PhD Speaking Qualifier
Project Scientist
Robotics Institute,
Carnegie Mellon University

Design with Interpretability in Mind: An Alternate Ethos for Data Science

GHC 8102

Abstract: The fields of Machine Learning and Data Science generally follow the paradigm that “the ends justify the means”, where improving predictive power of an algorithm is considered of paramount value, even when implemented at the expense of model intelligibility. While accuracy is an important performance metric, interpretability should be a major consideration for many [...]

PhD Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

Multi-Robot Routing and Scheduling with Spatio-Temporal And Ordering Constraints

GHC 6501

Abstract We consider the problem of allocation and routing a fleet of robots to service a given set of locations while minimizing makespan. The service start times for the locations are subject to AND/OR type precedence constraints. Spatio-temporal constraints prohibit certain states from all feasible schedules where a state is defined as a tuple of [...]

PhD Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

Robot Learning in Homes – Improving Generalization and Reducing Dataset Bias

NSH 3305

Abstract: Data-driven approaches to solving robotic tasks have gained a lot of traction in recent years. However, most existing policies are trained on large-scale datasets collected in curated lab settings. If we aim to deploy these models in unstructured visual environments like people’s homes, they will be unable to cope with the mismatch in data [...]

PhD Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

Online, Interactive User Guidance for High-dimensional, Constrained Motion Planning

GHC 8102

Abstract: We consider the problem of planning a collision-free path for a high-dimensional robot. Specifically, we suggest a planning framework where a motion-planning algorithm can obtain guidance from a user. In contrast to existing approaches that try to speed up planning by incorporating experiences or demonstrations ahead of planning, we suggest to seek user guidance [...]

PhD Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

Robot Task Execution by Policy Adaptation and Switching Among Multiple Tasks

GHC 8102

Abstract: While mobile robots reliably perform service tasks by accurately localizing and safely navigating while avoiding obstacles, they do not respond in any other way to their surroundings. In this work, we introduce two methods that enable the robots to be more responsive to their environment, including humans and other robots. The first algorithm enables [...]

PhD Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

Persistent Multi-Robot Mapping in an Uncertain Environment

GHC 8102

Abstract: We present a system that addresses the challenge of concurrently mapping, scheduling, and deploying a team of energy-constrained robots to persistently cover an unknown and potentially dynamic environment. This system can passively maintain an accurate representation of occupied space, allowing robots reliable access for monitoring, study, or search and rescue. Current state-of-the-art algorithms only [...]

PhD Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

Direct Drive Hands: Force-Motion Transparency in Gripper Design

NSH 3305

Abstract: The Direct Drive Hand (DDHand) project is exploring a new design philosophy for grippers. The conventional approach is to prioritize clamping force, leading to high gear ratios, slow motion, and poor transmission of force/motion signals. Instead, the DDHand prioritizes transparency: we view the gripper as a signal transmission channel, and seek high-bandwidth, high-fidelity transmission [...]

PhD Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

Learning to Align without Geometric Supervision

GHC 4405

Abstract: Extracting geometric information from image data is a highly nonlinear problem that exhibits in a number of visual recognition tasks such as object localization, facial landmark tracking and human pose estimation. Successful alignment across image data often serves as a crucial component in making them possible. In this talk, I will present how one [...]

PhD Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

Towards Safe and Robust Behavior Mixing for Multi-Robot Systems

GHC 8102

Abstract: Multi-robot systems have been widely studied for extending its capability of accomplishing complex tasks through cooperative behaviors. In large-scale multi-robot behavior mixing, the heterogeneous robotic team executes simultaneously multiple behaviors or sequences of behaviors with various task-prescribed controllers in real time to increase efficiency in parallel tasks. Key to the success of behavior mixing [...]

PhD Speaking Qualifier
Robotics Institute,
Carnegie Mellon University

Speeding Up Search-based Motion Planning Via Conservative Heuristics

GHC 6501

Abstract: Weighted A* search (wA*) is a popular tool for robot motion-planning. Its efficiency however depends on the quality of heuristic function used. In fact, it has been shown that the correlation between the heuristic function and the true cost-to-goal significantly affects the efficiency of the search, when used with a large weight on the [...]