PhD Speaking Qualifier
PhD Student
Robotics Institute,
Carnegie Mellon University

Open-World Policy Steering for Robot Manipulation

GHC 8102

Abstract: Generative robot policies have shown remarkable potential in learning complex, multimodal behaviors from demonstrations. However, at runtime, they still exhibit diverse failures ranging from task incompletion (e.g., toppling or dropping objects) to misaligned behaviors (e.g., placing the gripper inside of a cup of water). Instead of constantly re-training the policies with new data, we [...]

PhD Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Deep 3D Geometric Reasoning for Robot Manipulation

NSH 3305

Abstract:  To solve general manipulation tasks in real-world environments, robots must be able to perceive and condition their manipulation policies on the 3D world. These agents will need to understand various common-sense spatial/geometric concepts about manipulation tasks: that local geometry can suggest potential manipulation strategies; that changes in observation viewpoint shouldn't affect the interpretation of [...]

PhD Thesis Proposal
PhD Student
Robotics Institute,
Carnegie Mellon University

Deformation-Aware Manipulation: Compliant and Geometric Approaches for Non-Anthropomorphic Hands

GHC 6121

Abstract:  Soft robot hands offer compelling advantages for manipulation tasks, including inherent safety through material compliance, robust adaptation to uncertain object geometries, and the ability to conform to complex shapes passively. However, these same properties create significant challenges for conventional sensing and control approaches. This talk presents approaches to bridging advances in geometric learning and [...]

MSR Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Towards Natural Language-Driven Shape Arrangement Synthesis using Semantically-Aware Geometric Constraints

3305 Newell-Simon Hall

Abstract: While diffusion-based models excel at generating photorealistic images from text, a more nuanced challenge emerges when constrained to using only a fixed set of rigid shapes—akin to solving tangram puzzles or arranging real-world objects to match semantic descriptions. We formalize this problem as shape-based image generation, a new natural language-guided image-to-image translation task that [...]

PhD Thesis Proposal
PhD Student
Robotics Institute,
Carnegie Mellon University

Toward Generalizable Interaction-aware Human Motion Prediction

NSH 3305

Abstract: As autonomous robots are increasingly expected to operate in dynamic, human-centered environments, it is crucial to develop robot policies that ensure safe and seamless interactions with humans, all while allowing robots to complete their intended tasks efficiently. To achieve this, robots must be capable of making informed decisions that account for human preferences, ensuring [...]

MSR Thesis Defense
MSR Student
Robotics Institute,
Carnegie Mellon University

Enhancing Reinforcement Learning with Error-Prone Language Models

GHC 6501

The correct specification of reward models is a well-known challenge in reinforcement learning. Hand-crafted reward functions, which are usually sparse, often lead to inefficient or suboptimal policies, misalignment with user values, or difficulties in attributing credit or blame within multi-agent systems. Reinforcement learning from human feedback is a successful technique that can mitigate such issues [...]

PhD Thesis Proposal
PhD Student
Robotics Institute,
Carnegie Mellon University

Efficient Multi-Agent Motion Planning using Local Policies

WEH 4625

Abstract: Teams of multiple robots working together can achieve challenging tasks like warehouse automation, search and rescue, and cooperative construction. However, finding efficient collision-free motions for all agents is extremely challenging as the complexity of the multi-agent motion planning (MAMP) problem grows exponentially with the number of agents. Multi-Agent Path Finding (MAPF) is a subset [...]

MSR Thesis Defense
MSR Student
Robotics Institute,
Carnegie Mellon University

Foundation Control Model for General Embodied Intelligence

3305 Newell-Simon Hall

Abstract: With the growing accessibility of humanoid hardware and rapid advances in foundation models, we are entering an era where achieving general embodied intelligence is within reach—enabling humanoid robots to perform a wide range of tasks in human-centric environments. Despite significant progress in language and vision foundation models, controlling humanoids with high degrees of freedom [...]

MSR Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Learning Humanoid Robots from Simulation to Real to Simulation

Gates Hillman Center 6115

Abstract: How do we teach humanoid robots to move like humans—and do so reliably in the real world? In this talk, I’ll share my journey in building a learning-based pipeline that closes the loop between simulation and reality for humanoid whole-body control. Starting from real-time teleoperation (H2O), to scalable data humanoid collection (OmniH2O), to learning [...]

MSR Thesis Defense
MSR Student
Robotics Institute,
Carnegie Mellon University

Experience-Based Action Advising for Multi-Agent Teaming

GHC 6115

Abstract: We study how to improve coordination efficiency for multi-agent teams with heterogeneously experienced agents. In such a setting, experienced agents can transfer their knowledge to less experienced agents to accelerate their learning, while leveraging the students' initial expertise to inform what knowledge to transfer. Inspired by this idea, this work specifically assumes one teacher [...]