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Abstract. Plant stress significantly reduces plant productivity. Automated on-the-go mapping of plant 
stress allows for timely intervention and mitigation of the problem before critical thresholds are 
exceeded, thereby maximizing productivity. A hyperspectral camera analyzed the spectral signature 
of plant leaves to identify the plant water stress. Five different levels of water treatment were created 
on young apple trees (Buckeye Gala) in a greenhouse and continuously monitored with a 
hyperspectral camera along with an active-illuminated spectral vegetation sensor and a digital color 
camera. Individual spectral images over a 400 – 1000 nm wavelength range were extracted at a 
specific wavelength to estimate reflectance and generate spectral profiles for five groups of apple 
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trees at different water treatment levels. Various spectral indices were investigated and correlated to 
stress levels. The highest correlation was found with Red Edge NDVI at 705 nm and 750 nm in 
narrowband indices and NDVI at 680 nm and 800 nm in broadband indices. The experimental results 
indicate that intelligent optical sensors could deliver decision support for plant stress detection and 
management.  

Keywords. Sensors, illumination, spectral response, measurement, leaves, water stress. 
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Introduction 

Plant stress caused by biotic or abiotic factors that adversely affect plant growth significantly 
reduces productivity. When a plant becomes stressed, stress is expressed in the plant canopy 
by many types of symptoms. Water stress, for example, closes stomata and impedes 
photosynthesis, resulting in changes in leaf color and temperature (Nilsson, 1995). Other stress 
symptoms include morphological changes such as leaf curling or wilting.  

Early detection of plant stress is critical to prevent plants terminal stress and minimize acute and 
chronic loss of productivity. The severity of damage depends on the duration between onset and 
time of detection. At the orchard level, the effectiveness of any remedial measures depends on 
the timely detection and identification of the cause of stress. Human vision is unique and 
comprehensive, but subject to individual differences in light perception, which drives 
inconsistency in estimating the color and pattern of plant stress symptoms. Substantial 
variations in rating visual stress assessment were reported in many studies (Sherwood et al, 
1983; Shokes et al, 1987; Weber and Jorg, 1991; Nutter and Schultz, 1995). Fredericksen and 
Skelly (1994) reported that net photosynthetic rate decreased up to 14% before visible 
symptoms of ozone injury. Remote sensing technology provides an objective and consistent 
means of assessing plant stress and has the capability to record important spectral details in 
longer wavelengths that are beyond a visible range (400 – 700 nm).  

Plant leaves absorb the majority of radiance in the visible band by plant pigments such as 
chlorophyll and xanthophylls, but reflects most radiance in the near-infrared (NIR) band. Plant 
stress changes the reflectance pattern due to an efficiency drop of photosynthetic absorbance 
and causes reflectance to increase in the visible band and to decrease in the NIR band. Thus, 
combining data from spectral bands into indices such as NIR/Red or (NIR-Red)/(NIR+Red) 
amplifies spectral differences provides additional details for stress detection. The first index 
NIR/Red, which is called the simple ratio (SR), is often closely correlated to the leaf area index 
(LAI), whereas the latter index (NIR-Red)/(NIR+Red), or the normalized difference vegetation 
index (NDVI) is often closely correlated to green biomass (Nilsson, 1995). Other spectral indices 
used for plant stress detection include the physiological reflectance index (PRI) (Gamon et al., 
1997; Suarez et al., 2008) that uses 531 nm and 571 nm for photosynthesis light use efficiency, 
water index (WI) (Penuelas et al., 1995; Champagne et al., 2001) that uses 900 nm and 970 nm 
for water absorption feature, and Red Edge NDVI (Gitelson and Merzlyak, 1994; Sims and 
Gamon, 2002) that uses red edge at 705 nm and 750 nm for changes in vegetation heath.  

Stress detection is often difficult and challenging to identify causes, because plant stress can be 
a compound effect of water, nutrient, disease, and/or insects. Accurate control of healthy and 
stressed plants isolates irrelevant factors and helps detection focus on a particular stress factor. 
This paper presents 1) detection of plant water stress using a hyperspectral sensor and 2) 
performance of an active-illuminated spectral sensor and a digital camera for measuring NDVI 
values on apple trees.  

