Seminar
Visual SLAM with Semantic Scene understanding
Abstract: Simultaneous localization and mapping (SLAM) has been widely used in autonomous robots and virtual reality. It estimates the sensor motion and maps the environment at the same time. The classic sparse feature point map of visual SLAM is limited for many advanced tasks including robot navigation and interactions, which usually require a high-level understanding of [...]
Multi-Modal Geometric Learning for Grasping
Abstract: In this talk, we will describe methods to enable robots to grasp novel objects using multi-modal data and machine. The starting point is an architecture to enable robotic grasp planning via shape completion using a single occluded depth view of objects. Shape completion is accomplished through the use of a 3D CNN. The network [...]
Building a Force-Controlled Actuator (Company)
Abstract: In 2014, I was lucky enough to be one of 5 people to start HEBI Robotics, with the dream of eventually making the task of building custom robots as easy as building with Lego. A few years later we are now 10 people, and our first product, a series of modular force-controlled actuators, is [...]
Minimalist Visual Perception and Navigation for Consumer Drones
Abstract: Consumer drone developers often face the challenge of achieving safe autonomous navigation under very tight size, weight, power, and cost constraints. In this talk, I will present our recent results towards a minimalist, but complete perception and navigation solution utilizing only a low-cost monocular visual-inertial sensor suite. I will start with an introduction of [...]
Social Perception for Machines
Abstract: Despite decades of progress, machines remain intelligent tools rather than collaborative partners in individual human enterprise. A key reason is that machine perception of inter-personal communication is largely unsolved and a computationally accessible representation of such behavior remains elusive. In this talk, I will describe our research arc over the past decade at CMU [...]
Geometry Processing in The Wild
Abstract: Geometric data abounds, but our algorithms for geometry processing are failing. Whether from medical imagery, free-form architecture, self-driving cars, or 3D-printed parts, geometric data is often messy, riddled with "defects" that cause algorithms to crash or behave unpredictably. The traditional philosophy assumes geometry is given with 100% certainty and that algorithms can use whatever [...]
Self Driving Cars and AI: Transforming our cities and our lives
Abstract: Artificial intelligence and machine learning are critical to reaching full autonomy in self driving cars. I will present two autonomy systems along with the use of machine learning in each of them. I will summarize recent progress in commercializing these systems and make some observations about the potential impact of these systems in our [...]
Robotic Morphing Matter
Abstract: Morphing matter harnesses the programmability in material structures and compositions to achieve transformative behaviors and integrates sensing, actuation, and computation to create adaptive and responsive material systems. These material systems can be leveraged to design soft robots, self-assembling furniture, adaptive fabrics, and self-folding foods. In this talk, Lining presents the recent works in the [...]
The Mechanical Side of Artificial Intelligence
Abstract: Artificial Intelligence typically focuses on perception, learning, and control methods to enable autonomous robots to make and act on decisions in real environments. On the contrary, our research is focused on the design, mechanics, materials, and manufacturing of novel robot platforms that make the perception, control, or action easier or more robust for natural, unstructured, and [...]