MSR Thesis Defense
MSR Student
Robotics Institute,
Carnegie Mellon University

CBGT-Net: A Neuromimetic Architecture for Robust Classification of Streaming Data

Newell-Simon Hall 4305

Abstract: This research introduces CBGT-Net, a neural network model inspired by the cortico-basal ganglia-thalamic (CBGT) circuits in mammalian brains, which are crucial for critical thinking and decision-making. Unlike traditional neural network models that generate an output for each input or after a fixed sequence of inputs, CBGT-Net learns to produce an output once sufficient evidence [...]

MSR Thesis Defense
MSR Alumnus
Robotics Institute,
Carnegie Mellon University

Enhancing Robot Perception and Interaction Through Structured Domain Knowledge

Newell-Simon Hall 3305

Abstract: Despite the advancements in deep learning driven by increased computational power and large datasets, significant challenges remain. These include difficulty in handling novel entities, limited mechanisms for human experts to update knowledge, and lack of interpretability, all of which are crucial for human-centric applications like assistive robotics. To address these issues, we propose leveraging [...]

MSR Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Towards Universal Place Recognition

3305 Newell-Simon Hall

Title: Towards Universal Place Recognition Abstract: Place Recognition is essential for achieving robust robot localization. However, current state-of-art systems remain environment/domain-specific and fragile. By leveraging insights from vision foundation models, we present AnyLoc, a universal VPR solution that performs across diverse environments without retraining or fine-tuning, significantly outperforming supervised baselines. We further introduce MultiLoc, and enable [...]

MSR Thesis Defense
MSR Student / Extern
Robotics Institute,
Carnegie Mellon University

GNSS-denied Ground Vehicle Localization for Off-road Environments with Bird’s-eye-view Synthesis

NSH 4305

Abstract:  Global localization is essential for the smooth navigation of autonomous vehicles. To obtain accurate vehicle states, on-board localization systems typically rely on Global Navigation Satellite System (GNSS) modules for consistent and reliable global positioning. However, GNSS signals can be obstructed by natural or artificial barriers, leading to temporary system failures and degraded state estimation. On the [...]

MSR Thesis Defense
MSR Student
Robotics Institute,
Carnegie Mellon University

Scaling up Robot Skill Learning with Generative Simulation

Newell-Simon Hall 4305

Abstract:  Generalist robots need to learn a wide variety of skills to perform diverse tasks across multiple environments. Current robot training pipelines rely on humans to either provide kinesthetic demonstrations or program simulation environments with manually-designed reward functions for reinforcement learning. Such human involvement is an important bottleneck towards scaling up robot learning across diverse [...]

MSR Thesis Defense
MSR Student
Robotics Institute,
Carnegie Mellon University

Simulation as a Tool for Conspicuity Measurement

1305 Newell Simon Hall

Abstract:  The use of unmanned aerial vehicles (UAVs) for time critical tasks is becoming increasingly popular. Operators are expected to use information from these swarms to make real-time and informed decisions. Consequently, detecting and recognizing targets from video is extremely pivotal to the success of these systems. At greater altitudes or with more vehicles, this [...]

MSR Thesis Defense
Research Associate II
Robotics Institute,
Carnegie Mellon University

VP4D: View Planning for 3D and 4D Scene Understanding

1305 Newell Simon Hall

Abstract: View planning plays a critical role by gathering views that optimize scene reconstruction. Such reconstruction has played an important part in virtual production and computer animation, where a 3D map of the film set and motion capture of actors lead to an immersive experience. Current methods use uncertainty estimation in neural rendering of view [...]

MSR Thesis Defense
MSR Student / Research Associate II
Robotics Institute,
Carnegie Mellon University

Automating Annotation Pipelines by leveraging Multi-Modal Data

Rashid Auditorium - 4401 Gates and Hillman Centers

Abstract: The era of vision-language models (VLMs) trained on large web-scale datasets challenges conventional formulations of “open-world" perception. In this work, we revisit the task of few-shot object detection (FSOD) in the context of recent foundational VLMs. First, we point out that zero-shot VLMs such as GroundingDINO significantly outperform state-of-the-art few-shot detectors (48 vs. 33 AP) [...]

