PhD Speaking Qualifier
PhD Student
Robotics Institute,
Carnegie Mellon University

Analogy-Forming Transformers for Few-Shot 3D Parsing

NSH 3305

Abstract: How do we build agents that can fast generalize to novel scenarios given only a single example? In this talk, I will present analogy-forming transformers, a semi-parametric model that segments 3D object scenes by retrieving related memories and predicting analogous part structures for the input. This enables a single neural network to continually learn [...]

PhD Speaking Qualifier
PhD Student
Robotics Institute,
Carnegie Mellon University

Range-based Gaussian Process Maps for Mobile Exploration Robots

NSH 3305

Abstract: Mobile robots exploring unknown, natural environments with limited communication must map their surroundings using onboard sensors. In this context, terrain mapping can rely on Gaussian process models to incorporate spatial correlations and provide uncertainty estimates when predicting ground height - however, these models fail to account for the oblique viewpoint of a sensor on [...]

PhD Speaking Qualifier
PhD Student
Robotics Institute,
Carnegie Mellon University

Learning Exploration Strategies to Solve Real-World Marble Runs

NSH 1109

Abstract: Tasks involving locally unstable or discontinuous dynamics (such as bifurcations and collisions) remain challenging in robotics, because small variations in the environment can have a significant impact on task outcomes. In this talk, we present a robot system that we developed to evaluate learning algorithms on real-world physical problem solving tasks which incorporate these [...]

PhD Speaking Qualifier
PhD Student
Robotics Institute,
Carnegie Mellon University

Beyond NeRF Underwater: Learning Neural Reflectance Fields for True Color Correction of Marine Imagery

NSH 4305

Abstract: Underwater imagery often exhibits distorted coloration as a result of light-water interactions, which complicates the study of benthic environments in marine biology and geography. In this research, we propose an algorithm to restore the true color (albedo) in underwater imagery by jointly learning the effects of the medium and neural scene representations. Our approach [...]

PhD Thesis Defense
Robotics Institute,
Carnegie Mellon University

Optimization of Small Unmanned Ground Vehicle Design using Reconfigurability, Mobility, and Complexity

Abstract: Unmanned ground vehicles are being deployed in increasingly diverse and complex environments. With modern developments in sensing and planning, the field of ground vehicle mobility presents rich possibilities for mechanical innovations that may be especially relevant for unmanned systems. In particular, reconfigurability may enable vehicles to traverse a wider set of terrains with greater [...]

PhD Speaking Qualifier
PhD Student
Robotics Institute,
Carnegie Mellon University

Force-Torque Sensors – Calibration & Estimation

NSH 4305

Abstract: Wrist force-torque sensors were among the first proprioception sensors to be developed when robotics emerged as a field. They are now a mature technology already used in structured industrial applications like sanding and drilling. While they provide essential feedback in many manipulation algorithms, they do not garner as much excitement as exteroception sensors like [...]

PhD Speaking Qualifier
PhD Student
Robotics Institute,
Carnegie Mellon University

Optimized Tradeoffs for Differentially Private Majority Ensembling

NSH 3305

Abstract: Inspired by the common subtask of ensembling or calibrating private models, we study the problem of computing an m*epsilon-differentially private majority of K epsilon-differentially private algorithms for m < K. We introduce a general framework to compute the private majority via Randomized Response (RRM) with a data-dependent noise function gamma that subsumes any non-trivial [...]

PhD Thesis Proposal
Principal Research Programmer / Analyst
Robotics Institute,
Carnegie Mellon University

Spectral Mapping using Simple Sensors for Micro-Explorers

NSH 4305

Abstract: Spectral mapping is an essential task in exploration as it expands our understanding of material composition in an explored region. Although imaging spectrometers are ideal for obtaining spectra to construct spectral maps, their large size, high power consumption, and operational complexity make them impractical for small rovers and limited missions. In contrast, RGB cameras [...]

PhD Thesis Proposal
PhD Student
Robotics Institute,
Carnegie Mellon University

Simulation-driven vision-based tactile sensor design using Physics Based Rendering

GHC 6501

Abstract:  Touch is an essential sensing modality for making autonomous robots more dexterous and works collaboratively with humans. With the advent of vision-based tactile sensors, roboticists have tried to incorporate tactile sensors in various robot structures for various robotic manipulation tasks to increase robustness, precision, and reliability. However, the design of vision-based tactile sensors is [...]

PhD Thesis Proposal
PhD Student
Robotics Institute,
Carnegie Mellon University

Efficient Interactive Learning with Unobserved Confounders

GHC 6501

Abstract: Interactive learning systems like self-driving cars, recommender systems, and large language model chatbots are becoming increasingly ubiquitous in everyday life. From a machine learning perspective, the key technical challenge underlying such systems is that rather than simple prediction on i.i.d. data, an interactive learner influences the distribution of inputs it sees via the choices [...]