D experiments: a simulated point cloud from the
Living Room dataset [36], a real-world point cloud from the Lounge dataset [210],
and a real-world point cloud from the Copyroom dataset [210]. The point clouds are
constructed using two 320 × 240 RGB-D frames from each dataset (see Figs. 1.3a,
7.6a and 7.7a). The accuracy of EDF and its gradient is studied for 2D uniform grid
(200× 200) slices of these environments, as done in prior work [196, 107]. The robot
is a 3D ellipsoid with semi-axis lengths (0.15, 0.15, 0.07) and it is rotated about the z-
axis by 45 degrees. Figures 1.3c and 1.3d show EDF and collision probability outputs
for the proposed approach on the simulated point cloud.

Figures 7.6 and 7.7 show qualitative comparison of the EDF obtained from dif-
ferent methods for the real point clouds. We observe the same outcome as in the
2D experiments; the proposed approach is relatively accurate because it accounts for
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Figure 7.8: Distance field estimation error heatmaps for the baseline and proposed
approaches. The proposed approach enables a lower estimation error compared to the
baseline.

the ellipsoidal robot body explicitly. For a better visualization of the difference in
errors incurred by the two methods, Fig. 7.8 contains error heatmaps for the EDFs
in Figs. 7.6 and 7.7.

For different values of hyperparameters the quantitative comparison of EDFs and
gradient is summarized in Table 7.3. The range of hyperparameter l for the baseline
approach is chosen by grid search to avoid numerical instability (Fig. 7.4). For σ, the
range of values are based on the results in [76]. It is observed that for both simulated
and real-world cases, the proposed approach enables relatively accurate EDFs at all
hyperparameter levels while providing a comparable gradient accuracy.

Lastly, for collision probabilities, the experiment from the 2D evaluation (Fig. 7.5)
is conducted for the given 3D point clouds (Fig. 7.9). A spherical covariance of σ2

pI3
is used for the robot position uncertainty. As expected, for both simulated and real-
world point clouds the collision probabilities decrease as the distance from the surfaces
increases. Moreover, it is observed that in the occluded regions (i.e., regions behind
the surface when viewed along the green arrows in Fig. 7.9) the blended approach does
not provide reliable estimates. This is because the dot product between the surface
normals and distance vectors is negative. It is reasonable to expect the estimates
in the occluded regions to be degraded until the occluded regions are observed. The
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(a) Unblend., Sim., σ2
p = 0.01 (b) Unblend., Real, σ2

p = 0.04 (c) Unblend., Real, σ2
p = 0.04
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Figure 7.9: Unblended and blended collision probability fields over 2D slices of 3D simulated
and real-world point clouds. More noise in robot position is added to the real-world cases to
simulated the effect of higher position uncertainty during real-world deployments. Dashed
lines show 10% probability isocontours. Green arrows show the directions of camera frustums
from which the surface point cloud data is collected. The blending approach produces
smoother collision probability estimates while ignoring occluded regions. This figure is best
viewed in color.

unblended approach provides estimates without this consideration which may be risky
during navigation. The blending approach results in smoother probability isocontour
lines (lower noise in dashed orange lines) in the visible of the 3D experiments, also,
making the approach valuable for continuous-space queries in future 3D uncertainty-
aware motion planning frameworks.

7.3 Summary
This chapter detailed collision probability, Euclidean distance and gradient estimation
for an ellipsoidal robot from a surface that is represented as a set of ellipsoids derived
from Gaussian distributions. Prior work in ellipsoid-to-ellipsoid distance estimation
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Simulated Lounge Copyroom
Approach RMSE ↓ CES ↓ RMSE ↓ CES ↓ RMSE ↓ CES ↓
[107] (0.1) 0.054 0.166 0.039 0.258 0.056 0.277
[107] (0.2) 0.084 0.168 0.061 0.258 0.075 0.278
[107] (0.3) 0.119 0.173 0.098 0.258 0.100 0.283
[107] (0.4) 0.145 0.171 0.132 0.257 0.129 0.290
Ours (0.02) 0.042 0.159 0.023 0.263 0.046 0.289
Ours (0.03) 0.038 0.164 0.042 0.263 0.058 0.295
Ours (0.04) 0.068 0.181 0.038 0.267 0.057 0.305
Ours (0.05) 0.085 0.191 0.054 0.267 0.062 0.296

Table 7.3: Quantitative results using simulated and real 3D point clouds at different
hyperparameter settings for the baseline and proposed methods. The best RMSE and CES
values for each dataset are bolded.

was extended to compute distance and gradient in the proposed context. A geomet-
rical blending approach ensured that the estimated collision probabilities are smooth
so that they can be used for uncertainty-aware motion planning. These methods
were validated using 2D and 3D real-world point cloud environments, demonstrating
superior performance (as much as 10× in the 2D case) compared to the state-of-the-
art continuous space method.

There are two key limitations of this work. First, the computation in Eq. (7.6)
may require additional local submap extraction or spatial partitioning data structures
to enable scalability as M increases. A concurrent or vectorized implementation of
the eigenvalue problems in Proposition 1 may further improve performance. Second,
estimation in the orientation space (formally, in the special orthogonal group SO(2) or
SO(3)) is not explicitly considered in this work which may be an interesting direction
for future research.

These algorithms and methods address the challenge C4 towards the thesis ob-
jectives.
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8CHAPTER

Active Multi-Robot
Reconstruction using GMMs

This chapter details results from real-world experiments through single- and multi-
robot field deployments equipped with motion primitives-based planning and GMM-
based mapping. These evaluations are carried out to test the planning and mapping
approaches from previous chapters with respect to communication efficiency.

For the single-robot deployment (Sect. 8.1), the motion primitives-based planner
from Chapter 4 is employed with MCTS being restricted to only one level (i.e., a
single-stage approach) to further reduce the computational requirements. The GMM-
based point cloud modeling technique from prior work (Sect. 3.2, [180]) is used for
mapping. The reconstruction performance, reconstruction accuracy, and communication-
efficiency are compared with an occupancy grid mapping approach through real-world
experiments in two caves.

For the multi-robot deployment (Sect. 8.2), the motion primitives-based planner
from the single-robot deployment is extended to the multi-robot case through an inter-
robot collision avoidance strategy. A distributed GMM-based mapping methodology
is developed leveraging the insights in communication-efficiency from the single-
robot deployment. The maximum speeds attained by the robots is characterized
and the communication-efficiency of the two-robot team is compared with discretized
approaches through experimentation in a wild cave in West Virginia, USA.

For all the deployments in this chapter a monocular visual-inertial navigation sys-
tem is used to provide state estimates for precise control. Multirotor aerial platforms
are utilized for all experiments. A summary of this chapter is provided in Sect. 8.3.

8.1 Single-Robot Deployment
The single-robot system (Fig. 8.1) is deployed in total darkness at Laurel Caverns1

(Sect. 8.1.1), a commercially operated cave system in Southwestern Pennsylvania con-
1http://laurelcaverns.com/
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Figure 8.1: Overview of the autonomous reconstruction system presented in this
chapter. Using pose estimates from a visual-inertial navigation system and depth camera
observations, the mapping method builds a memory-efficient approximate continuous belief
representation of the environment while creating local occupancy grid maps in real-time.
A motion primitives-based information-theoretic planner uses this local occupancy map
to generate snap-continuous forward-arc motion primitive trajectories that maximize the
information gain over time.

sisting of over four miles of passages24 and a wild cave in West Virginia5 (Sect. 8.1.2).