Materials and Methods 

A multimodal sensor system was designed to measure the spectral signature of leaf surfaces 
and identify plant stress. In its initial design, the multimodal sensor system was equipped with 
four sensors: two normalized difference vegetation index (NDVI) sensors, a hyperspectral 
camera, and a digital color camera (Error! Reference source not found.). The NDVI sensors 
scan the middle of the tree canopy at a distance of 100 cm from the canopy, while the two 
cameras capture images, recording overlapped multi-modal images and spectral data as a 
vehicle drives along the tree row.  
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Figure 1. Initial schematic design of a multi-modal sensor system for plant stress detection. 

The hyperspectral camera (ImSpector V10E, Spectral Imaging Ltd., Finland) is equipped with a 
spectral range of 400 – 1,000 nm with 5 nm interval and a 12-bit CCD that produces a 1392 
(column/line scan) x 373 (row/mirror‟s 60o scan) image at 9 frames/sec. The NDVI sensor 
(GreenSeeker, Ntech Industries, Ukiah, CA) records a single point measurement of NDVI at 
Red (660 nm ± 12 nm) and NIR (770 nm ± 12 nm) wavebands at 81 – 122 cm standoff distance 
with 61 cm ± 10 cm line scan width. The digital camera (Dragonfly 2, Point Grey, Canada) is 
equipped with a 1024 x 768 color CCD. The system also uses two light sensors (Silicon and 3-
sensor quantum bar, Spectrum Technologies Inc., Plainfield, IL) to record the amount of 
radiation from a light source. The Silicone captures solar radiation at 300 – 1,100 nm, while the 
quantum bar measures the radiation at 400 – 700 nm. 

Multi-modal data acquisition (MMDAQ) software was developed to integrate the multi-modal 
sensors and interface data communication: FireWire for the digital camera and RS232 serial for 
the NDVI sensors. An initial design of the MMDAQ software was completed with three graphical 
user interface (GUI) dialog windows: Digital Camera Capture View, Segmentation, and NDVI 
Sensor (Error! Reference source not found.). A color image is acquired by a SNAP button 
with selection of RGB (or one of R, G, and B buttons for a monocular image). An AUTO SNAP 
button automatically saves images at a fixed interval. The captured or retrieved image is 
segmented by threshold values that are manually selected and preset in the R, G, and B 
channels individually with the display of a histogram distribution. NDVI sensor data is acquired 
by a “READ” button and displayed at 10 readings/sec and saved to a file with a time stamp. 
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Figure 2. Multi-modal data acquisition (MMDAQ) software with GUI dialog windows of Digital 

Camera Capture View, Segmentation, and NDVI Sensors. 

Greenhouse experiments for plant water stress detection were carried out at the Pennsylvania 
State University (PSU) - Fruit Research and Extension Center (FREC) in Biglerville, PA during 
the growing season of 2009. The main goal of the experiments was to capture morphological 
and spectral features of trees at different levels of water stress. Twenty apple (cv. „Buckeye 
Gala‟) trees grafted on ELMA 26 rootstocks and potted in Berger BM1 potting medium were 
used for the water stress study. The trees were watered regularly by drip irrigation and sprayed 
at 7-10 day interval to control mites, insects, and powdery mildew.  

The multi-modal sensor system was mounted on a cart with extended support pipes and 
positioned to get a nadir view over the top of canopies (Fig. 3). A mounting frame holds two 
NDVI sensors that are horizontally staggered to scan a vertical FOV, while another frame holds 
two tripod heads attached to the hyperspectral camera and digital camera. Data collection was 
carried out on five groups of apple trees at different water treatment levels (100%, 90%, 75%, 
60%, and 45% at field capacity) with four replications per group and continued on a weekly 
basis from late April to June. Water treatment levels were defined as the percentage 
replacement of water content to bring the tree to field capacity and were measured by weighing 
the containers before irrigation in order to calculate the needed replacement amount. 

