MSR Thesis Defense
MSR Student
Robotics Institute,
Carnegie Mellon University

Learning from Animal and Human Videos

Newell-Simon Hall 3305

Abstract: Animals and humans can learn from the billions of years of life on Earth and the evoluNon that has shaped it. If robots can borrow from that wealth of experience, they too could be enabled to learn from the experience, instead of learning through brute force trial-and-error. Learning from internet-scale videos, such as the [...]

MSR Thesis Defense
MSR Student
Robotics Institute,
Carnegie Mellon University

Reconstructing Tree Skeletons in Agricultural Robotics: A Comparative Study of Single-View and Volumetric Methods

1305 Newell Simon Hall

Abstract: This thesis investigates the problem of reconstructing tree skeletons for agricultural robotics, comparing single-view image-based (Image to 3D) and volumetric (3D to 3D) methods. Accurate 3D modeling is essential for robotic tasks like pruning and harvesting, where understanding the underlying branch structure is critical. Using a custom-generated dataset of synthetic trees, we train encoder-decoder [...]

MSR Thesis Defense
MSR Student / MSR Student
Robotics Institute,
Carnegie Mellon University

Acoustic Neural 3D Reconstruction Under Pose Drift

GATES-HILLMAN 4405

Abstract: We consider the problem of optimizing neural implicit surfaces for 3D reconstruction using acoustic images collected with drifting sensor poses. The accuracy of current state-of-the-art 3D acoustic modeling algorithms is highly dependent on accurate pose estimation; small errors in sensor pose can lead to severe reconstruction artifacts. In this paper, we propose an algorithm [...]