8.1.1 Laurel Caverns
Figure 8.2a illustrates a composite image from several still images of the robot
exploring the Laurel Caverns Dining Room. Two experiments were conducted, one

2The authors acknowledge that caves are fragile environments formed over the course of tens of
thousands to millions of years. Laurel Caverns was chosen as a test site because it has relatively
few speleothems3due to its sandstone overburden and the high silica content of the Loyalhanna
limestone [143]. The authors worked with cave management to select a test site that contained low
speleothem growth to minimize risk of damage to the cave. Cave management monitored all flights.
No flights were executed near delicate formations.

3Speleothems are mineral formations found in limestone caves (e.g., stalagmites, stalagtites,
and flowstone) that are composed of calcium carbonate, precipitated from groundwater that has
percolated through adjacent carbonate host rock [20].

4Bat populations in the northeastern U.S. have been decimated with the onset of White-nose
Syndrome in the winter of 2007-2008 [67]. Great care was taken not to disturb bats with the aerial
systems during the hibernating season.

5The region of the cave where flight experiments were conducted contained speleothems that
have ceased growing. Speleothems growth may terminate due to geologic, hydrologic, chemical, or
climatic factors that cause water percolation to cease at a particular drip site [20]. The authors
worked with cave management to select a test site that had neither actively growing speleothems or
bats.
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(a)

(b)

Figure 8.2: (a) A single aerial system explores the Dining Room of Laurel Caverns in
Southwestern Pennsylvania. Still images of the robot exploring the environment are super-
imposed to produce this figure. (b) The aerial system with dimensions 0.25m × 0.41m ×
0.37m including propellers carries a forward-facing Intel Realsense D435 for mapping and
downward-facing global shutter MV Bluefox2 camera (not shown). The pearl reflective
markers are used for testing in a motion capture arena but are not used during field
operations to obtain hardware results. Instead, a tightly-coupled visual-inertial odometry
framework is used to estimate state during testing at Laurel Caverns.

for each of the MCG and OG approaches for a 95 s duration. The map entropy
reduction over time is shown in Fig. 8.3c and is similar for both approaches, while
the cumulative data transferred (Fig. 8.3d) to represent the maps is more than an
order of magnitude lower for the MCG approach as compared to the OG approach.
Note, however, that the communication reported for this experiment represents the
theoretical, or estimated, communications needed to transmit the data. The data was
not transmitted to a base station. The data transfer rate in Fig. 8.3e is calculated
using Euler differentiation but note that the accuracy is affected by the limited
number of samples. During hardware trials, a bounding box was used to constrain the
reconstruction volume. To put the localization accuracy into perspective, the drift in
position is about 0.53m during a 50.9m cave flight and the rotation drift is about
0.32 rad over 33.5 rad which is about a 1% drift in both translation and rotation.
Position drift may be approximated as the difference between the initial and final
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Figure 8.3: reconstruction statistics from the experiments at Laurel Caverns. (a) illustrates
the reconstruction error of the resampled GMM map as compared to the FARO map by
calculating point-to-point distances. The distribution of distances is shown on the right-hand
side. The mean error is 0.14m with a standard deviation of 0.11m. In particular, there is
misalignment in the roof due to pose estimation drift. (b) A subset of the resampled GMM
map (shown in black) is overlaid onto the FARO map (shown in colors ranging from red
to purple) that displays the breakdown in the middle of the Dining Room. (c) The entropy
reduction and (d) cumulative data transferred for one trial for each of the Monte Carlo
GMM mapping and OG mapping approaches are shown. The communication is a theoretical
calculation – not actual transmitted data. While the map entropy reduction for each
approach is approximately similar, the GMM mapping approach transmits significantly less
memory than the OG mapping approach (0.1MB as compared to 7.5MB). (e) illustrates the
bit rate for each approach in a semi-logarithmic plot where the vertical axis is logarithmic.
The black line illustrates how the approaches compare to 16kbps. For comparison, 16kbps
is sufficient to transmit a low resolution (176 × 144 at 5 fps compressed to 3200 bit/frame)
talking heads video [40, 120].
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position estimates because the robot takes off and lands at the same location.

8.1.2 West Virginia Cave
Figure 8.4a illustrates the map entropy reduction over time with a maximum duration
of 150 s. The MCG and OG approaches perform similarly in these trials. The actual
data transferred between the robot and base station is shown in Fig. 8.4b. Figure 8.4c
is a composite image from several still images of the robot exploring the cave. A
video of one reconstruction run may be found at the following link: https://youtu.
be/H8MdtJ5VhyU. In these experiments a bounding box was used to constrain the
reconstruction volume. The drift in position is about 1.28m during the 82.6m flight
and rotation drift is about 0.55 rad over 41.8 rad which is about a 1.5% drift in position
and 1.3% drift in rotation.

8.2 Multi-Robot Deployment

8.2.1 Approach
An overview of the system is shown in Fig. 8.5. Each robot is equipped with single-
robot reconstruction and inter-robot communication modules. The reconstruction
module consists of four major subsystems: GMM mapping, information-theoretic
motion planning, visual-inertial state estimation, and trajectory tracking. The inter-
robot communication module enables sharing information between robots or other
computers on the network. The GMM mapping and planning subsystems together
with the communication module constitute distributed mapping (Sect. 8.2.2) and
multi-robot planning (Sect. 8.2.3), respectively. In this section, the following math-
ematical notation is used: lower-case letters represent scalar values, lower-case bold
letters represent vectors, upper-case bold letters represent matrices, and script letters
represent sets.

8.2.2 GMM-based Distributed Mapping
This section details the distributed mapping approach to share environment models
between robots. Consider a team of N robots. At timestep t robot i ∈ N receives the
depth sensor observation, Z i

t , which represents a set of points. A Gaussian mixture
model (GMM) is learned from these points following the approach from [180]. The
GMM is parameterized by Θ = {πm,µm,Σm}Mm=1 where µm ∈ R3 is a mean, Σm ∈
R3×3 is a covariance, and πm ∈ R is a weight such that

∑M
m=1 πm = 1. A GMM

representing point set Z i
t is denoted as G.

Keyframe GMMs. To reduce redundant observations, keyframe GMMs are
identified for transmission to other robots. A keyframe GMM, Θ̂Zi

t
, is determined

by approximating the field of view for the current sensor observation as a rectangular
pyramid and calculating the overlapping volume with other keyframe fields of view.
If the volume is smaller than a user-defined threshold, λ, the sensor observation is
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Figure 8.4: Overview of the results from experiments in a cave in West Virginia. (a) The
map entropy over time for three trials of the MCG and OG approaches. (b) The data
transferred between a robot and base station for each trial. The communication reported
is actual transmitted data over UDP to a base station. Note that while the reconstruction
performance is similar for both approaches, the data transferred for the MCG approach
is substantially less. (c) A composite image of one reconstruction trial composed of still
images.

considered to be a keyframe. Θ̂Zi
t

and the sensor pose, Si
t ∈ SE(3), are transmitted

to the other robots or computers on the network.
Each robot maintains its own environment representation and relative initial

transforms between robots are assumed to be known. When robot j receives Θ̂Zi
t
,

it is received in the frame of robot i. To transform it into the frame of robot j, the
relative initial rotation Rji

0 ∈ R3×3 and translation Tji
0 ∈ R3 parameters are applied
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Figure 8.5: (a) Overview of the rapid multi-robot reconstruction framework and (b) aerial
systems used in experiments in this work.