 
Figure 3. Greenhouse experimental setup with 20 apple trees in five different groups of water 

treatments for water stress detection. 
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The hyperspectral camera generates a set of images or a cube image,         where i is the 

horizontal spatial resolution, k the spectral resolution, and j the vertical spatial resolution created 

by a mirror rotation (373/60o full scan). A spectral cube image is first calibrated with dark and 
white reference images prior to image acquisition. Dark reference images,         were 

acquired by covering the lens with a dark cloth, while white reference images,         were 

acquired by placing a white board in front of the lens under ambient illumination. Each reference 
image was obtained by averaging measurements from 30 images,           (Eqn. (1)) and 
          (Eqn. (2)). Differences of white and dark reference images are subtracted by the 
minimum value of the differences and divided by the maximum value of the differences, 
generating a normalized range of pixel distribution,           (Eqn. (3)). When a new raw 
image,         is acquired, in the same way, difference of raw and dark reference images is 

subtracted by the minimum value of the difference to trim out dark current noises. The resulting 
pixel values are then divided by the normalized pixel range to generate a calibrated image, 
        (Eqn. (4)). 
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The hyperspectral images were further processed to calculate plant stress indices. Thirteen 
different spectral indices that have been published previously (Table 1) were evaluated for plant 
stress detection. The seventeen individual spectral images needed for the spectral index 
calculations were extracted, and the vegetation area in each image was segmented using the 
corresponding NDVI image and processed to calculate canopy reflectance. Hyperspectral 
images were collected along with NDVI sensor measurements and color images. 

Table 1. Spectral indices that were evaluated for plant stress detection. The three digit numbers 
following the letter R in each formula represent the response of the hyperspectral camera at that 
particular wavelength. 

Broadband 
Greenness 

NDVI (Normalized Difference 
Vegetation Index) 680800

680800

RR

RR




  

SRI (Simple Ratio Index) 
680

900

R

R
  

EVI (Enhanced Vegetation 
Index) 14505.76806800

680800
5.2






RRR

RR
 

ARVI (Atmospherically 
Resistant Vegetation Index) )4506802(800

)4506802(800

RRR

RRR




  

Narrowband 
Greenness 

Red Edge NDVI   
705750

705750

RR

RR




  

Modified Red Edge NDVI   
4452705750

705750

RRR

RR




  
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Modified Red Edge SRI   
445705

445750

RR

RR




  

VOG REI (Vogelmann Red 
Edge Index) 1 720

740

R

R
  

VOG REI 2 
726715

747734

RR

RR




  

VOG REI 3   
720715

747734

RR

RR




  

Light Use 
Efficiency 

PRI (Photochemical 
Reflectance Index) 570531

570531

RR

RR




  

Dry or 
Senescent 

Carbon 

PSRI (Plant Senescence 
Reflectance Index) 750

500680

R

RR 
  

Canopy Water 
Content WI (Water Index) 

970

900

R

R
  

Results 

Hyperspectral Image Analysis 

Spectral image responses are plotted in Fig. 4 over the entire spectral wavelengths (400 – 1000 
nm). The spectral profile corresponding to the healthy tree group (100%) follows a typical 
spectral signature of plant leaves: a small peak at the green band (550 nm), a small drop at the 
red band (650 nm), and a rising plateau at the near-infrared (NIR) band (750 – 1000 nm). Two 
groups of water treatments, 90% and 75%, show a trend similar to that of the non-stressed 
„healthy‟ tree group (100%), whereas the spectral profiles corresponding to the 60% and 45% 
water treatments show an increase of reflectance in the green and red bands and a decrease in 
the NIR band in comparison with healthy plants. 

 

Figure 4. Spectral image response of apple trees subjected to different levels moisture stress by 
water denial. 

