PhD Thesis Proposal
Robotics Institute,
Carnegie Mellon University

Deep Reinforcement Learning Representations for Robotics

GHC 8102

Abstract: A long standing goal of robotics research is to create algorithms that can automatically learn complex control strategies from scratch. Part of the challenge of applying such algorithms to robots is the choice of representation. While RL algorithms have been successfully applied to many robotics tasks such as Ball-in-a-Cup and various RoboCup soccer domains, [...]

PhD Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

Speeding Up Search-based Motion Planning Via Conservative Heuristics

GHC 6501

Abstract: Weighted A* search (wA*) is a popular tool for robot motion-planning. Its efficiency however depends on the quality of heuristic function used. In fact, it has been shown that the correlation between the heuristic function and the true cost-to-goal significantly affects the efficiency of the search, when used with a large weight on the [...]

PhD Thesis Proposal
Robotics Institute,
Carnegie Mellon University

Learning multi-robot behaviors for online control

NSH 3305

Abstract: Finding dynamically feasible and safe global plans for multi-agent teams in real world applications is enormously difficult because the decision branching factor, when considering all possible interactions across agents and an environment, is usually intractable. Humans, however, have great success in the multi-agent planning domain by using behaviors: practiced, coordinated responses for groups of [...]

PhD Thesis Proposal
Robotics Institute,
Carnegie Mellon University

Routing for Persistent Exploration in Dynamic Environments with Teams of Energy-Constrained Robots

GHC 8102

Abstract: In domains requiring effective situational awareness with limited resources, prioritizing focus is critical. Search and rescue tasks require fast identification of safe avenues for rescuers to traverse the area. Inspection tasks must realize trends over long durations to identify issues caused by the confluence of high-stress modes that compound into catastrophic failure. Deploying robots [...]

PhD Thesis Defense
Robotics Institute,
Carnegie Mellon University

Intra-Robot Replanning and Learning for Multi-Robot Teams in Complex Dynamic Domains

GHC 6501

Abstract: In complex dynamic multi-robot domains, there is a set of individual robots that must coordinate together through a centralized planner that inevitably makes assumptions based on a model of the environment and the actions of the individual. Eventually, the individuals may encounter failures, because the centralized planner’s models of the states and actions are [...]

PhD Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

Toward a New Type of Agile and Dexterous Mobile Manipulator

NSH 3305

Abstract: Mobile robot bases have been developed over many decades, but only recently have researchers added arms to these bases, opening up the rich field of mobile manipulation. Most of these robots either need wide, heavy, statically-stable bases that may or may not be omnidirectional to support the arms and provide stability. Such robot bases, [...]

PhD Thesis Defense
Robotics Institute,
Carnegie Mellon University

Light Sheet Depth Imaging

NSH 3305

Abstract: Once confined to industrial manufacturing facilities and research labs, robots are increasingly entering everyday life. As specialized robots are developed for tasks such as autonomous driving, package delivery, and aerial videography, there is a growing need for affordable depth sensing technology. Robots use sensors like scanning LIDAR, depth cameras, and passive stereo cameras to [...]

PhD Thesis Defense
Robotics Institute,
Carnegie Mellon University

Towards Generalization and Efficiency in Reinforcement Learning

GHC 8102

Abstract: In classic supervised machine learning, a learning agent behaves as a passive observer: it receives examples from some external environment which it has no control over and then makes predictions. Reinforcement Learning (RL), on the other hand, is fundamentally interactive: an autonomous agent must learn how to behave in an unknown and possibly hostile [...]

MSR Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

Akshat Agarwal – MSR Thesis Talk

Newell-Simon Hall 4305

Title: Learning Transferable Cooperative Behavior in Multi-Agent Teams   Abstract: We study the emergence of cooperative behavior and communication protocols in multi-agent teams, for collaboratively accomplishing tasks like coverage control and formation control for swarms. Using graph neural networks to model inter-agent communications, we present state-of-the-art results in a fully decentralized execution framework which assumes [...]

MSR Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

Yifan Ding – MSR Thesis Talk

Newell-Simon Hall 4305

Title: Decentralized Multiple Mobile Depots Route Planning for Replenishing Persistent Surveillance Robots   Abstract: Persistent surveillance of a target space using multiple robots has numerous applications. The continuous operation in these applications is challenged by the limited onboard battery capacity of the persistent robots. We consider the problem for replenishing persistent robots using mobile depots, [...]