(a) (b) (c)

Figure 8.6: Overview of the distributed mapping approach. (a) Robot i shown in red, takes
a sensor observation shown in colors varying from red to purple and (b) learns a GMM
(shown in red). If the GMM is determined to be a keyframe both the GMM and sensor
pose are transmitted to robot j (shown in green). (c) The GMM and the sensor pose are
transformed into the frame of robot j and used to update the occupancy.

to the means and covariances of the distribution using the following equations.

µj = Rji
0 µ

i + Tji
0 Σj = Rji

0 Σ
i(Rji

0 )
T , (8.1)

The transformed GMM is incorporated into robot j’s existing GMM map following
the approach from [180].

Occupancy Reconstruction. A local occupancy grid map mi
t is maintained

and centered around the robot’s current position Ti
t for use in information-theoretic

motion planning. To generate mi
t, a number of points x ∈ R3 equal to the support
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size, or number of points used to learn the distribution, is sampled and raytraced to
the sensor pose Ti

t. The probability of occupancy along the ray is updated.
Multi-robot Map Updates. Care must be taken to update mj

t when receiving
Θ̂Zi

t
. In addition to applying the transformation parameters so that Θ̂Zi

t
is transformed

into the frame of robot j, mj
t must also be updated by sampling points from the

transformed Θ̂Zi
t

and raytracing through mj
t to the sensor pose, Si

t, which must also
be transformed into the frame of robot j. This ensures the occupancy is updated with
observations from both robots. A visualization of this is shown in Fig. 8.6. Robot i
takes a sensor observation (Fig. 8.6a) and learns Θ̂Zi

t
(Fig. 8.6b). This keyframe GMM

is transmitted to robot j, transformed into the frame of robot j, and then used to
update mj

t (Fig. 8.6c).

8.2.3 Planning for Rapid Multi-Robot reconstruction
Robot i uses mi

t for information-theoretic receding-horizon planning via the strategy
presented in [73], which accounts for perception latencies and kinodynamic constraints
of the robot. The approach uses Monte Carlo tree search (MCTS) [31] to evaluate
the Cauchy-Schwarz Quadratic Mutual Information (CSQMI) [30] for a set of motion
primitives over a user-specified time horizon. An informative primitive sequence is
selected that maximizes the CSQMI over the MCTS tree. Safety is ensured by checking
for collisions with the environment.

The informative trajectories are shared with other robots and inter-robot collision
avoidance is enabled through a standard priority-based collision checker assuming a
cylindrical robot model [24]. The priorities are assigned manually before the recon-
struction run and remain constant throughout. To reduce the computational com-
plexity for lower priority robots, three optimizations are applied. First, the collision
checking is only active when a pair of robots are within a pre-specified radius. To
enable this on each robot without assuming a centralized oracle, the robots share
odometry information at a sufficiently high rate (10Hz) compared to the planning
frequency (1Hz). Second, the number of cylinders sampled over the planned trajectory
is limited to a pre-specified maximum to cap the number of cylinder-cylinder collision
checks. This maximum value and the associated cylinder collision radius are selected
conservatively based on the length of the motion primitive assuming the robot starts
at hover and achieves a top speed at the endpoint. Third, for each robot the collision
checks are performed only with the candidate motion primitive and the associated
stopping motion primitive at the first depth of the MCTS tree because each depth of
the tree is of a sufficiently long duration (2 s) as compared to the planning time (1 s).

8.2.4 Multi-Robot Experiments and Results
The experimental evaluation is motivated through a concept of operations for a
multi-robot reconstruction mission in a Martian cave. Two robotic systems explore a
Martian cave, transmit their maps to a surface station, which serves as a relay to an
orbiter, and the orbiter transmits the data to operators on Earth. Three evaluations
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are conducted to quantify the system performance through this concept of operations:
first, the perceptual fidelity and memory usage of the map is compared to state-
of-the-art approaches in a representative cave environment (Sect. 8.2.5); second, a
hardware experiment is demonstrated with two rapidly exploring aerial systems and
the communication requirement for each mapping approach is compared (Sect. 8.2.6);
and third, a simulation study is conducted to study the effects of the bandwidth
constraints on reconstruction performance (Sect. 8.2.7).

To correctly analyze the performance of the simulation study, the bottleneck in
data transmission rate is identified and bounds on the rates are determined. In this
scenario, data is transferred between the subterranean robot and surface station6,
surface station to orbiter7, and orbiter to Earth8. The bottleneck in communication
is between the subterranean robot and surface station when the robot is transmitting
at depths between 20–25m below ground, so the results in Sect. 8.2.7 are presented
for the rates 0.1–0.25Mbit/s, which are in line with data transmission rates at these
depths. Throughout this section the shorthand OG is used to refer to the occupancy
grid mapping approach [63] while OM refers to OctoMap [88].

8.2.5 Perceptual Detail Evaluation
The first evaluation compares the perceptual fidelity of different environment rep-
resentations in the context of memory usage. An RGB image and point cloud of a
crevice in the cave are shown in Figs. 8.7a and 8.7b respectively. It is not clear from
the image and depth information if the passage continues or there is a lack of data
due to insufficient accuracy in the sensor observation. In either case, additional views
are required to determine the exact nature of the passage. Figure 8.7g demonstrates
that as the resolution of the OG and OM approaches increases, the memory demands
also substantially increase. By comparison, the GMM approach requires substantially
less memory. When using the GMM approach, the resulting resampled point cloud is
shown in Fig. 8.7c, where a hole in the data is visible. This approach is compared to
OM with varying leaf sizes in Figs. 8.7d–8.7f.

To obtain these results, a GMM was learned consisting of 100 components. Each
component requires 10 floating point numbers which includes six floating point num-
bers to represent the symmetric covariance, three floating point numbers for the mean,
and one floating point number to represent the mixing weight. Additional memory was
used to represent the pose via six floating point numbers (three each for translation
and rotation) where each floating point number is assumed to be four bytes. A 32-bit

6Whittaker et al. [191] suggest the use of either very low frequency (VLF) radios or magneto-
inductive (MI) links to achieve limited data rate through thick layers of rock. The MI links in
particular can provide approximately 20-25m dry soil penetration at channel capacity ranging from
0.1-0.25Mbit/s when using small antennas (coils) [101]. In the results presented in Sect. 8.2.7, it is
assumed that the robots could be equipped with these MI links.

7Orbiters can communicate at approximately 0.208-0.521Mbit/s with a surface station for 8
minutes per sol, or Martian day [132].

8To transmit from the orbiter to Earth, the communication rate depends on which orbiter is
above the lander to relay the data to Earth. The simulation study in Sect. 8.2.7 assumes the lowest
data rate from the Mars Odyssey orbiter, which ranges from 0.128-0.256Mbit/s [132].
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(a) RGB Image (b) Point Cloud (c) Resampled GMM

(d) OM (0.025m) (e) OM (0.05m) (f) OM (0.1m)

0.025m 0.05m 0.1m
(bytes) (bytes) (bytes) (bytes)
GMM Occupancy Grid (OG)
4028 1.3× 106 1.8× 105 2.7× 104

GMM OctoMap (OM)
4028 2.2× 105 5.8× 104 1.4× 104

(g) Memory

Figure 8.7: Fidelity and memory usage evaluation of several mapping approaches. (a) and
(b) illustrate data from a representative environment the robot may encounter in the cave.
A potential passage is circled in cyan. (g) highlights significant reduction in memory usage
required by the GMM approach as compared to the OG and OM approaches. (c) Resampled
points from the GMM are shown in red. (d)–(f) illustrate the OctoMap representation with
leaf sizes varying from 0.025m to 0.1m. Leaf voxels are shown in red and larger voxels in
yellow.

unsigned integer (four bytes) is also used to represent the support size of the GMM.
In the OG case, one floating point number is used to store the logodds value and
one unsigned integer (four bytes) is used to represent the index for each voxel in the
change set. The total change set of N voxels is transmitted along with meta-data to
reconstruct the grid. The meta-data consists of three unsigned integers to represent
the dimensions of the grid in width, height, and length as well as three floating point
numbers to represent the origin for a total of 24 bytes. The total data required to
represent the sensor observation with an OG is 8N + 24 bytes. For OM, the full
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probabilistic model is serialized and stored to disk. The size of the file is reported
in the table. The motivation for retaining the logodds values in the OG and OM
representations is to enable information-theoretic planning.

