PhD Speaking Qualifier
PhD Student
Robotics Institute,
Carnegie Mellon University

Probabilistic 3D Multi-Object Cooperative Tracking for Autonomous Driving via Differentiable Multi-Sensor Kalman Filter

NSH 3305

Abstract: Current state-of-the-art autonomous driving vehicles mainly rely on each individual sensor system to perform perception tasks. Such a framework's reliability could be limited by occlusion or sensor failure. To address this issue, more recent research proposes using vehicle-to-vehicle (V2V) communication to share perception information with others. However, most relevant works focus only on cooperative [...]

MSR Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Super Odometry: Selective Fusion Towards All-degraded Environments

GHC 6501

Abstract: Robust odometry is at the core of robotics and autonomous systems operating navigation, exploration, and locomotion in complex environments for a broad spectrum of applications. While great progress has been made, the robustness of the odometry system still remains a grand challenge. This talk introduces Super Odometry, an approach that leverages selective fusion to [...]

PhD Thesis Proposal
PhD Student
Robotics Institute,
Carnegie Mellon University

Improved Surface Estimation for use in Virtual Fixtures during Retinal Surgery

NSH 1305

Abstract: Retinal surgery procedures require surgeons to manipulate very delicate tissues with little room for error. During epiretinal membrane surgery, to reduce chances of recurrence, surgeons may have to remove the 10 µm thick internal limiting membrane from the retinal surface. An experimental procedure to treat retinal vein occlusion is retinal vein cannulation. During this [...]

PhD Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Causal Robot Learning for Manipulation

NSH 1305

Abstract: Two decades into the third age of AI, the rise of deep learning has yielded two seemingly disparate realities. In one, massive accomplishments have been achieved in deep reinforcement learning, protein folding, and large language models. Yet, in the other, the promises of deep learning to empower robots that operate robustly in real-world environments [...]

PhD Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Learning to Manipulate Using Diverse Datasets

NSH 4305

Abstract: Autonomous agents can play games (like Chess, Go, and even Starcraft), they can help make complex scientific predictions (e.g., protein folding), and they can even write entire computer programs, with just a bit of prompting. However, even the most basic physical manipulation skills, like unlocking and opening a door, still remain literally out-of-reach. The [...]

PhD Thesis Proposal
PhD Student
Robotics Institute,
Carnegie Mellon University

3D Perception In-The-Wild

NSH 4305

Abstract: State estimation is a fundamental component of embodied perception. Contemporary autonomous vehicle (AV) benchmarks have advanced techniques for training 3D detectors, particularly on large-scale data. Notably, although prior work has nearly solved 3D object detection for a few common classes (e.g., pedestrian and car), detecting many rare classes in-the-tail (e.g., debris and stroller) remains [...]

MSR Thesis Defense
MSR Student
Robotics Institute,
Carnegie Mellon University

Learning on the Move: Integrating Action and Perception for Mobile Manipulation

Newell-Simon Hall 4305

Abstract: While there has been remarkable progress recently in the fields of manipulation and locomotion, mobile manipulation remains a long-standing challenge. Compared to locomotion or static manipulation, a mobile system must make a diverse range of long-horizon tasks feasible in unstructured and dynamic environments. While the applications are broad and interesting, there are a plethora [...]

PhD Thesis Proposal
PhD Student
Robotics Institute,
Carnegie Mellon University

Differentiable Convex Modeling for Robotic Planning and Control

NSH 4305

Abstract: Robotic simulation, planning, estimation, and control, have all been built on top of numerical optimization. In this same time, modern convex optimization has matured into a robust technology delivering globally optimal solutions in polynomial time. With advances in differentiable optimization and custom solvers capable of producing smooth derivatives, convex modeling has become fast, reliable, [...]

PhD Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Plan to Learn: Active Robot Learning by Planning

NSH 4305

Abstract: Robots need a diverse repertoire of capable motor skills to succeed in the open world. Such a skillset cannot be learned or designed purely on human initiative. In this thesis, we advocate for an active continual learning approach that enables robots to take charge of their own learning. The goal of an autonomously learning [...]

MSR Thesis Defense
MSR Student
Robotics Institute,
Carnegie Mellon University

Continual Personalization of Human Actions with Prompt Tuning

3305 Newell-Simon Hall

Abstract: In interactive computing devices (VR/XR headsets), users interact with the virtual world using hand gestures and body actions. Typically, models deployed in such XR devices are static and limited to their default set of action classes. The goal of our research is to provide users and developers with the capability to personalize their experience by [...]

PhD Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Policy Decomposition

NSH 4305

Abstract: Optimal Control is a popular formulation for designing controllers for dynamic robotic systems. Under the formulation, the desired long-term behavior of the system is encoded via a cost function and the policy, i.e. a mapping from the state of the system to control commands, to achieve the desired behavior are obtained by solving an [...]