Student Talks
Carnegie Mellon University
Real-to-Virtual Domain Unification for End-to-End Autonomous Driving
Abstract: In the spectrum of vision-based autonomous driving, vanilla end-to-end models are not interpretable and suboptimal in performance, while mediated perception models require additional intermediate representations such as segmentation masks or detection bounding boxes, whose annotation can be prohibitively expensive as we move to a larger scale. More critically, all prior works fail to deal with the notorious [...]
Carnegie Mellon University
Reconstruction of dynamic vehicles from multiple unsynchronized cameras
Despite significant research in the area, reconstruction of multiple dynamic rigid objects (eg. vehicles) observed from wide-baseline, uncalibrated and unsynchronized cameras, remains hard. On one hand, feature tracking works well within each view but is hard to correspond across multiple cameras with limited overlap in fields of view or due to occlusions. On the other [...]
Carnegie Mellon University
Algorithms for Timing and Sequencing Behaviors in Robotic Swarms
Abstract: Robotic swarms are multi-robot systems whose global behavior emerges from local interactions between individual robots and spatially proximal neighboring robots. Each robot can be programmed with several local control laws that can be activated depending on an operator's choice of global swarm behavior (e.g. flocking, aggregation, formation control, area coverage). In contrast to other [...]
Carnegie Mellon University
Data-Driven Statistical Models of Robotic Manipulation
Abstract: Improving robotic manipulation is critical for robots to be actively useful in real-world factories and homes. While some success has been shown in simulation and controlled environments, robots are slow, clumsy, and not general or robust enough when interacting with their environment. By contrast, humans effortlessly manipulate objects. One possible reason for this discrepancy [...]
Carnegie Mellon University
Observing Humans In Their Natural Habitat: Data, Algorithms, and Analysis
Abstract: Computer vision has a great potential to help our daily lives by searching for lost keys, watering flowers or reminding us to take a pill. To succeed with such tasks, computer vision methods need to be trained from real and diverse examples of our daily dynamic scenes. First, we need to give computers insight [...]
Carnegie Mellon University
Ergodic Coverage and Active Search in Constrained Environments
In this thesis, we explore sampling-based trajectory optimization applied to search for objects of interest in constrained environments (e.g., a UAV searching for a target in the presence of obstacles). We consider two search scenarios: in the first scenario, accurate prior information distribution of the possible locations of the objects of interest is available, thus [...]
Carnegie Mellon University
Analysis of Spatio-Temporally Varying Features in Optical Coherence Tomographic (OCT) and Ultrasound (US) Image Sequences
Abstract: Optical Coherence Tomography (OCT) and Ultrasound (US) are non-ionizing and non-invasive imaging modalities that are clinically used to visualize anatomical structures in the body. OCT has been widely adopted in clinical practice due to its micron-scale resolution to visualize in-vivo structures of the eye. Ultra-High Frequency Ultrasound (UHFUS) can capture images at a depth [...]
Carnegie Mellon University
Planning for Energy-Efficient Coverage and Exploratory Deviation by Robots in Rivers
Abstract: Manual collection of environmental data over a large area can be a time-consuming, costly, and even dangerous process, making it a perfect candidate for automation with mobile robots. Despite this clear suitability and numerous advances in robotics resulting in decreased costs, improved reliability, and increased ease of use, the problem of powering autonomous robots [...]
Carnegie Mellon University
Learning to Learn for Small Sample Visual Recognition
Abstract: Understanding how humans and machines recognize novel visual concepts from few examples remains a fundamental challenge. Humans are remarkably able to grasp a new concept and make meaningful generalization from just few examples. By contrast, state-of-the-art machine learning techniques and visual recognition systems typically require thousands of training examples and often break down if [...]
Carnegie Mellon University
Understanding Machine Vision through Human Vision
Abstract: Recent success in machine vision has been largely driven by advanced computer vision methods, most commonly known as deep learning based methods. While we have seen tremendous performance improvements in machine visual tasks, such as object categorization and segmentation, there remain two major issues in deep learning. Firstly, deep networks have been largely unable [...]