(a) Robots (circled) deployed in a cave. Communication router shown via dotted line.

(b) Combined GMM map (c) Resampled points from the GMM map
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Figure 8.8: Rapid and communication efficient reconstruction of a cave with a team of
two aerial robots. (a) illustrates the environment with the two robots (R1 and R2) and
the WiFi router used for communication. (b) illustrates the final GMM maps generated on
the base-station. (d) shows the percentage density plots for linear speeds and yaw rates as
measured by the visual-inertial navigation system during flight. A video of the flight can be
accessed here: https://youtu.be/osko8EKKZUM.

The advantage of the GMM approach is that the probability of occupancy can be
reconstructed at an arbitrary voxel resolution [179, 138], which significantly reduces
the memory requirements as compared to the OG and OM approaches. The OG
and OM approaches must retain the probability of occupancy to enable information-
theoretic reconstruction [30, 207].
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Table 8.1: This figure highlights that the GMM approach requires significantly less memory
to represent the combined map as compared to state-of-the-art approaches. In the context of
transmitting this data using a channel with capacity 0.25Mbit/s, it would take significantly
less time for the GMM approach as compared to the other approaches.

Completion %: 45% 65% 85%
Map Size Time Map Size Time Map Size Time

Case (Mbit) (hours) (Mbit) (hours) (Mbit) (hours)
GMM 0.7× 101 8.0× 10−3 1.4× 101 1.6× 10−2 1.9× 101 2.2× 10−2

OG (0.1 m) 9.2× 101 1.0× 10−1 1.57× 102 1.7× 10−1 2.0× 102 2.3× 10−1

OG (0.05 m) 5.4× 102 6.0× 10−1 9.1× 102 0.1× 101 1.2× 103 0.1× 101

OG (0.025 m) 3.9× 103 0.4× 101 6.7× 103 0.7× 101 8.9× 103 0.9× 101

OM (0.1 m) 2.4× 102 2.6× 10−1 3.9× 102 4.4× 10−1 5.2× 102 5.8× 10−1

OM (0.05 m) 1.6× 103 0.2× 101 2.6× 103 0.3× 101 3.4× 103 0.4× 101

OM (0.025 m) 9.8× 103 1.1× 101 1.6× 104 1.8× 101 2.1× 104 2.4× 101

8.2.6 West Virginia Cave
The second evaluation consists of hardware experiments for two aerial systems explor-
ing the cave. The experiment demonstrates (1) each robot generates informative plans
with linear speeds up to 2.37m/s and yaw rates up to 0.6 rad/s while maintaining
safety and (2) the communication required to transmit the map from robots to a
base station is substantially less as compared to the OG and OM approaches. For the
purposes of this experiment, the robots are deployed in disjoint bounding boxes and
the coordination between robots is not studied. What follows is a description of the
experimental setup (including the implementation details) and results.

Each robot in the multi-robot system employs the navigation and control tech-
nique outlined in prior work [180]. The robots communicate with other computers
on the network via WiFi and use the User Datagram Protocol (UDP) to transfer
packets over the network. Before the start of each experiment, the SE(3) transform
between the takeoff positions of the robots is measured manually using the navigation
approach. The relative initial transform is used by the distributed mapping subsystem
to align the GMM map fragments in the frames of other robots to the current robot’s
local frame.

The maximum speed9 of the robots in the xy-plane is 2.0m/s, the maximum speed
towards unknown space is 1.0m/s, the maximum z-direction speed is 0.25m/s, and
the maximum yaw rate is constrained to 0.5 rad/s. One of the metrics used to assess
the planning performance is quantifying the maximum speed and yaw rate achieved
by the robot while ensuring collision free operation. Both linear and yawing motions
are exploratory actions for an aerial robot equipped with a limited field of view depth

9The speed limits and the operational volumes were chosen based on the cave passage dimensions.
The authors worked with cave management to select a test site that contained neither actively
growing speleothems or bats. Possible effects of imperfect trajectory tracking and state estimation
were also taken into account.
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sensor [73, 180]. The data transmitted from the robots to the base station is used
to quantify the success of the mapping approach. The GMM results of Fig. 8.8 are
generated in flight during an actual trial in the cave. To enable a fair comparison,
the depth images collected from the GMM reconstruction trial in the cave are post-
processed using the OG and OM approaches. This ensures that variation in the other
subsystems does not unduly affect the results. An analysis to quantify the memory
required for each approach similar to Sect. 8.2.5 is presented. The OG and OM results
are generated by updating the map using the depth information for the current image
and publishing the change set. For the OM approach, the change set is serialized to
file as the full probabilistic model to enable the base station and other robot to exactly
recreate the map for information-theoretic reconstruction.

The two deployed robots are denoted by R1 and R2 in Fig. 8.8. The robots
achieve high reconstruction rates by selecting actions that enable safe operation at
linear speeds up to 2.37m/s and yaw rates up to 0.6 rad/s, which are of the same
order as state-of-the-art fast reconstruction works10 [73, 49, 46]. Moreover, note that
since R1 operates in a relatively open space compared to R2, a larger percentage of
high speed actions are selected (Fig. 8.8d). In contrast, the planner selects the yawing
motion and slow linear actions towards frontiers more often for R2 to allow for safe
operation in a constrained space (Fig. 8.8d). Both of these behaviors in the multi-robot
system arise automatically due to the choice of the action representation for single-
robot planning in [73]. These behaviors show that the same action representation can
be used on every robot in the team without any change in parameters and still allow
for intelligent speed adaptation for rapid and safe reconstruction.

The combined map from R1 and R2 requires significantly less time to transmit un-
der the bandwidth constraint when measuring at various points during reconstruction
(Table 8.1). An implication of this in the context of the concept of operations is that
at 100% reconstruction completion it will take about 104.40 seconds to transmit the
GMM map, 12.30 hours to transmit the 0.025m resolution OG map, and 1.25 days to
transmit the 0.025m resolution OM map to Earth. It is important to note why the OM
approach requires more memory than the OG approach for this result while it required
less memory than the OG approach in Fig. 8.7g. The change set must be encoded
as an OctoMap before serializing to file. The approach presented by Hornung et al.
[88] requires that the spatial relationships between nodes be implicitly stored in the
encoding. This means that the serialized stream does not contain any 3D coordinates
and additional data must be stored to preserve the structure of the octree. This is in
contrast to the OG approach that stores a logodds value and index from which 3D
coordinates can be recovered. Therefore, for small change sets, the OM approach has
much higher overhead than the OG approach.
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Completion %: 45% 65% 85%
GMM OG ∆ GMM OG ∆ GMM OG ∆

Comm. Limit (s) (s) (%) (s) (s) (%) (s) (s) (%)
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(g) reconstruction completion times

Figure 8.9: Variation of reconstruction performance with inter-robot communication
limits. (a) to (f) plot the cumulative map data sent and received for the GMM and
OG approaches under different data rate constraints for the two robots. The received
data is impacted significantly for the OG approach at 0.25Mbit/s while both approaches
are affected at 0.1Mbit/s. Note that in all experiments the planning and coordination
methodology is kept the same for a fair comparison. (g) compares the time to achieve a
certain percentage of environment coverage. We observe that at the 0.25Mbit/s constraint,
the GMM approach improves the performance of the team by up to 23.84%.