Spectral reflectance values in the red band were about 15% higher than typical spectrum of 
control plant leaves due to image formation and sensitivity of the sensor. We noticed the 
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hyperspectral camera is sensitive to the reference dark and white images during the calibration 
procedure. Our assumption is that the illumination condition remains the same during the image 
acquisition until the next calibration. However, the illumination condition as measured by solar 
radiation varied broadly during most of the measurements as shown in Fig. 5. Based on this 
observation, the image data that were severely distorted by rapid illumination changes during 
image acquisition were not included for further analysis. 

 

Figure 5. Ambient illumination status recorded during hyperspectral data collection. 

Soil water conditions were also monitored every hour continuously from April through June, 
2009. Figure 6a shows soil matric potentials and indicates that high potentials (i.e., water 
stress), occurs on the 60%- and 45%-watered groups. By contrast, the potentials in 100%-, 
90%-, and 75%-watered groups remain low mostly under 20 kPa, indicating well watered soil 
conditions. The repeated peaks in the graph were generated by daily watering based on the 
water treatment plan. The average daily soil water status of five groups is plotted in Fig. 6b 
along with dates of hyperspectral image data collection. Higher soil matric potentials at 45%- 
and 60%-watered groups indicate more water stress. No significant differences were noted in 
soil water content among the 100%-, 90%- and 75%-watered groups. 

  

         (a)                                       (b) 

Figure 6. Soil water status monitored with a Watchdog datalogger and Watermark soil moisture 
sensor (a) every hour continuously from April – June, 2009, (b) average daily soil water status. 

Higher soil potentials at 45% and 60% indicate water stressed plants. 
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The results of four best indices from the images acquired on May 4, 7, 11, and June 4, 2009 are 
shown in Fig. 7. The highest correlation among narrowband greenness indices was found at 
Red Edge NDVI with r2 = 0.89 (Fig. 7c). NDVI had the highest correlation among broadband 
greenness indices with r2 = 0.68 (Fig. 7a). Table 2 presents the correlation coefficients of 
selected indices to water stress over the tree images. The broadband indices compare a 
reflectance peak in near infrared (NIR) to another peak in red range where chlorophyll absorbs 
photons for photosynthesis. Since these features are spectrally broad, they can work effectively 
with broadband multispectral sensors. The narrowband indices use red edge that is a steeply 
sloped region of the vegetation reflectance curve between 690 nm and 740 nm, and caused by 
the transition from chlorophyll absorption to NIR leaf scattering. Since narrowband 
measurements in the red edge are more sensitive to smaller changes in vegetation health than 
broadband indices, narrowband indices are suitable for hyperspectral sensors. The result of our 
experiment with the hyperspectral camera supports this conclusion, resulting in better 
performance with narrowband indices. 

 
        (a)                                            (b) 

 
        (c)                                            (d) 

Figure 7. Hyperspectral image responses to water treatments (a) NDVI, (b) SRI, (c) Red Edge 
NDVI, and (c) VOG REI 1. 

Table 2. Correlation coefficients of spectral indices that were evaluated for plant stress detection. 

  4/27  5/4  5/7  5/11  6/4  R  R
2
  

Broadband 
Greenness  

NDVI  0.70  0.83  0.76  0.93  0.89  0.82 0.68 

SR  0.55  0.89  0.81  0.94  0.90  0.82 0.67 

Narrowband 
Greenness  

Red Edge NDVI  0.86  0.95  0.96  0.99  0.96  0.94 0.89 

Modified Red Edge 
NDVI  

0.11  0.88  0.91  0.96  0.65  0.70 0.49 

VOG1  0.95  0.98  0.94  0.82  0.89  0.91 0.84 

Light Use 
Efficiency  

PRI  1.00  -0.27  -0.02  0.65  0.38  0.35 0.12 

Canopy Water WI  -0.75  0.98  -0.28  0.62  -0.78  -0.04 0.00 
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 Content  PRI*WI  1.00  0.37  -0.03  0.73  0.32  0.48 0.23 

NDVI Sensor Analysis 

NDVI values of both the vegetation area of tree canopy and the non-vegetation area between 
trees were obtained with the NDVI sensor. Figure 8a shows continuous readings of NDVI in 
which higher values are from the vegetation area of canopy and lower values are from the non-
vegetation background. NDVI values corresponding to each apple tree were manually selected 
by comparing a digital image in the same time stamp and marked in circles in Fig. 8a. Average 
NDVI responses over 13 measurement dates generally match to water treatment patterns with 
correlation of r = 0.6 (Fig. 8b). Low correlation may be due to measurement errors in the data 
manually selected from unsynchronized NDVI readings and digital image acquisition.  

