Warning: You are viewing this site with an outdated/unsupported browser.
Please update your browser or consider using a different one in order to view this site without issue.
For a list of browsers that this site supports, see our Supported Browsers page.
Events for September 2022 › Student Talks › – Robotics Institute Carnegie Mellon UniversitySkip to content
Abstract: Reinforcement learning (RL) holds great promise for improving robotics, as it allows systems to move beyond passive learning and interact with the world while learning from these interactions. A key aspect of this interaction is exploration: which actions should an RL agent take to best learn about the world? Prior work on exploration is typically […]
Abstract: The ability to traverse complex environments and terrains is critical to autonomously driving off-road in a fast and safe manner. Challenges such as terrain navigation and vehicle rollover prevention become imperative due to the off-road vehicle configuration and the operating environment itself. This talk will introduce some of these challenges and the different tools [...]
Abstract: We focus on relatively low dimensional robot motion planning problems, such as planning for navigation of a self-driving vehicle, unmanned aerial vehicles (UAVs), and footstep planning for humanoids. In these problems, there is a need for fast planning, potentially compromising the solution quality. Often, we want to plan fast but are also interested in [...]
Abstract: Fully autonomous vehicles have the potential to greatly reduce vehicular accidents and revolutionize how people travel and how we transport goods. Many of the major challenges for autonomous driving systems emerge from the numerous traffic situations that require complex interactions with other agents. For the foreseeable future, autonomous vehicles will have to share the [...]
Abstract: In this talk, I approach the problem of learning by watching humans in the wild. While traditional approaches in Imitation and Reinforcement Learning are promising for learning in the real world, they are either sample inefficient or are constrained to lab settings. Meanwhile, there has been a lot of success in processing passive, unstructured human [...]
Abstract: Two decades into the third age of AI, the rise of deep learning has yielded two seemingly disparate realities. In one, massive accomplishments have been achieved in deep reinforcement learning, protein folding, and large language models. Yet, in the other, the promises of deep learning to empower robots that operate robustly in real-world environments [...]