8.2.7 Effects of Constrained Communication
For this study the assumption on the robots operating in disjoint spaces is relaxed
and a priority-based inter-robot collision checker is implemented for shared space
operation. The simulation consists of a two-robot team that explores the cave environ-

10The attained speeds exceed the limits slightly due to imperfect trajectory tracking and state
estimation.
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ment. Two approaches are tested: GMM and OG. The OM approach is not compared
for this experiment because to the best of our knowledge there is no existing open-
source implementation of the Shannon mutual information used for planning by Zhang
et al. [207]. Further, this enables us to retain the same planning subsystem for a fair
comparison of the GMM and OG approaches. The communication rate is varied
among 0.1Mbit/s, 0.25Mbit/s, and unconstrained. Each configuration is tested in 40
experiments with a 700 s duration. The duration of the reconstruction is chosen based
on the top speed of the robots and the spatial dimensions of the environment. The
reconstruction software is run on separate computers in a distributed fashion over a
wired connection. The simulations are run on two desktop computers running Ubuntu
18.04 with Intel i7-6700K CPUs. One computer has 32GB RAM and the other has
16GB of RAM. For the wired connection, the data rate is limited via the network
traffic control tool in Linux that uses the Token Bucket Filter (TBF) to maintain the
specified rate value [89]. Figure 8.9 illustrates the results from the simulation study.
As the communication bandwidth is reduced from no limit in Fig. 8.9a to 0.25Mbit/s
the OG approach begins to drop packets and the reconstruction performance of the
multi-robot approach decreases as compared to the GMM approach (see Fig. 8.9g).
At this rate, the GMM approach achieves 85% environment coverage in less than
80% of the time that it takes the OG approach. However, as the communication rate
decreases further to 0.1Mbit/s the GMM approach also suffers though it is able to
outperform the OG approach.

8.3 Summary
This chapter presented field deployment results towards gains in communication-
efficiency due to GMM-based mapping with fixed number of components. We demon-
strate up to 100x improvements over discretized techniques like occupancy grid map-
ping and OctoMap while achieving a higher fidelity in reconstruction.

This chapter addresses the challenge C5 towards the thesis objectives.
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9CHAPTER

Conclusion and Future Work
This thesis hypothesizes that:

Using Gaussian mixture models as the map representation yields high-fidelity
maps, communication-efficient map sharing, and safe informative planning via
motion primitives during active reconstruction with multiple robots.

The key contributions of this thesis are summarized in Section 9.1 and several
directions for future research are presented in Section 9.2.

9.1 Summary of Contributions
In Chapter 4, we created a motion primitives-based planner for active reconstruction
for a quadcopter vehicle equipped with an RGB-D camera. This planner is anytime
(i.e., it can pick suboptimal plans at any rate requested by the controller) and safe
(i.e., the actions are always within the actuator constraints). The design of motion
primitives library is informed by the common actions a robot fixed with a limited
field-of-view sensor needs to take during reconstruction. The quadcopter was able to
fly rapidly in the environment and capture a depth map in real-time.

In Chapter 5, we extended the work from Chapter 4 by making the maximum
speed of the motion primitive library adapt with the resolution of the local map.
The main benefit of this method is in navigating tight spaces in presence of varying
amount of clutter. The robot automatically slows down and speeds up depending
on the collision risk associated with the environment. Real world tests demonstrate
that the proposed approach enables navigating through gaps in the environment that
would otherwise not be visible if a fixed resolution planning approach was used.

In Chapter 6, the Self-Organizing Gaussian mixture modeling (SOGMM) ap-
proach was introduced. Instead of guessing the number of components based on prior
heuristics (e.g., AIC, BIC), this work used a information-theoretic learning approach
called the principle of relevant information to guess the number of components ac-
cording to the complexity of range and intensity data. The resulting method provides
higher-fidelity reconstruction at a much lower map size compared to Octomap [88]
and Nvblox [128] approaches.

In Chapter 7, methods to estimate distance, distance gradient, and collision prob-
ability of an ellipsoidal robot from the SOGMM were presented. Compared to the
dense occupancy grids or signed-distance field based methods, this method does not
require propagating a wave function to compute a distance value at any point in space.
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Instead, it uses an efficient approach for ellipsoid to ellipsoid distance estimation to
trivially parallelize the distance calculation to an SOGMM without making a spherical
robot assumption. The resulting approach provides benefits in both accuracy and
memory efficiency compared to state of the art Gaussian Process-based methods.

Finally, in Chapter 8 we presented the distributed mapping and inter-robot col-
lision avoidance methods that enable active reconstruction on low-bandwidth com-
munication channels. Several field deployments in real-world caves demonstrate the
efficacy of the approach.

9.2 Future Research
There are several directions for future work. We classify them into short-term and
long-term goals below.

9.2.1 Short-Term Goals for Future Work
• Integration with prior works on registration [178] and loop closure [176] with

GMMs to enable large-scale consistent mapping with SOGMMs.

• Instead of using an intensity image, use semantic features [100] in SOGMM.
This would require testing the method with categorical distributions.

• Generate a scene graph using SOGMM as the underlying representation as
opposed to a mesh [185].

• Pass the environment representation on telemetry radio as opposed to WiFi or
any expensive/high-bandwidth connection. Currently there are 900 MHz radios
that are used in multi-robot deployments that only provide low-bandwidth
odometry or analog video. Given the level of compression that SOGMM pro-
vides, we should be able to transfer high-fidelity maps over 900 MHz radios.

• Extend the teleoperation methodology in Chapter 5 to multiple robots such that
one human can teleoperate many robots while the robots pass the environment
representation over long-range radios.

• Integrate visual-inertial odometry with SOGMM. Some initial work has been
done in [70] for Gaussian splatting maps, but tight integration of an IMU is
lacking.

• Extend the motion primitives-based planning method to articulated robots,
leveraging prior work [204] and recent advances in diffusion model-based con-
trol [85].
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9.2.2 Long-Term Goals for Future Work
• Replace volumetric mapping [88, 137, 156] with surface only maps using SOGMM

in most robotics applications. This would require an extension to SOGMM
towards more generally maintaining a boundary between known and unknown
space.

• After integrating RGB into the SOGMM framework, propose a solution to the
kidnapped robot problem. There has been an attempt for this on a smaller scale
environment [51], but for arbitrary large environments with many robots, this
problem remains a major challenge.

• SOGMMs can serve as feature inputs to transformers [188] via the cluster
attention [124] mechanism. Several applications can then use SOGMM as the
underlying feature input.

• Explore the theoretical connection between diffusion models and GMMs [79] to
enable using diffusion within the SOGMM framework.

• Generalize SOGMM to include mixtures of Fisher distributions [206] to enable
continuous inference of surface normals [84].

