PhD Thesis Proposal
Robotics Institute,
Carnegie Mellon University

Towards reconstructing non-rigidity from single camera

Abstract: In this proposal, we study how to infer 3D from images captured by a single camera, without assuming the target scenes / objects being static. The non-static setting makes our problem ill-posed and challenging to solve, but is vital in practical applications where target-of-interest is non-static. To solve ill-posed problems, the current trend in [...]

PhD Thesis Defense
Robotics Institute,
Carnegie Mellon University

Control Input and Natural Gaze for Goal Prediction in Shared Control

GHC 4405

Abstract: Teleoperated systems are used widely in deployed robots today, for such tasks as space exploration, disaster recovery, or assisted manipulation. However, teleoperated systems are difficult to control, especially when performing high-dimensional, contact-rich tasks like manipulation. One approach to ease teleoperated manipulation is shared control; this strategy combines the user's direct control input with an [...]

PhD Speaking Qualifier
PhD Student
Robotics Institute,
Carnegie Mellon University

Forecasting from LiDAR via Future Object Detection

NSH 3305

Abstract: Object detection and forecasting are fundamental components of embodied perception. These two problems, however, are largely studied in isolation by the community. In this paper, we propose an end-to-end approach for detection and motion forecasting based on raw sensor measurement as opposed to ground truth tracks. Instead of predicting the current frame locations and [...]

PhD Thesis Proposal
PhD Student
Robotics Institute,
Carnegie Mellon University

Efficient 3D Representations: Algebraic Surfaces for Differentiable Rendering

NSH 4305

Abstract: In this proposal, we show how some classic computer vision tasks can robustly be solved via optimization techniques by using an object representation that is compact and interpretable. Specifically, we explore the applications and benefits of representing 3D objects with an analytical, algebraic function by building an approximate, ray-based differentiable renderer. Our approximate formulation [...]

PhD Thesis Defense
Robotics Institute,
Carnegie Mellon University

Liquid Metal Actuators

NSH 4305

Abstract: This thesis contributes to the field of soft actuators by introducing a generalized framework of actuators from liquid metals. The evolution of robotic actuators has enabled robots to achieve a diversity of motions. Like natural muscles, which converts chemical energy into mechanical work in response to electrical stimuli from the nervous system, actuators are [...]

PhD Thesis Proposal
PhD Student
Robotics Institute,
Carnegie Mellon University

Continual Robot Learning: Benchmarks and Modular Methods

Zoom Meeting Passcode: 841755 Abstract: The earliest reinforcement learning models were designed to learn one task, specified up-front. However, an agent operating freely in the real world will not in general be granted this luxury, as the demands placed on the agent may change as environments or goals change. We refer to this ever-shifting scenario [...]

MSR Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

MSR Thesis Talk: Yash Oza

NSH 3305

Title: Preprocessing-based Methods for Robotic Manipulation Abstract: Robotic manipulation is a key problem for several applications such as welding, pick-and-place, and automated assembly. However, motion planning for manipulation can be computationally expensive as it requires planning in the high-dimensional configuration space of the manipulator. Additionally, task-specific constraints such as strict time limits or constraints on end-effector [...]

MSR Speaking Qualifier
PhD Student
Robotics Institute,
Carnegie Mellon University

MSR Thesis Talk: Ingrid Navarro Anaya

3305 Newell-Simon Hall

Title: Socially-Aware Trajectory Prediction Guided by Motion Patterns Abstract: As intelligent robots across domains start collaborating with humans in shared environments, e.g., urban settings and terminal airspace, algorithms that enable them to reason over human motion and intent are important to enable seamless and safe interplay. In our work, we study human intent by focusing on the [...]

MSR Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

MSR Thesis Talk: Qichen Fu

NSH 3305

Date: Tuesday, July 19, 2022 Time: 9:00 AM - 10:00 AM ET Location: Newell-Simon Hall (NSH) 3305 Title: Detect Active Object in a Sequential Voting Process Abstract: A key component of understanding hand-object interactions is the ability to identify the active object -- the object that is being manipulated by the human hand. In order to accurately localize the [...]

MSR Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

MSR Thesis Talk: Ruohai Ge

NSH 3001

Title: Real-Time Visual Localization System in Changing and Challenging Environments via Visual Place Recognition   Abstract: Localization is one of the fundamental capabilities to guarantee reliable robot autonomy. Many excellent Visual-Inertial and LiDAR-based algorithms have been developed to solve the localization problem. However, deploying these methods on a real-time portable device is challenging due to high [...]