    
        (a)                                            (b) 

Figure 8. NDVI sensor responses to water treatments: (a) continuous readings of vegetation of 
tree canopy and non-vegetation area between trees, (b) average NDVI over 13 measurement 
dates indicating correlation (r = 0.6) between NDVI measurements and plant water treatment. 

Leaf Area Index Analysis 

Leaf area index (LAI) provides an important parameter, as leaf area influences photosynthesis 
and plant growth. A value of LAI = 3 is obtained when almost 100% of the incoming light is 
intercepted and thus corresponds to a canopy coverage of 100% (Potato Explorer, 2010). 
Digital images were acquired from nadir view and processed for canopy coverage. Figure 9 
displays an image sequence of apple trees with five different water treatments. Images are 
placed in a chronological order from April 27 to June 18 at an interval of 3 – 5 days. Canopy 
coverage was calculated by image segmentation of canopy area with NDVI image masking and 
presented in percentage of canopy coverage. As plants grow over the time, the growth pattern 
is an increase in the beginning of the time period, followed by a relatively static period of growth 
in the middle (May 10 – June 10) (Fig. 10a). After June 10, there are clear decreases of canopy 
coverage in 60%- and 45%-watered groups, while in the other three groups the canopy 
coverage remains high and static. The average percentage canopy coverage over the period 
shows 50% in 100%-watered trees and 27% in 45%-watered trees (Fig. 10b), resulting in overall 
correlation of r = 0.7. The result indicates that canopy coverage measurement can be used as a 
supplemental index of chronic plant water stress. 

          4/27     5/4      5/7     5/11    5/14    5/18    5/21    5/27    6/1      6/4      6/9     6/12    6/18 

(a)  

(b)  
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(c)  

(d)  

 (e)  

Figure 9. Canopy growth in top-view in sequence of 13 measurements from April 27 to June 18 
on young apple trees with five different water treatments: (a) 100%, (b) 90%, (c) 75%, (d) 60%, 

and (e) 45%. 

  
      (a)                                            (b) 

Figure 10. Percentage canopy coverage to different water treatments (a) measurements along 
the plant growth from April 27 to June 18 (partly missing data in 60%- and 45%-watered trees 

lost due to an image formation problem), (b) average canopy coverage to water treatments with 
correlation of r = 0.7. 

Conclusion 

Reflectance differences between stressed and non-stressed apple trees were found based on 
images taken with a hyperspectral camera, even when no symptoms were present to the human 
eyes. No significant differences in reflectance were found in 100%-, 90%- and 75%-watered 
trees, suggesting all three groups are non-stressed. However, the 60%- and 45%-watered trees 
showed similar reflectance changes caused by water stress. Such results were also observed in 
monitoring soil moisture status. Among 13 spectral indices that use wavelengths within 400 – 
1000 nm spectrum, Red Edge NDVI (r2 = 0.89) within the group of narrowband indices and 
NDVI (r2 = 0.68) within the group of broadband indices were highly correlated to water stress. 
An active spectral NDVI sensor was able to identify the spectral signature of the leaves of water 
stressed trees, and the performance can be improved by filtering data for valid readings. 
Canopy coverage obtained by a digital camera is another indicator of plant stress and identified 
growth changes affected by plant stress. A multispectral camera is also an alternative source for 
low cost and fast image capture and process as long as the selected wavelengths fit the 
purpose of applications. Decision support that combines multi-modal sensory data is a next step 
to improve plant stress detection and identify causes of the stress. 
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