• Investigate theoretical properties of the mean shift algorithm [199, 200, 198]
and see if the SOGMM method can be made certifiably robust to outliers [27].

This thesis has made progress on developing systems and methods communication-
efficient active reconstruction using several robots in the real world. While the con-
tributions indicate motion primitives-based planning and GMM-based mapping to be
excellent tools, the future work directions above are equally exciting.
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AAPPENDIX

GIRA: Gaussian Mixture Models
for Inference and Robot Autonomy

To navigate in and interact with the world, robots acquire, assimilate, and respond
to sensor data. Models that enable perception in the large and small [8] are amenable
to diverse robotics applications and have the potential to drastically increase robotic
capabilities while addressing limitations in the way complex perception systems are
developed today.

Recent large-scale robotic reconstruction deployments, like the DARPA Subter-
ranean (Sub-T) Challenge [37], have highlighted the need for map compression to
increase the reconstruction rate, an example of perception in the large, by facilitating
information sharing. Further, state-of-the-art perception systems typically leverage
separate concurrent perceptual processing pipelines, which increases computation,
redundancy, and complexity [62]. For example, the highly sophisticated perception
module of the NeBula system architecture [2] processes the same LiDAR data re-
peatedly (e.g., odometry, SLAM, terrain mapping, etc.), which is inefficient. Instead,
what is needed is a unified framework for common perceptual processing elements,
which is compact, generative, and amenable for deployment on low-power embedded
systems [62].

Gaussian mixture models (GMMs) provide high-fidelity and communication-efficient
point cloud modeling and inference [43] in real-world environments [180]. Recent
works have demonstrated precise, high-fidelity representation of fine details required
for perception in the small [76]. However, there are few open-source implementations,
which poses a barrier to broad adoption by the general robotics community. To bridge
this gap, this thesis introduces GIRA, an open-source, unified framework (Fig. A.1)
for point cloud modeling, occupancy modeling, and pose estimation using GMMs
based on [178, 176, 180]. In addition, GIRA includes a novel systems contribution,
which consists of GPU-accelerated functions to learn GMMs 10-100x faster compared
to existing CPU implementations. The software and associated datasets are open-
sourced1 to accelerate innovation and adoption of these techniques.

A.1 Prior Open-Source Perception Frameworks
This section reviews open-source perception frameworks for compact, high-resolution
point cloud modeling, pose estimation, and occupancy modeling for robotics applica-

1Project webpage: https://github.com/gira3d
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Figure A.1: GIRA has been deployed on size, weight, and power constrained aerial systems
in real-world and unstructured environments. (Top left) A single aerial robot flies through
an industrial tunnel and (top center) generates a high-fidelity Gaussian mixture model
(GMM) map of the environment. (Top right) A close-up view of the reconstructed area
around the robot. (Bottom left and bottom center) A team of two robots fly through a
dark tunnel environment and produce a (bottom right) map, which is resampled from the
underlying GMM and colored red or blue according to which robot took the observation.
Videos of these experiments are available at: https://youtu.be/qkbxfxgCoV0 and https:
//youtu.be/t9iYd33oz3g.

tions. These works are compared and contrasted with GIRA.
The Normal Distributions Transform (NDT)2 framework was introduced by Biber

and Strasser [11] for scan registration and later extended to 3D registration [118] and
occupancy modeling [159]. Goel et al. [76] demonstrate that NDTMap provides higher
representation fidelity compared to Octomap3 [88], but at the cost of increased disk
storage requirements. While NDTMap provides distribution to distribution registra-
tion [171], Octomap does not provide analogous functionality. In contrast to these
representations, GIRA provides higher memory-efficiency and surface reconstruction
fidelity [76] as well as distribution to distribution registration [178, 176]. Further,
NDTMap provides a CPU implementation, while GIRA provides both CPU and GPU
implementations for multimodal environment modeling.

Oleynikova et al. [137] develop Voxblox, which uses Truncated Signed Distance
Fields (TSDFs), for high-resolution reconstruction and occupancy mapping. The weights
for the TSDFs are stored in a coarse fixed-resolution regular grid. Voxblox grows dy-
namically, but suffers from the same memory-efficiency limitation as the NDTMap. In
contrast, the GIRA framework enables high-resolution surface reconstruction without
a pre-specified size or a fixed-resolution discretization of the point cloud model. Like
GIRA, Voxblox provides CPU4 and GPU5 implementations as well as a method to

2https://github.com/OrebroUniversity/perception_oru
3https://github.com/Octomap/octomap
4https://github.com/ethz-asl/voxblox
5https://github.com/nvidia-isaac/nvblox
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localize within the representation using submaps [155].
Duberg and Jensfelt [57] propose UFOMap, which improves upon Octomap by

providing an explicit representation of unknown space and introduces Morton codes
for faster tree traversal. An open-source CPU implementation of UFOMap6 is avail-
able; however, the implementation does not provide functionality to localize within
the map, like GIRA, Voxgraph, or NDTMap.

Vespa et al. [190] introduce the Supereight mapping framework, which consists
of two dense mapping methods a TSDF-based implicit map and an explicit spatial
occupancy map. In follow-on work [68], which leverages multi-resolution grids, the
authors demonstrate that the TSDF-based method yields superior reconstruction
compared to UFOMap. Supereight enables frame-to-model point cloud registration
via Iterative-Closest-Point (ICP) alignment. However, Supereight uses RAM to assess
memory efficiency, but does not provide statistics on space required to store the
representation to disk. The CPU implementation is available for Supereight7 as open-
source software.

Reijgwart et al. [156] have recently proposed the Wavemap hierarchical volumetric
representation, which uses wavelet compression for higher memory savings compared
to Voxblox, Supereight, and Octomap. Like other discrete mapping methods, the
highest resolution of the hierarchical map is set by the user and fixed during robot
operation. In contrast, the SOGMM method in GIRA provides the ability to adapt
the fidelity of the model according to the complexity of the scene, without utilizing
a hierarchical approach [76]. The CPU implementation for Wavemap is available as
open-source software8 and includes some additional improvements (e.g., the use of
OpenVDB [131] instead of the octree data structure used in the original paper). The
approach, however, does not provide a method to estimate pose.

Doherty et al. [53] propose BGKOctomap, an extension to Octomap, which utilizes
nonparametric Bayesian kernel inference for continuous-space occupancy modeling.
The method is improved by modeling sensor rays as continuous free-space observa-
tions [54]. The CPU9 implementations of these variants are available as open-source
software.

Eckart et al. [61] present compact modeling of point clouds using GMMs to
estimate pose. The approach is extended to a hierarchical formulation to improve
memory-efficiency and accuracy [60]. Dhawale and Michael [50] present an alternative
hierarchical approach, which equally weights the Guassian distributions, for high-
resolution surface mapping. Srivastava and Michael [167] present another hierarchical
approach but utilize the Expectation-Maximization algorithm to assign non-uniform
weights depending on the local density of point cloud data. Common to these ap-
proaches is the need to set model complexity criteria such as image patch size [50],
component splitting threshold [60], and model fidelity threshold [167]. Further, to the
best of our knowledge, there are no open-source software implementations of existing
GMM-based point cloud modeling methods. In contrast, we provide open-source CPU

6https://github.com/UnknownFreeOccupied/ufomap
7https://bitbucket.org/smartroboticslab/supereight2
8https://github.com/ethz-asl/wavemap
9https://github.com/RobustFieldAutonomyLab/la3dm
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and GPU implementations of our work in [76], which leverages information-theoretic
learning to adjust the model complexity. Finally, to demonstrate the occupancy
modeling and pose estimation capabilities using GMM-based models, we provide CPU
implementations based on [178, 176, 180].