MSR Thesis Defense
MSR Student
Robotics Institute,
Carnegie Mellon University

Leveraging Affordances for Accelerating Online RL

3305 Newell-Simon Hall

Abstract: The inability to explore environments efficiently makes online RL sample-inefficient. Most existing works tackle this problem in a setting devoid of prior information. However, additional affordances may often be cheaply available at the time of training. These affordances include small quantities of demo data, simulators that can reset to arbitrary states and domain specific [...]

MSR Thesis Defense
MSR Student
Robotics Institute,
Carnegie Mellon University

Safe, Robust and Adaptive Model Learning for Agile Robots: Autonomous Racing

1305 Newell Simon Hall

Abstract: In recent years there has been a rapid development in agile robots capable of operating at their limits in dynamic environments. Autonomous racing and recent developments in it also spurred by competitions such as the Indy Autonomous Challenge, A2RL, and F1Tenth have shown how modern autonomous control algorithms are capable of operating racecars at [...]

MSR Thesis Defense
MSR Alumnus
Robotics Institute,
Carnegie Mellon University

Improving Lego Assembly with Vibro-Tactile Feedback

Newell Simon Hall 4119

Abstract: Robotic manipulation is an important area of research to improve the level of efficiency and autonomy in manufacturing processes. Due to the high precision and repeatability of industrial robot arms, robotic manufacturing tasks are dominated by simple pick, place, and peg insertion actions performed in a highly structured environment. Lego blocks are an excellent [...]

MSR Thesis Defense
MSR Student
Robotics Institute,
Carnegie Mellon University

DeltaWalker: A Soft, Linearly Actuated Delta Quadruped Robot

Newell-Simon Hall 4305

Abstract: Quadruped robots offer a versatile solution for navigating complex terrain, making them valuable for applications such as industrial automation or search and rescue. Although quadrupeds are more complex than bipeds, they are easier to balance and control and require fewer joints to actuate compared to hexapods. Traditional quadruped designs, however, often feature complex leg [...]

MSR Thesis Defense
MSR Student
Robotics Institute,
Carnegie Mellon University

Propagative Distance Optimization for Constrained Inverse Kinematics

GHC 6501

Abstract: This work investigates a constrained inverse kinematic (IK) problem that seeks a feasible configuration of an articulated robot under various constraints such as joint limits and obstacle collision avoidance. Due to the high-dimensionality and complex constraints, this problem is often solved numerically via iterative local optimization. Classic local optimization methods take joint angles as [...]

MSR Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Advancing Legged Robot Agility: from Video Imitation to GPU Acceleration

Newell-Simon Hall 4305

Abstract: Achieving human and animal-level agility has been a long-standing goal in robotics research. Recent advancements in numerical optimization and machine learning have pushed legged systems to greater capabilities than ever before, enabling black flips, parkour, and manipulation of heavy objects. Despite these exciting developments, this thesis identifies two key limitations of current legged robot [...]

MSR Thesis Defense
MSR Student
Robotics Institute,
Carnegie Mellon University

Model Predictive Control on Resource-Constrained Robots

3305 Newell-Simon Hall

Abstract: Model predictive control (MPC) is a powerful tool for controlling highly dynamic robotic systems subject to complex constraints. However, it is computationally expensive and often requires a large memory footprint. Larger robotic systems are capable of carrying and powering sophisticated computational hardware onboard. On the other hand, smaller robots typically have faster dynamics that [...]

MSR Thesis Defense
MSR Student
Robotics Institute,
Carnegie Mellon University

Enhancing Bipedal Locomotion With Reaction Wheels

3305 Newell-Simon Hall

Abstract: Legged robot hardware has become more accessible in the last ten years. However, there is still a dearth of low-cost hardware platforms that are open-source and easy to build. With recent developments in accessible manufacturing methods, such as 3D printing, it has become possible to design and manufacture parts without relying on precision machining. [...]

MSR Thesis Defense
MSR Alum
Robotics Institute,
Carnegie Mellon University

Building Micron: The Next Handheld Manipulator for Microsurgery

3305 Newell-Simon Hall

Abstract: Robotic assistance is used today in a variety of surgeries as a means of precise, dexterous, and minimally-invasive manipulation. However, practical use in microsurgical environments such as vitreoretinal surgery remains a challenge for the most common mechanically-grounded robotic platforms. Microsurgery requires micron-level accuracy and the ability to manipulate with interaction forces in millinewtons. Vitreoretinal [...]

