PhD Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

How I Learned to Love Blobs: The Power of Gaussian Representations in Differentiable Rendering and Optimization

NSH 3305

Abstract: In this thesis, we explore the use of Gaussian Representations in multiple application areas of computer vision and robotics. In particular, we design a ray-based differentiable renderer for 3D Gaussians that can be used to solve multiple classic computer vision problems in a unified manner. For example, we can reconstruct 3D shapes from color, [...]

PhD Thesis Proposal
PhD Student
Robotics Institute,
Carnegie Mellon University

Watch, Practice, Improve: Towards In-the-wild Manipulation

NSH 3305

Abstract: The longstanding dream of many roboticists is to see robots perform diverse tasks in diverse environments. To build such a robot that can operate anywhere, many methods train on robotic interaction data. While these approaches have led to significant advances, they rely on heavily engineered setups or high amounts of supervision, neither of which [...]

PhD Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Towards Photorealistic Dynamic Capture and Animation of Human Hair and Head

NSH 4305

Abstract: Realistic human avatars play a key role in immersive virtual telepresence. To reach a high level of realism, a human avatar needs to faithfully reflect human appearance. A human avatar should also be drivable and express natural motions. Existing works have made significant progress in building drivable realistic face avatars, but they rarely include [...]

PhD Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Modeling Dynamic Clothing for Data-Driven Photorealistic Avatars

NSH 3305

Abstract: In this thesis, we aim to build photorealistic animatable avatars of humans wearing complex clothing in a data-driven manner. Such avatars will be a critical technology to enable future applications such as immersive telepresence in Virtual Reality (VR) and Augmented Reality (AR). Existing full-body avatars that jointly model geometry and view-dependent texture using Variational [...]

PhD Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Manipulation Among Movable Objects for Pick-and-Place Tasks in Cluttered 3D Workspaces

NSH 1305

Abstract: In cluttered real-world workspaces, simple pick-and-place tasks for robot manipulators can be quite challenging to solve. Often there is no collision-free trajectory that allows the robot to grasp and extract a desired object from the scene. This requires motion planning algorithms to reason about rearranging some of the “movable” clutter in the scene so [...]

PhD Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Generalizable Dexterity with Reinforcement Learning

GHC 4405

Abstract: Dexterity, the ability to perform complex interactions with the physical world, is at the core of robotics. However, existing research in robot manipulation has been focused on tasks that involve limited dexterity, such as pick-and-place. The motor skills of the robots are often quasi-static, have a predefined or limited sequence of contact events, and [...]

PhD Thesis Proposal
PhD Student
Robotics Institute,
Carnegie Mellon University

Preference Based Optimization of Multi-Objective Robot Performance

NSH 4305

Abstract: Robotic systems often require that tradeoffs be made--for example, between performance and robustness, power and longevity, or efficiency and safety. While roboticists can design cost functions with hand-picked weights for different metrics, it is not always a straightforward task, particularly when some aspects of performance are not easily quantified. This can occur especially when [...]

PhD Thesis Proposal
PhD Student
Robotics Institute,
Carnegie Mellon University

Ensuring safety for uncertain high-dimensional robotic systems

GHC 8102

Abstract: Two major obstacles for safe control and planning are (1) scaling to high-dimensional systems and (2) handling uncertain systems. This is problematic because such systems are ubiquitous in practice: e.g. drones with unknown drag, manipulators carrying unknown packages. In this proposal, we aim to address both challenges. At the control level, we have synthesized [...]

PhD Thesis Proposal
PhD Student
Robotics Institute,
Carnegie Mellon University

Trustworthy Learning using Uncertain Interpretation of Data

GHC 8102

Abstract: Non-parametric models are popular in real-world applications of machine learning. However, many modern ML methods that ensure that models are pragmatic, safe, robust, fair, and otherwise trustworthy in increasingly critical applications, assume parametric, differentiable models. We show that, by interpreting data as locally uncertain, we can achieve many of these without being limited to [...]

PhD Thesis Proposal
PhD Student
Robotics Institute,
Carnegie Mellon University

Allocation, Planning, and Control in Off-road Automated Convoy Operations

GHC 4405

Abstract: The lack of structure in off-road terrains makes off-road operations of automated platforms difficult. The difficulty arises from uncertainty in the optimality and safety of the actions (e.g., planning and control) taken by the automated platform. When multiple automated platforms are required to act in a coordinated manner (e.g., a convoy) in complex cluttered [...]

PhD Speaking Qualifier
PhD Student
Robotics Institute,
Carnegie Mellon University

Robot Learning for Assistive Dressing

NSH 4305

Abstract: Robot-assisted dressing could benefit the lives of many people such as older adults and individuals with disabilities. In this talk, I will present two pieces of work that use robot learning for this assistive task. In the first half of the talk, I will present our work on developing a robot-assisted dressing system that [...]