A.2 GIRA Design
We envision the GIRA framework to be used in robotics research where 3D perception
tasks must be executed in real-time and algorithms for these tasks should be easy to
prototype.

Popular robotics software packages like Bullet [44], Drake [182], and Tensor-
Flow [1] provide low-level programming language support for high-performance, real-
time operation and high-level programming language bindings for ease of prototyping.
We follow the same model with GIRA where key algorithms are implemented in
C/C++/CUDA with Python bindings. For C/C++, we use the C/C++17 standard.
For GPU support, CUDA version 10.4 and above is required.

To enable message passing between different software systems, most robotics ap-
plications use the Robot Operating System (ROS) [150] and its successor ROS2 [117].
The GIRA framework is structured using Collective Construction (colcon) packages
to help the robotics community easily integrate GIRA within their ROS and ROS2
workspaces. For low-level code and bindings, GIRA utilizes CMake for compilation
support on both Linux and macOS. Python virtual environments are used to isolate
executables.

For 3D perception tasks, visualization is an important capability for debugging
research code. GIRA provides interfaces to the Open3D [211] visualization tools for
this purpose. Furthermore, developers can leverage tools like RViz2 from ROS2 after
integrating colcon packages from GIRA.

A.3 GIRA Framework
The GIRA framework consists of three components: (1) GIRA Reconstruction, (2)
GIRA Registration, and (3) GIRA Occupancy Modeling. This section provides an
overview of these three components.

A.3.1 GIRA Reconstruction
Given time-synchronized depth and intensity images with known pose estimates,
GIRA Reconstruction creates a Self-Organizing Gaussian Mixture Model (SOGMM) [76]
that is:

1. Continuous, the point cloud is represented with a 4D GMM which is a linear
combination of continuous functions (Gaussian distributions).
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(a) Input (b) Resampled (c) Intensity Inference

Figure A.2: An example workflow for GIRA Reconstruction Sect. A.3.1. The input is a
depth-intensity point cloud shown in (a). The resulting model can be resampled to generate
novel 4D points (b) or be used to infer expected intensity values at known 3D locations (c).

2. Probabilistic, the 4D GMM captures the variance and expected values for
point locations and intensity values.

3. Generative, the 4D GMM enables fast sampling of point locations and inten-
sity values from the model.

4. Compact, since the number of parameters required to represent the 4D GMM
is much lower compared to the point cloud itself.

5. Adaptive, the number of Gaussian distributions within the 4D GMM are
automatically estimated from the scene complexity of the underlying sensor
data.

GIRA Reconstruction utilizes Open3D [211] for point cloud loading, writing, and
visualization. We use NumPy [83] for interfacing with Eigen [78] via Pybind11 [91].

GIRA Reconstruction contains CPU and GPU implementations for SOGMM10.
Both implementations can be accessed via a Python interface:

from sogmm_py.sogmm import SOGMM

# SOGMM of pointcloud on CPU
sg_cpu = SOGMM(bandwidth=0.015, compute='CPU')
mcpu = sg_cpu.fit(pointcloud)

# SOGMM of pointcloud on GPU
sg_gpu = SOGMM(bandwidth=0.015, compute='GPU')
mgpu = sg_gpu.fit(pointcloud)

where, pointcloud is a NumPy array and bandwidth is the bandwidth of the ker-
nel used for the Gaussian Blurring Mean Shift (GBMS) within the SOGMM algo-
rithm [76].

These models are continuous and generative. Three-dimensional points along with
intensity values can be sampled from the model using:

10Detailed tutorials are available at https://gira3d.github.io/docs/index.html.
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A.3 GIRA Framework

Platform ID CPU GPU Memory (CPU/GPU)
Ryzen/RTX3090 3960X, 48 threads RTX 3090 252GB / 24GB
Intel/RTX3060 i9-10900K, 20 threads RTX 3060 32GB / 12GB
ARM-12c/Orin rev 1 (v8l), 12 threads Orin 32GB
ARM-8c/Xavier rev 0 (v8l), 8 threads Xavier 16GB
ARM-6c/TX2 Cortex-A57, 6 threads TX2 8GB

(a) Target Platforms

# Sample 640*480 points from the model
rp = sg_gpu.joint_dist_sample(640*480)

A plot of the resampled point cloud is shown in Fig. A.2b.
If the 3D point locations are known, the expected intensity values and variance

can be inferred from the model at these locations:

# locs is a N x 3 numpy array
# E is N x 1 expected intensities
# V is N x 1 variance
_, E, V = mgpu.color_conditional(locs)

A plot of intensity values E is shown in Fig. A.2c.
The SOGMM model is compact and its size can be computed as follows.

# computing memory usage
M = mgpu.n_components_

# 4 bytes per float
# 1 float value per weight
# 4 float values per mean
# 10 float values per covariance
mem_bytes = 4 * M * (1 + 10 + 4)

which is 69.78 kilobytes for the model learnt in Fig. A.2.
The time taken to learn a SOGMM is reported as a function of bandwidth

parameter for a diverse set of platforms outlined in Fig. A.3a. The input data for this
experiment corresponds to frame 854, which was randomly selected, of the simulated
livingroom1 data from the Augmented ICL-NUIM datasets [36]. Ten equally spaced
bandwidth values from 0.0135 to 0.0300 are used. Image sizes of 320×240, 213×160,
and 160× 120 are used (corresponding to 2×, 3×, and 4× reduction along each axis
of the original 640× 480 image). Because there is randomness in the KInit step, each
case is run ten times and averaged to obtain accurate timing results.

Figures A.3a–A.3e plot the results of these trials for the CPU-only (dashed lines
with triangle markers) and GPU-accelerated (solid lines with circle markers) im-
plementations. The y-axes of these plots use a base-10 log-scale and the observed
standard deviation, which is plotted as error bars, is very low compared to the mean
values. From Figs. A.3a and A.3b we observe over an order of magnitude faster
performance when using the GPU-accelerated version of the system for all image sizes.
Further, there is an overall decrease in performance from Ryzen/RTX3090 (Fig. A.3a)
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(f) Comparison with scikit-learn on Ryzen

Figure A.3: Comparison of SOGMM computation time via GIRA Reconstruction on the
target platforms listed in Fig. A.3a. In (a) and (b) the GPU-accelerated case on the desktop
platforms provides more than an order of magnitude improvement in timing compared to
the CPU-only case for most image sizes. The results of the embedded platforms shown in
(c), (d) and (e) demonstrate that the relative performance improvements seem to degrade
with increasing SWaP constraints. In any case, (f) shows that our CPU implementation
performs nearly an order of magnitude faster than a reference SOGMM implementation
using scikit-learn.
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(a) Before registration (b) After registration

Figure A.4: The point clouds in (a) are originally misaligned. (b) The code in Sect. A.3.2
estimates the SE(3) transform to align them.

to Intel/RTX3060 (Fig. A.3b) for both CPU-only and GPU-accelerated versions. This
is expected due to the decrease in computational capability for both the CPU and
GPU.

Figure A.3c provides results for ARM-12c/Orin platform. In this case, the gains
for the GPU-accelerated version are lower than the desktop platforms. Notice that for
image size 320×240 the CPU starts performing better than GPU at low bandwidths.
At low bandwidths, the number of estimated components are high.

