Hongwen Kang
PhD Student
Robotics Institute, Carnegie Mellon University
Monday, December 6
3:00 pm to 12:00 am
3:00 pm to 12:00 am
Image Matching with Distinctive Visual Vocabulary
Event Location: NSH 1507
Abstract: In this paper we propose an image indexing and matching algorithm that relies on selecting distinctive high dimensional features. In contrast with conventional techniques that treated all features equally, we claim that one can benefit significantly from focusing on distinctive features. We propose a bag-of-words algorithm that combines the feature distinctiveness in visual vocabulary generation. Our approach compares favorably with the state of the art in image matching tasks on the University of Kentucky Recognition Benchmark dataset and on an indoor localization dataset. We also show that our approach scales up more gracefully on a large scale Flickr dataset.