MSR Thesis Defense
Engineer II
Robotics Institute,
Carnegie Mellon University

Towards Estimation, Modeling, and Control of Mixed Material Flows on Variable-Speed Conveyor Belt Systems with Applications in Recycling

Newell-Simon Hall 4305

Abstract: Whether it is in sorting defects from grain in an agricultural setting, ore from tailings in a mine, or letters in a postal system, the sorting of bulk material has long been a crucial aspect of human industry.  Today, in the face of dwindling natural resource deposits and accelerating climate change, a particularly important [...]

MSR Thesis Defense
MSR Student
Robotics Institute,
Carnegie Mellon University

Expressive Attentional Communication Learning using Graph Neural Networks

Newell-Simon Hall 4305

Abstract: Multi-agent reinforcement learning presents unique hurdles such as the non-stationary problem beyond single-agent reinforcement learning that makes learning effective decentralized cooperative policies using an agent's local state extremely challenging. Effective communication to share information and coordinate is vital for agents to work together and solve cooperative tasks, as the ubiquitous evidence of communication in [...]

MSR Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Estimating Object Importance and Modeling Driver’s Situational Awareness for Intelligent Driving

3305 Newell-Simon Hall

Abstract: The ability to identify important objects in a complex and dynamic driving environment can help assistive driving systems alert drivers. These assistance systems also require a model of the drivers' situational awareness (SA) (what aspects of the scene they are already aware of) to avoid unnecessary alerts. This thesis builds towards such intelligent driving [...]

MSR Thesis Defense
MSR Student
Robotics Institute,
Carnegie Mellon University

Learning for Perception and Strategy: Adaptive Omnidirectional Stereo Vision and Tactical Reinforcement Learning

Newell-Simon Hall 4305

Abstract: Multi-view stereo omnidirectional distance estimation usually needs to build a cost volume with many hypothetical distance candidates. The cost volume building process is often computationally heavy considering the limited resources a mobile robot has. We propose a new geometry-informed way of distance candidates selection method which enables the use of a very small number [...]

MSR Thesis Defense
MSR Student
Robotics Institute,
Carnegie Mellon University

Online-Adaptive Self-Supervised Learning with Visual Foundation Models for Autonomous Off-Road Driving

3305 Newell-Simon Hall

Abstract: Autonomous robot navigation in off-road environments currently presents a number of challenges. The lack of structure makes it difficult to handcraft geometry-based heuristics that are robust to the diverse set of scenarios the robot might encounter. Many of the learned methods that work well in urban scenarios require massive amounts of hand-labeled data, but [...]

MSR Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

VoxDet: Voxel Learning for Novel Instance Detection

NSH 3305

Abstract: Detecting unseen instances based on multi-view templates is a challenging problem due to its open-world nature. Traditional methodologies, which primarily rely on 2D representations and matching techniques, are often inadequate in handling pose variations and occlusions. To solve this, we introduce VoxDet, a pioneer 3D geometry-aware framework that fully utilizes the strong 3D voxel [...]

MSR Thesis Defense
PhD Student
Robotics Institute,
Carnegie Mellon University

Voxel Learning for Novel Instance Detection

Newell-Simon Hall 3305

Abstract: Detecting unseen instances based on multi-view templates is a challenging problem due to its open-world nature. Traditional methodologies, which primarily rely on 2D representations and matching techniques, are often inadequate in handling pose variations and occlusions. To solve this, we introduce VoxDet, a pioneer 3D geometry-aware framework that fully utilizes the strong 3D voxel [...]

MSR Thesis Defense
MSR Student / Teaching Assistant
Robotics Institute,
Carnegie Mellon University

Efficient Quadruped Mobility: Harnessing a Generalist Policy for Streamlined Planning

GHC 4405

Abstract: Navigating quadruped robots through complex, unstructured environments over long horizons remains a significant challenge in robotics. Traditional planning methods offer guarantees such as optimality and long-horizon reasoning, while learning-based methods, particularly those involving deep reinforcement learning (DRL), provide robustness and generalization. In this thesis, we present S3D-OWNS (Skilled 3D-Optimal Waypoint Navigation System), a novel [...]