Figures A.3d and A.3e suggest a further decrease in relative performance improve-
ment in using the GPU-accelerated version as opposed to the CPU-only version of our
system. Further, due to memory constraints the 320 × 240 image size fails for both
platforms below certain bandwidths. Both ARM-8c/Xavier and ARM-6c/TX2 are
SWaP-constrained platforms used on robots. For real-world usage of our framework,
we recommend using the CPU-only version when CPU resources are not required
by other subsystems (e.g., planning, control, and visual-inertial odometry) and using
the GPU-accelerated version when CPU resources are in demand (which is often the
case).

A.3.2 GIRA Registration
This module implements (1) registering a pair of GMMs [178] and (2) closing the loop
using a pose graph optimization [176].

The anisotropic, isoplanar, and isoplanar-hybrid registration variants from [178]
are implemented in this module. Python and MATLAB interfaces have been de-
veloped, but this document provide examples only for the Python interface. The
isoplanar-hybrid registration approach first calls a coarse optimizing using the isopla-
nar registration function followed by a refinement optimization using the anisotropic
registration. The source and target variables are paths to files containing GMMs.

from gmm_d2d_registration_py import isoplanar_registration
from gmm_d2d_registration_py import anisotropic_registration

# Initial registration guess
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(a) Without loop closure (b) Loop closure

Figure A.5: The trajectories reconstructed using (a) frame-to-frame registration and (b)
with loop closure is enabled are shown with the pointclouds plotted.

Figure A.6: Resampled points from a GMM are added to an occupancy grid map and the
occupied voxels are queried and visualized.

Tinit = np.eye(4)

# Isoplanar registration
Tiso = isoplanar_registration(Tinit, source, target)
Tout = anisotropic_registration(Tiso, source, target)

# Rotation and translation solutions
R = Tout[0:3, 0:3]
t = Tout[0:3, 3]

The result of registering a single pair of images may be seen in Fig. A.4. In addition, a
pose graph optimization example is provided, which uses GTSAM [48]. A comparison
of the frame-to-frame registration with and without loop closure is shown in Fig. A.5.
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A.3.3 GIRA Occupancy Modeling
This module implements occupancy reconstruction by sampling from a GMM and
raytracing through an occupancy grid map. MATLAB and Python interfaces are
provided, but only the Python interface is discussed in this document11. Like the
registration module detailed in Sect. A.3.2, this module is compatible with scikit-
learn [144] GMMs and assumes GMMs are loaded from file.

# Create 3d occupancy grid with parameters p
grid = Grid3D(p)

# Nx3 sampled from GMM (assumed in world frame)
pts = gmm.sample(num_pts)

# Add the points to the grid
for i in range(0, num_pts):

ray_end = Point(pts[i,0], pts[i,1], pts[i,2])

# sensor_pose is in world frame
# TRIMMED_MAX_RANGE set by user
grid.add_ray(sensor_pose, ray_end, TRIMMED_MAX_RANGE)

Functions for querying occupied, free, and unknown voxels are provided through
Python and MATLAB bindings of C++ code. The result of adding sampled points
from the Mine dataset GMMs and querying the occupied voxels is shown in Fig. A.6.

A.4 Implementation Details
This section details the GPU-accelerated software architecture of GIRA Reconstruc-
tion. Figure A.7 provides an overview of the accelerated SOGMM components [76].

Gaussian Blurring Mean Shift Comaniciu and Meer [39] leverage a binned
estimator to determine seeds for the algorithm. A kd-tree [16] is used to query the
neighbors in Y . The points within the specified radius are averaged and the seed is
updated to the new location. The algorithm terminates when either the number of
maximum iterations is reached or there is no substantial change with respect to the
previous seed position.

Expectation Maximization The EM algorithm consists of the Expectation (E)
and Maximization (M) steps. The E Step evaluates the responsibilities γnb using the
current parameters µb, Σb and πb via

γnb =
πbNxnµbΣb

M∑
a=1

πaNxnµaΣa

. (A.1)

11Detailed documentation for both MATLAB and Python is provided at https://gira3d.
github.io/docs/index.html.
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Figure A.7: Information flow for the GPU-accelerated adaptive point cloud modeling system.
Given a bandwidth parameter and depth-intensity image pair, the Gaussian Blurring Mean
Shift (GBMS) obtains the number of components M . The number of components and the
4D data are used by KInit to calculate the responsibility matrix used by the EM algorithm.
The result of the EM algorithm is the SOGMM model [76].

To reduce the computational complexity of Eq. (A.1), the natural logarithm can be
applied to convert the multiplications and divisions into sums and differences:

ln γnb = ln πb + ln (NxnµbΣb)

− ln

(
M∑
a=1

πaNxnµaΣa

)
. (A.2)

Term 2 of Eq. (A.2) may be rewritten, as derived in [23, 145, 175],
ln (NxnµbΣb)

= −1

2

D ln(2π) +

D∑
j=1

(Pb(xn − µb))
2
j

+

 D∑
j=1

ln (diag(Pb))j

 (A.3)

where Σ = LL>, P = L−1, and L is a lower triangular matrix calculated using
the Cholesky decomposition of the covariance matrix. Summing the logarithm of the

140



A.5 Summary

diagonal entries of Pb (i.e., ln(diag(Pb))) in Eq. (A.3) is equivalent to ln |Σb|−1/2.
The GPU implementation leverages higher-order tensor representations (rank-3

and rank-4 tensors)12. The weights are represented as a rank-3 tensor of shape (1,M, 1),
means are represented as a rank-3 tensor of shape (1,M, 4), and covariances are
represented as a rank-4 tensor of shape (1,M, 4, 4). This implementation accelerates
unary (e.g., logarithm and exponential of a matrix, reduction operations like summing
along a dimension or taking a maximum along a dimension of a rank-2 or a rank-3
tensor) and binary (e.g., addition, subtraction, multiplication, and division of rank-2
and rank-3 tensors) operations via element-wise CUDA kernels with fixed block and
grid sizes for all GPUs.

Rank-2 tensor multiplication is accelerated using the cuBLAS13 gemm routine.
Rank-3 tensor multiplication is accelerated via the cuBLAS gemmStridedBatched rou-
tine. The Cholesky decomposition of a rank-2 tensor is accelerated via the cuSOLVER14

potrf routine. The Cholesky decomposition of a rank-3 tensor is accelerated using the
cuSOLVER potrfBatched routine. Using the Cholesky decomposition, a linear system
of equations involving rank-2 tensors is solved using the cuSOLVER potrs routine and
for rank-3 tensors using the potrsBatched routine.

A.5 Summary
GIRA is a set of tools and software for processing point cloud data into Gaussian
mixture models for inference and robot autonomy. These tools and software are re-
leased open-source https://github.com/gira3d. Fundamental robotics capabilities
from our prior works on point cloud modeling [76], pose estimation [178, 176], and
occupancy modeling [180] are included in the open-source release. These fundamental
capabilities have applications beyond reconstruction and aerial robotics. The adap-
tivity of the SOGMM representation has applicability to perception in the small and
fine grained manipulation tasks. The variable resolution occupancy grid mapping
and distribution to distribution registration software may be leveraged for high-speed
mobile robot applications like off-road operations. By releasing this software, the
authors hope to increase the accessibility of these formulations to technical experts.

12For the exposition of the GPU-accelerated components, tensor conventions from TensorFlow [1]
are used.

13cuBLAS https://docs.nvidia.com/cuda/cublas
14cuSOLVER https://docs.nvidia.com/cuda/cusolver
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