Warning: You are viewing this site with an outdated/unsupported browser.
Please update your browser or consider using a different one in order to view this site without issue.
For a list of browsers that this site supports, see our Supported Browsers page.
Events for June 2023 › Student Talks › – Robotics Institute Carnegie Mellon UniversitySkip to content
Title: Latent Skill Models for Offline Reinforcement Learning Abstract: Offline reinforcement learning (RL) holds promise as a means to learn high-value policies from a static dataset, without the need for further environment interactions. However, a key challenge in offline RL lies in effectively stitching portions of suboptimal trajectories from the static dataset while avoiding extrapolation [...]
Abstract: Contemporary autonomous vehicle (AV) benchmarks have advanced techniques for training 3D detectors, particularly on large-scale LiDAR data. Surprisingly, although semantic class labels naturally follow a long-tailed distribution, these benchmarks focus on only a few common classes (e.g., pedestrian and car) and neglect many rare classes in-the-tail (e.g., debris and stroller). However, in the real [...]
Title: Phenotyping and Skeletonization for Agricultural Robotics Abstract: Scientific phenotyping of plants is a crucial aspect of experimental plant breeding. By accurately measuring plant characteristics, phenotyping plays a vital role in the development of new plant varieties that are better adapted to specific environments and have improved yield, quality, and resistance to stress and disease. In [...]
Zoom Link: https://cmu.zoom.us/j/95273358670?pwd=Z09Jc3g1aDV1dTdTMEVUWUwxcUZPQT09 Meeting ID: 952 7335 8670 Passcode: 050721 Title: Exploring Reinforcement Learning approaches for Safety Critical EnvironmentsAbstract: Reinforcement Learning (RL) has emerged as a powerful paradigm for addressing challenging decision-making and robotic control tasks. By leveraging the principles of trial-and-error learning, RL algorithms enable agents to learn optimal strategies through interactions with an environment. However, [...]
Title: Distributional Distance Classifiers for Goal-Conditioned Reinforcement Learning Abstract: Autonomous systems are increasingly being deployed in stochastic real-world environments. Often, these agents are trying to find the shortest path to a commanded goal. But what does it mean to find the shortest path in stochastic environments, where every strategy has a non-zero probability of failing? At [...]